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Abstract

In this work, we present a comprehensive evaluation of a stochastic multi-site,

multi-variate weather generator at the scale of entire Germany and parts of the

neighbouring countries covering the major German river basins Elbe, Upper

Danube, Rhine, Weser and Ems with a total area of approximately

580,000 km2. The regional weather generator, which is based on a first-order

multi-variate auto-regressive model, is setup using 53-year long daily observa-

tional data at 528 locations. The performance is evaluated by investigating the

ability of the weather generator to replicate various important statistical prop-

erties of the observed variables including precipitation occurrence and dry/wet

transition probabilities, mean daily and extreme precipitation, multi-day pre-

cipitation sums, spatial correlation structure, areal precipitation, mean daily

and extreme temperature and solar radiation. We explore two marginal distri-

butions for daily precipitation amount: mixed Gamma-Generalized Pareto and

extended Generalized Pareto. Furthermore, we introduce a new procedure to

estimate the spatial correlation matrix and model mean daily temperature and

solar radiation. The extensive evaluation reveals that the weather generator is

greatly capable of capturing most of the crucial properties of the weather vari-

ables, particularly of extreme precipitation at individual locations. Some defi-

ciencies are detected in capturing spatial precipitation correlation structure

that leads to an overestimation of areal precipitation extremes. Further

improvement of the spatial correlation structure is envisaged for future

research. The mixed marginal model found to outperform the extended Gener-

alized Pareto in our case. The use of power transformation in combination

with normal distribution significantly improves the performance for non-

precipitation variables. The weather generator can be used to generate syn-

thetic event footprints for large-scale trans-basin flood risk assessment.
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1 | INTRODUCTION

Reliable flood risk assessments are challenging, in partic-
ular at large spatial scales (de Moel et al., 2015). There is
a lack of high-resolution and long-term observational cli-
mate data to drive risk assessment models (Ward
et al., 2015). On the other hand, process complexity and
interactions, for instance between different locations
within a river basin, are increasingly difficult to capture
with increasing spatial scales (Vorogushyn et al., 2018).
In particular, the spatially coherent representation of
meteorological fields used to drive hydrological models
for flood frequency and risk assessment is a pressing
issue.

Derived Flood Frequency Analysis (DFFA), originally
introduced by Eagleson (1972) as event-based approach,
transforms precipitation distributions into flood peak dis-
tributions. Whereas Eagleson (1972) used functional rela-
tionship between precipitation and discharge
distributions, in the past two decades a continuous simu-
lation approach to DFFA has been increasingly used
(Blazkova and Beven, 1997, 2004; Cameron et al., 1999;
Grimaldi et al., 2012a, 2012b; Haberlandt and
Radtke, 2014). For this, synthetically generated precipita-
tion time series are transformed into discharge series
using continuous hydrological modelling. Analogously,
Derived Flood Risk Analysis (DFRA) (Falter et al., 2015;
Falter et al., 2016; Metin et al., 2018) has emerged to
quantify flood damage and risk from continuous model
simulations. Both approaches are based on the genera-
tion of synthetic, spatially consistent fields of precipita-
tion, temperature and other meteorological variables
(e.g., humidity, solar radiation). These long-term continu-
ous time series (in the range of several 1,000 years) are
used to drive hydrological models to obtain synthetic dis-
charge series for subsequent flood frequency analysis or
inundation modelling and risk assessment. To provide
long-term spatially consistent meteorological fields,
multi-site stochastic models—weather generators—are
typically used. A strong skill of capturing the characteris-
tics of extreme precipitation is indispensable for estima-
tion of flood hazard and risk.

Stochastic multi-variate weather models were origi-
nally developed for single sites, where there is no need
for considering the spatial correlation structure of
weather variables (e.g., Richardson, 1981; Rajagopalan
and Lall, 1999). Both multi-variate auto-regressive
models (Richardson, 1981) and nearest-neighbour
resampling techniques in the multi-variate space
(Rajagopalan and Lall, 1999) were developed. To cover
larger spatial scales than those characterized by a single
location, multi-site weather generators have been pro-
posed in the recent decades. Multi-site stochastic models

are based on (a) resampling techniques, such as ana-
logue (Zorita and von Storch, 1999; Chardon
et al., 2018; Raynaud et al., 2020) and nearest-neighbour
(Beersma and Buishand, 2003; Caraway et al., 2014),
(b) point-process simulation of rainfall in combination
with Markov chain simulation of precipitation occur-
rence (Fowler et al., 2005; Cowpertwait, 2006) and
(c) time series generation using the Markov-chain
approach in combination with frequency distributions
(Wilks, 1998; Breinl et al., 2013; Keller et al., 2015) to
simulate occurrence and magnitude, respectively. Fur-
thermore, latent Gaussian variable models in combina-
tion with auto-regressive approach considering the
spatial correlation structure are employed in Bárdossy
and Plate (1992), Hundecha et al. (2009), Kleiber
et al. (2012), Rasmussen (2013) and Bennett
et al. (2018). Finally, a combination of Markov chain,
generalized additive model and meta-Gaussian random
fields is proposed by Serinaldi and Kilsby (2014). An
overview of weather generators is provided by
Haberlandt et al. (2011) and Serinaldi and Kilsby (2014).
Here, we briefly revisit major types of weather genera-
tors and discuss their merits with focus on DFRA.

Weather generators based on resampling techniques
produce a sequence of synthetic weather variables based
on reshuffling of previous observations conditioned on
certain rules, for example, restricting the occurrence of
an extremely cold day in the middle of the heat wave. In
a multi-site approach, observations at all sites (climate
stations or grid points) are reshuffled for different time
steps (e.g., days or hours). Thus, resampling techniques
fully preserve spatial correlations between various loca-
tions within a single time-step and thus can be easily
applied to both small scales as well as to large river
basins (Beersma and Buishand, 2003; Raynaud
et al., 2020). Standard resampling techniques are gener-
ally not able to produce single-day extreme precipitation
beyond those observed in the past. Flood-relevant
extremes can potentially be generated by multi-day pre-
cipitation sums. Beersma and Buishand (2003) demon-
strate the ability of a nearest-neighbour resampling
model conditioned on weather patterns to generate
10-day extreme precipitation exceeding the observed
maxima. Sharif and Burn (2007) propose a perturbation
technique in combination with the k-nearest resampling
while still retaining the spatial correlation structure and
major statistical properties of at-site precipitation.
Finally, Raynaud et al. (2020) propose a weather genera-
tor based on constructing plausible atmospheric trajecto-
ries, that is, series of atmospheric states, based on
analogues in combination with distribution adjustments
to generate unobserved, but plausible series of precipita-
tion and temperature.
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Point process precipitation models simulate the
space–time distribution of precipitation by applying the
rectangular-pulse models for precipitation occurrence,
intensity, and duration of spells. Spatial patterns emerge
through generating the rain cells in space and aggregat-
ing them into storm clusters (Fowler et al., 2000; Fowler
et al., 2005). Although the space–time rainfall process has
strong physical basis, it comes with a price. The estima-
tion of parameters of these models can be difficult in
view of limited observations (Haberlandt et al., 2011).
Large-scale applications seem to be difficult using this
approach, and it is not often used for flood assessments.

