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Abstract

In this thesis, we study the topological classification of symmetric quantum walks. These
describe the discrete time evolution of single quantumparticles on the lattice with additional
locally acting symmetries. The thesis consists of three parts:

In the first part, we discuss discrete symmetry types for self-adjoint and unitary operators
from an abstract point of view, i.e. without assuming an underlying physical model. We re-
duce any abstract finite group of involutive symmetries and their projective representations
to a smaller set of symmetry types, eliminating elements that are redundant for topological
classifications. This reduction process leads to the well-known tenfold way for self-adjoint
operators, and for unitary operators, we identify 38 non-redundant symmetry types. For
these, we define a symmetry index, which labels equivalence classes of finite-dimensional
representations up to trivial direct summands. We show that these equivalence classes nat-
urally carry a group structure and finish the discussion by explicitly computing the corre-
sponding index groups for all non-trivial symmetry types.

Second, we develop a topological classification for symmetric quantum walks based on
the symmetry index derived in the first part. We begin without a locality condition on the
unitary time evolution operator but only assume an underlying discrete spatial structure.
Unlike continuous-time systems, quantum walks exhibit non-gentle perturbations, i.e. local
or compact perturbations that cannot be undone continuously. Using the symmetry index,
we provide a complete topological classification of such perturbations of unitary operators
on any lattice or graph. We add a locality condition on the one-dimensional lattice and detail
the implications of such assumption on the classification. The spatial structure of the one-
dimensional lattice allows us to define the left- and right symmetry index, which characterise
a walks topological properties on the two half-chains. The sum of these two indices equals
the overall symmetry index, which provides a lower bound on the number of symmetry
protected eigenstates of the walk. For the symmetry types of the tenfold way, a subset of
three different symmetry indices is complete with respect to norm-continuous deformations
and compact perturbations.

In the third part, we consider quantum walk protocols instead of single time-step uni-
taries. We show that any unitary operator with finite jump length on a one-dimensional
lattice can be factorised into a sequence of shift and coin operations. We then provide a com-
plete topological classification of such protocols under the influence of chiral symmetry. The
classification is in terms of the half-step operator, i.e. the time evolution operator at half of
the driving period, which is singled out by the chiral symmetry. We also show that a half-
step operator can be constructed for every chiral symmetric single time-step unitary without
a pre-defined underlying protocol. This renders the classification via the half-step operator
valid for periodically driven continuous-time (Floquet systems), discretely driven protocols,
and single time-step quantum walks.
Keywords: Quantum walks, topological classification, discrete symmetry types





Zusammenfassung

In dieser Arbeit untersuchen wir die topologische Klassifikation symmetrischer Quan-
tenwalks. Diese beschreiben die diskrete Zeitentwicklung einzelner Quantenteilchen auf
demGitter mit zusätzlichen lokal wirkenden Symmetrien. Die Arbeit besteht aus drei Teilen:

Im ersten Teil diskutieren wir diskrete Symmetrietypen für selbstadjungierte und uni-
täre Operatoren von einem abstrakten Standpunkt aus, ohne ein zugrundeliegendes physi-
kalisches Modell anzunehmen. Wir reduzieren eine abstrakte endliche Gruppe involutiver
Symmetrien und deren projektive Darstellungen auf eine kleinere Menge von Symmetriety-
pen, wobei Elemente, die für topologische Klassifikationen redundant sind, eliminiert wer-
den. Für selbstadjungierte Operatoren führt dieser Reduktionsprozess zum wohlbekannten
“tenfold way”, und für unitäre Operatoren identifizieren wir 38 nicht-redundante Symme-
trietypen. Für diese definieren wir einen Symmetrie-Index, welcher Äquivalenzklassen end-
lichdimensionaler Darstellungen bis auf triviale direkte Summanden kennzeichnet. Wir zei-
gen, dass diese Äquivalenzklassen auf natürlicheWeise mit einer Gruppenstruktur versehen
sind und schließen die Diskussion mit der expliziten Berechnung dieser Indexgruppen für
alle nichttrivialen Symmetrietypen.

Basierend auf dem im ersten Teil hergeleiteten Symmetrie-Index entwickeln wir im zwei-
ten Teil eine topologische Klassifikation für symmetrische Quantenwalks. Dabei beginnen
wir ohne eine Lokalitätsbedingung für den unitären Zeitentwicklungsoperator, sondern le-
diglich eine zugrundeliegende diskrete räumliche Struktur anzunehmen. Anders als zeit-
kontinuierliche Systeme, weisen Quantenwalks unsanfte Störungen auf, d.h. lokale oder
kompakte Störungen, die nicht auf stetige Weise eliminiert werden können. Mithilfe des
Symmetrie-Index gelingt uns die vollständige topologische Klassifikation solcher Störungen
unitärer Operatoren auf beliebigen Gittern oder Graphen. Anschließend fügen wir eine Lo-
kalitätsbedingung auf dem eindimensionalen Gitter hinzu und untersuchen den Einfluss
einer solchen Annahme auf die topologische Klassifikation. Die räumliche Struktur des ein-
dimensionalen Gitters erlaubt uns die Definition eines links- und rechtsseitigen Symmetrie-
Index, welche die topologischen Eigenschaften des Walks auf den jeweiligen Halbachsen
charakterisieren. Die Summe dieser beiden Indizes ist gleich dem Symmetrie-Index des ge-
samten Walks, welcher eine untere Schranke für die Anzahl der durch die Symmetrien ge-
schützten Eigenzustände liefert. Zudem liefert eine Teilmenge von drei dieser Symmetrie-
Indizes einen vollständigen Satz von Invarianten für die Klassifikation bis auf normstetige
Deformationen und kompakte Störungen.

Im dritten Teil widmen wir uns Quantenwalk-Protokollen anstelle von Unitären, wel-
che einen einzelnen diskreten Zeitschritt beschreiben. Wir zeigen zunächst, dass jeder uni-
täre Operator mit endlicher Sprungweite auf dem eindimensionalen Gitter in eine Se-
quenz von “shift”- und “coin”-Operatoren faktorisiert werden kann. Anschließend liefern
wir eine vollständige topologische Klassifikation solcher Protokolle mit chiraler Symme-
trie. Diese Klassifikation findet anhand des durch die chirale Symmetrie ausgezeichneten
Halbschritt-Operators, d.h. des Zeitentwicklungsoperators nach einer halben Periode statt.
Wir zeigen, dass auch für unitäre Operatoren ohne zugrundeliegendes Protokoll immer
ein Halbschritt-Operator konstruiert werden kann, wodurch sich die Klassifikation über
den Halbschritt-Operator sowohl auf periodisch getriebene Systeme in kontinuierlicher Zeit
(Floquet-Systeme), diskrete Protokolle, als auch einen einzelnen Zeitschritt beschreibende
Quantenwalks anwenden lässt.
Schlagworte: Quantenwalks, topologische Klassifikation, diskrete Symmetrietypen
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Introduction

Motivation
It is the matter of physics to systematically describe the behaviour of nature, i.e. to
translate observed phenomena into the language of mathematics. Only when we are
equipped with a mathematical model that explains observed phenomena and predicts
new ones, we claim to understand a physical process. However, sometimes it is the
model itself, which sparks further research interest without being bound to observa-
tions in the lab. Studying the details of a model may be driven more by mathematical
interest than by physical motivation, but only whenwe understand amodel in all its de-
tails, can we pin down its predictive power and, even more importantly, its limitations.
Hence, the study of models in their own right belongs to physics in the same way as the
pure descriptions of phenomena do. The combination and, in particular, the interplay
between these two disciplines enables us to claim to understand the processes in nature.

The model systems we study in this thesis are called quantum walks. These de-
scribe the dynamics of single particles on discrete spatial structures such as lattices or
graphs in discrete time. Another way of seeing quantum walks is as the quantum me-
chanical counterparts of classical random walks. These two pictures correspond to two
different lines of research in the quantum walk community. On the one hand, seen as
quantum mechanical generalisations to random walks, quantum walks have many al-
gorithmic applications. After being introduced by Aharonov et al. in 1993 [ADZ93],
quantum walks became famous with the well known Grover search algorithm [Gro96]
in 1996. Since then, quantum walk based algorithms have appeared in various top-
ics, like cryptography [VRM+15], pseudo-random number generation [SC19], graph
classification [CMC20], neural networks [DMKP+19], and have been shown to provide
a universal platform for quantum computation [LCE+10]. On the other hand, inter-
preted as the dynamics of single particles [Mey96], quantum walks exhibit a variety
of physical phenomena, such as dynamical localisation [ASW11], mimicking the dy-
namics under the Dirac equation [BB94], Bloch-oscillations [RBH+11], molecular bind-
ing [AAM+12], and the coupling of a quantum mechanical particle to electromagnetic
fields [CRW+13, CGWW19].

We here approach quantum walks from the perspective of a topological classifi-
cation with symmetries. This is motivated by topological phases of matter in solid-
state physics. Sparked by the observation of the well-known integer quantum Hall
effect [KDP80], the search for topological phases of matter as well as their rigor-
ous classification became a highly active area of research [SRFL08, SRFL09, RSFL10,

1



INTRODUCTION

HK10, QZ11]. Quantum walks were found to serve as a well-suited model system
for this topic, providing examples for all non-trivial topological phases in the so-
called tenfold way [KRBD10]. Since then, many quantum walk models and examples
with non-trivial topological properties have been studied [Kit12, Asb12, AO13, ATD14,
OANK15, CMM+16, CGS+16] and were also experimentally realised on various plat-
forms [KBF+12, GBA+16, RFR+17, BNE+17, NGS+19]. However, a profound topolog-
ical classification beyond specific models with a satisfying level of rigour was missing
when we first approached the topic. This motivated us to fill this gap and provide a
topological classification of symmetric quantum walks from a mathematical point of
view [CGG+18, CGS+18, CGWW21].

Generally speaking, the ingredients for such a topological classification are (1.) a set
of systems, (2.) a set of assumptions, respectively restrictions, and (3.) a set of trans-
formation rules. The task is to precisely label the connected components of the systems
under the set of transformations that obey the assumptions and restrictions. In a sense,
a topological classification is motivated by trying to pin down the most fundamental
structure of a model at hand without letting unnecessary details stand in the way. In
our case, the systems will be (1.) quantum walks on the one-dimensional lattice, obey-
ing (2.) a locality condition, certain symmetries and a gap condition. In particular, we
do not assume translation invariance or a restricted type of disorder in an otherwise
translation-invariant system. The classification is then up to (3.) norm-continuous de-
formations and compact perturbations.

We focus on two aspects: First, we generalise the ten discrete symmetry types typ-
ically considered in the literature. The tenfold way provides an exhaustive set of non-
trivial symmetry types for self-adjoint operators, i.e. the generators of the time evolution
in continuous time. Quantumwalks do not necessarily stem from such continuous-time
evolution. Hence, considering only these ten types is not necessarily exhaustive in our
setting. To pin this down, we study the possible projective representations for finite
groups of involutive symmetries, i.e. symmetry types, from an abstract point of view,
which leads to 38 non-trivial different symmetry types for unitary operators. Building
on this, we provide a complete classification of compact perturbations for unitaries that
fulfil the respective symmetry condition for all these 38 types. Taking a locality condi-
tion with respect to a one-dimensional lattice into account, we apply the classification to
quantum walks. For these, we define spatial symmetry indices, the left and right sym-
metry index. These can be computed arbitrarily far to the left and right, respectively,
and therefore only depend on the half infinite bulks to the left and the right. More-
over, they add up to the overall symmetry index and therefore predict whether a sys-
tem consisting of two joined half-systems in possibly different topological classes hosts
symmetry-protected edge states at the boundary. This equality of the sum of two bulk
indices on the one hand, and an invariant that characterises the symmetry protected
eigenstates of the system without being bound to the underlying spatial structure, can
be interpreted as a version of the well-known bulk-boundary correspondence for one-
dimensional symmetric quantum walks. Moreover, we provide a complete topological
classification of one-dimensional quantum walks subject to the symmetry types of the
tenfoldway. While we could not fully generalise these far-reaching results to all symme-
try types, we provide a partial classification and discuss the problems one encounters
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INTRODUCTION

beyond the tenfold way.
The fundamental question that will accompany us along the way is: What exactly is

meant by a “quantum walk”? A discrete-time system that evolves by recurring appli-
cation of the same unitary operator can be thought of in different ways. An idea that
comes to mind is periodically driven, i.e. Floquet systems. When observed only strobo-
scopically at integer multiples of the period, such systems provide the so-called Floquet
operator as the recurring unitary time evolution operator. Another ansatz is to axiomat-
ically assume the time evolution as a recurring application of a unitary operator with
a locality condition, that is, without any underlying driving process whatsoever. The
standard concept for quantum walks in the literature lies somewhat in between these
two points of view. Quantum walks are usually defined as a sequence of shift and coin
operations, i.e. in terms of two fundamental building blocks.

We discuss the differences between the three points of view throughout this thesis
and elaborate on their consequence on the topological classification. While not every ab-
stractly defined discrete-time quantumwalk can be realised as the Floquet operator of a
periodically driven system, the two remaining definitions coincide. We show that every
unitary with finite jump-length on the one-dimensional lattice can be factorised into a
sequence of shift and coin operations, proving two of the three settings outlined above
equivalent. With this, we affirmatively answer a long-standing question, the answer to
which was previously known only in the translation invariant case [Vog09], where the
walks can be factorised in momentum space using techniques from the theory of filter
banks.

We proceed by studying the influence of chiral symmetry on a driving process.
There is a mismatch between our complete topological classification of single time-step
quantum walks [CGG+18] and other results from the literature [Asb12, AO13]. We re-
solve this mismatch by showing how it originates in different underlying definitions of
a quantum walk. Insisting on a protocol structure in the presence of chiral symmetry
introduces a second timeframe, i.e. an equally valid second quantum walk that does
not necessarily share the same topological invariants. This enlarges the set of describ-
ing indices, which must be equal for homotopies to exist between two protocols. We
provide a complete classification of chiral symmetric protocols, which also applies to
continuously driven systems, by focussing on the half-step operator, i.e. the time evolu-
tion operator after half of the driving period. This half-step operator is singled out by
the chiral symmetry, which always contains a time-reversing action. In a periodically
driven process, this time reversing action causes the unitary at the full driving period
T to be of the form U(T ) = γU(T/2)∗γ∗U(T/2), where γ denotes the chiral symmetry
operator. Hence, the half-step operator already contains all information needed for the
classification. We show that the norm-continuously connected components of half-step
operators are labelled by five integer-valued indices, in contrast to only three for quan-
tum walk operators. For axiomatically defined quantum walks without an underlying
driving process but chiral symmetry, we show that a half-step operator also always ex-
ists, such that the classification in terms of those captures both pictures simultaneously.

We end the last chapter by studying the aforementioned compact perturbations
for chiral symmetric protocols and chiral symmetric protocols in finite systems. We
find that a non-gentle compact perturbation of a chiral symmetric quantum walk, i.e.
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a perturbation that cannot be reached via a continuous path, always stems from a
bulk-boundary scenario of half-step operators. That is, a half-step operator, which is a
crossover between two topologically distinct halves of the system. Moreover, differently
from spatially infinite systems, single non-gentle perturbations prevent the existence
of an underlying protocol in finite systems. However, we find that locally non-gentle
perturbations can occur in pairs that “annihilate” each other globally.

Outline
In Chapter 1 we introduce the basic theory and mathematical facts needed in the fol-
lowing chapters. We start with the essentials of quantum theory, that is, Hilbert spaces,
states, measurements, and time evolution in Section 1.1, followed by a selection ofmath-
ematical concepts and tools in Section 1.2. We continue with a closer look at the time
evolution in quantum mechanics and introduce periodically driven systems, so-called
Floquet systems, in Section 1.3. Having set the stage, we introduce the main topic for
this theses, i.e. quantum walks, in Section 1.4. We end the chapter with an introduction
to the projective representations of symmetries in quantum mechanics.

In Chapter 2 we classify the equivalence classes of projective representations of
groups of involutive symmetries. We begin with the general definition of these sym-
metry types in Section 2.1 and discuss their possible action on operators in Section 2.2,
where we derive the reduction to the 38 non-trivial classes. We finish the chapter with
the definition and computation of the symmetry index for finite-dimensional represen-
tations in Section 2.3.

In Chapter 3 we provide a topological classification of essentially gapped unitaries
and quantumwalks, which are subject to one of the symmetry conditions of the 38-fold
way. First, in Section 3.1, we apply the symmetry index to essentially gapped unitary op-
erators on infinite-dimensional systems and prove its homotopy invariance. We use this
invariant for a complete classification of compact perturbations of symmetric unitary
operators on the lattice in Section 3.2. In Section 3.3 we add a locality condition to the
picture and discuss its implications on the topological classification. An essential tool
for the proof of the main theorem in Section 3.3 is the decoupling construction, which
allows splitting an essentially local unitary into two independent half-space systems. In
Section 3.4 we discuss this construction in the presence of symmetries and identify nec-
essary and sufficient conditions for the existence of such decoupling for all 38 symmetry
types. We define the left and right symmetry index and formulate the bulk-boundary
correspondence for one-dimensional quantum walks in Section 3.5. In Section 3.6 we
end the chapter with a sketch of the proof for the completeness of the symmetry indices
for the symmetry types of the tenfold way.

In Chapter 4we prove that every strictly local quantumwalk on the one-dimensional
lattice can be factorised into a finite sequence of shift and coin operations.

