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Abstract
Healing in soft biological tissues is a chain of events on different time and length scales. This work presents a computational 
framework to capture and couple important mechanical, chemical and biological aspects of healing. A molecular-level dam-
age in collagen, i.e., the interstrand delamination, is addressed as source of plastic deformation in tissues. This mechanism 
initiates a biochemical response and starts the chain of healing. In particular, damage is considered to be the stimulus for 
the production of matrix metalloproteinases and growth factors which in turn, respectively, degrade and produce collagen. 
Due to collagen turnover, the volume of the tissue changes, which can result either in normal or pathological healing. To 
capture the mechanisms on continuum scale, the deformation gradient is multiplicatively decomposed in inelastic and elas-
tic deformation gradients. A recently proposed elasto-plastic formulation is, through a biochemical model, coupled with 
a growth and remodeling description based on homogenized constrained mixtures. After the discussion of the biological 
species response to the damage stimulus, the framework is implemented in a mixed nonlinear finite element formulation 
and a biaxial tension and an indentation tests are conducted on a prestretched flat tissue sample. The results illustrate that 
the model is able to describe the evolutions of growth factors and matrix metalloproteinases following damage and the 
subsequent growth and remodeling in the respect of equilibrium. The interplay between mechanical and chemo-biological 
events occurring during healing is captured, proving that the framework is a suitable basis for more detailed simulations of 
damage-induced tissue response.

Keywords  Soft biological tissue mechanics · Mechanobiology of healing · Damage-induced growth · Homogenized 
constrained mixtures

1  Introduction

When a soft biological tissue is injured, e.g., after trauma 
or surgical procedures, repair mechanisms within the tissue 
occur to rebuild functionality and integrity of the tissue. The 
repair process, from damage stimuli to the formation of new 

tissue, is yet not fully understood. It is a complex, interac-
tive process at different length and time scales and invokes 
interactions between mechanical stimuli, chemical signals 
and biological species (Velnar et al. 2009; Thackham et al. 
2008). The understanding is essential to prevent abnormal 
healing which is of special interest in clinical practice. For 
instance, clinicians want to avoid abnormal scar formation 
during wound healing or to maintain the restored functional-
ity of blood vessels after vascular surgeries.

Soft biological tissue is mainly comprised of cells (e.g., 
fibroblasts, epithelial cells and muscle cells) embedded in a 
non-cellular structure that is comprised of numerous mol-
ecules (e.g., collagen, elastin, structural glycoproteins and 
proteoglycans) (Hay 1981; Alberts et al. 2002). The latter is 
named the extracellular matrix (ECM). Mechanical stimuli 
are carried mostly by ECM components. The primarily load 
bearing constituents within the ECM are collagen and elastin 
(Burton 1954; Cocciolone et al. 2018). While elastin ensures 
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elasticity of the tissue at low strains, collagen acts as a rein-
forcing constituent at high strains (Roach and Burton 1957; 
Shadwick 1999).

As a result of supra-physiological loading, soft biological 
tissue is injured or damaged. At macroscopic level, this can 
be characterized mechanically by the stress-softening effect. 
Softening is mainly caused by damage in collagen losing its 
integrity (Weisbecker et al. 2012), whereas softening due 
to elastin damage was shown to be negligible (Weisbecker 
et al. 2013). At fibril scale, multiple inelastic mechanisms in 
collagen could be identified (Buehler 2006), involving slip-
pulse, interstrand delamination and molecular covalent bond 
rupture (Marino 2016). Interstrand delamination (ID) is an 
irreversible collagen triple helix unfolding and corresponds 
to the sliding of a single polypeptide strand of the triple 
helix with respect to the other two. ID seems to be one of 
the most critical mechanism occurring to collagen molecules 
during tissue damage. The use of collagen hybridizing pep-
tides (CHP) in combination with fluorescence and imaging 
techniques provides an experimental measure of collagen 
damage. In Zitnay et al. (2017), Marino et al. (2019), Lin 
et al. (2020), the existence of a relationship between the evo-
lution of CHP-binding and tissue softening was shown, prov-
ing the significance of ID on the biomechanics of injured 
biostructures.

Even under normal physiologic conditions, cells con-
tinuously sense the state of ECM and deposit, rearrange or 
remove matrix (Lu et al. 2011). In turn, ECM influences 
migration, proliferation or differentiation of cells (Hoffman 
et al. 2011). ECM, specifically collagen, is continuously 
turned over by the activities of enzymes, such as matrix met-
alloproteinases (MMP), which degrade ECM and release 
growth factors (GF) (Bonnans et al. 2014). GF in turn con-
tribute to the accommodation of new ECM, specifically of 
collagen (Forrester et al. 1991). These mechanisms contrib-
ute to the maintenance of homeostatic conditions or, in case 
of injury, to the tissue repair. Detailed descriptions of the 
regulatory mechanisms in tissues are given, e.g., by Hum-
phrey et al. (2014), addressing the homeostasis process, and 
by Mouw et al. (2014) for non-healthy tissues.

Computational models are a promising tool to better 
understand the behavior of healing tissues and to iden-
tify key players in the chain of events (Humphrey 2013). 
Although numerous different types of biological soft tissues 
exist, they have in common the interaction of mechanical, 
chemical and biological events across space and time scales. 
Thus, computational models addressing healing should con-
sider and couple these physically different mechanisms. The 
need of this coupling has recently been pointed out by Loer-
akker and Ristori in Loerakker and Ristori (2019), high-
lighting the importance for the modeling of cardiovascular 
tissue. A three-dimensional continuum model for the wound 
healing process has been presented by Buganza Tepole and 

Kuhl (2016). Their framework combines mechanical defor-
mation with inflammatory signals and cell behavior and 
is monolithically solved. The chemical signal is given as 
a synthesized quantity that initiates a change in fibroblast 
density. Fibroblasts and inflammatory signals in turn alter 
the content of collagen. From the mechanical perspective, 
the key players in their framework are collagen and a non-
collagenous matrix, together forming the ECM. Another 
model on continuum scale has been published by Escuer 
et al. (2019). The authors address the problem of resteno-
sis, which is the pathological renarrowing of arteries after 
angioplasty. In their two-dimensional framework, the chain 
of events is initiated as soon as a stress value is exceeded. 
They consider the interaction of GF and MMP with vascular 
smooth muscle cells (VSMC), ECM and endothelial cells 
(EC). Beside continuum models, several agent-based models 
(ABM) exist to simulate healing. In contrast to continuum 
models and based on a set of rules, ABMs cannot capture the 
mechanical behavior but migration, proliferation and apopto-
sis of individual cells. They are often applied in the context 
of restenosis. Zun et al. (2017) published an ABM for a three 
dimensional, patient-specific, stented artery. To overcome 
the lack of mechanical information, ABMs have been cou-
pled to finite element models, e.g., by Keshavarzian et al. 
(2018), Nolan and Lally (2018) and Li et al. (2019). The 
ABMs mostly consider EC and VSMC as cell populations 
and formulate sets of rules which represent chemical signals 
and the evolution of mediators such as MMPs. All the mod-
els mentioned above have in common that damage is treated 
at maximum as stiffness weakening. Inelastic deformations 
are not considered, although these would alter in turn G&R. 
In addition, these approaches generally consider homoge-
neous kinematic descriptions of growth, despite adopting 
more refined growth models of constrained mixtures which 
would account for the heterogeneous nature of soft tissues. A 
remarkable advancement in this direction is the homogene-
ous constrained mixture model proposed by Cyron et al. in 
Cyron et al. (2016), which gathers ease of implementation 
with the refinement of the description.

