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Abstract

GRACE Follow-On (GFO), launched in May 2018, is the nearly identical successor of the
Gravity Recovery and Climate Experiment (GRACE) mission, which was in operation from
2002 until 2017. Both missions consist of two satellites in a low Earth orbit (LEO), with the
goal of measuring the Earth’s gravity field with a special focus on its temporal variations.
The essential observable for this purpose is the inter-satellite range-rate, measured by the so-
called K/Ka-band ranging (KBR) instrument. In addition to the established KBR instrument,
GFO carries a laser interferometer named laser ranging interferometer (LRI) as a technology
demonstrator, to measure the same observable. One important noise source of the LRI at low
frequencies is the so-called tilt-to-length (TTL) coupling, caused by unavoidable deviations
from the nominal satellite attitudes with respect to each other. The main motivation of the
work presented here is to analyze the LRI TTL error with in-flight data, in order to generate
a deeper understanding of the LRI as well as comparable future laser interferometers.

In this thesis, the different stages in the large context of LRI TTL analysis are illuminated.
As a basis, a mathematical formalism for the description, sensing, and control of spacecraft
(S/C) attitude is given. Then, a linear TTL coupling model for the LRI is derived as a function
of the inter-satellite pointing angles. The model parameters are estimated by utilizing GFO
data recorded during the so-called center-of-mass calibration (CMC) maneuvers. These are
S/C rotation maneuvers which provide a stimulus to evoke a TTL error, although their original
purpose is unrelated to the LRI. Several parameter estimation methods are scrutinized, the
respective mathematical formulas are derived, and the potential of each individual approach is
evaluated. Finally, the results of the LRI TTL estimations are presented in the form of linear
coupling factors, all of which fulfill the pre-launch requirements.

Moreover, the linear coupling factors contain information about the spatial offsets between
the satellites’ centers-of-mass (CoM) and the LRI reference points (RP). Estimations of nadir
and cross-track components of these offsets are derived in this thesis. This provides an in-
dependent method to track the CoM movement over time. Furthermore, during the study
presented here, another error source of the LRI was discovered, which is here denoted by an-
gular rate coupling (ARC). While the TTL error term is a function of the attitude deviation,
ARC is a function of the rate of change of this attitude deviation. It is therefore relevant for
the analysis of TTL coupling. A theoretical explanation of the ARC effect is given here, as
well as a formula to compute the ARC error term. This formula is confirmed by analyzing
CMC maneuver data.

This thesis is also intended as a detailed guide to TTL mitigation in inter-satellite laser
interferometers in general, with emphasis on the utilization of S/C rotation maneuvers. To
this end, a technique to simulate satellite rotation maneuvers is developed. The design of
dedicated TTL calibration maneuvers is investigated, starting by defining the relevant param-
eters that determine such a maneuver. A method is developed to assess the suitability of an
arbitrary maneuver for the purpose of TTL estimation. Thereupon, the maneuver parame-
ters are optimized for the case of the LRI. Furthermore, some simulated rotation maneuvers
are highlighted, and their performance with regard to TTL estimation is compared to the
performance of the CMC maneuvers.
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Zusammenfassung

GRACE Follow-On (GFO), gestartet im Mai 2018, ist die nahezu baugleiche Nachfolgemis-
sion zur Mission Gravity Recovery and Climate Experiment (GRACE), im Betrieb von 2002 bis
2017. Beide Missionen bestehen aus zwei Satelliten in einem niedrigen Erdorbit, mit dem Ziel
der Messung des Erdschwerefeldes mit besonderem Fokus auf dessen zeitlichen Variationen.
Die wesentliche Messgröße zu diesem Zweck ist die Änderungsrate des Abstands der Satelliten
voneinander, gemessen vom sogenannten K/Ka-band ranging (KBR) Instrument. Zusätzlich
zum etablierten KBR Instrument ist in die GFO Satelliten ein Laserinterferometer integriert,
genannt laser ranging interferometer (LRI), welches als Technologiedemonstrator ebenfalls die
Abstandsänderungen misst. Eine wichtige Rauschquelle des LRI bei niedrigen Frequenzen
ist die sogenannte tilt-to-length (TTL) Kopplung, hervorgerufen durch unvermeidbare Abwe-
ichungen von der nominellen Ausrichtungen der Satelliten zueinander. Die Hauptmotivation
der hier präsentierten Arbeit ist die Analyse des LRI TTL Fehlers mittels der gemessenen
Daten, um ein tieferes Verständnis des LRI sowie vergleichbarer zukünftiger Laserinterferom-
eter zu generieren.

In dieser Doktorarbeit werden die verschiedenen Schritte im Zusammenhang mit der LRI
TTL Analyse beleuchtet. Als Grundlage wird ein mathematischer Formalismus zur Beschrei-
bung, Messung und Kontrolle der Satellitenorientierung gegeben. Darauffolgend wird ein
lineares Kopplungsmodell für das LRI hergeleitet, als Funktion der Eulerwinkel, welche die
Orientierungsabweichungen der Satelliten beschreiben. Die Modellparameter werden geschätzt
unter Nutzung von GFO Daten, welche während der sogenannten center-of-mass calibration
(CMC) Manöver aufgezeichnet wurden. Dies sind Satellitenrotationsmanöver, welche einen
Stimulus liefern können um einen TTL Fehler hervorzurufen, wenngleich der ursprüngliche
Zweck der CMC Manöver unabhängig vom LRI ist. Etliche Methoden zur Parameterschätzung
werden eingehend untersucht, die jeweiligen mathematischen Formeln werden hergeleitet, und
das Potenzial der einzelnen Ansätze wird individuell ausgewertet. Zuletzt werden die Ergeb-
nisse der LRI TTL Parameterschätzung präsentiert, in Form von linearen Kopplungsfaktoren,
welche allesamt innerhalb der Missionsanforderungen liegen.

Im Weiteren enthalten die linearen Kopplungsfaktoren Informationen über die räumlichen
Versätze zwischen den Masseschwerpunkten der Satelliten und den Referenzpunkten des LRI.
Schätzungen der Komponenten in Nadirrichtung sowie seitwärts senkrecht zur Flugrichtung
dieser räumlichen Versätze werden in dieser Arbeit hergeleitet. Dies liefert eine unabhängige
Methode, die zeitliche Verschiebung der Masseschwerpunkte zu verfolgen. Ferner wurde während
der hier dargestellten Untersuchung eine weitere Fehlerquelle des LRI entdeckt, welche hier
angular rate coupling (ARC) genannt wird. Während der TTL Fehlerterm eine Funktion
der Orientierungsabweichungen ist, ist der ARC Fehlerterm eine Funktion der Änderungsrate
dieser Abweichungen. ARC ist daher auch relevant für die Analyse der TTL Kopplung. Für
diesen Effekt wird hier eine theoretische Erklärung geliefert, sowie eine Formel zur Berech-
nung des ARC Fehlerterms. Diese Formel wird durch die Analyse von CMC Manöverdaten
bestätigt.

Diese Arbeit ist ebenfalls als detaillierte Anleitung zur Mitigation von TTL Kopplung in
LRI-ähnlichen Laserinterferometern im Allgemeinen gedacht, mit besonderem Schwerpunkt
auf der Nutzung von Rotationsmanövern. Zu diesem Zweck wird eine Technik zur Simulation
solcher Manöver entwickelt. Die Gestaltung dedizierter TTL Kalibrierungsmanöver wird un-
tersucht, beginnend mit der Definition der relevanten Parameter, welche ein solches Manöver
festlegen. Es wird eine Methode entwickelt, um die Eignung eines beliebigen Manövers hin-
sichtlich der TTL Parameterschätzung zu bewerten. Daraufhin werden die Manöverparameter
für den Fall des LRI optimiert. Des Weiteren werden einige simulierte Manöver hervorgehoben
und ihre Eignung für die TTL Analyse mit der Eignung der CMC Manöver verglichen.
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Chapter 1

Introduction

1.1 Topic of study

The climate change may be the greatest challenge of humankind in the 21st century. Hence,
it is more urgent than ever for us to study the climate system of our planet, the Earth. An
important contribution to this is made by the field of geodesy, which, in particular, exam-
ines the Earth’s gravitational field and its temporal variations. During the past decades, a
novel branch has been developing, the satellite geodesy, which is utilizing the steadily growing
amount of satellite observation data.

An overview of satellite geodesy missions is provided on the website of the Global Geodetic
Observing System (GGOS) [GI], which is the observing system of the International Associa-
tion of Geodesy (IAG). A well established method is to deploy satellites as small mass test
objects, whose motion is mainly determined by the mass of the Earth and the gravitational
law. By tracking the distance between a satellite and either a ground station or another satel-
lite, the satellite’s motion is measured precisely. From the data gathered in this way, often
in combination with Global Navigation Satellite System (GNSS) measurements, information
about the Earth’s gravitational field can be inferred, and thus about the mass distribution
in the Earth system. Observing time variations thereof is considered one of the most impor-
tant measurements for the National Aeronautics and Space Administration (NASA) to obtain
during this decade [NAS18].

This thesis focuses on science data from the mission called GRACE Follow-On (GFO)
[Kor+19], which is the successor mission of the Gravity Recovery and Climate Experiment
(GRACE) mission [Tap+04b; Tap+04a; Wou+14; Tap+19]. The principle that underlies these
missions has been described already in [Wol69]. Like GRACE, GFO has been very successful
in measuring the Earth’s gravitational field. It consists of two basically identical spacecraft
(S/C), orbiting in an almost circular low Earth orbit (LEO) about 500 km above ground, with
an inclination of 89 ◦. While one S/C is trailing the other at a varying distance of 220 ± 50 km,
the biased range between the two is measured using a K/Ka-band ranging (KBR) instrument
[KL09]. Here the term biased range means the separation between the two satellites’ centers-
of-mass (CoM), measured up to a constant, i.e. with an unknown bias. Once the surface of the
Earth is sampled well enough by the satellite ground track, after about one month, an Earth
gravity model is fitted to the data obtained from these observations. Comparing the results of
this process, which is called gravity field recovery (GFR), of many subsequent months enables
a detailed study of the time variability of the Earth’s gravitational field. The temporal and
spatial resolution of GRACE-derived gravity fields is a matter of discussion [VDS18], and a
matter of tradeoff between temporal and spatial accuracy, however, about 1 month temporal
and 200-300 km spatial resolution may serve as approximate values.
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1.1.1 Applications of GRACE / GFO data

Applications of the GRACE mission, which has been in operation and recording data from 2002
until 2017, are manifold and of great importance. To mention a few, these applications include
the monitoring of ice sheet and glacier mass balance, terrestrial water storage, and sea level
change. Recent overviews of the contributions of the GRACE science data to climate change
research are given in [Wou+14] and [Tap+19]. A comprehensive list of GRACE and GFO
related publications is provided in [FK], counting more than 2500 references. Several of these
were cited in the 2013 Fifth Assessment Report of the International Panel on Climate Change
(IPCC-5)[Cli14], due to their tremendous impact in the field of climate research. Rodell et
al. have listed and quantified 34 regional trends of terrestrial water storage, distributed all
over the Earth, e.g. the decline of the Aral Sea and the Caspian Sea [Rod+18]. GRACE
/ GFO data is also the basis for the European Gravity Service for Improved Emergency
Management (EGSIEM) project, currently in the prototype phase [Jäg+19]. In the following,
three examples are presented which shall demonstrate the wide range of GRACE applications,
their importance, as well as the essentiality of continuing these measurements and improving
upon their accuracy and precision.

Example 1 The availability of fresh water is a crucial basis for human civilization. Unfor-
tunately, this basis is threatened in many regions, where aquifers diminish, often caused by
unsustainable groundwater consumption [Fam14]. For instance, southern California, USA, is
facing a historical drought, as the groundwater storage cannot replenish at nearly the same
rate at which it is being withdrawn, mostly due to the high agricultural demands [SLL12;
Rod+18]. The groundwater depletion in India is studied for example in [RVF09], where it
could be shown that, during the period of August 2002 to October 2008, groundwater equiv-
alent to a net amount of 109 km3 was lost, over the Indian states of Rajasthan, Punjab, and
Haryana. An anthropogenic cause of this observation is likely, and it was concluded that there
may be severe consequences for the respective regions in India, unless appropriate measures
are taken soon. Notably, only part of the terrestrial water storage can be monitored by means
other than GRACE data, so that satellite geodesy can be expected to be indispensable in the
future for similar applications.

Example 2 The monitoring of ice mass loss near the poles may be one of the most prominent
applications of the GRACE data. Both Greenland and Antarctica ice mass balances showed
a significant negative trend already after a few years of GRACE mission operation [VW05;
VW06], which unfortunately continued in an undamped way [Vel09]. Due to the high quality
satellite data, very consistently provided over a time span of 15 years, scientists understanding
of these mass changes has considerably increased. The consistency of data from the GFO
mission has been demonstrated [Vel+20], revealing for example a dramatic loss of 600 Gt of
Greenland ice within the record-breaking summer of 2019. From 2002 until 2017, the average
annual balance of Greenland mass was determined to be -258 ± 26 Gt yr−1, and the respective
value for Antarctica was determined to be -137 ± 41 Gt yr−1. For comparison, note the average
mass loss of the glaciers and ice caps of the Earth of about 280 Gt yr−1 [CVS20], which is also
an alarming value. A portion of about 200 Gt yr−1 could be linked to glacier mass loss alone
[WGM19].

A spatial resolution of 200 km enables a regional breakdown of the mass balance. With a
temporal resolution of 1 month, seasonal variations are also well resolved. This even allows for
a more detailed analysis of the different causes of certain mass changes [Tap+19]. Furthermore,
a strong correlation between the Antarctic ice mass balance, the precipitation there, and the
ocean-atmosphere phenomenon La Niña, which is the colder counterpart of El Niño, could be
shown in [Sas+10]. The importance of the ice sheets at the poles for the climate of the entire
Earth is undisputed.
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Example 3 Earthquakes permanently change the mass distribution within the Earth, and
hence can in principle be measured by gravimetric missions such as GRACE / GFO. One
of the most devastating earthquakes in the past decades was the 2004 Sumatra-Andaman
earthquake, with a moment magnitude Mw > 9. This event produced a crustal dilatation of
a strength which is readily detectable by GRACE [Han+06]. An analysis of the seven largest
earthquakes during the era of GRACE, between 2002 and 2017, is presented in [CL19]. The
permanent solid Earth mass change caused by the 2011 Tohoku-Oki earthquake was examined
using GRACE data in [Wan+12]. With temporally and spatially better resolved gravity fields,
in the future, even more valuable studies of such seismic events will become feasible, aspiring
towards the ambitious goal of real-time earthquake monitoring.

1.1.2 GRACE Follow-On and the LRI

In order to continue the valuable measurements of GRACE, a successor mission named GFO
has been brought to life [Kor+19]. The continuation of science output in the form of grav-
ity fields from GFO, qualitatively comparable to GRACE-derived gravity fields, has already
been demonstrated [Lan+20; Che+21; Pei+22]. The GFO satellites are quasi replica of the
GRACE satellites, except for some minor improvements. The single big novelty aboard the
GFO satellites is the laser ranging interferometer (LRI), with the purpose of demonstrating
an innovative satellite-to-satellite tracking (SST) technique [Abi+19; She+12]. The LRI mea-
sures the biased inter-satellite range, as does the KBR, and both instruments are operated
independently in the GFO mission. By means of laser interferometry, the LRI is able to reach
unprecedented SST precision.

The GFO satellites have been launched with a SpaceX Falcon 9 rocket from the Vandenberg
Airforce Base in California, USA, on 22 May 2018. The twin satellites were deployed at an
altitude of 491 km, and with an orbit inclination of 89 ◦. The launch and early operations
phase (LEOP), during which the satellites were maneuvered into their nominal constellation,
220 km apart, see also [Sch+15a], lasted until 26 May. The in-orbit commissioning (IOC)
phase followed, where, after all LRI subsystems were checked out, the laser link acquisition
procedure was carried out, which is described in [Mah14; Koc+18]. On 14 June 2018, the
interferometric link was established on first attempt, and the LRI started to measure the
inter-satellite biased range [Abi+19; Weg19]. The in-orbit commissioning phase ended on 28
January 2019, heralding the mission’s science phase.

A public homepage maintained by NASA / JPL provides plenty of interesting information,
figures and links concerning the satellites, the mission, as well as climate research applications
[JPL]. In particular, the homepage provides a downloadable 3D model of the satellites. Regular
newsletters with GFO related news are made public via [Lan+]. These newsletters provide
science related updates including detailed reports on mission operations and data availability.

1.1.3 LRI tilt-to-length coupling

The precision of the biased range measured by the LRI is limited at high frequencies by the laser
frequency noise (LFN), down to less than 1 nm/

√
Hz for Fourier frequencies above 200 mHz.

The frequency of the LRI laser is stabilized by an optical cavity. Since the LRI measures
distance variations via the Doppler shift due to the relative motion of the two S/C, laser
frequency jitter couples into the beatnote measurement of the interferometer. A posteriori, the
LFN in the LRI data cannot be mitigated further. In the Laser Interferometer Space Antenna
(LISA) mission, so-called time delay interferometry (TDI) will be used, which suppresses laser
frequency noise to a large extent, by linearly combining independent time-shifted Doppler
measurements in a certain way [TD20]. For future satellite geodesy missions with multi-
satellite formations, TDI may be utilized as well [Con+21].

Apart from the LFN, the other main noise source of the LRI is the so-called tilt-to-length
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(TTL) coupling, caused by S/C attitude jitter which couples into the measured range. It is
expected to limit the LRI accuracy at frequencies below 20 mHz. As opposed to the LFN,
the TTL coupling can in principle be estimated and subtracted from the measurements in
post-processing. The topic of study examined in this thesis is the error in the GFO LRI
measurements due to TTL coupling. This includes the investigation of

• the contribution of TTL coupling to the total LRI ranging error

• the different effects that cause TTL coupling in the LRI

• ways of mitigating TTL coupling in post-processing, in particular by utilizing satellite
rotation maneuvers

In the following, an overview of the state of the art of this topic of study is presented, as well
as directly related topics.

1.2 State of the art

With the LRI, for the first time, distance variations between two satellites in space are being
measured using laser interferometry. Since the LRI is the first instrument of its kind, there
exist no in-situ studies of TTL coupling in inter-satellite laser interferometers yet. Thus,
an overview of the theoretical and experimental investigations about LRI TTL coupling is
given here, in Sec. 1.2, which have been carried out on ground prior to the launch of GFO.
Besides, some studies on adjacent subjects are highlighted, beginning with a recapitulation
of the general LRI performance and its contribution to geodesy up to now. Afterwards, an
outline of pre-flight studies on LRI TTL coupling is given. The focus in the last part of this
section lies on satellite rotation maneuvers, which can be utilized to estimate TTL coupling.

1.2.1 LRI performance and its scientific meaning

Since the LRI started to collect data, it has proven to be able to measure the same observable as
the KBR instrument, with lower noise at least at high frequencies. The ranging data contains
occasional phase jumps, which are modeled and subtracted, so that they do not influence the
performance of the instrument [Abi+19]. A first unpublished description of the phase jump
modeling was given in [Hei18]. In addition to the biased range, the LRI measures pitch and
yaw angles of the S/C with high precision, using the differential wavefront sensing (DWS)
technique and a fast steering mirror (FSM), demonstrating its usefulness, not only for keeping
the interferometer aligned, but also for attitude determination. Furthermore, the LRI has
shown that it can take measurements for many orbits without interruption. From June 2018
to May 2020, there have been 10 distinct periods during which the LRI was switched off for
longer than a day. Merely two of these downtimes were longer than 8 days, and those were due
to reasons unrelated to the LRI. By the time of writing, some working groups produce gravity
fields using LRI data on a regular basis. The gravity fields that have been derived from LRI
data achieve at least the same accuracy as those derived from KBR data [Lan+20]. Hence, it
is likely that future satellite geodesy missions will utilize laser interferometry as the primary
SST technique, which the LRI was designed to demonstrate.

Although the LRI range has significantly lower noise than the KBR range, the improve-
ment in terms of the quality of gravity fields is at the moment still marginal, which does not
come unexpected [Fle+16]. There may be further improvements to come, after gaining more
experience with the LRI data, which is still new to the community. After all, each instrument
poses its own challenges for data processing. Regardless of that, the accuracy of GFR is cur-
rently mostly limited by factors other than the ranging precision. This is the main reason for
the low amount of improvement from KBR to LRI. For future satellite geodesy missions which
are based on SST, this is likely going to change.



6 CHAPTER 1. INTRODUCTION

For instance, short term mass variations in the atmosphere or the oceans are undersampled
by the satellite measurements. Hence, such high frequency signals become indistinguishable
from lower frequency components, an effect called temporal aliasing. This is one of the most
challenging error sources in the processing of GRACE and GFO data. Scientists attempt to
dealias the data, for example using the AOD1B data product [Dob+13; Fle15]. There are
limitations e.g. due to uncertainties in the available atmospheric data, which the AOD1B
product is based on. Possible paths towards mitigating aliasing in future geodesy missions are
investigated for example in [Dob+16] and [DP17].

Another major error source for GFR is the performance of the accelerometers at low fre-
quencies. The GFO satellites are equipped with improved versions of the Super STAR (Space
Three-axis Accelerometer for Research) accelerometers, which were operated on GRACE
[TFW99; Tou+99; Tou+12], in order to remove the nongravitational acceleration contribu-
tions from the range when fitting the gravity field model [Tap+04b]. The linear accelerations
measured by the Super STAR have a specified resolution of 10−10 m/s2/

√
Hz for Fourier fre-

quencies between 0.1 and 100 mHz [Tou+12]. Lowering the impact of accelerometer data
noise is, hopefully, merely a matter of time, as better space qualified accelerometers are being
developed [Chr+15; Chr+19]. A gravitational reference sensor for future geodesy satellite
missions is presented in [Alv+21], which could potentially significantly improve the precision
of measuring nongravitational accelerations. For GRACE and GFO, not only the noise of the
instrument, but also disturbing signals within the accelerometer data influence the quality of
gravity field solutions. Several types of artifacts in the accelerometer data have been identified,
studied and modeled [FBT08; PFS12; Pet14; KM16]. To this day, 4 years after the end of
the lifetime of GRACE, there is still room left for improving the data. Moreover, superior
processing methods may yield further improvements of gravity field solutions [PP19].

Different concepts for future gravity missions have been studied extensively [Ces+10;
Sil+12; WNL12; Pan+13; CS13; GN14; Mül17; Els+14]. A promising satellite constellation,
consisting of two GRACE-type pairs utilizing two different orbit inclinations, is the so-called
Bender-type constellation [BWN08], however, other concepts are certainly possible. As a rep-
resentative for the variety of different potential mission concepts, in this thesis, the common
term Next Generation Gravity Mission (NGGM) is used. Such mission studies are typically
presuming the utilization of inter-satellite laser interferometry.

Apart from NGGM, there are other potential applications of laser interferometry in space,
e.g. in the field of gravitational wave research. For instance, the planned space-borne gravi-
tational wave detector LISA [Dan+93; Jen09; Ama+17] will also apply inter-satellite laser in-
terferometry, with much stricter requirements on the ranging noise. LISA is currently planned
for launch in the 2030’s. A pathfinder mission called LISA Pathfinder (LPF) [Bra+04; MVa08]
has been very successful in demonstrating key LISA technologies in free space [Arm16]. Since
the main science instrument on both missions is also a laser interferometer, TTL coupling plays
an important role for LPF [Wa17], as well as for LISA [Trö+18; Sch17; Sch+15b; Sch+16;
Chw+20]. For the sake of completeness, the two Chinese LISA-type mission designs should
be mentioned, called TianQin [Luo+16] and Taiji [HW17], which are currently also in the
planning process, in parallel to LISA.

It is thus important to study the LRI, its noise and error sources, and it is essential to
contribute to even higher precision laser ranging instruments in the future. A recent study
suggests that even GFO itself, or similar NGGM missions, may theoretically be applied to
gravitational wave astronomy [Ros+20], although it is unlikely that gravitational waves can
ever be detected by the LRI, since the instrument was not designed for this purpose. With
only a single arm, which is much shorter than each of the three arms of LISA, the LRI does
not reach the sensitivity to enable it to detect gravitational waves from any expected source.
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1.2.2 Pre-flight studies of TTL coupling in the LRI

A key component of the LRI is the so-called triple mirror assembly (TMA). On each of the
two S/C, a TMA is responsible for reflecting the local laser light back in the direction of
the received beam. It consists of three mirrors in a corner cube reflector arrangement. The
three mirror planes are pairwise perpendicular, and their virtual intersection point is called
the vertex point (VP). Loosely speaking, the LRI measures the distance between the two VPs,
one at each S/C, up to a constant offset due to integer phase ambiguity and other uncalibrated
delays and offsets. Consequently, due to the special properties of a corner cube, the measured
range is invariant under small satellite rotations around the VPs. On each S/C, the VP is
placed in the satellite CoM, to the accuracy of integration tolerances. Due to residual offsets
between the VPs and CoMs of the order of 100 µm, there is a difference between the distance
from VP to VP on the one hand, and the distance from CoM to CoM on the other hand. This
difference is varying, when the S/C rotate around their CoMs. Hence, S/C attitude variations
cause an error in the measured biased range. This effect, in this thesis referred to as the TMA
vertex point (TMAVP) effect, is assumed to be the main cause of TTL coupling in the LRI.

The TTL coupling of the LRI is already minimized by design, e.g. by careful placement
and alignment of the TMA, i.e. such that the virtual VP is colocated with the satellite CoM.
Clearly, TTL coupling can never be avoided completely. Some mechanisms, both geometrical
and optical, of TTL coupling in satellite laser interferometers are investigated in [Sch17]. There
it is further studied how a part of the TTL coupling can be suppressed in the first place, e.g.
by the use of a well designed imaging system, which is also utilized in the LRI. In the following,
some studies are highlighted which have been carried out before the launch of GFO and which
are concerned, among other topics, with the TTL coupling of the GFO LRI.

In a paper by Sheard et al. [She+12], the top-level architecture of the LRI is presented
in a compact form. An overview of the working principle, key components and the noise
sources of the LRI is given. Pre-flight requirements are discussed as well. In particular, the
TMAVP effect is mentioned and a linearized equation for the resulting pathlength error is
given, depending on the S/C pitch and yaw angles, and on the offset between the TMA VP
and the accelerometer (ACC) reference point (RP), which nominally coincides with the S/C
CoM.

A detailed study of the LRI based on simulations is given in [Mül13]. The measurement
equations for the LRI are derived, and from that the LFN, which scales with the absolute
inter-satellite distance. The TMAVP effect is also stated to be the largest TTL effect in the
LRI, and a second order formula of the resulting pathlength error is given. Moreover, the
following TTL contributors are identified and analyzed in [Mül13]:

1. The optical pathlength change due to the beamsplitter on each optical bench is derived.
Since it depends on the incident beam angle, this is a TTL effect. It is shown that
the linear coupling is cancelled by the utilization of a second beam splitter, a so-called
compensation plate. The magnitude of the residual coupling, which is quadratic in the
pitch and yaw angles, is estimated.

2. The center of phase front curvature of the transmitted laser beam is not colocated with
the center of beam rotation. Due to this, S/C attitude variations yield variations of the
phase detected at the distant S/C. A formula is given, which comprises only second order
pitch and yaw terms, i.e. there is no linear coupling and no roll coupling.

3. So-called off-racetrack pathlength noise, i.e. ranging noise which originates from light
travel paths outside the LRI racetrack, otherwise called stray light or ghost beams, is
discussed. Changes in those paths may occur, e.g., due to thermal expansion or due to
steering mirror motion. The contributions of such pathlength changes are likely to be
negligible.
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4. For many studies, it is assumed that the TMA itself is perfectly aligned, i.e. the angle
between each pair of mirrors is exactly 90 ◦. A more general pathlength coupling formula
for S/C rotations, in case of a possibly misaligned TMA, is derived. The formula is given
in terms of pointing angles, VP offset, and the relative angles between the TMA mirror
planes called dihedral angles.

In [Mül17], the TMAVP effect is explained in detail. A second order formula for the TTL
coupling due to this effect is derived, which is compatible with the formulas given in [She+12]
and in [Mül13]. Ideas how to calibrate TTL were mentioned and rough estimates on the esti-
mation accuracy were given. It is concluded that TTL calibration for the LRI is theoretically
possible using calibration signals in form of periodic pointing variations. However, it is stated
that the feasibility of producing such a pointing variation requires further investigation. It is
also shown that the LRI RP is in fact the TMA VP, which means that the LRI effectively
measures distance changes between the two VPs, assuming a perfect placement and alignment
of all components. Moreover, in [Mül17], it is revisited how S/C rotations couple into the
pathlength in case of misaligned TMA mirrors. According to the given formula, the addi-
tional TTL coupling due to TMA misalignments, i.e. on top of the TMAVP effect, is below
500 mm rad−1 per rad of mirror misalignment. I.e., if all mirrors have a misalignment of less
than 20 µrad, the additional TTL coupling is less than 10 µm rad−1.

In [Sch15], the TMA is extensively studied. Originally, the VP was defined for an ideal
TMA to be the point where the three mirror planes intersect. If these planes are not mutually
perpendicular, such a point does not exist. Thus, the so-called point of minimal coupling
(PMC) is defined and studied, which should be referred to instead of the VP. As the name
suggests, it is the point which yields the least pathlength coupling, when the TMA is rotated
around that point. Different types of TMA units are studied experimentally, with a focus on
TTL coupling and the PMC. Furthermore, the suppression of the linear TTL coupling of the
beamsplitter by using a compensation plate is experimentally verified.

As suggested for example in [Mül17], one way of estimating TTL coupling may be by
means of satellite rotation maneuvers. In the following it is illustrated which kinds of rotation
maneuvers were already utilized for other purposes in the GRACE mission.

1.2.3 Satellite rotation maneuvers

Among other instruments, each of the GFO satellites carries an accelerometer (ACC), in order
to measure the nongravitational accelerations, and remove its contributions from the range
in the process of GFR [Tap+04b]. To ensure the correct measurement of accelerations, the
CoM of the proof mass of this ACC, called the ACC reference point (RP), must be colocated
with the S/C CoM. Due to residual offsets, S/C rotations couple into the measured linear
accelerations. For the purpose of estimating this offset, so-called center-of-mass calibration
(CMC) maneuvers are scheduled regularly. The satellites are commanded to perform small
periodic rotations, individually, around one axis at a time. By fitting a model to the linear
accelerations that are induced by these rotations, the CoM positions of the GFO satellites
w.r.t. the ACC RP can be estimated [Wan03; Wan+10]. Occasionally, the S/C CoM are
shifted back towards the ACC RP by moving trim masses on the satellites, a procedure which
is called mass trim maneuver.

The CMC maneuvers, as well as techniques of estimating the ACC RP offset, are described
in [Wan00; Wan03; Wan+10]. The torque required to perform the S/C rotations is obtained
by using magnetic torque rods (MTR). Three of these rods per S/C produce a magnetic dipole
moment, which produces a torque in combination with the surrounding magnetic field of the
Earth. The maneuvers have a duration of 180 seconds, a signal period of 12 seconds, and can
achieve angular acceleration amplitudes of about 20, 4, and 2 µrad s−2, for rotations in the
roll, pitch, and yaw axes, respectively [Wan+10]. Moreover, a S/C state simulation using the
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dynamics equations of motion, in particular simulation of the S/C attitude state, is described
therein.

The rectangular torque pattern of the CMC maneuvers, with a period of 12 seconds, yields
a pointing angle stimulus at a frequency of 83.3̄ mHz. However, whether these maneuvers can
be used for the LRI TTL calibration as well, is yet to be examined. A further open question is,
what maneuver configuration would be ideal for that purpose. As will become clear within this
thesis, the CMC maneuvers are not too far away from what would be ideal for a calibration
of LRI TTL coupling.

There is one other rotation maneuver which is exercised in the GRACE and GFO missions.
The KBR data contains an error, which is also a kind of TTL error, since it can also be modeled
as a function of the S/C pointing angles. It is caused by an offset between the S/C CoM and
the antenna phase center (APC), the RP of the KBR range. A correction term is provided as
part of the Level-1B KBR data product, called antenna offset correction (AOC) [Hor+11]. To
this end, the true APC position must be estimated by once again utilizing satellite rotation
maneuvers. These maneuvers are also described in [Wan03], and they differ significantly from
the CMC maneuvers. The angles are oscillating with a much larger amplitude, around a
nonzero initial offset value. This starting point of the maneuver is ± 2 ◦ and the oscillation
amplitude is 1 ◦, which is too large for the LRI to cope with. It cannot be operated during
a KBR calibration maneuver. Therefore, KBR calibration maneuvers can be excluded right
away, when searching for a calibration maneuver for the LRI.

Based on the discussion of the state of the art above, the main objectives of the study
presented in this thesis are formulated below.

1.3 Objectives

To summarize the setting that has been drawn up to this point, TTL is a potential issue
for all laser interferometers, including NGGM, LPF, LISA, and the LRI, whereas the latter
is mandated to pave the way for other space interferometers to follow. Though the full po-
tential of the LRI cannot yet be exploited for the purpose of GFR, due to other dominating
error sources, the LRI has already proven to be very valuable. E.g., the LRI data is used
for the characterization of disturbances caused by thruster firings, as well as the monitoring
of micrometeorite impacts on the outer satellite surfaces, to mention just a few. Further im-
provement of the ranging precision is expected to be of great scientific benefit in the future. As
will be shown within this thesis, it is possible to estimate the LRI TTL coupling by utilizing
satellite rotation maneuvers, yet no detailed studies of such a procedure have been carried
out before the launch of GFO. Based on this, the goals of this research are formulated in the
following.

A way to estimate the TTL error shall be identified, in order to assess its impact on the
overall performance of the instrument. In particular, a first milestone is reached if it can be
shown that the pre-flight requirements on the TTL coupling are met. In case the spectrum of
the measured LRI range is dominated by TTL in any frequency band, it shall be attempted
to improve the data by subtracting the previously estimated TTL error.

The CMC maneuvers and their suitability for the estimation of LRI TTL coupling shall be
tested. Apart from that, it shall be explored how to design a dedicated rotation maneuver for
the purpose of estimating TTL coupling. What are the defining maneuver parameters, and
what parameters are optimal for the LRI? Other strategies of TTL estimation, apart from
using rotation maneuvers, shall be assessed and compared.

Estimating the TTL error in any case requires the handling of ranging data, as well as
inter-satellite pointing data. Developing the necessary processing algorithms is also part of
the work presented in this thesis. Pointing angles shall be computed from various attitude
sensors, in order to analyze their noise behavior. In particular, it shall be confirmed that
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pitch and yaw angles with high accuracy can be obtained from LRI steering mirror data,
which enables the LRI to be calibrated using exclusively its own data. Once the required
data processing infrastructure is established, a suitable parameter estimation method must be
identified. Different methods, as well as their strengths and weaknesses shall be investigated.

Past studies have named a few possible TTL effects, with the TMAVP effect as the premier
one. These studies shall be revisited. In particular, it shall be investigated whether the
TMAVP effect is indeed the dominating TTL effect in the LRI. In case this assumption proves
to be correct, it should be possible to use the estimated coupling factors to derive the S/C CoM
positions relative to the LRI RP. This derivation shall be done, if possible, yielding additional
useful information for the GFO mission.

When pursuing the above mentioned goals, any unexpected artifacts in the LRI data or
in the auxiliary data, which constitute obstacles on the way to TTL estimation, shall be
studied and, if possible, removed or mitigated. Any lessons learnt along the way shall be
formulated, with regard to future inter-satellite laser interferometers, as these will likely face
similar challenges. All the previously mentioned steps shall be archived in this thesis with
much detail, such that they are quickly reproducible and easily adaptable to a different mission
scenario.

1.4 Structure

The structure of this thesis is as follows. Chapter 2 is an introduction to S/C attitude. Within
this work, the LRI TTL error is expressed in terms of S/C pointing angles, called roll, pitch,
and yaw, which describe the deviation of a satellite’s attitude w.r.t. a reference attitude.
The definition of these pointing angles and a derivation of the formulas by which they can be
calculated is given in Sec. 2.1. This includes a summary of the mathematical formalisms of S/C
attitude description. There are different types of instruments which can provide information
about the attitude of a S/C. An overview of such instruments, called attitude sensors, and
how to utilize their data, is given in Sec. 2.2. The third related topic which is relevant for the
studies presented in this thesis is attitude control. Several means of attitude actuation are
discussed in Sec. 2.3, not restricted to but with a focus on GFO attitude control.

Once the pointing angles are defined, one is able to describe the TTL error in the LRI
measurements. This shall be done in Chap. 3. In Sec. 3.1, an introduction to the working
principle of the LRI is given, as well as a description of those of its components, which are
relevant for this study. Then, different effects that can cause TTL coupling in the LRI are
discussed in Sec. 3.2, and each of them is given as a function of the pointing angles. Based
on this, a general strategy of estimating TTL coupling in the LRI is explained in Sec. 3.3. In
particular, a linear model of the LRI TTL error is developed. This model is later to be fitted
to the LRI range together with the pointing angles.

The estimation strategy may require to intentionally evoke a TTL error by exciting the
pointing angles, i.e. creating a stimulus. Such can be achieved by means of satellite rotation
maneuvers, which is the topic of Chap. 4. There exists already one procedure to produce such
a stimulus, which is regularly carried out on GFO. This procedure, called CMC maneuver, is
presented in Sec. 4.1. Since the original purpose of CMC maneuvers is unrelated to the LRI,
it is likely that dedicated TTL calibration maneuvers would yield better estimation results.
With this in mind, it shall be investigated how such maneuvers can be designed, for GFO or
similar missions in the future. To this end, a simulation technique is developed in Sec. 4.2.
Afterwards, in Sec. 4.3, a design strategy with the specific target of optimizing TTL estimation
is discussed. While the focus lies on maneuvers where the stimulus is produced exclusively via
so-called MTRs, a potential alternative is discussed as well, namely the use of attitude control
thrusters. In the end of the chapter, a selection of simulation cases is presented and compared
to the CMC maneuvers.
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In the chapters mentioned so far, the capability of deriving pointing angles from several
attitude sensors has been developed, the LRI TTL model has been given as a function of the
pointing angles, and satellite rotation maneuvers have been studied. These form the basis for
the TTL estimation with in-flight GFO data, which is the topic of Chap. 5. In particular,
the remaining steps of data processing are discussed in Sec. 5.1, including data filtering and
synchronization of different data streams. In Sec. 5.2, different parameter estimation methods
are presented and the relevant formulas are derived in detail. The results, i.e. estimated
coupling factors, are shown in Sec. 5.3, where also the performance of the individual estimation
methods is evaluated. Moreover, estimates of the offsets between S/C CoMs and the LRI RPs
are derived. Afterwards, the results are interpreted and some conclusions are drawn. In
Sec. 5.4, some analysis is presented investigating the subtraction of TTL from the LRI range,
not only with the goal of mitigating the TTL error and improving the LRI data, but also as
a confirmation of the estimation results.

In Chap. 6, the findings of this thesis are summarized. Conclusions are drawn and a
prospect of future research is provided.



Chapter 2

Spacecraft attitude

In this thesis, in the context of the LRI, TTL coupling is referred to as an error in the measured
range, which can be described as a function of the so-called pointing angles of the two GFO
satellites. This function is derived in Chap. 3. However, the first step towards estimating the
LRI TTL error is to develop the formalism which is necessary to describe S/C attitude. This
chapter is meant to provide a detailed description of this formalism, and to give an overview
of some related topics, as a basis for the main part of this thesis.

Given the positions of the two GFO satellites, each of them has a uniquely defined target
attitude, i.e. a desired orientation. It is given in terms of a coordinate frame, which is in
one axis aligned with the line-of-sight (LoS), the line connecting the two S/C CoMs, which
should coincide with the optical axis of the instrument. Pointing angles describe the deviation
of a satellite’s attitude from this nominal attitude. They can either be measured directly, or
derived from other measurements. In the latter case, the pointing angles can be obtained by
combining information on the S/C positions with information on their attitudes w.r.t. inertial
space.

There are different ways to describe the attitude of a rigid object such as a satellite.
In general, it is done by choosing two coordinate frames, one fixed to the object and one
which serves as a reference. The attitude of the object may then be defined by the rotation
which transforms between these two frames. The classic form of representing 3D rotations are
orthogonal 3x3 matrices, however, there are other possibilities. Some of these are listed and
discussed in Sec. 2.1, after introducing the coordinate frames which are relevant for this thesis.
In particular, the quaternion number system is introduced. These numbers, in this context
called attitude quaternions, constitute a useful method to represent 3D rotations. Moreover,
inter-satellite pointing angles are defined for the GFO satellites, and it is elaborated how they
can be computed.

Section 2.2 shall give an overview of S/C attitude determination. GFO hosts different
science instruments, whose measurements can be used to derive the attitude of a satellite.
These attitude sensors are discussed, with emphasis on the measured observables rather than
the measurement principles. For each sensor, it is described how its measurement data can
be used to determine the S/C attitude, and subsequently the pointing angles, defined in the
preceding section. Furthermore, an overview of some attitude sensors is given, which are not
incorporated in GFO.

In Sec. 2.3, the attitude control system (ACS) of GFO is described. The attitude control
mechanisms which are used for GFO are magnetic torque rods (MTR) and cold gas thrusters.
The working principles behind these mechanisms are sketched. Again, for completeness, other
possible ways of attitude control are given and described briefly.
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2.1 Attitude description

In general, the orientation or attitude of an object must be described with respect to a reference
coordinate frame. Once such a reference is given, the objects attitude is fully defined by a
single rotation around a fixed, uniquely determined axis. There are different ways in which
such a rotation can be represented. The most common ways, also depending on the type of
application, are using either rotation matrices, attitude quaternions, or Euler angles.

By Euler’s rotation theorem, any volume- and orientation-preserving transformation of R3,
which has a fixed point, is equivalent to a single rotation around that fixed point. For some
theoretical background, the reader is referred to [GPS02]. In particular, the composition of
any number of rotations is again a rotation. Hence, the set of 3D rotations has the structure
of a group. In fact, this group is called SO(3), and it has dimension 3. Thus, a minimum
of three coordinates is required to represent a rotation. However, for any such representation
using no more than three coordinates, there is at least one orientation where the coordinates
are singular. Hence, it is most common to use a form of representation which is built on at
least four independent coordinates. Note also that a three-dimensional matrix R is a rotation
if and only if it fulfills

RRT = RTR = I,

detR = +1,
(2.1)

with the identity matrix I.
The coordinate frames which are required to establish the formalism for the estimation of

LRI TTL coupling are defined in Sec. 2.1.1. The quaternion number system is introduced in
Sec. 2.1.2. For the purpose of TTL analysis, mainly so-called inter-satellite pointing angles
are used, which are the Euler angles of the rotation between the satellite frame (SF) and the
line-of-sight frame (LOSF). The exact definition of these pointing angles, known as roll, pitch,
and yaw, is given in Sec. 2.1.3.

2.1.1 Coordinate frames

In this section, the coordinate frames which are relevant for the purpose of this thesis are
defined. All described frames are right-handed orthonormal systems. Some authors may
use different names for these frames, or they may define them according to slightly different
conventions. The descriptions given here are used for the analysis presented in this thesis.

Earth-Centered Inertial (ECI) frame

The Earth-centered inertial (ECI) frame is a geocentric inertial coordinate system. The origin
is defined to be the CoM of the Earth, according to the World Geodetic System 1984 (WGS84),
identical to the origin of the Earth-centered Earth-fixed (ECEF) frame. The axes of the ECI
frame are defined according to the International Celestial Reference System (ICRS) [PL10].
This frame is usually used as a reference for the attitude of a S/C. I.e., the attitude of the S/C
is defined by the rotation between ECI and SF, the latter of which is defined further below.

Earth-Centered Earth-Fixed (ECEF) frame

The Earth-centered Earth-fixed (ECEF) frame is a geocentric coordinate system, which is
fixed to the Earth, and hence rotating w.r.t. inertial space. The origin of the ECEF is defined
to be the CoM of the Earth. Its axes are fixed to the surface of the Earth, hence the name
Earth-Fixed. Within this thesis, it is referred to the International Terrestrial Reference System
(ITRS), with its most recent realization of the origin and axes, the ITRF2014 [Alt+16].
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In the ITRS, the z axis of the ECEF is the mean rotation axis of the Earth, directed towards
the geodetic north pole, which is defined by the International Earth Rotation and Reference
Systems Service (IERS). The geodetic north pole is also called IERS Reference Pole (IRP),
and it differs from the magnetic north pole. The x axis is aligned with the prime meridian,
also called IERS Reference Median (IRM), maintained by IERS. The y axis completes the
right-handed system, and is thus pointing to the east of the IRM.

For one thing, the computation of atmospheric drag forces is carried out in the ECEF, cf.
Sec. 4.2.2. Also, the ECEF is used for the S/C positions provided in the GNV1B data product
[Wen+19], which also adopts the ITRF2014 realization, see also Sec. 5.1.1.

For several purposes throughout this thesis, the S/C positions are required in ECI rather
than ECEF. An implementation of the rotation between the ECI and ECEF frames is available
within the Matlab software, with the function dcmeci2ecef. The exact computation requires so-
called Earth orientation parameters, which are provided by IERS for public access. However,
GFO satellite positions are also reported in the ECI frame, in the GNI1B data product.

Satellite Frame (SF) and Science Reference Frame (SRF)

The definition of the satellite frame (SF) is given in [Wen+19]. Its origin is defined to be
the CoM of the accelerometer proof mass. The x axis of the SF is called the roll axis, which
is defined by the line joining the origin and the nominal reference point (RP) of the KBR
instrument. This KBR RP is called antenna phase center, see also App. C. The y- and z-axes
are called pitch axis and yaw axis, respectively. Figure 2.1 shows the satellite body fixed
frames which are used for GFO.

Figure 2.1: GFO satellite body fixed frames: SF, science reference frame (SRF), accelerometer
frame (AF). Image adopted from [Wen+19].

In this thesis, the SF is used to describe the attitude of the S/C. Generally, satellite body
fixed frames are required to interpret the data measured by the different instruments onboard
a S/C. For GFO, most official Level-1 data products provided by the Science Data System
(SDS) are referring to the SRF, which has the same origin and axes as the SF [Wen+19].

It shall be remarked here that the LRI measures inter-satellite pointing angles in addition
to the range, see Secs. 2.1.3 and 2.2.1. More precisely, it measures pitch and yaw angles
with respect to the LRI optical axis. This optical axis can be defined in two ways, which
are nominally identical. These definitions refer to the fast steering mirror (FSM) and the
differential wavefront sensing (DWS) of the LRI beam steering mechanism, which is described
in Sec. 3.1.4. Then, the optical axis can be defined either by the beam axis of the outgoing
beam when the FSM is centered, or by the beam axis of the received beam when the FSM is
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centered and the DWS error signal is zero. However, with both these definitions, the optical
axis nominally coincides with the SF x axis. The potential residual deviation between optical
axis and SF x axis is assumed to be small and static. Therefore, in this thesis, the SF x axis
will be referred to instead of the LRI optical axis.

The accelerometer frame (AF) is introduced below.

Accelerometer Frame (AF)

A third relevant body fixed reference frame is the accelerometer frame (AF). It has the same
origin as SF and SRF, and nominally differs from those frames merely by a permutation
of the axes, cf. Fig. 2.1. The Level-1 data product ACC1A, containing the accelerometer
measurements, is given in this reference frame, whereas the ACC1B data product is given in
the SRF.

Vectors can be rotated from the AF to the SF by multiplication from the left with the
matrix

RSF
AF =

0 0 1
1 0 0
0 1 0

 . (2.2)

Line-of-sight frame (LOSF)

The line-of-sight frame (LOSF) of a GFO satellite is defined w.r.t. the other satellite. Within
this thesis, the following definition of the LOSF is used. The origin is the CoM of the S/C. Let
~p denote the position of the S/C, given in ECI. Denoting by ~pother the position of the other
S/C, let the LOSF axes be defined as

~XLOSF =
~pother − ~p
|~pother − ~p|

~YLOSF =
~XLOSF × ~p
| ~XLOSF × ~p|

~ZLOSF = ~XLOSF × ~YLOSF,

with |XLOSF| = |YLOSF| = |ZLOSF| = 1. Here × denotes the cross product. Then, the matrix
RLOSF

ECI , transforming a vector from ECI representation to LOSF representation, is obtained by

RLOSF
ECI =

 ~XT
LOSF
~Y T

LOSF
~ZTLOSF

 (2.3)

Within this thesis, this frame is used as a reference for S/C pointing. That is, in the
absence of S/C internal misalignments, it is said that the S/C has perfect pointing, or zero

pointing deviation, if the LOSF aligns perfectly with the SF. Note further that ~XLOSF is
pointing roughly in flight direction for the trailing satellite, while it is pointing backwards for
the leading satellite.

K-frame (KF)

The KBR reference frame is called the K-frame (KF). Its origin is chosen to be the S/C CoM.
The axes are defined, according to [Bet12], by

~XKF =
~v

|~v|
, (2.4)
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where ~v is the vector pointing from the CoM to the KBR ranging reference point (RP), i.e.
the antenna phase center (APC). The z axis of the KF is defined via

~ZKF =
~XKF × ~ySF

| ~XKF × ~YSF|
, (2.5)

and the y axis completes the right handed triad:

~YKF = ~ZKF × ~XKF. (2.6)

In order to realize this frame, the APC position, i.e. ~v, has to be determined. This is done
at first via calibration on ground, and during the mission via the KBR calibration maneuvers,
see also App. C.

North-East-Down (NED) frame

In the studies presented in this thesis, the north-east-down (NED) frame is merely used for
the computation of the Earth’s magnetic field, i.e. for the implementation of the International
Geomagnetic Reference Field (12th generation) (IGRF12) model, see Sec. 4.2.2. Its axes are
north, east, and down, and the origin is taken to be the S/C CoM.

The matrix rotating vectors from the ECEF frame to the NED frame is given by [SL92]

RNED
ECEF =

− sin(α) cos(β) − sin(α) sin(β) cos(α)
− sin(β) cos(β) 0

− cos(α) cos(β) − cos(α) sin(β) − sin(α)

 , (2.7)

with α and β denoting latitude and longitude, respectively, expressed in units of rad. Matlab
provides implementations of the coordinate transformations between NED and ECEF with
the functions ecef2ned and ned2ecef.