Time series modelling of precipitation at multiple
locations can be achieved through Markov-Chain model-
ling of wetness state (wet/dry; Wilks, 1998; Breinl
et al., 2013; Keller et al., 2015) or a multi-variate latent
auto-regressive modelling of precipitation series
(Bárdossy and Plate, 1992; Hundecha et al., 2009;
Rasmussen, 2013; Bennett et al., 2018) in combination
with a frequency distribution of precipitation magni-
tudes. Techniques based on fitting frequency distribu-
tions to observed precipitation can extrapolate daily
precipitation amounts beyond observations. They may,
however, suffer from sampling uncertainties and over-
parameterization. Especially, mixed models combining
two distributions (Hundecha et al., 2009; Baxevani and
Lennartsson, 2015) may face the latter problem given
short observational series. On the contrary, these models
seem to better capture extreme precipitation, whose dis-
tribution may differ from the bulk of records (Hundecha
et al., 2009).

Precipitation occurrence and amounts at various loca-
tions are correlated. The observed spatial correlation
structure should be captured by a weather generator and
imposed on the synthetically generated data. This is an
additional source of uncertainty, particularly with
increasing spatial scale where correlations decay with the
inter-site distance. Several approaches are developed to
consider the spatial correlation structure in time series
models. Breinl et al. (2013) proposed a univariate Markov
process for multi-site precipitation occurrence, which
retains the spatial correlation structure of precipitation
occurrence, but can only reproduce occurrence vectors
observed in the past. The precipitation amounts sampled
from the fitted parametric distributions are reshuffled
according to the ranks of the resampled observations in
order to sustain the spatio-temporal correlation of
observed series. Serinaldi and Kilsby (2014) used discrete-
continuous distributions to describe the occurrence and
amount of rainfall at a site simultaneously. Furthermore,
the spatial correlation structure is considered taking the
observed covariance into account, which is used to condi-
tion the Gaussian random fields. Finally, the daily

rainfall fields are generated by applying the at-site distri-
butions to the Gaussian random fields. The approach is
applied to the Danube basin and parameterized using
0.25� x 0.25� gridded E-OBS precipitation dataset
(Haylock et al., 2008). The model performs reasonably
well in terms of various criteria of model performance at
single sites. However, it tends to overestimate extreme
daily precipitation sums at single locations and overesti-
mates the areal rainfall aggregated over sub-basin area.
Recently, Sparks et al. (2018) proposed a combination of
the autoregressive model with lag-1 (AR(1)) with
extended Empirical Orthogonal Functions (EOFs), where
precipitation is modelled as a censored latent Gaussian
process. The method is applied at the scale of Europe
based on the coarsely gridded E-OBS precipitation dataset
(Haylock et al., 2008) interpolated to the �1.3� x 1.6�

grid. The spatial correlation of observed precipitation
seems to be relatively low for most cells (<0.5) in this
dataset. The correlation structure of highly correlated
locations appears to be strongly underestimated.

The overview of the weather generation approaches
shows that point process models are not often used for
large-scale flood assessments due to their complexity.
The two other types – resampling techniques and time
series models—are applied at various scales and can be
used to drive hydrological models and risk model chains
for risk estimation. However, large-scale applications of
weather generators to areas above 150,000 km2 are rare.
Resampling approaches are easily scalable and retain the
observed spatial correlation structure, but may suffer
from the inherent limitation imposed by the observed
time series constraining the generation of extremes. Time
series models are not limited by upper bounds of precipi-
tation magnitudes but face challenges of capturing the
spatial correlation structure of rainfall fields for large spa-
tial domains (Serinaldi and Kilsby, 2014; Sparks
et al., 2018). Further, different approaches to evaluate the
spatial performance of weather generators, such as sim-
ple pairwise correlation (Wilks, 1998; Sparks et al., 2018),
continuity ratio (Wilks, 1998; Breinl et al., 2013), fre-
quency plots of the aggregated domain precipitation at
various time scales (Kleiber et al., 2012; Serinaldi and
Kilsby, 2014; Baxevani and Lennartsson, 2015; Sparks
et al., 2018) and frequency plots of the mean precipitation
for n wettest locations (Serinaldi and Kilsby, 2014), are
used, which makes the comparison across weather gener-
ators extremely difficult. Furthermore, some studies use
relatively lax criteria for performance evaluation with
regards to extremes (e.g., Sparks et al., 2018), which
makes it difficult to gain credibility in risk estimates.
Thus, we see an urgent need for comprehensive evalua-
tion studies of large-scale weather generators using com-
parable performance statistics to identify the most
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promising approaches for flood risk assessment. Recently,
Bennett et al. (2018) proposed a comprehensive and sys-
tematic framework to evaluate the performance of
weather generators over a range of spatial and temporal
scales. The framework includes a systematic categoriza-
tion of performance results, which enables a clear identi-
fication of strengths and weaknesses and makes the
performance comparable across various models. Also,
Bennett et al. (2018) point out to the need of
benchmarking of weather generators. They, however,
acknowledge a limitation for comparison studies posed
by applications in different areas/catchments. Mean-
while, the framework was applied by Evin et al. (2018) to
assess and compare the performance of the various modi-
fications of the Wilk's weather generator (Wilks, 1998).

In this work, we present a comprehensive evaluation
of a multi-site, multi-variate weather generator at the
scale of entire Germany and parts of the neighbouring
countries covering the major German river basin Elbe,
Upper Danube, Rhine, Weser and Ems. We employ the
multi-site auto-regressive weather generator developed
by Hundecha et al. (2009) to simulate daily precipitation
fields and other variables, such as temperature, relative
humidity and solar radiation conditioned on the rainfall
series. It has been originally developed and evaluated at
relatively small spatial scales (Hundecha et al., 2009) and
applied for trend attribution studies (Hundecha and
Merz, 2012), DFFA (Winter et al., 2019) and DFRA
(Falter et al., 2015) in a few German and Austrian catch-
ments. We introduce a number of modifications to the
original model by Hundecha et al. (2009). (a) A new
approach to compute the spatial correlation matrix
including the correction procedure to obtain definite pos-
itive matrix is implemented. (b) A parsimonious extended
Generalized Pareto distribution is implemented addition-
ally to the original Gamma-Generalized Pareto mixture
distribution. (c) A power transformation of non-
precipitation data is introduced to improve their simula-
tion. The stochastic model is extended here to the Central
European domain using observed long-term time series
from unprecedented large number of climate stations
(528 stations). In this article, we focus on the perfor-
mance of the model to replicate the statistical properties
of observed precipitation, temperature and solar radia-
tion. We employ the framework of Bennett et al. (2018)
to categorize the performance statistics and make it com-
parable with other studies using this framework. Specifi-
cally, we investigate the ability of the model to capture
extremes and the spatial dependence of precipitation over
a large spatial domain. Spatial dependence is crucial,
when it comes to the generation of realistic event foot-
prints of large-scale trans-basin floods for risk assess-
ment. To our knowledge, this is one of the largest

domains the weather generator of this type is applied
to. We, therefore, particularly focus on evaluating the
ability of the model to simulate the areal precipitation
sums relevant for DFFA and DFRA. The weather genera-
tor is envisaged for application to the national-scale flood
risk appraisal.

The article is organized as follows. First, an overview
of the study region and data is given in Section 2 followed
by a brief description of the weather generator. Model
setup and evaluation strategy are discussed in Section 4.
Results and discussion are detailed in Section 5 followed
by the summary of the main findings.