Finally, in Chapter 5 we provide a complete classification of chiral symmetric pro-
tocols instead of single time step unitaries. We start by precisely defining the setting
and discussing the questions we are going to address in Section 5.1. In Section 5.2 we
introduce the half-step operator and discuss the conditions for such an operator and,
therefore, an underlying protocol to exist for an arbitrary chiral symmetric quantum
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walk. In Section 5.3 we identify a set of five independent indices for the half-step op-
erator and prove their completeness. We apply the theory to a well-known example
system with an inherent protocol structure, the so-called split-step quantum walk in
Section 5.4, and discuss the connection of the set of five indices for the half-step opera-
tor to the symmetry indices of the underlying quantum walks in Section 5.5. In Section
5.6, we discuss compact perturbations of chiral symmetric protocols, aswell as protocols
on finite systems.
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1 Preliminaries

Before we delve into the topic and tackle the tasks and questions outlined above, let
us introduce some of the concepts and techniques that we need. This chapter is dedi-
cated to laying a minimal foundation for the upcoming journey. We start with the basic
concepts of quantum theory, followed by a section dedicated to purely mathematical
concepts, which we need later. This includes C∗-algebras, compact operators, Fred-
holm operators, the Fredholm index and the essential spectrum of an operator. Of
course, a preliminary section like this cannot contain a full course on the needed math-
ematical concepts, but instead, one has to choose a starting point, assuming knowledge
of the needed basics. We here only present a small selection of mathematical objects
and some of their properties, thereby keeping this section very short and referring the
interested reader to the literature. We continue with a discussion on time evolution
in driven systems and in particular, Floquet drivings. Building on this, we introduce
the main concept for this thesis: Quantum walks, also discussing one of the standard
examples in the literature, the split-step walk, which we will meet more than once dur-
ing this thesis. We end this preliminary chapter with a closer look at the representation
of symmetries in quantum mechanics, via unitary or antiunitary operators. The last
section also transitions to the following chapter on discrete symmetry types for unitary
operators.

1.1 Essentials of quantum theory
We only give a rough overview of the basics of quantum mechanics in order to set the
stage for the considerations to follow. For this, we chose an axiomatic point of view,
following [Wer16]. Since this thesis is not on the foundations of quantum theory, wewill
not detail the numerous implications of the axioms and, in particular, do not touch their
possible interpretations. For a detailed study of quantum theory and its mathematical
framework, we recommend the textbooks [Kra83, Per02, Tes09, Bal14].

The underlying philosophy for the postulates in [Wer16] is a purely statistical inter-
pretation of quantum theory, togetherwith the ansatz of keeping the theory’s postulates
as general (and therefore arguably also as simple) as possible. A statistical physical
theory rests on the following fundamental building blocks: Preparation and measure-
ment. In a physical experiment, the system is first prepared in a reproducible and well
controllable state. Secondly, a measurement of any kind is performed on the system,
producing some outcomes. The outcomes are stored, analysed, and the process is re-
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1. PRELIMINARIES

ρ F
no

yes

preparation

dynamics

measurement

Figure 1.1: Schematic of a statistical experiment with outcomes “yes” and “no” (com-
pare [Wer16, Abb. 1.5]).

peated to build up evidence for the findings to truly originate in an underlying physical
phenomenon and not some random fluctuation of the lab environment. The last step is
crucial and gives rise to the statistical nature of the interpretation: We do not demand
our theory to give specific absolute values on a process, but rather expectation values,
i.e. the likeliness of a specific outcome to occur. A crucial point omitted in the rough
description above is the dynamics of the system. No measurement is instantaneous,
and there is always some timespan between the preparation and the measurement, i.e.
the system undergoes some dynamics in the meantime. In addition, it is usually the
dynamic properties that unveil the physical concepts in a system process. Thereby it is
crucial that the time intervals between the two steps are equal in each repetition of the
experiment. Figure 1.1 shows a schematic of a statistical experiment outlined above.

According to the description above, there are three fundamental concepts a theory
needs to postulate: states, detectors and the dynamics of the system. We here present
the five postulates from [Wer16]. The first one sets the mathematical framework, the
second defines the states and preparation step of a system, whereas the third and fourth
ones are concerned with the measurement process. Finally, the last one defines the dy-
namics of the theory.

Postulate 1. Each quantum mechanical system gets assigned a Hilbert spaceH.

The Hilbert space might be finite-dimensional, e.g. for a spin 1/2 particle without
further degrees of freedom we have H = C2 with the two states “spin up”≡ (1, 0) and
“spin down”≡ (0, 1). Typically the Hilbert space is infinite-dimensional andmight even
be non-separable. However, throughout this thesis, we assume all Hilbert spaces to be
separable, i.e. to exhibit a countable orthonormal basis. The set of bounded operators
on a Hilbert spaceH is denoted by B(H).

Postulate 2. The preparation of a quantum mechanical state corresponds to a density operator
ρ ∈ B(H), with ρ > 0 and tr ρ = 1. For pure states, ρ is a one-dimensional projection |ψ⟩⟨ψ|,
defined by a normalized vector ψ ∈ H.

The pure states on H are in one-to one correspondence with the rays in a Hilbert
space, i.e. the set of orthonormal vectors up to multiplication with a phase. Moreover,
the state space for any Hilbert space is a convex set with the pure states as the extremal
points. In particular, we can write any state ρ as a convex combination of pure states, i.e.

ρ =
∑
i

λi|ψi⟩⟨ψi|, with λi ≥ 0 and
∑
i

λi = 1. (1.1)

8



1.1. ESSENTIALS OF QUANTUM THEORY

Postulate 3. A detector with the possible outcomes “yes” and “no” (also called effect [Kra83])
corresponds to an operator 0 ≤ F ≤ 1.

The detector alone says relatively little without a way of retrieving outcomes from a
prepared state ρ, which is provided by the fourth postulate.
Postulate 4. The detection probability for a detector F and a prepared state ρ is given by tr(ρF ).
For pure states, this can be written as ⟨ψ, Fψ⟩.

Restricting the measurement framework to the outcomes “yes” and “no” seems a
little oversimplified at first sight. Of course, a generic physical measurement can have
more complex outcome-sets than just these two possibilities, but we can always trace
back any measurement outcome-set to simple yes/no-questions: Let X be the set of
possible outcomes for a physical measurement (e.g. the set of possible positions of a
pointer on some scale). For each measurable subset S ⊂ X , we can ask whether the
measurement outcome x ∈ X lies in S or not. Hence, by Postulate 3, there exists an
operator FS for this yes/no question. For disjoint sets S ⊂ X and T ⊂ X it is then
reasonable to demand FS∪T = FS + FT , and we set FX = 1. This turns S 7→ FS

into a positive operator-valued measure (POVM), which is called an observable. The
outcome statistics of a POVM for a state ρ is then completely determined by Postulate 4.

Inmany standard textbooks,measurements are postulated as projection valuedmea-
sures, and observables are identified with self-adjoint operators. It is often argued that
the reason for these assumptions is that physicalmeasurements always yield real-valued
outcomes. However, it has been shown that there exist measurements, e.g. arrival-time
measurements, which cannot be realised by projection valued measures [Wer87]. Let
us, nevertheless, briefly comment on how this special case emerges from a POVM. Let
all F s of an observable be projections, i.e. F = F ∗ = F 2. If, additionally, X ⊂ R, i.e. all
measurement outcomes are real, we can define the self-adjoint operator A =

∫
X xdF ,

from which we get the distribution of expectation values via tr(ρA). This means that
the projection valued measure F is the spectral measure of the operator A.

Finally, the dynamics of a quantum mechanical system is provided via the fifth and
last postulate:
Postulate 5. Each system is characterized by a self-adjoint HamiltonianH ∈ B(H) (i.e.H∗ =
H) that determines the time evolution operator Ut = exp(−iHt)1. Applying a measurement F
on a system that is initially prepared in the state ρ after a time t, the expectation value is given
by

tr(UtρU
∗
t F ) = tr(ρU∗t FUt). (1.2)

The two sides of the equation in the postulate above are equivalent due to the invari-
ance of the trace under swaps of the argument, i.e. tr(AB) = tr(BA). We portrayed both,
in order to emphasise two different views onto the time evolution in quantum mechan-
ics. According to Postulate 4, the left hand side can be interpreted as the expectation
value tr(ρtF ) for the detector F in the time evolved state

ρt = UtρU
∗
t . (1.3)

1Where we set ℏ = 1 by an appropriate choice of units.
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This point of view of evolving the state without changing the detector is known as the
Schrödinger picture. In contrast to that, we can interpret the right-hand side as the
expectation value tr(ρFt) of the initially prepared state ρ with the (backwards) time
evolved detector

Ft = U∗t FUt, (1.4)
which is known as theHeisenberg picture. Of course, the two points of view are equiv-
alent and is a matter of taste which to use.

The physical ingredient to the theory is the assignment of the correct Hamiltonian
to a system. One way of doing this is to quantise a classical Hamilton function, which
is often a highly non-unique process. We omit the details of this discussion here and
think of the Hamiltonian as part of the definition of a quantummechanical system from
the outset. Note that in general the generator of a quantum mechanical time evolution
might well be unbounded, but for the purpose of this thesis it suffices to only consider
bounded operators.

The last postulate implicitly includes the well-known Schrödinger equation.
Corollary 1.1.1 (Schrödinger equation). The time evolution operator Ut from Postulate 5
fulfils the Schrödinger equation

∂tU = −iHUt. (1.5)
We will discuss the solution of this equation in detail for time-dependent and peri-

odically driven systems H(t) in Section 1.3.
Of course, the five postulates presented above only provide a rough framework on

which one builds to describe actual physical systems. Nevertheless, we close our dis-
cussion on the general framework of quantum theory and move on to some needed
mathematical concepts.

1.2 Mathematical concepts: C∗-algebras, compact operators and
Fredholm index

Let us introduce some of themathematical concepts we need throughout this thesis.The
following list of definitions and results is by no means intended to serve as a basis for
studying the contained concepts but should only serve as a collection of facts for later
reference. We follow [Con07] and [Dix77].

Let us start with the definition of a C∗-algebra and the functional calculus on such.
Definition 1.2.1. (C∗-algebra) A C∗-algebra A is an associative algebra over C with a norm
∥ · ∥ and a map A 7→ A∗, A ∈ A, such that

i) A is norm-closed with respect to ∥ · ∥.

ii) For all A,B ∈ A:
∥AB∥ ≤ ∥A∥∥B∥. (1.6)

iii) For all A,B ∈ A, λ ∈ C):

(A∗)∗ = A (A+B)∗ = A∗ +B∗

(AB)∗ = B∗A∗ (λA)∗ = λA∗.
(1.7)

10
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iv) For all A ∈ A:
∥A∗A∥ = ∥A∗∥∥A∥ = ∥A∥2. (1.8)

If A has an identity, it is called unital.

If only i) and ii) are embraced, A is called a Banach algebra, which, including iii)
becomes a ∗-algebra and a C∗-algebra with iv). The most prominent example of a C∗-
algebra is the set of bounded operators B(H) on a Hilbert space H. In fact, any C∗-
algebra is isomorphic to a subalgebra of B(H) on someHilbert spaceH, which is known
as the Gelfand-Naimark theorem [GN43].

Arguably the most important property of a C∗-algebras is that there exists a func-
tional calculus for C∗-algebras (see, e.g. [Dix77, Theorem 1.5.1]):

Theorem 1.2.2 (Functional calculus for C∗-algebras). Let A be a C∗-algebra with iden-
tity 1 and A ∈ A a normal element (i.e. A∗A = AA∗) with spectrum σ(A). Moreover, de-
note by C(σ(A)) the the C∗-algebra of continuous complex-valued functions on σ(A), and by
C∗(A, 1) ⊂ A the sub C∗-algebra generated by A and 1 (containing only normal elements).
Then there exists a unique isometric isomorphism φ : C(σ(A)) → C∗(A, 1) ⊂ A, such that
φ(1) = 1 and φ(id) = A, where id denotes the identity map on σ(A). Moreover, for any com-
plex valued function f ∈ C(σ(A)) on σ(A), the element φ(f) is denoted by f(A) and we have

σ (f(A)) = f (σ(A)) . (1.9)

The functional calculus for C∗ algebras provides a way to “apply” continuous func-
tions on elements A ∈ A. Specific C∗-algebras other than B(H) will be the band dom-
inated and essentially local operators on a Hilbert space with a one-dimensional local
structure (see Section 3.3). Identifying these sets as C∗-sub-algebras of B(H) and using
the functional calculus, we are guaranteed that applying continuous functions on band
dominated or essentially local operators, we always stay in the set we started with. We
will use the functional calculus for many arguments of this type throughout this thesis.

We now come to two particular classes of operators that will be important later on,
namely compact operators and Fredholm operators. On a Hilbert space, the former
can be thought of as the closure of finite rank operators, that is, matrices. The latter
generalises the concept of invertible operators to those invertible up to a compact per-
turbation. We first give the respective definition and then collect some properties for
later use for both classes of operators.

Definition 1.2.3 (Compact operator). An operator K ∈ B(H) is called compact, if for any
bounded subsetM⊂ H,K(M) is a compact subset ofH.

The following Lemma collects some well-known properties of compact operators:

Lemma 1.2.4 (Properties of compact operators). Denote by B(H)K the set of compact oper-
ators and letK ∈ B(H)K. Then

i) An operator K ∈ B(H)K is compact if the image of the unit ball in H under K is pre-
compact.

11
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ii) There is a norm convergent sequence of finite rank operatorsAn ∈ B(H), such that limAn =
K. Conversely, any norm limit of finite rank operators is compact.

iii) B(H)K is a C∗-subalgebra of B(H). In particular, B(H)K is a closed two-sided ideal in
B(H).

iv) σ(K) \ {0} consists of eigenvalues with finite multiplicity and for dimH = ∞ we have
0 ∈ σe(K)2.

Compact operators will play an important role later, when we discuss the different
notions of possible perturbations of a symmetric unitary on a one-dimensional lattice.
Thereby, “compact perturbations” are the natural generalisation of strictly local pertur-
bations, which only act on a finite number of finite-dimensional subspaces of the whole
lattice, and are therefore of finite rank (see Section 3.2). Moreover, compact operators
are critically involved in our standing assumption for locality of an operator on the one-
dimensional lattice, namely “essential locality” (see Section 3.3).

An important structure arising from the observations above is the so-called Calkin
algebra.
Definition 1.2.5 (Calkin algebra). The factor C∗ algebra B(H)/B(H)K is called the Calkin
algebra. We denote by π : B(H)→ B(H)K the natural map from B(H) into the Calkin algebra.

Establishing the Calkin algebra as an object on its own simplifies some of the proofs
later on. Many statements formulated for operators “up to compact perturbations” can
be transferred to the Calkin algebra. If e.g. an operator is gapped up to some finite-
dimensional eigenspaces inside the gap, it suffices to show that the corresponding image
of the operator in the Calkin algebra is properly gapped (see, e.g. the proof of Lemma
5.2.1).

The second set of operators we introduce is the set of Fredholm operators. These are
invertible up to compact operators, i.e. are given by the operators with an invertible im-
age in the Calkin algebra. However, we do not use this as the defining property. Instead,
we introduce Fredholm operators in a way that immediately leads to the definition of
the so-called Fredholm index, which will be of great importance in various situations
throughout the thesis.
Definition 1.2.6 (Fredholm operator and Fredholm index). An operator F ∈ B(H) is
called Fredholm if its range is closed and kerF , as well as kerA∗ are finite-dimensional. The
Fredholm index of F is defined as

ind (F ) = dimkerF − dimkerF ∗. (1.10)

The following lemma collects some well known facts about Fredholm operators and
the Fredholm index
Lemma 1.2.7 (Properties of Fredholm operators). LetA andB be Fredholm operators. Then

i) AB is Fredholm and
ind (AB) = ind (A) + ind (B). (1.11)

2The essential spectrum is defined in Definition 1.2.8.
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ii) ind (·) is norm-continuous on the set of Fredholm operators.

iii) ind (A+K) = ind (A) forK compact.

iv) A is Fredholm if and only if its image π(A) in the Calkin algebra is invertible.

v) A is Fredholm if and only if there exists a bounded operator B, such that AB = 1+K and
BA = 1 +K ′, with compact operators K,K ′. That is, A is left and right invertible up to
compact operators.

In the sense of v) and iv) of Lemma 1.2.7, Fredholmness generalizes the concept of
invertibility of an operator on a Hilbert space, which also leads to the following concept:
The essential spectrum of an operator.

Definition 1.2.8 (Essential spectrum). Let A ∈ B(H). The essential spectrum σe(A) ⊂
σ(A) is defined as

σe(A) = {λ ∈ C | (A− λ1) is not Fredholm} (1.12)

This formulation for the definition of the essential spectrum is motivated by [Con07,
Chap. XI, Prop. 4.3]. Usually, the essential spectrum is defined via the first item in the
following Lemma, which collects some properties of the essential spectrum.

Lemma 1.2.9. Let A ∈ B(H) andK ∈ B(H)K. Then

i) σe(A+K) = σe(A), or, equivalently σe(A) = σ(π(A)).

ii) σe(A⊕B) = σe(A) ∪ σe(B).

iii) Let A be normal, then σ(A) \ σe(A) is the set of isolated eigenvalues of finite multiplicity.
Hence, σe(A) is the set of limit points in σ(A).

Let us give an example for the concepts above, introducing the unilateral shift oper-
ator on ℓ2(N0), which will also be important later on.

Example 1.2.10 (The shift operator). Let H = ℓ2(N0), i.e. the space of square summable
sequences ϕ : N0 → C with inner product ⟨φ,ψ⟩ =

∑
x φxψx. The unilateral shift S is defined

via its action on elements φ ≡ (φ0, φ1, φ2, . . .) ∈ H via

Sφ = (0, φ0, φ1, φ2, . . .) and S∗φ = (φ1, φ2, φ3, . . .). (1.13)

S is a Fredholm operator with S∗S = 1 and SS∗ = 1− PkerS∗ = 1− P0, where P0 is the rank
one projection onto (1, 0, 0, . . .) ∈ H. The Fredholm index is therefore given by

ind (S) = −1. (1.14)

Moreover, its spectrum σ(S) = {λ ∈ C | |λ| ≤ 1} = D is the full closed unit disk (thereby,
for |λ| < 1, S − λ1 is Fredholm, with index −1 [Con07, Sect. VII, Prop. 6.5]). But since its
image in the Calkin algebra π(S) is unitary, we get σe(S) ⊂ {λ ∈ C | |λ| = 1}, i.e. its essential
spectrum is the full unit circle [Con07, Sect. XI, Ex. 4.10].
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1.3 Time evolution
As discussed above, the time evolution in quantummechanics is modelled by the Schrö-
dinger equation ∂tU(t) = −iHU(t), where U(t) ∈ B(H) is unitary andH is self-adjoint.
In many applications, e.g. a fine-tuned experimental setup, one has control over the
driving process, i.e. the Hamiltonian H , and wants to investigate the generated time
evolution. The setting we are aiming for are periodically driven systems, i.e. a driving
process via a time-dependent HamiltonianH(t)withH(t+ T ) = H(t) for some period
T . In order to take a closer look at such a driving procedure, we revert the axiomatic
point of view and start with the Schrödinger equation on U(t)

∂tU(t) = −iH(t)U(t), with U(0) = 1, (1.15)

where t 7→ H(t) ∈ B(H) is a measurable function into the self-adjoint bounded oper-
ators on H. We assumed H(t) to be bounded, which is indeed a major simplification.
However, having in mind a well-controlled experimental environment, where the H(t)
only refers to awell separated, possibly evenfinite-dimensional subsystem, this assump-
tion becomes feasible at least effectively. For details on more general scenarios we refer
the reader to [Kre72, Kat53, Fri64, Tan60]

It is easy to see that the solution of (1.15) has to be unitary (assuming its existence for
amoment). Indeed, U(t)∗U(t) does not change in time, which can be seen by evaluating

∂t
(
U(t)∗U(t)

)
= iU(t)∗

(
H(t)−H(t)

)
U(t) = 0. (1.16)

Hence, by the initial condition U(0) = 1, we get U(t)∗U(t) = 1 (and the same for
U(t)U(t)∗) for all t.