Latitude, Longitude, Altitude (LLA)

Although not a Euclidean frame, the commonly known latitude, longitude, altitude (LLA)
coordinates are useful on or above the surface of the Earth. In this thesis, it will be used for
illustration purposes, whenever it is beneficial to refer some data to geographic locations. The
reference meridian for the longitude is taken to be the international prime meridian, i.e. the
meridian of the British Royal Observatory in Greenwich, in southeast London, England. For
the data analysis presented here, the Matlab functions ecef2lla and lla2ecef are used, in order
to transform between ECEF and LLA coordinates.

2.1.2 Attitude quaternions

It has been mentioned in the beginning of Sec. 2.1 that an object’s attitude is described
by a rotation. Here one way of representing rotations is introduced which is making use of
quaternion numbers. Other methods to represent rotations are rotation matrices or Euler
angles. Matrices and angles may be more intuitive, however, quaternions have proven to be
very well suited for describing and processing the attitude of a S/C. A good reference for
S/C attitude determination is [Wer78]. A more recent reference is [FB16]. An overview of
developments in the field of quaternion based attitude determination is given in [Yan12]. In the
following, the quaternion number system is presented, as well as how quaternions can describe
rotations, how quaternions can be derived from rotation matrices, and how quaternions can
be obtained via S/C state integration.
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Quaternion number system

Quaternions are an extension of the complex number system. The complex numbers C are
defined as R2, equipped with a complex structure i, which fulfills i2 = −1. Similarly, quater-
nions are defined as R4, together with an additional algebraic structure. Instead of one real
and one imaginary part, a quaternion has one real and three imaginary parts. A quaternion q
can be written as

q = q0 + iq1 + jq2 + kq3, (2.8)

with q0, . . . , q3 ∈ R.
Like for complex numbers, addition and scalar multiplication are inherited from R4, and

the multiplication operation is fully defined by requiring

i2 = j2 = k2 = ijk = −1. (2.9)

The product of two quaternions p and q is then given by

p · q = (p0 + ip1 + jp2 + kp3) · (q0 + iq1 + jq2 + kq3)

= p0q0 − p1q1 − p2q2 − p3q3

+ i · (p0q1 + p1q0 + p2q3 − p3q2)

+ j · (p0q2 − p1q3 + p2q0 + p3q1)

+ k · (p0q3 + p1q2 − p2q1 + p3q0).

(2.10)

Note that this multiplication of two quaternions is not commutative.
In analogy with complex numbers, one can assign to a quaternion q = q0 + iq1 + jq2 + kq3

its conjugate, q∗:
q∗ = q0 − iq1 − jq2 − kq3. (2.11)

The norm ‖q‖ of a quaternion is given by

‖q‖ =
√
qq∗ =

√
q∗q =

√
q2

0 + q2
1 + q2

2 + q2
3. (2.12)

Every nonzero quaternion has an inverse, also called the reciprocal quaternion, defined to
be

q−1 =
q∗

‖q‖2
, (2.13)

such that qq−1 = q−1q = 1. A quaternion with norm 1 is called a unit quaternion. For any
unit quaternion, one has q−1 = q∗.

The quaternion number system is often denoted by H, after William Rowan Hamilton, who
first described quaternions. In the following section, it is illustrated how quaternions provide
a formalism to describe three-dimensional rotations.

Rotations described by quaternions

Similar to complex numbers, quaternions are related to geometry, in the sense that they provide
an alternative representation of three-dimensional rotations. Consequently, quaternions can
describe the attitude of an object, by describing the rotation between a body fixed frame and
a reference frame. This is elaborated in the following.

It will be beneficial to identify three-dimensional vectors with imaginary quaternions. More
precisely, if ~p is a vector, assign to it an imaginary quaternion Q(~p):

~p =

p1

p2

p3

 7−→ Q(~p) = 0 + ip1 + jp2 + kp3.
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Reversely, denote by V(q) the vector obtained by taking the imaginary components of a quater-
nion q as vector components:

q = q0 + iq1 + jq2 + kq3 7−→ V(q) =

q1

q2

q3

 .

In this manner, one can switch from vectors to quaternions and back.
Now, let R be a rotation matrix, which describes a rotation through angle ϕ around an

axis which is given by a normalized vector ~e = (e1, e2, e3)T , i.e. ‖~e‖ = 1. Let further ~p ∈ R3 be
any vector, and let ~r = R~p denote the rotated vector. From ϕ and ~e, construct a quaternion
qR:

qR = cos
(ϕ

2

)
+ (ie1 + je2 + ke3) · sin

(ϕ
2

)
.

Then, with the notations given above, one has

~r = V(qRQ(~p)q−1
R ). (2.14)

That is, multiplication by the matrix R is equivalent to conjugation by qR. This can be proven
by rearranging the expression qRQ(~p)q−1

R and by using Rodrigues’ rotation formula [FB16].
Note also that qR is by construction a unit quaternion, i.e. has norm ‖qR‖ = 1, and thus
q−1
R = q∗R. Hence, formula (2.14) is equivalent to

~r = V(qRQ(~p)q∗R). (2.15)

As to the other direction, if a rotation is given as a quaternion number q = q0+iq1+jq2+kq3,
it can be easily seen that the rotation axis ~e and angle ϕ can be obtained back via

ϕ = 2 arccos(q0),

~e =
1

sin
(ϕ

2

)
q1

q2

q3

 ,

if ϕ 6= 2kπ, k ∈ Z. Note that if ϕ = 2kπ, R is simply the identity matrix and ~e is not
determined. The corresponding rotation matrix R is given by [Wer78]

R =

1− 2q2
2 − 2q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1− 2q2

1 − 2q2
3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) 1− 2q2
1 − 2q2

2

 . (2.16)

Recovering quaternions from rotation matrices

Assume now that a rotation is given as a matrix, not via angle and axis. One of the most
simple ways to recover a quaternion q = q0 + iq1 + jq2 + kq3 from a rotation matrix R is found
by taking a close look at Eq. (2.16). Denoting by tr the trace of a matrix, it is immediately seen
that trR+ 1 = 4−4(q2

1 + q2
2 + q2

3), and hence trR+ 1 = 4q2
0, since q is a unit quaternion, which

yields q0. Note that the quaternion −q describes the same rotation as q, see e.g. Eq. (2.15).
Thus, the positive root can be taken without loss of generality, when computing q0. Formulas
for q1, q2, q3 can be derived by forming linear combinations of the nondiagonal entries of R, cf.
Eq. (2.16). Introducing an auxiliary variable s, one has

q0 =
1

2

√
1 + trR,

s =
1

4q0
,

q1 = (R23 −R32) · s,
q2 = (R31 −R13) · s,
q3 = (R12 −R21) · s.

(2.17)
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Note that this computation is only numerically stable, as long as trR is greater than and
not close to −1, since otherwise the computation of the term denoted by s would require to
divide by a number close to zero. This problem can be circumvented by considering three
different cases, depending on which of the diagonal entries R11, R22, R33 is the largest. One
of the values q1, q2, q3 can be found by regarding linear combinations of the diagonal entries
of R. Formulas for the other quaternion components can be derived subsequently, again by
using Eq. (2.16). The pseudocode of a numerically stable implementation for recovering a
quaternion q = q0 + iq1 + jq2 + kq3 from a rotation matrix R is given in algorithm 1 below,
which was extracted from the method presented in [She78].

Algorithm 1: Conversion from rotation matrix to quaternion

if R(1, 1) ≥ R(2, 2) and R(1, 1) ≥ R(3, 3) then

r =
√

1 +R(1, 1)−R(2, 2)−R(3, 3);
s = 1/(2 · r);
q0 = (R(3, 2)−R(2, 3)) · s;
q1 = r/2;
q2 = (R(2, 1) +R(1, 2)) · s;
q3 = (R(1, 3) +R(3, 1)) · s;

else if R(2, 2) > R(1, 1) and R(2, 2) >= R(3, 3) then

r =
√

1 +R(2, 2)−R(1, 1)−R(3, 3);
s = 1/(2 · r);
q0 = (R(1, 3)−R(3, 1)) · s;
q1 = (R(1, 2) +R(2, 1)) · s;
q2 = r/2;
q3 = (R(3, 2) +R(2, 3)) · s;

else

r =
√

1 +R(3, 3)−R(1, 1)−R(2, 2);
s = 1/(2 · r);
q0 = (R(2, 1)−R(1, 2)) · s;
q1 = (R(1, 3) +R(3, 1)) · s;
q2 = (R(2, 3) +R(3, 2)) · s;
q3 = r/2;

end

It may occur that the rotation matrix R cannot be assumed to be free of errors, e.g. due
to propagation of numerical errors. In fact, R may not even be a rotation matrix, i.e. slightly
violating properties (2.1). In this case, the method introduced in [Bar00] can be used. It
requires to form a 4 × 4 matrix K, which depends on the matrix entries of R. Then, the
eigenvector corresponding to the largest eigenvalue of K is computed. If the input matrix
is a rotation matrix fulfilling equations (2.1), the largest eigenvalue is 1. In any case, the
eigenvector will be of the form (q0, q1, q2, q3), defining the quaternion q corresponding to the
rotation matrix, which is the closest orthogonal matrix to R w.r.t. the Euclidean norm on
R3×3.
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Quaternions from integration

For integrating angular velocities or angular accelerations in order to obtain quaternions, one
uses the 7-dimensional state vector ~Xatt:

~Xatt =

(
~Xq

~Xω

)
=

(
~q
~ω

)
(2.18)

with derivatives [Wer78]

~̇Xq =
1

2
Ω(~ω) · ~q (2.19)

and
~̇Xω = J−1(~τ − ~ω × (J~ω)). (2.20)

In this thesis, the state vector ~Xatt as defined in Eq. (2.18) will be called the attitude state
vector. The following notation is used in equations (2.18)-(2.20):

• q = (q0, q1, q2, q3)T are the attitude quaternions, interpreted as a 4-dimensional vector.
Here and throughout this thesis, q0 is the real part, describing the rotation angle, and
(q1, q2, q3)T is the imaginary part, describing the rotation axis.

• ~ω = (ωx, ωy, ωz)
T are the S/C angular velocities. They must be given in SF.

• Ω(~ω) is a skew-symmetric 4x4-matrix given by

Ω(~ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


Note that in the notation used here, the angle part is given in the first element of ~q, that
is, q0. Some authors define ~q such that the angle part is the fourth element. In that
case, the matrix Ω(~ω) must also be adjusted.

• ~τ = (τx, τy, τz)
T is the total torque acting on the satellite, given in SF.

• J denotes the satellite’s moment of inertia (MoI) tensor w.r.t. the S/C CoM, which is
given below.

Adopting SF coordinates, the MoI tensor w.r.t. the S/C CoM is defined as the matrix

J =

∫ (y2 + z2
)
dm −

∫
xydm −

∫
xzdm

−
∫
xydm

∫ (
x2 + z2

)
dm −

∫
yzdm

−
∫
xzdm −

∫
yzdm

∫ (
x2 + y2

)
dm


=

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 ,

(2.21)

where dm is the mass element with coordinates (x, y, z)T given in the SF. In [Wen+19], the
MoI matrices in SF for the GFO satellites are specified as

JGF1 =

110.49 −1.02 0.35
−1.02 580.67 0.03
0.35 0.03 649.69

 kg m2 (2.22)
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and

JGF2 =

109.64 −0.50 0.36
−0.50 579.76 0.06
0.36 0.06 648.80

 kg m2. (2.23)

For comparison, the MoI matrix for a GRACE satellite was approximately given by, cf.
[Wan03] p. 139,

JGRACE ≈

80 −3 −3
−3 420 −0.3
−3 −0.3 470

 kg m2.

Simulations published in [Woe21] are based on a diagonal MoI matrix for GRACE, with slightly
different values, JGRACE ≈ diag(104.3, 408.0, 473.4) kg m2.

2.1.3 Inter-satellite pointing angles

A measure of the deviation of the attitude of a GFO satellite from the nominal attitude can
be given by the three Euler angles of the rotation which transforms between the SF and the
LOSF, similar as for the GRACE satellites [BFK12]. In this context, the angles of rotation
around SF x, y, and z axes are called roll, pitch, and yaw angles, respectively. Here the SF x
axis is roughly aligned with the LoS, and the SF z axis is roughly the nadir direction. When
regarding the z direction as bottom and the x direction as forward, the SF y axis is pointing
to the right of the S/C. See Sec. 2.1.1 for the definition of the SF. Here the definition of the
inter-satellite pointing angles is stated, as it is used in this thesis, and it is described how these
angles can be computed from the rotation matrix RLOSF

SF .

Definition

The pointing angles used in this thesis are defined by

RLOSF
SF = Rz(θz)Ry(θy)Rx(θx), (2.24)

where Rx(θx) denotes a rotation around the x axis by an angle θx, which is called the roll
angle. Ry(θy) and Rz(θz) denote rotations around y and z axes, by angles θy and θz, called
pitch and yaw, respectively. RLOSF

SF denotes the rotation which transforms a vector given in SF
to its representation in LOSF, cf. Sec. 2.1.1. In general, if RLOSF

SF is replaced by an arbitrary
rotation matrix, the angles θx, θy and θz are called Euler angles. With this notation, the
pointing angles are defined as the Euler angles of the rotation RLOSF

SF . In the following, it is
described how the pointing angles are computed.

Computing Euler angles

By Euler’s theorem, any composition of rotations can be described by a single rotation. In
return, having fixed a coordinate system, a single rotation can also be described by the compo-
sition of three rotations, each around one of the coordinate axes. The corresponding rotation
angles are called Euler angles. These angles can be computed as follows.

Given a rotation matrix R, the relation between R and the Euler angles is given by

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 = RzRyRx, (2.25)

where Rx stands short for a (counter-clockwise) rotation around the x axis by an angle θx, i.e.

Rx =

1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 , (2.26)
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and accordingly for y and z. Written out explicitly, one has

R =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 ·
 cos(θy) 0 sin(θy)

0 1 0
− sin(θy) 0 cos(θy)

 ·
1 0 0

0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 . (2.27)

With the abbreviations sx = sin θx, cx = cos θx, etc., one obtains

R =

cz −sz 0
sz cz 0
0 0 1

 ·
 cy sxsy cxsy

0 cx −sx
−sy sxcy cxcy



=

cycz sxsycz − cxsz cxsycz + sxsz
cysz sxsysz + cxcz cxsysz − sxcz
−sy sxcy cxcy

 .

(2.28)

After this computation, it follows that

θx = arctan

(
R32

R33

)
,

θy = − arcsin (R31) ,

θz = arctan

(
R21

R11

)
.

(2.29)

The order of the composition of the rotations Rx, Ry, and Rz can be chosen differently.
There are indeed twelve different ways to define the order of rotation, involving either rotations
around two of the axes, or rotations around all three axes, see App. A.1. Due to this and other
ambiguities, such as the choice of the (direction of the) matrix R, there is the potential of
confusion concerning the sign of each pointing angle. Figure 2.2 illustrates how the sign of
each angle is defined, according to the convention applied throughout this thesis. Expressed in
yet another way, for any of the SF axes, imagine that the axis is pointing towards the observer.
Then, a positive angle is obtained by rotating the S/C counter-clockwise, from that point of
view.

In the case of GFO pointing angles, the matrix R is taken here to be RLOSF
SF . It can be

computed by
RLOSF

SF = RLOSF
ECI ·RECI

SF , (2.30)

where RECI
SF can be derived, for instance, from the S/C attitude quaternions provided as

SCA1B data, via Eq. (2.16). The matrix RLOSF
ECI can be derived using Eq. (2.3), for which

inertial positions of both S/C are needed as input.
In the following section, it is described how the S/C attitude can be determined, with a

focus on attitude sensors for the GFO mission. In particular, different types of sensors will
be presented, and it will be discussed how the pointing angles, roll, pitch, and yaw, can be
derived in each case.

2.2 Attitude determination

In the previous section, it was discussed how S/C attitude can be described. This section is
meant to give an overview of ways to determine S/C attitude, focusing on the GFO mission.
Various methods and sensors for attitude determination are presented, commencing with dedi-
cated attitude sensors in Sec. 2.2.1. A more general approach of attitude determination, known
as Wahba’s problem, is introduced in Sec. 2.2.2. In Sec. 2.2.3, a summary and comparison is
given.
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Figure 2.2: Sketch of the GFO satellites, indicating the definition of the signs of the pointing
angles. By the definition used in this thesis, the left satellite has a small positive yaw angle,
and the right satellite has a small positive pitch angle.

2.2.1 Attitude sensors

GFO hosts a variety of science instruments, whose measurements are related to the S/C
attitude, and thus the pointing angles, which is of interest in this thesis. Figures 2.3-2.5 depict
the accomodation of some of the GRACE instrumentation, which is similar for GFO. The
most relevant attitude sensors on board GFO are the LRI fast steering mirror (FSM), the star
camera assembly (SCA), the inertial measurement unit (IMU), and the accelerometer (ACC).
The FSM measures pitch and yaw angles directly, independent of other sensors, however,
it does not measure the roll angle. The IMU and the ACC measure angular velocities and
accelerations, respectively, both of which can be integrated to obtain attitude quaternions
w.r.t. inertial space. The SCA measures these quaternions directly, from which the matrix
RECI

SF can be derived. Once this matrix is obtained, pointing angles can be computed according
to Sec. 2.1.3, using GPS-derived S/C positions, as provided in the GNV1B data product.

In the following, it is described how to obtain inter-satellite pointing angles from the main
GFO attitude sensors mentioned above. Apart from these main sensors, measurements from
other instruments also contain information on the S/C attitude, when combined with a priori
knowledge, which is discussed afterwards. Finally, a comparison of the different attitude
sensors is made.

LRI steering mirror

In the nominal fine-pointing mode, the ACS of a GFO S/C keeps the absolute values of the
pitch and yaw angles below a few hundred microradian. While the LRI is not as sensitive to
the roll angle, regarding pitch and yaw it requires more accurate pointing of the laser beam.
This is ensured by the use of a fast steering mirror (FSM) on the optical bench, controlled
by a feedback loop using the DWS technique [Abi+19]. The steering mirror orientation is
downlinked at the same sampling rates as the LRI phase measurements, and can be directly
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Figure 2.3: GRACE bottom view. Image credit: www.gfz-potsdam.de

Figure 2.4: GRACE top view. Image credit: www.gfz-potsdam.de

converted to pitch and yaw angles. This conversion process was recently described in [Gos+21].
The FSM does not provide roll angles. The resolution of the measured and downlinked pitch
and yaw angles is limited due to quantization of the steering mirror readout to about 1-
2 µrad/

√
Hz for each angle, cf. Figs. 2.6 and 2.7. When required for the data analysis within

this thesis, white noise with a level of 1.3 µrad/
√

Hz and 1.85 µrad/
√

Hz was assumed for the
pitch and yaw angles, respectively, based on experience with in-flight data. A more detailed
description of the LRI laser beam steering is given in Sec. 3.1.
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Figure 2.5: GRACE internal view. Image credit: www.gfz-potsdam.de

Star cameras

The working principle of the star camera assembly (SCA) is as follows. Rigidly mounted
cameras take images of the surrounding celestial objects, i.e. stars. The positions of the
stars identified in these images, their brightnesses and spectral types, are compared to a
so-called star catalogue. An integrated computer determines the LoS vectors from the S/C
towards the observed stars, and derives the rotation quaternions between the camera fixed
frame and inertial frame. The mathematical problem of attitude determination based on vector
measurements is called Wahba’s problem [FB16], cf. Sec. 2.2.2. Solutions from different star
camera heads can be combined, as described for example in [03].

For the GRACE mission, each satellite was equipped with two star camera heads, each
having a field of view of ± 7 ◦ by ± 9.5 ◦, with both cameras being consistent down to below
0.1 mrad [Her+04]. The star cameras for GRACE and GFO were developed by the Technical
University of Denmark (DTU). Occasionally, one of the cameras is blinded by incident light
emitted by the Sun or reflected by the Moon. A lot of studies exist about SCA noise and
errors, and its impact on GFR, e.g. [BF14; Iná+15; Har16; Gos+18; Gos18]. For instance, it
has been shown in [Gos18] that during the periods when only data from one of the cameras
is available, the quality of gravity field recovery is lowered significantly. Different reasons for
this were identified, e.g. the AOC term in the KBR measurement can be determined less
accurately. Also, the rotation of accelerometer data requires SCA data and is thus susceptible
to degraded attitude information. On average, for GRACE, both heads were available at the
same time merely about two thirds of the time, during some periods only half of the time
[Gos+18].

In order to mitigate the disturbances due to camera blindings, three star camera heads
were mounted on each GFO satellite, instead of two as for GRACE. Thus, if one camera is
blinded by the Sun, there are still two functioning cameras available. During the entire year of
2019, according to the SCA1B RL04 data, roughly 72 % of the time, all three heads were used
to generate SCA1B data; 28 % of the time, two heads were used; about 0.05 % of the time,
only 1 head was used. Here 37 days during this period were excluded, i.e. 10 % of the whole
time span, because there was no SCA1B data available. Similar numbers have been published
in [Löw+19] for the first year in orbit. The amount of available cameras significantly influences
the attitude determination and control. This even shows up in the LRI data, which records
larger ranging variations during periods with a blinded camera, due to more frequent attitude
thruster activations, cf. [Mis19]. Note that these ranging variations are not a measurement
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error, but reflect actual S/C motion due to nongravitational accelerations. This topic will be
investigated in detail in App. E.

The SCA1A data product contains the attitude quaternions provided by the individual
star camera heads. For the purpose of this thesis, merely the SCA1B data product is used.
The quaternions in the SCA1B data describe the rotation between SF and inertial frame, cf.
Sec. 2.1.2. In the current release RL04 of Level-1B data, SCA1B data contains quaternions
generated from SCA1A and IMU1A data, which are fused using a Kalman filter [Wen+19;
HS19]. Without using IMU data, angles derived from star camera quaternions have signifi-
cantly higher noise of about 20 µrad/

√
Hz. Even the fused attitude solution seems to have a

slightly elevated spectrum for Fourier frequencies between 10 and 100 mHz. One possible cause
of this could be suboptimal processing, which is being improved continuously. A promising
attempt has been made recently in [Yan+22], for instance. See also Figs. 2.6 and 2.7 further
below, which show amplitude spectral densities (ASD) of pointing angles measured by different
attitude sensors.

Gyroscopes

Each GFO satellite carries an Astrix-120 inertial measurement unit (IMU) manufactured by
Airbus Defence & Space [Gat16]. Each IMU hosts 4 laser fiber gyroscopes, measuring the
angular velocities in 4 different axes. The angular velocities, measured for the individual
gyroscope axes, are accumulated, yielding integrated angles. These angles are reported in the
IMU1A and IMU1B data products, both with a sampling frequency of 8 Hz, and with the unit
degree. The gyroscope axes, arranged in a tetrahedral configuration, are given in [Wen+19].
In the GRACE mission, unfortunately, the IMU on GRACE-1 failed shortly after launch, and
the IMU on GRACE-2 was switched off [HS12; Her+12]. As opposed to GRACE, the GFO
IMU seem to work well and have proven to provide useful data.

Since the IMU data provides accumulated angles, which are wrapped when reaching a
certain limit, they have to be unwrapped first. Let the time series of the unwrapped angles
referring to gyroscope i be denoted by αi(t), i = 1, 2, 3, 4. These can be converted from degree
to radian. Afterwards, angular velocities are obtained by taking the derivative, i.e. the angular
velocities γi(t) referring to gyroscope i are given by

γi(t) =
π rad

180 ◦
· d

dt
αi(t), (2.31)

for a given point in time t. This way, γi(t) has the unit rad s−1. In the following, it is described
how these angular velocities can be transformed to angular velocities referring to the SF.

Let ~gi = (gi,x, gi,y, gi,z)
T denote the reference axis for gyroscope i, given in SF, with |~gi| = 1

for all i. Then, the angular velocity γi(t) measured by this gyroscope can be decomposed as

γi(t) = gi,xωx(t) + gi,yωy(t) + gi,zωz(t) = ~gTi ~ω(t), (2.32)

where ~ω(t) = (ωx(t), ωy(t), ωz(t))
T is the angular velocity vector of the S/C, given in SF. Since

Eq. (2.32) holds for each gyro, this can be written in matrix form as
γ1(t)
γ2(t)
γ3(t)
γ4(t)

 = G ·

ωx(t)
ωy(t)
ωz(t)

 = G · ~ω(t), (2.33)

where G is the 4x3-matrix

G =


~gT1
~gT2
~gT3
~gT4

 . (2.34)
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With ωx(t), ωy(t), ωz(t) being the unknowns, for each t, Eq. (2.33) is an overdetermined system
of linear equations. It can be solved by computing the pseudo-inverse of G, denoted by G+,
which is a 3x4-matrix. Then,

~ω(t) = G+ ·


γ1(t)
γ2(t)
γ3(t)
γ4(t)

 (2.35)

is the best fit of the system (2.33) in the least squares sense. This way, the measured angular
velocities can be converted to SF. An alternative way is to use only three of the four gyros, since
in theory one of the four is redundant. In that case, G is a 3x3 matrix, e.g. G = (~g1, ~g2, ~g3)T ,
and the usual inverse G−1 can be used in place of the pseudo-inverse in order to compute ~ω(t).
In fact, in the current release RL04 of the official Level-1 data, merely the measurements of
gyroscopes 1-3 are reported. The gyroscope axes measured in the IMU frame are provided in
[Wen+19], for both GFO satellites, as well as the transformation matrices needed to rotate
these axes to the SF. The axis vectors, rotated to SF according to [Wen+19], above denoted
by ~gi, i = 1, 2, 3, 4, are given in Tab. 2.1.

Table 2.1: Gyroscope axes in SF for GFO satellite 1 (GF1) and GFO satellite 2 (GF2).

Components in SF
Satellite Axis x y z

GF1 ~g1 −0.471053692158870 0.817220193736133 −0.332053571059512
~g2 0.942798065066750 0.000479684579529 −0.333364032866619
~g3 −0.471543331201393 −0.815925135929739 −0.334534092967415
~g4 −0.000547156582651 −0.001133931001332 0.999999207409765

GF2 ~g1 −0.472161373934852 0.816056005487263 −0.333341015886321
~g2 0.942760507517236 0.001274336049879 −0.333468141706936
~g3 −0.470935739138852 −0.816832866273961 −0.333172024900661
~g4 −0.000079129944766 0.000412221502813 0.999999911905939

Once the angular velocities in SF are obtained, they can be integrated using Eq. (2.19).
Initial values can be taken from SCA data. The obtained quaternions can be used to derive
pointing angles from Eq. (2.24). Because of error propagation in the integration process, the
integrated quaternions are only useful when regarding relatively short time spans, or when the
IMU data is fused with other sensors, as is done to obtain the SCA1B data [Wen+19]. For
the purpose of this thesis, the IMU1B RL04 data product is used. However, the IMU1A data
has the same format as the IMU1B data, and it can be used to derive attitude quaternions or
pointing angles in the same way.

Another crucial part in the derivation of pointing angles from IMU data is to estimate
the angular velocity bias for each gyroscope, and subtract it before the integration. Other-
wise, the bias accumulates during integration and results in an artificial drift of the pointing
angles, which propagates quickly, rendering the resulting quaternions useless. Since the SCA
observations seem to be very reliable at lower frequencies, the IMU bias can be estimated by
comparison with SCA data. However, note that the bias stability of the Astrix-120 over 1
hour is of the order of 0.01 ◦ h−1, approximately 0.0485 µrad s−1, according to the data sheet
provided by the manufacturer Airbus Defence & Space. This suggests that it is not sufficient
to estimate the bias once and apply that bias for all times.

The specification of the Astrix-120 IMU on the noise of the measured angular rates is,
according to the data sheet, an angle random walk (ARW) of 0.0016 ◦/

√
h. In terms of

an ASD, this is equivalent to 0.6582 µrad/s/
√

Hz, assuming white measurement noise. By
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integration, this translates to pink Euler angle noise:

ASD(θ) = 0.1048

(
f

Hz

)−1

µrad/
√

Hz, (2.36)

where θ denotes the integrated angle. I.e., the angle noise is approximately 1 µrad/
√

Hz at
f=100 mHz, decreasing with a f−1 slope. This number is compatible with the author’s analysis
of the real data, cf. Figs. 2.6 and 2.7 further below.

Accelerometers

One Super STAR (Space Three-axis Accelerometer for Research) accelerometer on board each
S/C measures nongravitational angular accelerations, in addition to the nongravitational lin-
ear accelerations [Tou+12; Kor+19]. The accelerometers (ACCs) for GRACE and GFO were
built by the French national aerospace research centre (ONERA). The measured angular ac-
celerations are reported in the ACC1A data product, with a sampling frequency of 10 Hz.
They are given in the AF, cf. Sec. 2.1.1, which differs from the SF merely by a permutation
of the frame axes. Namely,

~̇ωSF =

0 0 1
1 0 0
0 1 0

 · .
~ωAF, (2.37)

where
.
~ωSF and

.
~ωAF denote the angular accelerations, given in SF and in AF, respectively.

Once the angular accelerations are available in SF, they can be integrated using Eq. (2.19),
in order to obtain quaternions. From these quaternions, the pointing angles can be derived in
the same manner as from the star camera quaternions, by using Eq. (2.24).

Because of error propagation in the integration process, pointing angles derived from ac-
celerometer data is only useful for a very short time. Note that this restriction is, naturally,
even more serious than for the IMU, since here one has to integrate twice. Nevertheless, the
noise of the derived pointing angles is decreasing rapidly towards higher Fourier frequencies,
with a f−2 slope, so that ACC data is well suited for observing very fast angular S/C move-
ments. ACC angular accelerations can be fused with other attitude sensors such as the SCA,
although this requires some care due to aliasing of linear into angular accelerations and 1/rev
tone errors [HS19].

Coarse Earth and Sun Sensors

The coarse Earth and Sun sensors (CESS) provide attitude information by estimating the
vectors pointing from the S/C to the Sun and to the Earth, based on thermistor measurements.
The CESS for GRACE and GFO were manufactured by SpaceTech Immenstaad. The system
consists of six sensor heads, orthogonally mounted to the S/C, with one head at each side.
The accuracy of the derived attitude is about 5-10 ◦ for the Earth vector, and 3-6 ◦ for the
Sun vector, depending on the orbit geometry [Her+04]. The CESS can provide a crude sense
of orientation, if the satellite has to switch into a safe mode, cf. Sec. 2.3.

Magnetorquer input currents

Previously, it has been shown that the orientation of a S/C can be obtained by integrating
angular accelerations, assuming that these angular accelerations are available, as well as initial
conditions. Now, apart from accelerometer data, the angular accelerations can also be obtained
via Eq. (2.20), provided the torque and the S/C moment of inertia matrix are known. In the
GFO mission, part of the control torque is realized using MTRs, cf. Sec. 2.3.1 further below.
There are periods, where the magnetic control torque is in fact the dominating torque, namely



2.2. ATTITUDE DETERMINATION 29

during a rotation maneuver. Since the MTR input currents are reported in the MAG1B data,
one can compute the magnetic control torque. Hence, for this short period, the pointing angles
can be approximated by integrating these torques, neglecting environmental torques which are
acting on the S/C. This method will indeed prove to be useful, e.g. for the considerations on
the design of satellite rotation maneuvers, in Sec. 4.3.

2.2.2 Wahba’s problem

A general way to estimate a satellite’s attitude is by comparing local vector measurements to
an a priori model of the same observable. The mathematical problem of determining the best
estimate of the attitude, given a set of vector measurements and their modeled values, has
become known as Wahba’s problem, after Grace Wahba, who first defined it in 1965 [Wah65].
In fact, many attitude determination methods are based on solving this problem. Here the
problem is described, and some well established methods to solve it are listed. The reader is
referred to [FB16] for a more detailed description of Wahba’s problem and related topics.

Suppose one is given a set of vector observations in the satellite-fixed frame, for example
the ambient magnetic field measured by a magnetometer. If one has accurate knowledge of the
same observable in a known reference frame such as ECI, e.g. from a model, the measurement
contains information about the relative orientation of the two frames, and thus about the S/C
orientation. To convey the principle of this idea, consider an Earth orbiting S/C, knowing that
it is currently located above the geomagnetic north pole. If this S/C measures the ambient
magnetic field, it gains some information on its attitude, since it is known that the geomagnetic
field lines are nearly radial in this region. That raises the question, whether it is possible to
derive the corresponding rotation matrix in this case. Namely, one is interested in the rotation
matrix RECI

SF . It turns out that while one such vector measurement is not sufficient, two
independent vector measurements already yield an estimation of the matrix RECI

SF .
In order to state the problem in a stringent way, let ~vi, i = 1, . . . , N denote a set of vector

observations in SF, and ~wi, i = 1, . . . , N the corresponding vectors predicted by a model, given
in ECI. Desired is a rotation matrix R satisfying

~wi = R~vi, (2.38)

for i = 1, . . . , N . Recall that the group SO(3) of three-dimensional rotations has itself di-
mension 3. Therefore, the system (2.38) is overdetermined if N ≥ 2. Moreover, both the
measurements and the model contain uncertainties, which is why the equations (2.38) would
anyway not be expected to hold. Rather, one is interested in the rotation matrix R which
minimizes the residuals in the least squares sense. That is, find

min
R

N∑
i=1

‖~wi −R~vi‖2 . (2.39)

A variety of algorithms for solving Wahba’s problem exist. The most prominent ones are
based on Davenport’s q-method [Kea81], which reduces the problem to finding the largest
eigenvalue of a specific matrix that can be constructed from the vectors ~vi, ~wi, i = 1, . . . , N .
Some popular algorithms with references are listed below.

• three-axis attitude determination (TRIAD) [SO81]

• quaternion estimator (QUEST) [SO81]

• estimator of the optimal quaternion (ESOQ) [CBO04]

• singular value decomposition (SVD) [Mar88]



30 CHAPTER 2. SPACECRAFT ATTITUDE

• polar decomposition (PD) [Bar92]

• Euler-n [Mor95b]

• fast optimal matrix algorithm (FOAM) [Mar93]

• energy approach algorithm (EAA) [Mor95a]

• factored quaternion algorithm (FQA) [YBM08]

All of these methods are capable of finding an optimal estimation, they differ mainly in the
computational efficiency of the algorithms.

Moreover, the problem can be generalized by applying weights ai, in order to incorporate
the level of confidence in the different observations, i.e. find

min
R

N∑
i=1

ai ‖~wi −R~vi‖2 . (2.40)

Most systems of S/C attitude determination are applying a solution to Wahba’s problem.
Perhaps one of the most prominent examples for a vector observation ~vi is the Earth’s magnetic
field. Determining the direction towards any object is also a vector measurement. If the
same vector is known from an independent source, such measurements can yield attitude
information. Most apparent examples are the direction towards the Sun or the Earth, as in
the CESS. The other most obvious vector observable in the vicinity of the Earth is the gravity
gradient, which can be measured with a gravity gradiometer.

Thus, the sensors and methods discussed so far are almost exhaustive. Certainly, there
exists some variety in the details, such as different techniques of determining the direction
of the incoming light, resulting e.g. in different types of Sun sensors. Moreover, there exist
alternative types of Earth sensors, or Earth horizon sensors, either scanning or static, which can
determine the direction towards the geocenter with an accuracy up to 1 ◦. Finally, a few more
words shall be spent on two specific ways of attitude determination, one using magnetometers
and one using Global Positioning System (GPS) receivers.

Magnetometers

In the sense of Wahba’s Problem, magnetometer measurements contain information on the S/C
attitude, by measuring the ambient magnetic field, which is that of the Earth. Since there are
relatively accurate models of this magnetic field, these are the type of vector observations which
can be used for attitude determination, as has been illustrated previously. Magnetometers are
in fact part of the ACS for GRACE and GFO, when the system is in safe mode [Her+04],
cf. Sec. 2.3.1. However, the magnetometer must be combined with at least one more vector
observation, in order to yield an attitude solution.

Same as for GRACE, the GFO magnetometers are installed at the nadir side of each S/C.
The actual measurement of the magnetic field is taken outside the S/C, in the S-Band boom,
cf. Fig. 2.3, whereas the processing unit is located inside the S/C. The accessible measurement
range is ± 50 µT and the resolution is about 25 nT.

When a S/C is in the vicinity of other planets, magnetometers could be used for attitude
determination as well, provided the object has a measurable magnetic field, and a model of it
as well as the S/C positions are available.

GPS-based attitude determination

The measurements of GPS receivers can also be utilized for attitude determination, e.g. by
using multiple antennas. The task is then to determine the vectors towards the GPS satellites
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by comparing phase measurements, resulting in another application case of Wahba’s problem.
For further reading, the reader is referred to [Gio17; AW96; CP01; DKL09; TP12]. The
GFO satellites also host GPS antennas, cf. Figs. 2.3 and 2.5, however, to the knowledge of
the author, vector measurements from GPS data have not been used for GRACE attitude
determination.

GPS-based attitude determination has some disadvantages, such as low accuracy, i.e. pos-
sible errors of the order of 1 ◦. It requires direct view of a sufficient amount of GPS satel-
lites. Nonetheless, there are also some advantages, e.g. principally low implementation effort.
Moreover, it requires no moving parts, and thus has no disturbing effect on any of the science
instrumentation.

2.2.3 Comparison of attitude sensors

Although there are other sources of S/C attitude information, the main attitude sensors on
board GFO, which are suited for deriving pointing angles, are: FSM, SCA, IMU, ACC. Figures
2.6 and 2.7 show examples of time series and ASDs of pointing angles, for GF1 and GF2,
respectively. The angles were derived from SCA data without sensor fusion (gray; labeled
SCA only), steering mirror data (red; labeled FSM ), fused SCA1B data (blue; SCA1B), and
IMU1B data (green; IMU1B), based on data from a period of 1000 seconds in January 2019.
Note that the angles from IMU1B data were obtained by integration, which requires the initial
S/C attitude state at t = 0 as input, cf. Sec. 2.2.1. This initial attitude in terms of quaternions
was taken from SCA1B RL04 data. For the time series plots, the mean value over the 1000
s period was subtracted for each of the shown time series, for the sake of comparability. The
spectra were computed using the LPSD method [TH05].

Using ACC angular accelerations, after 1000 seconds, the integrated pointing angles already
accumulate a large integration error. However, when regarding short time intervals, the angles
derived from ACC data are compatible with angles derived from other attitude sensors, see
Fig. 2.8. The left plot exemplarily shows the GF1 pitch angle, derived from different sources,
here including ACC1A data, but excluding SCA only data. The plotted data was measured
during a CMC pitch maneuver, cf. Sec. 4.1, executed on 16 January 2019. Again, the angles
derived from IMU1B as well as from ACC1A data were obtained by integration, as described
in Sec. 2.2.1. For each time series, the mean over the shown 180 s period was subtracted, for
better comparability. The right plot of Fig. 2.8 shows the difference between the SCA1B time
series and each of the other time series. All angles for these plots were filtered according to
Sec. 5.1.6. For longer time spans, the potential of ACC angular accelerations lies in sensor
fusion, i.e. in the combination with other data.

Table 2.2 summarizes the sources of attitude information that were treated in this section.
In the following section, methods of attitude control will be discussed, focusing on the GFO
ACS.

2.3 Attitude control

Most satellite missions require attitude control, since there is usually a preferred S/C ori-
entation. This topic is especially important for GRACE and GFO, where the main science
observable, the biased range, can only be measured if accurate pointing is assured. The KBR
instrument is able to continue measurements with a pointing deviation of several degrees,
where 1 ◦ corresponds to 17.45 mrad. However, the quality of the KBR measurements suffers
from imperfect pointing, so that the deviation should still be kept low [Ko08]. The LRI needs
even more accurate pointing control, down to a few mrad, to ensure instrument operation.
The laser beam itself has to be steered with even better accuracy, below 100 µrad. However,
this beam steering is performed by the LRI, using the FSM, cf. Sec. 3.1.
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Figure 2.6: Roll (top), pitch (middle) and yaw (bottom) angles of GF1, based on different
data types. Here for a period of 1000 seconds during January 14, 2019. Left: ASDs. Right:
time series.

An attitude and orbit control system (AOCS) is a system of sensors and actuators, together
with a control loop, which controls the S/C attitude, as well as the orbit. Here one is not
interested in orbit control, thus the term attitude control system (ACS) is used, albeit the two
things are connected and AOCS is the common term. The attitude control mechanisms utilized
by the ACS of the GRACE and GFO missions are magnetic torque rods (MTR) and cold gas
thrusters. Both of them are of some relevance for the work presented in this thesis. They are
therefore described in detail in the following section. Afterwards, an overview of other types
of attitude actuation is given. The attitude control devices / mechanisms discussed in this
section are summarized in Tab. 2.4.
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Figure 2.7: Roll (top), pitch (middle) and yaw (bottom) angles of GF2, based on different
data types. Here for a period of 1000 seconds during January 14, 2019. Left: ASDs. Right:
time series.

2.3.1 Attitude control from GRACE to GFO

Many aspects of the ACS for the GRACE satellites, which is described in [Her+04], were
adapted for the GFO mission. The GFO ACS is described in [Cos+21]. It consists of a toolkit
of sensors, actuators, and data handling. The attitude sensors which are available to the
ACS are the SCA, the CESS, and the IMU. The GFO ACS benefits from a third star camera
head, whereas GRACE had merely two to its disposal. Further improvement of the attitude
information is due to the availability of a high precision IMU with four axes. Measurements
from the fluxgate magnetometers may be used additionally. Furthermore, GPS receivers are
used to obtain the S/C positions, which are used by the ACS directly, but also downlinked
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Figure 2.8: Comparison of different attitude sensors, from a pitch GF1 maneuver during 23
June 2019. Left: bandpass filtered pointing angles from different sources. Right: residuals
(differences to SCA1B).

and processed on ground. High-precision orbit predictions are uploaded back to the S/C. Note
that attitude information from the LRI FSM is not used by the GFO ACS, however, this may
be done in future missions.

The sensors mentioned above enable the ACS to determine the actual attitude of the S/C,
as well as the desired attitude. With this input, the required action of the control mechanism is
computed, resulting in commands to the attitude actuators. These are, for GRACE as well as
GFO, MTRs and a cold gas propulsion system, i.e. attitude thrusters. These actuators shall be
characterized in dedicated sections below. The pointing requirements have been tightened for
GFO, which is good in general and vital for the LRI. I.e., the deadbands of the thruster control
have been lowered to 250 µrad for pitch and yaw, and to 2.5 mrad for roll (default values in the
nominal fine-pointing mode) [tea19]. The deadbands on the GRACE satellites had been 3, 3,
and 4 mrad for roll, pitch, and yaw, however, these values were varied slightly throughout the
mission, cf. [HS12]. There is significantly less fuel consumption on GFO compared to GRACE
[Lan+20]. Battery capacity was increased from 18 to 78 A h, allowing to dispense with the
fuel-intensive yaw steering during ACS safe mode, see [Löw+19] for details.

The GRACE ACS was designed to have a minimum life time of 5 years, which it exceeded
by more than 10 years. Among other reasons, the prolonged lifetime was possible due to an
optimized fuel and battery management, cf. [HS12; Her+12]. By mid 2017, on both S/C
some of the battery cells failed and the rest were continuously degrading [Löw+19; Mül+19].
This limited the usage of MTRs, which significantly increased N2 gas consumption due to
attitude thruster activation. As a consequence, controlled decommissioning of the satellites
was performed in the end of 2017, more than 15 years after mission launch.

In the following, the attitude control via MTRs and cold gas thrusters is described.

Magnetic torque rods

At the altitude of the GFO satellites of about 500 km, the magnitude of the Earth’s magnetic
field is of the order of some tens of µT, cf. Fig. 4.6. This is sufficiently strong for the
purpose of S/C attitude control by means of MTRs. An MTR, also called magnetic torquer
or magnetorquer, consists of an electromagnetic coil, i.e. a conductive wire, which is twisted
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Table 2.2: Overview of different attitude sensors available in the GFO mission. The given
noise levels for FSM, SCA, IMU, and ACC, are empirical values from the author’s experience
with the data, which are merely meant to allow a rough comparison. In reality, the noise levels
may be slightly different for the different angles (roll, pitch, yaw), and they may vary with
time.

Device /
technique

Advantage Disadvantage Noise level of derived
pointing angles

FSM low noise; measures
pitch and yaw an-
gles, referring to the
LoS; completely in-
dependent of other
sensors

does not measure
roll

∼1.3 µrad/
√

Hz for pitch
and ∼1.85 µrad/

√
Hz for

yaw
(due to quantization)

SCA measures the abso-
lute S/C attitude
w.r.t. inertial space;
very low long-term
error

less accurate than
other sensors for
high Fourier fre-
quencies

∼20 µrad/
√

Hz white noise
above 40 mHz
(without sensor fusion)

IMU accurate measure-
ment of angular
velocities; good atti-
tude determination
at high frequencies

angular rates must
be integrated to ob-
tain the S/C atti-
tude; does not mea-
sure the orientation
in inertial space

∼ 0.1
(
f

Hz

)−1
µrad/

√
Hz;

e.g. 1 µrad/
√

Hz at 0.1 Hz

ACC accurate measure-
ment of angular
accelerations; good
attitude deter-
mination at high
frequencies

angular rates must
be integrated twice
to obtain the S/C
attitude; does not
measure the orienta-
tion in inertial space

∼ 0.013
(
f

Hz

)−2
µrad/

√
Hz;

e.g. 1.3 µrad/
√

Hz at 0.1 Hz

CESS robust & reliable coarse no pointing angles
derivation
from MTR
currents (not
used in the
GFO mission)

useful as additional
information during
S/C rotation maneu-
vers, and for maneu-
ver simulation

restricted to short
time spans, during
which the magnetic
torque is the domi-
nating torque

depends on the accuracy of
modeled torques, magnetic
field information, and nu-
merical integration

around a nickel alloy core [Pet10]. By applying a voltage, a magnetic dipole moment (MDM)
in the direction of the core is created. Due to the Lorentz force, the combination of the MDM
with the geomagnetic field produces a mechanical torque, which will tend to align the two
vectors of MDM and magnetic field [Wer78].

The MT30-2 rods for GRACE and GFO were designed and manufactured by the Zentrum
für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen, Germany.
The material of the core is nickel alloy. There is one MTR for each SF axis, each having a
mass of about 1400 g and a length of 40 cm. A schematic of the MTR is depicted in Fig. 2.9.
The second coil has been integrated merely for redundancy [Pet10]. By controlling the input
current of the individual rods, a magnetic dipole moment in any desired direction can be
achieved. For each rod, the dipole moment can be computed by

~m = ~I · 250 m2, (2.41)
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Table 2.3: Overview of different attitude control devices / techniques. Magnetic torque rods
and cold gas thrusters (in bold letters) are used in the GFO mission.

Device or
technique

Advantage Disadvantage Limitations

Magnetic
torque rods

pure torque; high accu-
racy; no fuel consump-
tion

requires ambient mag-
netic field; possible hys-
teresis

strength of geomag-
netic field ~B; maximum
MTR input current;
angle between ~B and
torque rod; electrical
power consumption

Cold gas
thrusters

large torques; high reli-
ability

fuel consumption;
strict requirements on
S/C integration; resid-
ual linear accelerations;
fixed torque; tendency
to overshoot

available amount of
fuel; potential dis-
turbance of sensitive
science instruments

Reaction
wheels

high accuracy; large
torque range; low
power consumption;
high reliability

not quiet; saturation;
large volume and mass

maximum spin rate

Control mo-
ment gyros

high accuracy; high
power efficiency

not quiet; saturation;
large volume and mass;
singularities

maximum spin rate

Solar sails no internal power con-
sumption

small effect; requires di-
rect view of the Sun;
S/C more prone to
space debris

incident light has a
fixed direction

Spin stabiliza-
tion

beneficial for specific
applications

no active attitude con-
trol

maximum tolerance on
angular rates

Gravity
gradient
stabilization

no power consumption no active attitude con-
trol; S/C more prone to
space debris; may need
damping

strength of gravita-
tional field

Aerodynamic
stabilization

no internal power con-
sumption

decreases orbit altitude atmospheric density;
only feasible in low
Earth orbit

Table 2.4: Overview of different attitude control devices / techniques. Magnetic torque rods
and cold gas thrusters (in bold letters) are used in the GFO mission.

with ~m being the MDM of one of the torque rods, and I the input current. For GFO, these
currents are provided in the MAG1B data product. Denoting by ~B the Earth’s magnetic field,
the resulting torque ~τm, called the magnetic torque, is then given by

~τm = ~m× ~B. (2.42)

~τm is one of many components of the total torque acting on the S/C.
The torque rods can use a current of up to 120 mA, however, the maximum current has

been limited to 110 mA for GFO. This results in a maximum MDM of 27.5 A m2, as opposed
to 30 A m2 for GRACE. The achievable magnetic control torque has lowered due to this and
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Figure 2.9: Schematic of a magnetic torque rod for GRACE, manufactured by the ZARM.
Image adopted from [Pet10].

the fact that the mass of the satellites has been increased from roughly 475 kg per S/C for
GRACE [Gat16] to 601 kg mass at launch for GFO [Wen+19; Kor+19]. Based on measured
orbit, attitude, and magnetic field data for a GFO satellite, magnetic control torques as large
as 1.5 mN m, 1.7 mN m, and 0.9 mN m for roll, pitch, and yaw axes, respectively, could be
possible. This is assuming that all torque rods were to be used to full capacity, which they are
typically not, except during rotation maneuvers.

The MTRs are used by the ACS with priority, because they need no fuel and produce no
linear accelerations. When the required control torque axis is nearly parallel to the Earth’s
magnetic field vector, e.g. near the equator for roll and near the poles for yaw, the magne-
torquers cannot produce a torque around that axis. In such a case, the attitude thrusters are
activated, which are described in the following.

Cold gas thrusters

The cold gas propulsion system for GFO is very similar to that of GRACE, which is described
in detail in [Sch00]. The ACS for GFO utilizes a Gaseous Nitrogen (GN2) cold gas system
with six pairs of thrusters, with a force of 10 mN per thruster, in addition to the orbit control
thrusters. These function by using valves, which can be opened in order to expel the gas,
which creates a thrust, i.e. a force ~F in the direction opposite to the outstreaming gas. The
torque τ due to an attitude control thruster is given by the cross-product of the position vector
~r of the location at which the force ~F is acting, and the force vector itself, i.e.

~τ = ~r × ~F. (2.43)

In addition to the torque, attitude control thrusters always produce a linear acceleration
in the direction of the thrust force ~F . Thus, they must be used in pairs, pointed in opposite
directions, in order to cancel this linear acceleration. It is also possible to choose constellations
of three or more thrusters per rotation axis, as long as the linear accelerations cancel out. Due
to residual misalignments, the S/C will always be subject to a residual linear acceleration,
when a thruster is firing, cf. App. E.1. The gas storage and consumption should be organized
in such a way that the CoM is not shifted by thruster usage.