2 | STUDY AREA AND DATA

The study region covers five large river basins, that is,
Elbe, Rhine, Upper Danube, Weser and Ems, located in
Germany and parts of Austria, Switzerland, Czech Repub-
lic and France (Figure 1). The total area comprises about
580,000 km2. We use a dataset containing six daily
observed variables of precipitation, temperature (max,
min, mean), humidity and solar radiation at 528 locations
in the 53-years period ranging from January 1951 to
December 2003. The dataset is assembled from climate sta-
tions in Germany, Austria, Switzerland and Czech Repub-
lic, processed and harmonized at the Potsdam Institute for
Climate Impact Research (Österle et al., 2006a; Österle
et al., 2006b; Österle et al., 2016). The station density is
fairly uniform with somewhat higher density in the south-
ern part of the study region characterized by higher eleva-
tions. Here a higher variability of climate variables is
expected. No direct measurements are accessible for the
French part of the Rhine basin. Here, we use the E-OBS
gridded dataset (Haylock et al., 2008) at the resolution of
0.25� x 0.25� and thin it out to 0.5� x 0.5� resolution in
order to keep a comparable point density as in the
remaining domain. Each grid point is treated as climate
stations. Both, climate stations (465) and grid points
(63) of the E-OBS dataset are referred to as ‘stations’ here-
after. Inconsistencies may arise from smoothed precipita-
tion in a gridded dataset compared to the station-based
records and should be kept in mind. This pragmatic step is
taken in view of missing data and can be overturned as
soon as gauge records are available.

Out of 528 stations, we chose a subset of nine repre-
sentative stations for detailed evaluation of the weather
generator performance. These stations are spread across
the study region and are located along the altitudinal gra-
dient from the Northern Lowlands to the High Alpine
region. The climate variables across the 528 stations
exhibit a clear seasonal cycle, in particular temperature,
relative humidity and radiation (Figure 2). This
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highlights the need to consider seasonality for the param-
eterization of the weather generator. The values at the
nine selected stations cover a wide range of observations
in the entire study region.

The study region is characterized by a temperate cli-
mate with continentality increasing eastwards. The west-
ern and north-western regions are dominated by Atlantic
air masses bringing long-lasting large-scale rainfall in win-
ter and spring. Convective precipitation occurs in the sum-
mer half-year. The mean annual precipitation ranges
between somewhat above 400 mm in north-east Germany
and Czech Republic to more than 2000 mm in the Alpine
region (Rauthe et al., 2013). The daily extreme precipita-
tion and temperatures show high variability within each
month, whereas precipitation amounts are right-skewed.

3 | MULTI-SITE, MULTI-VARIATE
STOCHASTIC WEATHER
GENERATOR

The weather generator presented by Hundecha
et al. (2009) simulates continuous series of daily precipi-
tation at the station locations using the spatial correlation
structure of the observations. Daily time series of other
variables, such as mean daily temperature, relative
humidity and solar radiation, are conditioned on the state
of generated precipitation at each site (Hundecha and
Merz, 2012). Both steps are based on the first-order
multi-variate auto-regressive (MAR-1) model (Bárdossy
and Plate, 1992; Wilks, 1999) which is described below in
more details.

FIGURE 1 Study region

covered by the weather generator

including locations of the

528 stations used to parameterize

the weather generator and

9 representative stations chosen for

detailed validation [Colour figure

can be viewed at

wileyonlinelibrary.com]
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Let W(t) = (W(t, u1),…,W(t, un)) be a multi-variate
normal random vector of n locations u = (u1,…, un) at
time t with the mean vector whose elements are zero.

W tð Þ=BmW t−1ð Þ+CmΨ tð Þ ð1Þ

Ψ(t) = (ψ(t,u1),…,ψ(t, un)) is a random vector of indepen-
dent standard normal variables. The matrices Bm and Cm

are related to the lag-0 correlation matrix (Mm0) and the
lag-1 correlation matrix (Mm1) through Equations (2) and
(3), where the subscript m represents month from
January to December.

Bm=Mm1M
−1
m0 ð2Þ

CmCT
m=Mm0−BmM

T
m1 ð3Þ

is the transposed matrix of Mm1, Cm respectively.
The complete precipitation process (including wet

and dry condition) x for month m at an individual station
u is simulated using the distribution H(x):

H xð Þ= 1−pð Þ+pF xð Þ ð4Þ

where p represents the wet frequency, conversely 1− p
stands for the probability of zero rainfall and F(x) is the
distribution of the non-zero precipitation amounts (when
x is non-positive, F(x) equals 0). The link between the
marginal distribution of precipitation expressed in Equa-
tion (4) and the MAR-1 model expressed in Equa-
tion (1) is:

Φ W t,uð Þð Þ=H x t,uð Þð Þ ð5Þ

where Φ stands for the cumulative distribution function
of a standard normal distribution.

F(x) is typically assumed to be one of the widely used
distributions to describe rainfall amounts: Exponential,
Gamma, Weibull or Generalized Pareto (GP). Exponen-
tial and Gamma distributions exhibit light tails and are
found inferior to describe extreme rainfall amounts
(Serinaldi and Kilsby, 2014; Baxevani and Lennartsson,
2015), which typically show heavy-tail behaviour
(Papalexiou et al., 2013; Rajah et al., 2014). Whereas
heavy-tailed distributions like Weibull (with shape

FIGURE 2 Seasonal distribution of mean (upper panel) and 99.9th percentile (lower panel) observed daily precipitation, temperature,

relative humidity and solar radiation. Blue circles correspond to the 9 selected stations [Colour figure can be viewed at

wileyonlinelibrary.com]
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parameter below 1) and GP are suitable to capture
extreme values, they may miss the lower bulk of precipi-
tation amounts. Hence, mixed (two-component) distribu-
tions have been used to exploit the advantages of both
groups (Frigessi et al., 2002; Vrac and Naveau, 2007; Furrer
and Katz, 2008; Li et al., 2012, Baxevani and
Lennartsson, 2015). Our weather generator is based on the
mixed Gamma-GP distribution (mGGP), shown to out-
perform the Gamma distribution at stations in Central Ger-
many (Hundecha et al., 2009). The higher flexibility of the
mixed distribution comes with the cost of increasing model
complexity and number of model parameters. The mixed
Gamma-GP distribution has in total 6 parameters of which
two come from the gamma distribution, two come from the
GP distribution and two from the dynamically mixing func-
tion (see Hundecha et al., 2009 for more details).

Fitting this 6-parameter mixed distribution to precipi-
tation data is not a trivial task since the normalization
constant should be numerically computed with very high
precision (see Li et al., 2012 for more details). We use the
global optimization algorithm SCE-UA (Duan et al.,
1992) to optimize the log-likelihood function for parame-
ter estimation. The distribution is fitted to each station
on a monthly basis to account for seasonality.

Naveau et al. (2016) point out to a number of drawbacks
of the mixed distribution. In particular, the mixture models
may become overparameterized. They propose a more par-
simonious extended Generalized Pareto distribution
(extGP) which helps move away from the mixed distribu-
tion concept but still allows a smooth transition between
bulk of the distribution and the heavy tails. Also,
Papalexiou and Koutsoyiannis (2013) suggest more parsi-
monious distributions for precipitation originating from the
Generalized Beta distribution family of the second type,
that is, three-parameter Generalized Gamma and Burr Type
XII distributions. In this study, we explore the 3 -parameter
extGP distribution (Naveau et al., 2016) (Equation 6) and
compare it to the original Gamma-GP mixture distribution.
The maximum likelihood method is used to fit the extGP
type 1 to station data on a monthly basis.