In this paper, a framework is proposed that considers the 
chain of chemo-bio-mechanical events involved in healing of 
soft tissues. Within the ECM, collagen is considered as the 
main structure becoming damaged. In contrast to the previ-
ously mentioned models, the recently available experimental 
evidence that collagen damage is in fact related to plastic 
deformations associated with interstrand delamination is 
incorporated and coupled with alterations in the mechanics 
of injured tissues. This mechanism is elected and used as 
damage stimulus. The repair process is modeled as initi-
ated by the amount of collagen damage. As a consequence 
of the injury signal, MMP and GF species are synthesized, 
which is modeled by means of ordinary differential equa-
tions. These species contribute to the degradation (MMP) 
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and deposition (GF) of collagen, leading in turn to tissue 
growth. At the continuum scale, the concentration of MMPs 
and GFs is coupled with a homogenized constrained mix-
ture model, motivated by Cyron et al. (2016), to describe 
the change in tissue volume as a gross effect caused by 
mechanisms on molecular and cellular scale. With respect 
to a number of existing approaches (Buganza Tepole and 
Kuhl 2016; Escuer et al. 2019; Li et al. 2019; Nolan and 
Lally 2018), the proposed framework includes a consistent 
continuum-based biomechanical description and coupling of 
damage evolution, biological events and tissue growth and 
remodeling. Damage is not simply considered as an internal 
variable independent from mechanics, but it is initiated by 
overloads and determines tissue softening and permanent 
deformations. In turn, the kinematics of damage-induced 
tissue growth and remodeling is introduced consistently with 
the pre-existing elasto-plastic tissue state, determining the 
evolving configuration of healing biostructures in the respect 
of mechanical equilibrium.

2 � Methods

Soft tissue domain is modeled as continuous body occu-
pying a region 𝛺0 ⊂ ℝ3 in reference configuration. The 
body moves in space and occupies at time t a region 
𝛺(t) ⊂ ℝ3 , called current configuration. The deformation 
gradient is defined as a function of the displacement � as 
� = Grad(�) + � . It transforms a line element d� ∈ �0 to a 
line element d� ∈ �(t) via

In this paper, a non-collageneous matrix (superscript i = m ) 
and collagen fibers (superscript i = c ) are considered. A 
non-collageneous matrix is assumed to behave isotropically 
(Weisbecker et al. 2013). Collagen fibers are embedded in 
the matrix and induce anisotropy. These two constituents 
play a key role in the response of the tissue to mechanical 
stress (or stretch) (Burton 1954; Cocciolone et al. 2018). For 
the sake of simplicity, only these constituents are consid-
ered. However, the herein presented framework can readily 
be extended to further constituents.

2.1 � Multiplicative split of the deformation gradient

To account for damage, growth, remodeling and elastic 
mechanisms, the deformation gradient is multiplicatively 
decomposed

d� = �d� .

� =�c
e
�
c
r
�
c
p

=�m
e
.

The constituents experience the same total deformation but 
individual elastic and inelastic deformations, see Fig. 1. It is 
assumed that the matrix deforms purely elastic up to high 
strains since it is mainly comprised of elastin and has a high 
content of water and no split of the deformation gradient �m

e
 

is necessary. Only collagen is damaged due to unphysiologi-
cal loading. The damage mechanism modeled is interstrand 
delamination what can be regarded as a source of plastic-like 
deformations in collagen due to the irreversible sliding 
between polypeptide strands. Thus, it is captured by a plastic 
collagen deformation gradient �c

p
 . Note that the damage for-

mulation used herein differs from traditional damage 
mechanics (Kachanov 1986), where an effective strain 
energy function is reduced by multiplication of a scalar dam-
age variable. The elastic deformation gradient captures at 
the one hand the elastic, reversible response of the tissue 
constituents due to mechanical loading and ensures mechan-
ical equilibrium in the current configuration. Secondly, it 
compensates geometrically incompatible states in the inter-
mediate configurations such that there are no gaps or over-
laps between differential volume elements. In addition, the 
elastic deformation gradient contains the growth informa-
tion, which is regarded as an elastic swelling under the con-
straint of constant spatial density, see Sec. 2.7. Remodeling 
of collagen is considered by introducing a remodeling defor-
mation gradient �c

r
 , see Sec. 2.4. The right Cauchy Green 

tensor � = �T� can be defined for the elastic part as

where i = c,m . The direction of collagen fibers is �0 in the 
reference configuration with ‖‖�0‖‖ = 1 . The fiber directions 
in the intermediate and current configurations are obtained 
by mapping �0 with the corresponding deformation gradi-
ent. In addition, the direction vectors are normalized such 
that not only the deformation gradient can be multiplicative 
decomposed but also the stretch. Hence the direction vectors 
in the first intermediate �p and in the second intermediate 
configuration �r result as

�
i
e
=
(
�
i
e

)T
�
i
e
,

�p =
�c
p
�0

‖‖‖�c
p
�0
‖‖‖
, �r =

�c
r
�p

‖‖‖�c
r
�p
‖‖‖
.

Fig. 1   Configurations and multiplicative split of the deformation gra-
dient
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Accordingly, the stretches in fiber direction can be written as

For later use, structural tensors comprised of the dyadic 
product between the fiber orientation vectors are introduced:

The isochoric first invariant of the matrix is introduced as

Furthermore, the anisotropic invariant of �c
e
 and �r is

representing the squared elastic stretch of collagen fibers in 
the fiber direction.

2.2 � Balance of mass

The determinant of the deformation gradient J = det� maps 
the volume element dV0 in the reference configuration of a 
body to a volume element dV in the current configuration via

The mass of a volume element is

where � is the mass density in the current configuration, 
assumed to be (nearly) constant, � ≈ const . This implies 
that, due to growth, the volume changes by exactly the same 
factor as the mass. In other words, in the spatial configura-
tion the volume per unit mass remains constant, which is 
generally referred to as incompressible growth. In contrast, 
the mass density in the reference configuration �0 is a func-
tion of time �0 = �0(t) . Thus, a change of the reference mass 
density directly translates into a change of current volume 
and mass. Inserting (3) into (4) yields

Note that the mass densities of the constituents are defined 
per total reference volume and not per volume of the con-
stituents. Thus, the total reference mass density is the sum 
of the reference mass densities of the constituents:

Herein, the contributions of GF and MMP are neglected 
because the mass of these species is more than six orders of 
magnitude smaller.

�c
p
=
‖‖‖�

c
p
�0
‖‖‖ , �c

r
=
‖‖‖�

c
r
�p
‖‖‖ ,

�c
e
=‖‖�c

e
�r
‖‖ , � = ‖‖��0

‖‖ .

�0 = �0 ⊗ �0 , �p = �p ⊗ �p , �r = �r ⊗ �r .

(1)Ī1 = tr
(
�̄

m
e

)
, where �̄

m
e
= det

(
�

m
e

)− 1

3�
m
e
.

(2)Ic
e
= �

c
e
∶ �r ,

(3)dV = J dV0 .

(4)dm = � dV = �0 dV0 ,

(5)� =
�0

J
.

(6)�0 = �c
0
+ �m

0
.