As mentioned above, the attitude thrusters are only activated if the control with torque
rods is insufficient. More precisely, the GFO ACS uses so-called deadbands, i.e. fixed limits
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for the pointing angles. Only if the estimated pointing deviation moves out of this deadband,
the attitude thrusters are activated. This type of control is also referred to as ”bang-bang”
control. The GFO attitude thrusters apply an adaptive strategy, whereby the length of a pulse
depends upon the strength and the result of the preceding ones [Her+04]. Figure 2.10 shows
the placements of attitude thrusters for the GFO satellites. They are always activated in pairs.
The activation of one such pair results in a torque of the order of 10 mN m.

Figure 2.10: GFO thruster accomodation. Image credit: [Wen+19].

2.3.2 Other attitude control mechanisms

In general, attitude control can be divided into active and passive control, where active means
that there is a control loop, which causes some kind of reaction based on the inputs from the
ACS sensors. Some principles of attitude control can be used either in an active or passive
way. A few methods are listed here. A good reference for some background on S/C attitude
control is [MC14], for example.

• Attitude control via magnetic dipole moments are described below.

• Angular momentum storage and exchange devices (reaction wheels, control moment
gyros) are described below.

• There are other types of thrusters, e.g. ion thrusters, which accelerate ions using
electricity, which can be gained e.g. from solar panels, whereas the ion material is being
used up.

• Solar sails use the fact that incident photons, i.e. from the Sun, transmit kinetic energy
to the S/C. When the solar sails are placed and oriented appropriately, this yields a
torque which can be utilized for S/C attitude control.

• Spin stabilization: The attitude can be stabilized by spinning the entire S/C or a part
of it, if the mission concept allows for it.

• Gravity gradient stabilization uses the fact that the gravitational force decreases
with the square of the distance. If the S/C body extends much further in one axis than
in the other two axes, the S/C will tend to align with the gravity gradient, due to the
tidal force.
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• Aerodynamic stabilization uses atmospheric drag to stabilize the attitude, which is
only feasible in low Earth orbit, and will accelerate the decrease of orbit altitude.

Attitude control mechanisms using magnetic dipole moments, reaction wheels, and control
moment gyros are briefly described in the following.

Magnetic dipole moments

Magnetic dipole moments, as produced by an MTR, can also be used in a different way.
Instead of controlling the amount of MTR input current, there could be one rod which can be
turned actively. Then, the direction of the rod tends to align with the magnetic field vector.
Theoretically, such a rod could also be fixed to the S/C body for a passive attitude control.
Instead of coils, in principle, permanent magnets could also be used.

Reaction wheels

A reaction wheel, also called momentum wheel, can be thought of a momentum exchange
device. The working principle is to have a spinning wheel, where the amount of spin can
be controlled. By conservation of angular momentum, when the angular momentum of the
wheel is changed, the S/C must gain an angular momentum to cancel that of the wheel. The
conservation of angular momentum can be written as

Irw(ωrw + ωsc) + Iscωsc = 0, (2.44)

where Irw and Isc denote the moments of inertia of the reaction wheel and of the S/C, respec-
tively, and ωrw and ωsc denote the angular velocities of the reaction wheel and of the S/C,
respectively.

Reaction wheels cannot produce an external torque. Therefore, the wheel may accumulate
angular momentum and has to be desaturated occasionally (”momentum unload”) in order
to maintain its functionality, which requires using other attitude actuators. Reaction wheels
can thus usually not be used independently. Moreover, their use is limited by size and mass
constraints, as well as a maximum rotation rate of the wheel. Due to friction, reaction wheels
should not be operated near 0 rotations per minute. Since they have moving parts, they could
produce mechanical vibrations of the satellite body, potentially disturbing sensitive science
instruments.

Control moment gyros

A control moment gyroscope (CMG), or gyrotorquer, is a rotor spinning at a constant rate,
together with either one or two additional gimbals. Through the gimbals, the direction of the
rotor w.r.t. the S/C body can be changed, which constitutes the difference to reaction wheels.
This changes the angular momentum of the rotor, which induces a torque on the S/C, called
gyroscopic torque. While a single-gimbaled CMG is more energy efficient, a dual-gimbaled
CMG can turn around two independent axes and is thus more flexible. A CMG is much more
power efficient than other types of attitude control such as reaction wheels. A disadvantage
of this method is that gimbal lock can occur, which means that two of the gimbal axes are
parallel, causing a singularity in the control system.

It is theoretically possible to construct a CMG with a variable spinning rate. There is
no great advantage over constant rate gyrotorquers, although they can provide some more
flexibility for the ACS. Moreover, they can function as a mechanical battery, by transforming
electric into kinetic energy, and vice versa.



Chapter 3

Tilt-to-length coupling in the LRI

The goal of this chapter is to describe the TTL coupling in the LRI, and thereby build a
basis for the main part of this thesis. In general, TTL coupling in laser interferometers is the
phenomenon that a tilt of some part of the interferometer causes an error in the measured
interferometric range. It is a common error source which is present in all laser interferometers
in some form. In the context of the LRI and this thesis, the TTL error is referred to as an
error in the LRI range measurements that can be expressed as a function of the inter-satellite
pointing angles, which have been defined in Sec. 2.1.3. Recall that the pointing angles describe
the deviation of a satellite’s actual attitude from its nominal attitude, where the former is to be
measured and the latter is defined via the LoS. In a more general context, different denotations
for TTL coupling exist, such as ”rotation-to-pathlength coupling”, ”pointing jitter coupling”,
”pointing induced errors”, or similar.

The first section of this chapter, Sec. 3.1, is dedicated to describing the design and func-
tionality of the LRI. Special focus will be laid on those functionalities of the LRI which are
important for the further understanding of this thesis in general, and of the effects treated in
the rest of this chapter in particular.

There are several different effects that can cause TTL coupling. Those effects which are
assumed to be present in the LRI, are treated in Sec. 3.2, starting with the supposedly most
impactful effect, which is due to the offset between triple mirror assembly (TMA) vertex point
(VP) and S/C CoM. Other effects are discussed subsequently. In addition to TTL effects,
a related effect is introduced, called angular rate coupling (ARC), which will prove to be
important for the TTL analysis in the further course of this thesis.

In Sec. 3.3, a strategy of estimating TTL coupling in the LRI is presented. A linear TTL
coupling model for the LRI is stated, which is based on the preceding discussion of TTL
effects. All the working steps, which are required in order to pursue this estimation strategy,
are named, giving a foretaste of what is treated in detail in Chap. 5.

3.1 LRI design and functionality

The LRI is a heterodyne optical interferometer, built and operated in a US-German coopera-
tion led by NASA/JPL and the Albert Einstein Institute (AEI) Hannover. Figure 3.1 shows
some of the most relevant GFO payload, including LRI units and displaying contributors to
the individual components. Since the LoS connecting the two satellites’ CoMs is blocked by
the KBR assembly and the N2 gas tanks (depicted as spherical orange objects in Fig. 3.1),
and since the S/C CoM is occupied by the accelerometer, the LRI could not be conceptually
designed as an on-axis interferometer. Instead, it has been implemented as an off-axis inter-
ferometer in a so-called racetrack configuration, i.e. the laser light is entering the S/C through
an aperture on one side of the front panel and, after being guided around the CoM, it leaves
the S/C through a different aperture on the other side of the front panel.
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Figure 3.1: GFO payload. Image credit: Airbus Defence and Space, Germany.

The LRI was built into the GFO satellites with the role of a technology demonstrator,
in addition to the KBR instrument. Since it was switched on for the first time on 14 June
2018, the LRI is in operation as the first inter-satellite laser interferometer. Figure 3.2 shows
a functional overview of the LRI, cf. also [She+12; Abi+19]. A brief summary including more
of the components can be viewed in Tab. 3.1.

Figure 3.2: Functional overview of the LRI units on both spacecraft. The LRI units include
the laser, cavity, Laser Ranging Processor (LRP), optical bench electronics (OBE), TMA, and
optical bench assembly (OBA) with FSM. Figure and caption adopted from [Abi+19].

In the following section, 3.1.1, a brief overview of the pre-flight noise allocation for the LRI
is provided. Then, the measurement principle of the LRI is sketched in Sec. 3.1.2. The reader
is referred to [Mül13] for a more comprehensive description of the LRI subsystems and the
derivation of the formula for the final beatnote phase measurement. Subsequently, a few of
the components and functionalities of the LRI are briefly described, focusing on those aspects
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Table 3.1: LRI components: overview of contributions.

Component Country Manufacturer

Optical Bench Assembly (OBA) Germany SpaceTech Immenstaad
Fast Steering Mirror (FSM) Germany Airbus Defence & Space
Photo Receiver Frontend (PRF) Germany DLR
Optical Bench Electronics (OBE) Germany Apcon Aerospace and Defence
Laser Ranging Processor (LRP) USA JPL / Ball Aerospace
Triple Mirror Assembly (TMA) Germany SpaceTech Immenstaad
Optical baffles Germany SpaceTech Immenstaad
Optical cavity USA Ball Aerospace / JPL
Optical fibers USA / Switzerland Diamond USA / Diamond Losone
Optical Ground Support Equip-
ment (OGSE)

Germany / USA DLR / AEI / JPL

Nd:YAG laser USA / Germany TESAT

that are relevant for a broader understanding of TTL coupling in the LRI. Namely, the OBA
is treated in Sec. 3.1.3, the laser beam steering mechanism including DWS and FSM principles
in Sec. 3.1.4, and the TMA in Sec. 3.1.5. In Sec. 3.1.6, the laser frequency noise (LFN) is
discussed, which is one of the major noise sources of the LRI and thus relevant for estimating
TTL coupling. Finally, a summary of the laser link acquisition procedure is given in Sec. 3.1.7.

3.1.1 Pre-flight noise allocation

The conservative pre-flight total noise budget of the LRI of 80 nm/
√

Hz × noise shape function
(NSF) at high frequencies, cf. [She+12], comprises the root mean square (RMS) sum of the
requirement values for LFN, total TTL coupling, temperature induced pathlength changes,
and several sources of readout noise, plus a top-level margin. The suballocation is given in
Tab. 3.2.

Table 3.2: Suballocation of the LRI noise budget. The RMS sum of these components, plus a
margin, yields a ranging requirement of 80 nm/

√
Hz. The NSF is given in Eq. (3.1).

Noise source Requirement (ASD) Remark

LFN 40 nm/
√

Hz × NSF cf. Sec. 3.1.6

TTL 40 nm/
√

Hz × NSF flight performance depends on ACS performance;
cf. Sec. 3.2

thermal effects 30 nm/
√

Hz × NSF i.e. temperature induced pathlength changes

readout noise 3 nm/
√

Hz × NSF e.g. clock noise, shot noise, laser power noise,
photodetector electronic noise, parasitic signals,
analog-to-digital quantization noise, spurious elec-
tronic phaseshifts

The requirements are relaxed towards lower Fourier frequencies, by multiplying them by
the NSF given by

NSF(f) =

√
1 +

(
f

3mHz

)−2

·

√
1 +

(
f

10mHz

)−2

. (3.1)



3.1. LRI DESIGN AND FUNCTIONALITY 43

This yields a flat spectrum for high frequencies, a 1/f slope between 3 and 10 mHz and a 1/f2

slope below 3 mHz.
Note that a requirement on the TTL error cannot be translated in a uniquely determined

way to requirements on the coupling factors (CF) for the individual pointing angles. For
one thing this is because TTL is the sum of the contributions from different pointing angles,
so that there a tradeoff is possible. E.g., a relaxed requirement on the roll coupling factor
and a stricter requirement on the pitch coupling factor may yield the same total TTL error
budget. Moreover, the amount of satellite pointing jitter was not perfectly known before the
launch. However, based on pointing jitter simulations performed by Airbus Defence & Space,
the AEI internal pre-flight requirements on the linear TTL CFs for each S/C were 20, 200,
and 200 µm rad−1 for roll, pitch, and yaw, respectively. A more detailed discussion of different
TTL effects is presented further below in Sec. 3.2.

3.1.2 LRI measurement principle

The measurement principle of the LRI can be sketched as follows. One of the S/C is assigned
the ”transmitter” role, while the other S/C is in ”transponder” mode. Both S/C carry the same
components and can fulfill either of these roles. On the transmitter S/C, light is emitted by a
laser with a wavelength of λ0 = 1064.5 nm, i.e. with a nominal frequency ν0 of approximately
282 THz, where an optical cavity is utilized for stabilization of the laser frequency [Fol+10;
Tho+11; Pie+12]. The operating temperature of the lasers is 27-33 ◦ [Kor+19]. The laser
beam is steered by the FSM on the OBA, so that it is parallel to the beam coming from the
transponder S/C. By means of a beam splitter (BS), a small part of the light is guided to
the quadrant photodiode (QPD), where it is used as the reference beam, whereas the larger
part is routed through the TMA towards the distant S/C. Omitting any noise or error terms
in the following, denote the frequency of the light transmitted by the transmitter S/C by
νTX, transmitter. Due to the relative velocity of the two satellites, the frequency of the light
received at the transponder S/C differs from the frequency of the transmitted light by a
Doppler shift:

νRX, transponder = νTX, transmitter + νDoppler. (3.2)

The cavity on the transponder side is not used, it serves as cold redundant backup, instead
the transponder laser beam is phase locked to the received light using a frequency-locked loop,
and a constant frequency offset νoff ≈ 10 MHz is added to νRX, transponder. Thus, the apparent
beatnote frequency at the transponder QPD is given by

νQPD, transponder = (νRX, transponder + νoff)− νRX, transponder = νoff. (3.3)

The transponder TX beam with frequency

νTX, transponder = νTX, transmitter + νDoppler + νoff (3.4)

is also routed through a TMA and sent back towards the transmitter S/C. There the roundtrip
closes and the light, which has gained another Doppler shift on its way, i.e.

νRX, transmitter = νTX, transmitter + 2νDoppler + νoff, (3.5)

is interfered with the reference beam from the laser on the transmitter S/C. Due to the
frequency offset νoff ≈ 10 MHz and Doppler shifts of the order of a few MHz, a beatnote is
detected on the transmitter S/C QPD with a frequency which is varying around 10 MHz:

νQPD, transmitter = νRX, transmitter − νTX, transmitter (3.6)

= νoff + 2νDoppler. (3.7)
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The phase of this beatnote is measured by a phasemeter and contains the ranging information
in the form of the integrated Doppler shift, i.e.

ψQPD, transmitter(t) = ψQPD, transmitter(t0) + 2π

t∫
t0

νQPD, transmitter(τ) dτ (3.8)

= ψQPD, transmitter(t0) + 2π

t∫
t0

[νoff + 2νDoppler(τ)] dτ (3.9)

Note that, since the relative S/C velocity ∆v is small compared to the speed of light c, the
Doppler shift is approximately given by

∆νDoppler ≈ −
∆v

λ0
. (3.10)

A second order relativistic correction of ∆v/c ≈ 10−8, where c is the speed of light, is neglected
here. Moreover, the Doppler shift will be slightly different on the way back, due to the different
frequency and due to the light travel time, which is about 1.5 ms. This difference is neglected
as well here.

The initial phase ψQPD, transmitter(t0) in Eq. (3.9) is arbitrary, since t0 is arbitrary. The
LRI cannot measure the absolute distance, merely the biased range, i.e. up to an unknown
constant. Hence,

ψQPD, transmitter(t) = 2πνofft−
4π

λ0

t∫
t0

∆v(τ) dτ. (3.11)

The linear ramp due to the constant frequency offset can be cancelled by subtracting the phase
at the transponder QPD from the phase at the transmitter S/C QPD, i.e. by regarding

ψ̄ = ψQPD, transmitter − ψQPD, transponder. (3.12)

With Eq. (3.3), one can compute the biased range ρ(t) as

ρ(t) = −λ0

4π
ψ̄(t), (3.13)

disregarding laser frequency noise.

3.1.3 Optical bench

The LRI OBA, developed by SpaceTech Immenstaad (STI), is visible in Fig. 3.2. It comprises

• an ultra-stable Fibre Injector Assembly (FIA) for injecting the local laser light,

• an FSM for beam steering,

• a BS for beam superposition of the local beam with the received beam,

• two photoreceiver frontends, including QPDs, for measuring the beatnote and DWS
signals,

• imaging optics for mapping the aperture as well as the FSM surface onto the photore-
ceivers and suppressing beamwalk.

A compensation plate (CP) is placed in the beam path between the BS and the TMA, i.e.
before the beam leaves the OBA, in order to compensate for part of the TTL effect which is
caused by the BS, see Sec. 3.2. The OBA is connected to the OBE, which establishes the link
between photoreceivers and the Laser Ranging Processor (LRP), and which is also enabling
power supply of FSM and the photoreceivers. The OBA and OBE are part of the German
contribution to the LRI [Nic+17; Abi+15; Bac+17; Dah+17], see also Tab. 3.1.
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3.1.4 Laser beam steering

The LRI requires accurate pointing of the laser beam, in order to transmit a sufficient amount
of light power to the other S/C. The S/C pointing uncertainty and attitude variations are in
the order of a few hundred µrad, much larger than the LRI pointing requirement [Sch+14].
Thus, active beam steering is employed by means of control loops and FSMs. This requires
the application of QPDs, which measure the tip and tilt of the local beam with respect to the
incoming beam, using the DWS technique [Mor+94; And84].

Figure 3.3: DWS principle. In case the two interfering wavefronts are not parallel, different
QPD segments detect different phases. Tip and tilt of the beam can be inferred from different
combinations of the four QPD segments. Image credit: [Mül13]

The principle of the DWS technique is depicted in Fig. 3.3. The four segments of a QPD
detect the two interfering light beams. If the two beams are perfectly aligned, the signals
detected at the four segments are in phase. If the beams are tilted w.r.t. one another,
the interfering beam is detected with different phases at the different QPD segments. The
average phase of the four segments is used to derive the interferometric range, whereas suitable
combinations are used as tip and tilt signals, i.e.

DWStip =
ϕA + ϕB − ϕC − ϕD

2
, (3.14)

DWStilt =
ϕA + ϕC − ϕB − ϕD

2
. (3.15)

The DWS signal is fed back to the control loop, commanding the FSM in such a way that
the DWS signal is driven towards a programmed set point. If the components are perfectly
placed and aligned, this set point is zero. With a closed control loop and zero DWS set point,
the incoming phasefront is parallel to the outgoing phasefronts on the OBA. This ensures
that, after retro-reflection at the TMA, the emitted light is propagating in the direction of
the received light and thus towards the distant S/C, as long as the TMA mirrors are correctly
aligned w.r.t. each other. The DWS set points can be updated and uploaded to the S/C when
necessary. This way, the set point compensates for misalignments, whereas the FSM control
loop compensates for a mispointing of the local S/C, and hence maximizes the heterodyne
efficiency and corresponding signal-to-noise ratio (SNR) of the phase readout. The FSM
principle is illustrated in Fig. 3.4. The correct DWS set point was determined with an initial
acquisition scan, which is described in Sec. 3.1.7.

Since the FSM is permanently commanded to compensate for the misalignment of the re-
ceived light field and the local laser beam, the FSM positions provide very accurate information
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Figure 3.4: FSM principle. Left: beams are aligned, DWS signal is zero. Middle: beams are
not aligned, DWS signal is not zero. Right: the FSM guides the local beam, such that it is
parallel to the incoming beam, DWS signal is zero. Image credit: [Mül13]

about the alignment of the S/C with respect to the LoS, and hence about the S/C pointing
angles. This method measures the pointing angles, i.e. the deviation of the local frame from
the LOSF. As opposed to that, the star cameras measure the satellites’ attitudes compared
to inertial space, which must then be combined with orbit data in order to obtain pointing
angles. However, the LRI does not measure the S/C roll angle, which is the angle around the
LoS, but merely the vertical and horizontal angles which correspond to the so-called pitch and
yaw angles, cf. Sec. 2.1.3.

3.1.5 Triple mirror assembly

The racetrack configuration of the LRI, as described above, is realized with the use of the
so-called triple mirror assembly (TMA). It consists of three pairwise perpendicular mirrors,
connected by a tube made of carbon fiber reinforced polymer (CFRP). The TMA thus uses
the principle of a corner cube which acts as a retroreflector. Since the entry point and the tilt
of the incoming beam is varying only by a very small amount, not an entire corner cube is
needed. Instead, merely three small circle-shaped parts of it, where the beam is reflected, are
incorporated in the TMA. The accomodation of the TMA in the S/C is described in [Kor+19].

The planes defined by the three mirrors intersect in one point, which is called the vertex
point (VP). This VP is a virtual point, i.e. it is not physically a part of the TMA, but lies
outside of the TMA. Figure 3.5 shows an illustration of such a corner cube reflector. This allows
for the VP to be placed in the S/C CoM, which is physically occupied by the accelerometer
proof mass.

Properties of the TMA

The TMA has been studied extensively before the launch of GFO [War+14; Sch+14; Sch15;
Fle+14]. It has many advantageous geometrical properties. In particular, the following ob-
servables are invariant under rotations of the TMA around its VP:

• the direction of reflected beam leaving the TMA, which is always antiparallel to the
incoming beam.
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Figure 3.5: Geometrical model of a retroreflector in a corner cube arrangement. Three pairwise
perpendicular mirrors can reflect light back towards its source.

• the path from an invariant reference plane through the TMA and back to the reference
plane, e.g. the red path in Fig. 3.6, which is identical to two times the distance between
VP and this reference plane, i.e. two times the blue path in Fig. 3.6. Considering both
TMAs on both S/C, it follows that the round trip path length is invariant as well, being
always twice the distance between the two VPs.

• the lateral offset between incident and outgoing beam, approximately 60 cm.

These properties can be verified theoretically, for example by analytical raytracing, as per-
formed in [Mül13]. The same technique can be used to describe the TTL error which occurs
if the TMA is rotated around a point other than the VP. Furthermore, it yields an analytical
description of TTL coupling if the TMA mirrors are not perfectly aligned, cf. Sec. 3.2. The
properties mentioned above and the results of the analytical raytracing have been verified
experimentally as well, cf. [Sch15].

TMA coalignment

If all the TMA mirrors are perfectly aligned, the beam that enters the TMA is antiparallel to
the beam that leaves the TMA, cf. Sec. 3.1.5. The term TMA coalignment describes how well
these two beams, incoming and outgoing, are aligned. The coalignments of the TMAs on both
GFO S/C have been measured on 18 July 2018, shortly after the launch. Both TMAs showed
a significant misalignment close to 50 µrad, for GF1 in the pitch angle and for GF2 mainly
in the yaw angle. The measurement was repeated a few times since then, confirming that the
misalignment had decreased over time to below 10 µrad. This change had been anticipated
and was likely due to volatilization of humidity in the glue connecting the TMA components.
Tables 3.3 and 3.4 summarize the results of TMA coalignment tests, according to [MM20]
(AEI internal document).

The laser beam is steered by a control loop. The local beam is aligned with the incoming
(RX) beam by orienting the FSM in such a way that the DWS signal is driven to a certain set
point. When the control loop is active, the RX and transmit (TX) beams are aligned on the
optical bench. Subsequently, the TX beam is then reflected by the TMA, and thus antiparallel
to the RX beam, unless the TMA mirrors are not perfectly aligned w.r.t. each other. The
measurement of such misalignments is performed by varying the DWS set point and fitting a
model to the intensity profile of the beam measured at the distant S/C.
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Figure 3.6: This sketch illustrates the path invariance property of the TMA. The given rela-
tion is independent of small rotations of the setup around the VP. Here, for the purpose of
illustration, merely two of the three TMA mirrors are depicted.

Table 3.3: TMA misalignment results for GF1 in terms of pitch and yaw offsets, given in µrad.

Date δθy δθz TRP temp. [◦C] Note
2018-07-18 47.4± 0.3 1.3± 0.2 14.5
2019-06-13 5.8± 0.8 9.9± 1.0 20.2 warm TMA
2019-06-14 6.0± 0.8 9.7± 0.9 19.3 cold TMA
2019-10-10 6.0± 0.1 4.8± 0.2 17.6

Table 3.4: TMA misalignment results for GF2 in terms of pitch and yaw offsets, given in µrad.

Date δθy δθz TRP temp. [◦C] Note
2018-07-18 −4.7± 0.2 52.3± 0.3 14.5
2019-06-14 −0.4± 0.4 5.8± 0.5 14.7 run 1
2019-06-14 −0.1± 0.5 5.1± 0.6 14.7 run 2
2019-09-26 1.0± 0.1 5.9± 0.1 14.5
2019-10-10 −2.3± 0.1 10.4± 0.2 17.3

3.1.6 Laser frequency noise

Within the measurement band of the LRI, the range spectrum is expected to be limited by
LFN at the high end, whereas TTL is assumed to be dominant at the low end. To put it into
perspective, the quality of gravity field solutions is thought to be limited by accelerometer



3.1. LRI DESIGN AND FUNCTIONALITY 49

noise for low frequencies, and by aliasing for high frequencies, both of which should be larger
than the contributions from LFN and TTL together. This proposition shall be confirmed
within this thesis. It implies that the quality of gravity fields derived from LRI range is not
limited by the ranging noise, which seems to be confirmed by comparisons of gravity fields
derived from KBR and LRI range products [Lan+20].

As mentioned above, the laser on the transmitter S/C is stabilized by an optical cavity.
The remaining frequency jitter couples into the range measured by the LRI. The coupling
formula for the ranging error due to laser frequency noise according to [She+12] is

δ̃ρ =
L

ν
· δ̃ν, (3.16)

i.e. it is proportional to the inter-satellite distance L. Here δ̃ν and δ̃ρ denote the ASDs of the
laser frequency noise and the resulting ranging error (LFN), respectively. The absolute laser
frequency is

ν =
c

1064.5nm
≈ 282 THz, (3.17)

and the S/C separation fulfills L ≤ 270 km. If one is aiming at a ranging noise requirement of

δ̃ρ ≤ 30 nm/
√

Hz, (3.18)

this roughly yields a requirement for the laser frequency stabilization of

δ̃ν ≤ 30 Hz/
√

Hz. (3.19)

This requirement for the cavity performance, i.e. 30 Hz/
√

Hz multiplied by the NSF given
in Eq. (3.1), is depicted in Fig. 3.7 as a black line. The frequency noise of the actual flight unit,
shown in blue, was measured on ground before the launch of GFO. It was below 30 Hz/

√
Hz

for Fourier frequencies above 1 mHz, cf. [KM], so the confidence was high that the resulting
ranging noise in the mission would not surpass the 30 nm/

√
Hz budget.

The frequency noise can be roughly approximated by a line, see the red line in Fig. 3.7.
This line, converted to ranging noise according to Eq. (3.16), is the basis of the model for the
LFN that is used in this thesis. With slight modifications based on the actual flight data, the
formula for the modeled LFN in the LRI range reads

δ̃ρ(f) = 0.32 · L
ν
·
(
f

Hz

)−0.6

·
√

Hz. (3.20)

In fact, it shall be seen in this thesis that it appears to fit well with the LRI in situ data,
at least in the frequency regimes where LFN is the dominant noise source, see for example
Fig. 3.13.

3.1.7 Laser link acquisition

The LRI has a field-of-view of about ±6.5 mrad, provided that the beam steering mechanism
is active. The field-of-view is designed to be larger than the pointing variations of the satellites
and initial uncertainties, e.g. due to alignment tolerances during instrument integration. It
is nevertheless required to perform a search within this field-of-view, in order to close the
interferometric link. This pointing offset, which is unknown initially, has to be determined
in flight. Furthermore, the laser frequency difference between transmitter and transponder
lasers is required to be in the measurable range between 4 and 16 MHz. To this end, an
initial acquisition scan is performed on both spacecraft simultaneously (“initial line of sight
calibration procedure” [Koc+18]). Afterwards, the pointing offset is determined from the
steering mirror positions recorded at the instances when the phasemeter detects flashes, i.e.
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Figure 3.7: LRI cavity performance measured on ground. Image credit: Bill Klipstein, NASA.
The image was modified.

when the beatnote amplitude exceeds a threshold. These split-second flashes are seen only
if all of the 4 angles, i.e. pitch and yaw for both spacecraft, and laser frequency offset are
very close to their optimal values at the same time. Thus, a complicated five-dimensional scan
pattern is needed, which is depicted in Fig. 3.8 for the angular domain. The total duration of
the scan is approximately 8.5 hours. During this initial acquisition scan there is no transition
into science mode. The data is merely recorded and analyzed afterwards. When the optimal
set point is determined, a parameter file is uploaded to the S/C.

Figure 3.8: Angular scan pattern of the initial acquisition scan, started on 13 June 2018.
Image credit: Alexander Koch [Koc+18]
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Once the initial pointing offsets are uploaded, the LRI is commanded into the re-acquisition
mode. In this mode, the instrument performs only a short scan with smaller range, starting
with the values that were previously determined by the initial line of sight calibration proce-
dure. These values are already very close to the optimum and the instrument automatically
attempts to transition from the re-acquisition mode into the science mode, once a re-acquisition
flash is seen.

This initial acquisition scan was started on 13 June 2018, continuing until the following
night. The data recorded during the scan was sent to ground and analyzed. The analysis
showed that enough flashes were recorded in order to determine the initial offsets for the
re-acquisition scan, which include the misalignment of the LRI OBA w.r.t. the SF, as well
as the TMA coalignment error and estimation errors in the pointing towards the distant
spacecraft. The parameter files containing this information were uploaded shortly afterwards.
The same day, the instrument successfully established the interferometer laser link. The
following ground-station pass of the satellites confirmed that the LRI was in science mode
and taking continuous measurements. The identified initial pointing offset in terms of angles
were -913.2 µrad in pitch and -691.1 µrad in yaw, for GF1. For GF2, these values were -446.6
µrad in pitch and -638.2 µrad in yaw [Mis19].

3.2 TTL coupling effects

There may be a number of effects causing TTL coupling. In an environment with small angle
variations, it is often useful to approximate a function of the angles by a first or second order.
In this thesis, any TTL error in the range ρ will be approximated with a Taylor expansion
ignoring all orders larger than 2. In general, a ´TTL error will be written as

δρTTL =
(
ax ay az

)
·

θxθy
θz

+
(
θx θy θz

)
·

bxx bxy bxz
0 byy byz
0 0 bzz

 ·
θxθy
θz

 , (3.21)

with linear and second order coupling factors ai and bij , i, j = x, y, z. Note that a Taylor

expansion is valid in a neighborhood of some working point, e.g. ~θ0 = (0, 0, 0)T . The more
the actual pointing angles deviate from that working point, the less accurate is the Taylor
expansion. It is assumed here that third and higher order terms are negligible. Further, note
that within this thesis, terms called δρ with any subscript refer to errors in the measured
one-way inter-satellite range ρ.

In this section, different effects of TTL coupling are analyzed, which may appear in the
LRI measurements. This provides a first impression of the magnitude of the coupling factors,
that is, the numbers ai and bij in Eq. (3.21). To this end, those TTL effects, which may be
relevant for the LRI, are described in the following, commencing with the TMA VP offset.
Moreover, the TTL coupling via optical components on the OBA, TTL coupling due to TMA
misalignments, and other effects are discussed.

3.2.1 TMA vertex point offset

The TMA is a key component of the LRI, described in Sec. 3.1.5. Recall that the three mirror
planes are nominally pairwise perfectly perpendicular, and their virtual intersection point is
called the VP. The TMA is used because of its advantageous geometrical properties, which
suppress TTL coupling to a large extent, if the VP is colocated with the S/C CoM. However,
the coupling due to a residual offset is still considered the largest TTL effect affecting the LRI
measurements.

As mentioned previously in this chapter, the LRI measures the biased range between the
two VPs, one at each S/C. Consequently, the measured range is invariant under small rotations
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of either one of the S/C around its VP, which is, to the accuracy of S/C integration, placed in
the CoM of the S/C. Due to residual offsets between the VP and CoM of the order of 100 µm,
there is a difference between the distance from VP to VP on the one hand, and the distance
from CoM to CoM on the other hand. This difference is varying, when the S/C rotates around
its CoM, cf. Fig. 3.9. Hence, S/C attitude variations cause an error in the measured biased
range, which shall be denoted by δρVP in this section.

The principle of the TTL coupling due to the TMA-VP offset is depicted in Fig. 3.9. In
this scheme, the black axes show the x and y axes of the LOSF, which is fixed in this picture,
i.e. the position of the distant S/C is fixed. Hence, also the distance between the two satellites’
CoMs is fixed, which is the quantity one would like to measure. The actual measured range
depends on the position of the VP. Since the VP is not colocated with the S/C CoM, its
position w.r.t. the other S/C is varying, when the local S/C is rotating around its CoM.
In Fig. 3.9, this is illustrated by two different hypothetical VP positions (green and purple),
where one is obtained from the other by a yaw rotation of the S/C. It is clearly visible that
the measured range is not the same in both scenarios. While a constant offset would not be
relevant for the biased range, such S/C pointing variations indeed cause a time-varying error
term in the LRI observations. In the following, this error term is computed in dependency of
the S/C pointing angles.

Figure 3.9: Schematic of TTL error due to VP-CoM offset. Rotating the VP around the CoM
varies the measured range, approximated by the projection onto the LoS. If the VP was exactly
colocated with the CoM, the difference would vanish.

Let the measured one-way range be written as ρ̄ = ρ+ δρVP + δρother, where ρ is the true
distance between the satellite CoMs, δρVP is the sum of TTL errors caused by the VP-CoM
offsets of both S/C, and δρother denotes the contribution from all other error sources, including
a bias. Note that this section merely focuses on δρVP. The term δρother plays a role, once it
gets to developing parameter estimation algorithms, in Chap. 5.

Using the subscript i ∈ {1, 2} to indicate GF1 or GF2, let ~Vi and ~Ci denote the positions
of the TMA vertex points and the S/C CoMs, respectively. As usual, superscripts are used to
indicate the frame in which a vector is represented. E.g., V SF-i

i is the VP position of satellite i

expressed in the SF of satellite i, i = 1, 2. Since ~Ci is the origin of SF i, V SF-i
i is also the vector

pointing from the CoM to the VP. It turns out useful to express the TTL coupling factors
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computed in this section via the vector pointing from VP to CoM. Define

~CSF-i
i − ~V SF-i

i = −~V SF-i
i =

∆xi
∆yi
∆zi

 (3.22)

with components in the SF. This will be a key quantity in this section. Subsequently, one way
of computing δρVP is presented. Two alternative ways are shown in App. B.

Let ~eVP, i be the unit vector pointing from the VP on S/C i towards the VP on the other
S/C, and let ~eLOS, i be the unit vector pointing from the CoM on S/C i towards the CoM on
the other S/C. With this notation, one has

ρ̄ = |~V2 − ~V1|+ δρother = 〈~eVP,1, ~V2 − ~V1〉+ δρother

ρ = |~C2 − ~C1| = 〈~eLOS,1, ~C2 − ~C1〉,

where 〈·, ·〉 denotes the standard scalar product of R3. Since ρ � ‖~Vi − ~Ci‖, i = 1, 2, the
approximation ~eVP, i ≈ ~eLOS, i is valid, which yields

δρVP = ρ̄− ρ− δρother (3.23)

≈ 〈~eLOS, 1, ~V2 − ~V1 − ~C2 + ~C1〉 (3.24)

= 〈~eLOS, 1, ~C1 − ~V1〉+ 〈~eLOS, 2, ~C2 − ~V2〉, (3.25)

since ~eLOS, 1 = −~eLOS, 2. The TTL error due to the VP-CoM offset on S/C i is thus approxi-

mated by the projection of the negated VP offset, ~Ci− ~Vi, onto the LoS. That is, denoting by
δρVP-i the respective TTL error for S/C i, i = 1, 2, one has

δρVP-i = 〈~eLOS, i, ~Ci − ~Vi〉. (3.26)

Since ~CLOSF
i = ~0, one has ~CLOSF

i − ~V LOSF
i = −~V LOSF

i . Thus, omitting the index i on the right
hand side of the following equations, δρVP-i can be expressed in the LOSF as

δρVP-i =
(
~eLOSF

LOS

)T · −→V LOSF (3.27)

=
(
1 0 0

)
·RLOSF

SF ·
−→
V SF (3.28)

= R11∆x+R12∆y +R13∆z, (3.29)

where Rαβ is the entry in row α and column β of the rotation matrix RLOSF
SF , which was

introduced in Sec. 2.1.3. In terms of pointing angles, writing cx = cos(θx), sx = sin(θx), etc.,
using Eq. (2.28), one has

δρVP-i ≈ cycz ·∆x+ (sxsycz − cxsz) ·∆y + (cxsycz + sxsz) ·∆z. (3.30)

The second order approximation for small angles is

δρVP-i ≈
(

1− 1

2
θ2
y −

1

2
θ2
z

)
·∆x+ (θxθy − θz) ·∆y + (θy − θxθz) ·∆z. (3.31)

Neglecting the constant error and adding up the terms for both S/C, the first order approxi-
mation of the total TTL error due to VP-CoM offsets is

δρVP = δρVP-1 + δρVP-2 ≈ ∆z1θy,1 −∆y1θz,1 + ∆z2θy,2 −∆y2θz,2, (3.32)

where θy,i and θz,i stand for pitch and yaw angles of S/C i, respectively. ∆yi and ∆zi denote y
and z components of the vector pointing from the TMA VP to the CoM of S/C i, respectively,
expressed in the SF.

Note that, in particular, there is no linear coupling of the roll angles expected from this
effect. In order to verify this hypothesis, and to monitor possible change, linear roll coupling
factors will be estimated nevertheless. This yields in total 6 model parameters for the TMAVP
effect. In App. B, two more variants of computing δρVP are given.
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3.2.2 Misaligned TMA mirrors

There may be misalignments within the TMA itself, i.e. the planes defined by each of the three
mirrors may not be pairwise perpendicular. This can be described using the so-called dihedral
angles, which are the three angles ∠(Mi,Mj) for each pair of mirrors i and j, i, j = 1, 2, 3 with
i 6= j. The deviations of the dihedral angles from 90 ◦, denoted by

γ =

γ1

γ2

γ3

 =

∠(M1,M3)− π
2

∠(M1,M2)− π
2

∠(M2,M3)− π
2

 , (3.33)

can be used to describe the TMA misalignment. According to [Mül17], the additional TTL
coupling due to the TMA misalignment described by ~γ is approximately

δρTMA ≈ 1 mm rad−2 · ~γT ·

 266 −300 24
−333 300 −24
424 424 −34

 · ~θ (3.34)

For instance, if ‖~γ‖ ≈ 10 µrad, the coupling factors could potentially be in the order of 10
µm rad−1 for roll and pitch, and 1 µm rad−1 for yaw.

Tables 3.3 and 3.4 summarize the results of in situ measurements of the TMA misalignments
in terms of pitch and yaw offsets of the TX beam direction, δθy and δθz. To first order, these
offsets are related to γ via

δθy ≈ −γ1 + γ2 −
√

2γ3 (3.35)

δθz ≈ −
√

2(γ1 + γ2). (3.36)

Unfortunately, this relation does not impose a boundary on the individual γi, i = 1, 2, 3,
given the measured δθy and δθz. Therefore, one does not obtain a definitive boundary for the
additional TTL coupling that is caused by imperfectly aligned TMA mirrors.

3.2.3 Coupling via beam splitter

The pathlength of a beam passing through a beam splitter (BS) depends on the refractive
index of the material and on the incident beam angle. Note that the interesting quantity
is the optical pathlength, which differs from the geometrical pathlength inside the BS. An
analytical description of the optical pathlength of a beam traveling through a BS and its
dependency on the beam angle is given in [Mül13]. The resulting coupling into the LRI range
for one BS made of borosilicate glass (BK7) with a thickness of 5 mm is approximately

δρBS =
1600 µm

rad
· θz +

800 µm

rad2 · θ2
y +

1500 µm

rad2 · θ2
z . (3.37)

The linear term is unacceptably large, since the requirement for the coupling factor of the yaw
angle θz, from all possible TTL effects combined, was 200 µm rad−1, cf. Sec. 3.1.1. Thus a
second BS is used, called the compensation plate (CP). The CP is rotated by 90 ◦ w.r.t. the
original BS, whereas at both of them the nominal incident beam angle is 45 ◦. This yields a
cancellation of the linear term and a doubling of the quadratic terms:

δρBS+CP =
1600 µm

rad2 · θ2
y +

3000 µm

rad2 · θ2
z , (3.38)

This TTL effect is supposedly the one with the largest quadratic terms, cf. Tab. 3.5. Exper-
imental testing of the coupling factors given above is described in [Sch15], confirming to the
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measurement uncertainty of 20 µm rad−1 that linear coupling is indeed suppressed by the use
of the CP.

In order to linearize the quadratic coupling from Eq. (3.38), one may pessimistically assume
static pitch and yaw pointing offsets of 1 mrad each. That is, let θy = θy,0 + δθy with θy,0 = 1
mrad, and similarly for θz. A Taylor expansion around (θy,0, θz,0) = (1, 1) mrad yields

δρBS+CP = 3.2 µm rad−1 · δθy + 6 µm rad−1 · δθz. (3.39)

3.2.4 Phase front curvature

When the transmitted laser beam is tilted, the phase which is measured at the distant S/C
changes, if the center of phase front curvature does not coincide with the center of beam
rotation. Note that this means not a S/C tilt, but an actual tilt of the direction of beam
propagation, which is almost completely compensated by the DWS and FSM control loop. In
the case of an inactive control loop, the quadratic pitch and yaw coupling could be as large
as 2 m rad−2, according to [Mül17]. Such an error would be intolerable. With the control
loop, merely a residual pointing error of the FSM itself, say ψ = (ψpitch, ψyaw), would couple
into the range with this coupling factor. A potential misalignment of the TMA mirrors would
furthermore add a static component to this residual pointing offset. Linearizing potential
quadratic coupling of 2 m rad−2 around a working point of ψ0 = (10, 10) µrad would leave a
coupling of

δρPC|ψ0
≈ 40 µm rad−1 · (δψpitch + δψyaw) (3.40)

for both S/C in the same way. Given that the residual orientation error ψ of the FSM is of
the order of a few µrad/

√
Hz, such an effect is tolerable, in the worst case yielding a ranging

error of about 1 nm/
√

Hz.

3.2.5 Other TTL coupling effects

Further potential sources of TTL coupling are listed here.

• Nonplanar or contaminated mirror surfaces can also cause a pointing dependent ranging
error.

• Beamwalk due to changes of the beam angle is suppressed by the imaging system on the
OBA, however, residual beamwalk can potentially introduce a phase error.

• Ghost beams, e.g. due to multiple reflections in the BS or CP, can result in an error in
the measured range, which is depending on the beam direction.

• The off-racetrack paths, cf. Fig. 3.2, nominally cancel out, since they are common to
both beams, however, the beams could be shaped differently, which could potentially
also cause an angle dependent phase error.

Due to the high sensitivity of the LRI, even more potential disturbing sources could certainly
exist. However, after more than three years of LRI operation, the hypothesis that the TMAVP
effect is the dominating TTL effect still seems to hold.

3.2.6 Angular rate coupling

During the studies for this thesis, it has been discovered that not only the pointing angles
couple into the measured LRI range, but so do the time derivatives of the pointing angles.
Here this phenomenon is denoted by angular rate coupling (ARC). The effect of this was
already seen in the data before the publication of the original LRI TTL estimation results, cf.
[Weg+20b], however, it was described as an unexplained phase shift, not as an ARC effect.
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The true explanation of the observed artifact was found afterwards. The existence of ARC in
the LRI was reported for the first time in [Weg+20a]. ARC is not a function of the pointing
angles, but the angular rates, and thus technically not TTL coupling as it was defined in the
beginning of Sec. 3.2. Nevertheless, it will be treated in this thesis in a very similar way. In
general, let the ARC error δρARC be described with a first order term,

δρARC =
(
cx cy cz

)
·

θ̇xθ̇y
θ̇z

 . (3.41)

For the case of the LRI, second and higher order terms are entirely negligible, for all that was
found during the investigations for this thesis. In fact, it shall be seen that also the first order
ARC error is much smaller than the TTL error for the relevant Fourier frequencies. For the
most part, the ARC error is negligible for the science data, it merely becomes important for
the analysis of CMC maneuvers, when the pointing angles are oscillating with a relatively high
frequency of 83.3̄ mHz.

The effects which are described in this section cannot be explained when neglecting the
light travel time, which is the reason why ARC effects in the LRI were actually not anticipated
before the launch. Recall that the LRI is the first instrument of its kind ever operated in space,
so that now is the first opportunity to gain experience with its measurement data. Surely,
one is aware of the necessity to correct the measured range for a light travel time. To this
end, a light time correction (LTC) term is defined, which was recently described in detail in
[Yan+21]. I.e., the LTC term is the difference between measured range and instantaneous
range. However, this issue is different from the effect described in the following.

Simplified explanation of ARC in the LRI

Fig. 3.10 shows a simplified sketch of the LRI roundtrip path, focusing on the transmitter
S/C. It must be noted in advance that for the following explanation, the imaging system on
the LRI optical bench (OB) was neglected.

For the sake of theoretical considerations, imagine a plane perpendicular to the LoS, de-
picted as a vertical dashed line in Fig. 3.10, which has a fixed distance f to the CoM of the
transmitter S/C. The term s (in purple) denotes the length of the TX beam path from the BS
through the TMA, to the point where it passes the aforementioned virtual plane. The term r
(in red) denotes the geometrical length from the point where the RX beam passes the virtual
plane to the BS on the optical bench. Note that the sum r(t)+s(t) is by construction constant
for all times t, that is, in fact not depending on t. This is because, for the analysis of this
error source, perfect alignment of the TMA is assumed, as well as perfect colocation of the
VP with the CoM of the S/C. I.e., a small rotation of the whole S/C around the CoM neither
changes the instantaneous total pathlength, nor the the lateral offset, nor the antiparallelism
of received and transmitted beam, cf. Sec. 3.1.5.

Opposed to that, any expression of the form r(t) + s(t + ∆t), with ∆t 6= 0, cannot be
assumed to be constant w.r.t. t. This is a key observation for the following reason. The
RX beam, which has just traveled through the entire roundtrip, is recombined with the local
beam at the BS on the transmitter S/C. Any changes of the pathlength r that have occurred
during the light travel time on the green path in Fig. 3.10 will appear in the measured range.
Note that the way the sketch in Fig. 3.10 is constructed, each one of the pathlenghts r and s
depends only on the satellite’s orientation w.r.t. the LoS. Another way of saying this is that
they change if and only if the transmitter satellite rotates, whereas their instantaneous sum
remains unchanged.

In order to estimate the magnitude of this effect, consider the following simplified compu-
tation. Consider the situation depicted in Fig. 3.10 to be at time t = t0, and the situation in
Fig. 3.11 to be at time t = t0−τrt, where τrt denotes the roundtrip light travel time. One would
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Figure 3.10: Sketch of the LRI roundtrip path. Situation at t = t0.

like to measure the instantaneous range ρ(t0), which is equal to half the roundtrip pathlength,
i.e.

2 · ρtrue(t0) = s(t0) + r(t0) + d, (3.42)

where d is the rest of the roundtrip pathlength (green path). However, what is in fact measured
is ρ̄(t0):

2 · ρ̄(t0) = s(t0 − τrt) + r(t0) + d. (3.43)

It is evident that the two quantities are not the same, if there was a nonzero S/C rotation
between the two instances of time depicted in Figs. 3.10 and 3.11. Note that d also changes
during the light travel time. This is the subject of the light time correction, cf. [Yan+21].
Here the focus lies only on the pathlength changes due to S/C rotation. Therefore, one may
consider the length d constant for the considerations in this section.

Thus, the error δρARC, which is made by neglecting such rotations, is the difference between
the two quantities. One has

2 · δρARC = 2 · ρ̄(t0)− 2 · ρ(t0) (3.44)

= s(t0 − τrt)− s(t0) (3.45)

≈ −τrt · ṡ(t0) (3.46)

= τrt · ṙ(t0). (3.47)

For the time derivative of r, one can write r(t) = r0 + δr(t), for some r0, and describe the
variations of r by

δr = ~eTLoSR
LOSF
SF

~P SF, (3.48)

where ~P SF = (Px, Py, Pz)
T is the vector pointing from the BS to the CoM (depicted in yellow),

given in SF. Analogous to the computation that lead to Eqs. (3.31) and (3.32) for the TTL
error caused by the VP-CoM offset, one can derive the first order approximation

δr(t) ≈ Pzθy(t)− Pyθz(t), (3.49)

where θy is the pitch angle and θz is the yaw angle of the transmitter S/C. The vector ~P SF is
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Figure 3.11: Sketch of the LRI roundtrip path. Situation at t = t0 − τrt.

roughly given by ~P SF ≈ (900,−300, 24)T mm [14]. Hence,

δρARC ≈
τrt

2
· ṙ(t) (3.50)

≈ τrt

2
· d
dt

(
eTLoS · ~P

)
(3.51)

≈ L

c
·
(

24 mm rad−1θ̇y(t) + 300 mm rad−1θ̇z(t)
)

(3.52)

Note again that this error only occurs for rotations of the transmitter S/C, not the transponder.
Also important to note, the magnitude of the error depends on the absolute S/C separation
L. Assuming for instance L = 175 km, roughly the mean separation of the GFO S/C during
the year 2019, one obtains

δρARC ≈ 15 µm s rad−1θ̇y(t) + 175 µm s rad−1θ̇z(t), (3.53)

where θ̇y and θ̇z denote the time derivatives of the transmitter satellite’s pitch and yaw angles,
respectively. Since faster S/C rotations cause a larger ARC error, ARC is less relevant for low
Fourier frequencies. It becomes important when there are relatively fast satellite rotations,
e.g. during a rotation maneuver. In fact, as shall be seen later, during a CMC maneuver, the
magnitude of the range variations it causes can be close to the magnitude of TTL coupling. The
theoretical examination in this section suggests that a significant ARC effect can be expected
during yaw maneuvers of the transmitter S/C. This will be confirmed by the data analysis

presented in Chap. 5. Figure 3.12 shows exemplarily the ASDs of pitch and yaw rates, θ̇y and

θ̇z, based on FSM data from 6 days in April 2019. In the following, TTL and ARC effects are
summarized.

3.2.7 Summary of TTL and ARC effects

A summary of some of the expected TTL effects is given in Tab. 3.5, including rough values
for their respective linear coupling factors ai, as well as quadratic coupling factors bjj , given
in µm rad−1 and µm rad−2, respectively. Note that the values refer to the effect caused on one
of the two S/C. The total TTL ranging error is the result of all effects combined, including
both S/C.
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Figure 3.12: Amplitude spectral densities (ASD) of the time derivatives of pitch (red lines)
and yaw angles (green lines), for GF1 and GF2. The angles for this plot were derived from
LRI FSM data, recorded from 10 to 15 April 2019.