F xð Þ= GPξ
x
σ

� �� �κ
ð6Þ

where κ controls the shape of the lower tail, σ is a scale
parameter and ξ controls the rate of upper tail decay.

To estimate the correlation matrices Mm0 and Mm1 in
Equations (2) and (3), Hundecha et al. (2009) and
Hundecha and Merz (2012) used the method described in
Bárdossy and Plate (1992) which requires the indicator cor-
relations estimated from the quantiles of W(t, u). In this
study, we estimate Mm0 and Mm1 through Kendall correla-
tion and then transformed into Pearson's correlation as,

for example, applied by Serinaldi and Kilsby (2014). The
two methods give very similar estimation results but the
latter is mathematically much more convenient.

In practice, because of potential numerical inaccura-
cies in computation or missing data, large matrices Mm0

are sometimes poorly defined (not positive definite) and
hence not invertible. Correction is therefore needed to
derive Bm and Cm from Equations (2) and (3). One com-
mon way to correct the matrices is to apply spatial corre-
lation functions to fit the original correlation matrix
(Bárdossy and Plate, 1992; Wilks, 1999; Hundecha
et al., 2009; Serinaldi and Kilsby, 2014). However, in
many cases, applying this functional approach can result
in a different correlation value compared to the original
one. In Hundecha et al. (2009), we observe pronounced
overestimation in the corrected Mm0. Therefore, in this
study, we use a method of Higham (2002) to find the
nearest positive definite correlation matrix of Mm0.

Daily temperature is described by a normal distribu-
tion in the original model by Hundecha and Merz (2012),
whereas for solar radiation a square root transformation
is applied prior to fitting a normal distribution. However,
we observe that these assumptions are not universally
valid for the non-precipitation data. We found often devi-
ations from the normality assumptions at many stations
and all months. In this study, we, therefore, attempt to
improve the fitting by first applying power transforma-
tions in which a positive exponent is selected to minimize
the skewness of the non-precipitation data for individual
stations and for each month.

Two normal distributions conditioned on the wet/dry
state are fitted to each variable and for each month. The
variables are simulated also using a multi-variate auto-
regressive model. The workflow of the employed weather
generator is provided in Figure 3 of Hundecha and
Merz (2012).

4 | MODEL SETUP AND
EVALUATION FOR THE REGIONAL
DATASET – REGIONAL WEATHER
GENERATOR (RWG)

The weather generator is setup for the presented study
area, and this setup termed ‘Regional Weather Genera-
tor’ (RWG) is calibrated and evaluated on a monthly
basis using the climate station dataset. We setup three
versions of RWG as described below.

RWG0-mGGP is the original model version using the
mixed Gamma-GP distribution as the marginal model for
precipitation, normal distribution for the non-precipitation
variables and additionally the square root transformation
for solar radiation (Hundecha and Merz, 2012). In the
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RWG0-extGP model version a parsimonious marginal
extGP type 1 distribution is used with all other compo-
nents kept unchanged. Finally, RWG1- extGP incorporates
all presented changes including (a) the extGP marginal
model, (b) a new procedure to compute and correct the
correlation matrices and (c) the use of the power transfor-
mation prior to fitting a normal distribution to the non-
precipitation variables.

All versions of the RWG are calibrated for all six cli-
mate variables at 528 stations and for 12 months. We
generate 100 realizations with a time series length of
53 years, that is, the same length as the observations, and
compare a range of statistical metrics for synthetic and
observed climate. This procedure is typically applied for
evaluation of stochastic weather models (Kleiber
et al., 2012; Breinl et al., 2013; Serinaldi and Kilsby, 2014;
Baxevani and Lennartsson, 2015).

We validate the weather generator with regards to at-
site performance at all stations across Germany. However,
more detailed results are only shown for the nine repre-
sentatively selected stations. The simulation of areal pre-
cipitation is challenging for stochastic weather models,
especially over very large domains, as in this study. This is
because when the scale of the study area becomes larger,
the number of stations (or grid points) should also increase
to maintain the adequate spatial resolution which is neces-
sary to represent the spatial variability at that scale. A
coarse network leads to a poor representation of the spatial
variability while a dense network often makes the multi-
variate problem computationally intractable.

For the at-site evaluation of precipitation, we analyse
the intermittence probabilities, mean and extremes at
monthly and daily scales as well as multi-day sums. To
evaluate the spatial representation of precipitation fields,
we look at the monthly plots of pairwise correlation as a
function of inter-site distance for both the bulk of the data
and extreme precipitation. Additionally, the total precipita-
tion sums at N stations within a certain radius from a
selected station is evaluated. With regards to the condi-
tioned variables, we exemplarily present the model perfor-
mance for mean temperature and solar radiation. These
are essential variables used to calculate potential evapo-
transpiration by hydrological models. In the following, the
selected performance criteria are discussed in more details.

We assess the performance of the RWG in rep-
roducing the precipitation intermittence using wet fre-
quencies and (wet/dry) transition probabilities. Wet
frequency is defined as the fraction of wet days at a sta-
tion location. We consider days to be dry if the recorded
precipitation is below 0.1 mm.

In the next step, the RWG performance to generate
reasonable at-site precipitation amounts is investigated
considering daily and monthly time scales. We focus on

daily and monthly mean precipitation and on the
99.9thpercentile for daily precipitation and 99th percen-
tile of the monthly sums of precipitation. The percen-
tiles are computed using Weibull plotting positions. The
99th percentile of the monthly sums is extrapolated
from 53 years of data using the semi-parametric quantile
estimation proposed by Hutson (2002). Daily intensities
are important for generation of single runoff events,
whereas the monthly amounts control soil moisture and
total catchment storage, which influence flood genera-
tion as well. Additionally, the n-day maxima of simu-
lated precipitation for n = 5 and 10 days are compared
to the observed statistics to analyse the plausibility of
wet-spell amounts. We consider these durations to be
important to generate flood events by single cyclones
and flood events resulting from two subsequent storms,
with the first one contributing to the catchment wet-
ness. Beersma and Buishand (2003) also used 10-days
accumulated precipitation to evaluate a resampling
weather generator.

To quantify the ability of the RWG to simulate
plausible areal rainfall amounts, we assess the spatial
correlation structure of precipitation. For this, we ana-
lyse the monthly correlation functions for the bulk
and extreme precipitation. First, we calculate the
Kendall's tau correlation and transform this into the
Pearson correlation for the bulk of the precipitation in
each month. This procedure reduces the effect of out-
liers. To assess the correlation structure of extreme
rainfall, we introduce the 80th percentile threshold to
daily precipitation at each station. The correlation
between the series above this threshold at one station
and the corresponding daily precipitation (not neces-
sarily above the threshold) at other stations is com-
puted. Pairwise correlations are evaluated for each
station. It should be noted that corr(Ps1j p(Ps1< 0.2),
Ps2j p(Ps1< 0.2)) is not necessarily equal to corr(Ps2j p
(Ps2< 0.2), Ps1j p(Ps2< 0.2)), where Ps1 and Ps2 are pre-
cipitation series at stations s1 and s2, respectively.
Additionally, we analyse the correlation decay func-
tions with inter-site distance between all pairs of
stations.