The mass of region � is obtained by integrating the infini-
tesimal mass over that region

In the presented theory, tissue growth is caused by volu-
metric growth only. Based on the slow-growth assumption 
(Goriely 2017), mass fluxes are not considered. Moreover, 
new tissue is produced with the same spatial mass density 
as of the existent tissue, yielding

where � is a growth rate function. Inserting (4) in (7), the 
rate of mass in the reference configuration is obtained:

Localization finally yields the rate equation of the reference 
mass density

Equation (5) implies that a change in the reference density 
translates into a change in volume and thus an appropri-
ate growth rate function � has to be chosen to describe the 
volumetric growth.

2.3 � Helmholtz free energy and stresses

An invariant-based Helmholtz free energy function �  for 
the mixture describes the stress response of the tissue. The 
isotropic properties of the matrix are assumed to depend on 
the first invariant Ī1 in (1). Furthermore, the stress depends 
on the elastic stretch of collagen and the fiber direction via 
the anisotropic invariant Ic

e
 in (2). The free energy of the 

mixture is additively decomposed:

Here, a non-constrained strain energy term � se is introduced 
made up by the contributions from collagen and the matrix. 
The term �L accounts for the interactions between the indi-
vidual mass increments in the constrained mixtures under 
a nearly incompressible elastic behavior of the mixture. 
�L constrains the volume change to be equal to the growth 
deformation, see the following Sec. 2.7. The strain energies 
Wi , i = c,m,L are defined per unit mass and multiplied by the 
reference mass densities per unit volume of the whole tissue. 
The strain energy � and the components � se and �L are thus 
defined per unit reference volume.

The 2nd Piola-Kirchhoff stress (2nd PK) follows from

m = ∫�

�dV .

(7)ṁ =
d

dt ∫𝛺

𝜌dV = ∫𝛺

𝜌𝛾dV ,

(8)ṁ =
d

dt ∫𝛺0

𝜌0dV0 = ∫𝛺0

𝜌0𝛾dV0 .

(9)𝜌̇0 = 𝜌0𝛾 .

(10)� = � se + �L = �c
0
Wc + �m

0
Wm + �0W

L .
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The mass fractions (constituent mass per total mass) are 
introduced as �i = mi∕m . The contribution to the stress due 
to volumetric growth �L is described for the whole mix-
ture. The �i can be interpreted as the 2nd PK stresses of the 
constituents if the whole volume was filled by a single ith 
constituent only.

The Cauchy stress can be obtained via a push forward of 
the 2nd PK as

with

To obtain the contribution of the ith constituent to the 
Cauchy stress, the �i need to be weighted by the mass frac-
tion �i of the ith constituent.

2.4 � Remodeling formulation

Besides the addition of mass through growth, collagen is con-
tinuously degraded and deposited to maintain or return to a 
stable mechanical state. New collagen is thereby deposited in 
the ECM at a certain stretch, which is called pre-stretch �c

pre
 . 

The stretch difference between existing collagen and newly 
formed collagen drives mass turnover. To capture this mass 
turnover, an isochoric remodeling deformation gradient is 
introduced

The rate of the remodeling stretch in fiber direction 𝜆̇c
r
 is, 

motivated by the remodeling approach in Grytsan et al. 
(2017), governed by the difference between the existing 
elastic collagen stretch and the pre-stretch

where kr is a parameter.

� = 2
��

��
= 2

∑
i=c,m

�i
0

�Wi

��
+ 2�0

�WL

��
=

∑
i=c,m

�i
�
i + �

L .

�
i = 2

�i
0

�i

�Wi

��
and �

L = 2�0
�WL

��
.

� =
1

J
���

T =
∑
i=c,m

�i
�
i + �

L .

�
i =

1

J
��

i
�
T and �

L =
1

J
��

L
�
T .

�
c
r
= �c

r
�p +

1√
�c
r

�
� −�p

�
.

(11)𝜆̇c
r
= kr

𝜆c
e
− 𝜆c

pre

𝜆c
pre

− 1
,

2.5 � Damage formulation

Damage is described in the framework of continuum damage 
mechanics. At the macroscale, stress softening is modeled. 
Tissue mechanics is governed by a set of internal variables 
which is descriptive for the average damage in collagen fib-
ers within the microstructure of the tissue. The formulation 
is based on the damage model proposed in Marino et al. 
(2019). However, for consistency with the proposed growth 
framework, the approach is slightly adapted by using the 
plastic stretch rather than the square of the plastic stretch as 
internal variable and by assuming the plastic deformation 
gradient to be incompressible.

The maximum collagen stretch �c
max

(t) contributing to 
damage is the maximum of the tissue stretch in the direction 
of the collagen fibers �(�) within the time range [0, t] divided 
by the remodeling stretch �r(t)

The remodeling stretch �c
r
 does not contribute to damage and 

is removed from the total stretch �.
Once the maximum stretch exceeds a physiologi-

cal threshold 𝜆̄p , damage evolves. The damage variable 
d ∈ [0, 1] is zero as long as no damage occurs and reaches 
its maximum d = 1 when the collagen is completely dam-
aged. Above a stretch threshold 𝜆̄p and as long as d ∈ [0, 1] , 
damage is proportional to the difference between maximum 
collagen stretch and the stretch threshold

Following the continuum damage theory, e.g., by Simo 
and Hughes (2006), damage is irreversible and thus ḋ ≥ 0 
must hold. This is, through the definition of �c

max
 and with 

mp = const. , automatically fulfilled and the damage rate 
reads

The flow rule is governed by the evolution of the maximum 
stretch, the damage variable d and the elastic collagen stretch 
�c
e
 in fiber direction

yielding the rate of the plastic stretch in the direction of the 
collagen fiber. Increasing plastic stretch inherits a progres-
sive decrease in the elastic stretch �c

e
 . The maximum amount 

�c
max

(t) =
max�∈[0,t] �(�)

�c
r
(t)

.

(12)d =

{
mp

(
𝜆c
max

− 𝜆̄p
)
if 𝜆c

max
> 𝜆̄p ∧ d < 1

0 otherwise
.

ḋ =

{
mp𝜆̇

c
max

if 𝜆c
max

> 𝜆̄p ∧ d < 1

0 otherwise
.

(13)𝜆̇c
p
=

{
d
𝜆̇c
max

𝜆c
e

if 𝜆c
e
> 1

0 otherwise
,
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of plastic stretch is limited by the case that the elastic stretch 
equals one, �c

e
= 1.

The plastic deformation is assumed to be anisotropic 
(aligned with collagen fibers direction) and incompressible 
such that an increase in volume is solely a consequence of 
healing. Consequently, the plastic deformation gradient is 
defined as

The biological model, describing the reaction of the tissue 
to damage, is developed assuming that the problem can be 
divided into a damaging phase, lasting seconds to minutes, 
and a healing (growing) phase, lasting hours to years. The 
time t∗ denotes the time at which damage-related variables 
(d and �c

p
 ) have reached a steady state. In other words, the 

present framework is conceived for injurious events, e.g., 
caused by trauma or surgical procedures. Once the tissue is 
damaged, for t > t∗ , no further damage occurs and the heal-
ing phase begins. The translation of the damage stimulus 
into the alteration of the biochemical environment (i.e., 
MMPs and GFs concentrations) is introduced in the next 
section.