Table 3.5: Overview of LRI TTL effects and rough magnitudes of the respective coupling
factors (for one S/C) in µm rad−1 (ai; linear) and in µm rad−2 (bjj ; quadratic).

TTL effect ax ay az bxx byy bzz

TMAVP – ≈ 100 ≈ 100 ≈ 50 ≈ 50
TMA misalignment ≈ 10 ≈ 10 ≈ 1 – – –
BS without CP – ≈ 1600 – – ≈ 1500 ≈ 800
BS with CP – – – – ≈ 3000 ≈ 1600
phase front curvature – – – < 1 ≈ 5 ≈ 5

Figure 3.13 shows a spectrum of the LRI range (purple line), as well as different types of
TTL and ARC errors. The shown spectra were computed using FSM angles from a 9-day data
segment (9 to 17 April 2019), and with the theoretical coupling factors shown in Tab. 3.5.
I.e., for the TMAVP effect (green line), the values 0, 100, and 100 µm rad−1 were assumed for
roll, pitch, and yaw, respectively. For the TTL error caused by TMA misalignment (red line),
the values 10, 10, and 1 µm rad−1 were assumed for roll, pitch, and yaw coupling. In relation
to the other error contributions, the assumed quadratic coupling due to the BS and CP of 2
mm rad−2 for pitch and 4 mm rad−2 for yaw is negligible (cyan line), even if an additional bias
of 1 mrad is assumed for all pointing angles (orange line). For the ARC, a S/C separation
of L = 175 km was assumed, cf. Eq. (3.53). The effects due to pitch and yaw rate coupling,
labeled PRC and YRC (pink and blue lines) are plotted separately.

The additional bias for the quadratic coupling was assumed for the following reason. Due
to imperfect knowledge of the alignment of different reference frames, it may only be possible to
determine the pointing angles up to a constant. In this sense, the pointing angles vary around
some constant values, which are called here a static pointing offset. For linear coupling, such
a static pointing offset leads to a constant pathlength error, which is irrelevant for the biased
range. For quadratic coupling, however, it leads to a nonconstant pathlength error, and thus
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Figure 3.13: Amplitude spectral densities (ASD) of LRI range, and simulated TTL and ARC
errors, for a 9-day segment during April 2019. Coupling factors are based on pre-flight expec-
tations. For the orange line, an additional static pointing offset of 1 mrad was assumed for all
angles. For the frequency noise, a mean inter-satellite distance of 175 km was assumed. For
the ARC, the effects due to pitch and yaw rate coupling, labeled PRC and YRC (pink and
blue lines) are plotted separately.

cannot be ignored in general.
For comparison, Fig. 3.13 also shows the TTL requirement as well as a model of LRI

frequency noise (LFN) derived from ground measurements, cf. Eq. (3.20). The model depends
on the S/C separation, which was 175 km here. Shown is also accelerometer noise based on
a model for GRACE [Dar+17], converted to LoS range. Noise in the accelerometer data is a
significant error contributor in GFR. Figure 3.13 illustrates that the TTL error is lower than
the contribution to GFR from accelerometer noise. The elevated LRI range spectrum between
40 and 200 mHz is caused by physical range variations from nongravitational forces, which
can be partly removed using accelerometer data, see App. E.

To summarize, as the quadratic TTL coupling seems to be negligible, a linear TTL model
is assumed from now on in this thesis. Since the TMAVP effect can be expected to be the
dominant linear TTL effect, it will be assumed that the total TTL error term is approximately
described in Eq. (3.32). The model for the ARC error shall be (3.52). In the following section,
different approaches for the TTL estimation are presented.

3.3 LRI TTL estimation strategy

In this section, the approach of estimating LRI TTL coupling is outlined, which is pursued
within the study presented in this thesis. Furthermore, a work flow shall be developed for
this purpose. Before going into the details of each step, some light may be shed on a more
basic decision, which should be made first. In order to estimate the TTL error, the most
fundamental requirement is to have a ranging product, i.e. a modification of the raw range
measured by the LRI, which contains the TTL error. Five basic concepts of TTL estimation
can be identified, depending on which ranging product is used, see also Fig. 3.14. The different
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approaches are briefly described below.

Figure 3.14: Five approaches for estimating LRI TTL coupling factors.

3.3.1 TTL estimation approaches

At first, consider the concept of using satellite rotation maneuvers for TTL estimation, since
this is the approach that is preferred in this study. The main results presented in this thesis
are based on this method.

Using satellite rotation maneuvers

The TTL error is a function of the pointing angles. It can be amplified by deliberately causing
excitations of the angles, i.e. by rotating the S/C. Such an excitation is then called a stimulus.
This is achieved by utilizing the S/C ACS. Typically, a periodic excitation profile is chosen,
such that the TTL error can be isolated well from the range. From the data collected during
the maneuver, the TTL estimation is more accurate than from data collected in the absence
of a maneuver.

This thesis concentrates on the estimation using such maneuvers. In the GFO mission, so-
called CMC maneuvers are performed regularly. Their original purpose is to estimate the offset
between the ACC proof mass and the S/C CoM, see Sec. 4.1 for a more detailed description.
The CMC maneuvers consist of periodic angular accelerations caused by MTRs. These angular
accelerations have a period of 12 seconds, which yields a signal with a frequency of 83.3̄ mHz.
It will be worked out in this thesis that CMC maneuvers are suited for LRI TTL estimation.

An advantage of this concept in general is that the maneuver frequency can be chosen to
yield the best estimation results. Further maneuver parameters can be optimized as well, see
Sec. 4.3 for more details. The maneuver approach is also less susceptive to attitude measure-
ment noise than other approaches.

The main disadvantage of the concept of estimating TTL using maneuvers is that only
very small amount of data can be analyzed, due to the limited duration of the maneuvers.
Moreover, planning and performing rotation maneuvers requires effort and time. Possibly,
the taking of the main science data of a satellite mission may be partly or fully interrupted
during a rotation maneuver. As with any S/C operation, there is also some risk in performing
maneuvers, although this risk is rather small.
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Fit of noise

In the ”fit of noise” approach, the LRI range is used directly for the estimation. The data
does not have to be from a certain restricted time span, as is the case if one uses calibration
maneuvers. Moreover, there should not have been any advanced processing before the TTL
estimation. However, the range and auxiliary data may have undergone some basic processing,
e.g. time stamp correction, resampling, or filtering out certain frequency bandwiths.

For estimation methods such as the least squares fit, the standard deviation (STD) of the
estimated parameters is anti-proportional to the square root of the length of the time series
that was used, as shall be seen later in this thesis. Thus, the fact that this approach is not
restricted to a short time span is a direct advantage. In principle, the entire data measured
since launch can be used. A drawback of this approach is that unprocessed range can contain
a variety of other disturbances as well as gravity signal, which may distort the TTL results.
In fact, for instance the activation of attitude control thrusters turns out to be a big hurdle
within this approach.

Subtraction of gravity model from the range

Another possible way is to subtract a static gravity model, as well as accelerometer data from
the range to obtain so-called pre-fit residuals. Those should in theory still contain the TTL
error, and may thus be used for the estimation of coupling factors.

Gravity fit excluding coupling factors

Within this approach, a gravity fit is performed, excluding the estimation of coupling factors,
to obtain so-called post-fit residuals. These residuals are then used for the estimation of the
TTL error. In theory, the pots-fit residuals could still contain the unchanged TTL error as it
was present in the raw range. However, it is uncertain whether it would be partly absorbed
by other parameters that are estimated during the gravity fit.

Gravity fit including coupling factors

One possible approach is to include the estimation of LRI TTL coupling factors in the GFR
process. The gravity field of the Earth is usually modeled using spherical harmonic (SH)
functions. Here gravity fit means to determine the corresponding SH coefficients that yield
the best fit of the model to the satellite data. It is common practice to include certain
parameters such as ACC bias and scale in the same fitting process. I.e. these parameters are
estimated together with the SH coefficients. Thus, it should be technically possible to add the
TTL coupling factors to the list of parameters to be determined.

The technique of GFR is a complicated topic on its own and is beyond the scope of this
thesis. This approach is thus not pursued in this thesis. A possible drawback of it could be
that the coupling factors absorb more of the data than they are supposed to, e.g. due to other
effects which are correlated with the inter-satellite pointing angles.

3.3.2 TTL estimation work flow

By the time of writing, the LRI is in operation and a sufficient amount of data is available.
A major part of the investigations, which form the basis of this thesis, was carried out before
the launch of GFO and thus before the availability of GFO data. This time was used to gain
experience and familiarity with GRACE data, study the theory of S/C attitude determination,
and the necessary data analysis tools and methods. The LRI TTL effects were studied and
a TTL model was derived. Moreover, the simulation of maneuvers and sensor data is a basic
prerequisite in order to test the parameter estimation algorithms, as well as for the purpose
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of maneuver design. The latter was a necessary task to be carried out before the launch
of GFO, in order to be prepared to make a proposal for a dedicated LRI TTL calibration
maneuver, should the CMC maneuvers turn out not to be sufficient. Simulations are therefore
also incorporated in the overall strategy depicted in Fig. 3.15. These will be treated in the
following chapter. The data processing and analysis of real data, carried out after the launch,
is discussed in Chap. 5.

Figure 3.15 illustrates the different steps in the TTL calibration work flow. It is applicable
for any of the five basic concepts described above, however, the individual steps should be
adjusted accordingly. Out of the different basic concepts described above, satellite rotation
maneuvers seemed to be the most promising approach. The different steps are briefly addressed
individually in the following. For each step, a reference to the respective section in this thesis
is given, where it is treated in detail.

Figure 3.15: Flow chart illustrating the path to LRI TTL calibration.

Data and data processing

Data and data processing for TTL estimation is explained in Sec. 5.1. Attitude data processing
in particular is treated in detail in Sec. 2.2.

TTL model

The linear TTL model for the LRI that will be assumed in this thesis has been derived in
Sec. 3.2. Considered will be merely linear coupling factors, which are assumed to be related
to the components of the VP-CoM offset according to Eq. (3.52). Roll coupling factors are
expected to be close to zero. If this expectation can be confirmed, it may be sufficient to
estimate pitch and yaw coupling factors from thereon.

The ARC model is given in Eq. (3.52). Since there the coupling factors depend merely on
the S/C separation, it may not be necessary to estimate these factors continuously. Once the
model is confirmed, the ARC error term can be computed for any time.

Simulations

The simulation of maneuvers is an important step to prepare for TTL estimation before the
mission launch. It is treated in Sec. 4.2. It is a useful tool which may also be useful for future
missions.
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Estimation algorithms

The estimation algorithms which were used in this study are described in depth in Sec. 5.2.
Several different approaches will be tested and their performance will be evaluated.

TTL estimation

The key point of TTL and ARC estimation is to determine the coupling factors. This step is
where the outputs of the previous steps are combined, which are: processed range and pointing
angles, as well as estimation algorithms based on a TTL model. The output of this step are
the TTL and ARC coupling factors. The final results are shown in Sec. 5.3.

LRI calibration, CoM estimation, future missions

Once the coupling factors are estimated, the total error term can be computed using pointing
angles from any of the mentioned sources. This error term can be subtracted from the LRI
range to obtain the calibrated range, see Sec. 5.4. Any insights that were gained can be used to
derive lessons learnt for future missions which are utilizing inter-satellite laser interferometry.
According to Sec. 3.2, the coupling factors may moreover be used to derive the offsets between
S/C CoM and TMA VP. With many subsequent data points available, one can track the CoM
movement over time, see also Sec. 5.3.4.



Chapter 4

Satellite rotation maneuvers

For the purpose of this study, a satellite rotation maneuver is a sequence of angular S/C motion,
which is evoked by a pre-defined control torque, executed using the onboard attitude control
mechanisms. In this thesis, the fact is utilized that rotation maneuvers evoke a magnified TTL
error with a periodic profile. As such, it is much easier to be isolated from the measurements
than the TTL error which is present in the absence of a rotation maneuver. This chapter
is meant to cover all aspects of S/C rotation maneuvers, which are relevant for the analysis
presented in this thesis.

As will be seen, the so-called center-of-mass calibration (CMC) maneuvers can be utilized
for the LRI TTL estimation, and they will in fact be used to obtain the estimated coupling
factors presented in this thesis, cf. Chap. 5. In Sec. 4.1, the CMC maneuvers are described
in detail. Their suitability for LRI TTL estimation is examined here, since they are primarily
performed for a different purpose. Also, some emphasis is put on how the CMC maneuvers
have changed from GRACE to GFO.

Section 4.2 is meant to give a comprehensive description of the maneuver simulation tech-
nique, which is restricted to using MTRs or attitude thrusters for attitude actuation. It can
be used as a guide for simulating satellite rotation maneuvers, which is also applicable beyond
GFO. The most important force and torque models are described, as well as the integration
technique. The methods are validated using data from the real GFO mission.

In Sec. 4.3, it is illustrated in much detail how to design a rotation maneuver for the purpose
of estimating TTL coupling. When planning a maneuver, some choices can be made and some
restrictions have to be respected. The entire procedure of making these decisions is described.
In doing so, it is essential to be clear about what the exact purpose of the maneuver is. This
will be elaborated on, with a focus on LRI TTL coupling. In the end, some configurations can
be derived which are optimal for this specific purpose.

Some simulation results are presented in Sec. 4.4: i) reconstruction of CMC maneuvers
in order to validate the simulation technique; ii) simulation test case of 14 maneuvers, uti-
lizing two different frequencies and a phase shift; iii) full simulation test case with optimal
parameters; iv) simulation of longer maneuvers with occasional activation of attitude control
thrusters.

4.1 Center-of-mass calibration (CMC) maneuver

Two types of maneuver procedures exist for GFO, which have already been common practice
for GRACE: center-of-mass calibration (CMC) maneuvers and KBR maneuvers. Both are
potentially interesting for LRI TTL estimation, since they consist of periodic pointing angle
oscillations. However, it can be seen immediately that the LRI cannot take measurements
during KBR maneuvers, since the pointing deviation during a KBR maneuver is with up
to 3 ◦, i.e. about 52.4 mrad, too large for the LRI to take measurements. For the sake of



66 CHAPTER 4. SATELLITE ROTATION MANEUVERS

completeness, the KBR maneuvers are described in App. C. This leaves only CMC maneuvers
as a valid option for TTL estimation.

The purpose of the CMC maneuvers for GFO is to determine the offset between the S/C
CoM and the ACC RP. This offset is important to know, since it causes a coupling of S/C
rotations into the accelerometer measurements, cf. [Wan03]. The mission requires that the
offset must not be larger than 0.5 mm, with a stability of 0.1 mm per half year, or better
[Kor+19]. If desired, the S/C CoM can be shifted back to the ACC RP, using movable trim
masses on the satellite. This procedure is called mass trim maneuver. By the time of writing,
such mass trims have been carried out on GF1 on 18 July 2018, as well as on 14 May 2020,
not counting mass trims in SF x direction, which do not play a role in this thesis, see also
Sec. 5.3.4. After each calibration, the updated offset vector pointing from the ACC RP to the
S/C CoM is reported via the VCM1B data product [Wen+19].

Figure 4.1: First two cycles of GF1 magnetic torque rod currents applied during a CMC roll
maneuver on 26 August 2019.

The CMC maneuvers are performed using MTRs, whose primary purpose is to control the
S/C attitude in the nominal mission phase [Her+04]. These rods produce a magnetic dipole
moment, which causes a torque in combination with the Earth’s magnetic field, as described in
Sec. 2.3. During a CMC maneuver on GFO, two of the torque rods are activated in such a way
that the resulting magnetic dipole moment is aligned perpendicular to the desired rotation
axis. Its magnitude profile is rectangular with a period of 12 seconds, yielding a signal with
the highest component at the first harmonic, i.e. with a Fourier frequency of 83.3̄ mHz, besides
higher harmonics with smaller amplitudes. Each CMC maneuver consists of 15 cycles of this
profile, which results in a maneuver duration of 180 seconds. The nearly square wave pattern
allows for larger angle amplitudes compared to a sine wave pattern, cf. Sec. 4.3.2. While the
period is pre-defined, the optimized combination of the two torque rods which are activated is
computed onboard, using measurements of the Earth’s magnetic field [tea19]. The objective
of this optimization is that the torque should be aligned with the desired rotation axis. Each
maneuver is meant to cause angular motion around one of the S/C axes, i.e. excite either roll,
pitch, or yaw. Figure 4.1 shows two cycles of the profile of the MTR currents, as reported in
the MAG1B data [Wen+19], during a roll CMC maneuver in August 2019. The currents can
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be converted to the resulting magnetic dipole moment ~m by

~m =

IxIy
Iz

 · 250 m2. (4.1)

Figure 4.2: Bandpass filtered inter-satellite pointing angles during CMC maneuvers on GF1
in June 2019. Top left: roll maneuver. Top right: pitch maneuver. Bottom: yaw maneuver.

The magnitude of the angular accelerations typically achieved during the CMC maneuvers
are about 12.4, 2.3, and 1.4 µrad s−2 for roll, pitch, and yaw axes, resulting in pointing angle
oscillations with amplitudes about 50, 10, and 6 µrad, respectively. Figure 4.2 shows pointing
angles during a roll maneuver (top left), a pitch maneuver (top right), and a yaw maneuver
(bottom) performed on GF1 on 22 and 23 June 2019. The pointing angles for this plot were
computed from IMU1B RL04 data, cf. Sec. 2.2.1. All angles in these plots were filtered with
a pass band from 50 to 120 mHz.

The excitation of the roll angle during the yaw maneuver is not desired, but unavoidable for
the following reason. Figure 4.3 shows the SF components of the geomagnetic field, exemplarily
for GF1 in October 2019, plotted over the degree of latitude. Although these depend on the
longitude and on the S/C orientation as well, they typically stay within the depicted margin.
The field lines near the equator have a large component in SF x direction. This x component
is used to achieve a torque in z direction, in order to excite the yaw angle, by activating the
torque rod in y direction. This activation of the y rod produces also a torque in x direction,
exciting the roll angle, due to the magnetic field z component. This z component is rapidly
changing its sign at about zero degree latitude. The result is an unavoidable excitation of the
roll angle, with rapidly changing amplitude. The yaw maneuvers take place near the equator,
but the S/C is not crossing it during the maneuver. With an orbit revolution time of about
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Figure 4.3: Geomagnetic field SF-components from five days in October 2019, from the IGRF12
model.

5600 seconds, in a near-polar orbit, it takes about 15-16 seconds for the S/C to overfly one
degree of latitude. With a maneuver duration of 180 seconds, CMC maneuvers thus take place
in a latitude band of size 11-12 degrees.

For the GRACE mission, roll and pitch maneuvers were executed near the north pole
within the region between 60 and 80 degree latitude, yaw maneuvers were executed near the
equator between 10 and 20 degree latitude [Wan+10]. These locations were carefully chosen.
One of the main criteria for planning the maneuvers is that the achievable magnitude of the
angular acceleration is maximal in one of the S/C axes, while low in the other axes. The
optimal maneuver locations for GFO are similar to those for GRACE, since both missions
utilize a near-polar orbit. Maneuver locations that would be optimal for a dedicated TTL
calibration maneuver are discussed in Sec. 4.3.5.

CMC maneuvers have been performed once per month up to September 2019, and there-
after planned to be performed in a half yearly cycle. At each instance, 14 maneuvers in total,
i.e. 7 maneuvers per S/C, are spread over two calendar days. For each of the angles roll,
pitch, and yaw, two maneuvers are performed. Furthermore, one mixed maneuver per S/C is
performed, exciting both roll and pitch angles. The same procedure was used for GRACE,
however, with a slightly different magnitude profile of the torque.

As far as the estimation of the offset between ACC and CoM is concerned, the CMC
maneuvers can be performed simultaneously on both S/C, since the measurements of one
accelerometer are independent of the rotations of the distant S/C. Regarding the LRI, the
pointing variations of both S/C couple into the same measurement, the biased range. If both
S/C simultaneously perform rotation maneuvers, it may not be possible to disentangle the two
effects, which would likely result in less accurate estimation of the LRI TTL coupling factors.
For this reason, CMC maneuvers on GFO are planned such that the time spans of any two
maneuvers do not overlap. Since the accuracy of TTL estimation from CMC maneuvers seems
to be sufficient, no dedicated TTL calibration maneuvers are planned for the GFO LRI. For
the sake of completeness, in App. C, the geometric ranging error of the KBR instrument is
described, as well as the rotation maneuvers which are performed in order to calibrate this
error.

In the following section, 4.2, a technique for simulating individual rotation maneuvers is
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developed. Afterwards, in Sec. 4.3, optimal maneuver parameters for the purpose of LRI TTL
estimation are derived, which can then be compared to the values of a CMC maneuver.

4.2 Maneuver simulation

The dynamics of rotational motion are given by Eqs. (2.18) to (2.20) in Sec. 2.1.2. According
to Eq. (2.20), the S/C angular accelerations are driven by the total torque ~τ that is acting on
the S/C. Thus, in order to carry out a rotation maneuver, one must apply a control torque
which is large enough to dominate the environmental torque. Defining the control torque is
the goal of planning and simulating S/C rotation maneuvers.

Simulating a rotation maneuver means to integrate the state vector of the S/C attitude,
and, if applicable, also that of the S/C position. Besides a suitable initial state, this requires
knowledge of the torque and, if applicable, the forces acting on the S/C. Different types of
torque will be defined and analyzed in Sec. 4.2.1. Some force models are defined in Sec. 4.2.2,
which are later used for orbit integration. Sec. 4.2.3 covers all other aspects of the simulation
technique used in this analysis.

4.2.1 Torque

Any force ~F acting on a point of the S/C produces a torque, unless the force vector is exactly
parallel or antiparallel to the vector ~r pointing from the S/C CoM to that point. These torques,
for each point of the S/C given by

~τ = ~r × ~F, (4.2)

in general do not sum to zero when accumulated over the whole S/C. The total torque ~τ can
be decomposed into environmental nongravitational, gravitational, and control torque:

~τ = ~τng + ~τgrav + ~τctrl. (4.3)

In the following, some sources of S/C torque for a low Earth orbit (LEO) satellite such as
GFO are defined.

Nongravitational torque

The environmental nongravitational torque can be decomposed further into its components.
For the purpose of this thesis, merely aerodynamic torque and solar radiation torque are
considered, i.e.

~τng = ~τaero + ~τsolar. (4.4)

The aerodynamic torque is the torque caused by atmospheric drag. It can be computed
by integrating Eq. (4.2) over the outer surfaces of the S/C , cf. [Wer78],

~τaero =

∫
~r × d~Faero. (4.5)

The solar radiation torque is caused by solar radiation pressure forces acting on the S/C
surfaces. Similar to the aerodynamic torque, it is simply defined by integrating the torques
acting on each surface element of the S/C, which can be written as

~τsolar =

∫
~r × d~Fsolar. (4.6)

In order to compute these torques, the respective force models must be available. The
force models are introduced in Sec. 4.2.2 below. For the computation of solar radiation pres-
sure accelerations, merely the forces of each outer S/C surface which is exposed to sunlight
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need to be determined and summed up. A larger effort is required to compute the torque,
since there the force model should be evaluated for every point of the outer S/C surfaces. A
method to approximate this is to consider finite surface elements and use summation instead
of integration, i.e. with a so-called finite element model (FEM).

In principle, any force can create a torque. However, atmospheric drag (ATD) and solar
radiation pressure (SRP) are the largest sources of nongravitational acceleration for satellites
flying at a similar altitude as GFO, i.e. 500 km. Thus, these two types of nongravitational
torque are considered the most relevant. Examplarily, Fig. 4.4 shows modeled aerodynamic and
solar radiation torques for GF1 given in SF during roughly 3 orbit revolutions in April 2019.
Other contributions, such as torque caused by radiation from the Earth, are not investigated
for the analysis presented in this thesis. In the following, the gravitational torque is defined.

Figure 4.4: Modeled GF1 torques for 16800 seconds during 10 April 2019, given in SF. Left:
aerodynamic torque. Right: solar radiation torque.
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Gravitational torque

Similar to the nongravitational torque, the gravitational torque, which is caused by the inho-
mogeneity of the gravitational field, can be obtained by regarding infinitesimal parts of the
S/C, and then integrating in order to obtain the total torque. For the purpose here, the
Earth’s mass distribution can be assumed to be spherical. Then, according to [Wer78], the
gravitational force acting on a mass element dm of the S/C is given by

d~F = −µ
~R

R3
dm, (4.7)

where µ is the Earth’s gravitational constant, ~R is the vector pointing from the geocenter to
the mass element, and R = |~R|. The torque imposed on the S/C by the force d~F is then

d~τ = ~r × d~F. (4.8)

denoting by ~r the vector pointing from the S/C CoM to the mass element dm. The total
gravitational torque can thus be computed as

~τgrav =

∫
d~τ = −µ

∫
~r ×

~R

R3
dm, (4.9)

where the integral is to be taken over the whole S/C body. Because of the dependency on the
inverse distance squared, this integral is in general not zero. By reformulating and allowing
some approximations, cf. [Wer78], the total gravitational torque can be written in terms of
the MoI matrix J ,

~τgrav =
3µ

R3
sat

(~esat × (J~esat)) , (4.10)

where ~esat is the normalized vector pointing from the center of the Earth towards the S/C
CoM, and Rsat is the distance between the geocenter and the S/C CoM. For GFO, J is given
by Eqs. (2.22) and (2.23).

Control torque

The control torque should be governing the total S/C torque during the execution of a rotation
maneuver. Means of S/C attitude control have been discussed in Sec. 2.3. For GRACE and
GFO, two types of attitude control mechanisms come into consideration for performing rotation
maneuvers: cold gas thrusters and MTRs. Thus, the control torque can be written as the sum
of magnetic torque and thruster torque:

~τctrl = ~τmag + ~τthr. (4.11)

On GFO, there are 12 attitude control thrusters, cf. Sec. 2.3.1. Using Eq. (2.44), the
control torque due to thrusters is thus obtained by summing over all thrusters, i.e.

~τthr =

12∑
i=1

~ri × ~Fi, (4.12)

where each force ~Fi is zero most of the time, when the respective thruster is not firing. In
addition to the torque, each thruster i is causing a linear acceleration of the S/C as well,

according to the force ~Fi. In order to cancel out this linear acceleration, attitude control
thrusters are activated in opposite pairs. It is also beneficial to let the second thruster of a
pair be placed opposite to the first one, so that they produce the same torque. I.e., for each
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thruster with position ~r and force ~F , there is another thruster with position −~r and force −~F .
Thus, in an ideal simulation environment, the torque produced by a pair of thrusters is equal
to the torque of one thruster multiplied by two. Equation (4.12) then becomes a sum over 6
thrusters.

Since the attitude control thrusters are rigidly connected to the S/C, the torque which is
exerted by each one can be assumed to be time independent. Thus, the six torque vectors can
be computed once and temporarily added to the total S/C torque in the integration process,
in case it is desired to apply a thruster control torque during the maneuver simulation.

The working principle of the MTRs has been sketched in Sec. 2.3.1. Recall that the torque
produced by the MTRs is given by Eq. (2.42):

~τmag = ~m× ~B, (4.13)

where ~m denotes the magnetic moment, and ~B the Earth’s magnetic field. The right plots in
Fig. 4.5 exemplarily show time series of actual magnetic torque for GF1 during 10 April 2019.
No rotation maneuvers were performed during this period.

Note that ~m is the sum of the magnetic moments produced by the different torque rods.
Those are aligned with the SF axes, so that each component of ~m represents the magnetic
moment of one of the torque rods. In reality, the alignment of the rods may slightly deviate
from the nominal alignment. Moreover, Eq. (4.13) applies to the total dipole moment of the
S/C, which may have other contributors, e.g. due to currents in S/C electronics. These effects
could be roughly modeled by adding noise to the control magnetic moment ~m, however, it
was neglected in the simulations described here, and ~τm given in Eq. (4.13) was considered
the total magnetic torque of the S/C. There are sources of undesired magnetic torque, such
as Eddy currents or hysteresis, cf. [Wer78], but these are also considered negligible for the
purpose of this study.

Earth magnetic field

In order to compute the magnetic torque, a model of the Earth’s magnetic field is needed.
For the analysis presented in this thesis, a Matlab implementation of the IGRF12 model has
been used3. For the computation of ~B, the NED frame is used, cf. Sec. 2.1.1. The inputs are
time and geographic position in terms of latitude, longitude, altitude. The output, that is ~B,
needs to be rotated from the NED frame to the ECI frame, and subsequently to the SF. The
magnetic torque may then be computed by Eq. (4.13), where ~m can be chosen freely. Each
GFO satellite also hosts a magnetometer to measure the Earth’s magnetic field. This data
is provided in the MAG1A and MAG1B data products [Wen+19]. Figure 4.6 compares the
IGRF12 model to the measured magnetic field.

4.2.2 Force models

At the altitude of the GFO satellites, i.e. about 500 km, both SRP and ATD accelerations
are relevant. At significantly lower altitudes, the ATD is the dominant nongravitational force,
whereas at significantly higher altitudes, SRP becomes the dominant nongravitational force.
However, the gravitational pull from the Earth is by far the largest contribution to the S/C
acceleration. In the following, models for these three acceleration components are described.

Earth gravitational model

The gravity field due to the Earth’s mass is described in terms of the gravitational potential
at each point in the vicinity of Earth. A useful tool to approximate such a function are the

3© Drew Compston (2020). International Geomagnetic Reference Field (IGRF) Model
(https://www.mathworks.com/matlabcentral/fileexchange/34388-international-geomagnetic-reference-field-
igrf-model), MATLAB Central File Exchange. Retrieved November 26, 2020.
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Figure 4.5: GF1 torques in SF, for 16800 seconds during 10 April 2019. Left: gravitational
torque. Right: magnetic control torque, derived from MAG1B data.

so-called spherical harmonic (SH) functions. These are an orthogonal set of base functions
which are defined on the entire sphere. Similar to the way a function defined on R can be
approximated by a Fourier series, a function f defined on the sphere can be approximated by
SH functions as

f(φ, λ) =
∞∑
n=0

n∑
m=0

(
ānm cos(mλ) + b̄nm sin(mλ)

)
P̄nm(sinφ), (4.14)

where φ, λ are spherical coordinates. ānm and b̄nm are called SH coefficients of degree n and
order m, also called Stokes coefficients. P̄nm are the normalized associated Legendre functions.
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Figure 4.6: Left: Comparison of Earth magnetic field in SF, model (IGRF12) vs. MAG1B
data, for 16800 seconds during 10 April 2019. Right: Residuals, model (IGRF12) minus
measurement (MAG1B).

The SH base functions are now defined by

Ȳ c
nm(φ, λ) = P̄nm(sinφ) cos(mλ) (4.15)

Ȳ s
nm(φ, λ) = P̄nm(sinφ) sin(mλ). (4.16)

These can then be used to approximate the function f , which is in this case the Earth’s
gravitational potential V = V (r, φ, λ):

V (r, φ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

(
c̄nmȲ

c
nm + s̄nmȲ

s
nm

)
(4.17)
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with

c̄nm =
R−n

GM
ānm (4.18)

s̄nm =
R−n

GM
b̄nm (4.19)

being the scaled versions of ānm and b̄nm.
The technical derivation of this representation is presented in detail in [HM67]. c̄nm and

s̄nm are commonly used coefficients to describe a model of the Earth’s gravitational potential.
The Earth Gravitational Model 2008 (EGM08) is a model of the Earth’s gravitational potential
given in terms of SH coefficients, which is presented in [Pav+12]. It is complete to degree and
order 2159 and publicly accessible. In this thesis, the EGM08 coefficients are used, together
with a Matlab code4 to convert them to linear accelerations acting on the GFO S/C.

Atmospheric drag model

The acceleration due to ATD can be modeled by [Mon00]

~a = −1

2
CD

A⊥
m
ρv2~ev, (4.20)

where CD is the drag coefficient, A is the cross-sectional area, m is the S/C mass, ρ is the
atmospheric density, v is the scalar S/C velocity relative to the atmosphere, and ev is the
normalized velocity vector.

The mass of each GFO satellite is roughly m = 601 kg, cf. [Wen+19]. A time series of the
mass is also provided in the MAS1B data product. The drag coefficient CD depends on the
material of the outer surfaces of the S/C, as well as on its shape. It is a dimensionless constant,
which is not trivial to determine. A value of CD = 2 was used for the simulations presented
here, which is a common value for nearly cuboid shaped objects. The S/C velocity can be
obtained from GPS positions, provided in the GNV1B data. Note that ~v = v · ~ev = ~vECEF

must be considered in ECEF frame, since this is the velocity relative to the atmosphere, when
winds are neglected.

The cross-sectional area A⊥ slightly depends on the attitude of the S/C. For GFO, the
angle between LoS and velocity vector typically stays in the range between 10 and 15 mrad.
Therefore, A⊥ does not vary with time by a large amount. For the simulations discussed here,
however, the author has implemented a geometrical model of the S/C body, based on the
description given in [Wen+19]. In combination with the S/C attitude, it is then possible to
compute a time series of A⊥. Based on such an analysis, it seems to vary by about 15 %,
between 1.03 and 1.18 m2.

In Eq. (4.20), the term whose magnitude varies the most along the orbit trajectory is the
atmospheric density ρ, i.e. the total mass density of the atmosphere at the S/C position, given
in kg m−3. In order to compute it, the Matlab function atmosnrlmsise00 was used, which is
part of the aerospace toolbox for Matlab. For the altitude of the GFO satellites, modeling ρ
requires 10.7 cm solar flux data, as well as the geomagnetic activity indices Kp and Ap, all of
which are publicly available 56.

For the GFO satellites, the ATD accelerations can be as large as 35-40 nm s−2. The left
plots in Fig. 4.7 show the ATD accelerations of GF1 on 10 April 2019, for a time span of 16800
s. The plots show the acceleration components in SF. The largest acceleration due to ATD

4written by Majid Naeimi, Institut für Erdmessung, Hannover, Germany
5The f10.7 data for this analysis has been downloaded from Natural Resources Canada: ftp://ftp.seismo.

nrcan.gc.ca/spaceweather/solar_flux/daily_flux_values/fluxtable.txt
6The Kp and Ap indices for this analysis have been downloaded from the Deutsches GeoForschungsZentrum

(GFZ): http://swe.gfz-potsdam.de/kp/Kp_filelist.html

ftp://ftp.seismo.nrcan.gc.ca/spaceweather/solar_flux/daily_flux_values/fluxtable.txt
ftp://ftp.seismo.nrcan.gc.ca/spaceweather/solar_flux/daily_flux_values/fluxtable.txt
http://swe.gfz-potsdam.de/kp/Kp_filelist.html
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is in the x direction, which is the axis pointing towards the distant S/C, or roughly in flight
direction, cf. Sec. 2.1.1.

The ATD model, as well as the model for SRP, implemented by the author, have been
validated with GFO accelerometer data. Figure 4.8 shows a comparison between linear non-
gravitational accelerations provided in the ACT1A data product on the one hand, and the
sum of ATD and SRP on the other hand. Plotted are the components of the respective accel-
erations in SF, covering the same time span as for Figs. 4.4 to 4.7. Here the same model was
used, which has already been used to derive the ATD torques shown in Fig. 4.4.

Solar radiation pressure model

The solar radiation pressure (SRP) is the pressure which acts on a surface that is exposed to
sunlight, i.e. the pressure which is caused by incident photons hitting the surface and hence
applying a force to it. In App. D, a simple SRP model is derived, considering merely radiation
pressure from direct sunlight. For more theoretical background, see [Mon00]. The formula
that was used for the analysis behind this thesis is given as follows, in terms of the SRP
acceleration acting on a GFO S/C:

~a = −ν P�
m

(
AU

x

)2∑
i

[cos(θi)Ai · ((1− ζi) · ~e+ 2ζi cos(θi) · ~ni)] , (4.21)

where the notation is given in App. D.
For the GFO satellites, the SRP accelerations are of the order of 0 .. 10 nm s−2. Figure 4.7

shows the SRP accelerations of GF1 on 10 April 2019, covering a time span of 16800 seconds,
which corresponds roughly to three orbit revolutions. The figure shows the components in SF,
cf. Sec. 2.1.1 for the frame definition. Figure 4.8 compares linear nongravitational accelerations
provided in the ACT1B data product to the sum of modeled ATD and SRP on the other hand,
showing good agreement. Note that some residual between the two time series is expected,
since the ACT data also contains additional accelerations such as those caused by attitude
control thruster firings.

4.2.3 Simulation technique

In order to simulate a rotation maneuver, it is necessary to integrate the attitude state vector,
cf. Eqs. (2.18) to (2.20). This yields the attitude quaternions which describe the satellite’s
orientation w.r.t. inertial space, cf. Sec. 2.1.2. For all practical purposes, the integration
requires knowledge of the S/C positions as well, e.g. for the computation of torque. Also,
simulating MTR control requires knowledge of the ambient magnetic field, which again de-
pends on the S/C position and orientation. Furthermore, here the purpose of the simulated
maneuvers is to investigate their benefit for estimating TTL coupling. Since the TTL coupling
model derived in the previous chapter is expressed in terms of S/C pointing angles, those must
be simulated as well. This in fact requires knowledge of the positions of both S/C, in addition
to the attitude quaternions.

In principle, the S/C positions may be taken from an existing orbit, e.g. from real GNV1B
data in the case of GFO, or from an independently simulated orbit. Then, it is merely needed
in order to integrate the attitude state vector of one of the S/C. However, if the goal is
to simulate a comprehensive test case including inter-satellite ranging, more precise orbit
propagation becomes necessary.

State vector

Two cases are distinguished here, depending on whether the orbit is already given or it needs to
be integrated as well. If the orbit, i.e. the S/C positions, are given, merely the 7-dimensional
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Figure 4.7: GF1 nongravitational accelerations rotated to SF, for 16800 seconds during 10
April 2019. Left: ATD. Right: SRP.

attitude state vector needs to be considered. Recall that it is given by

~Xatt =

(
~q
~ω

)
, (4.22)

cf. Eq. (2.18). If the orbit must be integrated, the orbit and attitude dynamics equations are
used, see also [Wan00]. The 13-dimensional state vector is then given by

~X =


~p
~v
~q
~ω

 , (4.23)
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Figure 4.8: Left: Comparison of GF1 nongravitational accelerations rotated to SF, models
(ATD + SRP) vs. ACT1A data, for 16800 seconds during 10 April 2019. The mean µ of each
time series has been subtracted. Right: Residuals, models (ATD + SRP) minus measurement
(ACT1A).

where rows 7 to 13 are just the attitude state vector as before. The derivative of ~X is given
by

~̇X =


~v
~a

1
2Ω(~ω) · ~q

J−1(~τ − ~ω × (J~ω))

 , (4.24)

with inertial position ~p, velocity ~v and acceleration ~a of the satellite. The notation of the
attitude part has been defined in Sec. 2.1.2.
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In general, the two parts of the state vector ~X, i.e. rows 1 to 6 on the one hand and rows
7 to 13 on the other hand, must be integrated simultaneously, since they are interdependent.
That is, the S/C orbit depends on the attitude and vice versa. In practice, e.g. for short
time periods such as the duration of a CMC maneuver, the orbit of a S/C will be relatively
insensitive to small variations of its attitude. In this case, it is possible to integrate the two
parts of X separately. In the end, it depends on what level of accuracy is required for both
the orbits and the S/C attitude.

Moreover, in some cases, it is desired to simulate an active pointing control. This means
that a control torque is not only applied with the goal of performing a rotation maneuver, but
an additional control torque is required to keep the absolute pointing deviation below some
defined threshold. If this is the case, the integration of the attitude state requires knowledge
of the orbits of both S/C, not only of the S/C performing the maneuver, since the pointing
angles depend on both S/C positions.

Initial conditions

For the integration, the initial quaternions should be such that the S/C pointing is nearly
nominal. Apart from that, they can be chosen freely. For instance, initial quaternions may
simply be taken from SCA1B data. Alternatively, it can be assumed that the S/C pointing is
perfect at the time of initialization. This means that SF and LOSF coincide, or, equivalently,
the three pointing angles are all set to zero. In other words, the matrix RLOSF

SF is the identity
matrix, cf. Sec. 2.1.3. According to the decomposition in Eq. (2.30), this implies that

RECI
SF =

(
RLOSF

ECI

)−1
=
(
RLOSF

ECI

)T
. (4.25)

The matrix RLOSF
ECI can be obtained using Eq. (2.3). Note that this already requires knowledge

of the initial positions of both GFO satellites.
The initial angular velocities need to be defined as well, and also may not be chosen

arbitrarily, since a drift of the pointing angles during the maneuvers is not desired. Angular
velocities in x and z axes of the SF should therefore be close to zero. The initial angular
velocity y component corresponds to the pitch angle. If Torbit is the orbit period of the S/C,
the y component should be close to 2π rad divided by Torbit, since the satellite undergoes a
complete 360 ◦ turn during the course of a whole orbit. For GFO, Torbit ≈ 5600 seconds as of
January 2020, and hence the initial angular velocity vector should be close to

~ω0 =

 0
−0.00112

0

 rad s−1, (4.26)

expressed in SF, for the S/C which is flying forward. For the S/C which is flying backwards,
the y component of ω0 must have the opposite sign. One way to define initial angular velocities
is to derive them from measured Level-1 data. It was explained in Sec. 2.2.1 how the angular
velocity vector ~ω in SF can be derived from IMU data, cf. Eq. (2.35). A further alternative is
to determine the derivative of the SCA1B attitude quaternions at the time of initialization t0,
and afterwards determine ω(t0) by performing a fit of Eq. (2.19).

In case initial values are taken from the IMU, one needs to estimate the angular velocity
bias which is inherent in the data. The same has to be done if IMU data is integrated to
obtain pointing angles, as described in Sec. 2.2. The author has estimated the IMU bias by
matching IMU-derived pointing angles with those derived from SCA1B data. Figure 4.9 shows
estimated angular velocity biases for GF1 during roughly one day in August 2019, estimated
every 100 seconds. The estimated biases show large variations at the orbit frequency, in this
case approximately 174 µHz, as well as at twice the orbit frequency. The origin of these
variations was not investigated further.
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Figure 4.9: Estimated GF1 IMU angular velocity bias; components in SF.

Integration

Before the integration, some more preparation is necessary. As described above, the state
vector and the initial conditions have to be defined. The latter means that also the time
of initiation t0 must be chosen, and additionally the duration T of the maneuver, as well
as the integration stepsize ∆t. Moreover, the framework for the simulation should be set, i.e.
which models are included in order to compute S/C torque and acceleration, which integration
technique is used, and what type of ACS is implemented.

If MTRs are used to perform the rotation maneuver, it is in principle possible to operate
an ACS during the maneuver, which is based on another type of control torque mechanisms,
such as thrusters. For this thesis, a scenario has been tested in which the ACS is a simple
”bang-bang” controller based on attitude control thrusters. This type of controller acts if and
only if at least one of the pointing angles - roll, pitch, yaw - exceeds a certain threshold. If this
is the case, the respective thruster is firing, which causes this angle to move into the margin
again. The thruster activation time is considered fixed in this analysis. If a single thruster
firing is not enough to drive the angle back below the threshold, another thruster firing will be
initiated automatically after a minimum waiting time. For the time of activation, the thruster
torque τthr can be computed and added to the control torque.

In order to implement an ACS, the S/C pointing angles must be derived at each step in
the integration process. Based on these angles, an algorithm must decide whether and how
the controller should react. The derivation of pointing angles requires knowledge of the S/C
attitude, as well as the positions of both S/C. This implies that the orbit of the satellite not
performing the maneuver must be obtained beforehand. For the purpose of this analysis, it is
not necessary to integrate state vectors of both S/C simultaneously.

Most importantly, one must define the control torque which is supposed to produce the
desired rotation maneuver. In real satellite missions, it is either pre-defined or computed
on board. Note that, if MTRs are used, the actual commanded torquer currents cannot be
known beforehand, since they depend on the S/C attitude w.r.t. the ambient geomagnetic
field. Hence, the maneuver torque cannot be pre-defined exactly in this case. For GFO,
a desired torque profile is programmed, and when the maneuver is initiated, an onboard
computer determines how the torque rods must be activated in order to achieve the desired
torque [tea19].
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This analysis focuses on the GFO mission, however, it is assumed here that the profile
of the MDM is pre-defined, instead of a desired torque. Equivalently to defining the MDM
profile, the torquer input currents can be defined. The MDM activation profile is represented
as a 3-valued function ~m(t). This function, more precisely its values for each instance of time
tk = t0 + k∆t, k = 1, . . . , T/∆t, must be defined before the integration. Considering the
geolocation of the satellites at the time of initiation, the resulting torque can be predicted
accurately. On this basis, ideal maneuver locations can be identified beforehand, see also
Sec. 4.3.

Here, the Runge-Kutta 3 (RK3) method has been used for integration, with an integration
step size of ∆t = 1 s. RK5 and RK7 methods have also been tested. For the purpose of
this analysis, the results of RK5 and RK7 can be considered equivalent to those of RK3.
For theoretical background information on numerical integration, the reader is referred to
[MNR12].

In the following section, it is investigated how a rotation maneuver can be designed. When
planning a rotation maneuver, some decisions have to be made and some parameters have
to be chosen. Those are elaborated on, with a special focus on LRI TTL calibration. Some
concepts are also applicable for satellite missions which are similar to GFO. In the end, optimal
parameters for the purpose of estimating LRI TTL coupling are derived.

4.3 TTL maneuver design

The goal in this section is to investigate how to design rotation maneuvers, and find the ones
which are optimal for the purpose of estimating LRI TTL coupling. For one thing, this requires
the capability of simulating realistic rotation maneuvers. In the previous section, it has been
described in detail how the simulation can be carried out. Apart from that, three more things
are required, which are listed in the following.

Firstly, one needs an objective and efficient way to assess the quality of a rotation maneuver,
for the purpose of estimating TTL coupling. More precisely, this must be a quantitative
function with the input being the parameters that define an individual maneuver. This way,
the respective values for the individual maneuvers can be compared against one another. Such
a function will be developed in Sec. 4.3.1.

Secondly, it will be elaborated what the maneuver parameters are. I.e., what are the choices
to be made when planning a rotation maneuver? These parameters can be chosen freely with
some restrictions. It shall be seen that a maneuver is completely defined by deciding on the
following four choices, treated in Secs. 4.3.2 to 4.3.5.

1. How is the control torque defined? (→ Sec. 4.3.2)

2. What should be the maneuver frequency? (→ Sec. 4.3.3)

3. What should be the duration of the maneuver? (→ Sec. 4.3.4)

4. What should be the geographic location? (→ Sec. 4.3.5)

Thirdly, the above mentioned maneuver parameters should be optimized w.r.t. the maneu-
ver quality, as it is defined in Sec. 4.3.1. The results of this optimization will be demonstrated
in Sec. 4.3.6.

4.3.1 Maneuver assessment

The purpose of the maneuvers investigated in this thesis is to excite the inter-satellite pointing
angles, and thereby cause a TTL error with a corresponding signature in the measured range.
Using a coupling model, for the LRI discussed in Chap. 3, the measured pointing angles can
then be fitted to the range. An objective and quantitative measure of the success of this
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procedure are the standard deviations (STD) of the estimated parameters. The different
methods of estimation are discussed in detail in Chap. 5 below. A standard and solid method
for a linear coupling model is given by the least squares (LSQ) estimator,

λ̂ =
(
θ̄T θ̄

)−1
θ̄T ρ̄. (4.27)

Here, θ̄ is an (N ×M)-matrix of bandpass filtered pointing angles, with N being the number
of samples and M the number of angles to be fitted. See Sec. 5.1.6 for more details on the
choice of the bandpass filter. λ̂ has size (M × 1) and denotes the estimated linear coupling
factors. ρ denotes the filtered range, with size (N × 1). The STD of the LSQ estimator is
given by [HTF09]

σ(λ̂) = σ (nρ) · diag

(√∣∣(θ̄T θ̄)−1
∣∣) , (4.28)

where σ(nρ) is the STD of the measurement noise which is present in the filtered measured

range ρ̄. In Eq. (4.28), the operation
√
| · | applied to a matrix is to be understood ele-

mentwise. This formula for σ(λ̂) may be underestimating the uncertainty of the estimated
parameters. Note that the LSQ estimation method assumes that the noise nρ has a white
frequency spectrum, which is not exactly true in reality, but a good approximation. Neverthe-
less, the formula has informative value for comparing the STD of two maneuvers. Moreover,
it is quickly evaluable, and thus the author opted to use it as a basis for defining a maneuver
quality indicator.

It is noteworthy that formula (4.28) can in principle also be used when only one of the
angles is regarded, i.e. M = 1. However, this is only valid if, in relation, the TTL error caused
by all other angles of both S/C is negligible, which can rarely be assumed to be the case. Due
to this, it may be advisable to estimate at least the three angles of one S/C at the same time.
In fact, Eq. (4.28) may be applied to a whole set of maneuvers, by concatenating the time
series. Since the STD is to be minimized, the optimal choice of parameters will be a tradeoff
between large pointing angle excitation, low inter-angle correlations, low ranging noise, a long
maneuver duration, and of course feasibility.

It would be desirable to define an evaluation function by

f (maneuver parameters) = σ(λ̂), (4.29)

which can be minimized w.r.t. the maneuver parameters. However, f is then a function with
M values, the number of angles which are considered. Moreover, f should not be too expensive
to evaluate. For instance, it would be undesirable if an entire rotation maneuver had to be
simulated in order to evaluate f , for each point in the space of maneuver parameters. Instead,
a more efficient way to estimate the pointing angles θ during a rotation maneuver, given a
set of parameters, is introduced. The values of f can thus be approximated very quickly.
While this develops, it should become clear what these parameters are. In the following, three
approximations are made and justified.

The first approximation is, explicitly, not valid in general, but merely for the specific
purpose of this analysis. In this thesis, maneuvers of relatively short duration are investigated,
where one is only interested in a specific part of the pointing angles, the intended part. This
part is typically a signal with a specific frequency, such that it can be separated from the
background signals. Before the parameter estimation, the range and the angles are bandpass
filtered, and merely signal close to that frequency remains. Equations (4.27) and (4.28) then
apply to these filtered time series. In the case of GFO, the lower cutoff frequency of that filter
should be above 37 mHz, where there is much less gravity signal. Under these considerations,
the statement

θ(t) ≈
t∫

t0

ω(s) ds =

t∫
t0

s∫
t0

ω̇(s̃) ds̃ ds (4.30)
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holds, where ω and ω̇ are angular velocities and angular accelerations of the S/C w.r.t. the
SF. Since θ is considered to be filtered, the line θ(t0) + (t− t0) ·ω(t0) was also neglected on the
right hand side. During this chapter, for integral equations such as (4.30), the short notation

θ ≈
∫∫

ω̇ (4.31)

is often used for double time integrals, and similarly for single time integrals. I.e., whenever
the integration variable is omitted, the integration is meant w.r.t. time.