Further, we apply the continuity ratio introduced by
Wilks (1998) and used by other authors, for example,
Breinl et al. (2013), to assess the spatial model perfor-
mance. It expresses the ratio of precipitation mean at sta-
tion s1 given zero precipitation at station s2, to the mean
of precipitation at station s1 given nonzero precipitation
at station s2:

Continuity ratio=
E Ps1jPs1>0\Ps2=0ð Þ
E Ps1jPs1>0\Ps2>0ð Þ ð7Þ
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The comparison of the continuity ratios for observed and
synthetic series for each station is supposed to reveal the
relationship between the mean precipitation at one sta-
tion to the occurrence of precipitation at the other sta-
tions and is related to the model's ability to capture the
spatial correlation. We contrast this statistic to the other
metrics of the spatial model performance, which have so
far not been applied all in one study.

The comparison of observed and simulated precipita-
tion correlations at pairs of stations may be insufficient
to reveal deficiencies in the areal rainfall simulation,
that is, high matching of pair-wise correlations does not
ensure the correct representation of correlation for 3 or
more stations. Therefore, we explore the effect of the
spatial correlation on the resulting areal precipitation
fields. For this, we compute the mean and the 99.9th per-
centile of daily precipitation sums for each month at sta-
tions located within a fixed radius for every station. The
exercise is repeated for radii of 100, 200 and 400 km. This
analysis reveals a possible over/underestimation of areal
precipitation as a function of distance.

Finally, we evaluate the at-site performance of the
RWG with regards to the daily mean temperature and
solar radiation by comparing the mean and 99.9th per-
centile for each month and the nine selected stations.
Additionally, the comparison for all stations over the
entire period is presented.

Additionally, in order to have a more transparent, con-
sistent and comparable assessment of model performance,

we adopt the evaluation and performance framework
(CASE) by Bennett et al. (2018). This framework is based
on the categorization of the model performance into three
categories: “good” (G), “fair” (F) and “poor” (P) based on
each metric at each location. Good performance is attested
if the observed metric is inside the 90% range of model out-
put metric. The model performance is regarded fair if the
observations are outside the 90% range, but within
the 99.7% limits or absolute relative difference between the
observation and simulated mean is 5% or less. Finally, poor
performance is regarded otherwise. The evaluation at indi-
vidual locations provides the percentage of stations with
good, fair and poor performance (GFP) for each metric.
According to Bennett et al. (2018), the overall performance
can then be categorized into further 6 categories according
to the GFP percentage as follows:

• “overall good” (G > 50%)
• “overall fair” (F > 50%)
• “overall poor” (P > 50%)
• “overall fair-good” (F + G > P)
• “overall good-fair” (F + P > G)
• “overall variable” (G + P > F)

5 | RESULTS AND DISCUSSION

We present the RWG results focusing on (a) at-site and
(b) areal performance of precipitation generation.

FIGURE 3 Comparison of wet frequency statistics for nine stations (left) and all stations (right) for the model version RWG1-extGP.

Red dots (in the right plots) represent the median of the grey range corresponding to 100 model realizations [Colour figure can be viewed at

wileyonlinelibrary.com]
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Additionally, the results for at-site performance regarding
mean daily temperature and solar radiation are shown.
We evaluate the at-site performance at 9 selected station
locations and compare the range of 100 model realization
statistics to the observed values at 528 stations. In the fol-
lowing, we analyse the performance of the different
model versions with respect to each metric. A summary
of the RWG performance according to the CASE frame-
work is provided in Table 1 for each model version.

All figures below show the results for the
RWG1-extGP model version, whereas respective plots for
the model version RWG0-mGGP are provided in the
Supporting Information. Graphical results for the
RWG0-extGP are very similar to the RWG0-mGP version
in most cases and are not shown here. The performance
is summarized in Table 1. We discuss improvements
achieved with the introduced changes and potential cau-
ses of poor performance for some indicators.

TABLE 1 Summary of the model performance statistics for three RWG versions and categorization of the model performance according

to Bennett et al. (2018). GFP [%] indicates the percentage of “good”, “fair”, and “poor” performance for all stations considering all 100

realizations

Metric

MODEL

RWG0-mGGP RWG0-extGP RWG1-extGP

(GFP) [%] Overall (GFP) [%] Overall (GFP) [%] Overall

Wet frequency (96,3,1) Good (95,4,1) Good (97,3,0) Good

Transitional probability

Wet–wet (90,6,4) Good (98,1,1) Good (96,2,2) Good

Dry–dry (72,13,15) Good (78,16,5) Good (82,10,8) Good

Monthly sum

Mean (100,0,0) Good (100,0,0) Good (100,0,0) Good

99th percentile (91,0,9) Good (90,0,10) Good (92,0,8) Good

Daily intensity

Mean (100,0,0) Good (100,0,0) Good (100,0,0) Good

99.9th percentile (92,0,7) Good (87,6,13) Good (94,6,0) Good

n-day maxima

5-day sum (74,0,26) Good (50,1,48) Fair-good (51,0,49) Good

10-day sum (79,0,21) Good (56,0,43) Good (60,0,40) Good

Intersite-correlation

Entire precipitation range (53,1,47) Good (45,17,37) Fair-good (99,1,0) Good

Precipitation above 80th percentile (40,0,59) Poor (40,0,59) Poor (45,1,54) Poor

Continuity ratio (53,1,46) Good (52,0,48) Good (61,0,39) Good

Areal precipitation

Mean (for all radii) (100,0,0) Good (100,0,0) Good (100,0,0) Good

99.9th percentile

r = 100 km (86,0,14) Good (47,0,53) Poor (61,0,39) Good

r = 200 km (67,0,33) Good (28,0,72) Poor (37,0,63) Poor

r = 400 km (39,0,61) Poor (13,0,87) Poor (17,0,83) Poor

Daily temperature

Mean (68,21,11) Good – – (100,0,0) Good

99.9th percentile (63,1,36) Good – – (87,0,13) Good

Daily solar radiation

Mean (67,20,13) Good - - (98,2,0) Good

99.9th percentile (20,36,44) Fair-poor - - (30,36,34) Fair-poor
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5.1 | At-site RWG performance

The three RWG model versions capture the wet frequency
statistics well for individual stations in the entire model
domain since they report overall good performance with
95% or more stations showing good performance (Table 1,
Figures 3 and Figure S1). Only a very slight over-
estimation of the observed wet frequencies particularly in
winter months is detected, where the mean synthetic
values are slightly above the 1:1 line in Figure 3. The anal-
ysis of nine selected stations does not point to a specific
bias gradient with elevation or geographic location. The
performance of all three versions is very similar with a
minimal improvement exhibited by RWG1-extGP.

The RWG versions also reproduce the transition prob-
abilities over the entire simulation domain for different
months very well (Table 1, Figures 4 and Figure S2). At a
few locations, for example, Haseluennen, Waren, Bam-
berg, Mamming, the models seem to slightly underesti-
mate the dry-dry transition probabilities, that is, dry
spells are not perfectly captured by the weather genera-
tor. Since the wet frequencies are simulated well
(Figure 3), the results point to the more frequent inter-
mittence of dry spells than in the observed data. Also
Breinl et al. (2013) and Serinaldi and Kilsby (2014)
detected an underestimation of the length of dry spells in
their models. There is a very slight improvement of the
model performance in the RWG1-extGP version

compared to the other two versions (Table 1) and it
seems to result from both the marginal model and the
improved estimation of the correlation matrices. In the
context of flood risk modelling, more frequent intermit-
tence of dry spells may affect antecedent soil moisture
prior to some events. We believe, however, that this will
not significantly change the magnitude of extreme floods
and risk estimates.