2.6 � Biological model

With equations (6) and (9), the growth rate function can be 
written as

The induced damage causes a stress softening at the mac-
roscale and initiates mechanisms at the microscale which 
in turn cause addition of mass and thus growth at the mac-
roscale (see the following Sec. 2.7). Thus, the amount of 
damage correlates with the amount of tissue that has to be 
repaired. Since only collagen damage and repair is consid-
ered, 𝜌̇m

0
= 0 and hence (9) simplifies to

Note that the change of the reference density is a “net” mass 
change. Under homeostatic conditions, the tissue is continu-
ously turned over with 𝜌̇0 = 0 since mass production and 
removal balance each other. Injury disturbs this balance and 
hence 𝜌̇0 ≠ 0 anymore.

To quantify damaged and intact collagen, the reference 
mass density of collagen is additively split into

�
c
p
= �c

p
�0 +

1√
�c
p

(
� −�0

)
.

𝛾 =
𝜌̇0

𝜌0
=

1

𝜌0

(
𝜌̇c
0
+ 𝜌̇m

0

)
.

𝜌̇0 = 𝜌̇c
0
.

�c
0
= �ci

0
+ �cd

0
,

where the superscripts ( ci ) and ( cd ) mean collagen intact 
and collagen damaged, respectively. The amount of colla-
gen to be repaired at the beginning of the healing phase (at 
� = t∗ ) depends, on the one hand, on how damaged the col-
lagen is and, on the other hand, on the amount of collagen 
itself. Thus, the initial values of damaged �cd

0
|�=t∗ = �cd∗

0
 and 

intact �ci
0
|�=t∗ = �ci∗

0
 collagen mass density are introduced as 

a function of the damage variable d|�=t∗ = d∗ obtained at the 
end of the damaging phase (see Sec. 2.5):

The collagen mass density is �c∗
0

 directly after the damage 
phase. Since the density does not change during the damag-
ing phase, it corresponds to the initial collagen density. Note 
that the contribution of collagen to the strain energy per unit 
volume (10) is not further divided into a contribution for 
damaged and intact collagen, as has been done, e.g., by He 
et al. (2019) and Zuo et al. (2020).

The model introduced for describing the main biologi-
cal cascade of events following damage is schematically 
depicted in Fig. 2. For MMP, the concentration variable M 
and for GF, variable G are introduced. Following damage of 
soft tissue, MMP concentration is upregulated and decreases 
with time back toward the homeostatic concentration M0 , see 
Bendeck et al. (1994). To reproduce these observations, a 
production term is defined as a function of damaged collagen 
and combined with a reduction term to describe a natural 
decay toward M0

The presented approach introduces two parameters, m1 
quantifying the production of MMP due to the presence of 

(14)�cd∗
0

=d∗�c∗
0
,

(15)�ci∗
0

=(1 − d∗)�c∗
0
.

(16)Ṁ = m1

𝜌cd
0

𝜌c∗
0

− m2

(
M −M0

)
.

Fig. 2   Schematic illustration of the role of MMP and GF for the col-
lagen mass turnover initiated by the presence of damaged tissue
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damaged collagen and m2 quantifying the natural reduc-
tion. Although at homeostatic conditions, concentration M0 
induces a continuous turnover of collagen, this is not explic-
itly modeled in the biological description, but its mechanical 
effect is taken into account within the remodeling inelastic 
deformation. Only the biological effect outside the homeo-
static condition, that is collagen degradation and production 
for M ≠ M0 , is considered.

The increased MMP concentration in turn attracts GF to 
the site of damage. Accordingly, the concentration of GF 
increases as well (Cromack et al. 1987), but delayed with 
respect to the MMP concentration. After reaching a peak, 
the GF concentration decreases toward the homeostatic level 
G0 . Consequently, the GF rate is defined with a production 
term, function of the accumulated MMP IM , and a reduction 
term, function of GF concentration:

Parameter g1 quantifies the production of GF from MMP, 
whereas g2 describes the natural decay of GF. The function 
of accumulated MMP ( IM ) is obtained by integrating the 
MMP concentration M −M0 over the time range � ∈ [t∗, t] 
where � = t∗ is the time the healing phase begins, i.e., MMP 
concentration starts to increase:

The exponential time-dependent function is introduced such 
that

This term introduces a saturation behavior in the model 
representing the tendency of biological systems to be non-
responsive to continuous stimuli in time. Here, the parameter 
tdecay governs, how fast IM tends toward zero.

Since MMP upregulation causes degradation of collagen, 
damaged collagen is degraded as a function of MMP:

As shown by Van Doren (2015), MMP act on susceptible 
sites and not everywhere on fibrils. Therefore, since sus-
ceptible sites are likely more exposed in damaged collagen 
fibrils, only the effect of MMP on damaged collagen is mod-
eled. The exponential function describes that less damaged 
tissue is removed faster than a higher amount of damaged 

(17)Ġ = g1IM − g2
(
G − G0

)
.

(18)

IM = IM(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

t − t∗

t

∫
t∗

M(�)d�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=∶iM

−M0

⎞
⎟⎟⎟⎟⎟⎟⎠

exp

�
−
t − t∗

tdecay

�
.

lim
t→∞

IM(t) = 0 .

(19)𝜌̇cd
0
=

{
kd1

(
exp

(
−kd2

M−M0

M0

)
− 1

)
ifM > M0

0 otherwise
.

tissue, see Fig. 4e. GF drives production of intact collagen 
at the side of damage. Thus, the deposition of intact collagen 
density is modeled as a function of GF

It is worth highlighting that initial conditions for (19) and 
(20), for integration over � ∈ [t∗, t] , are given in (14) and 
(15), respectively. Alterations in collagen densities translate 
in tissue volume changes, i.e., tissue growth, as introduced 
in the next section.

2.7 � Growth formulation

For a constant spatial density, growth describes the change 
of volume due to the change of mass. Growth depends on 
the MMP and GF activities on microscale that lead to depo-
sition and degradation of ECM, see Sec. 2.6. Assumed 
herein is that the change of mass is solely due to the healing 
process. Via the balance of mass (7), mass change can be 
described by a change of the reference mass density as in (9). 
Due to the high amount of water in soft tissue, it is reason-
able to consider soft tissue as nearly incompressible such 
that volume changes are only caused by growth. In line with 
this assumption, the property of a nearly constant density, 
�(t) ≈ �0(0) , is inserted into  (5) yielding the constraint 
det(�) ≈

�0

�0(0)
 . For WL in the free energy (10), a constitutive 

equation is introduced for the volumetric deformation via a 
penalty-type approach, see Gierig et al. (2019):

where � is a parameter. In the limit � → ∞ , incompress-
ibility is enforced.

Following Braeu et al. (2019), the deposition of new 
mass during growth can be interpreted as elastic swelling. 
In other words, since the elastic parts of the deformation 
gradient ( �c

e
 and �m

e
 ) are directly affected by the deposition 

of mass, growth is associated with a change of the mate-
rial strain energy. In this case, volume will automatically 
increase predominantly in the directions of lowest stiffness. 
As a matter of fact, the direction of growth is determined 
via minimization of the potential energy, favoring the more 
compliant directions. The concept is not explained herein 
in detail, it is rather referred to the original paper (Braeu 
et al. 2019). Briefly, looking at an isolated differential vol-
ume element of the mixture, the traction free configuration 
evolves when growth occurs. The traction free configura-
tion is in the case of several constituents a configuration, in 
which the average stress of the constituents weighted with 
their respective mass fractions equals zero. The evolution 

(20)𝜌̇ci
0
= ki1

(
1 − exp

(
−ki2

G − G0

G0

))
.