Note again that the approximation (4.30) is to be used with care. The nonfiltered pointing
angles can drift off, e.g. due to an initial angular velocity, or due to the relative change
of positions of the two S/C. This is certainly important for the maneuver planning, since
it restricts the maneuver duration. It will therefore be discussed separately in Sec. 4.3.4.
Moreover, recall that the TTL coupling model for the LRI is linear. In case there is second
or higher order coupling, the absolute pointing deviation is relevant, and not only the high
frequency variations.

Figure 4.10: Left: total S/C angular acceleration from torques, J−1(τ − ω × (Jω)), during a
CMC maneuver on 26 August 2019. Right: cross-term, J−1(ω × (Jω)), for the same period.

One can make use of Eq. (4.30), with the help of the second approximation, which reads

ω̇ = J−1 (τ − ω × Jω)

(1)
≈ J−1τ

(2)
≈

τx/Jxxτy/Jyy
τz/Jzz

 .

(4.32)

Here two approximations have been made. (1) holds because the cross-term ω×Jω is very small
compared to τ . This is demonstrated in Fig. 4.10, which shows the total angular acceleration
(left plot), opposed to the term J−1 (ω × Jω) (right plot), during a CMC maneuver performed
on GF1 during 26 August 2019. Approximation (2) utilizes the fact that the MoI matrix J
given in the SF is almost diagonal in the case of GFO, i.e.

J ≈ diag(Jxx, Jyy, Jzz), (4.33)

cf. Eqs. (2.22) and (2.23). The physical meaning of this is that the S/C principal axes of
rotation, which are the eigenvectors of J , are nearly perfectly aligned with the SF axes. This
is an advantageous configuration, which simplifies the S/C attitude control, since wobbling is
minimized when rotating around one of the principal axes.
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Thirdly, make the approximation that all torques except the control torque are negligible,
i.e.

τ ≈ τctrl, (4.34)

during the execution of the rotation maneuver. Again, similar to the approximation (4.30)
made above, approximation (4.34) is valid because one is, in the end, interested in the bandpass
filtered pointing angles.

Figure 4.11: Left: torques, angular accelerations, and filtered pointing angles derived from
MAG1B torquer currents. Approximated using equations (4.30) to (4.34). Right: Comparison
of filtered pointing angles derived from MAG1B and SCA1B, difference = MAG1B - SCA1B.

These approximations shall be put to the test with GFO data from CMC maneuvers. To
this end, the following steps must be performed.
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1. Compute the magnetic torque, using torquer currents from MAG1B data and the IGRF12
model. The measured magnetic field is also provided in the MAG1B data product
[Wen+19], however, here one would like to stay independent of measurements, and thus
use the model.

2. Use approximation (4.32) to derive the angular accelerations ω̇.

3. Approximate the high frequency part of the S/C pointing angles, by applying (4.30) and
bandpass filtering.

These steps are illustrated in Fig. 4.11, on the left, for a CMC maneuver on GF1 on 26 August
2019. One can compare the approximated filtered pointing angles derived from MAG1B data,
against filtered pointing angles derived from SCA1B and GNV1B data. This comparison is
shown in Fig. 4.11 on the right. They seem to agree well down to the measurement noise of
the SCA1B data. Thus, one may proceed and use these approximated angles to compute σ(λ̂).
Before, white noise with σ = 0.3 µrad is added to the approximated angles, as otherwise the
matrix in Eq. (4.28) becomes close to singular if one of the angles is identically zero, which is
problematic since it must be inverted. Note that this is only an issue for the simulations and
does not affect the analysis of the real mission data.

The STD of the ranging noise, σ(nρ) in Eq. (4.28), may be approximated by generating a
time series of simulated LFN, applying the same filter that was used for the pointing angles,
and then compute the STD of this time series. The Matlab toolbox LISA Technology Package
Data Analysis (LTPDA) provides the function noisegen1D, which can be used to simulate
noise with a given spectrum. From ground measurements, the author has derived a model of
the spectrum of the ranging error caused by LFN, cf. Chap. 3. Here a second order highpass
filter with cutoff frequency 40 mHz was used. Then, the term σ(nρ), which is for now assumed
to be constant, takes roughly the value 0.4 nm.

Now all the pieces have been collected to evaluate the maneuver quality function f = σ(λ̂),
developed in this section. Note that all the steps can be performed very efficiently for many
points in the parameter space. As input for this procedure, the S/C orbit is required, the
approximate attitude, and the profile of the control magnetic dipole moment (MDM). Both
the orbit and the attitude do not have to be precise, and can be simulated or taken from
real mission data, depending on the situation. Given these inputs, the approximated filtered
pointing angles can be computed for a time span of practically arbitrary length.

As another test of this method, the author has performed the steps explained above for the
entire day of 26 August 2019. For the magnetic dipole moment, a copy of the one from a pitch
CMC maneuver performed on that day was used, as it is reported in the MAG1B data. This
MDM is plotted on the left of Fig. 4.12. The right plot shows the results of this procedure
for a time span of roughly one orbit revolution, centered at the pitch CMC maneuver. The y
axis shows the approximated STDs of the estimated TTL coupling factors, which define the
maneuver quality. The approximated STD at the time of the CMC maneuver agree well with
those computed from measured pointing angles, here derived from SCA1B and GNV1B data.
Furthermore, it appears that the location of this maneuver was optimally chosen, given the
specific magnetic dipole moment profile. Note that the upper limit that appears to be in the
right plot, which is in this case attained by the STDs of the roll and yaw CFs, does not reflect
real STDs but is likely an artifact due to measurement noise in the pointing angles. The lower
values seem not significantly affected by this, and thus they can be used for the assessment of
calibration maneuvers.

Finally, one finds that the choices to be made for defining a maneuver, which are relevant
for f = σ(λ̂), are

• the initial time, t0

• the commanded magnetic dipole moment, ~m(t)
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Figure 4.12: Left: MDM produced by the torque rods on GF1, during a pitch CMC maneuver
on 26 August 2019. Right: STDs of estimated coupling factors, derived from approximated
filtered pointing angles, for GF1 during roughly one orbit revolution around a pitch CMC
maneuver (solid lines). For comparison, standard deviations derived from filtered pointing
angles measured by the star cameras (crosses).

Since the orbit is given, choosing t0 is equivalent to choosing the location of the maneuver. This
shall be discussed in Sec. 4.3.5. Once the basic form of ~m(t) is decided, it merely depends on
the duration, the frequency and phase, and which torque rods are activated. In the following
section, possible choices of ~m(t) will be discussed.

4.3.2 Magnetic dipole moment

The rotation maneuver is performed by means of MTRs. Here the control torque is not directly
chosen, but the MDM ~m which causes the control torque. It is clear that ~m should have a
periodic profile, so that it creates a signal with a specific frequency. Here this frequency
is called the maneuver frequency, fm, and the corresponding period is called the maneuver
period, Pm = 1/fm. One may concentrate on two basic shapes, sinusoidal and rectangular,
which may also be called sine wave and square wave profile, respectively.

Denote by tk, k = 1, . . . , N , the time tags for which the maneuver shall be simulated.
Assume that the time steps are equidistant, and denote by ∆t ≡ tk+1 − tk the constant time
difference between two time steps. The term sinusoidal profile means that the MDM of each
of the torque rods has the form

msine(tk) = m0 · sin (2πfm(tk − t0) + ϕ0) . (4.35)

Here, t0 denotes the initial time, defining the maneuver location, which is discussed in Sec. 4.3.5
below. The strength of the MDM can be chosen by m0, where |m0| ≤ 27.5 A m2 for GFO, cf.
Sec. 2.3. Furthermore, an additional phase shift ϕ0 can be introduced.

A rectangular profile means that each of the torque rods produces an MDM of the form

mrect(tk) = m0 ·

{
1, if k mod 2n = 1, . . . , n

−1, if k mod 2n = n+ 1, . . . , 2n
, (4.36)

for k = 1, . . . , N , and for some n ∈ N. The total number of samples, N , must then be a
multiple of 2n. The period of this profile is Pm = 2n ·∆t. Here a phase shift ϕ0 can also be
applied by shifting the profile by the time ϕ0Pm/(2π). Note that, in practice, the achievable
time shifts are restricted to multiples of ∆t.

The MDMs of the three torque rods together define ~m(t). Given t0, the following decisions
regarding ~m(t) have to be made:
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• sinusoidal or a rectangular profile

• which torque rods to activate

• for each of the activated rods, choose: m0, fm or Pm, ϕ0

The torque which results from activating the torque rods depends on the geomagnetic field.
It will, however, have almost the same magnitude profile as the MDM by which it is caused,
unless the geomagnetic field is rapidly changing. Then, recalling approximations (4.30) to
(4.34), one can estimate the amplitude of the resulting pointing angle oscillations. The second
integral of the sinusoidal profile is simply∫∫

msine = − 1

4π2f2
m

msine, (4.37)

with amplitude m0/(4π
2f2
m). The Fourier series of the rectangular profile, i.e. the square

wave, is given by

mrect(t) =
4m0

π

∞∑
n=1,3,5,...

1

n
sin

(
2π

Pm
n(t− t0)

)
, (4.38)

such that one has ∫∫
mrect = −m0P

2
m

π3

∞∑
n=1,3,5,...

1

n3
sin

(
2π

Pm
n(t− t0)

)
. (4.39)

Hence, for a rectangular profile, the magnitude of the pointing angles at the first frequency,
fm = 1/Pm, is by a factor of 4/π larger than a sinusoidal profile of the same period, which
means an increase of about 27 %. This is a clear advantage for a rectangular profile, since it
is obvious from Eq. (4.28) that σ(λ̂) will then be reduced by the inverse factor, i.e. by π/4.

Which torque rods should be activated for a specific maneuver, depends on the location.
This question cannot be answered generally. However, since there are not many possible
combinations, they may all be investigated, and the optimal one can be picked in the end.
This decision is thus postponed to Sec. 4.3.6. Moreover, m0 includes a sign, which determines
the direction of the torque. In the following section, it is discussed what needs to be considered
when choosing fm or Pm, and potentially a phase shift ϕ0.

4.3.3 Maneuver frequency and phase

The purpose of this section is to study the influence that the choice of the maneuver frequency
has on the STD of the estimated CFs, and hence on the quality of the maneuver. At first, the
formula for the STDs of the LSQ estimation is analyzed in general, when the MDM profile is not
further specified. A lower bound for the STD of the estimated coupling factors is given. Then,
a more specific case is studied, which corresponds to the MDM profile which is used for the
GFO CMC maneuvers. From studying this case, the motivation arises to take the comparison
with a slightly more general case, namely when different frequencies and phases may be used
for the different torque rods. Furthermore, the STD also depends on the ranging noise, which
itself is frequency-dependent. This will also be discussed. Finally, further restrictions on the
maneuver frequency are discussed.

Lower bound for the STD

The STD of the LSQ CF estimator, cf Eq. (4.28), depends on the inverse of the matrix A = θT θ.
Since the highpass filtered pointing angles are used, which have zero mean, A is nothing but
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the nonnormalized correlation matrix of the three pointing angles. The elements of A can also
be viewed as integrals, i.e.

Aij ∼
T∫

0

θi(t)θj(t) dt, (4.40)

where i, j ∈ {1, . . . ,M}. Here M stands for the number of pointing angles to be considered in
the estimation process. I.e., if merely the pointing angles of one S/C are considered, one has
M = 3, and then the indices 1, 2, 3 may correspond to the SF axes x, y, z.

The diagonal elements Aii of the symmetric, positive definite matrix A represent the
strength of the excitation of the angles θi. Inter-angle correlations are represented by the
off-diagonal entries of A. It is intuitively clear that if there are inter-angle correlations, the
STD is expected to be larger, since the correlating parts of the TTL error caused by different
angles cannot be distinguished from one another. In fact, denoting B = A−1, one can show
that the diagonal elements Bii of B fulfill

Bii ≥
1

Aii
, (4.41)

for all i = 1, . . . ,M , with equality if and only if A is diagonal, i.e. if and only if all the
inter-angle correlations vanish.

Proof of inequality (4.41). Note that A = θT θ is obviously symmetric and positive definite,
unless one column of θ is the zero vector. The latter can be excluded without loss of generality,
since otherwise that particular angle is uninteresting and may be excluded entirely. This
implies that there exists a symmetric positive definite matrix C such that C2 = A. One has

Aii = eTi Aei = eTi C
TCei = |Cei|2, (4.42)

as well as

Bii = eTi A
−1ei = eTi (C−1)TC−1ei = |C−1ei|2, (4.43)

since C−1 as the inverse of a symmetric matrix is also symmetric. The Cauchy-Schwarz
inequality implies

〈Cei, C−1ei〉2 ≤ |Cei|2 · |C−1ei|2. (4.44)

On the other hand, one has

〈Cei, C−1ei〉 = eTi (C−1)TCei = eTi ei = 1, (4.45)

which proves 1 ≤ AiiBii and hence the claim. q.e.d.

Now, in particular, one has Bii > 0, since Aii > 0, assuming that none of the pointing
angles is identically zero for the duration of the maneuver. For the STD of the estimator of
the TTL CF of the angle θi, denoted by σ(λ̂i), it follows that

σ(λ̂i) ≥
σ(nρ)√∫

θ2
i

, (4.46)

where σ(nρ) denotes the STD of a white ranging noise. This lower bound for the STD justifies
seeking for a way to achieve larger angle excitations, without increasing the inter-angle cor-
relations. In the following, sinusoidal MDM profiles are considered, similar to the ones used
for the GFO CMC maneuvers. Subsequently, these maneuvers are adapted slightly, in the
attempt to approach equality in Ineq. (4.46).
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Using a single frequency and no phase shift

In Sec. 4.3.2, it has been shown that sine wave and square wave profiles of the MDM lead to
very similar signals in the pointing angles, however, with a larger amplitude for the square
wave profile. In this section, for the simplicity of the following computations, a sine wave
profile for the MDM of each torque rod is assumed.

At first, assume that each MDM has the same frequency and zero phase shift. Later, each
MDM will be allowed to have its own frequency and its own phase shift. Furthermore, assume
and consider only the pointing angles of one S/C. That is, let M = 3, where M is the number
of considered pointing angles. For now, let

~m(t) =

mx(t)
my(t)
mz(t)

 =

mx,0

my,0

mz,0

 · sin (2πfmt) , (4.47)

while, for this and the following computations, t0 = 0 has been set without loss of generality.
Recall that the magnetic torque of the S/C is given by

~τm = ~m× ~B =

myBz −mzBy
mzBx −mxBz
mxBy −myBx

 . (4.48)

Still under the assumption that Eqs. (4.30) to (4.34) hold, the filtered pointing angles for each
axis can be approximated by

θx ≈
∫∫

τx/Jxx ≈
1

Jxx

∫∫
myBz −

1

Jxx

∫∫
mzBy (4.49)

θy ≈
∫∫

τy/Jyy ≈
1

Jyy

∫∫
mzBx −

1

Jyy

∫∫
mxBz (4.50)

θz ≈
∫∫

τz/Jzz ≈
1

Jzz

∫∫
mxBy −

1

Jzz

∫∫
myBx, (4.51)

where the double integral is to be taken w.r.t. time. For the purpose of this analysis, assume
that the geomagnetic field ~B is constant for the duration of the maneuver, which is approxi-
mately true for many locations in the GFO orbit, but needs to be considered again at a more
detailed stage of the maneuver planning. With an MDM according to (4.47), for the roll angle
θx one has

θx(t) ≈ my,0Bz −mz,0By
Jxx

∫∫
sin (2πfmt)

=
mz,0By −my,0Bz

4π2f2
mJxx

sin (2πfmt) ,

(4.52)

and accordingly for the pitch angle θy,

θy(t) ≈
mx,0Bz −mz,0Bx

4π2f2
mJyy

sin (2πfmt) , (4.53)

and for the yaw angle θz,

θz(t) ≈
my,0Bx −mx,0By

4π2f2
mJzz

sin (2πfmt) . (4.54)

Then, the first diagonal entry of A, A11, is approximately given by

A11 ≈
(
mz,0By −my,0Bz

4π2f2
mJxx

)2

·
T∫

0

sin2(2πfmt) dt =

(
mz,0By −my,0Bz

4π2f2
mJxx

)2

· T
2
, (4.55)
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if T is a multiple of the period Pm = 1/fm. Similarly,

A22 ≈
(
mx,0Bz −mz,0Bx

4π2f2
mJyy

)2

· T
2
, (4.56)

and

A33 ≈
(
my,0Bx −mx,0By

4π2f2
mJzz

)2

· T
2
. (4.57)

If there were no inter-angle correlations, A would be diagonal, and so would A−1, with
entries reciprocal to the entries of A. This is the case of equality in (4.46). In particular, this
would yield

σ(λ̂x) ≈ σ(nρ) ·

∣∣∣∣∣ 4
√

2π2f2
mJxx

(mz,0By −my,0Bz)
√
T

∣∣∣∣∣ (4.58)

σ(λ̂y) ≈ σ(nρ) ·

∣∣∣∣∣ 4
√

2π2f2
mJyy

(mx,0Bz −mz,0Bx)
√
T

∣∣∣∣∣ (4.59)

σ(λ̂z) ≈ σ(nρ) ·

∣∣∣∣∣ 4
√

2π2f2
mJzz

(my,0Bx −mx,0By)
√
T

∣∣∣∣∣ (4.60)

Regarding the off-diagonal elements of A, as an example, using Eqs. (4.52) and (4.53), for A12

one obtains

A12 =

T∫
0

θx(t)θy(t) dt (4.61)

=

(
mz,0By −my,0Bz

4π2f2
mJxx

)
·
(
mx,0Bz −mz,0Bx

4π2f2
mJyy

)
·
T∫

0

sin2 (2πfmt) dt (4.62)

=

(
mz,0By −my,0Bz

4π2f2
mJxx

)
·
(
mx,0Bz −mz,0Bx

4π2f2
mJyy

)
· T

2
(4.63)

=
T

32π4f4
m

·
(
mz,0By −my,0Bz

Jxx

)
·
(
mx,0Bz −mz,0Bx

Jyy

)
, (4.64)

since T is a multiple of Pm = 1/fm. Similar equations hold for A13 and A23. In particular,
this yields the important observation that

A ∼ T

f4
m

, (4.65)

i.e., all elements of the matrix A are proportional to T/f4
m. Hence, the STD of each esti-

mated coupling factor, cf. Eq. (4.28), is proportional to f2
m and inversely proportional to

√
T .

Considering the ranging noise σ(nρ) as well, one has

σ(λ̂i) ∼
σ(nρ)f

2
m√

T
, (4.66)

for i = 1, 2, 3, whether there are inter-angle correlations or not.
Nevertheless, inter-angle correlations are indeed almost unavoidable. A close look reveals

that Aij = 0 if and only if θi(t) = 0 or θj(t) = 0 for all t ∈ [0, T ]. It follows that all correlations
are zero if and only if at least two of the three angles vanish entirely, or equivalently, if and
only if the magnetic torque ~τm has only one nonzero component in the SF, i.e. is parallel to
one of the S/C axes. This, in turn, is only possible if ~B is perpendicular to that axis, since ~τm
is always perpendicular to ~B.
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Using arbitrary frequency and phase

Suppose now that each MDM is allowed to have its own frequency and phase shift, that is,

mx(t) = mx,0 sin (2πfx,0t+ ϕx,0) , (4.67)

my(t) = my,0 sin (2πfy,0t+ ϕy,0) , (4.68)

mz(t) = mz,0 sin (2πfz,0t+ ϕz,0) . (4.69)

Additionally, the requirement will be useful that the frequencies and T must be chosen such
that T is a multiple of each period, so that each profile has an integer number of cycles. The
following abbreviations will be used:

sx = sin (2πfx,0t+ ϕx,0) , (4.70)

sy = sin (2πfy,0t+ ϕy,0) , (4.71)

sz = sin (2πfz,0t+ ϕz,0) . (4.72)

Then, one has

θx ≈
my,0Bz
Jxx

∫∫
sy −

mz,0By
Jxx

∫∫
sz (4.73)

=
mz,0By

4π2f2
z,0Jxx

sz −
my,0Bz

4π2f2
y,0Jxx

sy, (4.74)

and accordingly for θy and θz:

θy ≈
mx,0Bz

4π2f2
x,0Jyy

sx −
mz,0Bx

4π2f2
z,0Jyy

sz, (4.75)

θz ≈
my,0Bx

4π2f2
y,0Jzz

sy −
mx,0By

4π2f2
x,0Jzz

sx. (4.76)

In this more general case, one has

θxθy = . . .
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(4.77)

Writing Ixy =
∫
sxsy, Ixz =

∫
sxsz, and Iyz =

∫
sysz, it follows that

A12 =
1

16π4JxxJyy
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xf

2
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z,0BxBy

2f4
z

]
.

(4.78)
Regard the last term in the bracket. Unless all three angles are identically zero, this term,
and the corresponding terms in the equations for A13 and A23, cannot all be zero at the same
time. However, these terms can be minimized by choosing the optimal maneuver parameters.
When the frequencies and phases are well chosen, all the other terms vanish. In fact, from

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β)) , (4.79)
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it follows that

Ixy =

T∫
0

sin (2πfx,0t+ ϕx,0) sin (2πfy,0t+ ϕy,0) dt (4.80)

=
1

2

T∫
0

cos (2π(fx,0 − fy,0)t+ ϕx,0 − ϕy,0) dt− 1

2

T∫
0

cos (2π(fx,0 + fy,0)t+ ϕx,0 + ϕy,0) dt.

(4.81)

It is easily seen that the second term always vanishes, since T is a multiple of both periods, i.e.
T = n/fx,0 = m/fy,0, for some integers n and m. Moreover, three cases can be distinguished:

1. If fx,0 6= fy,0, the first term vanishes as well, independently of ϕx,0 and ϕy,0. Thus,
Ixy = 0.

2. If fx,0 = fy,0 and ϕx,0 = ϕy,0, the first term in (4.81) equals T/2, thus Ixy = T/2, which
is the case in (4.64).

3. If fx,0 = fy,0 and ϕx,0 6= ϕy,0,

Ixy =
T

2
cos (ϕx,0 − ϕy,0) , (4.82)

which is zero if ϕx,0 −ϕy,0 = (n+ 1/2)π for some integer n, in particular if there is a 90
degree phase shift between the MDM profiles of the two torque rods.

The same statements made above for the pair x, y also hold for the pairs x, z and y, z.
Therefore, if different frequencies are used for the different torque rods, most of the terms
in Eq. (4.78) are zero. The same effect is obtained if the activation profile of one of the torque
rods is phase shifted by π/2, compared to the others.

Identifying the optimal combination

Previously, in Sec. 4.3.1, it could be seen that one can adequately predict the STD of the
estimated coupling factors, given the MDM profile and the S/C orbits, cf. Fig. 4.11. This
allows a quick assessment of the maneuver quality for different locations in orbit, cf. Fig. 4.12.
Here the author has performed a similar analysis considering the same time span during a
pitch maneuver for GF1 on 26 August 2019, using the same orbit data. This time, consider
hypothetical maneuvers with alternative MDM profiles, with the goal of revealing the optimal
constellation. Three cases were investigated:

1. Two torque rods were activated with the maximal amplitude, phase shifted against each
other by 90 ◦. The rods in SF x and z direction were activated, since the maneuver is
meant to stimulate the pitch angle. Both rods were activated with a frequency of 83.3̄
mHz.

2. In this case, no phase shift between the two activated rods was applied. Instead, two
different frequencies were used: 83.3̄ mHz for the SF x direction, and 100 mHz for the z
direction.

3. Here, all three MTRs were activated. By using 100 mHz for the x axis, as well as a 90 ◦

phase shift between y and z, the inter-angle correlations were minimized. 83.3̄ mHz was
used for the y and z axes. Among all other possible combinations, by visual comparison,
this case was found to be close to the optimal constellation.
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Figure 4.13: Different hypothetical maneuver cases, using a phase shift (top), using different
frequencies (middle), and with the optimal combination (bottom). Left: MDM profiles. Right:
STDs of estimated CF.

The left plots of Fig. 4.13 show the MDM profiles that were used for these three cases.
The right plots show all three STDs, i.e. σ(λ̂i) for i = 1, 2, 3, over time. For comparison,
the location and the STDs from the actual CMC maneuver are marked with crosses. In all
cases, the location of the CMC maneuver is optimal with regard to estimating the pitch CF.
However, it can be seen that the hypothetical cases provide the opportunity to estimate more
than one CF at a time. As illustrated in the plots by purple crosses, alternative locations
can be found, where the maneuver time could be used more efficiently, e.g. by estimating the
roll CF at the same time. Table 4.1 shows the results when using the indicated alternative
maneuver locations for the hypothetical cases, compared to the values from the actual CMC.
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Note that in all three hypothetical cases the STDs of the pitch CFs are only slightly larger
than in the CMC case, while all achieving better values for the roll angle. In the optimal case,
a significantly lowered STD of the yaw CF is attained additionally.

Table 4.1: Results of different simulated maneuvers, each based on the same time span and
orbit data, but using alternative MTR profiles.

frequency [mHz]: phase [rad]: STD [µm rad−1]:
case fx fy fz ϕx ϕy ϕz roll pitch yaw

CMC 83.3̄ N/A 83.3̄ 0 0 0 68.3 5.4 71.8
alt. phase 83.3̄ N/A 83.3̄ 0 0 π/2 11.3 7.5 68.2

alt. frequency 83.3̄ N/A 100 0 0 0 10.4 9.0 64.8
optimal 83.3̄ 100 83.3̄ 0 0 π/2 12.9 6.9 12.7

Summarizing the results of this section, correlations between the MDM of two torque rods
imply correlations between the resulting pointing angle variations. In the general case, the
STDs of estimated CFs, σ(λ̂), have a lower bound, which is attained if the matrix A = θT θ is
diagonal, i.e. if inter-angle correlations vanish. Two ways for obtaining larger angle excitations
while minimizing the inter-angle correlations have been identified. One option is to use different
frequencies for the different torque rods. Another option is to use the same frequency for two
torque rods, phase shifted against each other by 90 ◦. When a single frequency and no phase
shift is used, σ(λ̂) is proportional to f2

m. In the general case, σ(λ̂) is inversely proportional to√
T , and proportional to the STD σ(nρ) of the ranging noise. The latter is examined in the

following.

Optimal frequency considering ranging noise

The STDs of the estimated TTL coupling factors are proportional to the STD of the ranging
noise. Thus, it must also be taken into consideration. Not considering the dependency on the
maneuver duration here, one has

σ(λ̂) ∼ σ(nρ)f
2
m. (4.83)

When planning a rotation maneuver for the purpose of TTL estimation, it is thus important
how the amount of instrument noise depends on the considered frequency range. Unfortu-
nately, the in-flight instrument noise spectrum is not perfectly known before the launch of the
mission. However, by now there is a good understanding of the noise in the LRI range at high
frequencies, cf. App. E. For the purpose of this analysis, consider the following four candidates
of defining the noise in terms of ASDs, which are depicted in the left plot of Fig. 4.14.

1. By the time of writing this thesis, real LRI data is already available. One can thus
estimate the spectrum of the measured LRI range. In a sense, this spectrum can be
considered to be the worst case, since it is an upper bound for the actual ranging noise.
The respective curve in the plot is labeled LRI.

2. In the frequency region around the maneuver frequency, the LRI range spectrum contains
signal caused by nongravitational forces in the LoS direction. Thus, the spectrum can
be lowered by removing these contributions, which are called differential linear non-
gravitational (DLN) range variations in this thesis. They can be derived from ACT1A
data, which is described in more detail in App. E.2. In the plot the range reduced with
ACT1A data is labeled LRI - DLN.

3. A second way of lowering the LRI range spectrum is by subtracting the effects of the
attitude control thruster firings, which can make up a large part of the nongravitational
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signal. This procedure is described in App. E.1. In the plot the range reduced with
THR1B data is labeled LRI - THR.

4. In the case of GFO, LFN was the major expected noise source apart from TTL. A model
of the LFN ASD is given in Sec. 3.1.6. Since this noise source cannot be removed in
post-processing, one may consider this model to be the best possible case, i.e. the lowest
possible noise level. In the plot this is labeled LFN.

By Parseval’s theorem, one has

σ(nρ)
2 =

∞∫
0

PSDnρ(f) df =

∞∫
0

(
ASDnρ(f)

)2
df. (4.84)

Note that since all the data is bandpass filtered, σ(nρ) = σfm(nρ) actually depends on the
maneuver frequency fm. Making the simplifying assumption that the range, including the
noise, is perfectly filtered with a narrow passband around fm of a given size, within which
ASDnρ is approximately constant, one obtains the heuristic relation

σfm(nρ)
2 =

fm+δ∫
fm−δ

(
ASDnρ(f)

)2
df ∝

(
ASDnρ(fm)

)2
. (4.85)

Recalling Eq. (4.83), if one seeks to minimize σ(λ̂), one ought to minimize σfm(nρ) ·f2
m. Hence,

it is beneficial to examine f2 ·ASDnρ(f) and define the optimal maneuver frequency fm,opt as

fm,opt = arg min
f

[
f2 ·ASDnρ(f)

]
, (4.86)

i.e. the frequency f for which f2 ·ASDnρ(f) is minimal.

Figure 4.14: Left: ASD of LFN, LRI range, reduced range, and angle noise times CF. Right:
ASDs multiplied by f2.

The amplitude spectral densities of the 4 candidates of ASDnρ(f) are plotted in Fig. 4.14,

on the left. The plot on the right shows f2 ·ASDnρ(f), which one desires to minimize w.r.t. f .
The plots are based on data from 15 June 2019. In both plots, for frequencies below about 38
mHz, the gravity signal is visible as a steep rise. Frequencies lower than that can be excluded
right away. For the case of the LRI, Fig. 4.14 clearly yields a similar conclusion for all 4
curves: the lower the maneuver frequency the better. However, there should be some margin
between fm and 38 mHz, since there are no perfect highpass filters. It can be concluded that
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the optimal value for fm in case of the LRI is close to 50 mHz. According to Eq. (4.83), a

maneuver frequency of 50 mHz could reduce σ(λ̂) by a factor of about 2.7, compared to the
83.3̄ mHz of the CMC maneuvers.

Furthermore, the angle noise should be considered as well, see also Sec. 5.2. The interesting
quantity in that regard is the spectrum of nθλ, i.e. the sum of the measurement noise in each
angle scaled by the coupling factors. The red and orange dashed lines in the left plot of
Fig. 4.14 show simulations of the ASDs of nθλ, based on the noise models of FSM and IMU1B
angles, respectively. Hypothetical coupling factors of 100 µm rad−1 each, for pitch and yaw
of both S/C, were assumed. In the case considered here, this term is small compared to the
ranging noise, and thus likely to be less important.

Note that the LRI noise is in reality not static. The shown ASDs are estimations and
do depend on time, correlated with the satellite location in orbit, among other things. Here
the reader is referred to App. E.3, where the LRI range spectrum is analyzed further. The
reduced curves (with ACT1A or THR1B) depend further on the accuracy of ACC data or the
thruster models, respectively. Additionally, the LFN depends on the inter-satellite separation,
cf. Eq. (3.20).

Finally, consider the following aspect. A gravity experiment such as GFO is not equally
sensitive to the entire spectrum of gravity variations [Spe21]. As was already illustrated in
Fig. 2 of [Wol69], undulations of gravity with a wavelength equal to the S/C separation are
undetectable, since these cause both satellites to accelerate and decelerate in step with each
other, and the difference vanishes. This is called a resonance of the satellites with spherical
harmonics of the geopotential. Using the trigonometric identity

sin(θ + ϕ)− sin(θ − ϕ) = 2 cos θ sinϕ, (4.87)

it can immediately be derived that the response to gravity undulations is proportional to
| sin(πf/fL)|, where fL = v0

L , with the S/C separation L and the absolute satellite velocity
v0. This function is depicted in Fig. 4.15. Thus, the frequencies at which GFO cannot detect
gravity variations, called the gravity null frequencies, are at fk = k · fL, k ∈ N. The first null
is at f1 ≈ 38 mHz, assuming a satellite velocity of vo = 7.6 km s−1 and a S/C separation of
L = 200 km.

Figure 4.15: The sensitivity to the ranging signal induced by the Earth’s gravity field is
proportional to this curve. For this plot, an absolute S/C velocity of 7.6 km s−1 and a S/C
separation of 200 km was assumed.
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Maximal gravity response is given e.g. at about 57 and 95 mHz, which would make
frequencies close to these values not a good choice for a TTL maneuver, since a large gravity
signal at the maneuver frequency would impede the TTL estimation. In the case of GFO,
there is no significant gravity signal at these frequencies. This fact is related to the orbit
altitude, see [Wol69; Mül17] for more information. Therefore, this consideration is not of
further importance for the maneuver design discussed here. However, when TTL maneuvers
are planned for future geodesy missions such as NGGM, where the satellite formation may be
different, one should keep it in mind.

4.3.4 Maneuver duration

Since the STD of the LSQ estimator is inversely proportional to
√
T , the maneuver should be

as long as possible, cf. Eq. (4.66). However, there are certain limits. E.g., the pointing angles
drift off during the maneuver, if the ACS is not preventing it. Recall that this is the case for the
CMC maneuvers, which are performed by MTRs and during which the control thrusters are
not firing. This puts a limit on T , since the LRI requires fine inter-satellite pointing. The LRI
can tolerate S/C attitude deviations from the LoS of about 6.5 mrad in pitch and yaw. During
the first three years of GFO operation, the largest angle deviations during a CMC maneuver
with 180 s duration on GF1 have been 3.2 and 1.6 mrad, for pitch and yaw, respectively.
However, on GF2 one observes larger angle deviations during a maneuver, up to about 5.9 and
2.8 mrad. The author did not further investigate the reason for this different behavior. This
means that in the current constellation, the maneuver duration of 180 s is already maximal
for an LRI TTL maneuver. If the larger deviations as observed on GF2 could be avoided, a
duration of about 240 s would also be possible.

A prospect for future missions might be to involve the ACS to a larger extent, which
continuously attempts to drive the S/C attitude towards a desired attitude, called ACS set
point. Thus, the maneuver stimulus may be injected via a pre-defined time series of ACS set
points, instead of commanding the desired torque profile. With this approach, the drifting of
the pointing angles during the maneuver would be compensated automatically. The maneuver
duration could be prolonged further by allowing attitude control thruster usage during the
maneuver. However, it needs to be assured that the ACS can cope with it.

When MTRs are used, there is another reason for a limited maneuver duration. The
feasibility of the desired torque depends on the geomagnetic field lines and thus on the location
of the satellite in orbit. In the case of GFO, the orbit period is about 90 minutes, which means
that - in the SF - the direction of the geomagnetic field vector may already be changing
significantly during a few minutes. Further potential restrictions on T may be given by the
amount of energy that is consumed by the MTRs in order to perform the maneuvers, or because
the taking of main mission science measurements should not be interrupted for too long.

4.3.5 Maneuver location

For the individual maneuver planning, one long time series of simulated STDs σ(λ̂) should be
simulated, which covers well the surface of the Earth. Then the optimal locations are chosen
by minimizing σ(λ̂i), for each coupling factor λi. A key aspect is also that the geomagnetic
field is ideally not too volatile and should be approximately constant during the course of the
maneuver. This criterion is even more significant, the longer the maneuver duration.

Figure 4.16 shows the predicted values for σ(λ̂i), for i = roll (top right), pitch (bottom
left), and yaw (bottom right). The shown values are based on the real GF1 orbit data from
November 10 to 20 in 2019, and on an optimized MDM activation. In particular, three torque
rods were activated with rectangular profiles with periods of 20, 16, and 20 s, for the x, y,
and z directions, which corresponds to 50, 62.5, and 50 mHz, respectively. The z profile was
shifted by 10 s w.r.t. the x profile, and the maneuver duration was T = 240 s. The plot shows
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only values from descending orbits, i.e. when the satellites were on the trajectory from the
most northern to the most southern point of the orbit, since this yields a more homogeneous
picture.

Further, one must consider the ranging noise as well as disturbances such as thruster firings,
see App. E. Ideally, one should choose a more quiet location. Similarly, it may be worthwhile
to check whether there are regions with larger natural pointing variations, respectively with
large environmental torque, and avoid those. Moreover, star tracker blindings ought to be
avoided, as well as LRI blindings. The latter can occur about twice per year when the solar
beta angle is close to zero.

Finally, depending on the mission, it may be beneficial to choose a maneuver location
close to a ground station, in order to enable prompt transfer of the maneuver data. There
are 5 available ground stations for GFO9, whose locations are depicted in Fig. 4.16 (top left):
Ny-Ålesund/Spitzbergen, Weilheim/Germany, Neustrelitz/Germany, O’Higgings/Antarctica,
Inuvik/Canada. Note that this criterion may be relevant for mission operations planning,
however, from the pure perspective of TTL analysis it is not important.

Figure 4.16: Top left: Ground stations in principle available for receiving GFO data. Top
right and bottom: predicted STDs of coupling factor estimators, using optimal maneuver
parameters.

4.3.6 Optimal parameters for the LRI

Summarizing the results of this section on maneuver design, the optimal parameters for an
LRI TTL calibration maneuver are in short:

• optimal MDM profile: use square waves - by a factor of 1.27 better than sinusoidal

• torque rod activation: utilize all rods - depends on the ambient magnetic field

• optimal maneuver frequency: two different frequencies close to fm = 50 mHz - lower
limit due to gravity signal

• optimal phase shift: have one rod shifted by π/2 - in order to minimize correlation

9according to the GFZ website: https://www.gfz-potsdam.de

https://www.gfz-potsdam.de
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• optimal duration: 240 seconds - upper limit due to pointing deviation

• optimal locations: individual choice - depends on the other parameters

Compared to the CMC maneuvers, a lower frequency and longer duration could decrease
the STD of the CF estimate by a factor of about 3. By activating a third torque rod with a
different frequency and by phase shifting one of the MDM profiles, the time spent to perform
the maneuvers could be used even more efficiently. The optimal locations in orbit must be
determined individually. The geographic locations for the CMC maneuvers of GFO were
already well chosen. In the following, some simulation cases are briefly presented.

4.4 Selected simulation cases

In this section, a few examples of rotation maneuvers are presented, which have been simulated
by the author. First, some CMC maneuvers have been reconstructed that had already been
carried out on GFO, in order to put the simulation technique to the test. Then, some results of
simulated maneuvers with optimal parameters for the LRI, as derived in the precedent section,
are shown. Finally, the performance of maneuvers that use attitude thrusters to produce the
angular stimulus is examined. In the last part of this section, 4.4.5, the results of the different
maneuver simulation cases are compared in terms of the predicted STDs of the coupling factor
estimators that would result from using the respective set of maneuvers.

4.4.1 CMC reconstruction

In order to validate the maneuver simulation technique, existing CMC maneuvers have been
reconstructed. More precisely, for each maneuver GFO Level-1B data at the starting time
of the maneuver was used as initial conditions. I.e., initial S/C positions and velocities were
taken from GNV1B data, initial quaternions from SCA1B data, and initial angular velocities
from IMU1B data, according to Sec. 2.2.1. Then, the full S/C state vector was integrated, cf.
Eq. (5.36). For each integration step, the magnetic control torque was derived directly from
the MTR input currents as reported in the MAG1B data product. For the computation of the
magnetic control torque, the geomagnetic field in SF was needed, which was taken from the
IGRF12 model.

The left plots of Fig. 4.17 show comparisons of angular velocities for each SF axis. The
angular velocities according to the integrated S/C state vector are plotted against the angular
velocities derived from IMU1B data. There are clearly visible differences, which may be due
to unmodeled angular accelerations. In the right plots of Fig. 4.17, angular accelerations
from integration are compared against angular accelerations i) from ACC1A data, as well as
ii) from differentiating angular velocities from IMU1B data. Since the angular accelerations
from ACC1A data contain an unknown bias, the mean of the shown ACC1A time series was
subtracted. This also means that the ACC data cannot be used to explain the differences that
are visible in the angular velocity plots on the left. The periodic variations of the rotation
maneuver match well overall, although there are slight differences of the magnitudes, especially
in the x direction.

On the left side of Fig. 4.18, the pointing angles derived from the integrated state vector
are compared against pointing angles derived from SCA1B and IMU1B data. The angles from
integration seem to drift off slower than angles from SCA1B or IMU1B. The order of magnitude
of the differences are consistent with the angular velocity differences visible in Fig. 4.17 (left
side). The right side of Fig. 4.18 shows the same pointing angles after applying a highpass
filter. In that case, the angles from integration agree well with angles derived from SCA1B or
IMU1B data, down to the respective measurement noise.

What causes the different pointing angles? Since the angles from SCA1B data agree well
with those derived from IMU1B data, it is assumed that these two are accurate. The reason
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Figure 4.17: Left: Comparison of angular velocities in SF, IMU1B vs. integrated. Right:
Comparison of angular accelerations in SF, ACC1A and IMU1B vs. integrated.

for the differences to the angles from integration cannot be inaccurate S/C positions, since the
orbit deviation after 180 seconds of integration is of the order of centimeters, as depicted in
Fig. 4.19. Such positional errors can explain at most a pointing deviation of the order of 100
nrad, but not the differences visible in Fig. 4.18.

It seems likely that the torque that was used for the integration was not accurate enough,
that is, either some environmental torque or the magnetic control torque. To confirm this and
in order to exclude a systematic mistake within this integration method, the S/C torque was
derived exclusively from IMU1B angular velocities, and afterwards performed the integration
again applying exactly this torque. The pointing angles obtained in this way showed no
significant discrepancies any more when compared with SCA1B. In Fig. 4.20 the torque derived
from IMU1B data is plotted against the torque that was used for the original integration. For
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Figure 4.18: Comparison of pointing angles, SCA1B vs. IMU1B vs. integrated. Left: unfil-
tered. Right: highpass filtered with cutoff frequency 50 mHz.

comparison, the upper left plot shows the sum of the modeled environmental torques, which
were used for the integration. The lines labeled integration in the remaining plots are the
sum of environmental torques and the magnetic control torque derived from MAG1B data. As
another possible cause for the torque differences (dotted black lines), one also has to consider
that the magnetorquer currents reported in the MAG1B files may not be perfectly accurate,
or that the torque rods themselves may be slightly misaligned.

The basis for the estimation of LRI TTL coupling factors via rotation maneuvers is always
filtered data. The low frequency components do not influence the results here, since the TTL
function is approximately a linear function of the angles. Thus, for the purpose of maneuver
assessment, slow angular movement can be ignored. Merely for the discussion about possible
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Figure 4.19: Comparison of inertial positions (top) and velocities (bottom), GNV1B vs. inte-
grated. Left: GNV1B only. Right: difference ”GNV1B - integrated”.

Figure 4.20: Upper left: environmental torque model (aerodynamic + solar radiation + grav-
itational). Top right and bottom: torques derived from IMU1B data versus torques used for
the integration (magnetic + environmental); difference = IMU - integration.

maneuver durations, the absolute pointing deviation is important and needs to be kept in
mind. Note however that for an instrument other than the LRI, the TTL function might not
be linear in the angles, and then absolute knowledge of the S/C pointing might be crucial.
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4.4.2 Adjusted magnetic dipole moment

As indicated in Sec. 4.3.3, the CMC maneuvers can be optimized w.r.t. the accuracy of TTL
coupling factor estimation by activating all three MTRs, where one rod is activated with an
alternative frequency and one rod is activated with a phase shifted magnitude profile. Here
the same MDM profile that is depicted in Fig. 4.13 (bottom left plot) has been used. For the
purpose of illustration, the author has simulated a set of 14 maneuvers and compared them
to the actual 14 CMC maneuvers. In this example case, the maneuver frequency fm or the
duration T was not optimized. Two different frequencies were used, 83.3̄ and 100 mHz, and
phase shifted one torque rod profile by π/2. Also, the optimized geographic locations were

chosen. The locations are depicted in Fig. 4.21. The results in terms of σ(λ̂) are given in

Tab. 4.2, in contrast to the respective values for σ(λ̂) in case of the 14 actually performed
CMC maneuvers.

Figure 4.21: Locations of CMC maneuvers (red crosses) and simulated maneuvers (orange
crosses) over the orbit trajectory. Left: GF1. Right: GF2.

4.4.3 Optimal LRI TTL calibration maneuvers

As in the previous case, two different frequencies were used, as well as a phase shift of π/2 for
one torque rod profile. Here a maneuver duration of T = 240 s was used. In this case, two
of the torque rods were activated with a maneuver frequencies of 50 mHz, where the MDM of
one rod was shifted by π/2. A third rod was activated with 62.5 mHz. The second frequency
and the maneuver duration T were chosen such that T is a multiple of both periods, which
are 20 and 16 seconds. The same locations as in the simulation case before, cf. Fig. 4.21,
were used here. Figure 4.22 exemplarily shows MDM and pointing angles for one of the GF1
maneuvers. As in the previous case, a total of 14 maneuvers was simulated.

4.4.4 Maneuvers with activated attitude thruster control

The author implemented an ACS simulator with ”bang-bang” type thruster control, and sim-
ulated maneuvers with activated ACS. The benefit is that the maneuver can have a much
longer duration, since then there is no danger of the inter-satellite pointing drifting too far
off. In this example, a maneuver duration of T = 1940 s was chosen. The MDM profile is
simply an extension of the ”optimal LRI” case described above, i.e. in particular fm = 50 mHz
was chosen, and 62.5 mHz for the second frequency. Here two maneuvers were simulated, one
per S/C, where in both cases all three pointing angles were excited. The angles have varying
amplitudes due to a varying geomagnetic field viewed in the SF.

The ACS deadband limits were set to 15, 4 and 4 mrad for roll, pitch and yaw, i.e. the
limits were relaxed compared to the respective default values for GFO, which are 2.5 mrad,
250 µrad, and 250 µrad, cf. Sec. 2.3.1. That is, attitude thruster control is activated when one
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Figure 4.22: Pointing angles during a simulated optimized LRI TTL calibration maneuver.
Left: unfiltered angles. Right: filtered angles.

of the pointing angles reaches the respective deadband limit. More precisely, each thruster
is commanded to fire if and only if i) the absolute value of the pointing angle is above the
deadband limit and ii) the derivative of the absolute value of the pointing angle is positive.
This is a much simplified version of the GFO system, however, for the amount of torque
produced by each thruster, the exact values from the GFO thrusters were adopted as provided
in [Wen+19].

As described earlier, given a fixed MDM profile, one can obtain a good prediction of the
STDs of the TTL coupling factors along a given satellite orbit. From a quick assessment of
such predictions, the locations were chosen such that the expression√ ∑

i=roll, pitch, yaw

σ
(
λ̂i

)2
, (4.88)

i.e. the RMS of the STDs of the three coupling factors, is minimal.

Figure 4.23: Pointing angles during a simulated rotation maneuver with activated attitude
thruster control. Left: unfiltered angles. Right: filtered angles (x axis zoomed in).

Figure 4.23 shows the pointing angles that were obtained from this simulation. The left
plot shows the unfiltered pointing angles during the entire GF1 maneuver, where the thruster
activations are visible. The right plot shows the filtered pointing angles, which were afterwards
used for determining the CF STDs. For illustration purposes, the x axis of this plot was
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Table 4.2: Summary table of different maneuver simulation test cases. Here K is the number
of maneuvers that are needed to achieve the given uncertainties.

T fm K σ(λ̂) (roll, pitch, yaw) [µm rad−1]
case [ s ] [ mHz ] [ ] GF1 GF2

I CMC 180 83.3̄ 14 (0.7, 3.2, 4.8) (0.7, 3.1, 4.5)
II optimized MDM 180 83.3̄ 14 (0.8, 2.1, 3.8) (0.8, 2.3, 4.3)

III optimized all parameters 240 50 14 (0.3,0.9,1.8) (0.3,1.0,2.0)
IV with thruster control 1940 50 2 (0.2, 0.7, 2.3) (0.2, 0.7, 2.6)

restricted to a region where thruster firings in all three axes occurred. If there were no more
disturbances caused by thruster firings other than those visible in the plot, the entire time
series could likely be used for the coupling factor estimation. However, in the real GFO mission,
attitude thruster firings cause undesired linear accelerations of the S/C, which are measured
by the LRI and can thus disturb the parameter estimation. These disturbances can either be
modeled and subtracted or simply cut out. The thruster modeling is described in detail in
App. E.1.

If the entire time series could be used for parameter estimation, the resulting STDs of the
LSQ estimator for GF1 are 0.2, 0.7, 2.3 µm rad−1. Note that these uncertainties are even
below those reached with 7 combined CMC maneuvers per S/C, cf. Tab. 4.2. Here only about
30 minutes of operation time are used per S/C. Both maneuvers together could be executed
within less than 2 hours, instead of more than one day as is necessary for 14 CMC maneuvers.
The case presented here is thus a very time efficient type of calibration maneuver.

Note that the author did not simulate maneuvers using only thrusters, i.e. without utiliz-
ing MTRs. If a satellite is not in the vicinity of the Earth, there may be no significant ambient
magnetic field, such that MTRs cannot be used. For instance, this is the case in the planned
LISA mission, which will likely also require rotation maneuvers for the purpose of TTL cali-
bration. If maneuvers shall be simulated for such a mission, the general simulation technique
presented in this chapter can still be used. If attitude control mechanisms other than thrusters
shall be implemented, their control effect has to be formulated in terms of either torques or
angular accelerations in the SF, and can then easily be implemented within the simulation
framework.