The performance of the three RWG models on the
monthly scale is overall good as indicated in Table 1, Fig-
ures 5 and Figure S3. The RWG0-mGGP model slightly
overestimates the 99th percentile values. In the
RWG1-extGP model, both mean and the 99th percentiles
of the monthly sums are very well resembled in all
months. To correctly reproduce the statistics at the
monthly time scale is not really challenging and should
be a minimum requirement for a weather generator.

Also, the daily mean and extreme (99.9th percentile)
precipitation intensities are well captured by the RWG
models (Table 1, Figures 6 and Figure S4). The observed
daily extreme intensities at the nine selected stations lie
within the range of 100 realizations. With regards to the
entire model domain (Figures 6 and Figure S4, right),
the observed extremes and median of the simulated
range are located predominantly on the 1:1 line. Devia-
tions are detected only at a few stations in some
months, predominantly overestimation (note the log–
log scale).

FIGURE 4 Comparison of simulated and observed transition probabilities (wet-wet and dry-dry) at 9 stations (left) and for all stations

(wet-wet) (right) for the model version RWG1-extGP. Red dot represents the median of the grey range corresponding to 100 model

realizations [Colour figure can be viewed at wileyonlinelibrary.com]
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The results indicate an overall good fit of both marginal
models to the at-site precipitation series. However, the
extGP model delivers a poorer fit at a number of stations
compared to mGGP (Table 1). Since marginal distributions

are not bounded, it can be expected that higher extremes
are generated in the simulations compared to the limited
observations, especially with increasing number of realiza-
tions. Hence, this is not a surprise that the grey bars in

FIGURE 5 Comparison of monthly precipitation sums (mean and 99th percentile) at nine stations (left) and at all stations (99th

percentile) (right) for the model version RWG1-extGP. Red dot represents the median of the grey range corresponding to 100 model

realizations [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Comparison of daily precipitation intensities (mean and 99.9th percentile) for nine stations (left) and at all stations (99.9th

percentile) (right) for the model version RWG1-extGP. Red dot represents the median of the grey range corresponding to 100 model

realizations [Colour figure can be viewed at wileyonlinelibrary.com]
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Figures 6 and Figure S4 (left) tend to overshoot the
observed 99.9th percentile precipitation in most cases.

Figure 7 (Figure S5) and Figure 8 (Figure S6) show
the ability of the RWG in simulating the multi-day

extreme precipitation sums for 5-day and 10-day accumu-
lation periods, while Table 1 summarizes the overall per-
formance. The observed frequency plots are enclosed by
the simulated range of the RWG0-mGGP at all selected

FIGURE 7 Frequency plots of observed (blue) and simulated multi-day extreme precipitation sums (red ranges) accumulated over 5-day

(upper panel) and 10-day (lower panel) periods at nine selected stations. Results correspond to the RWG1-extGP model version. Note the

log-scale of the x-axis. The Weibull plotting position is used to estimate the return periods [Colour figure can be viewed at

wileyonlinelibrary.com]
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stations but Rakovnik (Figure S5). The performance of
the extGP-based models significantly deteriorates at sev-
eral stations compared to RWG0-mGGP (Table 1). It
results in a number of the observed frequency plots being
off the simulated range (e.g., Brocken, Piz Corvatsch;
Figure 7). At most of the selected stations, the multi-day
extreme precipitation tends to be overestimated in all
models. We also observe this tendency when comparing
the extreme multi-day sums for all stations (Figures 8
and Figure S6). All RWG models are able to reproduce
the 10-day extreme precipitation sums better compared
to the 5-day period. Likely, the errors in precipitation
modelling at single days average out over the longer
period

Given a very similar performance of all versions in
terms of daily intensity and monthly sums of precipita-
tion, it may be surprising that RWG0-mGGP performs
much better than extGP-based models. First, the fit of the
at-site mGGP models is in 62% cases better than extGP
according to the Akaike Information criterion (AIC; not
shown). extGP seems to have a fatter upper tail compared
to mGGP. This difference is not that noticeable for mean
daily and extreme values (Table 1), but the error appar-
ently accumulates for the multiday precipitation. To this
end, extGP seems not to offer a better performance com-
pared to the mGGP model and tends to overestimate the
daily extremes and even more significantly the multi-
day sums.

RWG1-extGP is slightly better than RWG0-extGP for
both aggregation levels (5-day and 10-day) because of the
impact of the dependence structure which will be dis-
cussed in Section 5.2.

The model performance with regards to the multi-day
extreme precipitation sums can be influenced by both the
at-site simulation performance (magnitude and auto-cor-
relation) as well as by the model's ability to capture the

spatial correlation structure. A tendency to overestimate
daily precipitation during wet spells at multiple sites
might be hardly visible when comparing at-site percen-
tiles of single days, but becomes more pronounced when
the precipitation is accumulated over several days. The
model performance in spatial terms is therefore analysed
in the next section.

5.2 | RWG performance for areal
precipitation

For derived flood frequency and risk analysis, both event
precipitation intensity and total precipitation input over a
large spatial domain are of interest. The literature review
suggests that most state-of-the-art stochastic weather
models are capable of simulating at-site precipitation
characteristics down to the daily time scale, even for high
quantiles. What remains challenging is the correct repre-
sentation of the spatial correlation structure in the multi-
site models and over large spatial domains (Serinaldi and
Kilsby, 2014).

Although the density cloud of the pairwise correlation
coefficients of the RWG1-extGP model in Figure 9 lies
very close around the 1:1 line, indicating that the
RWG1-extGP estimates the correlation structure of the
full range of precipitation well in all months with only
slight over−/underestimation. Figure 10 illustrates the
observed and simulated correlations of precipitation for
station pairs plotted against their distance. For this plot,
the entire precipitation data are analysed. As expected,
correlations decay from about 0.9 for nearby stations to
below 0.2–0.4 for inter-site distances above �500 km.
The decay is much stronger for summer months com-
pared to autumn and winter months. More localized
summer precipitation events of convective origin result

FIGURE 8 Observed

vs. simulated multi-day extreme

precipitation sums accumulated

over 5-day (left panel) and 10-day

(right panel) periods at all stations.

Red dot represents the median of

the grey range corresponding to

100 model realizations. Results

correspond to the RWG1-extGP

model version [Colour figure can be

viewed at wileyonlinelibrary.com]
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in shorter correlation distances (or lower correlations
over larger distances) compared to the large-scale strati-
form autumn/winter storms.

Table 1 and comparison between Figures 9 versus S7
and Figures 10 versus S8 reveal a significant improve-
ment of the inter-site correlations for the entire data
range when a new procedure for the estimation of the
correlation matrix is implemented (RWG1-extGP).
Whereas the use of the extGP marginal model slightly
deteriorates model performance from overall good to
overall fair-good, the RWG1-extGP performs good at 99%
of the stations (Table 1).