(21)WL(J) =
�

2

(
J −

�0

�0(0)

)2

,
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of the traction free configuration is automatically enforced 
by the kinematic split in (1) and stationary conditions of a 
total potential energy with a free energy as in (10) and �L as 
in (21), see the following Sec. 3.

3 � Numerical implementation

Numerical simulations on the basis of the theoretical model 
developed in the last sections are performed within the finite 
element method. The associated code is automatically gener-
ated using the Mathematica based tool AceGen (Korelc and 
Wriggers 2016). The output code is generated in C language 
for the finite element environment AceFEM.

To account for volume change in the growth process, the 
finite element is based on a Hu-Washizu variational formula-
tion, with respect to the volumetric term:

The potential energy is a three-field functional with inde-
pendent variables displacement � , pressure p and dilatation 
� . Variable p is a Lagrangian parameter which enforces the 
equivalence (in a weak sense) between � and J. In turn, � is 
controlled by variations of �0 through WL(�) , see (21). The 
formulation is implemented in a finite element formulation 
for a nine-noded hexahedral mixed element. Each of the 
eight nodes at the edges has three degress of freedom pre-
senting the components of the displacement vector � . The 
node in the middle of the element has two degrees of free-
dom presenting � and p. Accordingly, the element represents 
a H1-P0 element, i.e., trilinear shape functions for the dis-
placement field and a constant ansatz for the pressure and 
volumetric strain. The internal variables of the model are 
split into three sets: �p = {d, �c

max
, �c

p
} corresponding to the 

plastic behavior, �b = {M,G, iM} for the biological species 
and �g = {�ci

0
, �cd

0
, �c

r
} for the growth behavior. A time dis-

cretization based on a backward Euler scheme is introduced, 
with the internal and field variables at the previous time step 
tn denoted by the index n. Locally at the Gauß   points, 
implicit Newton-Raphson iterations are conducted to com-
pute the internal variables.

Since damage and growth occur at different time scales, 
these mechanisms are modeled in a staggered and consecu-
tive way, split by the time values t0 and t∗ . To consider tissue 
prestretch, an initial simulation is conducted to apply physi-
ological loading conditions and let the tissue remodel such 
that at time t0 it has reached a stable physiological state. No 
damage and evolution of biological species are considered 
in this prestretch simulation (i.e., for t < t0 ). As previously 
mentioned, t∗ is a simulation parameter at which steady-state 

(22)
�(�, p, �) =∫�0

[
�c
0
Wc(�) + �m

0
Wm(�)

+ �0
(
WL(�) + p(J − �)

)]
dV .

conditions for damage shall be reached. Therefore, it 
depends on loading conditions and other damage-related 
material constants. For t0 ≤ t ≤ t∗ , the internal variables for 
the molecular species and growth are held constant. After-
wards, for t > t∗ , the damage variables are held constant and 
used for computing the initial conditions of the biological 
events inducing growth and remodeling, defining also the 
permanent tissue deformation determined by the damage 
event. A flowchart of the material routine at Gauß  point 
level is presented in Fig. 3.

Once the local material routine has reached convergence, 
the global problem, finding the field variables, is as well 
solved using an implicit Newton-Raphson algorithm at every 
time step. The local and global Newton-Raphson routines 
are solved in a nested way until both converge to a prescribed 
tolerance.

4 � Results

The strain energy for collagen is chosen as an exponential 
function depending on the anisotropic invariant Ic

e
 , cf. (2)

where ⟨⋅⟩ denotes the Macaulay bracket. For the matrix 
material, a Neo-Hookean type strain energy is selected 
which depends on the isochoric first invariant of the matrix 
Ī1 , cf. (1)

Note that in contrast to the strain energy of collagen, the 
matrix energy depends on the isochoric part of the invariant. 
Thus, volume changes do not induce changes in the matrix 
strain energy. Only the strain energy of collagen yields direc-
tions of higher stiffness and can hence via minimization of 
the potential energy implicitly favor the more compliant 
directions.

This section is subdivided into three parts. At first, the 
evolution of the biological species due to damage stimuli 
and the resulting change of collagen mass are investigated 
in detail. Afterwards, the chain of healing is presented which 
is related to damage of tissue followed by the activation of 
species and resultant tissue growth and remodeling. Hereby, 
a finite element simulation of a biaxial tension test of a flat 
tissue sample is conducted. Lastly, a finite element simula-
tion of an indentation test of a tissue sample is presented to 
shown that the theory can also be applied to more complex, 
inhomogeneous load cases. The distributed load leads to a 
distribution of damage in space and thus to a spatially dis-
tributed biological response and G&R.

(23)Wc =
k1

2k2

�
ek2⟨Ice−1⟩2 − 1

�
,

(24)Wm =
𝜇

2
(Īm
1
− 3) .
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Fig. 3   Flowchart of the routine at Gauß point level, abbreviation NR: Newton-Raphson
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Tables 1,  2 and  3 list the material and simulation 
parameters for the species study, biaxial tension and inden-
tation test, respectively. The dimension of the flat tissue 
sample corresponds to measurements in Holzapfel et al. 
(2005). The volume fraction of non-collageneous matrix 
and collagen as well as the initial reference mass den-
sity are motivated by Humphrey et al. (2014) and Wilson 
et al. (2012), values of the free energy parameters � , k1 , 
k2 , � are in the range used, e.g., by Gasser and Holzapfel 
(2002). The damage parameters mp and 𝜆̄p are similar to the 
one presented by Marino et al. (2019). The homeostatic 
concentration of MMP and GF are taken from Sáez et al. 
(2013) and Schaan et al. (2007). The parameters of the 
species equations are chosen such that the functionality 
of the model is investigated. In particular, a sensitivity 
analysis on these latter set of parameters will be conducted 
in the following Sec. 4.1.

4.1 � Biological response at microscale

In this section, the mechanisms at microscale governed by 
the biological description in (14) - (20) are discussed. The 
analysis is restricted to a single material point and does not 
involve any spatial discretization scheme. GF and MMP are 
released by the presence of damage, which is quantified via 
the quantity d. Although d is a variable associated with the 
mechanical equilibrium problem, it is treated in this first 
example as a constant predefined quantity. In Fig. 4, the 
evolution of MMP (Fig. 4a) and GF (Fig. 4b) concentra-
tions as well as the reference density of collagen (Fig. 4c) 
is depicted for the damage values d = [0, 0.1, 0.4, 0.7, 1.0] . 
The evolution of the collagen density is also shown for the 
intact (Fig. 4d) and damaged (Fig. 4e) collagen reference 
density that represent the mass produced and removed due 
to damage. First of all, it can be observed that the species 
are only initiated by the presence of damage. For d = 0 , the 