The existence of a unique solution for t ∈ [a, b] ⊂ R is guaranteed by the well known
Picard-Lindelöf theorem, also known as Chauchy-Lipschitz theorem (see, e.g. [Bre10,
Theorem 7.3] or [Tol, Section 2]), given that ∥H(t)∥ is bounded for all t ∈ [a, b].

Theorem 1.3.1 (Picard-Lindelöf). Let B be a Banach space, I = [a, b] ⊂ R a closed interval
and F : I × B → B a map, such that

i) t 7→ F (t, y(t)) is measurable3, and for all arbitrary but fixed y ∈ C(I,B) there exists a
C = C(y) > 0, such that ∥F (t, y(t))∥ ≤ C for t ∈ I .

ii) F fulfils a global Lipschitz condition in the second argument.

Then, for each y0 ∈ B there exists a unique continuous solution y : I → B to the initial value
problem

∂ty(t) = F (t, y(t)), y(a) = y0. (1.17)

Proof. Let λ be the Lipschitz constant for F . Equipping the set of continuous functions
C(I,B) with the norm ∥y(t)∥C(I,B) := supt e

−2λt ∥y(t)∥B (which is equivalent to the
3Wehere omit the details concerning themeasurability and integratability of Banach space valued func-

tions. Details can be found in [Coh13].
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usual supremum norm supt ∥y(t)∥B), C(I,B) becomes a Banach space. Consider the
operator T : C(I,B)→ C(I,B), defined via(

T (y)
)
(t) = y0 +

∫ t

a
F (s, y(s))ds. (1.18)

Thereby, i) guarantees that T is well defined: For all t ∫ t
a F (s, y(s))ds exists and we have∥∥(T (y))(t1)− (T (y))(t2)∥∥B =

∥∥∥∥∫ t2

t1

F (s, y(s))ds

∥∥∥∥
B
≤ C|t2 − t1|, (1.19)

wherefore T (y) ∈ C(I,B) is indeed continuous.
Using the Lipschitz condition for F , we can now show, that T is a contraction with

respect to ∥·∥C(I,B): For all twe have∥∥(T (x))(t)− (T (y))(t)∥∥B =

∥∥∥∥∫ t

a
F (s, x(s))− F (s, y(s))ds

∥∥∥∥
B

≤ λ
∫ t

a
∥x(s)− y(s)∥B ds

≤ λ
∫ t

a
e2λs ∥x− y∥C(I,B) ds =

e2λt − e2λa

2
∥x− y∥C(I,B)

≤ e2λt

2
∥x− y∥C(I,B) ,

(1.20)
which gives

∥T (x)− T (y)∥C(I,B) ≤
1

2
∥x− y∥C(I,B). (1.21)

Now, since T is a contraction, by the Banach fixed point theorem, there exists a unique
fixed point y ∈ C(I,B) with T (y) = y. By construction y(t) solves (1.17).

In order to apply this to (1.15), we set B = B(H), and define F via (t, U(t)) 7→
−iH(t)U(t). Thereby, ∥H(t)∥ <∞ ensures ii):

∥F (t, U(t))− F (t, V (t))∥ ≤ ∥H(t)∥∥U(t)− V (t)∥, (1.22)
and, together with the measurability of t 7→ H(t) also i), withC = supt ∥H(t)U(t)∥. The
solution is then often referred to as the time ordered exponential

U(t) = T exp

(
−i
∫ t

0
H(s)ds

)
= 1+

1

i

∫ t

0
H(s)ds+

1

i2

∫ t

0

∫ s

0
H(s)H(s′)ds′ds+ . . . .

(1.23)

In particular, any C∗-algebra is a Banach space. Hence, whenever (1.15) is formu-
lated in aC∗-subalgebraA ⊂ B(H) of the bounded operators onH, i.e.H(t) ∈ A, ∀t ∈ I ,
the solution U(t) is also contained in A. This fact will turn out useful later, when we
discuss the different locality conditions for operators on the one-dimensional lattice. In
particular the set of essentially local operators (see Section 3.3) forms a C∗-subalgebra
of B(H). Hence, any driving by an essentially local operator results in an essentially
local time evolution.
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1.3.1 Periodic driving: Floquet time evolution
The time evolution operator has a special property if the driving is periodic in time, i.e.
if

H(t+ T ) = H(t), ∀t, (1.24)
for some period T . In this setting one speaks of Floquet time evolution [Flo83]. In gen-
eral, U(t) does not necessarily turn out to be periodic in time (i.e. U(t+ T ) ̸= U(t), ∀t),
instead we get:

Lemma 1.3.2. LetU(t) be the time evolution operator for a periodically driven system, i.e. driven
by H(t) with (1.24). Then, for all t, U(t) fulfils

U(t+ T ) = U(t)U(T ). (1.25)

In particular, we have
U(nT ) = U(T )n, n ∈ N0. (1.26)

Proof. (1.25) follows from evaluating the right and side of (1.23), using an appropriate
change of variables after splitting the integrals into the intervals [0, t+T ] = [0, T ]∪[T, t+
T ] (see, e.g. [Sal74]). (1.26) is a direct consequence of (1.25) and follows by iteratively
replacing U(nT ) = U(nT − T )U(T ).

If we now consider the time evolution only stroboscopically at each whole period
t = nT , we get the discrete time evolution operators via iterative multiplication with
the so-called Floquet operator U(T ). Such a stroboscopic view onto a periodic driving
process defines a quantum walk in the sense we discuss below4. Later we will see that
the opposite is not true in general, i.e. not every discrete-time quantum walk can be
realised as the Floquet operator of a periodic driving process (see Section 3.3.2, and
Theorem 3.3.19 in particular).

1.4 Quantum walks
In this section, we introduce the central concept for this thesis: quantum walks. We
begin with some remarks on the historical developments and some general properties
before we particularise the notion of a quantumwalk in one dimension and discuss two
different ansatzes for their definition. We end the section with an example, the so-called
split-step walk, which we will meet again in Chapter 5. The overview will, however,
only be a brief one andwe refer the interested reader to the review articles [Kem03] and
[VA12]. We will also include time-continuous processes into the considerations later,
but here focus on discrete-time quantum walks. Generally speaking, for our purpose,
a quantum walk is the unitary time evolution operator for a discrete-time evolution on
a discrete spatial structure such as the one-dimensional lattice. However, let us begin
with the historical development:

4and further in Section 3.3, where the necessary generalisation to broader notions of locality are dis-
cussed
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Figure 1.2: Position distribution for the split-step quantum walk (see Example 1.4.6)
with θ1 = θ2 = π/4 and initial state ψ0 = 1/

√
2(1, i) (blue), and the probability distri-

bution for a classical random walk with fair coin starting at x = 0 (red, dashed) after
100 time steps.

The concept of a quantum random walk was first introduced by Aharonov et al.
in 1987 as a quantum mechanical version of a classical random walk [ADZ93]. Let us
briefly describe the standard example of a classical random walk, i.e. a particle on the
one-dimensional lattice, represented by Z. The only degree of freedom for the particle
is the position, and it evolves discretely in time according to the following rule. In each
time step, a fair coin is tossed, and the particle moves one step to the left or one step
to the right, depending on the coin toss outcome. After t ∈ N time steps, starting at
x0 = 0, the particle is at position xt = 2k − t for some k = 0, . . . , t. The probability of
finding the particle at xt is P (xt = 2k− t) = t!/(k!(t− k)!2t), i.e. a binomial distribution
with expectation value 0 and variance t. The expected travel distance of the particle is
therefore given by √t, wherefore one speaks of diffusive spreading. Of course, this
concept easily generalizes to higher-dimensional lattices or general graphs. Random
walks have numerous applications, including stochastic algorithms [MR95, Sch99], bi-
ology and genetics [Ber84, LS91, vdEST92], neuroscience [TYZ+09], computer vision
[WGW+19], and many more [XLN+20] (see also references therein).

In [ADZ93] a spin 1/2-particle is used instead of a classical one. The coin toss is
then replaced by a measurement on the spin state, which determines the direction of
movement. Measuring the Sz-eigenbasis and assigning the step to the left/right to the
respective spin up/down outcomes, the protocol described in [ADZ93] reproduces the
classical random walk. If the measurement basis is chosen differently, without chang-
ing the left/right assignments, a faster spreading of the position distribution t steps is
observed due to interference effects.

Later, the measurement and preparation step was removed, and the classical coin
toss dependent steps were replaced by state-dependent shift operations and local uni-
taries acting in each cell [Mey96, ABNW01]. This way, the dynamics are coherent, and
it was soon observed that this model allows for ballistic instead of diffusive spreading
(see Figure 1.2). In a seemingly different approach, formerly known as unitary cellu-
lar automaton or quantum cellular automaton, quantum walks were introduced more
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axiomatically as unitary time evolution operators on a lattice with finite jump length
[BB94,Mey96]. Inmodern terms, quantum cellular automata denote themany-particle
generalization of quantum walks [SW04, GNVW12], i.e. automorphisms of the quasi-
local algebra associated to some lattice structure, with a locality condition. The quantum
cellular automata in [BB94, Mey96] would be called quantum walks today. Generally
speaking, a quantum walk describes the discrete-time evolution of a single quantum
particle on some lattice or other discrete structure like a graph. As such, quantumwalks
are similar to Floquet systems. Indeed, given a periodically driven system, the strobo-
scopic view onto the time evolution, i.e. the repeated application of the Floquet operator,
is a quantumwalk. However, not every discrete-time quantumwalk can be realized via
a periodically driven system in continuous time. We discuss the connections and differ-
ences between the two pictures in Section 3.3, Chapter 4, and particularly in Chapter 5.

Driven by the various applications of classical random walks and the observed
spreading speed up in the quantum mechanical counterparts, quantum walks sparked
interest as possible models for quantum algorithms. This was initiated by the fa-
mous quantum walk based search algorithm by Grover [Gro96] and is still an ac-
tive area of research [SKW03, AKR05, Amb07, San08, MNRS11, Por16, KH18, BLP21].
Besides the application for search algorithms, also other properties of classical ran-
dom walks, such as recurrence [ŠJK08, ŠKJ08, BGVW14, GVWW13] and mixing times
[MPAD08, Kar10, MPA10, CLR20] have been investigated for quantum walks. Mean-
while, quantum walk based algorithms are found in a variety of different applications,
including cryptography [VRM+15, VKM+18, SC20, AAEAAI20], pseudo-randomnum-
ber generation [SC19, AAEAAI20, BK21], graph classification [CMC20, DMKP+19] and
neural networks [DMKP+19]. Quantum walks have even been shown to be universal
for quantum computation [LCE+10].

Besides the focus on algorithmic applications, quantumwalkswere also investigated
from amore physical point of view. On the one hand, the ballistic spreading of quantum
walkswas formulated in terms ofweak convergence of the randomvariable correspond-
ing to the time evolved position operatorXt/t, scaled by t in contrast to√t in case of the
classical counterparts [GJS04, Kon05, WKKK08, AVWW11]. It was shown that in the
translation invariant case, it is possible to define a group velocity operator that trans-
lates the properties of the dispersion relation of the walk into the spreading behaviour
[AVWW11, Ahl13] (see also below). On the other hand, quantum walks are also of in-
terest as simple and well controllable model systems for various physical phenomena,
such as dynamical localisation [JM10, Joy12, ASW11, Wer13, CW21], Bloch oscillations
[RBH+11, APP20], Landau-Zener tunneling [RBH+11], molecular binding [AAM+12],
Klein Paradox [Kur08] and the effects of coupling of a one-dimensional quantum walk
to an electro magnetic field [CRW+13, Arn17, SAM+19, CGWW19, CW21, PFM20,
CFGW20]. Moreover, specific quantum walk models have been shown to mimic rel-
ativistic particles in the continuum limit [BB94, DP14, ANF14, APAF19].

The growing interest in quantum walks soon lead to the first experimental imple-
mentations. Meanwhile, quantum walks have been realised or proposed on a vari-
ety of different platforms, building on different physical concepts. These include op-
tical waveguide arrays [PLM+10, SSV+12, KBF+12], superconducting qubits [RFR+17,
FRHG+17, BCS18], single photons in free space [BFL+10], trapped ions in phase space
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[SMS+09, ZKG+10], wave packages in optical fibre loops [SCP+10, SGR+12, CDQ+18,
NGS+19], and neutral atoms in optical lattices [KFC+09, AAM+12, GAS+13].

Of course, an experimental realization of a theoretical model comes with physi-
cal imperfections, and therefore the question arose how disorder, spatial and tempo-
ral fluctuations, or decoherence affect the predicted spreading behaviour of quantum
walks. These questions were addressed in [RSA+05, Ken07, Joy11, AVWW11, KKNJ12,
ACM+12, Ahl13, Wer13].

A recent development in the quantum walk community is the study of topological
phases ofmatter from the perspective of quantumwalks and their topological classifica-
tion under the influence of discrete symmetries. This is themain topic of this thesis, and
therefore we devote it its own introduction and literature overview in the introduction
to Chapter 3, leaving it here with a mere mention.

Quantum walks describe the dynamics of single-particle systems. Hence, the obvi-
ous question about possible generalizations of the concepts to many-particle dynamics
arises. There have been different approaches to many-particle quantum walks [EB05,
VAB09, AAM+12, Toi20]. As already mentioned above, the general models for coher-
ent discrete-time many-particle lattice systems with finite interaction length are known
as quantum cellular automata and were first axiomatically described in [SW04]. In
[Vog09] it has been shown that for any translation-invariant quantumwalk, there exists
a quantum cellular automaton, which exhibits the dynamics of the quantumwalk as its
single-particle sector. This ansatz has been further developed in [Ahl13], which pro-
vides a general construction for quantum cellular automata from interacting quantum
walks. Quantum cellular automata have also been proven equivalent to time evolution
via matrix product unitary operators [CPGSV17]. For an overview about quantum cel-
lular automata, we recommend the two reviews [Arr19, Far20].

We end our short overview here and proceed with an introduction to the technical
basics for quantum walks on the one-dimensional lattice.

1.4.1 Quantum walks: The technical basics
We informally introduced quantumwalks as discrete-time evolution operators for single-
particle dynamics on the lattice. This rather vague description leaves room for different
definitions. Quantum walks can either be defined axiomatically, i.e. as a unitary opera-
tor equipped with a locality assumption or constructively, i.e. via a sequence of funda-
mental building blocks: Shift and coin operations. Let us formalise these two concepts,
beginning with the axiomatic ansatz. In the first part of this thesis, we discuss results
that hold without any locality condition. In the remainder (from Section 3.3 onwards),
the focus lies on quantum walks on the one-dimensional lattice. We, therefore, restrict
our considerations to one spatial dimension also in this preliminary section.

The underlyingHilbert space for a one-dimensional quantumwalk consists of finite-
dimensional local cellsHx, labelled by x ∈ Z. Axiomatically, a quantumwalk is defined
as a unitary with an upper bound on the jump length between the individual cells:

Definition 1.4.1 (Quantum walk (strictly local)). LetH be a separable Hilbert space with a
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one-dimensional lattice structure and finitely many local degrees of freedom, i.e.

H =
⊕
x∈Z
Hx (1.27)

is the direct sum of finite-dimensional Hilbert spacesHx, where the cell dimensions dx = dimHx

are uniformly bounded, i.e. there exists a d ∈ N, such that dx ≤ d for all x ∈ Z. If the local cells
are pairwise isomorphic, e.g. for translation invariant systems, we can also write

H = ℓ2(Z)⊗ Cd for Hx = H0 = C
d, ∀x. (1.28)

On H a (strictly local) quantum walk is defined as a discrete time evolution operator U
with finite interaction length L. More precisely, U is a unitary operator, such that there exists an
L ∈ N with

⟨ψy, Uψx⟩ = 0 for all ψx ∈ Hx ψy ∈ Hy, with |x− y| > L. (1.29)

A single time step for a vector ψ(t) ∈ H, t ∈ Z is implemented via

ψ(t+ 1) = Uψt. (1.30)

The action of a quantum walk on a vector ψ ∈ H can be expressed locally via

(Uψ)x =
∑
y

Uxyψy, (1.31)

where Uxy is the part of U that maps fromHy toHx. With this in mind, and organising
the basis accordingly, we can think of a walk as a doubly infinite matrix with non-zero
entries around the main diagonal. With L = 1 for x around zero we get

U ≡



U-2,-1

U-1,-2 U-1,-1 U-1,0

U0,-1 U0,0 U0,1

U1,0 U1,1 U1,2

U2,1


(1.32)

Remark 1.4.2. Any strictly local quantum walk can be thought of as a next-neighbour walk
with L = 1 by regrouping the cell structure. Indeed, let U be a quantum walk on H with some
local structure according to (1.27). Reconsidering sets of 2L consecutive cells into one new cell
along the whole lattice yields a new cell structure

H =
⊕
y∈Z
H̃y with H̃y = H2Ly ⊕H2Ly+1 ⊕ . . .⊕H2Ly+2L−1. (1.33)
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With respect to the regrouped cells the walk has the new interaction length L̃ = 1. This can be
depicted as 

 −→


 .