4.4.5 Summary of maneuver simulations

Table 4.2 summarizes the different simulation cases that were presented in this section, showing
the theoretical STDs of the coupling factors estimated using the pointing angles during the
respective maneuvers. One insight from this comparison is that optimizing the MDM profile
(case II) does already slightly improve the estimation accuracy, compared to the original CMC
(case I). Recall that the CMC maneuvers are not optimized for LRI TTL analysis. The main
improvement could be achieved by choosing a lower maneuver frequency fm (case III). Here
the longer duration of 240 as opposed to 180 seconds merely contributes a factor of about√

240/180 ≈ 1.15.
Another interesting option is to let the attitude thruster control be active during the

maneuver (case IV), which allows for a longer maneuver duration. The simulation results
suggest that two such maneuvers are sufficient to reach a similar estimation accuracy as in
the ”optimal” case (III) with 14 maneuvers. Note that the entire procedure in case IV can
be executed within a few hours, whereas each of the other cases with 14 maneuvers takes
almost two days to complete. However, such maneuvers with activated thruster control are
not intended in the GFO mission. Should such maneuvers be considered for future missions,
further investigations would be due, concerning their feasibility as well as possible disturbances
that the thruster firings may impose on the science instruments. A further potential option,
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which is not investigated here, would be to program the ACS in such a way that it performs
periodic attitude variations, while still maintaining the S/C pointing within an acceptable
margin.

In the following, in Chap. 5, all aspects of the estimation of LRI TTL coupling factors will
be illustrated, including the analysis of in-flight mission data.



Chapter 5

Estimation of in-flight LRI TTL
coupling factors

This chapter is concerned with the analysis of GFO mission data, with the goal being the
estimation of the LRI TTL coupling factors. Estimating the TTL coupling factors requires
time series of S/C pointing angles as well as LRI range in a certain form. Section 5.1 describes
the different steps of data processing which are necessary to transform the raw instrument data
to the desired form. These steps include the derivation of pointing angles from so-called Level-
1 data, resampling, filtering, and the mitigation of disturbing signals such as those caused by
attitude thruster firings.

In Sec. 5.2, the different methods of parameter estimation are presented that are used for
the estimation of LRI TTL coupling factors within this thesis. The theoretical background
of each method is described, and a derivation of the respective CF estimators is given. Each
method has its strengths and weaknesses, which are compared in the end of the section.

In Sec. 5.3, results from the individual estimation methods and their performance are eval-
uated. The final product, i.e. one set of LRI TTL coupling factors, is derived by combining the
results from different methods. Two versions of such a set are defined, one with and one with-
out considering angular rate coupling (ARC). Moreover, the results for the S/C CoM offsets,
which can be derived from the coupling factors, are presented. Finally, the results are inter-
preted with view of their accuracy, and whether the pre-flight assumptions and requirements
have been met.

When the TTL coupling factors are estimated, a time series of the TTL error can be
computed and subtracted from the LRI range, in order to show that the instrument noise can
be reduced in this way. Since the TTL error of the LRI is small, it is not trivial to demonstrate
the positive effect of this subtraction. Some attempts to make this effect visible is described
in Sec. 5.4.

5.1 Data processing

This section discusses the steps of data processing which have to be performed prior to the
parameter estimation. A number of utility functions such as for time conversion are necessary,
but will not be discussed here. Figure 5.1 shows a structural overview of the code that was
used for data processing and parameter estimation within this thesis. All data processing and
analysis was implemented using the Matlab software. Details of the most important individual
processing steps will be discussed thoroughly in this section.

Sec. 5.1.1 lists all the GFO Level-1 data products which were used within the scope of
this thesis. In Secs. 5.1.2 and 5.1.3, the data processing related to the LRI range and the
pointing angles, respectively, is summarized. A special focus lies on the disturbances caused
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Figure 5.1: Code architecture for the analysis of TTL calibration maneuvers.

by the activations of attitude control thrusters, treated in Sec. 5.1.4. Resampling is discussed
in Sec. 5.1.5, and data filtering is discussed in Sec. 5.1.6.

5.1.1 GRACE Follow-On Level-1 data products

For the LRI range, the entire processing from raw telemetry to the biased range was done
within the AEI Hannover, cf. Sec. 5.1.2 below. The same is true for the FSM pitch and
yaw angles. Apart from that, exclusively the official Level-1 instrument data was used, i.e.
Level-1A and 1B data (release RL04), which is provided by the GFO Science Data System
(SDS). All data products that were used at any stage during this study are listed below. For
a detailed description of each product, the reader is referred to [Wen+19].

• GNV1B: contains S/C positions and velocities given in the ECEF frame.

• SCA1B: contains S/C attitude quaternions, derived from SCA and IMU data using a
Kalman filter.

• MAG1B: contains magnetic torquer input currents, as well as measurements of the
Earth’s magnetic field.

• IMU1B: contains integrated angles from gyroscope measurements.

• ACC1A: contains linear and angular nongravitational accelerations measured by the
accelerometer.

• CLK1B: contains timing information, which is used to convert time stamps between
Level-1A and 1B data.

• ACT1A: contains linear nongravitational accelerations, for GF2 obtained by data trans-
plant from the GF1 accelerometer.
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• THR1B: contains times and durations of activations for all the attitude control thrusters.

• MAS1B: contains a time series of the mass of each S/C.

• KBR1B: contains the biased inter-satellite range derived from KBR measurements.

• IMU1A: contains integrated angles from gyroscope measurements.

Concerning the SCA data, during the analysis presented here, there seemed to be a mismatch
of approximately 1 second between the time stamps of the pointing angles derived from SCA1B
RL04 data on the one hand, and any of the other main attitude sensor data on the other hand.
This observation was already reported in [Weg+20b]. Therefore, 1 second was subtracted from
the time stamps of the SCA1B RL04 data, before the TTL estimation.

5.1.2 LRI range

The LRI telemetry data contains the raw beatnote phase measured in cycles. The downlinked
data is sampled at 9.664000 Hz for GF1 and 9.664198 Hz for GF2. The phase contains
occasional unintended jumps which are correlated to attitude control thruster activations.
The jumps are removed and thus do not influence the performance of the LRI [Abi+19]. The
time tags of the ranging data have to be corrected for clock errors and additionally for a delay
due to onboard decimation filtering [Mis19]. The phase measured on the transponder S/C is
subtracted from the master phase, after jumps have been removed from both measurements,
and after the two data streams have been synchronized so that they refer to the same time
stamps. Subsequently, the combined phase is converted from cycles to biased range in meters.

In the low frequencies, the inter-satellite distance is dominated by the gravity signal, which
rapidly drops off above about 37-38 mHz [Abi+19; Mül17]. Therefore, the ASD of the measured
range has values from several m/

√
Hz in the low frequencies, down to values below 1 nm/

√
Hz

at high frequencies, see e.g. Fig. 3.13. Regarding the time domain, the inter-satellite distance
may vary by more than a kilometer within the period of one orbit. On the other hand, the
oscillations in the LRI range caused by TTL during the CMC maneuvers have amplitudes of
the order of nanometers.

In order to remove the dominating gravity signal from the LRI range, three options may
be identified, see also Sec. 3.3. One might use the so-called pre-fit residuals of the range,
which can be obtained by removing the known parts of the range, i.e. the static gravity field,
the contributions from nongravitational accelerations measured by the accelerometers, and
potentially other contributions which can be modeled. A second option is to use the so-called
post-fit residuals, which is the residual of the range posterior to the process of gravity field
recovery. When estimating TTL coupling factors using rotation maneuvers, the components
of the range corresponding to Fourier frequencies away from the maneuver frequency are
neglected. This enables a third option for removing the dominating part of the range, i.e.
using a highpass or bandpass filter. For the maneuver analysis, a combination of different
filters is applied, which are described in Sec. 5.1.6.

5.1.3 Inter-satellite pointing angles

First, the pointing angles are computed according to Sec. 2.2. Afterwards, the pointing angles
are resampled to match the time stamps used for the LRI range. The resampling is realized by
interpolating the angles to the time stamps given from the LRI data, cf. Sec. 5.1.5. Afterwards,
a specifically designed digital filter is applied to the pointing angles, in order to isolate the
desired variations at the maneuver frequency from the other frequency components. Here it
is important that the exact same filter that is used for the range must be used. This filter is
described in Sec. 5.1.6 further below.
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5.1.4 Thruster disturbances

During the CMC maneuvers, attitude control thrusters are deactivated on the S/C which
is performing the maneuver, since this would disturb the desired angular acceleration profile.
However, they can occur on the other S/C. This constitutes no problem concerning the original
purpose of the CMC maneuvers, which is the CoM calibration with ACC data, since the
measurements of one accelerometer are independent of the distant S/C. For the purpose of
estimating LRI TTL, the situation is different, because the thruster firings cause disturbances
in the LRI range. There exist two options to cope with this effect. Firstly, the affected
data segment can simply be excluded from the TTL analysis. A second option is to remove
the variations caused by thruster firings from the LRI range. To this end, the author has
derived a model of this effect from data segments without maneuvers. This was done by using
thruster activation times and durations provided in the THR1B data product. This procedure
is described in App. E.1.

Figure 5.2 illustrates an example of a thruster disturbance that was modeled and sub-
tracted from the LRI range, for a yaw GF2 thruster event during a pitch GF1 CMC maneuver
performed on 26 August 2019. Without using these thruster models, simply removing the
affected parts before the parameter estimation, about 84 % of the CMC maneuver data could
be used, considering all data from the years 2018 and 2019. With the thruster responses re-
moved in the way described above, about 90 % of the maneuver data could be used for TTL
estimation. The remaining 10 % could not be used mainly due to thruster activations that
occurred just before or after a maneuver period. In theory, the STD of an estimated coupling
factor is proportional to 1/

√
T , where T is the total length of the time series which is used for

the estimation. In this sense, using the thruster models yields an improvement of about 3.5 %
in estimation accuracy. Considering that imperfect thruster models may also introduce errors
to the TTL CF estimation, it was decided to choose the option of excluding data segments
affected by thruster firings.

Figure 5.2: Bandpass filtered LRI range during a pitch GF1 maneuver in August 2019. Re-
moving the disturbances due to thruster firings allows to use the full shown time series for
TTL estimation.
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5.1.5 Resampling

The resampling is realized by interpolation using the piecewise cubic hermite interpolating
polynomial (PCHIP) method. That is, the interpolation function is composed of piecewise
cubic polynomials. Between each two data points, one cubic function must be computed.
Such a cubic has 4 degrees of freedom and is thus uniquely determined by the two data points
and two more conditions, which can be chosen as desired. A common choice is to require two
adjacent cubics to have identical first and second derivatives at the data points, which yields
the famous spline method. The resulting interpolation function has then continuous first and
second derivatives. In particular, it has a continuous curvature, which is advantageous for
some applications.

In the case of the analysis presented in this thesis, the smoothness of the interpolation
function is not as important, so merely a continuous first derivative is required. Instead
of using splines, the author opted for a Matlab implementation of the PCHIP interpolation
method that preserves the shape of the data. In this method, the two additional degrees of
freedom for each cubic are used up by requiring a specific value for the first derivative at each
data point. These values are determined to be a weighted harmonic mean of two difference
quotients to the adjacent data points. The advantage of this method is that it is monotone
in the sense that interpolated values between two given points are between the values of these
two points, i.e. it preserves the shape and does not overshoot the data. If the given data
has a local extremum, the interpolation function will have a local extremum at that point
as well. Thus, the requirement of a continuous second derivative is given up for the sake of
monotonicity and preventing overshoot.

5.1.6 Data filtering

For the analysis of S/C rotation maneuvers for TTL calibration, one is interested in a specific
frequency. In the case of CMC maneuvers, the maneuver frequency is 83.3̄ mHz. The way these
maneuvers are designed, both inter-satellite range and pointing angles contain a sinusoidal
signal with this frequency. In order to extract this signal of interest, the data must be filtered
in a way that leaves the maneuver frequency untouched and suppresses other frequencies as
good as possible.

At this point, it is important to note that the ASD of the inter-satellite range has values of
a few nm/

√
Hz at 83.3̄ mHz, whereas the values at lower frequencies go up to several m/

√
Hz.

A typical ASD of the LRI range is shown for instance in Fig. 5.12 further below. Under these
circumstances, designing a filter that suppresses such a large signal, while maintaining the
maneuver signal, turned out not to be trivial. In fact, the LRI data showed undesired artifacts
when a highpass filter of an order larger than 3 was directly applied to it. Instead, the author
analyzed different combinations of cascaded filters and, with some trial and error, settled on
the following.

In order to remove a major part of the gravity signal from the LRI range, an order 3
Butterworth highpass filter with a cutoff frequency of 30 mHz was applied. Secondly, a But-
terworth highpass filter of order 5 was used, with cutoff frequency 40 mHz, as well as an
order 4 Butterworth lowpass filter with a cutoff frequency of 175 mHz, in order to isolate the
maneuver signal. This way, the amplitude of the maneuver signal is left almost unchanged,
while the undesired part of the data is suppressed. More precisely, the magnitude response is
maximal at the maneuver frequency of 83.3̄ mHz, with a value of about 0.995, or −0.047 dB.
The magnitude responses of the individual filters, as well as the cascaded filter, are depicted
in Fig. 5.3.

Butterworth type filters were chosen, since their magnitude response is monotonic and
designed to be as flat as possible in the passband. Note that the maneuver analysis is done in
retrospect, i.e. when the entire time series of the range and pointing angles are available. This
allows for zero-phase digital filtering, for which the author used the Matlab filtfilt function.
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Figure 5.3: Magnitude response function of bandpass filter designed for CMC maneuver data
analysis.

That is, each filter is applied two times, forward and reverse, which cancels the phase delay
of the filter. This practice negates the property of Butterworth filters to have nonlinear phase
response, which would be undesired under other circumstances. Finally, note that the zero-
phase filtering has the effect that the magnitude response of each filter is squared, since the
same filter is applied twice. The responses shown in Fig. 5.3 are already the final (squared)
responses.

Since it is impossible to design a perfect filter, the magnitude response at the maneuver
frequency will not be exactly 1, and thus the filter will lower the amplitude of the maneuver
signal by some factor < 1. This does not constitute a problem, unless this factor is different
for the angles than for the range. The latter case would manipulate the relation between the
angle stimulus and the corresponding TTL error in the range, i.e. the coupling factor. Thus,
it is important that the same filter is applied to all the involved time series.

5.2 Parameter estimation methods

Here the different methods that were used for estimating the LRI TTL coupling factors are
presented. For each method, a formula for the coupling factor estimator will be derived, i.e.
the function which assigns a given set of data the respective estimate. Throughout this section,
the pointing angles, as well as the LRI range, will be assumed to be already bandpass filtered
in the way described previously in Sec. 5.1.6. Although the results, see Sec. 5.3, were all
obtained using data from CMC maneuvers, most of the methods shown here can be used in
other cases as well, e.g. fit of noise or when using post-fit residuals, either directly or with
slight adjustments of the noise models or the filter.

Five different methods will be covered in this section:

1. Sec. 5.2.2 LSQ: Least squares estimation of a collective set of coupling factors

2. Sec. 5.2.3 LSI: Least squares estimation of individual coupling factors

3. Sec. 5.2.4 XC: Estimation using cross-correlation analysis
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4. Sec. 5.2.5 BAY: Estimation method based on Bayes’ theorem

5. Sec. 5.2.6 PSD: Method using amplitude spectrum analysis

The BAY method yields multiple different estimators, depending on what assumptions are
made about the data. The strengths and weaknesses of each of these methods are discussed
in Sec. 5.2.7. At first, the mathematical notation and assumptions will be discussed.

5.2.1 Notation and assumptions

The following notation will be used. Let ρ ∈ RN×1 denote the true range, and let θ =
(θ1, . . . , θM ) ∈ RN×M denote the true (error-free) pointing angles. Here N is the number of
data points, and M is the number of considered angles. E.g., one can consider only one angle
at a time (M = 1), or roll, pitch, yaw of one S/C (M = 3), or all six angles from both S/C
(M = 6). Further, denote by λ = (λ1, . . . , λM )T the respective TTL coupling factors, and

denote by λ̂ ∈ RM×1 the estimate of λ. Bars over the variables shall indicate the measured
quantity, i.e. θ̄ denotes the measured pointing angles and ρ̄ denotes the range measured by
the LRI.

The quantities θ, ρ, etc., can also be viewed as random variables, which will be done in
particular in the section on the estimation based on Bayes’ theorem, Sec. 5.2.5. Then for
example, ρ̄i = ρ̄(ti), i ∈ {1, . . . , N}, denotes the ith realization of the random variable ρ̄, i.e.

the measurement at time ti. Similarly, θ̄ji = θ̄j(ti), for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M},
denotes the measured angle j at time ti, and so on.

As mentioned earlier, it is assumed that all measured time series are already bandpass
filtered at this stage. Thus, the measured range can be assumed to be free of gravity signal
and dominated by the noise which is present within the pass band, or, during a maneuver, by
the TTL signal. Denoting by nθ ∈ RN×M and nρ ∈ RN×1 the measurement noise of pointing
angles and range, respectively, it is thereby assumed that

θ̄ = θ + nθ (5.1)

ρ̄ = TTL + nρ, (5.2)

where
TTL = θ · λ (5.3)

is of size N × 1. I.e. it is assumed, for the sake of simplicity, that the true range equals the
TTL, and all other parts of the range are considered noise.

The measurement noise can in reality neither be assumed to be white nor to be Gaussian.
Both will, however, be assumed as an approximation here, in order to simplify the computa-
tions. Gaussian noise is known to be a very good approximation in many cases, which is due
to the central limit theorem, which states that the sum of arbitrary independently distributed
random variables tends to attain a normal (Gaussian) distribution, if more and more random
variables are added. Assume that the values nρ(ti) at the times ti, i = 1, . . . , N , shall be
independent and identically (i.i.d.) distributed, so that nρ(ti) and nρ(tj) are independent for

i 6= j. The same is assumed for the values njθ(ti), for each j ∈ {1, . . . ,M}. The distribution of
nρ is assumed to be Gaussian with zero mean and variance σ2

ρ, written in short as

nρ ∼ N (0, σ2
ρ). (5.4)

In general, assume that the measurement noise of the angles is M -variate normally distributed
with zero mean, i.e.

nθ ∼ NM (0,Σθ), (5.5)
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with the angle noise covariance matrix Σθ ∈ RM×M . Unless stated otherwise, the assumption
on nθ is even strengthened further by requiring

Σθ = diag(σ2
θ1 , . . . , σ

2
θM ) (5.6)

i.e. that the noise distributions of the different angles are mutually independent and thus the
time series are uncorrelated. This assumption is a simplification, however, to determine the
off-diagonal elements is not trivial. If these are not known with sufficient accuracy, including
them does not improve the model. Thus, for now Σθ is assumed to be a diagonal matrix. For
the analysis presented here, the exact distribution of nθ is only relevant within the Bayesian
estimation method. It is further presumed that nθ and nρ are independent of each other.

The whiteness of the measurement noise, which is implied by the i.i.d. condition, is merely
assumed in order to simplify the computations. However, the noise variances that should be
used for this approximation do depend on the filter that was applied to the data. The values of
Σθ moreover depend on the attitude sensor which was used to derive the pointing angles. For
the results presented in this thesis, the data is assumed to be filtered according to Sec. 5.1.6,
and the variances were derived from the ASDs of the measured pointing angles, which can
be viewed in Sec. 2.2.1. The numbers are summarized in Tab. 5.1 in terms of the STDs σρ
and σθ. Here the value for SCA refers not to the fused SCA1B data, but to pointing angles
derived from star camera data only. The value given for IMU refers to IMU1A, IMU1B or
SCA1B data, since SCA1B data has been fused with IMU data and is assumed to attain the
IMU noise level at high frequencies.

Table 5.1: Assumptions on the measurement noise STD of filtered LRI range and pointing
angles.

Variable Sensor Value

σρ LRI 0.5 nm
σθ SCA (roll, pitch, yaw) 20 µrad
σθ IMU (roll, pitch, yaw) 1 µrad
σθ ACC (roll, pitch, yaw) 0.1 µrad
σθ FSM (pitch) 1 µrad
σθ FSM (yaw) 2 µrad

In the following, some estimation methods are described, commencing with the least
squares approach.

5.2.2 Least squares (collective)

The method described here is denoted by least squares (LSQ) collective, which is meant to
indicate that the least squares estimation is applied considering all relevant pointing angles at
the same time, i.e. M > 1, and hence estimating all M coupling factors at the same time.

With the filtered pointing angles θ̄ ∈ RN×M and the filtered range ρ̄ ∈ RN×1, and with
the assumption (5.2), the approach of the least squares estimation is to minimize the residual
ρ̄− θ̄λ in the least squares sense w.r.t. λ. I.e., the goal is to minimize∑

i

(
ρ̄(ti)− θ̄(ti)λ

)2
= (ρ̄− θ̄λ)T (ρ̄− θ̄λ) (5.7)

= ρ̄T ρ̄− 2λT θ̄T ρ̄+ λT θ̄T θ̄λ. (5.8)

This expression can be minimized by calculating the derivative w.r.t. λ,

∂

∂λ

(
ρ̄T ρ̄− 2λT θ̄T ρ̄+ λT θ̄T θ̄λ

)
= −2θ̄T ρ̄+ 2θ̄T θ̄λ, (5.9)
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and equating it with the zero vector. Hence, the least squares estimator is defined as

λ̂LSQ

(
θ̄, ρ̄
)

=
(
θ̄T θ̄

)−1
θ̄T ρ̄, (5.10)

where the subscript LSQ was introduced to indicate the collective least squares method. This
is indeed a minimum of Eq. (5.7), since the matrix θ̄T θ̄ is positive definite and thus also the
Hessian matrix, unless one of the angle time series is identically zero. For some theoretical
background, see e.g. [CJ04].

The covariance matrix of λ̂LSQ is given by

cov
(
λ̂LSQ

)
= σ2

ρ

(
θ̄T θ̄

)−1
. (5.11)

Hence, the theoretical formula for the STD of this estimator is computed as

σ
(
λ̂LSQ

)
= diag

(√∣∣∣cov
(
λ̂LSQ

)∣∣∣) (5.12)

= diag

(√∣∣∣σ2
ρ

(
θ̄T θ̄

)−1
∣∣∣) . (5.13)

Note that the measurement noise of θ is entirely neglected with this method. Note further
that, since nρ is assumed to be normally distributed, the least squares estimator is equivalent
to the maximum likelihood estimator.

5.2.3 Least squares (individual)

LSI abbreviates the method of estimating each of the considered angles individually, using
least squares, and afterwards combine the results to get an estimate of the set of considered
coupling factors. This idea is based on the fact that each individual CMC maneuver excites
mainly one specific pointing angle, while the other angles have a low or negligible amplitude
at the maneuver frequency. During the yaw maneuvers, the roll angle is excited as well, but
the roll coupling is small compared to the yaw coupling, so that the TTL error during the
maneuvers is still dominantly caused by the yaw angle.

For each maneuver, the respective pointing angle is fitted to the range using linear least
squares. The LSQ formula, Eq. (5.10), holds also in the case where θ̄ denotes only one pointing
angle. Here θ̄ is interpreted as a time series of size N×1. Thus, each estimation is following the
same process as with the LSQ method, except the estimand is one CF. Since usually two CMC
maneuvers are performed per angle, one thus obtains two estimates for each angle. Finally,
the estimate λ̂LSI ∈ RM×1 is obtained by taking the mean of the two individual estimates for
each of the considered angles.

5.2.4 Cross-correlation estimation

As in the LSI approach, here one angle at a time is considered. This requires for the TTL
error to be caused almost exclusively by the excitation of one pointing angle. At first, the
cross-correlation of the range with this angle, say θ̄, is computed. With the notation given
above, the nonnormalized cross-correlation of θ̄ and ρ̄ is defined as

χ(θ̄, ρ̄)(m) =


N−m∑
k=1

θ̄(tk+m) · ρ̄(tk), m ≥ 0

χ(ρ̄, θ̄)(−m), m < 0

(5.14)

for m = −(N − 1), . . . , (N − 1).
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After computing χ(θ̄, ρ̄), the cross-correlation χmax with maximal absolute value is deter-
mined. For the results presented in this thesis, the search was restricted to a maximal time
shift of 2.5 seconds, which means |m| ≤ fs · 2.5 s, where fs is the sampling frequency of the

time series. The estimated CF λ̂ is then computed by

λ̂ =
χmax∑
i θ̄(ti)

2
, (5.15)

where θ̄(ti) denotes the pointing angle measured at time ti, and the sum is taken over all values
recorded during the maneuver. The estimated time shift δt between the two time series is a
byproduct of this method and is calculated as

δt =
mmax

fs
(5.16)

where mmax is the value of m for which χ(θ̄, ρ̄)(m) attains its maximal absolute value, i.e.

χ(θ̄, ρ̄)(mmax) = χmax. (5.17)

If mmax 6= 0, a possible explanation is that the time stamps of at least one of the time series
could be incorrect. Under this hypothesis, one obtains an estimate of the relative time shift
between the two time series. The sign of δt is to be interpreted as follows. If for example
mmax > 0, i.e. δt > 0, the correlation between θ̄ and ρ̄ is maximal if the time stamps of θ̄ are
reduced w.r.t. ρ̄ by δt, i.e. the reported time stamps in the θ̄ data are too large.

So far, the estimated CF and time shift obtained in this way can only assume certain
discrete values, which are determined by the sampling rate. A more precise estimate can be
obtained by interpolating χ(θ̄, ρ̄) in a small neighborhood around mmax, and searching once
more for the maximum. Here the property of the piecewise cubic hermite interpolating poly-
nomial (PCHIP) method not to overshoot is not desired, so a different interpolation method

should be chosen. Again, as with the LSI method, the final estimate λ̂XC is determined by
taking the mean of the individual estimates.

5.2.5 Bayesian estimation

The Bayesian approach can be sketched as follows. For the theoretical background, see e.g.
[Koc07] or [Koc99]. As usual, λ = (λ1, . . . , λM )T denotes the TTL CFs, with M being the
number of angles to be considered. One is interested in the probability density function (PDF)
of λ, given all the data that are available, i.e. the processed LRI range and the pointing angles.
Bayes’ theorem for random variables A,B reads

P (A|B) =
P (B|A)P (A)

P (B)
. (5.18)

Here P denotes the PDF. Now, by Bayes’ theorem, with A = λ and B = data, it follows that

P (λ|data) ∝ P (λ) · P (data|λ), (5.19)

where ∝ means proportionality w.r.t. λ, i.e. the proportionality constant does not depend on
λ. In this context, P (λ) is called the prior of λ, and P (data|λ) is called the likelihood of the
data given λ. The desired quantity P (λ|data), called the posterior of λ, is unknown. However,
the relation (5.19) allows to compute the right hand side instead of the posterior. Based on
this, one can then define an estimator of λ, e.g. by maximizing this expression w.r.t. λ. This is
the goal of the Bayesian estimation approach. More precisely, a Bayesian estimator is defined
by choosing a loss function L(λ̂, λ) and then minimizing the expected loss

E
[
L(λ̂, λ)

]
=

∫
RM

L(λ̂, λ)P (λ|data) dλ. (5.20)
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Since it is based on the posterior density of λ, E[L(λ̂, λ)] is called the posterior expected loss.

The purpose of the loss function L is to evaluate how good an estimate λ̂ is, depending on the
true value λ. L should be zero for λ̂ = λ, i.e. L(λ, λ) = 0 ∀λ ∈ RM .

A common choice for the loss function is the quadratic estimation error, i.e. (λ̂−λ)T (λ̂−λ),
which leads (cf. [Koc07]) to the estimator

λ̂ =

∫
RM

λ · P (λ|data) dλ, (5.21)

i.e. the estimated value is the expected value of λ, where λ is interpreted as a random variable
distributed according to the posterior density P (λ|data). Another common choice for the loss

function is the absolute error, i.e. one defines L(λ̂j , λj) = |λ̂j−λj | for j = 1, . . . ,M . It is shown

in [Koc07] that each loss is minimized when the estimator λ̂ is defined as the median of the

posterior P (λ|data), i.e. such that the cumulative distribution function CDFλ|data(λ̂) = 1/2.
A third common choice for the loss function is the so-called zero-one loss

L
(
λ̂j , λj

)
=

{
0, |λ̂j − λj | < b

1, |λ̂j − λj | ≥ b
(5.22)

with some b > 0. One can show [Koc07] that, when letting b→ 0, the posterior expected loss
is minimized if

λ̂ = arg max
λ

P (λ|data) . (5.23)

That is, the estimate is obtained by maximizing the posterior. Thus, this estimator is called
the maximum a posteriori (MAP) estimator. All results shown within this thesis are obtained
using the MAP estimator, since it is the least complicated to implement in code.

In practice, if one wants to compute the posterior density P (λ|data) in a meaningful way,
it quickly becomes clear that some additional information is needed, apart from the data. In
particular, this may be information on the noise in the data. Let the collection of additional
information be denoted by I, and define

X (λ) = P (λ| data, I) (5.24)

= P
(
λ| θ̄, ρ̄,Σθ, σ

2
ρ

)
, (5.25)

with data = (θ̄, ρ̄) and I = (Σθ, σ
2
ρ). The Bayesian approach can be modified such that it

considers any information that may be relevant. The goal here is to compute X (λ), for which
there are several ways how to proceed in detail. Which way is used is decided by choosing
models of

1. the prior P (λ)

2. the PDF of the ranging noise P (nρ)

3. the PDF of the angle noise P (nθ)

In the following, several ways of calculating the posterior are described. In the beginning, the
most simple assumptions for these three choices are made, and then the sophistication is built
up step by step.
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Derivation without angle noise

For now, assume that the measured pointing angles are free of errors, i.e. θ̄ = θ. At first, it
must be remarked that the equality

P (A,B|C) = P (A|C) · P (B|A,C) (5.26)

holds in general for random variables A,B,C. This can be seen by conditioning the equation
P (B|A) = P (A,B)/P (A) with C. Now, since θ̄ = θ, one has X (λ) = P (λ|θ, ρ̄, σ2

ρ). For the
following computations, define

Y(λ) = P
(
λ|θ, ρ̄, σ2

ρ

)
, (5.27)

the posterior in the absence of angle noise. By Bayes’ theorem, one has

Y(λ) = P
(
θ, ρ̄, σ2

ρ|λ
)
· P (λ)

P
(
θ, ρ̄, σ2

ρ

) (5.28)

= P
(
θ, σ2

ρ|λ
)
· P
(
ρ̄|θ, σ2

ρ, λ
)
· P (λ)

P
(
θ, ρ̄, σ2

ρ

) . (5.29)

Here, the second equality follows from (5.26). Note that θ and σ2
ρ are given, and hence one

has P (θ, σ2
ρ|λ) = 1. Since P (θ, ρ̄, σ2

ρ) is independent of λ, one obtains

Y(λ) ∝ P
(
ρ̄|θ, σ2

ρ, λ
)
· P (λ), (5.30)

so the desired quantity is proportional to the product of the prior and the likelihood of the
ranging data, given λ and the available information.

If nothing is known about the prior, one can set P (λ) = 1. Note that in that case the
posterior is proportional to the likelihood. This is the simplest way to calculate the posterior.
If the Bayesian MAP estimator is used, i.e. the estimate is obtained by maximizing the poste-
rior, the Bayesian estimator in this simple case is thus equivalent to the maximum likelihood
estimator. With nρ being Gaussian noise, it is equivalent to the LSQ estimator as well.

Derivation with angle noise

Now, assume that there is nonzero angle noise. In this case, X must be marginalized over θ.
To this end, note that

P (A|C) =

∫
P (A,B|C) dB =

∫
P (A|B,C) · P (B|C) dB, (5.31)

where the first step is called marginalization over B, and the second step follows from (5.26).
From (5.31), one obtains

X (λ) =

∫
P
(
λ| θ, θ̄, ρ̄,Σθ, σ

2
ρ

)
· P
(
θ| θ̄,Σθ

)
dθ (5.32)

=

∫
P
(
λ| θ, ρ̄, σ2

ρ

)
· P
(
θ| θ̄,Σθ

)
dθ (5.33)

=

∫
P
(
λ| θ, ρ̄, σ2

ρ

)
· P
(
θ̄| θ,Σθ

)
· P (θ)

P
(
θ̄
) dθ (5.34)

∝
∫
P
(
λ| θ, ρ̄, σ2

ρ

)
· P
(
θ̄| θ,Σθ

)
· P (θ) dθ, (5.35)

where P
(
λ| θ, ρ̄, σ2

ρ

)
= Y(λ) has been computed above, cf. Eq. (5.30). If there is no meaningful

way to determine P (θ), it can be assumed to be constant. Then,

X (λ) ∝ P (λ)

∫
P
(
ρ̄| θ, σ2

ρ, λ
)
· P (θ̄| θ,Σθ) dθ. (5.36)
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Concrete formulas

In order to implement a Bayesian estimator, one must write down the concrete equations for
the terms that appear in Eqs. (5.30) and (5.36). First, note that Eq. (5.36) can be used in
different ways. One could think of the integral as an (N ×M)-dimensional integral, however,
that would be impractical. Instead, define X0(λ) = P (λ), and recursively

Xi(λ) = Xi−1(λ)

∫
RM

P
(
ρ̄i| θi, σ2

ρ, λ
)
· P (θ̄i| θi,Σθ) d

Mθi, (5.37)

for i = 1, . . . , N , where θ̄i = (θ̄1
i , . . . , θ̄

M
i ) ∈ R1×M and ρ̄i ∈ R are the data measured at time

ti. The idea behind this is to first interpret Eq. (5.36) in the sense of Eq. (5.37) for i = 1, i.e.
as the posterior after the first data point. Subsequently, this posterior is used as an updated
prior. The next data point can then be viewed as an independent event, with a new posterior
derived with the updated prior. Recursively, this yields another equation for the posterior
density:

P (λ| θ̄, ρ̄,Σθ, σ
2
ρ) ∝ XN (λ) (5.38)

= P (λ) ·
N∏
i=1

∫
RM

P
(
ρ̄i| θi, σ2

ρ, λ
)
· P (θ̄i| θi,Σθ) d

Mθi. (5.39)

Now, the pointing angle error for one data point is described by

P
(
θ̄i| θi,Σθ

)
∝ exp

[
−1

2
(θ̄i − θi)Σ−1

θ (θ̄i − θi)T
]
. (5.40)

In case Σθ is assumed to be diagonal, Eq. (5.40) becomes

P
(
θ̄i| θi,Σθ

)
∝ exp

−1

2

M∑
j=1

1

σ2
θj

(
θ̄ji − θ

j
i

)2

 . (5.41)

Recalling Eqs. (5.2), (5.3), and (5.4), one has

ρ̄i| θi, σ2
ρ, λ ∼ N (θiλ, σ

2
ρ). (5.42)

That is,

P
(
ρ̄i| θi, σ2

ρ, λ
)
∝ exp

[
− 1

2σ2
ρ

(ρ̄i − θiλ)2

]
. (5.43)

For the prior of λ, assume a normal distribution as well. Let the λj be independently dis-
tributed, i.e.

λj ∼ N (λ̃j , σ2
λj ), (5.44)

for each j = 1, . . . ,M , so that

P (λ) ∝ exp

−1

2

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2

 , (5.45)

where the mean λ̃j and STD σλj describe the a priori guess of λj . In the case discussed here,
the mean values λ̃j were set to zero. In case of doubt, the STD values of the prior should be
chosen rather large, in order not to restrict the estimates too much. One can assign a lower
value for σλj in case of the roll CF than for the pitch or yaw CF, if one is more confident
that the roll CF is rather small. For the STDs, the values 10, 250, and 250 µm rad−1 were
assumed for the roll, pitch, and yaw CF, respectively. Below, 5 different formulas of the final
CF estimator are given, named BAY1 to BAY5.
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BAY1 In the simplest case, without angle noise and assuming P (λ) = const., one has

P
(
λ| θ, ρ̄, σ2

ρ

)
∝

N∏
i=1

exp

[
− 1

2σ2
ρ

(ρ̄i − θiλ)2

]
(5.46)

= exp

[
− 1

2σ2
ρ

N∑
i=1

(ρ̄i − θiλ)2

]
. (5.47)

The MAP estimator in this case is

λ̂BAY1 = arg min
λ

[
N∑
i=1

(ρ̄i − θiλ)2

]
, (5.48)

which is identical to the LSQ estimator, and also the maximum likelihood estimator, in this
simple case, as mentioned above.

BAY2 Still without angle noise, but with nonconstant prior, one obtains

P
(
λ| θ, ρ̄, σ2

ρ

)
∝ exp

−1

2

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2

 · N∏
i=1

exp

[
− 1

2σ2
ρ

(ρ̄i − θiλ)2

]
(5.49)

= exp

−1

2

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2
− 1

2σ2
ρ

N∑
i=1

(ρ̄i − θiλ)2

 . (5.50)

The MAP estimator is then given by

λ̂BAY2 = arg min
λ

 M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2
+

1

σ2
ρ

N∑
i=1

(ρ̄i − θiλ)2

 . (5.51)

BAY3 When including angle noise, one cannot avoid computing M -dimensional integrals.
For the BAY3 estimator, assume a constant prior, P (λ) = const. With Eq. (5.39), one obtains

λ̂BAY3 = arg max
λ

 N∏
i=1

∫
RM

exp

− 1

2σ2
ρ

(ρ̄i − θiλ)2 − 1

2

M∑
j=1

1

σ2
θj

(
θ̄ji − θ

j
i

)2

 dMθi

 . (5.52)

BAY4 Including angle noise as well as a nonconstant prior, one obtains the formula for the
BAY4 estimator:

λ̂BAY4 = arg max
λ

exp

−1

2

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2

 . . .

·
N∏
i=1

∫
RM

exp

− 1

2σ2
ρ

(ρ̄i − θiλ)2 − 1

2

M∑
j=1

1

σ2
θj

(
θ̄ji − θ

j
i

)2

 dMθi

 .
(5.53)
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BAY5 As an additional option, one can derive another estimator with the following heuristic
approach. Observe that Eq. (5.2) for the filtered measured range can be transformed as

ρ̄ = TTL + nρ (5.54)

= θλ+ nρ (5.55)

= (θ̄ − nθ)λ+ nρ (5.56)

= θ̄λ+ nnew, (5.57)

with nnew = nρ − nθλ. In this sense, one could interpret θ̄ as error-free angles, and nnew as
the ranging noise. Then, assuming Σθ to be diagonal, one has

nnew ∼ N
(
0, σ2

new(λ)
)
, (5.58)

with

σ2
new(λ) = σ2

ρ +

M∑
j=1

(λj)2σ2
θj . (5.59)

The posterior PDF of λ can then be derived similar to Eqs. (5.30) and (5.51). However, note
that σ2

new now depends on λ, as opposed to σ2
ρ. Hence,

P (λ| θ̄, ρ̄, σ2
new) ∝ P (λ) · P

(
ρ̄| θ̄, σ2

new, λ
)

(5.60)

∝
(

1

σ2
new(λ)

)N
2

exp

−1

2

M∑
j=1

1

σ2
λj

(λj − λ̃j)2 − 1

2σ2
new

N∑
i=1

(ρ̄i − θ̄iλ)2

 (5.61)

∝ exp

−N
2

ln(σ2
new(λ))− 1

2

M∑
j=1

1

σ2
λj

(λj − λ̃j)2 − 1

2σ2
new

N∑
i=1

(ρ̄i − θ̄iλ)2

 .
(5.62)

For the last step, note that ab = (eln(a))b = eb·ln(a). Since the exponential function is monotone,
this yields the MAP estimator

λ̂BAY5 = arg min
λ

N · ln(σ2
new(λ)) +

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2
+

1

σ2
new(λ)

N∑
i=1

(ρ̄i − θ̄iλ)2

 . (5.63)

Note that in case nθ = 0, one has σnew = σρ and the BAY5 formula reduces to BAY2,
Eq. (5.51), or to BAY1, Eq. (5.48), in case P (λ) = const.

Confidence regions

A 1− α confidence region, α ∈ (0, 1), is a subset S of the parameter space Ω, such that∫
S

P (λ| data, I) dλ = 1− α (5.64)

and
P (λ1| data, I) ≤ P (λ2| data, I) ∀λ1 /∈ S, λ2 ∈ S. (5.65)

The second condition ensures that an arbitrary region outside S cannot have a higher proba-
bility than a region of the same measure inside S. Here the parameter space is Ω = RM , where
M is the number of considered pointing angles. Common choices for α are 0.32, 0.05, or 0.003.
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In the case where P (λ1| data, I) is a Gaussian distribution, these values approximately yield
the 1-, 2-, and 3-sigma confidence regions. E.g., if M = 1, α = 0.32 then yields the confidence
interval {λ : |λ̂− λ| ≤ σ(λ̂)}.

Recall that so far the posterior has always been computed up to a factor which does not
depend on λ, say computed was Q(λ) = I · P (λ| data, I). The proportionality constant I
must be determined, in order to obtain confidence regions. Since∫

Ω

P (λ| data, I) dλ = 1, (5.66)

the proportionality constant must be given by

I :=

∫
Ω

Q(λ) dλ. (5.67)

Hence, the probability that λ lies in a certain region S ⊂ RM is given by

P (λ ∈ S) =

∫
S

P (λ| data, I) dλ =
1

I

∫
S

Q(λ) dλ. (5.68)

The value of I, as well as the confidence region, must usually be determined numerically, since
generally the equations do not have an analytic solution.

Implementation of Bayes estimators

Above, five different BAY estimators were derived. Their implementation requires a bit more
effort than is necessary for the other methods. One does not need to implement BAY1, since
it is equivalent to the LSQ estimator. BAY2 is not expected to deviate a lot from BAY1 in
this case. BAY3 is the same as BAY4, but without considering a prior. Thus, the author
decided to implement BAY4, which is the most sophisticated and most interesting of the BAY
estimators, as well as BAY5, which requires less implementation effort due to the heuristic
approach, while still considering the pointing angle noise. During the implementation of the
Bayesian estimation methods, one may face a few practical challenges, especially with BAY4.
Therefore, some words on how one might proceed in the case of BAY4 and BAY5 is given in
the following.

Recalling Eq. (5.39), the posterior PDF P (λ| θ̄, ρ̄,Σθ, σ
2
ρ) can be described in the form

P (λ| θ̄, ρ̄,Σθ, σ
2
ρ) ∝

N∏
i=1

fi(λ, θ̄, ρ̄,Σθ, σ
2
ρ), (5.69)

where N is the number of data points, for suitable functions fi. In the case of BAY4, these
functions may be derived from Eq. (5.53):

fi(λ, θ̄, ρ̄,Σθ, σ
2
ρ) = exp

− 1

2N

M∑
j=1

1

σ2
λj

(
λj − λ̃j

)2

 . . .

·
∫
RM

exp

− 1

2σ2
ρ

(ρ̄i − θiλ)2 − 1

2

M∑
j=1

1

σ2
θj

(
θ̄ji − θ

j
i

)2

 dMθi.

(5.70)

Recall that the λ̃j , j = 1, . . . ,M , are the mean values of the prior distribution of the λj , cf.
Eq. (5.44), which were set to zero here. The functions fi can be implemented easily, however,
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there are two aspects that require a bit of care. Firstly, computing the values of fi involves
solving an M -dimensional integral, where M is the number of considered angles. Since these
integrals typically must be evaluated numerically, the computation time rapidly increases with
M . Moreover, a single evaluation of the posterior requires calculating N of such integrals,
where N is the number of data samples. Secondly, the values of the functions fi may become
very small or, depending on the units in which the input data is given, very large. Thus, the
computer may not return a useful result when performing the product over i = 1, . . . , N . In
order to mitigate this problem, define

F (λ) :=

N∏
i=1

fi(λ)
1
N . (5.71)

Here F and fi are written as a functions of only λ, as the other parts are assumed to be known
at this point. Abbreviating the posterior PDF by P (λ) := P (λ| θ̄, ρ̄,Σθ, σ

2
ρ), one has

P (λ) ∝ FN (λ), (5.72)

and the function F can be evaluated accurately. Since the N th power is a monotone function,
the MAP estimator is equal to

λ̂ = arg max
λ

F (λ). (5.73)

For the computation of the actual posterior PDF for many points in the parameter space, it
is beneficial to define

F̃ (λ) =

(
F (λ)

Fmax

)N
, (5.74)

where Fmax = F (λ̂) is the maximum value of F , so that P (λ) ∝ F̃ (λ) as well. Then one has

F̃ (λ̂) = 1, as well as F̃ (λ) ≤ 1 ∀λ. Note that the normalization in Eq. (5.74) has the effect
that the values of F̃ become neither impractically large, nor small, at least in the vicinity of
λ̂. Finally, the posterior can be obtained by computing

I =

∫
RM

F̃ (λ) dλ, (5.75)

and then

P (λ| θ̄, ρ̄,Σθ, σ
2
ρ) =

1

I
F̃ (λ). (5.76)

In the case of BAY5, the situation is less complicated and the required computation time
is far less than for BAY4. Note that the expression in square brackets in Eq. (5.63) is equal
to −2 ln(c · P ), for some constant c, where P denotes the posterior PDF. Define the function
G := ln(c · P ). Then, denoting by Gmax the maximum value of G, the proportionality

P ∝ exp(G−Gmax) =: G̃ (5.77)

holds and the function G̃ on the right hand side has a maximum value of 1. Using this
intermediate function ensures that the computer does not run into problems with extremely
large numbers. The PDF can be obtained in the usual way by dividing by the integral of G̃
over RM .

Finally, note that once the PDF, or a function monotonely related to the PDF, is im-
plemented, the estimation can be performed very quickly by a numerical minimization or
maximization. Computing the PDF values for many points, which is necessary for instance
for the determination of confidence regions, requires much more computation time. For this,
investing some time into the optimization of code efficiency can be worth the effort.
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5.2.6 Amplitude spectrum analysis

With the approach abbreviated here by PSD, only one CF at a time can be estimated, as for
the LSI and XC methods. First, the amplitude spectra (AS) of the range and the respective
pointing angle are computed from the time series, denoted AS(ρ̄) and AS(θ̄), respectively.
Both amplitude spectra should show peaks at the maneuver frequency of 83.3̄ mHz. With f0

being the frequency value which is closest to 83.3̄ mHz, the heights Hρ, Hθ of the peaks are
simply estimated by

Ĥρ = ASρ(f0), (5.78)

Ĥθ = ASθ(f0). (5.79)

If the time series are relatively short so that the AS does not have a good frequency resolution,
one may consider to cut off a few data points from the time series in order for f0 to be as
close to 83.3̄ mHz as possible. Here the AS were computed with the Matlab software, using
the LTPDA toolbox. A flattop window (HFT90D) was chosen, which has a good amplitude
accuracy, cf. [HRS02]. No averaging was applied, since the frequency resolution of the AS is
already relatively low due to the short duration of the maneuvers.

The magnitude of the CF is then estimated by the quotient of the peak heights:

|λ̂| = Ĥρ

Ĥθ

. (5.80)

In the end, the sign of the CF is determined by minimizing the residual, that is

sign(λ̂) =

{
1, if ASρ̄−|λ̂|θ(f0) ≤ ASρ̄+|λ̂|θ(f0)

−1, otherwise
, (5.81)

thus

λ̂PSD = sign(λ̂) · |λ̂|. (5.82)

The uncertainty of Ĥρ and Ĥθ can be determined by estimating the value that the AS
would have at f0 without the peak. This value was estimated here by the mean of the adjacent
values of the AS, taking three values from each side. Other possibilities would be to analyze
the models of the error terms nρ and nθ, or by computing spectra of measurement time series

in the absence of a maneuver. By error propagation, one can compute the uncertainty of λ̂psd

as

δλ̂psd =
δĤρ

Ĥθ

+
Ĥρ

Ĥ2
θ

· δĤθ =
1

Ĥθ

(
δĤρ + |λ̂| · δĤθ

)
. (5.83)

Finally, note that the PSD method requires a stimulus with a periodic profile, such as from a
CMC maneuver.

5.2.7 Summary of estimation methods

Table 5.2 summarizes all estimators which have been derived in this section. For each method,
it is indicated in the table, whether i) a prior of λ is considered, ii) pointing angle noise
is considered, iii) a posterior PDF is obtained, iv) more than one angle can be considered
(M > 1), and v) how large the implementation effort is. Note that the methods BAY1-3
have not been used for the results presented in this thesis. For the evaluation of the actual
performance of individual estimation methods, confer Sec. 5.3.5.
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Table 5.2: Summarizing table of parameter estimation methods.

Method P (λ) 6= const. nθ 6= 0 PDF M > 1 effort (1-4) remarks

LSQ 7 7 7 3 1 -
LSI 7 7 7 7 1 -
XC 7 7 7 7 2 yields estimate of time

stamp mismatch
PSD 7 7 7 7 2 independent of time

stamp mismatches
BAY1 7 7 3 3 2 equivalent to LSQ
BAY2 3 7 3 3 2 (not implemented here)
BAY3 7 3 3 3 4 (not implemented here)
BAY4 3 3 3 3 4 -
BAY5 3 3 3 3 3 heuristic derivation

5.3 Results

CMC maneuvers are performed in ”bundles”, that is, a number of maneuvers is carried out
in succession, usually over the course of two calendar days. These maneuvers can be analyzed
together, since the parameters are assumed to be constant during such a short time period.
The number of maneuvers per bundle is usually 7 per S/C, consisting of two maneuvers per
angle - roll, pitch, yaw - and one mixed maneuver, which is exciting both the roll and the pitch
angle. Typically, maneuvers are performed on both S/C, so there are in total 14 maneuvers
per bundle. However, at some instances in 2020, maneuvers were carried out merely on GF1.
One set of results is obtained for each such bundle. In June 2018, one ”wiggle test” per angle
per S/C has been performed, which are short CMC maneuvers with a duration of 24 instead
of 180 seconds. In total, by the time of writing, there are 16 different sets of results for GF1,
and 12 for GF2.

In the following, in Sec. 5.3.1, a first version of combined results is presented, which is
derived from different methods. These results, published in [Weg+20b], were obtained before
the effect of angular rate coupling (ARC) in the LRI was known, cf. Sec. 3.2.6. Therefore, a
second version of combined results is presented in Sec. 5.3.2, which does account for both TTL
and ARC. Afterwards, in Sec. 5.3.4 the estimation results of the CoM positions w.r.t. LRI
RP will be presented as well, which are derived from the second version of combined coupling
factors. In Sec. 5.3.5, the individual estimation methods are evaluated by comparing their
results. Finally, the results are interpreted and conclusions are drawn in Sec. 5.3.6.

5.3.1 Combined results, version 1

The version 1 results, published in [Weg+20b], are summarized in Tabs. 5.3 and 5.4, in terms
of linear TTL coupling factors (CF) with the unit µm rad−1. The CFs are given in the form
value ± uncertainty. The values are averages over a set of estimated values, obtained using
different methods and different sources for the pointing angles. The uncertainties given here
are computed as the STD of this set of estimated values, since the individual uncertainties
obtained via the different methods are not necessarily inter-comparable.