Table 1   Parameters for the 
biological species study

parameter value unit parameter value unit parameter value unit

M0 5.6 × 10−5 kg

m3
g1 10−4 1

s
kd2 10.0 –

G0 3.5 × 10−5 kg

m3
g2 4.63 × 10−5 1

s
ki1 10−4 kg

m3 s

m1 4 × 10−11 kg

m3
tdecay 1/2 year s ki2 2.0 –

m2 10−6 1

s
kd1 10−4 kg

m3 s

Table 2   Parameters for the 
uniaxial tension test

parameter value unit parameter value unit parameter value unit

lx 6 mm �0 1050.0 kg

m3
m2 10−6 1/s

ly 3 mm mp 2.5 – g1 10−4 1/s
lz 0.225 mm 𝜆̄p 1.3 – g2 4.63 × 10−5 1/s
� 115.0 J

kg
�c
pre

1.062 – tdecay 1/2 year s

k1 2.0 J

kg
krem 0.8 1/year kd1 10−4 kg

m3 s

k2 3.2 – M0 5.6 × 10−5 kg

m3
kd2 10.0 –

� 107 J

kg
G0 3.5 × 10−5 kg

m3
ki1 2.0 × 10−4 kg

m3 s

�c
0

0.8 – m1 4 × 10−11 kg

m3 s
ki2 2.0 –

Table 3   Parameters for the 
indentation test

parameter value unit parameter value unit parameter value unit

lx 6 cm �0 1050.0 kg

m3 s
m2 10−6 1/s

ly 6 cm mp 4.5 – g1 2 × 10−4 1

s

lz 1.2 cm 𝜆̄p 1.1 – g2 6.94 × 10−5 1

s

� 115.0 J

kg
�c
pre

1.062 – tdecay 1/2 year s

k1 10.0 J

kg
krem 0.8 1/year kd1 10−4 kg

m3s

k2 3.2 – M0 5.6 × 10−5 kg

m3
kd2 10.0 –

� 108 J

kg
G0 3.5 × 10−5 kg

m3
ki1 10−4 kg

m3s

�c
0

0.8 – m1 4 × 10−11 kg

m3s
ki2 2.0 –
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GF and MMP concentrations remain constant at initial con-
centrations G0 and M0 , respectively. Consequently, also the 
collagen mass remains constant in that case. As soon as the 
tissue is damaged, d > 0 , the MMP concentration increases. 
This leads, on the one hand, to an increase in the GF concen-
tration and, on the other hand, to the removal of damaged 
tissue. Due to the increase in GF concentration, new tissue is 
produced. The increase in GF is delayed compared to MMP 
and hence the removal of damaged tissue is at the beginning 
higher than the production of new tissue. As a consequence, 
the tissue mass slightly decreases in the first period of heal-
ing. With time, damaged tissue is completely removed. After 
reaching the maximum concentrations, both MMP and GF 
concentrations tend back toward the initial concentrations. 
The proliferation of new collagen continues until the GF 
concentration equals the initial. At that time, the damaged 
tissue is already completely removed and hence the intact 
collagen mass corresponds to the total collagen mass.

The response of the species to damage is more intense for 
higher damage. The maxima of the MMP and GF concentra-
tions increase, and the species concentrations remain high 
for a longer period. The more damaged the tissue, the higher 
is the amount of tissue to be removed and the less intact 
collagen tissue is present. Looking at the evolution of intact 
collagen, the production of new mass is higher for a higher 
amount of damage. However, the production rate is limited 
due to the exponential term in (20) such that an unlimited 
increase in mass is prevented. The final value of collagen 
mass is higher for more damage in the tissue. The rate of 
removal for damaged collagen increases with the amount of 
damage. However, the removal rate is limited thanks to the 
exponential term in (19), leading to the expected outcome 

that complete removal takes longer when more mass has 
to be removed. The presented approach can capture both 
normal and pathological healing. For small damage, e.g., 
d = 0.1 in the analysis, collagen turnover yields after approx-
imately 100 days almost the initial collagen mass, reproduc-
ing a normal healing condition. For higher damage, collagen 
mass at the end of healing tends toward higher values with 
respect to the initial one, determining an abnormal tissue 
state. It is noteworthy that additional feedback mechanisms, 
involving for instance the mechanical state, might intervene 
in the process. These might shift the response from a normal 
to a pathological one or vice versa. These mechanisms are 
not considered in the present framework, which can readily 
be refined when new biological evidence becomes available. 
However, the possibility of capturing both normal and path-
ological conditions is a remarkable characteristic showing 
the potentialities of the present framework.

4.1.1 � Sensitivity study

The description of the biological species and collagen mass 
needs nine parameters. In the following, a sensitivity analy-
sis is performed for eight of those parameters at constant 
damage d = 0.5 . Omitted is the analysis of the parameter 
tdecay which governs the time range within which the GF 
concentration returns to its homeostatic value, since its effect 
is clear and undoubtful. It is set constant to tdecay = 1∕2 
year and thus not considered in the parameter study. The 
analysis is conducted choosing the reference value for each 
parameter as in Table 1 and varying each parameter at once. 
Every parameter is decreased by the factors 1/4, 1/2 and 
increased by 2 and 4, respectively. The results are reported 

Fig. 4   Evolution of G, M, and 
�c
0
 for different damage values

(a) (b)

(e)(d)(c)
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in Figs. 5,  6, showing how variations of the parameters 
affect the final outcome in terms of normal and pathological 

healing (including both hypotrophic and hypertrophic col-
lagen production).

Fig. 5   Parameter study of m1 , 
m2 , g1 , g2 for d = 0.5 . Param-
eters are varied by factors 
1∕4,… , 4 with respect to refer-
ence values in Table 1

Fig. 6   Parameter study of 
ki1 , ki2 , kd1 , kd2 for d = 0.5 . 
Parameters are varied by factors 
1∕4,… , 4 with respect to refer-
ence values in Table 1
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Parameters m1 and m2 govern the production and con-
sumption of MMP. The increase in m1 yields an increase in 
the MMP production and hence a higher maximum MMP 
concentration. As a consequence, also the GF production 
increases and more collagen mass is produced. In contrast, 
increasing the parameter m2 results in a reduction in MMP 
production rate that leads to less production of GF and thus 
collagen mass. In addition, the maximum concentration of 
MMP and GF concentrations is reached earlier in time for 
higher parameter values. The parameters g1 and g2 govern 
the production and consumption of GF. Increasing param-
eter g1 increases the GF concentration and collagen mass, 
while the MMP concentration is not influenced, cf. Fig. 2. 
As for the consumption parameter m2 for MMP, the higher 
the parameter g2 the smaller is the maximum GF concentra-
tion and thus collagen mass. Parameters kd1 and kd2 govern 
the removal of damaged collagen. Increasing these param-
eters yields a faster removal of damaged collagen and since 
the MMP evolution is a function of the damaged collagen 
mass, less MMP is produced. Consequently, also the GF 
concentration decreases and less collagen mass is produced. 
In addition, an increase in these two parameters shifts the 
maximum species concentrations toward earlier time points. 
Furthermore, MMP and thus GF concentrations tend slower 
back toward the initial value. The variation of kd2 is in all 
described effects less sensitive than the variation of kd1 . 
Lastly, sensitivity of the parameters ki1 and ki2 , which drive 
the production of intact collagen mass, is investigated. Both 
parameters only influence the evolution of the intact collagen 
mass and yield more collagen mass for higher parameter 
values.

4.2 � Biaxial tension test

Coupling between the chemo-biological response to dam-
age and the healing-induced growth predicted by the model 
is investigated by a finite element simulation of a flat tis-
sue sample in a biaxial traction test. The dimensions of the 
tissue are 12 x 6 x 0.45 mm along the coordinate axes x, y 
and z. Due to symmetry, only one quarter of the sample is 
modeled and symmetry boundary conditions are applied at 
x = 0 , y = 0 and z = 0 , see Fig. 7a. Due to the homogene-
ous loading case, the sample is discretized with one H1-P0 
element. One set of collagen is considered and aligned along 
the x-direction.