The local Hilbert spaces or cells are often called coin-space, which leads us to the
constructive definition of quantum walks. For this, let us introduce two archetypical
examples of quantumwalks in the sense above, which serve as the fundamental building
blocks for the constructive definition.
Definition 1.4.3 (Coin operations). A coin operation is a quantum walk with interaction
length L = 0. That is, a direct sum of finite-dimensional unitary operators Cx:

C =
⊕
x∈Z

Cx ≡


C-1

C0

C1

 , Cx ∈ U(Hx). (1.34)

Coins are trivial in the sense that they do not contain any dynamics between the
different cells. We can identify a coin operation with just a base-choice locally in each
cell.
Definition 1.4.4 (Shifts). The prototype examples of quantum walks with interaction length
L > 0 are shift operations. We begin with the simplest case: a Hilbert space with only one-
dimensional cells Hx = C. In this case, H naturally equals ℓ2(Z). On ℓ2(Z), the bilateral
shift S is defined as

Sex = ex+1, (1.35)
where {ex}x∈Z denotes the standard positional basis for ℓ2(Z). S is clearly strictly local, with
interaction length L = 1.

The concept of S can easily be transferred to larger cell structures with more than one local
degree of freedom, i.e. with dx > 1: We choose a vector ϕx ∈ Hx in each cell and embed the
shift above into the subspace spanned by the collection {ϕx}x∈Z of these vectors. This defines a
partial shift with

Sϕϕx = ϕx+1 and Sϕψ = ψ, for all ψ ⊥ ϕx. (1.36)

In the translation invariant case, choosing a basis for H = ℓ2(Z) ⊗ Cd, such that ϕx =
(1, 0, . . . , 0) is the first basis vector in each cell, we write

Sϕ =

(
S

1d−1

)
≡ (1.37)

and similarly for other choices of ϕx, with the bilateral shift S from above.
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Using the two examples above, discrete-time quantum walks are often defined con-
structively as finite sequences of these two basic operations:
Definition 1.4.5 (Coined quantum walk). On H from Definition 1.4.1 a coined quantum
walk is define by a finite sequence of shifts Si and coin operations Ci from Definition 1.4.3 and
Definition 1.4.4:

U = Cn+1SϕnCn . . . Sϕ1C1. (1.38)
Clearly, any coined quantumwalk is a quantumwalk in the sense of Definition 1.4.1,

with L ≤ n. In Chapter 4 we prove that also the opposite is true, that is, any quantum
walk in the sense of Definition 1.4.1 can be decomposed into a sequence of shifts and
coins with respect to the given cell structure.
Example 1.4.6 (Split-step walk). The split-step walk is defined onH = ℓ2(Z)⊗ C2 via

Uss = S↓C2S↑C1, (1.39)

where S↑ (S↓) denotes the partial shift Sϕ with ϕx = (1, 0) (resp. S∗ϕ with ϕx = (0, 1)), i.e.

S↑ =

(
S 0
0 1

)
≡ (1.40)

and
S↓ =

(
1 0
0 S∗

)
≡ , (1.41)

similar to (1.37).
Typically the local coins are chosen as real rotationsCi,x = R(θi,x), withR(θ) = exp(iθσy).

Figure 1.2 shows the position distribution ∥ψx∥2 after 100 time-steps, for the coin-angles θ1,x =
θ2,x = π/4, ∀x and the the initial state ψ0 = (1, i)/

√
2 at x = 0.

The split-step walk was first introduced in [KRBD10] and is one of the standard
examples in the literature on topological phases in one-dimensional quantum walks
[Kit12, Asb12, AO13, ATD14, TAD14, KBF+12, CGS+16, Sta15, CGG+18, CGS+18,
CGG+21, CGWW21]. We discuss the topological classification of the split-step walk
model in Chapter 5.

1.4.2 Translation invariant quantum walks
Above, we already broached translation invariance in the example of the partial shift.
Let us give a brief overviewabout translation-invariant quantumwalks in general. Trans-
lation invariant operators act especially simple inmomentum space, that is, after Fourier
transformation with respect to the one-dimensional lattice5. This opens various tech-
niques to analyse quantumwalks, e.g. their propagation behaviour or homotopy invari-
ants.

In the translation invariant case, all cells Hx are isomorphic and we can write H =
ℓ2(Z) ⊗ H0 = ℓ2(Z) ⊗ Cd. Hence, we can consider any vector ψ ∈ H as a Cd valued

5Most results presented below are valid in any lattice dimension, but since we are concerned with on-
dimensional systems in this thesis, we restrict our consideration to those systems also for this summary.
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function ψ : Z → C, with values ψ(x) = ψx. For such functions we can define the
discrete Fourier transformation F : ℓ2(Z)→ L2(T) on the first tensor factor, i.e.

(Fψ) (k) = ψ̂(k) =
∑
x

eikxψx and
(
F∗ψ̂

)
x
=

∫ π

−π

dk

2π
e−ikxψ̂(k). (1.42)

An operator A on H is called translation invariant if it commutes with the global
lattice translation T = S⊗1d, i.e. ifAT = TA. This impliesAxy = Ax−y,0 for all x, y ∈ Z
for the block-matrix elements in the decomposition according to (1.31). Moreover, any
translation invariant bounded operator A becomes a d-dimensional k-dependent mul-
tiplication operator in momentum space [Ahl13, Lemma 3.2.2 and 3.2.3]. In particular,
for a quantumwalk, i.e. a unitary operator with only finitely many non-zero Ux,0 we get

(̂Uψ)(k) = Û(k)ψ̂(k), with Û(k) =
∑
x

eikxUx,0. (1.43)

Example 1.4.7 (Shifts in momentum space). The bilateral shift S on ℓ2(Z) from Definition
1.4.4 is obviously translation invariant. We get Sx,0 = δx1 and therefore

Ŝ(k) = eik. (1.44)

Consequently, the partial shift in (1.37) takes the form

Ŝϕ =

(
eik

1d−1

)
. (1.45)

Considering a translation invariant walk in momentum space via Fourier transfor-
mation opens the possibility for various techniques. In particular, it enables us to assign
a band structure to the walk. Indeed, the Fourier transformed quantum walk Û(k) is a
k-dependent finite-dimensional unitary matrix, which can be diagonalised, i.e.

Û(k) =
d∑

α=1

eiωα(k)Qα(k), (1.46)

where ωα(k) are the quasi-energies and Q(k) the corresponding band-projections.

Winding numbers

For translation-invariant walks, many of the topological invariants can be expressed in
terms of winding numbers over the Brillouin-zone [GNVW12, KRBD10, CGS+18]. For
some symmetry types, the right symmetry index (see Section 3.5) may be expressed
via the Berry phase of the eigen-bundles Qα(k) [CGS+18]. Another index quantity,
which we will discuss in great detail in Section 3.3, is the information flow index [Kit06,
GNVW12]. It measures the net shift content of a one-dimensional quantum walk and
is an integer-valued homotopy invariant. For translation-invariant walks, it can be ob-
tained in a straightforward way, wherefore we already introduce it here in that case, in
anticipation of the discussion in Section 3.3: By definition, any strictly local translation
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invariant quantum walk U becomes a matrix-valued Laurent polynomial Û(k) in eik.
Hence, its determinant det(Û(k)) is a scalar valued Laurent polynomial in eik. More-
over, by unitary of Û(k), det(Û(k)∗) = 1/ det(Û(k)) is also a polynomial, and therefore
det(Û(k)) has to be a monomial in eik:

det(Û(k)) = λeikn, λ ∈ T, n ∈ Z. (1.47)

A norm-continuous, translation invariance preserving deformation of thewhole walkU
always induces a norm-continuous deformation of the finite-dimensional matrices Û(k)

and therefore also of det(Û(k)). At each point of the deformation, the determinant must
be a monomial in eik, wherefore its power has to stay constant. Hence, n is homotopy
invariant and can be identified with the information flow index [GNVW12]. This way,
the index can be expressed as the total winding of the quasi-energy spectrum around
the Brillouin zone
Definition 1.4.8. Let U be a translation invariant quantum walk with continuously differen-
tiable6 Fourier transform Û(k). Then its index may be defined as

ind (Û) =
1

2πi

∫ π

−π
dk

(
∂

∂k
log det(Û(k))

)
. (1.48)

1.5 Symmetries in quantum mechanics
In this section, we introduce the basics for symmetries in quantum mechanics, and in
particular, the concept of representations of symmetry groups via unitary and antiu-
nitary operators. For the general concept of symmetry, we follow [Lan17, Chapter 5].
For a general introduction to the theory of group representations, we refer the reader to
[BR86].

Symmetries play an essential role in most physical theories. Generally speaking, a
symmetry is an invertible map that leaves the relevant physical model or mathemati-
cal structure invariant. Studying the action of such an operation in detail often enables
one to reveal structures of the underlying theory or objects that remained hidden other-
wise. One of the most prominent examples of this is the spin of a quantum mechanical
particle, which emerges from the theory of projective representations of symmetries.
Quantum mechanics comes with various concepts for symmetry, distinguished by the
different structures that are left invariant. If thewhole underlyingHilbert spaceH is un-
der consideration, a symmetry is just a unitary operator, i.e. a base-choice. However, the
relevant symmetries involve furthermathematical structures onH, carrying the physical
information of the underlying system. Considering different physical structures results
in different concepts of symmetries. These include ([Lan17]):

• The normal pure state space on H, i.e. {p ∈ B(H)|p = p∗ = p2, rank (p) = 1}
(Wigner symmetry)

6The Fourier transformation Û(k) of any stritcly local quantum walk is a Laurent poylonial in eik and
therefore always continuously differentiable in k. We include this asusmption in anticipation of the weaker
locality assumptions we introduce in Section 3.3.
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• The normal state space on H, i.e. {ρ ∈ B(H)|ρ ≥ 0, tr(ρ) = 1} (Kadison symme-
try)

• The self-adjoint operators onH, i.e. {H ∈ B(H)|H = H∗} (Jordan symmetry)

• The effects/detectors onH, i.e. {e ∈ B(H)|0 ≤ e ≤ 1} (Ludwig symmetry)

• The projections onH, i.e. {P ∈ B(H)|P 2 = P ∗ = P} (von Neumann symmetry)

• The unital commutative C∗-subalgebras of B(H) (Bohr symmetry)

Each of these sets is equippedwith an additional structure that defineswhat itmeans for
a symmetry to leave the set invariant. However, by a remarkable result, which is shown
in [Lan17, Chapter 5], these different notions are equivalent, and each symmetry acts
in a specific way via unitary or antiunitary operators. Hence, we will only spell out the
precise definition in case of a Kadison symmetry andmove on to the theory of symmetry
representations afterwards.
Definition 1.5.1 (Kadison symmetry). Let D(H) = {ρ ∈ B(H)|ρ ≥ 0, tr(ρ) = 1} be the
set of density operators on a Hilbert spaceH. A Kadison symmetry is a bijection S : D(H)→
D(H) that preserves the convex structure of D(H), i.e. for λ ∈ [0, 1] and ρ, σ ∈ D(H) it fulfils

S (λρ+ (1− λ)σ) = λS(ρ) + (1− λ)S(σ). (1.49)

Note that the set pure states for a Wigner symmetry is the boundary of the set of
density operators for a Kadison symmetry. By the above definition, this boundary is
preserved by a symmetry, wherefore we can treat both cases simultaneously. An im-
portant result for symmetries in quantum mechanics is Wigner’s theorem, which, in
adapted formulation, holds for every concept of symmetry above.
Theorem 1.5.2 (Wigner/Kadison). Every Kadison symmetry S of D(H) is of the form

S(ρ) = uρu∗, ∀ρ ∈ D(H), (1.50)

where u is either a unitary or an antiunitary operator on H that is uniquely determined by the
symmetry S up to a phase.

For a proof see, e.g. [Wig59, BR86, Lan17]. ByWigner’s theorem and the equivalence
of the different concepts for symmetry [Lan17, Chapter 5], the action of a symmetry can
always be described via conjugation with a unitary or an antiunitary operator onH, no
matter which notion of symmetry is considered.

Before we turn to the representation of groups via unitary and antiunitary opera-
tors, let us introduce the concept of an antiunitary operator. First recall, what defines
a unitary operator. Above we characterized unitary operators as the symmetries of the
underlying HilbertH space itself, i.e. an operator U onH is unitary if it leaves the scalar
product on H invariant ⟨Uφ,Uψ⟩ = ⟨φ,ψ⟩, ∀φ,ψ ∈ H. The relevant physical conse-
quence of this property is that it leaves the transition probabilities between vectors inH
invariant, i.e.

|⟨Uφ,Uψ⟩|2 = |⟨φ,ψ⟩|2, ∀φ,ψ ∈ H. (1.51)
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This qualifies unitary operators as representatives for Wigner symmetries. However,
invariance of the scalar product is not the only operation that does not change |⟨φ,ψ⟩|2.
The second option ⟨φ,ψ⟩ 7→ ⟨φ,ψ⟩ leads to the defining property of antiunitary opera-
tors.
Definition 1.5.3. (Antiunitary operator) Let H be a Hilbert space. An operator A is called
antiunitary if

⟨Aφ,Aψ⟩ = ⟨φ,ψ⟩ = ⟨ψ,φ⟩. (1.52)
Equivalently, an antiunitary operator is an antilinear operator A, i.e. A(λψ) = λAψ, such that
A∗A = AA∗ = 1, where the action of the conjugate operator A∗ follows from (1.52) via

⟨φ,A∗ψ⟩ = ⟨Aφ,AA∗ψ⟩ = ⟨ψ,Aφ⟩. (1.53)

Including antiunitary operators in Wigner’s theorem, motivated by the property
above, might seem like being overly mathematically meticulous in the context of physi-
cal symmetries. However,Wigner showed that one of the fundamental physical symme-
tries in quantummechanics, namely time reversal can only be represented antiunitarily
[Wig59].

The properties of antiunitary operators are summarised in two works by Wigner
[Wig60a, Wig60b]. LetA an antiunitary operator onH. Fixing a basis {φi} forH allows
us to write A in an especially simple form. Denote by K the complex conjugation of
coefficients with respect to the basis {φi}, i.e.

Kψ = K
∑
i

λiφi =
∑
i

λφi ≡ ψ. (1.54)

SinceK is obviously antilinear and fulfilsK2 = K∗K = 1, it is an antiunitary operator.
It is easy to verify that the product of two antiunitary operators and therefore alsoUA :=
AK is unitary. Hence, writing A = AK2 = UAK we can express A as the product of the
unitary operator UA and the complex conjugationK with respect to the chosen basis:

Aψ = (AK)
∑
i

λiφi = UAψ. (1.55)

This way, if we meet the convention of always writing the complex conjugation to the
right, the unitary parts of two antiunitary operators A and A′ multiply as

UAA′ ≡ AA′ = UAKUA′K = UAUA′ . (1.56)

Writing antiunitary operators like this is helpful when dealing with actual realisations
on a Hilbert space. However, for the structure theory, we will usually work with antiu-
nitary operators without splitting them into a unitary and a standard antiunitary part.

1.5.1 (Projective) Representation of groups via unitary and antiunitary op-
erators

If more than one symmetry is present in a system, they naturally carry the structure of
a group. Wigner’s theorem lifts the abstract concepts of symmetries as invertible maps

26



1.5. SYMMETRIES IN QUANTUMMECHANICS

on certain sets with some invariance condition to the level of representations via unitary
and antiunitary operators. These operators are only fixed up to a phase, which defines
a projective representation of the abstract symmetry group:
Definition 1.5.4 (Symmetry representation). Let G be a symmetry group and H a Hilbert
space. A projective symmetry representation ρ ofG onH is determined by a map ρ : g 7→ ρg
from G to the set of unitary and antiunitary operators on H and a function m : G × G → T,
such that

ρgρh = m(g, h)ρgh, ∀g, h ∈ G. (1.57)
The function m accounts for the freedom of choosing a phase for a symmetry in

Wigner’s theorem. We will often drop the term “projective” and just call the above con-
cept a representation or a representation that is fixed up to phases. In the next section,
we will study the freedom of choosing phases for the operators of a representation and
the multiplication function and, in particular, its interplay with the presence of antiuni-
tary operators in great detail for groups of involutive symmetries. This will lead to one
of themain concepts in this thesis: symmetry types for groups of involutive symmetries.

Leaving the discussion about the phase choices and the multiplication function for
the next chapter, we close this preliminary section with the study of “ordinary repre-
sentations” with unitary and antiunitary operators, that is, with trivial multiplication
function m. In particular, following [Wig59] and Dimmock [Dim63], we characterise
the possible irreducible representations in this setting.
Remark 1.5.5. Note that in slight difference to the setting we present here, Wigner andDimmock
consider so-called corepresentations, in which antiunitary operators are represented by linear
matrices with adapted multiplication rules (see (1.56)). The two seemingly different concepts
become equivalent via (1.55) with the convention that we always write the complex conjugation
with respect to the chosen basis to the right. With that in mind, we will stick to representations
including antiunitary elements for the sake of coherence.

LetG be a finite group of symmetries, which contains both unitary ui and antiunitary
elements aj7. The product of two antiunitary and the product of two unitary operators
is unitary, whereas the product of an antiunitary and a unitary operator is again antiuni-
tary. Consequently, the unitaries form a proper subgroupH ⊂ G. Moreover,G contains
an equal number of unitary and antiunitary elements. Indeed, let {a0, a1, . . . , an} ⊂ G
be the set of antiunitary operators, {u0, u1, . . . , um} ⊂ G the set of unitaries and n − 1,
respectively m − 1 be their cardinalities. Then {a20, a0a1, . . . , a0an} is a set of n − 1 dif-
ferent unitaries, wherefore n ≤ m. On the other hand {a0u0, a0u1, . . . , a0um} is a set of
m − 1 different antiunitary operators, implying m ≤ n. Hence, H has index two in G,
i.e. |G : H| = 2.