The values for pitch and yaw CFs are averages over the estimates from 5 different meth-
ods: LSQ, LSI, XC, PSD, BAY5. BAY4 has been implemented at a later stage and was hence
not used here. Mixed maneuvers, as well as wiggle maneuvers, were only considered by the
methods LSQ and BAY5. Moreover, roll coupling factors were only estimated with the meth-
ods LSQ and BAY5. The given values are also averages over the estimates obtained using
different pointing angle sources: FSM, SCA1B (RL04), IMU1B (RL04). Angles derived from
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accelerometers have not been used for the results shown here, since the quality of the GF2
ACC data was not sufficient.

Table 5.3: Estimated linear TTL coupling factors (version 1; for historical reference), for GF1.

LRI linear TTL coupling factors [µm rad−1]:
date roll GF1 pitch GF1 yaw GF1

= ∆z1· rad−1 = −∆y1· rad−1

wiggle:
2018-06-21 0.4 ± 7.1 116.5 ± 14.5 154.1 ± 23.0

CMC:
2019-01-16 0.2 ± 1.0 90.8 ± 9.6 62.6 ± 44.5
2019-03-26 1.0 ± 1.1 83.3 ± 8.2 70.6 ± 58.1
2019-04-24 0.8 ± 1.6 90.9 ± 10.0 82.8 ± 33.6
2019-05-23 1.0 ± 0.9 82.9 ± 9.2 90.3 ± 32.2
2019-06-22 -0.4 ± 1.2 91.5 ± 8.6 98.8 ± 31.3
2019-07-24 2.2 ± 1.5 99.2 ± 11.3 94.9 ± 33.0
2019-08-26 1.3 ± 0.8 94.9 ± 14.0 94.5 ± 36.4
2019-09-28 0.4 ± 1.4 100.7 ± 10.8 86.0 ± 30.3

Table 5.4: Estimated linear TTL coupling factors (version 1; for historical reference), for GF2.

LRI linear TTL coupling factors [µm rad−1]:
date roll GF2 pitch GF2 yaw GF2

= ∆z2· rad−1 = −∆y2· rad−1

wiggle:
2018-06-21 -5.9 ± 7.7 68.7 ± 12.0 82.8 ± 37.5

CMC:
2019-01-16 -0.1 ± 1.7 74.9 ± 9.9 142.7 ± 17.6
2019-03-26 -0.4 ± 1.2 74.4 ± 8.9 138.3 ± 22.2
2019-04-24 -1.1 ± 1.5 83.9 ± 9.8 132.5 ± 16.5
2019-05-23 -1.0 ± 1.1 46.6 ± 7.5 103.2 ± 22.5
2019-06-22 0.4 ± 1.0 61.0 ± 54.7 97.1 ± 13.9
2019-07-24 2.5 ± 1.2 73.7 ± 9.0 133.4 ± 17.0
2019-08-26 1.1 ± 0.9 98.7 ± 11.2 133.9 ± 19.6
2019-09-28 1.3 ± 0.9 93.5 ± 11.1 155.9 ± 32.0

It is important to note that the ARC effect was not understood at the time of publish-
ing [Weg+20b], and it was reported as an unexplained artifact in the data. If ARC is not
considered, the fitted TTL curves for the yaw angle of the transmitter S/C appear as if they
were time shifted w.r.t. the signal in the range. This disturbs the CF estimation and is thus
relevant for interpreting these results. This phenomenon is visible in Fig. 5.4, which shows a
yaw GF1 maneuver in January 2019. The left plot illustrates the estimated TTL error when
not considering ARC. The angles for this plot were derived from IMU1B data. The right plot
shows a fit of the same maneuver when ARC is considered.

Furthermore, note that the data shown in the plots of [Weg+20b] have been filtered with
a different filter than described in Sec. 5.1.6. This filter had a lower magnitude response at
the CMC maneuver frequency, and hence the plotted time series show lowered amplitudes.
This did not affect the accuracy of the CF estimation, since both the range and the angle
amplitudes were lowered by the same factor. The filter has been updated for version 2 of
combined results, which is presented in the following section.
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Figure 5.4: TTL fit for a CMC yaw GF1 maneuver in January 2019: bandpass filtered range
and estimated TTL error. Left: without considering ARC. Right: including ARC.

5.3.2 Combined results, version 2

As pointed out above, producing a second version of TTL estimation results was necessary
after the discovery of ARC. Recall that the ARC error can be computed via Eq. (3.52), given
the pitch and yaw rates of the transmitter S/C. In order to confirm the parameters that arise
from the theory, the ARC factors were at first estimated along with the TTL coupling factors.
The results for the ARC factors are listed in Tab. 5.5, with the unit of µm/(rad/s). The
values and uncertainties are the averages and STDs of a set of values obtained from different
methods and angle sources. The methods LSI, PSD, and XC are not defined for estimating
two parameters at once, and hence they were not used here. Note that ARC only applies to
the transmitter S/C, which has been GF2 until December 2018 and GF1 thereafter. The only
values for GF2 are not very reliable, since they were obtained from ”wiggle” maneuvers with
a duration of 24 s instead of 180 s.

The right plot in Fig. 5.4 shows a data fit for the same maneuver as in the left plot, a
yaw GF1 maneuver in January 2019. Here considering both TTL and ARC, the data fits well,
which confirms that introducing ARC resolves the issue with yaw GF1 maneuvers encountered
in [Weg+20b]. Figure 5.5 shows all estimated ARC factors for pitch and yaw of GF1, compared
to the theoretical values. Since the ARC estimations are in most instances compatible with
the theory, henceforth, the ARC is computed and subtracted from the LRI range in advance of
the TTL estimation. For this, the theoretical values from Eq. (3.52) were used. Note further
that in the version 1 results, all of the estimated roll CFs are expectedly close to zero. Thus,
the roll coupling has been neglected, i.e. assumed to be zero, for the version 2 of combined
results.

The combined results of version 2 are given in Tab. 5.6 in terms of CFs with unit µm rad−1.
The values are obtained by combining the individual estimations from different methods and
angle sources, in a similar way as in version 1. The same angle sources were used as in version
1: FSM, SCA1B (RL04), IMU1B (RL04). Here the PSD method has been excluded, since it
exhibits a large uncertainty due to the short maneuver duration. Instead, the BAY4 method
has been included this time. For LSQ and BAY5, all maneuvers except roll and mixed were
concatenated, then all CFs were estimated together. For BAY4, in order to reduce computation
time, each TTL CF was estimated individually. Note that two reasons for the significantly
lower uncertainties given in the version 2 results are the consideration of ARC and the fact
that some methods, in particular the PSD method, were excluded this time. Figure 5.6 shows
exemplary TTL fits for CMC maneuvers performed in August 2019.
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Table 5.5: Estimated ARC factors for GF1 and GF2.

ARC factors [µm rad−1 s]:
pitch yaw

date S/C theory estimated theory estimated

wiggle:
2018-06-21 2 16.2 -10.1 ± 8.0 202.9 130.8 ± 23.8

CMC:
2019-01-16 1 15.4 16.2 ± 2.6 192.2 167.9 ± 17.0
2019-03-26 1 13.7 0.8 ± 3.1 171.4 185.3 ± 12.1
2019-04-24 1 13.9 16.9 ± 5.1 173.4 163.0 ± 14.7
2019-05-23 1 14.0 17.8 ± 2.6 174.6 133.0 ± 13.3
2019-06-22 1 14.1 -3.2 ± 3.5 175.9 175.7 ± 5.5
2019-07-24 1 14.2 -5.9 ± 5.3 177.8 181.7 ± 16.7
2019-08-26 1 14.4 6.3 ± 4.3 180.0 193.7 ± 12.0
2019-09-28 1 14.5 -7.2 ± 4.2 181.2 170.1 ± 12.4
2020-02-01 1 14.6 21.6 ± 4.1 183.0 176.1 ± 5.1
2020-02-14 1 14.6 -0.9 ± 2.4 182.0 182.9 ± 12.3
2020-05-09 1 14.1 25.7 ± 3.2 176.7 180.8 ± 10.9
2020-05-15 1 14.1 7.6 ± 4.2 176.4 186.4 ± 8.1
2020-10-20 1 13.9 11.9 ± 3.5 174.1 173.6 ± 14.1
2021-03-28 1 15.6 42.2 ± 6.7 194.7 185.4 ± 6.7
2021-09-05 1 16.7 17.1 ± 5.7 208.3 179.1 ± 6.7

Figure 5.5: Estimated ARC factors for GF1 pitch and yaw compared to theoretical values
derived from Eq. (3.52).

5.3.3 Note on the combination of results

The version 1 and 2 results presented above are combinations of the individual results using
different angle sources and different estimation methods. For each coefficient, the value and
its uncertainty were obtained by simply taking the average and standard deviation of a set of
considered values for the same coefficient from different methods.
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Table 5.6: Estimated linear TTL CFs version 2.

TTL CFs [µm rad−1]:
GF1 GF2

date pitch yaw pitch yaw

wiggle:
2018-06-21 133.0 ± 4.3 166.0 ± 14.0 67.9 ± 6.6 90.1 ± 15.9

CMC:
2019-01-16 96.5 ± 3.2 46.0 ± 5.0 77.2 ± 4.5 149.3 ± 8.6
2019-03-26 88.0 ± 1.6 52.4 ± 2.3 82.1 ± 7.0 139.6 ± 8.9
2019-04-24 101.2 ± 2.3 69.5 ± 4.5 84.6 ± 4.1 131.6 ± 6.5
2019-05-23 89.8 ± 2.0 71.0 ± 5.1 49.6 ± 4.7 100.9 ± 7.5
2019-06-22 97.0 ± 2.4 91.0 ± 7.3 33.7 ± 3.9 92.4 ± 8.5
2019-07-24 104.4 ± 2.5 82.8 ± 4.6 77.8 ± 4.0 129.9 ± 8.0
2019-08-26 104.5 ± 2.0 82.4 ± 3.7 97.8 ± 5.1 139.9 ± 8.1
2019-09-28 111.6 ± 2.3 62.1 ± 3.2 100.4 ± 6.0 131.0 ± 8.2
2020-02-01 93.9 ± 2.7 62.4 ± 3.6 - -
2020-02-14 100.7 ± 3.5 74.2 ± 3.7 - -
2020-05-09 107.7 ± 3.6 72.6 ± 2.6 - -
2020-05-15 87.7 ± 2.3 93.8 ± 2.8 - -
2020-10-20 63.9 ± 3.1 87.3 ± 9.1 86.7 ± 3.2 119.2 ± 5.2

Figure 5.6: TTL fits during CMC maneuvers on GF1 (left) and GF2 (right) in August 2019,
bandpass filtered. Range versus fitted TTL and ARC errors. Top: pitch maneuvers. Bottom:
yaw maneuvers.
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This way of combining results is rather heuristic, but was chosen for practical reasons. For
one thing, at the time, some artifacts in the data were not understood, and whether there
was a time stamp mismatch between the ranging data and attitude data. As a consequence,
it was not clear which estimation method should be preferred, since they all make different
assumptions. The estimation uncertainties of different methods could also not be assumed to
be well comparable. Moreover, the uncertainty of the LSQ method, see e.g. Eq. (4.28), may
underestimate the true uncertainty, as briefly discussed in Sec. 4.3.1.

In order to avoid confusion, this method of combining results has been retained, and a third
version has not been created. However, with many available data points by now, the methods
have been tested well, and the confidence in the correctness of the time stamps has grown.
Therefore, in retrospect, the author would preferrably suggest to settle on one angle source and
one estimation method. Since the roll coupling has been found to be negligible, the FSM angles
can be used, which brings the advantage that the LRI TTL can be calibrated independently of
other instruments. If a low computation time is preferred and knowledge of the uncertainty is
not particularly important, the LSQ method may be used. If the computational effort is not as
crucial, but a more accurate uncertainty value is desired, then the BAY4 or BAY5 estimators
are suggested here.

5.3.4 Center-of-mass positions

According to Eq. (3.32), estimations of the satellite frame (SF) y and z vertex point (VP)-CoM
offsets, denoted ∆y and ∆z, can be obtained from the pitch and yaw TTL CFs. I.e., ∆y and
∆z are the y and z components of the vector pointing from the LRI VP to the S/C CoM,
given in the SF. Precisely, for each S/C, one has

∆y = −λyaw · 1 rad, (5.84)

∆z = λpitch · 1 rad, (5.85)

where λpitch and λyaw denote the pitch and yaw TTL CFs, respectively. The estimated CoM
positions are plotted in Fig. 5.7. The values are based on the version 2 combined TTL results
presented in the previous section, i.e. on the CFs given in Tab. 5.6.

Mass trims were performed on GF1 on 18 July 2018 (y and z), and on 14 May 2020 (z)
[tea21]. I.e., the CoM of GF1 was intentionally shifted, using movable trim masses on the
S/C, with the goal of colocating the CoM with the ACC RP. A mass trim in x direction
has been performed on 6 February 2020, however, note that the LRI is insensitive to the x
offset. In Fig. 5.7, the SF y and z (cross-track and nadir) components of these mass shifts are
shown as arrows. No mass trims have been performed on GF2, due to the degradation of GF2
accelerometer data. Figure 5.8 compares the results presented here to estimates of the ACC
RP-CoM offset, estimated at the Jet Propulsion Laboratory (JPL) as well as the Center for
Space Research (CSR, University of Texas). The difference between ACC RP-CoM offset on
the one hand and VP-CoM offset on the other hand is expected to be stable, i.e. not varying
significantly with time. For GF1, the results are in good agreement, which is a confirmation
of the results and provides confidence that the observed changes of estimated CFs from one
CMC to the next reflect actual changes of the S/C CoMs. For GF2, not many data points are
available for the ACC-CoM offset, due to the degraded GF2 ACC data. As it is nonetheless
of interest to monitor the S/C CoM variations over time, the results from the LRI analysis
constitute a valuable input for the mission.

5.3.5 Evaluation of the estimation methods

The plots in Fig. 5.9 show a comparison of CFs estimated using different sources for the
pointing angles. Here the depicted values were estimated using the BAY4 method. For GF1,
nearly all values show very good agreement. For GF2, it is noteworthy that the yaw CFs
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Figure 5.7: Estimated y and z components of CoM positions for GF1 (blue, red) and GF2
(green, orange) w.r.t. LRI RP, given in the SF. Arrows indicate mass trims performed on 18
July 2018 (y and z), as well as on 14 May 2020 (z).

Figure 5.8: Estimated SF y (top plots) and z (bottom plots) CoM offsets for GF1 (left plots)
and GF2 (right plots), comparing values from JPL and CSR (ACC-CoM estimation), and AEI
(VP-CoM estimation). Arrows indicate mass trims.
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obtained using FSM pointing angles seem to be commonly lower than for the other angle
sources. The reason for this observation is under investigation.

Figure 5.9: Estimated TTL CFs for GF1 (left) and GF2 (right) for pitch (top) and yaw
(bottom), estimated with the BAY4 method, comparing different angle sources.

For the sake of comparison, Tab. 5.7 lists all the individual estimated values for the pitch
GF1 CF, based on the CMC maneuvers performed on 28 September 2019, for all combinations
of available angle sources and estimation methods. For each method, the CFs from different
angle sources seem to agree within the estimation uncertainty. For GF1, this is also true
for the pointing angles obtained from integrating ACC1A angular accelerations, however, the
estimates derived using ACC data are not considered for the final results, since the GF2 ACC
data is degraded [McC+19; BMK21], and the calibrated accelerometer data (ACT) provides
merely linear accelerations, no angular accelerations.

Table 5.7: Estimated pitch GF1 CFs for 28 March 2021. All values are in µm rad−1. Uncer-
tainties are given in the form of ±1σ.

FSM SCA1B IMU1B ACC1A

LSQ 51.2 ± 4.1 56.6 ± 4.4 54.6 ± 4.2 57.1 ± 4.2
LSI 49.5 ± 6.4 55.6 ± 6.8 53.1 ± 6.8 52.6 ± 6.3
PSD 59.1 ± 24.9 62.7 ± 25.9 61.0 ± 24.9 60.8 ± 24.8
XC 53.3 ± 6.5 56.8 ± 6.9 54.8 ± 6.7 54.9 ± 6.7

BAY4 49.9 ± 4.6 55.6 ± 4.8 53.1 ± 4.7 51.4 ± 4.6
BAY5 50.3 ± 3.3 57.5 ± 3.4 53.5 ± 3.3 51.7 ± 3.3

Figure 5.10 shows the pitch and yaw TTL CFs for both S/C estimated with the different
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methods: LSQ, LSI, PSD, XC, BAY4, BAY5. IMU1B angles were used to create this plot, and
ARC was subtracted before the TTL estimation. For each plot, the y axis refers to the CFs
measured in µm rad−1, which are depicted by crosses in different colors. The large change for
GF1 between June 2018 and January 2019 is mainly due to a mass trim, cf. Sec. 4.1, carried
out on 18 July 2018.

Figure 5.10: Estimated TTL CFs for GF1 (left) and GF2 (right) for pitch (top) and yaw
(bottom), based on pointing angles derived from IMU1B data, comparing different methods.

The overall agreement in Fig. 5.10 appears to be good, except for the pitch GF2 CFs (top
right plot) estimated in June 2019. For the affected pitch GF2 maneuvers on 22 June 2019, a
large timing mismatch was estimated. In such cases, both the XC and PSD methods tend to
yield larger values than the other methods, since the PSD method is insensitive to time stamp
mismatches, and the XC method accounts for the time shift and estimates it along with the
CF. The cause of this artifact is still unknown, and it appeared merely this one time so far, in
June 2019. Thus, it may be interpreted as an outlier.

Another noteworthy observation is an apparent tendency of the PSD method to overes-
timate the CFs. This may be due to noise in the range, which leaks into the AS value for
the frequency bin containing the maneuver frequency. The PSD method seems to produce
less certain results in general, which may be explained by the fact that the time series for a
single CMC maneuver has a duration of at most 180 seconds. Often, such a time series is even
significantly shorter because of data segments that have to be excluded, e.g. due to attitude
thruster firings, cf. Sec. 5.1.4. The shorter the time series is, the less certain is the estimated
peak height in the AS.

The PSD and XC methods by design have the property that they still yield the correct
result in the presence of possible timing mismatches between pointing angles and LRI range.
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If there are such mismatches, PSD and XC thus have an advantage over the other methods.
However, also other artifacts such as ARC, are possibly misinterpreted as time stamp errors.
Therefore, PSD and XC are useful tools, but care needs to be taken w.r.t. the assumptions that
these methods make, and whether other explanations of an apparent time shift are possible.
In any case, a large timing mismatch estimated by the XC method can be interpreted as a
warning that there may be an issue with the data.

The BAY methods have the advantage that they yield, in addition to the estimated CF,
a reasonable probability density of it. Figure 5.11 shows PDFs of estimated CFs, based on
the CMC maneuvers performed on 28 March 2021, obtained with the BAY4 method. The left
plots show results for GF1, which was the transmitter S/C at the time. The top left plot shows
the posterior PDF for the pitch and pitch rate CFs, the bottom left plot shows the posterior
PDF for yaw and yaw rate, so in both cases the dimension is M = 2. The right plots show
the results for GF2, which was the transponder S/C at the time, and as such has no angular
rate coupling, so here the dimension is M = 1. Each PDF has been multiplied by a factor,
such that the maximum value is 1. Note further that, in particular, the PDFs may be used to
derive uncertainties for the estimated parameters.

Figure 5.11: Probability density functions (PDF) of CF estimations derived with BAY4, from
CMC maneuvers performed on 28 March 2021. Left: GF1 (transmitter S/C) CFs for pitch
and pitch rate (top), yaw and yaw rate (bottom) (M = 2). Right: GF2 (transponder S/C)
CFs for pitch (top) and yaw (bottom) (M = 1). Each PDF has been multiplied by a factor
such that the maximum value is 1.
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5.3.6 Interpretation of the results and conclusions

The ASD of measured TTL and ARC errors is shown in Fig. 5.12. The ARC curve is below
the laser frequency noise (LFN) curve for all frequencies. The TTL is within the requirement
and everywhere below the ACC noise converted to LoS range, based on the model presented in
[Dar+17]. At high frequencies, TTL coupling is below the LFN. The pre-flight requirements
on the linear TTL CFs for each S/C were 20, 200, and 200 µm rad−1 for roll, pitch, and yaw,
respectively. All of these requirements are met.

Figure 5.12: Amplitude spectral density of LRI range and measured TTL and ARC errors, for
a 9-day segment during April 2019.

It can be concluded that the TTL model derived in this thesis, cf. Sec. 3.2, in particular the
linearity and Eq. (3.32), are confirmed to the estimation accuracy. Note that for the potential
TTL error caused by TMA misalignment, the conservative values 10, 10, and 1 µm rad−1 for
roll, pitch, and yaw coupling were assumed pre-flight, cf. Tab. 3.5 in Sec. 3.2.7. The analysis
of in-flight LRI data, however, has shown that a roll coupling as large as 10 µm rad−1 can
be excluded for both satellites. In fact, both measured roll CFs are zero to the estimation
accuracy. The ARC model, cf. Sec. 3.2.6, could be confirmed as well. In particular, Eq. (3.52)
is confirmed to the estimation accuracy. Moreover, note that the good compatibility of LRI
VP-CoM offsets with ACC RP-CoM offsets from other processing centers confirms the relation
between CoMs and the TTL CFs, which arises from the theory. I.e., it confirms once more
the relation given in Eq. (3.32).

5.4 Subtraction of TTL

After estimating the TTL CFs, the LRI TTL model is complete. Using the measured pointing
angles, a time series of the TTL error can be computed and subtracted from the range. In
principle, the subtraction is viewed as the mitigation of a ranging error. For GFO, the accuracy
of gravity field determination is not limited by the ranging noise, and thus the subtraction
of TTL is not expected to improve the quality of gravity fields. Nevertheless, it is valuable
to demonstrate that the noise level in the data can be reduced. In future missions using
inter-satellite laser interferometry, this will likely be important.

During maneuvers, the model fits the data very well and the effect of the TTL subtraction
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is clearly visible in the time series as well as in the ASD. Ideally, one would also like to see an
effect in the ASD of the range recorded apart from CMC maneuvers, in order to demonstrate
that TTL subtraction improves the instrument performance also during the nominal science
phase. However, this demonstration is challenging, since the TTL ASD is well below the range
ASD, cf. Fig. 5.12. In Sec. 5.4.1, the effect of subtracting TTL on the range ASD above
∼40 mHz is analyzed. Section 5.4.2 describes an investigation of post-fit residuals, where two
sets of residuals are compared, one with and one without subtracting TTL from the range
prior to the gravity field recovery (GFR).

5.4.1 ASD analysis at high frequencies

Above 40 mHz, TTL is even below the LFN. Additionally, there are responses to nongrav-
itational forces in the range, which disturb the attempt to accentuate the TTL part of the
LRI range spectrum. The linear accelerations caused by attitude thruster firings account for
a major part of the range ASD above ∼40 mHz, cf. App. E. Unfortunately, the response of
these accelerations in the range is correlated to the TTL error. The responses can be modeled
and subtracted, however, the models are not perfect and the TTL error still turns out to be
too small to be properly distinguished.

Furthermore, at high frequencies, the measurement noise in the pointing angles becomes
significant, and hence subtracting TTL from the range means also adding noise. More precisely,
the estimated TTL time series are computed as ˆTTL = θ̄ · λ̂, using the measured angles θ̄.
Even if the TTL model and the CFs are assumed to be perfect, so that λ̂ = λ, the estimated
TTL is the sum of the true TTL and a term due to pointing angle noise, here written as
nTTL = nθ · λ:

ˆTTL = θ̄ · λ = θ · λ+ nθ · λ = TTL + nTTL. (5.86)

It is quickly seen that, if measurement noise is dominating the angles, then the subtraction
of TTL can be expected to elevate the range spectrum, instead of lowering it. Unfortunately,
this can in fact be observed when regarding Fourier frequencies above ∼40 mHz. However,
consider the idea of adding TTL instead of subtracting it. Both adding and subtracting TTL
should add the same amount of noise. Hence, even if subtraction elevates the range ASD,
addition should elevate it by at least the same amount. In the following, two approaches to
test this hypothesis are described.

Time segments excluding thruster firings

In this approach, time intervals between January 2019 and May 2021 were studied during
which no thruster firings occurred, with a minimum segment length of 800 seconds. For each
of these time intervals, 520 in total, ASDs were computed for i) the unchanged LRI range, ii)
range minus TTL, and iii) range plus TTL. This was done three times, using FSM, SCA1B, and
IMU1B data to derive the pointing angles and thus the TTL. Additionally, all of the above
was repeated after removing nongravitational variations from the LRI range using ACT1A
data, cf. App. E.2. The coupling factors for computing the TTL were interpolated from the
values given in Tab. 5.6 (version 2 results), in particular zero coupling of the roll angles was
assumed. ARC was not considered in this analysis, since it is significantly smaller than TTL
while also containing measurement noise. Each ASD was then divided into frequency bins of
equal size, and for each bin the RMS value was computed. Here the RMS ASD value for a
frequency bin of size 2δ = 5 mHz, centered at f0 = (37.5, 42.5, . . . , 77.5) mHz, was obtained as

RMS(ASD)(f0) =

√√√√√ 1

2δ

f0+δ∫
f0−δ

ASD(f)2 df, (5.87)
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Figure 5.13: Top and bottom left: exemplary ASDs from one of the data segments without
thruster firings, based on FSM, SCA1B, IMU1B data, respectively. Bottom right: RMS ASD
values of the top right plot (SCA1B).

as is also done very similarly in App. E.
The top plots and the bottom left plot of Fig. 5.13 exemplarily show ASDs of one of the

520 data segments, where the range spectrum is comparatively low, and the effect of the TTL
subtraction is visible. The bottom right plot shows the RMS ASD values of the ASD shown in
the top right, for which SCA1B data was used. For comparison, each plot shows the ASD of
the noise term nTTL (dotted gray lines) that is added due to pointing angle noise. The ASDs of
the estimated TTL (green lines) indeed seem to be noise dominated, according to the models
of nTTL, even though the models appear to be slightly overestimating the noise in some cases.
To compute the IMU noise term, the IMU noise model given in Eq. (2.36) was used. Since
the fused SCA1B data is assumed to attain the IMU noise level at high frequencies, the same
model was used for the SCA1B data. The FSM angle noise in this analysis was assumed to be
white noise with levels of 1.3 µrad/

√
Hz and 1.85 µrad/

√
Hz for pitch and yaw, respectively,

according to Sec. 2.2.1. Note again that the roll coupling was assumed to be zero in all of this
analysis.

The goal here is to compare the overall performance of the unchanged range product to
the range products with subtracted or added TTL. To this end, for each frequency bin, again
the RMS sum was taken over all 520 RMS ASD values. In these final RMS values, the effect
of either addition or subtraction of TTL is barely visible. Thus, Fig. 5.14 shows ratios of such
final RMS values. These ratios are labeled for better readability as defined in Tab. 5.8, where
LRI stands for the unchanged LRI range (RL50), and DLN stands for range variations due
to differential linear nongravitational accelerations obtained via ACT1A data. For each entry
in the legend, it is indicated in brackets which sensor data was used to compute the TTL.
Moreover, when the range reduced by ACT1A data (LRI - DLN ) was used in place of the
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Table 5.8: Abbreviations used in the plot legends of Figs. 5.14 and 5.15 for different ratios of
RMS ASD values.

label definition

-/o (sensor) RMS(ASD( LRI - TTL(sensor) ))
RMS(ASD( LRI ))

+/o (sensor) RMS(ASD( LRI + TTL(sensor) ))
RMS(ASD( LRI ))

-/+ (sensor) RMS(ASD( LRI - TTL(sensor) ))
RMS(ASD( LRI + TTL(sensor) ))

-/o (sensor; ACT1A) RMS(ASD( LRI - DLN - TTL(sensor) ))
RMS(ASD( LRI - DLN ))

+/o (sensor; ACT1A) RMS(ASD( LRI - DLN + TTL(sensor) ))
RMS(ASD( LRI - DLN ))

-/+ (sensor; ACT1A) RMS(ASD( LRI - DLN - TTL(sensor) ))
RMS(ASD( LRI - DLN + TTL(sensor) ))

original range (LRI ), this is indicated by ACT1A in the brackets.

Figure 5.14: RMS ASD values taken over frequency bin centered at specified points on the x
axis. From segments without thruster firings.

The left plot of Fig. 5.14 shows the ratios labeled -/o and +/o. All ratios are larger than
1, which means that subtracting as well as adding TTL both elevates the LRI range spectrum,
no matter which attitude sensor was used. This is likely due to dominating measurement
noise in the pointing angles. In the right of Fig. 5.14 the ratios -/+ are plotted. Many values
are smaller than 1, which indicates a better performance of the range with subtracted TTL,
compared to the range with added TTL. All values are very close to 1, however, in order to
obtain a rough estimate of what values can be expected for -/+, note that for uncorrelated

data x and y one has ASD(x+y) ≈
√

ASD(x)2 + ASD(y)2. Since ASD(TTL) is unknown, one
can only speculate here. If ASD(LRI )/ASD(TTL) ≈ 10, one can derive the rough estimate
0.98 for -/+, also depending on nTTL. If ASD(LRI )/ASD(TTL) ≈ 20, one obtains about
0.995. Since the plots are based on data from segments excluding thruster firings, one may
argue that there is less pointing jitter than normal, and hence the true TTL is smaller than
normal as well, so that the factor of 20 might even be realistic.
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Long term analysis using ACT1A data

The analysis discussed above is based on relatively small time segments, due to the dismissal
of all data affected by thruster firings. Such time segments are scarce and, moreover, barely
long enough to estimate a spectrum for the interesting frequency band. An alternative way
is to not dismiss this data, but attempt to remove the thruster responses. Since the thruster
model parameters used in this thesis have been estimated with LRI data, it is here preferable
to use the ACT1A data, which contains thruster responses modeled independently of the LRI.
The procedure of reducing LRI range variations with ACT1A data is described in App. E.2.
Ideally, the ACT1A data removes other range variations in addition to the thruster responses.
Based on the same data set that is discussed in App. E, Fig. 5.15 shows ratios (cf. Tab. 5.8)
of RMS ASD values for the frequency interval between 35 and 80 mHz. Each RMS value
was computed from one ASD that was obtained from one day of data. The top plot shows
the results based on the original LRI range, whereas the bottom plot shows the results of the
same process when DLN range variations computed from ACT1A data are subtracted from
the range beforehand.

Figure 5.15: RMS ASD ratios for frequencies between 35 and 80 mHz. Each value is based on
one day of data.

When ACT1A data is not used (top plot of Fig. 5.15), the ratios -/o (red and blue) are
mostly above 1, and the ratios +/o (orange and cyan) are mostly below 1, which means that
adding TTL even lowers the range spectrum here. This seems counterintuitive, however, recall
that TTL correlates with the thruster responses, which have not been removed in these cases.
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Since the correlation happens to be negative most of the time, adding TTL has the effect
of removing a part of the thruster responses. The correlation coefficient between THR and
TTL(FSM) is therefore plotted on the right y axis. Here THR denotes the time series of
modeled thruster responses, and shown as the dashed gray line is Pearson’s linear correlation
coefficient, which is defined as

corr(X,Y ) =
E [(X − µX)(Y − µY )]

σXσY
, (5.88)

for random variables X and Y with means µX and µY , respectively. Before computing the
correlation coefficients corr(THR,TTL(FSM)), both time series were filtered with an order 4
Butterworth bandpass filter with cutoff frequencies 35 and 80 mHz.

On the other hand, when ACT1A data is used to reduce the LRI range in advance (bottom
plot of Fig. 5.15), the performance of range minus TTL appears to be significantly better
than range plus TTL in many cases. There are some exceptions, which are currently under
investigation. In the recent results from the year 2021, most of the ratios -/o are even below
1, which means that subtracting TTL in fact reduces the range variations in these cases.

In conclusion, although the TTL subtraction adds noise to the range via the measured
pointing angles, so far nothing could be found that would contradict any of the results pre-
sented in this thesis. In lower frequencies, the range with subtracted TTL is still expected
to perform better. If a range product with subtracted TTL shall be used for GFR, it may
be advantageous to filter out the high frequency part of the angles, where measurement noise
might be dominating, before computing the TTL. Further investigations and similar analyses
are ongoing. In the following, post-fit residuals from the unchanged LRI range are compared
to residuals obtained from corrected LRI range.

5.4.2 Analysis of post-fit residuals

Below 35 mHz, the gravity signal is dominating the LRI range ASD. Thus, without performing
a gravity fit, it is not possible to see any effect of the TTL subtraction in the ASD there. How-
ever, in the process of GFR, other error contributors, such as accelerometer noise or aliasing,
are the limiting factors, even when the KBR range is used. Hence, not much improvement of
the gravity fit, if any, can be expected from subtracting TTL.

Here it shall be reported on an attempt to show an improved LRI instrument performance
after subtracting TTL. It has been made with the help of the GROOPS software developed
by the group of Torsten Mayer-Gürr at TU Graz [May+21]. GROOPS can process both KBR
and LRI range simultaneously, which yields the possibility to distinguish between the noise
contributions from KBR, LRI, and common noise (CMN). Here the CMN is the part of the
noise that can neither be attributed to the KBR nor the LRI. As a result, one obtains three
different time series of post-fit residuals, and so the part of the residuals that is attributed
to the LRI range can be studied separately. Note that this method has been presented in
[BKM21], however, it is still under development and no detailed documentation has been
made public yet. The gravity fits have been done by Saniya Behzadpour10.

Three sets of LRI range data for the entire month of July 2019 were prepared: i) the
unchanged LRI range (RL50), ii) range minus TTL, and iii) range plus TTL. The range
was taken from the LRI1B RL50 data product, which is computed at the AEI. The TTL was
computed using FSM angles and CFs interpolated from the version 2 results given in Sec. 5.3.2.
For each set, a gravity field for the month July 2019 was computed with GROOPS.

The results of the GROOPS processing are shown in Fig. 5.16 in terms of ASDs of range-
rate post-fit residuals. In the legend, the type of disentangled residuals is indicated in brackets,
i.e. whether it is the part attributed to CMN, KBR, or LRI. In the low frequencies, the LRI

10Institut für Geodäsie, Technische Universität Graz, Austria
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part of the residuals from the corrected range, labeled RL50 minus TTL (LRI) (blue line),
is clearly lower than the LRI part in the the original range, labeled RL50 (LRI) (orange
line). The amount of reduction is in the order of the subtracted TTL range-rate error (green
line) that had been subtracted, however, it seems not to explain the reduction in the low
frequencies. The reason for the reduction in the low frequencies remains to be investigated.
For high frequencies, the TTL error is too small to make a visible difference. It is evident that
the subtraction of TTL cannot yield a significantly improved gravity field, since the common
noise (CMN) term (black line) is much larger than TTL. However, it is unexpected that the
difference between the CMN terms of original and corrected range, labeled ∆ CMN (dashed
gray line) has a much higher ASD than the TTL. For comparison, note the KBR part of the
residuals (light pink line), which is above the LRI part for all frequencies.

Figure 5.16: Post-fit residuals, different contributions. Obtained using the GROOPS software.

The plot on the right of Fig. 5.16 is a zoom-in of the left plot, but furthermore shows
the LRI part of the residuals from the range with added TTL error (red line). Unexpectedly,
adding TTL seems not to be elevating the residual ASD, however, it does not lower it as
significantly as the subtraction. This indicates that the range data with subtracted TTL is
superior to both of the other tested range data sets, original or with added TTL. The elevated
LRI residuals near 25 mHz are likely due to linear accelerations caused by attitude thruster
firings converted to range-rate (black line).

Figure 5.17: Post-fit residuals in the time domain, during a pitch GF1 CMC maneuver on 24
July 2019.

Figure 5.17 shows the post-fit residuals in the time domain, for the time span of a pitch
GF1 CMC maneuver performed on 24 July 2019. Note that here the time series are highpass
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filtered with a cutoff frequency of 40 mHz, and the residuals are sampled with 0.2 Hz. When
examining the combined residuals, i.e. the sum CMN+LRI (black line), the TTL error seems
to be contained in the residuals from the unchanged RL50 range, mostly untouched by the
gravity recovery process, as can be seen in the left plot. However, the TTL error (green line)
seems to be mainly attributed to the CMN term, merely a small part is contained in the
disentangled LRI term (orange line). The TTL seems to be largely suppressed in the time
series from the corrected range, RL50 minus TTL (CMN+LRI) (blue line). The RL50 plus
TTL (CMN+LRI) residuals (red line) contain the TTL with roughly doubled amplitudes. The
right plot of Fig. 5.17 confirms the observation that the TTL error is left almost untouched
by the GFR. Whether TTL is subtracted before the GFR (blue line), or after the GFR (pink
line), the resulting time series coincide to a large extent.

In conclusion, some aspects of the results appear to contradict expectations, and a large
part of the TTL error seems to be attributed to the disentangled CMN term instead of the LRI
term. Nevertheless, there is some indication that the TTL subtraction is indeed improving the
LRI instrument performance, and that the corrected LRI range performs slightly better than
the uncorrected range. When regarding the combined residuals during CMC maneuvers, the
data is behaving in accordance with the expectations.



Chapter 6

Conclusion and outlook

6.1 Summary and conclusion

This thesis provides a comprehensive documentation of the analysis of tilt-to-length (TTL)
coupling in inter-satellite laser interferometers on the basis of the GRACE Follow-On (GFO)
laser ranging interferometer (LRI). The mitigation of the range error due to TTL coupling
requires certain steps, which have been enumerated and described in detail. A mathematical
formalism for describing satellite attitude and inter-satellite pointing has been given in Chap. 2.
Attitude sensors as well as control mechanisms have been discussed with emphasis on the GFO
mission. The theoretical assessment of TTL effects in the LRI has been done in Chap. 3,
and a model for the range error has been derived. Satellite rotation maneuvers, which have
proven to be useful for the TTL calibration, have been discussed in Chap. 4. In particular, a
technique to simulate such maneuvers and design the optimal calibration maneuver has been
provided. Different methods to estimate the TTL coupling factors (CF) have been presented
and evaluated in Chap. 5. Finally, the CFs have been estimated with in-flight data, and the
results have been used to obtain a corrected LRI range product. Where possible throughout
the thesis, the matters have been embedded in a more general context, such that they are
readily adaptable to other mission scenarios.

The relevant attitude sensors for GFO are the fast steering mirror (FSM), the star camera
assembly (SCA), the inertial measurement unit (IMU), and the accelerometer (ACC), where
each measures a slightly different observable. The mathematical link between these observ-
ables, the spacecraft (S/C) attitude w.r.t. inertial space, and the inter-satellite pointing angles
has been established and utilized successfully. The performance of the above mentioned sensors
has been analyzed, revealing no significant deviations from the noise specifications, except for
the GFO satellite 2 (GF2) ACC. It has been shown that either of the sensors can in principle
be used to estimate TTL CFs, with a few restrictions. The data of the GF2 ACC showed
unexpected artifacts and an elevated noise level shortly after launch, with the consequence
that it can currently not be utilized to the full extent. Since the derivation of pointing angles
from ACC data involves double integration w.r.t. time, the potential of this data predom-
inantly lies in its low noise at high frequencies. Pointing angles derived from SCA data on
its own have been found to be too noisy for the TTL calibration. The quality of the SCA1B
data product, which is obtained by fusing SCA and IMU data, however, has turned out to
be sufficiently high. The results of the parameter estimation using either FSM, SCA1B, or
IMU1B data, are comparable. Notably, it can be concluded that the TTL coupling of the
LRI can be calibrated using exclusively its own instrument data, i.e. the LRI range and FSM
angles. Put into prospect, the best approach to obtain the optimal attitude solution is likely
to fuse the data of all healthy attitude sensors into one product.

This thesis contains a detailed enumeration of all known TTL effects in the case of the LRI,
gathered from different pre-flight studies. Their impact in terms of the levels of the resulting



144 CHAPTER 6. CONCLUSION AND OUTLOOK

range errors has been analyzed, confirming that the largest error is likely caused by the offset
between the LRI reference points (RP) and the S/C centers-of-mass (CoM). Based on this,
a linear model for the LRI TTL coupling has been formulated, which connects the CFs to
nadir and cross-track components of the aforementioned offsets. Moreover, during the study
presented here, another pointing related coupling effect in the LRI was discovered, denoted
angular rate coupling (ARC). While the TTL error is a function of the pointing angles, the
ARC error is a function of the angular rates. The physical reason for this effect has been
illustrated, and a model for the respective error term has been derived as well. An assessment
of this model has revealed that ARC is highly relevant for the analysis of the LRI range during
rotation maneuvers, despite being almost negligible for the performance of the LRI in the
nominal measurement phase.

A special focus of this study has been laid on satellite rotation maneuvers. The so-called
center-of-mass calibration (CMC) maneuvers have proven useful for the LRI TTL calibration,
although they originally serve a different purpose. In order to investigate alternative types of
rotation maneuvers, a maneuver simulation technique has been developed. The parameters
that determine such a maneuver have been identified and optimized w.r.t. the maneuver’s
suitability for TTL calibration. To this end, a function has been derived that assigns to a set
of maneuver parameters the respective uncertainties of estimated CFs. By exploiting some
approximations, this assessment function could be implemented in a way that requires minimal
computation time. This allows for an efficient search within a large parameter space, given
the approximate orbits of the two S/C. Based on all this, selected sets of simulated alternative
maneuvers have been presented, and their performance is compared to the performance of the
CMC maneuvers. Finally, the optimal maneuver parameters for the case of the LRI have been
determined, which might decrease the uncertainty of the estimated CFs by a factor of 2-3,
compared to the CMC maneuvers.

A main objective of this work has been to estimate the LRI TTL CFs with in-flight data,
which could be achieved by utilizing the data recorded during the CMC maneuvers. For this
purpose, several parameter estimation methods have been described in this thesis. Varia-
tions of four different approaches have been examined, either based on least squares (LSQ),
cross-correlation, amplitude spectrum analysis, or Bayesian stochastics. The advantage and
disadvantage of each method has been elaborated. The amplitude spectrum analysis seems to
produce deviating results in some cases, and is thus not recommended. This circumstance is
likely owed to the shortness of the CMC maneuvers, and might change if the duration of the
maneuvers could be increased. In most cases, all of the remaining methods yield comparable
results. If there is reason to believe in a timing mismatch between the range and the point-
ing angles, the cross-correlation approach might be beneficial, since it estimates the timing
mismatch along with the CFs. Overall, the standard LSQ estimation as well as the Bayesian
methods appear to reliably yield good results. The methods based on the Bayesian approach
provide the opportunity to take into account additional information such as the characteristics
of the measurement noise. In the simplest case, when all information is neglected, the Bayesian
estimator is equivalent to the LSQ estimator. The Bayesian estimation methods always yield
probability density functions (PDF) of the estimated values, from which confidence regions
can be derived.

With 16 data points after the LRI has been in operation for about 3 1/2 years, the linear
TTL model that has been stated in this thesis could be confirmed to the accuracy of parameter
estimation. In particular, the supposed relation between CFs and CoM offsets is compatible
with the parameter estimation results, and with the CMC analysis results of the Science Data
System (SDS) using ACC data. This relation enables the tracking of CoM movement over long
time periods, which has proven to be a useful contribution to the GFO mission, especially since
the GF2 ACC data yields no more CoM estimates due to its degradation shortly after launch.
All of the concrete values of the estimated TTL CFs are within the pre-flight requirements of
20, 200, and 200 µm rad−1 for roll, pitch, and yaw, respectively. In total, it can be concluded
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that the TTL range error should be at least one order of magnitude below any error source that
would currently limit the accuracy of gravity field recovery (GFR). Finally, the ARC model
has been tested by estimating the ARC factors from CMC data. Considering the estimation
accuracy, the estimation results seem to be compatible with the model.

Based on the results presented in this thesis, the LRI range precision is likely limited by
the sum of TTL error and laser frequency noise (LFN). TTL is larger for Fourier frequencies
below about 30 mHz, the LFN is larger for higher frequencies. ARC is negligible for the
lower frequencies, but important for the analysis of CMC maneuvers. Thus far, the LRI meets
all requirements. Confirming an improved instrument performance after subtracting TTL
has turned out challenging. One attempt was to analyze root mean square (RMS) values of
range amplitude spectral densities (ASD) in the upper frequency range over a long time span.
A second attempt was to perform a gravity fit for one month of data, using the GROOPS
software, and analyze the post-fit residuals. Both approaches have revealed some unexpected
artifacts. Nevertheless, no observations have been made that would contradict the results
of this thesis. Certainly a fair conclusion is that the LRI was designed, built, accomodated,
and operated extremely well and is measuring the inter-satellite range with high precision.
Recalling that the LRI is a technology demonstrator, in this regard, the science community is
well prepared for future missions utilizing high precision inter-satellite laser interferometry.

A few tasks still have to be carried out regularly during the remaining part of the GFO
mission. The CMC maneuvers are currently repeated every 6 months. The maneuver data
needs to be analyzed in order to update the TTL CFs, which are needed to compute the
TTL correction term for the LRI range. The TTL results are also used to derive nadir and
cross-track components of the offset between LRI vertex points (VP) and S/C CoMs on both
S/C. It is important to continue these measurements, in order to keep track of the S/C CoMs,
especially for GF2, where currently the ACC data cannot be used to derive CoM estimates.
Also, the triple mirror assembly (TMA) coalignment tests may be repeated sporadically, in
order to be informed in case the mirror misalignments become larger again, although the latest
tests have not shown any more drastic changes. Other tests of the LRI instrument, not directly
related to this thesis, are still occasionally carried out as well. Below, some lessons shall be
formulated that can be learned from this study.

6.2 Lessons learnt

The work that is summarized in this thesis has revealed number of artifacts in the data, which
were to some extent unexpected, and which can be challenging to mitigate. A few of these
shall be listed here briefly:

• Jumps in the LRI phase measurements, cf. [Abi+19].

• Physical range variations caused by attitude thruster firings, cf. App. E.1.

• Coupling of S/C angular rates into the LRI range, cf. Sec. 3.2.6.

• Degraded GF2 ACC data shortly after launch, cf. [McC+19].

Unexpected problems comparable to those encountered within this study may also occur in
future missions. When pursuing a similar goal as in this analysis, it is therefore recommended
to carry out as many tasks as possible in advance of the mission launch. Based on the experi-
ence gained from the LRI TTL analysis, the following framework may be helpful in building
a TTL estimation strategy for a future scenario involving inter-satellite laser interferometry.
The components of a successful TTL calibration may be divided into tasks that can be fulfilled
before the launch, and tasks that must be done afterwards, as follows.

Things that can be done prior to the launch include:
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• Gain information on the ranging instrument and other available science instruments,
data, and noise specifics.

• Study the mathematical framework of S/C attitude, inter-satellite pointing angles, and
general data processing methods.

• Build a TTL model.

• Develop a TTL estimation strategy.

• Study and implement parameter estimation methods.

• If maneuvers shall be used, design an optimal TTL calibration maneuver.

• Perform simulations, test the methods.

Other tasks either require in-flight data or arise not until the data is available, and hence
must be done after the launch:

• Establish the actual implementation of data handling and processing, e.g. since not all
the data formats may be known beforehand.

• Gain experience with the data (attitude, range, auxiliary). For GFO, this was to an ex-
tent possible before the launch, due to the similar and already available Gravity Recovery
and Climate Experiment (GRACE) data (except for LRI and IMU data, for example).

• Find and mitigate unexpected artifacts in the data.

• Optimize data processing and estimation algorithms, and obtain estimation results, once
maneuver data is available.

• Compute a TTL correction term and subtract it from the range to obtain a corrected
range data product.

The experience gained from this study allows to draw some further conclusions and ideas for
improvement in view of future satellite missions, which shall be mentioned below.

6.3 Prospect

The main goals of this thesis for have been achieved. Although parts of this study have
been performed and described in some detail, there are many interesting open questions and
potential tasks left, in particular for the planning of future satellite missions. Some of these
that are related to the content of this thesis shall be formulated in the following.

The CMC data from both pitch GF2 maneuvers performed on 22 June 2019 showed some
unexpected behavior. The periodic angle oscillations seemed to be time shifted w.r.t. their
response in the LRI range. By the time of writing this thesis, no explanation for this obser-
vation has been found. So far, this phenomenon occurred merely this one time, in June 2019.
However, it should be investigated, since understanding the reason for it may be important, at
least for the purpose of mitigating it in future missions. Since it occurred merely one time, a
time stamp error is unlikely to be the true cause of this observation. Nevertheless, to exclude
this possibility entirely, the question can be raised, whether it could be beneficial for future
missions to utilize one and the same clock for time stamping the data from LRI, attitude
sensors, and potentially also other instruments.

The model of the ARC error discovered during this study seems to work well, however, it
is also rather heuristic. A more sophisticated model might not yield a noticeably advantage
in the case of the LRI, since ARC is insignificant for the nominal science measurements in
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any case. However, in view of the next generation of gravimetry missions, or beyond that,
where more and more precise laser ranging is likely to become crucial, it may be beneficial to
investigate this type of range error in more detail. An interesting event with regard to ARC
in the LRI, which is not planned yet but may be performed at some point, is the swap of LRI
roles. Recall that ARC depends merely on the pitch and yaw rates of the transmitter S/C.
The only data point where GF2 was in transmitter mode is not very reliable, since it is based
on a wiggle test (24 s) instead of two full CMC maneuvers (each 180 s). Should GF2 be put
into transmitter mode, according to the theory, ARC is expected to occur for GF2 and not
any more for GF1. This would be another confirmation of the theory. To the knowledge of the
author, the possible encounter of ARC in inter-satellite laser interferometry has never been
comprehensively studied for any of the missions currently being planned.

The activation of attitude control thrusters causes disturbances in the LRI range. The
models for these disturbances that were used in this thesis are very coarse. In the end, these
models did not influence the TTL estimation, since it was opted for simply excluding the
data affected by thruster firings from the CMC analysis. However, such thruster disturbances
posed a big challenge when attempting to show an improved performance of the LRI range
after subtracting TTL. Moreover, if the disturbances could be removed almost completely, e.g.
with an improved model, this might open up the possibility of estimating the TTL coupling
factors directly from the LRI range, without using rotation maneuvers, i.e. with the ”fit
of noise” approach described in Sec. 3.3.2. For the planning of future missions, it shall be
remarked that an interesting idea is to use a linear thruster control system instead of the
”bang-bang” control utilized in GRACE and GFO. Should this be feasible, one might be able
to get rid of several issues at once, including the phase jumps, certain disturbances in the ACC
data, and the high frequency range variations caused by thruster firings. Note that linearly
controlled attitude thrusters might still evoke residual linear accelerations, which would also
be correlated to the TTL error, however, these would potentially be much easier to handle
than the abrupt disturbances that are seen in GFO. Moreover, the TTL error itself could be
minimized in the first place by minimizing pointing jitter, e.g. via an improved attitude control
system (ACS). Finally, another potential improvement for the ACS could be to implement the
option of programming a pre-defined time series of ACS set points, i.e. target attitudes. As
mentioned in Sec. 4.3.4, then the rotation maneuver could be injected via this set point, instead
of defining the control torque, which would allow in particular longer maneuver durations.