Firstly, prestretch in collagen and the matrix is imposed. 
Therefore, a stretch of 1.34 in x- and 1.25 in y-direction is 
applied and the deformation held constant such that collagen 
can remodel until the elastic stretch equals a prestretch of 
1.062 at the beginning of the damage phase where t = t0 = 0 . 
These prestretch values correspond to the ones used by 
Braeu et al. (2017). Secondly, the tissue is damaged during 
two cycles of biaxial tension in x-direction, see Fig. 7b, d. 
The maximum stretch increases from 1.83 in the first to 1.93 
in the second cycle. These values correspond to maximum 
collagen stretches of 1.45 and 1.53. The threshold stretch in 
collagen at which damage starts is set to 𝜆̄p = 1.3 . Thus, the 
tissue is already damaged during the first cycle which cor-
responds to an increase in the damage variable d, Fig. 7f, and 
hence an increase in the plastic stretch in x-direction. This 
yields a reduction in the elastic stretch rate and results in 
the well-known softening of the stress-stretch response, see 
Fig. 7e. The significant increase in stress is due to collagen, 

(a) (b)

(d) (e) (f)

(c)

Fig. 7   Flat tissue in biaxial tension: damaging phase
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that carries less load for low stretches but most of the load 
at high stretches. After the first peak of displacement, the 
amount of damage and plastic stretch remains constant as 
long as the maximum stretch is not exceeded.

After the two cycles at t = t∗ = 60 s, the damage in the 
tissue is constant in time and corresponds to d∗ = 0.56 . The 
damaged and intact collagen mass immediately after the 
damaging phase are defined as function of the damage vari-
able via (14) and (15).

Due to the presence of damaged collagen, the MMP 
concentration increases and the species evolution takes its 
course as described in detail in Sec. 4.1 and shown for the 
flat tissue in Fig. 8a. Note that the value of the parameter 
ki1 is here quite high leading to a mass increase in collagen 
much larger than it would most likely be observed in reality. 
This is simply for the sake of illustration. The increase in 
growth factors induces an increase in collagen mass (Fig. 8b) 
which in turn translates into a change of the tissue volume.

Two cases are addressed, the healing response occur-
ring either in the prestretched configuration (stretch of 
1.34 in x- and 1.25 in y-direction, Fig. 7a) or in the con-
figuration at maximum stretch (stretch of 1.93 in x- and 
1.25 in y-direction, Fig. 7b). For both cases, the tissue 
grows in z-direction, Fig. 8c, since the displacements in 
x- and y-directions are constrained. Although the biologi-
cal response to damage that drives growth (Fig. 8a and 8b) 
is the same for the two cases, the samples thicken differ-
ently. This difference follows since the sample at maxi-
mum stretch needs to thicken less to increase the volume 
to the same amount as the sample in the prestretched state, 
and hence to accommodate the same amount of new tis-
sue. Growth in the prestretched state yields an increase in 

thickness of 44.01% , whereas it increases 35.5% at maxi-
mum stretch. The tissue grown in the configuration at max-
imum stretch is thinner than the one in the prestretched 
state. Although these observations are logical, they indi-
cate that the final outcome of growth is strongly influenced 
by mechanical effects. It illustrates once more the impor-
tance of coupling mechanics and biology to appropriately 
model biological tissues.

Also remodeling evolves differently in the two cases, 
see Fig. 8d. At the beginning of the healing phase and for 
healing starting from the prestretched configuration, the 
elastic collagen stretch is slightly lower than the prestretch 
value �c

pre
 due to the plastic deformation. Consequently, 

remodeling leads to an increase in elastic collagen stretch 
until the elastic collagen stretch in the tissue equals the 
prestretch. In contrast, at the beginning of the healing 
phase and for healing at maximum stretch, elastic collagen 
stretch is 1.53 and thus much higher than the prestretch. 
As a consequence, tissue remodeling reduces the elastic 
stretch in collagen and thus also the stress in fiber direction 
significantly, see Fig. 8e. Although the stretch of the tissue 
is still the maximum stretch, collagen does not carry much 
load anymore since highly stretched collagen has been 
replaced by collagen with a stretch equal to the prestretch. 
The difference between the total stresses in the two cases 
is due to the different stress contributions of the isotropic 
matrix in the two different configurations.

Finally, the effectiveness of enforcing growth through 
the adopted penalty-based implicit approach is investigated 
by performing a parametric study on the parameter � in the 
penalty term WL in (21). The results are shown in Fig. 7c, 

Fig. 8   Flat tissue in biaxial ten-
sion: response to damage start-
ing from prestretched configura-
tion and at maximum stretch, 
abbreviations pre: growth in 
prestretched state, max: growth 
at maximum stretch

(a) (b) (c)

(e)(d)
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where the error e(�, tend) = |J(�, tend) − (�0(tend)∕�0(0))| 
between the desired and the obtained volume change at 
the end of the simulation ( tend = 1 year) is plotted versus 
� . The choice of � = 107 J/kg corresponds to an error suf-
ficiently low.

The biaxial test demonstrated the capability of the 
model to couple damage with the chemo-biological 
response and growth and remodeling. The evolution of 
damage due to overstretching was illustrated, and the 
effect of remodeling during healing was discussed. The 
next example addresses, on the one hand, the direction of 
growth and, on the other hand, healing that is not only time 
dependent but also dependent on the position in space.

4.3 � Indentation Test

Lastly, the framework is applied to a flat tissue segment 
that is injured in a circular region at the top surface. Mod-
eled is 1/4 of a plate with symmetry boundary condi-
tions at x = 0 and y = 0 . Displacement in z-direction is 
prevented at z = 0 . One set of collagen fibers is arranged 
in the x-direction. The geometry is discretized with 
22 × 22 × 8 ( x × y × z ) H1P0 elements with a finer mesh for 
the region where the pressure is applied. The geometry and 
discretization in space are shown in Fig. 9. At t = t0 = 0 , 
the tissue is already in prestretched state with the proce-
dure introduced in Sec. 4.2 (stretch of 1.34 in x- and 1.25 
in y-direction, corresponding to 1.062 in collagen). In con-
trast to the biaxial test, starting from t = t0 , displacement 
in x- and y-direction is permitted allowing growth in all 
three directions. Therefore, the essential boundary con-
ditions employed to prescribe the desired pre-stretch are 
replaced by the corresponding traction forces (i.e., natural 
boundary conditions) at x = lx and y = ly (in reference con-
figuration) such that the sample is in equilibrium at t = t0.

For t0 ≤ t ≤ t∗ , the sample is pressurized at the top sur-
face in a circular region with radius rp around the point 
x = 0 , y = 0 , z = lz with increasing pressure toward the 
center. In particular, with r =

√
x2 + y2 , a constant pres-

sure in space, p̄(t) is multiplied by the function

and the pressure p(r, t) = p̄(t)f (r) is applied to induce dam-
age. Maximum damage occurs at (t0 + t∗)∕2 with a linearly 
ramped pressure up to p̄((t0 + t∗)∕2) = 36 kPa. The segment 
is damaged non-uniformly as it can be seen in Fig. 10. The 
pressure is then completely removed until the end of the 
damaging phase at t = t∗ = 60 s. The maximum damage 
of the segment occurs in the center of the specimen, being 
highly dishomogeneous in all directions. Since fibers are 
aligned in x-direction only, the damage distribution is not 
the same in x- and y-direction.