By the argument above, any antiunitary operator can be written as ai = a0ui, with
u0 = id, by singling out one antiunitary element a0. Hence, the group is of the form

G = H ∪ a0H, (1.58)
7We here call the abstract group elements unitary or antiunitary, referring to the property of being

represented by such an operator in a representation. In the next chapter, we formalise this distinction on
the abstract group level via a unitarity character (see Section 2.1).
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i.e. a single antiunitary element is sufficient to infer the group from its unitary subgroup
H .

Let ρ be a representation forG. Similar to the linear case, a representation including
antiunitary operators is called irreducible if there is no basis, such that ρu and ρa admit
a block diagonal decomposition

ρu =

(
ρ′u 0
0 ρ′′u

)
ρa =

(
ρ′a 0
0 ρ′′a

)
,

for all u, a ∈ G. For usual linear representations of groups, the question whether a
representation is irreducible is settled by Schur’s Lemma [BR86, Ch. 5, Sec. 3, Prop. 4]:

Theorem 1.5.6 (Schur’s Lemma). A unitary representation ρ ofG onH is irreducible if and
only if the only operators commuting with all the ρg, g ∈ G are scalar multiples of the identity:

{A ∈ B(H) | Aρg = ρgA, ∀g ∈ G} = {λ1 | λ ∈ C}. (1.59)

Another formulation of the result above is that the only non-trivial ρG-invariant sub-
spaces of B(H) is B(H) itself.

Dimmock proves a similar result for finite-dimensional representations involving
antiunitary operators [Dim63, Thm. II]:

Theorem 1.5.7. Let ρ be a finite-dimensional representation of a finite groupG via unitary and
antiunitary operators. Then ρ is irreducible if and only if every self-adjoint matrixM with

Mρg = ρgM (1.60)

is constant, i.e.M = µ1, µ ∈ R.

Note that differently from the usual complex linear case, the matrices M are re-
stricted to be self-adjoint. In the complex linear case, it is already sufficient to prove
the general statement for self-adjoint operators, since every operator is of the formM =
H1 + iH2, for self-adjoint Hi. Hence, if it holds for the self-adjoint operators H1 =
(M + M∗)/2 and H2 = −i(M − M∗)/2, it also holds for an arbitrary M . However,
in the presence of antiunitary operators, we cannot deduce the statement for arbitrary
operators from self-adjoint ones since we would get an additional minus sign for the
commutation relation of the anti-self-adjoint part of an arbitraryM with ρa.

According to Wigner [Wig59, Dim63] we can now deduce the irreducible represen-
tations of the whole group G from those of its unitary subgroup H . Let {ϕiα} be an
orthonormal basis of the i’th irreducible representation σi of H , i.e.

ρuϕ
i
α =

∑
β

(σiu)αβϕ
i
β, u ∈ H ⊂ G,

andK the complex conjugation with respect to this basis. Moreover, let a0 be a fixed an-
tiunitary element ofG, and considerG asG = H∪a0H . The irreducible representations
of G are then determined by the action of a0 on the basis {ϕiα} for σi. Let ψi

α = ρa0ϕ
i
α.

There are three cases to distinguish:
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1. {ψi
α} reproduces the basis {ϕiα}, i.e. ⟨ψi

α, ϕ
i
β⟩ are the elements of a unitary matrix.

In this case the representation σi already defines an irreducible representation ρ̂
of the whole group:

ρ̂u = σiu ρ̂a0 =
∑
αβ

|ψi
α⟩⟨ϕiβ|K. (1.61)

2. {ψi
α} is an independent set of vectors, which is the basis for an irreducible repre-

sentation of H that is equivalent to σi. In this case the dimension is doubled and
an irreducible representation ρ̂ of G contains two copies of the same irreducible
representation of H :

ρ̂u =

(
σiu 0
0 σiu

)
ρ̂a0 =

∑
αβ

(
0 |ϕiα⟩⟨ψi

β|
|ψi

α⟩⟨ϕiβ| 0

)
K. (1.62)

3. {ψi
α} is an independent set of vectors, which is the basis for an inequivalent irre-

ducible representation σj ofH . Similar to case 2, the dimension is doubled and an
irreducible representation ρ̂ of G contains two inequivalent irreducible represen-
tations of H :

ρ̂u =

(
σiu 0

0 σju

)
ρ̂a0 =

∑
αβ

(
0 |ϕiα⟩⟨ψ

j
β|

|ψj
α⟩⟨ϕiβ| 0

)
K. (1.63)

Dimmock also describes a method to determine the case from the irreducible repre-
sentations of the unitary subgroup [Dim63]:

Lemma 1.5.8. Let σ be an irreducible representation of the unitary subgroupH ⊂ G of a finite
group G. Then

∑
k

tr
(
σa2k

)
=


|H| in case 1
−|H| in case 2
0 in case 3.

(1.64)

This distinction criterion will be helpful later in Section 2.3, where the we compute
the irreducible representations of various symmetry groups in order to use them as
building blocks for the so-called index group. With this we close the preliminary sec-
tion and turn our attention to the concept of symmetry type for groups of involutive
symmetries.
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2 Discrete symmetry types for
unitary operators: The 38-fold way

The concept of symmetry types for topological insulators and superconductors origi-
nates in the study of symmetries for randommatrix ensembles. It dates back to Wigner
and Dyson [Wig55, Wig57, Wig59, Dys62a, Dys62b], who distinguish three fundamen-
tal symmetry classes. These are called unitary, orthogonal and symplectic, and cor-
respond to the presence or absence of time-reversal symmetry. In case of its presence
time-reversal symmetry is represented by an antiunitary operator, which either squares
to the identity (orthogonal) or minus the identity (symplectic). These three classes are
known asDysons threefoldway, and are the fundamental concept behind further stud-
ies.

Altland and Zirnbauer extended the work by Dyson and Wigner. With the moti-
vation of systematically classifying novel and exotic phases of matter, they found ten
different symmetry types in their work on mesoscopic normal-superconducting hybrid
systems [AZ97, Zir15]. Their classification became known as the tenfold way. Thereby,
they unveiled a one-to-one correspondence between these ten types and the ten families
of symmetric spaces, classified by Cartan [Car26, Zir96].

Further work finally led to these ten symmetry types becoming the standard frame-
work for topological insulators and superconductors, or, more generally speaking, lat-
tice systems [HHZ05, SRFL08, SRFL09], leading to the so-called periodic table of topo-
logical insulators and superconductors [SRFL08, Kit09, SRFL09, RSFL10, KZ15]. This
table lists the index groups for the topological invariants of said systems for all ten sym-
metry types and all lattice dimensions. The periodic structure for different dimensions
is due to the correspondence between the symmetry types in a given dimension d and
certain Clifford algebras [Kit09], which exhibit Bott-periodicity1. Thereby, the periodic
table for 0 ≤ d ≤ 7 already contains all information.

The considerations for the tenfold way started example-driven and where based on
specific models. However, the ten types can be understood on a fairly basic group the-
oretic level, as the different possibilities of representing one or all of the time reversal
symmetry, the particle hole symmetry, and their product: the chiral symmetry, each
acting on some Hamiltonian. Let H ∈ B(H) be a symmetric self-adjoint operator on a
Hilbert space H. The three mentioned symmetries are then represented as unitary or

1With period 2 for the complex classes A and AIII and period 8 for the remaining classes involving
antiunitary symmetries.
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antiunitary operators and the symmetry conditions on H are characterized as follows:
Time reversal: τHτ∗ = H, τ antiunitary
Particle hole: ηHη∗ = −H, η antiunitary

Chiral: γHγ∗ = −H, γ unitary
(2.1)

Thereby, each symmetry is involutive, i.e. applying it twice leaves invariant the operator
under consideration. This leaves an arbitrary phase γ2 = λ1 for the chiral symmetry and
the two distinct possibilities τ2 = ±1 and η2 = ±1 for the time-reversal and particle-
hole symmetry, respectively (see Section 1.5). Hence, counting the different possibilities
of representing the full group generated by these three symmetries and its subgroups
amounts to ten different symmetry types.

We chose this abstracted ansatz for the tenfold way for our topological classification
of quantum walks [CGG+18, CGS+18, CGG+21, CGWW21]. On the one hand, it al-
lowed us to keep computations and proofs on a level, which can be grasped with basic
knowledge about the theory of groups and their representations. On the other, it leaves
enough room for profound statements, like completeness results for the topological in-
variants we define on the fundament paved by the basic group-theoretic considerations.

While the ansatz via representations of involutive symmetries is not example- or
model-driven, it still contains an unsatisfactory arbitrariness in the ad hoc choice of the
three symmetries under consideration. Moreover, it relies on the action on Hamilto-
nians, i.e. self-adjoint operators and is therefore not built for discrete-time quantum
walks, i.e. unitary operators, without a necessary connection to a Hamiltonian in the
first place. Bernard and LeClair found that waiving hermiticity leads to 38 instead of
ten types [BL02], however, introducing an additional generator in a rather ad hoc way.
We here approach the situation “from the outside”: Instead of adding more generators
to the picture and arguing that these are exhaustive afterwards, we start with an arbi-
trary group of involutive symmetries and show that each emerging type can be reduced
to one of a specific finite list, namely the tenfold way for Hamiltonians and the 38-fold
way for unitaries. In doing so, we provide a systematic picture and avoid the ad hoc
choice of certain generators.

The antiunitarity of certain representatives enters already on the level of the abstract
group G via a unitarity character u : G→ ±1, which decides whether a group element
is represented unitarily or antiunitarily. This technique is similar to the approach by
Freed and Moore [FM13], who also start with a group G of involutions, equipped with
a unitarity character. Freed andMoore then proceedwith a K-theoretic discussion, lead-
ing to twistedK-theory. However,K-theoretic tools require a high level of abstraction,
wherefore a classification of walks via such tools might not be appreciated by a great
audience among the quantum walk community2. Therefore, we here choose to follow
the basic group-theoretic ansatz as long as possible to make our theory more applicable
to the quantum walks community.

We begin by re-deriving the tenfold way from a minimal set of assumptions. We
present a reduction procedure for any arbitrary group of involutions G consisting of

2There are further arguments, which led us to not use a K-theoretic ansatz for our classification, which
we discuss in the introduction of Chapter 3.
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symmetries equipped with a unitarity character. We first define what we mean by a
symmetry type for those groups, namely the different equivalence classes of projective
representations. For the symmetry representations ρ, we then assume a quite general
action on Hamiltonians, namely

ρgHρ
∗
g = fg(H), (2.2)

for a group of continuous involutions fg : R→ R, acting onH via the spectral calculus.
Based on this, we discuss a systematic reduction procedure, which reduces every rep-
resentation type of a group of involutive symmetries with these actions to a type of the
tenfold way by eliminating redundancies in the symmetry conditions step by step.

Aiming for quantumwalks, we then apply the tenfold way approved reduction pro-
cedure to unitary operators. For this, we adjust the action to

ρgUρ
∗
g = fg(U), (2.3)

such that the fg are continuous involutions on the unit circle T instead of R. Similar to
Bernard LeClair [BL02] we find 38 symmetry types3. However, since we started with an
arbitrary group of involutions, with arbitrary involutive action on the unitary operators
under consideration, we can conclude that the 38 types for unitary operators are indeed
exhaustive.

We close this chapter by defining the fundamental index map for our topological
classification of quantum walks: The symmetry index assigns an element of an abelian
index group to any finite-dimensional representation of one of the symmetry types.
Thereby, the index group depends on the type and labels the equivalence classes of
specific representations. This generalizes our construction in [CGS+16, CGG+18] from
the tenfold way to all 38 symmetry types for unitary operators.

2.1 Projective representations and symmetry types
Our starting point for this section is an abstract group of involutions, without consider-
ing its action on states or operators on a Hilbert space, nor its possible representations
on the latter. On this level, the structure is pretty simple and can be inferred from basic
group theory:
Lemma 2.1.1. Let G be a finite group of involutions, i.e. g2 = e for all g ∈ G, where e ∈ G
denotes the neutral element. Then G is abelian and |G| = 2n, where n is the minimal number
of elements g1, . . . , gn ∈ G generating G. Moreover, for a fixed choice of generators {gi}, every
element g ∈ G can be labelled by a subset Λ ⊂ {1, . . . , n}, such that g = gΛ =

∏
i∈Λ gi.

Proof. Since any element of G fulfils g2 = e, the following shows that G is abelian:
gh = h2ghg2 = h(hg)2g = hg.

Choosing a minimal generating set {gi} of n generators, every group element can be
written as a product of these n generators. Because G is abelian and we have g2 = e

3The details of the connection between their an our ansatz will be discussed below (see Interlude on
page 56)
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for all g ∈ G, each g ∈ G can be labelled by a subset Λ ⊂ {1, . . . , n} of the {gi}ni=1

without repeating elements. For each subset, each gi is either present or not, wherefore
|G| = 2n.

In order to speak of some group G as the symmetry group of a physical system, we
have to specify a set and an action leaving this set invariant. This might for example
be the set of pure states, i.e. {e ∈ B(H)|e = e∗ = e2, rank (e) = 1}, in which case
on speaks of Wigner symmetries (see Section 1.5), or the set of density operators, i.e.
{ρ ∈ B(H)|ρ ≥ 0, tr(ρ) = 1} (Kadison symmetries). However, byWigner’s theorem and
the observation that the different notions of symmetries are equivalent [Lan17, Chapter
5], the structures we really need to investigate, are projective representations of G via
unitary or antiunitary operators„ i.e. representation that are fixed up to phases (see
Section 1.5.1):

ρ : g 7→ ρg with ρgρh = m(g, h)ρgh, (2.4)
where the multiplication phases are encoded into a functionm : G×G→ T. The choice
of unitarity vs. antiunitarity of the representing operators can be expressed via equip-
ping the abstract group with a unitarity character (see also [FM13])

u : G→ ±1, u(g) =

{
+1 ρg is unitary
−1 ρg is antiunitary.

(2.5)

Since the product of two unitary or antiunitary operators is antiunitary if and only if
one of them is antiunitary, (2.5) indeed defines a homomorphism. The unitarity char-
acter influences the multiplication phasesm: When we evaluate the associativity of the
product ρgρhρk, we get

m(g, h)m(gh, k) = m(h, k)u(g)m(g, hk), (2.6)
which is called the cocycle equation. For the concept of a symmetry type, we are not
interested in the specifics of the possible representations but merely equivalence classes
with respect to the choices form and u. Hence, given a unitarity character u, the possible
symmetry types for G are given by the solutions to the cocycle equation (2.6). Not all
such solutions are fundamentally different: There are equivalence classes, which corre-
spond to choosing phases for the representing operators. Themultiplication functionm
always refers to such a choice of representatives for the projective representation of G.
Indeed, choosing other phases, i.e. switching to ρ̃g = ϕgρg results in the multiplication
phases

m̃(g, h) =
ϕgϕ

u(g)
h

ϕgh
m(g, h). (2.7)

Note that m̃ fulfils the cocycle condition (2.6) if and only if m does. This defines an
equivalence relation, the equivalence classes of which become the possible symmetry
types for a given pair (G, u)
Definition 2.1.2 (Symmetry type). Two multiplication functions m and m̃ are equivalent if
they are related as in (2.7). The equivalence classes of solutions to (2.6)with respect to (2.7) are
called the symmetry types of the underlying group G equipped with u. We denote a symmetry
type by S ≡ (G, u,m), or, on the level of the representation, by [ρ].
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Before we continue, let us take a short detour and investigate the general structure
lying behind the concept of a symmetry type, namely the second cohomology group
H2

u(G,T), associated with the possible extensions of a group G by T.

Interlude: Group extensions and the second cohomology group The properties of
projective representations of a group G can be understood on an abstract level via the
group extensions of G by T, which respects the action of the antiunitary character. For
this interlude, we will loosely follow [BR86, Chapter 21, C], but adapt the general for-
mulation there to our needs. The unitarity character u induces an action α : G→ Aut(T)
of G on T via

αg(ϕ) = ϕu(g).

The corresponding group extensions of G by T is defined via the split exact sequence

0→ T ι−→ Ĝ
π−−⇀↽−−
ν
G→ 0, (2.8)

where Ĝ is a group and ι, π and ν are homomorphisms with im(ι) = ker(π) and π ◦ ν =

idG, such that the inner automorphisms of Ĝ, restricted to T coincide with α ◦ π. Note
that zeros on the left and right boundary of an exact sequence guarantee that ι is injective
and π is surjective. Thus, Ĝ is of the form Ĝ = {(g, φ)|g ∈ G,φ ∈ T}, with the group
multiplication

(g, φ)(h, ψ) = (gh, φαg(ψ)m(g, h)) = (gh, φψu(g)m(g, h))

encoded into the multiplication function m : G × G → T. In [FM13], Ĝ is called the
twisted central extension of G by T, where “twisted” refers to the altered (no longer
central) group multiplication induced by the action of the unitarity character.

For a trivial multiplication function, i.e. m ≡ 1, Ĝ simply is the semidirect product
G ⋊α T. The associativity in Ĝ translates into the cocycle condition (2.6) on m and the
inverse on Ĝ is given by

(g, φ)−1 =
(
g−1, αg−1

(
m(g, g−1)∗φ∗

))
.

It is straightforward to check that this is a right inverse for (g, φ). To see that it is also a
left inverse, one has to use αg−1

(
m(g, g−1)

)
= m(g−1, g), which follows from applying

the cocycle condition (2.6) to g−1gg−1 usingm(g, e) = m(e, g) = 1, ∀g ∈ G.
By construction, the automorphisms αg on T become inner on Ĝ restricted to ι(T):

(g, 1)(e, φ)(g, 1)−1 = (e, αg(φ)).

We want to determine the different ways of realizing the action α induced by u of
G on T via an inner automorphism in an extension Ĝ. This task is answered by the
following proposition [BR86, Chapter 21 §4.C, Proposition 1]
Proposition 2.1.3. The second cohomology group H2

u(G,T) is exactly the group of all (equiv-
alence classes of) those extensions Ĝ of G by T which realize the group action α induced by u of
G on T.
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The set of multiplication functionsM := {mµ : G×G→ T} can be equipped with a
multiplication via the pointwise multiplication:

mµν(g, h) := (mµ ◦mν) (g, h) = mµ(g, h)mν(g, h). (2.9)

It is easy to check, thatmµν fulfils the cocycle condition (2.6) ifmµ andmν do. With this,
M becomes an abelian group. We identify the subgroup N := {n : G × G → T} ⊂ M
of multiplication functions which are obtained from “just choosing phases” or, more
precisely, choosing different representatives ĝ, ĥ ∈ Ĝwith π(ĝ) = g and π(ĥ) = h, i.e.

n(g, h) =
ϕgϕ

u(g)
h

ϕgh
.