The overall quality of attitude data for GFO has proven to be sufficient for most appli-
cations. In fact, the situation has improved significantly compared to GRACE, due to the
availability of IMU and FSM data, as well as the additional star camera head. Nevertheless,
especially at high frequencies, there is still room for improvement of the attitude solutions,
which may yield further improvements in some aspects. For the purpose of the study presented
in this thesis, less noise in the attitude data would likely yield more accurate CF estimation. It
would mean less noise in the TTL correction term as well. Moreover, it might become feasible
to estimate TTL utilizing very high frequencies, at which the current attitude data is quite
noisy. This would be another way of enabling the ”fit of noise” approach. In view of future
missions, improved attitude solutions might also serve as input to an improved ACS. Besides,
numerous studies have shown that the quality of attitude determination as well as control do
play a role in GFR, see [Gos18] as one example. Thus, there is ample motivation for increasing
the capabilities of attitude sensing for future missions. The precision of LRI steering mirror
data, for instance, could likely be considerably enhanced with relatively low effort by using
electronics with higher resolution.

The analysis presented in this thesis furthermore opens new research paths beyond GFO
and the LRI. For one thing, several future satellite geodesy missions such as Next Generation
Gravity Mission (NGGM) are currently in the planning process, many of which will most likely
utilize laser interferometry. Each such mission requires a similar analysis as the one presented
here. In some cases, this work might contribute to these efforts, e.g. regarding the simulation
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and estimation techniques, or the maneuver design. Nevertheless, the methods have to be
adapted due to the different specifics of each individual mission. Although the main steps are
described in this thesis with a lot of detail, being kept as general as possible, this adaptation
may still require considerable effort.

TTL coupling is a well known issue in any laser interferometer, especially in space missions.
A detailed study of TTL in satellite interferometers has been given in [Sch17]. For the LISA
Pathfinder (LPF) mission, the TTL could be mitigated to a large extent in post-processing, by
intentionally tilting the test mass and analyzing the interferometric readout [Wa17; Arm+18].
TTL can also be partly prevented or reduced from the outset, e.g. via the careful design of
imaging systems, which has also been done in the case of GFO. TTL suppression via imag-
ing systems was experimentally investigated for instance in [Chw+16; Sch+16; Trö+18] with
regard to the Laser Interferometer Space Antenna (LISA) mission, which is a spaceborne grav-
itational wave detector currently planned for launch in the 2030’s [DT+96]. Geometric TTL
coupling effects have recently been discussed in [HSW22]. For the sake of completeness, the
Chinese Taiji mission [Luo+20; HW17] shall be mentioned, which is currently being planned
and based on a concept similar to that of LISA, and the TianQin mission [Luo+16], which is
another gravitational wave detector planned to consist of three satellites in Earth orbits.

LISA is a particularly challenging application case of TTL analysis. Being based on laser
interferometry, TTL is a natural error source expected to affect the science data of the mission.
LISA is in many aspects different from GFO. The mission is planned to consist of three S/C
in a triangular formation, where the separation between each pair is much larger than for
GFO, in the order of 1 million km. This in itself makes it more susceptible to S/C pointing
deviations, e.g. due to wavefront tilt [Sch17], or due to the already very low amount of received
light power. Moreover, LISA comprises not one but several interferometers, which measure not
only the separation between each satellite pair. Each S/C hosts a free-floating test mass that is
shielded from external forces and acts as a gravitational reference sensor. The S/C separations
are measured by the so-called long arm interferometers, and the separations between the S/C
and their test masses are measured by the test mass interferometers. Thus, two types of TTL
effects in LISA may be distinguished, those caused by S/C tilt and those caused by test mass
tilt [Sch17]. The phase measurements of all interferometers must be combined in order to
gain interesting science results, and, due to the different arm lengths, so-called time delay
interferometry (TDI) must be utilized to suppress the noise originating from laser frequency
jitter [TD20].

A TTL model for LISA must therefore be more complicated than for GFO. It will comprise
different TTL effects, more model parameters, possible nonlinearities, and the TTL error must
be estimated from the TDI output. For these reasons, investigating the applicability of the
methods presented in this thesis to LISA is a challenging and extensive task. Nevertheless,
many techniques are in principle adaptable, e.g. estimation algorithms, maneuver simulation,
and maneuver design. Especially due to the complexity and high sensitivity of the LISA
measurements, rotation maneuvers are presumptively going to be necessary. In this case,
basic principles and insights regarding maneuver design may be derived from this study. Since
the LISA satellites will be too far away from the Earth to utilize its magnetic field, potential
maneuvers should be based on attitude thruster control, which is also covered in this thesis.
In spite of the fact that LISA satellites will to the current planning be equipped with µN
thrusters instead of mN thrusters like GFO, the insight of this study that thruster firings may
cause significant disturbances may be helpful. Likewise, the awareness of possible ARC effects
may prove beneficial.

Most importantly, this study has for the first time demonstrated the feasability of miti-
gating TTL coupling in inter-satellite laser interferometers in post-processing, and thus marks
an important step. This thesis has shown that the theoretical considerations made during the
mission planning and derived expectations have been proven to be accurate.





Appendix A

Further notes on pointing angles
and rotations

Some further issues concerning rotations and inter-satellite pointing angles, defined in Sec. 2.1.3,
are discussed in this appendix. App. A.1 investigates the influence on the pointing angles, when
a different convention on the order of rotation is chosen. Appendix A.2 discusses the pointing
angle bias which is introduced when there is an uncertainty about the absolute S/C attitude
in form of a constant rotation, e.g. due to an uncertainty of the alignment of the star cameras.

A.1 Order of rotation

A single rotation can be described by the composition of three rotations around three different
axes, e.g. each of the coordinate axes. For example, one can decompose a rotation R into
rotations around the x, y, and z axes in that order. Call this the x-y-z-convention, because of
the order of rotation.

R = RzRyRx = Rz(θz)Ry(θy)Rx(θx). (A.1)

The corresponding rotation angles θx, θy, θz are called Euler angles. However, there are 12
possible ways to define these angles, depending on the order of rotation:

1. involving all three axes: x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z; and

2. involving two axes: x-y-x, x-z-x, y-x-y, y-z-y, z-x-z, z-y-z.

In Sec. 2.1.3, the Euler angles were computed with x-y-z convention. If the convention
z-y-x is chosen instead, for instance, one obtains

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 = RxRyRz

=

 cycz cysz sy
cxsz + sxsycz cxcz − sxsysz −sxcy
sxsz − cxsycz sxcz + cxsysz cxcy

 ,

(A.2)
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writing sx = sin(θx), cy = cos(θy), etc. Similar to the x-y-z convention, one obtains

θx = arctan

(
−R23

R33

)
,

θy = arcsin (R13) ,

θz = arctan

(
R12

R11

)
.

(A.3)

It is noteworthy that RT is a rotation around the same axis as for R, but with the oppo-
site angle. If one examines a rotation matrix R with x-y-z convention, and RT with z-y-x-
convention, i.e. with reversed order, then one observes that also the particular angles of the
decomposition have opposite sign, e.g.

θx−y−z,forward
y = − arcsin(R31) = − arcsin(RT13) = −θz−y−x,backward

y . (A.4)

This is intuitively clear, but also evident from

RT = (RzRyRx)T = RTxR
T
y R

T
z . (A.5)

Nevertheless, it is also clear that in general the angles depend on the order of rotation. As an
example, let θy denote the Euler angle computed with z-y-x convention. I.e., denote

θz−y−xy = θy. (A.6)

On the other hand, one has

θx−y−zy = − arcsin (R31) = − arcsin (sin(θx) sin(θz)− cx sin(θy) cos(θz)) . (A.7)

A Taylor series expansion around (0, 0, 0) now yields

θx−y−zy = θy −
1

2
θxθz +O(θ3). (A.8)

Thus, the angles for different orders of rotation do not coincide in general, but they do to first
order. The same is true for all other combinations. For small angles, differences between each
two conventions of second and larger order are likely to be small as well. E.g., for angles of
the order of 1 mrad, the deviations are roughly of the order of microradian.

A.2 Angle bias introduced by constant rotations

In Sec. 2.1.3, the pointing angles are defined as the Euler angles of the rotation RLOSF
SF . Suppose

this rotation is slightly manipulated by multiplication with a constant rotation which is close
to the identity, and the product matrix is used in place of RLOSF

SF . Certainly, the pointing
angles defined by the alternative matrix should be different. In fact, some authors define the
pointing angles as the Euler angles of the matrix RLOSF

KF instead of RLOSF
SF , referring to the

K-frame (KF) instead of the satellite frame (SF). Another case where this consideration may
be useful is when there is an uncertainty in the star camera alignment, i.e. if the axes the SCA
measurements refer to are not perfectly known.

Here it is shown that the differences in the pointing angles obtained from the two definitions
are constant to first order. Although the following is true for any rotation matrices and their
Euler angles, denote exemplarily N = RLOSF

SF , and M = RSF
KF, the latter of which is assumed
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to be constant and close to the identity. Fix a coordinate system (x, y, z) and write these
matrices in terms of Euler angles:

M = Mz(ψz)My(ψy)Mx(ψx), (A.9)

N = Nz(θz)Ny(θy)Nx(θx). (A.10)

Let now R = N ·M = RLOSF
KF be the combined rotation matrix. Euler angles can also be

assigned to R:
R = Rz(θ

′
z)Ry(θ

′
y)Rx(θ′x). (A.11)

It has been derived in Sec. 2.1.3 that the Euler angles can be recovered from the matrix via

θ′x = arctan

(
R32

R33

)
(A.12)

θ′y = arcsin (−R31) (A.13)

θ′z = arctan

(
R21

R11

)
(A.14)

Recalling Eq. (2.28) and multiplying out R = N · M , one can compute the angles θ′ in
dependency of θ and ψ. Performing a Taylor expansion yields the second order approximations

θ′x ≈ θx + ψx + θyψz, (A.15)

θ′y ≈ θy + ψy + θxψz, (A.16)

θ′z ≈ θz + ψz + θxψy. (A.17)

Recall that in the example considered here, θx etc. are the pointing angles as defined in this
thesis, θ′x etc. are pointing angles defined via RLOSF

KF , and ψx etc. are the Euler angles of RSF
KF.

Very coarsely, each of these quantities are of the order of mrad, and thus the higher order
terms are likely to be negligible most of the time.
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Alternative derivation of the
TMAVP error

Below, two alternative ways of computing the TMAVP error are described, in addition to the
first variant that was given in Sec. 3.2.1.

B.1 Variant 2

Here the measured range shall be computed as the length of the vector pointing from one
VP to the other VP. To this end, the two VPs, denoted by ~V1 and ~V2, are expressed in the
same frame, which is here the line-of-sight frame (LOSF) of GFO satellite 1 (GF1), denoted

by LOSF-1. Recall that ~V SF-i
i = −(∆xi,∆yi,∆zi)

T denotes the vector pointing from the CoM

of S/C i to the VP, given in the SF of S/C i, cf. Eq. (3.22). ~V1 in LOSF-1 can be computed as

~V LOSF-1
1 = RLOSF-1

SF-1 · ~V SF-1
1 . (B.1)

~V2 in LOSF-1 is given by

~V LOSF-1
2 =

ρ0
0

+RLOSF-1
LOSF-2 ·RLOSF-2

SF-2 · ~V SF-2
2 , (B.2)

where ρ is the true inter-satellite distance. The matrices RLOSF-1
SF-1 and RLOSF-2

SF-2 are depending
on the inter-satellite pointing angles, see Eq. (2.28). The matrix RLOSF-1

LOSF-2 is given by

RLOSF-1
LOSF-2 =

−1 0 0
0 −1 0
0 0 1

 , (B.3)

i.e. it reverses the signs of the x and y axes. With this, the measured range ρ̄ is given by

ρ̄ =
∥∥∥~V LOSF-1

1 − ~V LOSF-1
2

∥∥∥ . (B.4)
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After some computation, a Taylor series expansion yields a lengthy approximation for the error
δρVP = ρ̄− ρ, which converges to

δρVP = ∆x1 + ∆x2 (B.5)

+ ∆z1 · θy,1 −∆y1 · θz,1 (B.6)

+ ∆y1 · θx,1θy,1 + ∆z1 · θx,1θz,1 (B.7)

− ∆x1

2
· (θ2

y,1 + θ2
z,1), (B.8)

+ ∆z2 · θy,2 −∆y2 · θz,2 (B.9)

+ ∆y2 · θx,2θy,2 + ∆z2 · θx,2θz,2 (B.10)

− ∆x2

2
· (θ2

y,2 + θ2
z,2), (B.11)

as ρ → ∞. Note furthermore that other error terms were ignored here. The first order
approximation coincides with Eq. (3.32):

δρVP ≈ δρVP-1 + δρVP-2 ≈ ∆z1θy,1 −∆y1θz,1 + ∆z2θy,2 −∆y2θz,2, (B.12)

B.2 Variant 3

A third way of computing δρVP, which is described in [Mül17], uses analytical raytracing. That
is, the geometric mirror positions and their orientations are described by position and normal
vectors. The measured range can then be computed analytically in terms of pointing angles.
This yields a first order approximation of the TTL error, which is compatible with Eqs. (3.32)
and (B.12). Furthermore, static misalignments of the TMA mirrors can be introduced, which
has an impact on the TTL coupling factors, as described in Sec. 3.2.2.



Appendix C

KBR calibration

C.1 Geometric ranging error of the KBR

The LRI TTL coupling is dominated by geometrical pathlength variations due to the off-
sets between VPs and S/C CoMs. A similar error occurs in the K/Ka-band ranging (KBR)
measurements, due to the fact that it measures the distance between the two antenna phase
centers (APC) of the microwave antennas on both S/C, the RPs for the KBR. The nominal
APC position is not in the S/C CoM, but on the SF x axis, almost 1.5 m away from the CoM
in the direction of the distant S/C. Thus, the offset vector is this x displacement plus a small
unintended displacement, which may be as large as 1 mm.

This error may be modeled in the same way as the TMAVP error in the LRI. However, for
the KBR, due to the much larger x component of the offset, the dominating part of the error
is quadratic in the pointing angles, namely in pitch and yaw. In the notation of Eq. (3.21), the
parameters b22 and b33 are very large in the case of the KBR. This can be seen by applying
the derivation given in App. B. The critical terms are clearly (B.8) and (B.11). Denoting by
~Q = (∆x,∆y,∆z)T the APC position w.r.t. the S/C CoM, given in SF, one has

b11 = b22 =
∆x

2
· rad−2. (C.1)

Note that here ∆x appears with a different sign compared to (B.8) or (B.11), since in App. B
the offset vector was defined with a different sign.

Another way of approximating the ranging error is by the negative projection of the vector
~Q pointing from CoM to APC, onto the line-of-sight (LoS), which is a valid approach for small
angles. Denote by δρAPC the error due to the APC offset, and by ψ the angle between LoS
and ~Q. Then

δρAPC ≈ −〈~eLOS, ~Q〉 = −| ~Q| · cos(ψ). (C.2)

Note that it is appropriate to describe the rotation by angle ψ between the LoS and ~Q as the
composition of two rotations. One of them rotates the LoS to the SF x axis, describing the
actual pointing deviation. The second rotation is due to the angle ψ0 between the SF x axis
and ~Q, which can be as large as 1 mrad and is assumed to be constant for short time spans.
For illustration purposes, write this as ψ = ψ0 + δψ, where ψ0 is constant and δψ describes
the pointing jitter.

In the nominal case, the SF x axis and ~Q are parallel, i.e. ψ0 = 0. In that case, the law
of cosines implies that cos(ψ) ≈ cos(θy) cos(θz), where θy and θz denote pitch and yaw angles
according to the definition given in Sec. 2.1.3. Then, one has

δρAPC ≈ −| ~Q| · cos(θy) cos(θz) (C.3)

≈ | ~Q| ·

(
θ2
y

2
+
θ2
z

2
− 1

)
, (C.4)



156 APPENDIX C. KBR CALIBRATION

which is compatible with Eq. (C.1). Once again, one may neglect the constant term, since one
is interested in the biased range. This case is illustrated in Fig. C.1 a). In contrast, regard

case b) of Fig. C.1, where the SF x axis is not aligned with ~Q, i.e. ψ0 6= 0. The same pointing
jitter δψ as in case a) then causes a different ranging error.

(a) Attitude variations with APC
placed on the SF x axis.

(b) The APC is not placed on the
SF x axis, yielding a different geo-
metric error.

(c) The ACS aligns ~v with the LoS,
minimizing the geometric error.

Figure C.1: KBR geometric error in different constellations.

In order to minimize the ranging error, it is beneficial to choose the target orientation of
the ACS such that it attempts to align ~Q with the LoS, as depicted in case c) of Fig. C.1. To

this end, the so-called K-frame (KF) is defined, with ~Q/| ~Q| as the x axis, see Sec. 2.1.1. The
pointing angles can then actually be defined by a rotation between KF and LOSF as done e.g.
in [BFK12], rather than between SF and LOSF as done in this thesis. Denote these slightly
different angles by θ′y and θ′z, for pitch and yaw, respectively 2. Then, a correction term called
antenna offset correction (AOC) is computed by

AOC = −|
~Q|
2

(θ′2y + θ′2z ), (C.5)

which is reported in the KBR1B data product. The range can then be corrected by adding
this term to the KBR range [Wen+19].

Computation of the AOC term obviously requires knowledge of the APC position and
the pointing angles. The pointing angles are derived from SCA1B data, whereas the APC
position has to be estimated. This is the objective of the KBR calibration maneuvers, which
are described in the following.

C.2 KBR calibration maneuver

The APC positions are predetermined before the launch, however, they have to be estimated
again in orbit, in case they have changed during launch or in space. This is achieved by the use
of the so-called KBR calibration maneuvers. The algorithms for estimating the APC positions
are explained in detail in [Wan03]. Here merely the rotation maneuvers are described.

The KBR calibration maneuvers are fundamentally different from the CMC maneuvers.
For instance, they are performed at different ACS set points. That is, the satellite is first
brought to a certain angular offset, before the rotational sequence begins. Then, the respective
angle oscillates around that value. The angular offsets are ±2◦ ≈ ±35mrad, and the targeted
amplitude of the angle oscillation is 1◦ ≈ 17.5mrad. Since the KBR range is insensitive to roll
variations, only pitch and yaw maneuvers need to be performed. Thus, there are 4 different

2Note that, to first order, θ′y = θy + const., where θy is the pitch angle as defined in Sec. 2.1.3 of this thesis.
The same holds for roll and yaw, as is pointed out in App. A.2.
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types of KBR maneuvers: pitch (+), pitch (-), yaw (+), yaw (-). E.g., the sign (+) indicates
an angular offset of +2◦. Each maneuver consists of 15 cycles with a period of 1/f0 = 250 s,
thus the duration is T = 3750 s. Taking pitch (+) as an example, the pitch angle during the
maneuver can be described as

θy(t) = 2◦ + 1◦ · sin (2πf0t) . (C.6)

The large angular offset and amplitude of the KBR maneuvers are chosen in order to
increase the effect in the KBR range, which increases the estimation accuracy. Unfortunately,
the consequence is that KBR maneuvers are not suited for LRI TTL calibration, since the
LRI can tolerate merely a few mrad of pointing deviation. Moreover, in order to achieve such
large angle oscillations, attitude control thrusters are used. Experience with the LRI data
has shown that the use of attitude control thrusters for calibration maneuvers is questionable,
since their activation causes undesired linear accelerations, which are measured by the LRI
and thus can be harmful for the parameter estimation.

The results of the KBR calibrations for GRACE have been reported in [Wan03]. The APC
offsets that were found are in the order of a few millimeters. Moreover, the algorithms that
were applied also yield estimations of the misalignments between the SF and SCA frames,
which were found to be in the order of a few milliradians. It was later reported, e.g. in
[Hor+11], that the computation of the correction term still seemed to introduce some error to
the range. This is discussed in the following.

C.3 Errors introduced by the AOC term

It has become clear that static angle offsets matter for the correction of the geometric error,
which is due to the nonlinear dependency. Therefore, applying the AOC also introduces an
error to the KBR range, by not using the correct angles. This is happening for two reasons.
Firstly, the angles themselves may be biased, e.g. due to the fact that the star camera frames
are not known exactly. I.e.,

θ̂y = θ′y + δθ′y, (C.7)

θ̂z = θ′z + δθ′z, (C.8)

where θ′y is the true pitch angle and δθ′y the measurement bias, and accordingly for yaw. Recall

that the AOC is computed using the angles θ′y and θ′z, defined via RLOSF
KF , cf. Eq. (C.5). In

App. C.4, it is derived that the error introduced by such angle biases is approximately

δAOC ≈ −| ~Q|
(
δθ′yθ

′
y + δθ′zθ

′
z

)
, (C.9)

for one S/C, where ~Q denotes the APC position. If | ~Q| and the angle biases are viewed as
invariant, this is simply a type of TTL error, which is of the order of δθ′ m rad−2, i.e. of the
order of 1 mm rad−1 linear coupling for an angle bias of 1 mrad.

Secondly, the estimation of the APC may not be accurate. Let ~̂Q denote the estimated
APC position. If the difference between estimated and true APC position is

δ ~Q = ~̂Q− ~Q, (C.10)

then, as derived in App. C.5, this results in pitch and yaw biases of

δθy ≈
1

| ~Q|
· δQz, (C.11)

δθz ≈
1

| ~Q|
· δQy, (C.12)
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where δ ~Q = (δQx, δQy, δQz)
T is the APC estimation error with components in the SF. This

introduces further linear pitch and yaw coupling terms of the order of 1 mm rad−1, assuming
that δQy ≈ δQz ≈ 1 mm.

In [Hor+11], it has been pointed out that such errors in the AOC yields a significant
reduction of the quality of gravity fields. Thus, techniques have been developed to re-estimate
the angle biases, as well as the APC position, in order to mitigate this problem. The angle
biases that were found were up to a few milliradian, and the newly determined APC position
differed from the previous by up to a few millimeters. According to computations of the
author, such mistakes yield an additional error of the order of some mm rad−1 · θy,z, which is
introduced by applying the AOC.

Significant biases of SCA-derived angles were also found in [BFK12], as well as a strong
dependency of the S/C attitude control on the different quality of SCA heads. In general,
SCA instrument noise or degraded attitude solutions due to SCA blindings yield an additional
AOC error. The performance of the GRACE SCA quaternions and its influence on gravity
field solutions has been studied extensively, cf. [BF14; Iná+15; Har16; HS19; Gos18], and
many issues have been discovered. E.g., for GRACE, the alignment of individual SCA heads
may have drifted by up to 500 µrad during the mission life time of about 15 years [Iná+15],
which is likely due to thermal effects. In terms of the measurement noise of pointing angles,
the situation has obviously improved a lot for GFO, since gyroscopes and LRI FSM provide
high quality attitude information.

C.4 Influence of angle bias on the KBR AOC term

If biased angles are used to compute the AOC term for correcting the KBR range, a noncon-
stant error is added to the range. This error shall be quantified here. Let θ̂i, i = x, y, z denote
the biased angles, i.e.

θ̂i = θi + δθi, (C.13)

where θi are the true angles. Furthermore, denote by ˆAOC the AOC term computed from
biased angles, and denote by AOC the AOC term computed using the correct angles, i.e.

ˆAOC = −|
~Q|
2
·
(
θ̂2
y + θ̂2

z

)
, (C.14)

AOC = −|
~Q|
2
·
(
θ2
y + θ2

z

)
, (C.15)

where ~Q is the APC position w.r.t. the S/C CoM. Here the fact that the above term needs to
be computed and added up for both S/C is omitted. After a quick computation, one obtains

ˆAOC−AOC = −| ~Q|
(
δθyθy + δθzθz + 0.5 · (δθ2

y + δθ2
z)
)

(C.16)

(∗)
= −| ~Q| (δθyθy + δθzθz) , (C.17)

where (∗) is assuming that δθy, δθz and ~Q are time invariant. Recall that constants are
irrelevant for the biased range. Then, the error that is introduced by applying an AOC term
computed with biased angles, is behaving like a TTL coupling error, with linear pitch and yaw
coupling of about 1.5 · δθy,z m rad−2.

C.5 Angle bias introduced by APC estimation error

The goal of this section is to quantify the angle bias that is introduced by using an estimated
APC position, which differs from the true APC position. Nominally, the KF is defined using
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the APC position ~Q, cf. Sec. 2.1.1. For ~Q = (Qx, Qy, Qz), with components in the SF, one
can write

XKF =
P

| ~Q|
, (C.18)

YKF =
1

| ~Q|2

−QxQyQ2
x +Q2

z

−QyQz

 , (C.19)

ZKF =
1

| ~Q|

−Qz0
Qx

 . (C.20)

From the axes, the rotation R = RSF
KF can be computed via

RSF
KF =

XT
KF

Y T
KF

ZTKF

 . (C.21)

Applying Eqs. (2.29), one can compute the Euler angles of R. One obtains

ψx = arctan

(
R32

R33

)
≈ 0, (C.22)

ψy = − arcsin (R31) ≈ 1

| ~Q|
·Qz, (C.23)

ψz = − arctan

(
R21

R11

)
≈ 1

| ~Q|
·Qy, (C.24)

for roll, pitch, and yaw axes, respectively.
Recall that the KBR APC position is estimated using the KBR calibration maneuvers.

Denote this estimated position by ~̂Q, such that

~̂Q = ~Q+ δ ~Q, (C.25)

with an estimation error δ ~Q. The angle biases which result from using ~̂Q instead of ~Q can
then be written as

δψx ≈ 0, (C.26)

δψy ≈
1

| ~Q|

(
| ~Q|

| ~̂Q|
Q̂z −Qz

)
≈ 1

| ~Q|
δQz, (C.27)

δψz ≈
1

| ~Q|

(
| ~Q|

| ~̂Q|
Q̂y −Qy

)
≈ 1

| ~Q|
δQy. (C.28)

In other words, the APC estimation error has the effect that the KF is not correctly defined.
The resulting angle biases derived above will couple into the KBR range, when the AOC term
is computed and applied. The biases for pitch and yaw are of the order of |δ ~Q|/| ~Q| rad,
whereas the bias for the roll angle is zero in the first order approximation.



Appendix D

Solar radiation pressure model

In the following, a simple model is developed to compute the solar radiation pressure (SRP)
force and acceleration acting on a S/C. Here merely the direct SRP shall be computed, which
means that no pressure is considered which is caused by any solar radiation that has been
reflected before, e.g. by the Earth, which is called Earth albedo pressure, or any other radiation
that is not coming directly from the sun. For more theoretical background, cf. [Mon00].

D.1 SRP force model

The solar flux

φ =
Ė

A
(D.1)

is the rate at which energy E of electromagnetic radiation originating from the sun passes
through an area A. For now, the solar flux is assumed not to depend on time, but only on the
satellite’s distance to the Sun. In fact, suppose here that

φ� = 1361 W m−2, (D.2)

at a distance of 1 AU (astronomical unit). Since the solar flux decreases with the square of
the distance, say x, the solar flux at this distance is given by

φ(x) = 1361

(
AU

x

)2

W m−2. (D.3)

Note that the momentum p of a photon with energy E is given by

pphoton =
E

c
. (D.4)

If the photon is fully absorbed by a planar object with normal vector pointing towards the
sun, then the whole momentum passes on to the momentum7 of this object (e.g. the S/C).
I.e.,

ṗS/C = ṗphoton =
Ė

c
. (D.5)

Hence, the force acting on the S/C is

F = ma = ṗS/C =
φ

c
·A, (D.6)

with m being the S/C total mass, and with A denoting the surface area. This corresponds to
a pressure

P =
F

A
=
φ

c
. (D.7)
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Denote by

P� =
φ�
c

= 4.54 · 10−6 Pa (D.8)

the solar radiation pressure (SRP) at 1 AU distance. Finally, this yields the resulting acceler-
ation:

a =
F

m
=
P�
m
·
(
AU

x

)2

·A. (D.9)

Figure D.1: Left: Illustration of the cross-sectional area. Right: Reflecting photon.

Suppose now that the surface is not perpendicular to the incident photon. In order to
account for the smaller amount of sunlight that reaches the surface in this case, A must be
replaced by its perpendicular part,

A⊥ = cos(θ) ·A,

where θ is the angle between surface normal ~n and the normalized vector ~e that points towards
the sun:

cos(θ) = 〈~n,~e〉.

Further, not all of the photons are being absorbed. When a photon is being reflected from
the surface, by momentum conservation, the resulting momentum passing on to the satellite
is

~pres. = −2pphoton · cos(θ) · ~n,

cf. Fig. D.1. Hence, the resulting acceleration acting on a surface with normal vector ~n and
reflection coefficient ε, at an angle θ, is

~a = −P�
m

(
AU

x

)2

cos(θ)A · ((1− ε) · ~e+ 2ε cos(θ) · ~n) . (D.10)

7Note that the relativistic momentum is p = γm0v, where γ = 1/
√

1 − v2/c2 is the Lorentz factor, m0 is
the rest mass, and the product γm0 is the inertial mass of the S/C. For a satellite moving at a speed v close to
8km/s, however, the inertial mass coincides with the rest mass up to a deviation in the order of 10−10, which
is negligible.



162 APPENDIX D. SOLAR RADIATION PRESSURE MODEL

Each of the GFO satellites has 8 surfaces that can be exposed to the sunlight. The surface
specifications are given in [Wen+19]. The values which are considered by this model can be
summarized in a 6× 8 matrix with columns

Π =


~n1 · · · ~n8

A1 · · · A8

ε1 · · · ε8
η1 · · · η8

 , (D.11)

where, for i = 1, . . . , 8, ~ni is the normal vector of the surface i, Ai is its area, and εi and ηi
are the reflection coefficients for visible light and infrared (IR) light, respectively. The normal
vectors are given in SF and must be rotated to Earth-centered inertial (ECI) before being
used for computations. Of course, the model can be adapted to satellites other than GFO, by
replacing the surface specifications.

The contribution of each surface has to be computed and they have to be added up. In
total, one obtains the following formula for visible light.

~a = −P�
m

(
AU

x

)2∑
i

[cos(θi)Ai · ((1− εi) · ~e+ 2εi cos(θi) · ~ni)] , (D.12)

where the sum is to be taken over all those surfaces i which are exposed to sunlight, i.e. over
all surfaces i such that

〈~ni, ~e〉 > 0, (D.13)

where 〈·, ·〉 denotes the scalar product. It is assumed here that, in terms of energy flux, the
sunlight consists by 44% of visible light and by 56% of IR light, neglecting ultraviolet (UV)
light. Under this assumption, the combined formula reads

~a = −P�
m

(
AU

x

)2 8∑
i=1

[cos(θi)Ai · ((1− ζi) · ~e+ 2ζi cos(θi) · ~ni)] , (D.14)

where

ζi = 0.44 · εi + 0.56 · ηi

is the combined reflection coefficient, for i = 1, . . . , 8.
Furthermore, this formula holds only if the spacecraft is in full sunlight. This equation

must hence be multiplied by a shadow function, which equals 1 in the case of full sunlight, 0
in shadow (umbra) and between 0 and 1 in halfshadow (penumbra). A model for the shadow
function is presented below, in App. D.2. In total, this yields the following model for the
acceleration acting on a GFO S/C, which is caused by SRP:

~a = −ν P�
m

(
AU

x

)2∑
i

[cos(θi)Ai · ((1− ζi) · ~e+ 2ζi cos(θi) · ~ni)] (D.15)

Computing SRP accelerations requires knowledge of satellite positions and attitudes, in
the case of GFO available via the Level-1B data, as well as Earth and Sun positions, which are
provided in the Development Ephemerides by National Aeronautics and Space Administration
(NASA)’s Jet Propulsion Laboratory (JPL), e.g. JPL DE430. The solar flux data for the
analysis performed for this thesis has been downloaded from the homepage of the University
of Colorado Boulder:
http://lasp.colorado.edu/home/sorce/data/tsi-data/

http://lasp.colorado.edu/home/sorce/data/tsi-data/
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D.2 Model of the shadow function

Here, a shadow function ν depending on Sun and S/C positions shall be derived, which is
1 if the satellite is in full sunlight, 0 if it is in full shadow, and between 0 and 1 if it is in
penumbra. Neglecting the Earth’s oblateness and atmosphere, consider the following sketch,
which is furthermore assumed to be rotationally symmetric w.r.t. the horizontal axis.

Let L be the distance between Sun and Earth, such that L = L1 + L2 as illustrated, and
denote by rs and re the radii of Sun and Earth, respectively. Then the angles are given by

sin(ψ) =
rs
L1

=
re
L2

⇒ L · sin(ψ) = rs + re,

and L · sin(ϕ) = rs − re.

In the following figure, the gray area indicates umbra (full shadow), whereas the shaded area
indicates penumbra.
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With the Earth centered at (0, 0), let P = (d, r) be the position of the satellite and
S = (−L, 0) the position of the sun. Then one has

~e = −
~S

L
,

d = 〈~e, ~P 〉,
r2 = (L2 + d) · tan(ψ),

r = ‖~P − d · ~e‖,

r1 =
re

cos(ϕ)
− d · tan(ϕ),

where the last equation can be seen as follows.

In the above sketch,

sin(ϕ) =
re

d+ d̃

⇒ d̃ =
re

sin(ϕ)
− d,

d̃ =
r1

tan(ϕ)

⇒ r1 =

(
re

sin(ϕ)
− d
)
· tan(ϕ)

=
re

cos(ϕ)
− d · tan(ϕ).

With this, one has

〈~P,~e〉 ≤ 0 ⇒ ν = 1,

〈~P,~e〉 > 0 & r ≥ r2 ⇒ ν = 1,

〈~P,~e〉 > 0 & r ≤ r1 ⇒ ν = 0,

〈~P,~e〉 > 0 & r1 < r < r2 ⇒ 0 < ν < 1.

(D.16)

The last case is the penumbra case. The fraction of the sunlight that reaches the spacecraft
in penumbra is modeled as

ν =
r − r1

r2 − r1
.

This is an approximation, but the error is very small since rs/L � 1. This completes the
shadow model.
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To summarize, the following formula was derived for the acceleration caused by solar
radiation pressure, cf. Sec. 4.2.2.

~a = −ν P�
m

(
AU

x

)2∑
i

[cos(θi)Ai · ((1− ζi) · ~e+ 2ζi cos(θi) · ~ni)] . (D.17)

Here the following simplifications (in descending order of urgency) were made:

1. The solar flux was assumed not to depend on time (i.e. no irradiance fluctuation or solar
flare etc.).

2. The Earth’s oblateness as well as the Earth’s atmosphere were ignored, resulting in a
simplified penumbra transition.

3. It was assumed that the sunlight consists of visible and infrared light only. In terms of
energy, sunlight consists only by about 47% of visible light and by 46% of IR (and 7%
UV, roughly); it was assumed that it consists by 54% of visible and by 46% of IR light.
Since the surfaces’ reflection coefficients for IR (or UV) light differ from those for visible
light, the formula for the SRP acceleration needs to be adjusted accordingly.

4. For the penumbra model a circle shaped sun was assumed for the determination of the
fraction of the sunlight that reaches the spacecraft.

5. In the photon reflection case, diffuse reflection was ignored, as well as energy conservation
considerations (reflected photons gain a Doppler shift because of S/C velocity; freqeuncies
(& hence energy & hence momentum) of photons change depending on S/C velocity w.r.t
photons, special relativistic effect).

All of these details may be integrated at a later stage, however, the latter is negligible for
nonrelativistic spacecraft velocities.
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LRI range spectrum at high
frequencies

As mentioned in this thesis, the LRI range spectrum at frequencies above ∼40 mHz is dom-
inated by range variations due to nongravitational forces, caused by attitude thruster firings
or external forces such as solar radiation pressure (SRP). Since these are physical range vari-
ations, not measurement noise, this raises the question what the true LRI noise level at these
frequencies is. It will be shown in this appendix that these variations can be removed from the
range to some extent, which enables a more detailed analysis of the LRI noise spectrum. One
way of achieving this is to model the variations due to attitude control thruster firings using
THR1B data, which is described in App. E.1. Since the nongravitational accelerations are
measured by the ACCs, another way is to use ACT1A data, which is described in App. E.2.
In App. E.3, the LRI range ASD at high frequencies is analyzed, and the results of the two
methods are compared.

E.1 Reducing range variations using THR1B data

The GFO attitude control thrusters are described in Sec. 2.3 of this thesis. A sample of the
geographic locations of attitude control thruster firings is depicted in Fig. E.1, for the time
from 1 to 8 December 2019. Notably, the roll thruster firings appear to be clustering around the
geomagnetic equator in a certain pattern, and in another pattern for the yaw thruster firings.
This is a consequence of the fact that the GFO satellite attitudes are controlled preferentially
by magnetic torque rods (MTR). Attitude thrusters are used when MTRs are not able to
produce the required torque, which depends on the geomagnetic field. Note further that the
near-polar orbits of the satellites favor pitch axis control with MTRs, which is the reason why
pitch thruster firings (marked in blue and red) are scarce for both satellites.

Figure E.1: Geographic locations of thruster firings between 1 and 8 December 2019. Left:
GF1. Right: GF2.
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Figure E.2 shows all firing durations of the GFO attitude control thrusters, i.e. ”on-times”
according to THR1B data, cf. [Wen+19], until November 2021. Most firings that occur have
a standard on-time that can also be changed, which has been done for instance in the end
of 2018. There are exceptions to the standard on-times when necessary. For example, longer
on-times are sometimes required before a CMC, in order to minimize the absolute pointing
deviation at the maneuver start, since during the maneuver the thruster control is switched
off for 180 seconds.

The linear acceleration caused by a thruster firing is given by the force vector of that
thruster divided by the satellite mass. In particular, it is independent of the position of the
thruster, as opposed to the torque, cf. Eq. (2.44). Attitude control thrusters are therefore
activated in pairs with opposite directions, cf. Sec. 2.3.1. If the two force vectors do not sum
to zero, the resulting force causes unintended linear accelerations of the satellite. Since these
cause physical movement of the satellites, they also vary the inter-satellite range, which is
measured by the LRI. Note that these residual linear accelerations ought not to be confused
with the phase jumps reported in [Abi+19], which are related to thruster firings in a different
way.

The variations in the LRI range caused by such linear accelerations can disturb the analysis
of CMC maneuvers, cf. Sec. 5.1.4. In fact, the linear accelerations caused by the thruster firings
are correlated to the angular accelerations caused by it. Linear accelerations in LoS direction
accumulate to range variations in a similar way as the angular accelerations accumulate to
S/C pointing variations. As a consequence, the resulting variations in the range are correlated
to the resulting variations in the S/C pointing angles as well. Due to this, it is challenging
to distinguish between these range variations and TTL, cf. Sec. 5.4. In the following, an
approach to derive models of these range variations is described.

On each GFO satellite there are two types of thrusters per axis: roll (+), roll (-), pitch (+),
pitch (-), yaw (+), yaw (-), where +/- indicates the direction of rotation. For each of the six
types, there is one pair of thrusters, accomodated in a symmetric pattern around the S/C CoM.
The attitude thruster accomodation for GFO is depicted in Fig. 2.10 in Sec. 2.3.1. Here it is
assumed that those two thrusters are activated exactly simultaneously, at the times reported
in the THR1B data. For simplicity, it is also assumed here that the SF x axis coincides with
the LoS axis, which is in the nominal fine-pointing mode true up to a rotation of a few mrad.
This assumption implies that the effect of a given thruster pair on the range depends merely
on the firing duration, and does otherwise not change with time. Now the linear acceleration
in SF x direction caused by a fixed type of thruster is modeled by a rectangular pulse, i.e. by a
function which has a constant value during the time of activation, and is zero before and after
the activation. This function is then integrated twice and a filter is applied which imitates the
onboard decimation filtering of the laser ranging processor (LRP), in order to obtain a model
for the resulting change in the measured LRI range. With a least squares fit, for each S/C,
one obtains a model for each thruster type, in the form of one parameter, which represents
the pulse amplitude of the linear acceleration in LoS direction caused by that thruster pair.
For six thruster pairs per S/C, this yields 12 parameters in total.

As mentioned above, these thruster responses correlate with the pointing angles and also
with the TTL error. It is thus important to note that the TTL error was subtracted from the
range before estimating the thruster model parameters. This was possible, since the TTL CFs
were estimated exclusively from CMC maneuver data without any thruster firings. It shall
further be remarked that, for both S/C, positive linear acceleration in SF x direction yields
negative range acceleration. Finally, it is noteworthy that the models presented here were kept
as simple as possible and more dedicated models are possible. E.g., in [Stu20], a model was
developed where the two thrusters can be activated at slightly different times.

The derived models of these linear accelerations are shown in Tab. E.1. The results
are mostly consistent with the models that were used to compute the ACT1B data prod-
uct [McC+19]. The Albert Einstein Institute (AEI) values in the table are averaged over
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Figure E.2: All attitude thruster firing durations until November 2021 (on-times according to
the THR1B data, cf. [Wen+19]) over time.

all estimates, where each estimate is obtained from one day of data. Estimates were derived
separately for every day with the LRI switched on, until September 2019. Note that pitch
thruster firings are scarce, see Fig. E.1, and are hence modeled with less certainty. The esti-
mates are plotted in Fig. E.3 on the left. Once the models of all thrusters are available, time
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Table E.1: Models of linear acceleration in SF x direction caused by different thruster types.

thruster type SRF X acceleration [nm s−2]
GF1 GF2

AEI JPL/CSR AEI JPL/CSR

Positive Roll 3.2 15 -24.1 -30

Negative Roll -22.0 -20 -34.1 -40

Positive Pitch 1.1 0 61.3 55

Negative Pitch -108.4 -109 -132.8 -119

Positive Yaw 9.9 -7 141.9 141

Negative Yaw -28.4 -22 144.0 123

series of thruster responses in the range can be produced for any given interval, using merely
THR1B data. Afterwards, this time series can be subtracted from the range, if desired. The
right plot of Fig. E.3 exemplarily shows a time series of LRI range with modeled thruster
responses. The dotted red line labeled THR shows the sum of the twelve time series of range
variations caused by each thruster type. The range and thruster responses for this plot have
been highpass filtered for better visibility.

Figure E.3: Left: thruster model parameters over time. Right: example time series of modeled
attitude control thruster responses in the LRI range.

The results of each individual thruster pair are shown in Figs. E.4 and E.5. In each plot, the
dotted line represents the value given in [McC+19], which overall shows good agreement with
the estimated values. For some thruster pairs, changes are visible in the period around January
2019 compared to the other periods. Although the model takes into account the thruster firing
duration, this change may be connected to the fact that the standard firing durations have
been changed for that period, see Fig. E.2. Note further that the values reported in [McC+19]
have been estimated using merely long thruster firings, greater than approximately 750 ms,
that occurred before May 2019, whereas the values reported here are based on all thruster
firings until September 2019.
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Figure E.4: Linear acceleration thruster models for GF1. Top: roll thrusters (left: positive;
right: negative). Middle: pitch thrusters (left: positive; right: negative). Bottom: yaw
thrusters (left: positive; right: negative).
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Figure E.5: Linear acceleration thruster models for GF2. Top: roll thrusters (left: positive;
right: negative). Middle: pitch thrusters (left: positive; right: negative). Bottom: yaw
thrusters (left: positive; right: negative).
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E.2 Reducing range variations using ACT1A data

The nongravitational accelerations acting on the GFO satellites are measured by the onboard
accelerometers. Below it is described how ACC data can be used to remove the nongrav-
itational range variations from the LRI range. Since the GF2 ACC data is degraded, the
calibrated accelerometer data product ACT1A was used here. Note that for the ACT data,
the GF2 measurements were replaced by the transplanted GF1 measurements, and the mea-
sured accelerations during thruster firings were replaced by models, cf. [McC+19]. For further
reading, the reader is also referred to [Ban+19], where the accelerometer data transplant is
described for GRACE.

In order to compute the change in the inter-satellite range that is caused by linear nongrav-
itational accelerations, these need to be integrated twice and projected onto the LoS. These
two steps can be carried out in arbitrary order. Thus, the straightforward way to proceed is to
rotate the ACT1A data from the accelerometer frame (AF) to the LOSF and integrate merely
the LOSF x component. Denote by ax,i, i = 1, 2, the component of the linear acceleration of
S/C i in the x direction of the LOSF-i frame, i.e. towards the other S/C. These components
from both S/C can be combined to obtain the resulting range acceleration, in this thesis called
differential linear nongravitational (DLN) range acceleration ρ̈DLN:

ρ̈DLN = −ax,1 − ax,2. (E.1)

Subsequently, the DLN range variations ρDLN are computed by

ρDLN =

∫∫
ρ̈DLN. (E.2)

The integration constants as well as the error propagation due to the integration do not
constitute a problem, since long wavelength variations are not studied here and can be filtered
out. In order to subtract the so-obtained time series from the range, the time stamps of
the involved data products must be synchronized. For the rotation between the AF and
LOSF frames, the S/C attitude quaternions are needed, cf. Sec. 2.1.1, which were taken from
SCA1B data here. An alternative would be to neglect the pointing jitter and simply use the
SF x component of the acceleration, which coincides with the AF z component.

E.3 Spectrum analysis

As the nongravitational contributions in the LRI range are not measurement noise but signal
from physical range variations, the question that was raised in the beginning of this appendix
is: what is the true noise level of the LRI at Fourier frequencies above 40 mHz? To answer
this question, it is useful that time series of THR and DLN range variations can be obtained as
described in the previous sections, from THR1B or ACT1A data, respectively, and subtracted
from the LRI range. Example ASDs of LRI range, as well as the range reduced by THR or
DLN, have been given in the left plot of Fig. 4.14. In that example, subtraction of THR lowers
the ASD more than subtraction of DLN. However, this seems to vary with time, as well as the
ASD of the unchanged LRI range itself. In order to analyze the behavior of the LRI range
spectrum over a long time, ASDs of different combinations of range variations were computed
for each day with the LRI switched on between the launch and June 2021. For each ASD, an
RMS value for a frequency interval (a, b) can then be computed as

RMS(ASD) =

√√√√√ 1

b− a

b∫
a

ASD(f)2 df. (E.3)
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In Fig. E.6, such RMS ASD values for the frequency interval between 35 and 80 mHz are
shown. Here a period around July 2020 was excluded due to a large number of outliers in the
ASDs of the LRI range, which was not investigated further. Each cross represents the RMS
ASD for one day of data, computed for different range terms as indicated in the legend. These
range terms are abbreviated as follows.

• LRI : measured LRI range (AEI data product)

• DLN : DLN range variations (ACT1A and Level-1B data)

• LRI - DLN : difference LRI - DLN

• SRP : range variations caused by SRP (model and Level-1B data and JPL DE430)

• THR: THR range variations (model and THR1B data)

• LRI - THR: difference LRI - THR

• TTL: tilt-to-length coupling (model and FSM data)

• LFN : laser frequency noise term (model and Level-1B data)

• ACC noise: ACC noise converted to range (model)

The range variations caused by SRP were obtained by computing SRP accelerations for both
satellites, cf. App. D, and then proceeding in the same way as with ACT1A data. Furthermore,
the solar beta angles are plotted on the right y axis, which were computed using GPS-derived
S/C positions and JPL’s Development Ephemerides JPL DE430. The solar beta angle for a
low Earth orbit (LEO) satellite is defined as the smaller of the two angles between the orbital
plane and the line connecting the Earth and the Sun. It is also sometimes called Sun beta
angle or β′ (beta prime).

Figure E.6: RMS LASDs for frequencies between 35 and 80 mHz.

Some observations that can be made from Fig. E.6 shall be mentioned here. Always
referring to RMS ASD range variations for the frequency range from 35 to 80 mHz here,
the first observation is that the LRI values (black crosses) appear to be dominated by DLN
(blue). DLN range variations computed with ACT1A data, notably obtained independently of
the LRI, coincide to a large extend with LRI range variations, and subtraction of DLN from
LRI yields significant reduction, see LRI - DLN (cyan). The level of DLN range variations
undulates with a period of slightly more than 5 months, which seems to be related to the
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periodic variations of the solar beta angle. DLN appears to be smallest during periods with
large beta angles, positive or negative, and largest when the beta angle is close to zero. The
DLN undulations seem to be in step with the modeled range variations due to SRP (pink),
and both are on a similar level during the peaks. During the lows, where the contribution
of SRP is almost negligible, DLN draws almost down to the level of the thruster responses,
THR (red). This level is quite steady most of the time, except during a period with increased
thruster firing durations around January 2019, cf. Fig. E.2. The contribution of THR to LRI
is significant, to the point of being dominating during those periods that seem to coincide
with periods of large solar beta angles. During such periods, THR is very close to DLN, and
subtraction of THR from LRI yields even better reduction than subtraction of DLN. In fact,
the difference LRI - THR (orange) then nearly approaches the level of the laser frequency noise
LFN (gray). TTL (green) computed with FSM pointing angles is likely to contain a significant
amount of measurement noise, cf. Sec. 5.4.1, but stays below LFN almost everywhere.

The most immediate interpretation of these observations is that, in the considered fre-
quency interval between 35 and 80 mHz, the LRI seems to measure mainly and very accurately
physical range variations caused by nongravitational forces. Periods where these variations are
dominated by thruster responses alternate with periods where environmental forces cause even
larger range variations. The latter seem to be driven by large SRP forces in the LoS direc-
tion, which are related to small solar beta angles, which is likely because the LoS lies in the
orbital plane and SRP forces act mainly in the direction of the incident Sun light. The fact
that the difference LRI - THR is often close to the level of LFN suggests that the true LRI
performance is indeed limited by the sum of LFN and TTL, during these periods and in the
considered frequency band. It furthermore indicates that the LFN model is accurate or at
least not underestimating the true LFN during these periods. During other periods, the LRI
performance is most likely as good as or better than indicated by the difference LRI - DLN.
Elevated LRI - DLN values seem to occur when the beta angle is close to zero. This may be
due to the LRI itself or due to the ACT1A data. Note that any noise in the ACT1A data also
propagates to DLN, a simulation of which is plotted as a light blue dashed line, based on the
noise model presented in [Dar+17]. Finally, it is also worthwhile to mention again that the
ACT1A data for GF2, except for the thruster responses, is transplanted data from GF1, so
that this level of accuracy is already impressive.
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