The analysis of dependence in extreme precipitation
above the 80th percentile threshold reveals a consider-
able overestimation of the correlation for all model ver-
sions (Table 1, Figures 11 and Figure S9). The
overestimation is particularly striking from April till
September, when the at-site precipitation is higher com-
pared to the winter-half year, and is usually produced by
localized convective storms. Figures 12 and Figure S10

indicate that extreme rainfalls are much more strongly
correlated over large distances that would be expected
from observations. The deviation is strongest for stations
located between 200 and 600 km apart. The implementa-
tion of the new correlation matrix estimation procedure
seems to have very limited impact on the correlation of
high quantiles. The percentage of GFP narrowly shifts
from (40,0,59) for the RWG0-models to (45,1,54) for
RWG1-extGP resulting in the overall poor model perfor-
mance (Table 1).

This result implies that extreme precipitation is more
likely to occur in the simulated data at multiple locations
than would be expected from observations. This leads to
an overall higher areal rainfall volume and may result in
flood discharge overestimation for large catchments. This
overestimation of correlation between station pairs may
explain the slight overestimation of the multi-day
extreme precipitation sums. If precipitation were over-
estimated during wet spells because of more probable

FIGURE 9 Observed and simulated correlation coefficients for all precipitation data in different months for the RWG1-extGP model.

Increasing density of the points is indicated by the shaded colour from white to red [Colour figure can be viewed at wileyonlinelibrary.com]
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occurrence of extremes at multiple sites, single-site multi-
day sums would also be greater than expected.

Also, the comparison of continuity ratios for observed
and simulated precipitation reveals the overestimation of
the spatial correlation in the summer half-year in all
models (Table 1, Figures 13 and Figure S11). The
observed continuity ratio is higher than that of the simu-
lated series, that is, the nominator in Equation (11) is
larger, which could mean that simulated events are more
localized in space. However, interpretation of the conti-
nuity ratio is not straightforward. Contrary to the correla-
tion plots in Figures 9–12 (Figures S7–S10), it conditions
the mean values on the occurrence of rainfall at other
stations and does not reveal the threshold behaviour that
is immediately visible in Figures 11–12 (Figures S9–S10).
Although continuity ratio was applied in some studies
(Wilks, 1998; Breinl et al., 2013), we would rather recom-
mend the use of monthly correlation plots and correla-
tion decay functions with inter-site distance.

Table 1 shows an excellent performance of the three
RWG model versions in reproducing the mean areal pre-
cipitation at three selected radii. However, the extreme
(99.9th percentile) areal precipitation is clearly over-
estimated as demonstrated in Figures 14, Figure S12 and
Table 1. The tendency to overestimation already visible
for the radius of 100 km, although the simulated enve-
lope mostly encloses observed values. With increasing
radius, the deviation between observed and simulated
extreme areal precipitation increases, particularly in the
summer months. Because both mean and extreme daily
precipitation intensity at individual station are well cap-
tured, the marked overestimation of inter-site correlation
of extreme daily precipitation discussed above is appar-
ently the main cause of the overestimation of the extreme
areal precipitation.

Comparing the performance for three RWG model
versions, we see a combined impact of the selected mar-
ginal distribution and the dependence structure on the

FIGURE 10 Correlation vs. distance between station pairs for observed and simulated precipitation with the RWG1-extGP model

version. Increasing density of points for observed series is indicated in shaded colours from yellow to red. The density of points for the

simulated series is indicated by the contour lines [Colour figure can be viewed at wileyonlinelibrary.com]
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extreme areal precipitation. RWG0-extGP is worse than
RWG0-mGGP although they share the same dependence
structure. This may indicate the impact of the over-
estimation of the upper quantiles of the at-site daily pre-
cipitation since extGP may have a fatter tail compared to
mGGP. RWG1-extGP performs better than RWG0-extGP
because of the improvement in the correlation structure
(Table 1, Figures 9-12 and Figures S7–S10).

Analysis of the spatial correlation structure and areal
precipitation reveals some difficulties of the RWG in cap-
turing summer precipitation events. Overestimation of
the areal rainfall increases with increasing spatial scale.
Simple correlation plots for the entire precipitation series
(Figures 9-10 and Figures S7–S8) do not reveal the prob-
lem. Neither is the continuity ratio instrumental in iden-
tifying the reason for the poor model performance.
Hence, we recommend the use of threshold correlation
plots in combination with the analysis of areal
precipitation sums.

Baxevani and Lennartsson (2015) also face the prob-
lem of overestimation of correlations in their latent
Gaussian field model, but rather in winter months.
Serinaldi and Kilsby (2014) indicate a considerable over-
estimation of daily areal precipitation in their model in
all months. As suggested by Serinaldi and Kilsby (2014),
we assume the covariance function derived from the
bulk of the precipitation data to be responsible for the
overestimation of areal extreme rainfall. Also, Breinl
et al. (2020) indicate a faster decrease of the areal
reduction factor (ratio of catchment to point rainfall)
with catchment area for convective precipitation com-
pared to stratiform precipitation. This is related to the
typical footprints of both precipitation types and hence
to inter-site correlation. The bulk of the precipitation
data, which might be dominated by large-scale strati-
form events with stronger inter-site correlations domi-
nate the parameterization. Our analysis reveals that
correlation distances for extreme rainfall are shorter,

FIGURE 11 Observed and simulated correlation coefficients for precipitation data above the 80th percentile threshold in different

months for the RWG1-extGP model. Increasing density of the points is indicated by the shaded colour from white to red [Colour figure can

be viewed at wileyonlinelibrary.com]
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particularly in summer months, which is consistent
with physical reasoning. In summer, convective rainfall
events are more frequent and can be expected to have
shorter correlation distances. Müller and
Haberlandt (2015) also detected lower correlations and
much stronger variability of correlations with distance
for daily precipitation above the 4 mm threshold in a
catchment in northern Germany.

A potential avenue to improve the simulated corre-
lation of extreme precipitation could be the use of
threshold approach to separately model the bulk and
extreme precipitation as suggested by Müller and
Haberlandt (2015). We tested this approach adopting
the 80th percentile threshold. This results in a better
performance with respect to the correlation of extreme
precipitation, but at the cost of a strong performance
deterioration for the bulk precipitation (not shown).
Another approach we explored is to change the

current meta-Gaussian based dependence structure to a
so-called meta-skew-normal (Azzalini and Dalla
Valle, 1996) because the latter is more flexible in its
dependence strength at different quantiles. Testing this
approach revealed a similar trade-off between the per-
formance of RWG with regards to the correlation of
the entire precipitation range compared to the extreme
precipitation as in the above-mentioned threshold
approach. Although the performance deterioration was
not that strong (not shown), We think more effort is
required to test different approaches and find optimal
way to estimate the spatial correlation structure and
this should be focus of future research. For instance,
Evin et al. (2018) apply a copula-based approach fol-
lowing Bárdossy and Pegram (2009) to simulate tail
dependence of precipitation at multiple sites. This
approach seems, however, to notably under estimate
spatial correlations (Evin et al., 2018).