This identifies the second cohomology group as the factor group

H2
u(G,T) =M/N, (2.10)

and it becomes clear why it labels the different symmetry types for a given group G
equipped with a unitarity character u as in Definition 2.1.2.

2.1.1 Labelling the symmetry types
Having defined the concept of a symmetry type raises the task of characterizing them
for a given group of involutions. In order to tackle this task, we need to find data, which
is independent of specific phase choices for the group elements. We address this in the
remainder of this section. Thereby we introduce two different phase convention with
their own advantages and caveats, respectively. One turns out to be convenient to work
with in specific realizations and the other is better suited for a structural analysis of the
different symmetry types.

To finddata, which is independent under phasemodification of a group of operators,
commutation phases c(g, h), g, h ∈ G are typically good candidates. These are defined
as follows

c : G×G→ T, c(g, h) =
m(g, h)

m(h, g)
, (2.11)

i.e. in a representation we have ρgρh = c(g, h)ρhρg. Indeed, c is invariant if u ≡ 1, i.e.
if there are no antiunitary elements in a representation. When a non-trivial unitarity
character is involved, c transforms as follows under phase choices ρg 7→ ϕgρg:

c̃(g, h) = ϕ1−u(h)g ϕ
u(g)−1
h c(g, h). (2.12)

This seems to render the commutation phases c(g, h) inappropriate as data fixing
a type. However, note that in (2.12) 1 − u(h) as well as 1 − u(g) are both even for all
values of u. This means, c stays invariant if we manage to reduce the phases ϕg to signs,
which will be done in the following proposition. Other, more robust quantities are the
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squares of the antiunitary operators. Being involutive, each element of ρG squares to
a multiple of the identity. Evaluating (ρaρa)ρa = ρa(ρaρa) for u(a) = −1, one finds
that ρ2a = ±1. Moreover, this sign cannot be changed by choosing different phases:
ϕaρaϕaρa = ϕaϕ

∗
aρ

2
a = ρ2a.

Proposition 2.1.4. Let G be a finite group of involutions and ρ be a projective representation
with unitarity character u and the multiplication function m. Then there is a choice of phases
{ϕg} for ρg, g ∈ G, such that ρ2g = ±1,m(g, h) = ±1, and c(g, h) = ±1 for all g, h ∈ G.

Proof. The first step is to fix a set of generators for the group. Let H be the subgroup
of unitarily represented elements, i.e. the kernel of u. We choose generators for H and
label them via g1, . . . gn−1. If H ̸= G, pick one element a ∈ G with u(a) = −1. Then G
is generated by g1, . . . gn−1, a and we set a = gn. To reduce notation, we write ρj instead
of ρgj , when referring to the representing operators for the generators.

Next, we adjust the phases for the unitary generators ρ1, . . . ρn−1, such that every ρi
squares to the identity. This can be achieved by choosing ϕi = m(gi, gi)

−1/2, such that
(ϕiρi)

2 = m(gi, gi)ϕ
2
i1 = 1. Note that, as discussed above, the square ρ2a = ±1 cannot be

changed for the antiunitary operators. Having fixed the squares to±1, the commutation
phases c(gi, gj) = cij for the generators must be real as well. Indeed, assuming ρi to be
unitary we get

ρ2i ρj = cijρiρjρi = c2ijρjρ
2
i ,

where we used the unitarity of ρi for ρicij = cijρi. Since ρ2i = ±1, we conclude that
c2ij = 1 and hence cij = ±1. A similar computation gives the same result, when ρj is
assumed to be unitary. Since we chose at most one antiunitary generator, the case of two
antiunitary operators does not occur.

Weproceed byfixing a standard representation for every g ∈ G: according to Lemma
2.1.1 we write ρg =

∏→
j∈Λ ρj , where the arrow indicates that the generators are multi-

plied from left to right with increasing indices. We can bring any product of generators,
into normal form by successively commuting generators and replacing squares ρ2j by
±1. Since both operations only add factors ±1, they do not change the commutation
relation of the product with the antiunitary generator. Therefore we get ρgρh = ±ρgh
and ρ2g = ±1 for all g, h ∈ G.

Choosing phases according to Proposition 2.1.4 turns c : G×G→ {±1} into a sym-
metric bicharacter on G, i.e. c(·, g) = c(g, ·) are homomorphisms G→ {±1}. However,
it does not fix the actual values for c(g, h) for arbitrary g, h. Indeed, we can change these
values quite liberally without harming the arguments in the proof. Whereas the squares
of the antiunitary elements cannot be changed by choosing different phases, we can still
modify the signs of the unitary squares: Let ρg be unitary and consider ρg 7→ iρg in-
stead. This does not alter the arguments in Proposition 2.1.4 but changes the square
ρ2g 7→ −ρ2g and the values of the commutation character c(g, ·). For unitarily represented
h, c(g, h) stays the same, but for ρh antiunitary we get c(g, h) 7→ −c(g, h). Hence, we
can exchange the signs of the squares of the unitary elements for their commutation
signs with the antiunitary generator. Fixing this freedom with a phase convention can
be achieved in different ways.
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Phase conventions:

The first phase convention we introduce involves relatively little further modifications.
It is motivated by the attempt to make the representation of a symmetry type as com-
mutative as possible:

Lemma 2.1.5 (Phase convention I). In the setting of Proposition 2.1.4, pick a ∈ G with
u(a) = −1 as the antiunitary generator. Then we can adjust phases, such that for all g with
u(g) = 1 we get ρga = ρgρa = ρaρg, i.e. c(g, a) = 1. Moreover, this implies that the squares
for the unitary elements are fixed by data which is independent of phase choices, since, for every
g we can write ρ2g = ρ2gaρ

2
a.

This fixes all phases up to arbitrary signs for each unitary element ρg and an arbitrary phase for
the antiunitary generator ρa.

Proof. In the setting of Proposition 2.1.4, c : G × G → ±1 is already a real symmetric
bicharacter. We further adjust the phase for every unitary element ρg with c(g, a) = −1
via ρg 7→ iρg, which yields c(g, a) = 1 for all unitarily implemented g. This implies

ρ2gaρ
2
a = (m(g, a)ρgρa)

2 ρ2a = m(g, a)2ρ2gρ
4
a = ρ2g,

where we usedm(·, ·) = ±1 and c(g, a) = 1.

This convention is the plausible choice for dealing with explicit representations in
a given setting, since it makes the representations as commutative as possible. For this
reason, it was our convention of choice in [CGG+18], where atmost one unitary and one
antiunitary generator are considered. For such small groups representations in phase
convention I are always abelian.

However, phase convention I is not helpful for the structure theory, because it does
not incorporate the commutation character as a structural element. Instead of focussing
on commutativity, our second phase convention is centred around the commutation
character, and turns out to be the better choice for labelling the symmetry types for
an arbitrary pair (G, u). Let us first investigate what structure the existence of a given
symmetric bicharacter c : G×G→ {±1} imposes on a finite group of involutions:

Lemma 2.1.6. LetG be a finite group of involutions with a symmetric bicharacter c : G×G→
{±1}, such that c(g, g) = 1 for all g ∈ G. Then there is a set of generators g1, h1, . . . , gn, hn,
r1, . . . , rm ∈ G, such that c(gj , hk) = 1 − 2δjk, and c(·, ·) = 1 on all other combinations of
generators.

Proof. We start by identifying the generators r1, . . . , rm. Consider the set Gc = {g ∈
G|c(g, h) = 1 ∀h ∈ G}. Since Gc is the intersection of kernels of the homomorphisms
c(·, h), it is a subgroup of G. Hence, we can pick generators for Gc, providing us the
wanted r1, . . . , rm. Denoting byG1 the groupgenerated by a remaining set of generators,
which, together with r1, . . . , rm generatesG, we getG ∼= Gc×G1. Now, by construction,
we find for every element g ∈ G1 an element h ∈ G1 with c(g, h) = −1. Note that by
c(g, g) = 1, h is different from g. Pick any such pair g1, h1, add it to the list of the m
central generators, and consider the subgroup G2

∼= {k ∈ G1| c(g1, k) = c(h1, k) = 1}.
We get G ∼= Gc × ⟨g1, h1⟩ ×G2. In G2 we repeat the last step, picking generators g2, h2,
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with c(g2, h2) = −1, which cannot be in the subgroup generated by g1, h1 by definition of
G2. We proceed like this, untilGn = {e}, providing uswith the desired list of generators
g1, h1, . . . gn, hn, r1, . . . , rm for G.

Hence, a symmetric bicharacter with a trivial diagonal allows for a choice of gener-
ators, which is split into two classes: On the one hand, a set of anti-commuting pairs
(gi, hi), which commute with all remaining generators, respectively; and on the other, a
remaining set of central generators rk. We can now use this structure and incorporate it
into a phase convention, while additionally trying to makes as many unitary elements
square to +1 as possible. Note that we cannot, in general, avoid ρ2g = −1 for all unitary
elements since the relation

ρ2gh = c(g, h)ρ2gρ
2
h (2.13)

cannot be changed by phase factors if both elements are unitary. However, it is possible
to achieve ρ2g for all unitary generators:

Lemma 2.1.7 (Phase convention II). In the setting of Proposition 2.1.4, there is a set of
generators according to Lemma 2.1.6 and a further adjustment of phases, resulting in at most
one generator being antiunitary, and ρ2g = +1 for all unitary generators g.
This fixes the phases of all generators up to arbitrary signs for each unitary generator ρg and an
arbitrary phase for the antiunitary generator ρa. Fixing a standard presentation ρg =

∏→
j∈Λ ρj

for each group element4 then also fixes the phases for all remaining group elements. In particular,
this uniquely determines the values of the multiplication functionm in terms of the commutation
character c.

Proof. In the setting of Proposition 2.1.4 we first pick generators ρgi , ρhi
and ρrk accord-

ing to Lemma 2.1.6 for the unitary subgroupH . We then further adjust the phases, such
that all these generators square to+1, by multiplying with i if necessary. If there are no
antiunitary generators, there is nothing left to do.

Otherwise, we can always pick an antiunitary generator, which commutes with all
the generator pairs ρgi , ρhi

with c(gi, hi) = −1. Indeed, pick any antiunitary element ρa
and consider the first of these pairs g, h. Then ρ2g = ρ2h = (iρgh)

2 = 1 by (2.13) and the
phase adjustments described above. Now, since c is a bicharacter, c(·, a) is a homomor-
phism on G. Hence we have c(g, a)c(h, a)c(gh, a) = 1, which implies that the product
of the commutation phases of ρa with ρg, ρh and (iρgh) is equal to −1. But this is only
possible if either one or all three commutation phases are equal to −1. In the first case
we pick the two unitaries which commute with ρa, replacing the pair ρg, ρh, without
harming the commutation relations with the remaining generators of the unitary sub-
group. In the second case, we replace a by ga, which changes two of the three commu-
tation phases and leaves us with the first case: c(g, ga) = c(g, a), c(h, ga) = −c(h, a) and
c(gh, ga) = −c(gh, a). Proceeding in this way, we fix the commutation phases between
all pairs (ρgi , ρhi

) and ρa. In the central unitary subgroup Hc, generated by r1, . . . , rm,
every element ρr squares to+1 by (2.13) and the fact, that we set this for the generators.
Moreover, this does not change, no matter which elements we choose as the generators
rk. There are now two cases to distinguish: the character r 7→ c(r, a) ∈ {±1} on the

4The generators may for example be ordered as g1 < h1 . . . < gn < hn < r1 . . . < rm < a.
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Case 1:
g1 g2 gn

h1 h2 hn

r1 r2 rm a

Case 2:
g1 g2 gn

h1 h2 hn

r1 r2 rm

a

Figure 2.1: Adding the antiunitary generator in the setting of Lemma 2.1.6.

center is either trivial or takes the value −1 on exactly |Hc|/2 = 2m−1 elements. In the
first case a becomes an additional central generator rm+1 = a. In the second, pick any
element r with c(r, a) = −1 (w.l.o.g. r = r1), which together with a forms an additional
pair of anti-commuting generators gn+1 = r1, hn+1 = a for the whole group.

The last statement of the lemma follows by similar arguments as in the proof of
Proposition 2.1.4.

Phase convention II will be our standard convention from now on. In particular, we
use it in Table 2.1, which tabulates all symmetry types without redundant symmetries
(see Section 2.2.2). However, sometimes phase convention I from Lemma 2.1.5 simpli-
fies computations, wherefore we will switch the convention occasionally.

Having sufficiently fixed the phases, following the structure given by Lemma 2.1.6,
we can now tackle the question of how to label the equivalence classes of representations
for a pair (G, u). Since the multiplication function is uniquely determined by the com-
mutation character and the square of the antiunitary generator, this data singles out
a unique representative for each symmetry type and therefore labels the equivalence
classes. Organizing the generators and their phases according to phase convention II
makes it especially easy to count the number of symmetry types for a groupG equipped
with a unitarity character u:

Corollary 2.1.8. In phase convention II from Lemma 2.1.7, the equivalence classes of represen-
tations are labelled by the values of the commutator bicharacter c on the generators and the square
of the antiunitary generator a. Hence, ifG is generated by n elements, the number of equivalence
classes N is given by

N =

{
2(

n
2 ) if u(g) = 1 ∀g ∈ G

2(
n
2 )+1 if ∃ a ∈ G with u(a) = −1

(2.14)

Proof. There are ( n2 ) sign-choices for the values of c on the n generators and one addi-
tional sign-choice for the square of the antiunitary generator, if present.

Later, we will only consider symmetry groups with at most two unitary generators.
For those, the different symmetry types coincide with the different possible combina-
tions of squares for antiunitary elements (if present). This can be seen in Table 2.1,
where for each group, each combination of antiunitary squares occurs. In general, how-
ever, multiplying by a factor of two for each antiunitary element would exceed the num-
ber of symmetry typesmany times over. Indeed, for n > 3we get 22n−1

> 2(
n
2 )+1, which

are equal for n ≤ 3.
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2.1.2 Realizations on a Hilbert space
It remains to verify that all the possibilities in Lemma 2.1.6 and Lemma 2.1.7 are re-
alizable on a Hilbert space H, i.e. that each symmetry type admits a projective repre-
sentation, which realizes a representative of the equivalence class ofm(·, ·). We answer
this question in the affirmative by explicitly writing down finite-dimensional represen-
tations in the structure of Lemma 2.1.6 and Lemma 2.1.7. Wewill also connect the result-
ing possibilities to the theory given byWigner, and Dimmock [Wig59, Dim63] (see also
Section 1.5.1). Similar toWigner, and in line with the proof of Lemma 2.1.7, we will first
write down representations for the unitary subgroup and add an antiunitary element
afterwards. There are three cases to distinguish, which are equivalent to the three cases
in Section 1.5.1: The antiunitary generator is either of type hi in Lemma 2.1.6, i.e. it forms
an anti-commuting pair with one of the central generators of the unitary subgroup, or
it is of type ri, in which case the square of ρa distinguishes two different scenarios.

Let H be the unitary subgroup of a group of involutions G, with n anti-commuting
pairs of generators (gi, hi) andmH central generators rk according to Lemma 2.1.6. We
start with the anti-commuting pairs of generators (g, h). Each such pair singles out a
tensor factor C2 of the underlying HilbertH space. On this tensor factor g, h and gh are
represented via a copy of the Pauli matrices σi. Indeed, let ψ be an eigenvector of ρg
corresponding to the eigenvalue +1 (recall ρ2g = 1). Since g and h anti-commute, ρhψ
must be an eigenvector of ρg corresponding to the eigenvalue −1, and vice versa. Since
all other generators commutewith g, h and gh, theymust be realized in a different tensor
factor. This implies H = C2 ⊗ H′ and without loss of generality we set ρg = σz ⊗ 1′,
ρh = σx ⊗ 1′ and ρgh = iσy ⊗ 1′.

The central generators, on the other hand, all commute with each other. Hence,
the Hilbert space decomposes into a direct sum of joint eigenspacesHr, indexed by the
mH -tuples r = (r1, . . . , rmH ) ∈ {±1}mH , labelling the eigenvalues of the central unitary
generators. Note that not every possible combination (±1, . . . ,±1) has to be part of a
specific representation, themost trivial example being {r} = {(1, 1, . . . , 1)}, where every
central generator is represented trivially. The direct sum of these common eigenspaces
Hr is thus another tensor factor of the underlying Hilbert space.

Combining those arguments, we get

H =

 n⊗
j=1

(
C2
)⊗(⊕

r

Hr

)
, (2.15)

on which the generators of the unitary subgroup H are represented as

ρgj = σ
(j)
3 ⊗ 1, ρhj

= σ
(j)
1 ⊗ 1, and ρrk = 1⊗

⊕
r

rk1r, (2.16)

where j = 1, . . . , n, k = 1 . . . ,mH and A(j) denotes an operator, acting as A on the j’th
tensor factor and as 1 on the others, i.e. A(j) = . . .⊗ 1⊗A⊗ 1⊗ . . ..

Let us now add an antiunitary generator a. It follows from the proof of Lemma 2.1.7
that a can be chosen to act "trivially" on the first tensor factor in (2.15). However, since
the tensor product between linear and anti-linear operators is ill-defined, we cannot just
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take the ansatz 1 ⊗ X . Instead, we have to define what "trivial" in this sense means.
Fortunately, there is only one antiunitary operator on C2, which commutes with σz, σx
and iσy: the complex conjugation K with respect to the chosen basis (w.l.o.g. the σ3-
eigenbasis). Hence, we set K ⊗ X instead of 1 ⊗ X to realise an antiunitary operator
acting on the second tensor factor into the whole space. a is now either of type rk or
becomes a part of a pair gj , hj .