Initiated by the damage stimuli, the species start to 
evolve at t = t∗ . In contrast to the previous example in 
Sec. 4.2, the species evolution is heterogeneous in space, 
due to the different damage values in space. As discussed 
in Sec. 4.1, regions with less damage experience a weaker 
response of the species and thus a smaller increase in mass. 
To gain a better insight into the heterogeneous evolution 
of the species and mass, Fig. 11 displays the GF, MMP 
and collagen mass distributions for discrete time points 
of the healing process. Due to an increase in the MMP 
concentration, damaged collagen is removed in the dam-
aged region, whereas the regions without damage remain 
unchanged. At the same time, the increased GF concentra-
tions yield collagen production. At the beginning, the col-
lagen degradation dominates and hence the total collagen 
amount of collagen decreases in the damaged region. After 
approximately 100 days, the MMP concentration is back to 
the initial concentration and production of collagen domi-
nates such that the initial amount of collagen is exceeded. 
After 300 days, also the GF concentration approaches the 
initial concentration. In the whole damage region, collagen 
mass is higher than initially and peaks where most damage 
occurred.

The effect of remodeling is addressed in Fig 12a. At 
the beginning of the healing phase, the elastic collagen 
stretch is lower in the damaged region due to the plastic 
deformation. Remodeling yields an increase in the elas-
tic collagen stretch in the damaged region whereby the 
stretch exceeds the prestretch in some regions (e.g., for 

(25)f (r) =

{
1 −

r

rp
if r ≤ 1 cm

0 otherwise

Fig. 9   1/4 of a flat tissue sample: a pressure is applied at the top sur-
face in the grey shaded circular area (radius rp) Fig. 10   Damage distribution at maximum displacement
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t = 50 days and t = 150 days). After approximately one 
year, collagen has remodeled and elastic collagen stretch 
equals the prestretch.

In this test, growth is permitted in all directions and 
thus the direction of growth depends on the stiffness of the 
tissue. The most compliant direction is the z-direction in 
which the tissue can freely grow. The reaction forces due 
to the prestretch applied at the surface at y = ly (in refer-
ence configuration) yields a stiffer response in y-direction 
and thus growth in this direction is reduced compared to 
the z-direction. Due to the fibers aligned in x-direction and 
the reaction forces applied at x = lx (in reference configu-
ration), the x-direction is the least compliant direction and 
hence new mass is accommodated least in this direction. 
The anisotropic growth is illustrated in Fig. 12b, where 

nominal strains measured at points A, B, C from Fig. 9 
are compared to each other. The strains are defined with 
respect to the configuration at t = t∗ to investigate only the 
deformations due to the healing process. For point A, the 
strain in x-direction, for point B, the strain in y-direction 
and for point C, the strain in z-direction is depicted. In 
all three directions, the strain firstly decreases due to the 
removal of damaged collagen and increases afterwards due 
to the addition of newly formed collagen. Among these 
results, it is mostly interesting to notice that the thickness 
of the specimen in the damaged area (see Fig. 12b, Cz ) 
firstly decreases of −3.95 % due to the removal of damaged 
collagen and then increases of 4.69 % due to the deposition 
associated with growth and remodeling.

Fig. 11   Evolution of MMP, GF and mass throughout one year

(a)
(b)

Fig. 12   Effect of G&R on �c
e
 and directions of growth throughout one year
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5 � Limitations

The authors are totally aware of the limitations of the presented 
model in the perspective of conducting a realistic simulation 
of soft tissues. However, this paper aims to contribute to the 
understanding of healing-induced growth and remodeling in 
soft tissues by addressing challenges arising from the cou-
pling of several mechanisms, both from a theoretical and a 
computational modeling perspective. The aim of this paper is 
not to reproduce a specific behavior, and thus all ingredients 
of the material model are omitted that are not necessary for 
the presented coupling or for which experimental evidence is 
still controversial.

Furthermore, only one collagen fiber family is considered 
although multiple collagen fiber families can be generally 
observed in several tissues. Due to the convenience of the 
homogenized constrained mixture framework, other collagen 
fiber families can be added without much effort since this 
would readily add further terms in the free energy (10).

Another important limitation is that MMP and GF are here 
treated as single variables, while several sub-species exist. 
Moreover, they are considered as local variables, while they 
might migrate to the side of damage and thus diffusion equa-
tions should be added, as, e.g., done by Escuer et al. (2019). In 
fact, several other species influence the healing of soft biologi-
cal tissues and might also be key players in the transition from 
physiological to pathological healing, such as myofibroblasts 
that are controlled and stimulated by growth factors and con-
tribute significantly to the production of new ECM (Desmoul-
ière et al. 2003). Moreover, an experimental study is clearly 
necessary to investigate the relationship between interstrand 
delamination and the initiation of GF, MMP and other species. 
Furthermore, additional damage mechanisms not related to 
the collagen molecular level might occur and affect the dam-
age response. These should be incorporated in the modeling 
framework.

Another limitation, well known for the simulation of bio-
logical problems, is the shortage of experimental data. Values 
of material parameters are chosen within ranges found in the 
literature, when available. If not available, a parametric study 
has been presented but the employed values remain uncertain. 
Furthermore, the behavior of biological tissue differs signifi-
cantly depending on the age, pathologies and even the loca-
tion of the tissue in the body. Uncertainties and difficulties of 
obtaining experimental data clearly remain the biggest issue 
in the field.

6 � Conclusion

This paper presents a computational framework to model 
chemo-mechano-biological mechanisms occurring during 
the complex healing process in soft biological tissues. The 
framework uses a multiplicative split of the deformation 
gradient to account for elastic and inelastic mechanisms 
at continuum scale. Damage is modeled as a plastic-like 
mechanism. For the elastoplastic mechanical problem, 
a set of partial differential equations is solved globally 
and a set of plastic internal variables is iterated locally at 
Gauß point level at every time step. Moreover, to deter-
mine the concentrations of the molecular species as well as 
the change of mass, a set of ordinary differential equations 
is solved locally. These concentrations affect the mass 
content of constituents, in turn inducing growth observ-
able at the macroscopic level. Remodeling in turn affects 
the stress-stretch state of the tissue and existent and/or 
added tissue is replaced by prestretched tissue as long as 
elastic collagen stretch is different from an assigned pre-
stretch value. The framework is able to capture interac-
tions taking place in the chain of healing. Starting from a 
homogeneous, pre-stretched state, a measure of interstrand 
delamination in collagen is taken as damage stimulus that 
initiates the healing response. Due to damaged tissue, the 
concentrations of matrix metalloproteinases and growth 
factors increase, whereby intact collagen is produced and 
damaged collagen is degraded. Mass turnover of collagen 
yields, assuming a nearly constant spatial mass density, a 
change of volume. It was shown that the biological prob-
lem bridges from the damage stimulus to the volumetric 
growth and, depending on the intensity of the damage 
stimulus as well as the biological response to damage, 
pathological or physiological healing can be obtained. 
Furthermore, the sensitivity to parameter changes was 
addressed. The model is readily extendable for the mode-
ling of further biological species or to incorporate different 
growth approaches. Furthermore, diffusion of molecular 
species can (and should) be added.

The outcomes of present paper highlight that more 
efforts are needed, from both the experimental and the 
modeling point of view, to gain an insight into the com-
plex healing process of soft tissues, which is highly mul-
tifactorial. However, the proposed framework provides a 
suitable basis for investigating coupled chemo-mechano-
biological mechanisms in highly controlled in silico tests 
which might bring some more pieces to light.
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