FIGURE 12 Correlation versus distance between station pairs for observed and simulated precipitation above the 80th percentile

threshold with the RWG1-extGP model version. Increasing density of points for observed series is indicated in shaded colours from yellow to

red. The density of points for the simulated series is indicated by the contour lines [Colour figure can be viewed at wileyonlinelibrary.com]
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5.3 | RWG performance with regards to
mean temperature and solar radiation

Two climate variables conditioned on the wet-dry state,
mean temperature and solar radiation are evaluated in a
similar way as precipitation. Figures 15 and Figure S13
demonstrate the ability of two model versions in rep-
roducing the mean daily temperature statistics. The intro-
duced power transformation in the RWG1 model improved
the performance with regards to daily mean temperature
significantly resulting in good performance at all stations.
The 99.9th percentile values of mean daily temperatures are
more difficult to simulate particularly in the winter months,
when we detect a positive bias of 1–3� in the
RWG0-mGGP. In RWG1-extGP, the performance improves
significantly with the percentage of GFP shifting from
(63,1,36) to (87,0,13). The overestimation is, however, rather
small and we consider it to be not decisive for the purpose
of flood risk assessment, although it might have some con-
trol on snowmelt events during the winter season.

Finally, we evaluate the RWG performance in rep-
roducing the observed values of solar radiation
(Figures 16 and Figure S14). The mean daily values are
generally well captured by the RWG0-mGGP model ver-
sion with GFP percentage values of (67,20,13; Table 1).
The power transformation substantially improved the
overall performance with regards to the daily mean
values in the RWG1-extGP model with GFP of (98,2,0).
However, the 99.9th percentiles remain strongly over-
estimated particularly in the summer months at all sta-
tions (Figure 16). The RWG1-extGP model performs
slightly better than RWG0-mGGP, but the overall perfor-
mance of both versions with respect to extreme values
remains “fair-poor”. The dispersion of points along the
1:1 line for all stations is high from May to September
(Figures 16 and Figure S14). It seems the power transfor-
mation offers some relief, but does not completely solve
the problem. It seems that normal distribution is not the
best choice also for the power-transformed radiation data.
Further investigations are needed to better characterize

FIGURE 13 Monthly observed and simulated spatial continuity ratio for the RWG1-extGP model version. Increasing density of points is

indicated by shaded colours from white to blue [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 99th percentile of daily observed and simulated precipitation accumulated over all stations within various radii from nine

selected stations. Shaded ranges represent the range of 100 model realizations with the RWG1-extGP model version. Note the log-scale of the

y-axis [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Comparison of observed and simulated mean daily temperature (mean and 99.9th percentile) at nine stations (left) and for

all stations (99.9th percentile). Red dot represents the median of the grey range generated with the RWG1-extGP model version [Colour

figure can be viewed at wileyonlinelibrary.com]
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the distribution of solar radiation and should include
other types of transformations and marginal distribution
families to capture extreme values. Overall, we believe
this dispersion to be not decisive for shaping flood peaks
and will likely not significantly influence regional flood
risk estimates.

6 | CONCLUSIONS

This article presents a comprehensive evaluation of a
multivariate auto-regressive weather generator setup at
regional scale of about 580,000 km2 covering major river
basins in Central Europe. The regional setup of the
weather generator (RWG) is calibrated and evaluated at
528 climate stations for the purpose of derived flood fre-
quency and risk analysis. We validated the performance
of the three RWG model versions in simulating precipita-
tion occurrence and dry/wet transition probabilities,
mean daily and extreme (99.9th percentile) precipitation,
multi-day precipitation sums, spatial correlation structure
and areal precipitation. Finally, the performance with
regard to daily mean temperature and daily mean solar
radiation is analysed. These variables are conditioned on
the wet/dry state simulated by the weather generator.
The original model version RWG0-mGGP uses a six-
parameter mixed Gamma-Generalized Pareto (mGGP) as
a marginal distribution for precipitation, normal

distribution for mean daily temperature and normal dis-
tribution in combination with root square transformation
for solar radiation. With the second model version
RWG0-extGP, we explore the effect of using a parsimoni-
ous 3-parameter extended Generalized Pareto (extGP)
distribution with other components kept the same.
Finally, in the third version RWG1-extGP, a new proce-
dure to estimate and correct the spatial correlation matri-
ces is introduced along with the power transformation
applied to all non-precipitation variables in combination
with normal distribution. We evaluate and categorize the
model performance using the CASE framework by Ben-
nett et al. (2018).

All RWG model versions are overall good in rep-
resenting the observed wet day frequencies. The wet-
wet transition probabilities are very well reproduced by
the RWG, whereas dry-dry transition probabilities are
somewhat underestimated. This suggests that the
models tend to simulate more frequent intermittence of
dry spells compared to observations. Monthly mean and
extreme precipitation are well captured by all model
versions. This also applies to daily mean precipitation,
whereas the daily extremes seem to be somewhat over-
estimated. The RWG tends to generate higher at-site
extreme precipitation, particularly in summer months.
All versions perform very similarly for the above-
mentioned statistics except for the extreme daily precip-
itation. Here, the extGP marginal distribution performs

FIGURE 16 Comparison of observed and simulated mean daily solar radiation (mean and 99.9th percentile) at nine stations (left) and

for all stations (99.9th percentile). Red dot represents the median of the grey range generated with the RWG1-extGP model version [Colour

figure can be viewed at wileyonlinelibrary.com]
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slightly worse at a number of stations as it tends to gen-
erate heavier tails than mGGP. Hence, the performance
for 5-day and 10-day accumulated precipitation strongly
deteriorates for the extGP-based versions as the error at
the individual days is likely to accumulate. The
RWG0-mGGP captures the pair-wise correlations and
the correlation decay with distance between stations for
the entire precipitation range with good and poor per-
formance at 53% and 47% of the stations, respectively.
However, the use of a new procedure to estimate spatial
correlations and correct the correlation matrix to posi-
tive definite boosts the performance to good fit at all of
the stations. Zooming into the correlation performance
for extreme precipitation above the 80th percentile
threshold revealed considerable overestimation of the
pair-wise correlations and decay function for all ver-
sions. The overestimation is particularly pronounced in
the summer half-year. The new procedure for correla-
tion estimation does not noticeably affect this problem.
The overestimation of spatial correlation leads to the
simulation of more severe flood events in spatial terms
compared to what has been observed. The use of the
power transformation for the non-precipitation vari-
ables improves the model performance considerably.
However, RWG1-extGP tends to slightly overestimate
extreme solar radiation particularly in summer. We con-
sider this bias to be negligible in the context of applica-
tions of the weather generator for derived flood
frequency and flood risk analysis.

Overall, we conclude that all versions of the weather
generator are very skilful in capturing precipitation
intermittence and weather extremes at individual loca-
tions. The mixed Gamma-Generalized Pareto model
effectively captures both the bulk and extremes of at-
site precipitation. As also found by Evin et al. (2018),
the use of extended Generalized Pareto distribution
does not result in improved model performance, even
some worsening is observed. As a limitation, we
acknowledge that our models are not cross-validated
given a very high computational burden for this large-
scale application. The new procedure for estimation of
spatial correlation and correction of the correlation
matrix as well as power transformation for non-
precipitation variables significantly improve model per-
formance. The current representation of the spatial pre-
cipitation correlation structure without differentiating
between extreme and average precipitation should,
however, be improved in the future. Despite the above-
mentioned limitations, the RWG is able to computa-
tionally handle a large dataset of a several hundred sta-
tions and can be used for large-scale derived flood
frequency and trans-basin flood risk assessment consid-
ering the above-mentioned limitations.
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