Case 1, a = rm: In this case we get m = mH + 1 central generators for he whole
group and we set ρrm = ρa. ρa leaves all eigenspaces of the ρrj invariant and acts as K
on the fist tensor factor in (2.15). Hence, we only need to choose an antiunitary operator
ρa(r) in each eigenspace and get

ρa = ρrm = K⊗n ⊗
⊕
r

ρa(r),

with r ∈ {±1}m−1. Taking the square of this operator ρ2a = 1⊗
⊕

r ρa(r)
2, we find, that

all the antiunitary operators ρa(r) have to have the same square as ρ2a. Moreover, since
the eigenspaces are left invariant, the representation is either of type 1, for ρ2a = 1, or of
type 2 for ρ2a = −1, in the sense of Dimmock (Section 1.5.1). In the latter case, each of
the eigenspacesHr is even dimensional, in accordance with (1.62).

Case 2, a = hn: In this case, a forms an anti-commuting pair together with one of
the central generators of the unitary subgroup, say with r1. In order to achieve this
in a representation, ρa has to swap +1 the −1 eigenspace of ρr1 . That is, Hr with r =
(1, r2, . . . , rmH ) is mapped to Hr′ with r′ = (−1, r2, . . . , rmH ) and vice versa. We can
then choose the basis in Hr′ , such that ρa effectively acts as the complex conjugation in
this mapping, and only get an additional minus sign when mapping back, depending
on the square of ρ2a. Without r1, we are left withm = mH − 1 central generators, which
we relabel according to j 7→ j − 1 ∈ {1, . . . ,m}. ρa is then of the form

ρa = K⊗n ⊗
(
0 ±K
K 0

)
⊗
⊕
r

K, (2.17)

with r ∈ {±1}m. For both signs ρa = ±1, this situation corresponds to type 3 in the
sense of Dimmock (Section 1.5.1).

The considerations above allow us to determine all irreducible representations of the
symmetry types, depending on the generators involved:

Corollary 2.1.9. In each of the cases above, the irreducible representations of a symmetry type
are characterized by the fact, that only one of the Hr is non-zero and one-dimensional (or two-
dimensional for ρ2a = −1 in case 1). I.e. for a given symmetry type, there is exactly one irre-
ducible representation for each possible sign combination r ∈ {±1}m, resp. r{±1}m−1. The
dimensions of the irreducible representations are determined by the number of anti-commuting
pairs and in case 1 the square of the antiunitary generator. Each anti-commuting pair contributes
a factor of two and so does the antiunitary generator if it is central and squares to−1. This leads
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to the following three possibilities:

#irreps dimH
only unitaries or a = hn 2m 2n

a = rm, ρ2a = 1 2m−1 2n

a = rm, ρ2a = −1 2m−1 2n+1

(2.18)

2.2 Action on operators
We now come to the action of the symmetry representations on the operators describing
the dynamics, i.e., the properties, which justify naming the group elements symmetries.
We first concentrate on their action onHermitian operators, i.e. Hamiltonians. For these,
wewill derive the tenfoldway as the set of “interesting” symmetry types, after eliminat-
ing redundant symmetries. After that, we come to the action on the type of operators,
which are more prominent throughout this thesis: quantum walks or, for this purpose,
just unitary operators. We will apply the techniques developed for the hermitian case
and find a set of 38 different symmetry types. In both cases, we derive our techniques
from minimal principles, and we deduce the sets of non-trivial symmetry types from
an arbitrary symmetry group of involutions, using a minimal set of assumptions. This
ansatz is different from the techniques we found in the literature, where usually a more
ad hoc way is chosen. Typically specific models are under consideration, or the set of
symmetries is fixed from the outset [AZ97, BL02, RSFL10, KRBD10].

2.2.1 Action on Hamiltonians
The symmetries act on operators under consideration via conjugation with the repre-
senting operator ρg (see Section 1.5). Speaking of a symmetry of a system, the action on
a Hamiltonian is typically assumed as g(H) = ρgHρ

∗
g = H , that is, the symmetry op-

eration leaves the Hamiltonian invariant. This, however, does not include well known
physical symmetries, e.g. particle-hole symmetry η, represented by an antiunitary op-
erator ρη with η(H) = ρηHρ

∗
η = −H . Such symmetry action emerges from the standard

assumption above, e.g. via second quantization of the underlying system [Zir15]. How-
ever, we here want to include the possibility of such symmetry from the outset without
referring to its possible physical origin. In the end, it turns out that this additional sign
is all we need to add to the considerations, but we aim to deduce this from as few as-
sumptions as feasible. Given a symmetry group G, for every g we therefore choose the
ansatz

g(H) := ρgHρ
∗
g = fg(H),

with a continuous function fg : R → R, evaluated on H in the spectral calculus. For
a single H , it would be sufficient to specify fg only on the spectrum of H . However,
since we aim for a homotopy classification of families of symmetric operators, we need
to allow for deformations of Hamiltonians H , and therefore the symmetry-action for-
mulated independently of H .

Since the symmetries are assumed to be part of a group of involutions G, the set of
functions fG = {fg|g ∈ G} also carries a group structure, and in particular, fg has to be
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involutive for all g ∈ G. I.e. fG is a group of involutive homeomorphisms on the real
line. The following proposition characterizes such groups.
Proposition 2.2.1. Let G be a finite group of involutions, and g 7→ fg a homomorphism into
the group of homeomorphisms onR. Then there is a homeomorphism h and a character r : G→
{±1} such that

h ◦ fg ◦ h−1(x) = r(g)x (2.19)
for all g.

This reduces a group of involutive homeomorphisms to a single character r(g) onG
by classifying the conjugacy classes of these groups. Note that conjugating the action of
a symmetry with an invertible continuous function h does not change the task of classi-
fying the symmetric hermitian operatorswith respect to homotopy. The key observation
is that the conjugating homeomorphism h is independent of g. We can therefore classify
the symmetric HamiltoniansH , by studying insteadH ′ = h(H), which satisfies a much
simpler symmetry condition, namely (g(H))′ = ±H ′. A particular case of this are affine
functions fg(x) = ax + b, where a = ±1 by the involution property, and it suffices to
adjust the origin of the energy axis by H ′ = H − b/21.

Proof. Let f : R→ R be a continuous involution. Then f is invertible and, in particular,
bijective. Hence, f is either strictly monotonically increasing or strictly monotonically
decreasing. Since, conjugation h ◦ fg ◦ h−1 in (2.19) does not change the direction of
monotonicity, we can define a character r : G → ±1, which takes the value +1, if fg
increasing and −1 if fg is decreasing.

The only increasing function onR, which is also an involution, is the identity. To see
this, consider the graph of f . The involutive property translates into the symmetry of
the graph of f , namely invariance under reflection at the main diagonal. Let (x, f(x)) ∈
R ×R be a point in the graph of f , which is not on the main diagonal. Without loss of
generality, assume f(x) > x. i.e. the point lies above the main diagonal. Then its mirror
image under the reflection symmetry is below the diagonal, and therefore f has to be
decreasing between these two points to connect them.

Moreover, suppose that the group fG contains two decreasing elements. Then their
product is increasing, hence the identity. Since fG is a group of involutions, the two
decreasing functions are the same. It follows that fG contains at most one decreasing
element.

Since the identity is invariant under conjugation, we only have to find a homeomor-
phism h that satisfies (2.19) for this one decreasing element. Note that f has a unique
fixed point x0, because its graph has to intersect the main diagonal precisely once. In
a first step we shift this point to x0 = 0 by a conjugation with h1(x) = x − x0. For
f̃ = h1 ◦ f ◦ h−11 we then have f̃(0) = 0. The appropriate conjugating homeomorphism
h2, which further simplifies the action of f̃ is then found in [O’F04]:

h2(x) =

{
x x ≤ 0

−f̃(x) x > 0,
(2.20)

which is increasing. It is easy to check that
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h2

◦

f̃

◦

h2 h−12

=

− id

Figure 2.2: Schematic flattening of a decreasing involution via h2 ◦ f̃ ◦ h−12 = − id.

h2 ◦ f̃(x) =

{
f̃(x) f̃(x) ≤ 0

−x f̃(x) > 0
=

{
f̃(x) x ≥ 0

−x x < 0
= −h2(x), (2.21)

where we used that f̃(x) < 0 ⇔ x > 0. This last condition is due to the fact that f̃ is a
strictly monotonically decreasing function with f̃(0) = 0.

Finally, (2.21) is equivalent to (2.19) with h = h2 ◦ h1 and r(g) = −1, which proves
the Lemma.

We can hence describe the action of the symmetries on a Hamiltonian by a function
r : G → {±1}. By definition the function r is a character on G, similar to the unitar-
ity character u. We call it the reversing character and accordingly a symmetry with
r(g) = −1 reversing. The two possibilities g(H) = ±H are the standard assumptions
that lead to the tenfoldway fromagroup theoretical point of view (see, e.g. [FM13]). On
the other hand, in the tenfold way, every combination of the character pair (u(g), r(g))
occurs. Vice versa, as we will show below, any symmetry of the tenfold way is uniquely
characterized by u and r. Adding r to our setting of a symmetry type, we can nowdefine
what it means for a Hamiltonian to be admissible for a symmetry type:
Definition 2.2.2. Let ρ be a representation of a symmetry type and r : G → {±1} a reversing
character. A Hamiltonian, which satisfies

g(H) = ρgHρ
∗
g = r(g)H, (2.22)

is called admissible for the ρ with respect to r.

2.2.2 Redundant symmetries
So far, we considered arbitrarily large symmetry groups of involutions, and hence, a
symmetry group might contain multiple symmetries with the same character combina-
tion (u, r). However, classification problems do not necessarily becomemore interesting
with larger symmetry groups. Consider for example two anti-commuting unitary sym-
metries g, h with r(g) = r(h) = 1. Then the Hilbert space can always be written as
the tensor product H = C2 ⊗ H′, on which ρg and ρh act as Pauli operators in the first
tensor factor and as the identity in the second (see the discussion on realisations on a
Hilbert space in Section 2.1.2). Any admissible Hamiltonian on this Hilbert space, by
r(g) = r(h) = 1, commutes with these symmetries and hence is of the formH = 1⊗H ′.
This reduces the problem of classifying H to classifying H ′, and since admissibility for
g and h is taken care of by this decomposition, H ′ only needs to be admissible for a
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smaller symmetry group. Our goal for this section is to formalise this notion of redun-
dancy and to establish a reduction procedure, which reduces any symmetry type [ρ] to
a type with less symmetries and without such redundancy. For Hamiltonians this leads
to the well known tenfold way of symmetries, as the set of symmetry types for invo-
lutive symmetry groups that do not contain any redundant symmetries. Applying the
reduction procedure, as well as further phase choices, to unitary operators in the next
section leads to 38 symmetry types without redundancies.

To this end, let us first investigate the influence of any unitary symmetry on the
structure of the whole group:
Lemma 2.2.3. Let G be a group of involutions and g ∈ G, with u(g) = 1. Then in every
representation ρ of a fixed type [ρ], ρg imposes a direct sum decompositionH = H+⊕H− of the
underlying Hilbert space into its eigenspaces, for which the following holds

• Whether the representatives of the other group elements ρh leave these eigenspaces invariant
is independent of the representation ρ.

• The elements ρh with the property above form a subgroup G′ ⊆ G, which inherits repre-
sentations ρ′± from ρ onH±, respectively.

• This induces a symmetry type [ρ′] = [ρ′+] = [ρ′−], which is uniquely specified by [ρ] and
g.

We call [ρ′] the restriction of [ρ] induced by g.

Proof. First, note that the above statements are independent of the phase convention we
choose. Indeed, the eigenspaces of an operator and the condition of leaving a certain
space invariant do not change when that operator is multiplied by any phase. Hence,
we are free to choose any phase convention for the representation ρ of the symmetry
type [ρ]. For convenience, we choose phase convention II (see Lemma 2.1.7).

Since ρ2g = ±1, the Hilbert space decomposes intoH = H+ ⊕H−, whereH± denote
the±1, respectively the±i eigenspaces of ρg. In phase convention II it is then easy to see,
that there are only two possibilities for the remaining symmetry operators: they either
leave these eigenspaces invariant or they swap them. For a unitary symmetry ρh this is
decided by the commutation character: for c(g, h) = +1 the eigenspaces are invariant
and for c(g, h) = −1 they are swapped. In case of an antiunitary symmetry ρa, also the
square of ρg has to be taken into account. Let ρ2g = −1 and ψ ∈ H+. Then

ρgρaψ = c(g, a)ρa(iψ) = −ic(g, a)ρaψ,

i.e. ρaψ ∈ H± for c(g, a) = ∓1. In general, we get the following condition for ρh:
ρhH+ = H± ⇔ c(g, h)ρ1−u(h)g = ±1, (2.23)

and the analogous statement for ρhH−.
Using 1 − ab ≡ 2 − a − bmod4 for a, b ∈ {±1} we see, that (2.23) actually defines

another character φg : G→ {±1}: For for g, h, k ∈ Gwe get
c(g, hk)ρ1−u(hk)g = c(g, h)c(g, k)ρ1−u(h)u(k)g

=
(
c(g, h)ρ1−u(h)g

)(
c(g, k)ρ1−u(k)g

)
,
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i.e.
φg(hk) = φg(h)φg(k). (2.24)

This character is independent of the phase convention, after adjusting the phases ac-
cording to Proposition 2.1.4: For u(h) = 1 only φg(h) = c(g, h) remains, which cannot
be changed by phase choices if both elements are represented unitarily. For u(h) = −1
a different choice of phases might change the square ρ2g to−ρ2g due to a factor of i. How-
ever, this changes c(g, h) to −c(g, h) at the same time, and hence, (2.23) is invariant.

The kernel of this character defines a subgroup G′, which leaves the eigenspaces of
ρg invariant, and all operators ρh with h ∈ G′ are block diagonal with respect to the
direct sum decomposition H = H+ ⊕ H−, i.e. ρh = ρh+ ⊕ ρh−. Hence, in each block
the commutation relations and squares of the operators have to be the same as for ρ,
wherefore ρ′± are representatives of the same symmetry type [ρ′] for the group G′. In
general, H+ and H− do not have to be of the same dimension. However, if dimH+ ̸=
dimH−, we getG′ = G becauseHilbert spaces of different dimension cannot bemapped
to each other by a unitary (or antiunitary) operator.

Since, as we checked above, this reduction only depends on the symmetry type [ρ],
and not on the specific representation, the restriction [ρ′] is uniquely specified by [ρ] and
g.

With this in mind, we can define a notion of redundancy, which will lead to the ten-
fold way for Hamiltonians, respectively the 38-fold way for unitary operators. Roughly
speaking, a symmetry of a symmetry type [ρ] is redundant, if the above procedure of
inducing a smaller symmetry type [ρ′] is compatible with the operators, that are admis-
sible for [ρ]. I.e. if no information concerning a classification task is lost due to reducing
considerations to a smaller symmetry type. Note that g is still part of the reduced sym-
metry type since the swapping character φg is trivial on g. Since the restriction of ρ′g to
H± is just a multiple of the identity, it has no non-trivial action on admissible operators.
This suggests to further reduce the symmetry type by removing g from G′. However,
since there is, in general, no unique way of removing an element of a group, we did
not include this further reduction in the lemma above and instead included it in the
following definition.
Definition 2.2.4. Let G be a finite group of involutions, g ∈ G, with u(g) = 1 and [ρ] a
symmetry type of G. Denote by [ρ′] the restriction of [ρ] induced by g, according to Lemma
2.2.3, with the corresponding subgroup G′ ⊂ G. Moreover, let G̃′ ⊂ G′ be a maximal subgroup
not containing g. We call g, as well as all other symmetries h ∈ G \ G̃′ redundant, if, in
any representation ρ, a Hamiltonian H ∈ B(H) is admissible for ρ if and only if the following
conditions are met:

i) H = H+ ⊕H− is block diagonal with respect to the direct sum decomposition ofH.

ii) H+ is admissible for the symmetry type [ρ̃′], restricted to G̃′.

iii) If there is a symmetry h ∈ G \G′, h ̸= g, H− is determined by H+, via the action of h.

The purpose of this definition is to get rid of unnecessary symmetries in a classifica-
tion task. If an operatorH is admissible for a redundant symmetry in the above sense, a
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topological classification reduces to the classification of H+ and H− separately. If there
is a swapping symmetry h ∈ G \ G′ according to iii) above, it suffices to consider only
one of the blocks, because they are images of each other under h. Note that by this
definition the identity e ∈ G is never redundant, since there is no subgroup G̃′ not con-
taining it. But, as already mentioned, G̃′ is not uniquely defined, which the following
example demonstrates:

Example 2.2.5. Consider the Klein four group G = {e, g1, g2, g3}, with g2i = e and gigj = gk
for i ̸= j ̸= k, from which we want to remove g3. Then both, G̃1 = {e, g1} and G̃2 = {e, g2}
are valid maximal subgroups.

However, the goal is to remove all redundant symmetries in a symmetry type, i.e. to
further reduce [ρ̃′] until “there is no redundancy left”. The following Proposition shows
that the result of such complete reduction process is independent of the “intermediate”
groups G̃′.

The distinguished group elements, which we use to reduce the symmetry type step
by step, are unitary symmetries that commute with the Hamiltonian. These symmetries
are thus the non-trivial elements of the subgroup

G11 = {g ∈ G|u(g) = r(g) = 1}, (2.25)

i.e. the common kernel of the unitarity character u and the reversing character r.

Theorem 2.2.6. Let [ρ] be a symmetry type of a symmetry group G without redundant sym-
metries. Then G11 = e, and every symmetry g ∈ G is uniquely characterized by the pair
(u(g), r(g)).

Proof. Let e ̸= g ∈ G11. Then g is redundant in the sense of Definition 2.2.4: Since
u(g) = 1, it induces a restriction according to Lemma 2.2.3 and by r(g) = 1, it commutes
with any admissible Hamiltonian. Hence, condition i) in Definition 2.2.4 is met. More-
over, since for H+, ρ′g acts trivially, so is ii). By Lemma 2.2.3, item iii) is automatically
fulfilled and the only thing we need to check is, that different symmetries h, h′ ∈ G \G′
produce the same H−. Since their product must be part of G′, this is guaranteed by the
admissibility of H+ for ρ′+. This proves G11 = e for a symmetry type which doesn’t
contain redundant symmetries.

In order to show the uniqueness statement, let g, h ∈ G, with g ̸= h, u(g) = u(h) and
r(g) = r(h). Then their product k = gh would be a non-trivial element of G11, since
u(gh) = u(g)u(h) = 1 = r(gh) = r(g)r(h). Hence every combination of (u, r) can only
occur once.

The remaining non-trivial symmetries after the reductionprocedure described above
can nowprecisely be identifiedwith the symmetries from the tenfoldway,which enables
us to state the following corollary, highlighting the unique role of the tenfold way for
the topological classification of quantum systems:

Corollary 2.2.7. ForHamiltonians, the set of all symmetry typeswithout redundant symmetries
is the tenfold way.
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Proof. Every symmetry in a symmetry type is uniquely labelled by the pair (u, r), which
are identified with the symmetries from the tenfold way according to (compare (2.1))

Time reversal symmetry: τ ≡ (−1,+1)
Chiral symmetry: γ ≡ (+1,−1)

Particle hole symmetry: η ≡ (−1,−1)
. (2.26)

The symmetry group either consists of one non-trivial or all three symmetries, together
with the identity. If τ or η are contained in the symmetry group, we have to distinguish
the signs of their square. Since there is at most one unitary operator, i.e. γ, we can
always choose it to be a generator. In that case, phase convention I in Lemma 2.1.5 is the
convenient choice, because it renders the representation commutative, and the square
of the unitary operator is determined by the product of the squares of the anti unitary
ones. Counting the types according to (2.14) leads to one type for {γ, id} (AIII), two
types for {η, id} (D, C) and {τ, id} (AI, AII), respectively, and four types for {γ, η, τ, id}
(BDI, CI, CII, DIII). Adding the trivial group {id} (A) finally leads to ten different types
without redundant symmetries for Hamiltonians.

The symmetry types and their defining properties, aswell as the corresponding sym-
metry groups (which will be defined later in Section 2.3) are listed in Table 2.1, where
we subsumed them into the 38-fold way for unitary operators. The types are systemati-
cally numbered according to their defining properties (the commutation character c(·, ·)
on the set of generators and, if present, the square of the antiunitary generator ρ2a). The
symmetry types of the tenfold way are labelled by 1, 3, 4, 5, 8, 9, 20, 21, 22 and 23. How-
ever, for easier identification the Cartan-labels for the corresponding symmetric spaces
[Car26, Zir96] are also listed in the table (A, AIII, AI, AII, D, C, BDI, CII, CI and DIII, in
the same order).

2.2.3 Action on unitary operators
The ansatz for unitary operators will be the same as for Hamiltonians. We assume the
symmetries to act on a unitary operator via

g(U) = ρgUρ
∗
g = fg(U), (2.27)

where fg : T→ T is some family of continuous involutions on the unit circle, evaluated
in the spectral calculus, which carries the group structure of G. In the Hamiltonian
case, we reduced these actions to a single character r(s) by conjugating with a fixed
homeomorphism h (Proposition 2.2.1). A similar simplification is possible in the case
of unitary operators, with two instead of one character:

Proposition 2.2.8. Let G be a finite group of involutions, and G ∋ g 7→ fg a homomorphism
into the group of homeomorphisms on the circle. Then there is a homeomorphism h and characters
s, ur : G→ {±1} such that

h ◦ fg ◦ h−1(z) = s(g) zur(g) for all g ∈ G. (2.28)
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a)

(1, 1)

b)

(1,−1)

c)

(−1, 1)

d)

(−1,−1)

Figure 2.3: Graphs of representatives of the four classes of involutive homeomorphisms
on the circle. By the involution property they are all mirror symmetric with respect to
the main diagonal. The identity a) has an infinite number of fixed points, the shift b)
has no fixed points and the two decreasing elements have exactly two fixed points ((0, 0)
and (π, π) for c) and ±(π/2, π/2) and for d)). The graphs are labelled by the character
values (ur, s) of the corresponding involutions.

The distinguishing feature for continuous involutions on R was the monotonicity
character r, which indicated whether a given involution is increasing or decreasing. A
similar concept appears for involutions of the unit circle: the winding number, labelled
by the character ur5.

Proof. The concatenation of two functions on the unit circle induces the multiplication
of their winding numbers. Hence, since fg carry the group structure of a group of in-
volutions, the only possible winding numbers for the fg are ±1. Moreover, conjugation
with h does not change the winding number. We define the character ur : g 7→ ±1, via
to be the winding number of fg. We can represent the graph of any function f : T → T
on a square (−π, π] × (−π, π] with periodic boundary conditions, i.e. −π ≡ π. Then
ur again distinguishes whether fg is monotonically increasing or decreasing, of course,
interpreted apart from jumps between the identified points−π and π. We will keep this
representation in mind and identify points on the circle by angles in (−π, π]. Accord-
ingly, we call functions fg with ur(g) = ±1 increasing or decreasing. In this picture the
involution property of a function f is again equivalent to the graph of f being reflection
symmetric with respect to the main diagonal, similar to the Hamiltonian case. Due to
the periodic boundary conditions, however, there are now increasing involutions which
are different from the identity (see, e.g. Figure 2.3 b)).

For the group fG = {fg|g ∈ G} there are three cases to distinguish:

1. The trivial case fG = {id}.

2. fG contains exactly one decreasing element.

3. fG contains at least one increasing element distinct from the identity.

These capture all possibilities for fG. Indeed, if fG contains more than one decreasing
element, the product of two of them is increasing, and we are in case 3. In the first case,
there is nothing to do. Hence we start with the first non-trivial case.
Case 2:

5The choice of notation for the character ur is explained below the proof.
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Let f be the decreasing involution. Then, apart from the identity, this must be the only
element in fG, since any non-trivial increasing involution would produce another de-
creasing one after concatenating it with f . An involution on the circle has either zero,
two or infinitelymany fixed points (see e.g. [Pfe74]). Hence, since f is decreasing, it has
exactly two fixed points6. We start by moving one of these fixed points to 0 ∈ (−π, π] by
conjugating with a shift h1. Without loss of generality, we can assume the second fixed
point x0 to be greater than zero (otherwise move the second fixed point to zero in the
first step). In a second step, we can now move x0 to π, without changing f(0) = 0. This
can be done by conjugating with

h2(x) =


x0
π x −π ≤ x < 0
π
x0
x 0 ≤ x < x0

x− (π + x0) x0 ≤ x < π

.

We are left with a decreasing involution f̃ = h ◦ f ◦ h−1, h = h2 ◦ h1, the graph of
which connects the points (−π, π) and (π,−π), passing though (0, 0). In a final step, we
straighten this graph by conjugating with the homeomorphism

h3(x) =

{
x −π ≤ x ≤ 0

−f̃(x) 0 < x ≤ π,
(2.29)

as in the proof of Proposition 2.2.1.
We get f̂(x) = h ◦ f ◦ h−1(x) = −x, with h = h3 ◦ h2 ◦ h1, which gives f̂(z) = z−1 on

the circle in the complex plane. Hence, f̂ ∈ fG is characterized by ur(g) = −1.
Case 3:
Let f be an increasing element in fG different from the identity. Then, it cannot have
any fixed points7, and since the number of fixed points is constant under conjugation it
can also not be transformed into the identity this way. However, it can be deformed to
the π-shift via conjugation. For this, we first conjugate with a shift h1, such that (0, π) ≡
(0,−π) lies on the graph of f̃ = h1 ◦ f ◦ h−11 . Note that this also fixes (π, 0) ≡ (−π, 0),
due to the mirror symmetry with respect to the main diagonal. Secondly, we straighten
the connecting path between (−π, 0) and (0, π) in the graph of f̃ , as well as its mirror
image, by conjugation with

h2(x) =

{
f̃(x)− π −π ≤ x < 0

x 0 ≤ x < π
. (2.30)

The resulting s := h ◦ f ◦ h−1, h = h2 ◦ h1 is the shift x 7→ x+ π (see Figure 2.3 (b)) or,
the rotation z 7→ eiπz = −z, when the circle is considered in the complex plane.

6A decreasing involutions f has at least one fixed point, because its graph intersects the main diagonal
at least once, but cannot have infinitely many ones. Hence, the only possibility for a decreasing involution
is to have two fixed points.

7The only increasing, continuous and mirror symmetric graph that intersects the main diagonal is the
main diagonal itself.
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Since fG is abelian, any further element fg has to commute with this shift. This π-
shift invariance is equivalent to the equality of the graph of fg in the off-diagonal tiles,
as well as the diagonal tiles respectively in the square [−π, π] × [−π, π]. I.e. equality of
the graph in the tiles A = [−π, 0] × [0, π] and D = [0, π] × [−π, 0], and the same for B
and C:

A B

C D

Combining this with the mirror symmetry with respect to the main diagonal, we also
find that the graph is mirror-symmetric in each quadrant with respect to the reflection
on the quadrants diagonal. This means that, by the same reasoning as in the proof of
Proposition 2.2.1, there is no further increasing element in fG, besides the identity and s.
Moreover, this also restricts the possible number of decreasing elements in fG because
these would form a conjugacy class, which has to be of the same size as the increasing
functions. Hence, there are either no or exactly two further elements in fG, which are
decreasing. However, it suffices to take only one of these into further consideration,
since the second one is automatically taken care of by the group structure of fG (fg2 =
fg1 ◦ s).

Let d ∈ fG be one of the decreasing elements. We will bring this into standard form,
again by conjugating with suitable homeomorphisms hi. In this case, however, we need
to pay attention that each hi is π-shift invariant, i.e. commutes with s. As a first step,
we move one of the fixed points of d to π/2. This can be done by conjugating with
an appropriate shift h3. Both being shifts, s and h3 certainly commute, and hence, we
keep the π-shift invariance during this process. Moreover, this automatically moves the
second fixed point to−π/2due to the symmetry described above. We can now conjugate
with a final homeomorphismh4, which transforms the graph of d̃ = h4◦d◦h−14 to straight
lines between (0, π) and (π, 0), and (−π, 0) and (0,−π) (see Figure 2.3 (d)). This can be
archived via

h4(x) =


π − d̃(x) −π ≤ x < −π/2
x π/2 ≤ x < 0

π − d̃(x) 0 ≤ x < π/2

x π/2 ≤ x < π

, (2.31)

which is invariant under shifts by π and hence, commutes with s. One checks by direct
computation, that the result coincides with x 7→ π − x for x > 0 and x 7→ −x − π for
x < 0, i.e. d̃(z) = −z−1 on the unit circle. The second decreasing involution is then given
by s ◦ d(z) = z−1.

In summary, we constructed in each case a homeomorphism h, which transforms
each element in fG to one of the four standard involutions shown in Figure 2.3. Defining
the character s : G→ {±1} by

s(g) = (−1)fg(0)/π,
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which measures the “π-shift content” of fg, allows us to label each of these possibilities
by the character pair (ur, s), as in (2.28).

The choice of notation for ur becomes clear by considering the time evolution op-
erator Ut = exp(iHt) for an admissible Hamiltonian H . In this case, ur(g) = u(g)r(g),
where r(g) is the reversing character for theHamiltonian. We can use this relationship to
define the reversing character for general unitaries without referring to the Hamiltonian
case:

r(g) := u(g)ur(g).

In this sense, the new element in the unitary case is the sign s(g). Similarly as before, we
henceforth reduce our considerations to the actions induced by these three characters
(u, r, s):

Definition 2.2.9. Let ρ be a representation of a symmetry type, together with two characters
r, s : G→ {±1}. Then a unitary operators, which satisfies

g(U) = ρgUρ
∗
g = s(g)Uur(g), (2.32)

with ur = u ◦ r is called admissible for ρ.

The notion of redundancy of the Hamiltonian case directly transfers to unitary op-
erators, and we will not state it again here. Similar to the above, the obvious candidate
for a subgroup of redundant symmetries is

G111 = {g ∈ G|u(g) = r(g) = s(g) = 1},

i.e. the common kernel of the three characters in the unitary setting. Note that addi-
tionally taking the character s into account does not change the proof of Theorem 2.2.6.
Hence:

Proposition 2.2.10. Let [ρ] be a symmetry type of a symmetry group G without redundant
symmetries for unitary operators. Then G111 = e and every symmetry g ∈ G is uniquely
characterized by the triple (u(g), r(g), s(g)).

This leads to the following 8 possible symmetries:

g (u, r, s)

e ( 1, 1, 1)
σ ( 1, 1, 91)
γ ( 1, 91, 1)
σγ ( 1, 91, 91)

g (u, r, s)

τ (91, 1, 1)
στ (91, 1, 91)
η (91, 91, 1)
ση (91, 91, 91)

, (2.33)

which allow for 16 possible symmetry groups: There are 7 groups with just one non-
trivial element, 7with three non-trivial elements, the full group and the trivial one. We
can now count the number of possible symmetry types according to Corollary 2.1.8.
The groups with one non-trivial element lead to one symmetry type if the element is
unitary and two otherwise, whereas the group with three non-trivial elements lead to
two symmetry types in the purely unitary case and four, if antiunitary elements are
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n φ(n) group elements # types
1 e 1
2 σ 1
3 13 γ 1
4 τ 2
5 στ 2
6 14 η 2
7 σ, γ, σγ 2
8 σ, τ, στ 4
9 σ, η, ση 4
10 15 γ, τ, η 4
11 16 γ, στ , ση 4
12 σ, γ, σγ , τ, στ , η, ση 16

Σ : 43
13 3 σγ 1
14 6 ση 2
15 10 σγ , τ, ση 4
16 11 σγ , στ , η 4

Σ : 54

Figure 2.4: List of different symmetry groups generated by the three character values
(u, r, s) according to (2.33). The lower four groups are the images of four of the upper
12 groups under φ. A missing entry in the φ-column indicates φ(G) = G. The right
column counts the number of different symmetry types for each group.

contained. Finally, for the whole group there are 16 different symmetry types. Together
with the trivial group these add up to 54 different symmetry types (see Table 2.4).

However, not all of these 54 cases are fundamentally different when it comes to the
task of topological classification of unitaries, since there is yet another phase freedom
we can use to reduce the number of cases. Multiplying a family of unitary operators
with a constant phase U 7→ λU does not change its topological properties, i.e. we are
free to choose this phase in a convenient way. The operation U 7→ λU is reflected in the
following action of the symmetries on Û :

g(Û) = λug(U) = λu(1−r)sÛur =

{
sÛur, r = 1

λ2usÛur, r = −1.
(2.34)

We could now again apply Proposition 2.2.8 and investigate which possibilities emerge
from this. However, we can equivalently only allow those λ, which keep the form of
Proposition 2.2.8 (g(Û) = ±Û±1) in the first place. It is easily verified that this is only
the case for λ = ±1 and λ = ±i. For λ = ±1 the symmetry conditions are unchanged,
but for λ = i (and equivalently also for λ = −i) we get a different action.

Lemma 2.2.11. Let G be a symmetry group without redundant symmetries. Then the map
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U 7→ Û = iU induces an isomorphism

φ : G→ G′, (u, r, s) 7→ (u, r, rs) (2.35)

Proof. For λ = i the u-dependence in (2.34) vanishes andwe get g(Û) = rsÛur. Hence, g
acts on Û with the character values (u, r, rs). BecauseG does not contain any redundant
symmetries, i.e. every group element is uniquely labelled by the character triple (u, r, s)
by Theorem 2.2.10, this induces amapφ : (u, r, s) 7→ (u, r, rs) fromG to a possibly differ-
ent group G′. Since u, r and s are characters with r2 = 1, φ clearly is a homomorphism,
which is one to one and onto due to r2 = 1 and therefore φ ◦ φ = id. Hence G and G′
are isomorphic.

The possible group elements on which φ acts non-trivially are the pairs (γ, σγ) and
(η, ση). These are mapped to each other respectively, i.e. φ(γ) = σγ , φ(η) = ση, with
φ ◦ φ = id. Consequently, 11 of the groups we identified are affected by φ. If only one
element of the pairs is part of a group, the whole group gets mapped to another one,
which is the case for 8 groups, wherefore we can drop four of them (the lower part
in Table 2.4), together with all their corresponding types. This leaves us with the 12
symmetry groups listed in the upper part of Table 2.4. Counting the possible symmetry
types for these 12 groups according to Corollary 2.1.8 would lead to 43 types (see the
last column in Table 2.4 for the number of types for each group).

Moreover, φ does not only affect the general group structure, it also induces a map-
ping on the level of symmetry types. SinceG andG′ are isomorphic, each representation
g 7→ ρg of G defines a representation g′ 7→ ρφ−1(g′) of G′, with

ρgUρ
∗
g = sgU

urg ⇔ ρφ(g)(iU)ρ∗φ(g) = sφ(g)(iU)urφ(g) . (2.36)

Therefore, each symmetry type [ρ] ofG gets assigned a unique symmetry type [ρ ◦φ] of
G′ by φ, with [ρ] ̸= [ρ ◦ φ] in general.

Three of the remaining 12 groups either contain one of the pairs (γ, σγ) and (η, ση)
or both, i.e. the groups 7, 9 and 12 in Table 2.4. These are affected differently by φ:

• Group 7 is represented purely unitary, wherefore, according to Lemma 2.1.7, there
are two types corresponding to the sign c = ±1 of the commutation character on
the two generators. Usually we chose σ and γ as generators, but for the sake of the
current discussion, choosing γ and σγ is more convenient. In this way it becomes
clear that the two symmetry types of group 7 are invariant under the action of φ,
because c(γ, σγ) = c(σγ , γ) = c(φ(γ), φ(σγ)). This argument also applies to group
12, which also contains γ and σγ .

• Group 9 and 12, on the other hand, contain the pair η and ση, for which the action
of φ on the symmetry type becomes non-trivial. Since there is only one antiuni-
tary generator, which we choose to be η here, the effect on the symmetry type is
determined by the square of η alone. Hence, whenever η2 ̸= σ2η , we get [ρ] ̸= [ρ◦φ],
because the sign of the antiunitary generator changes under φ. This maps two of
the types of group 9 and eight types of group 12 pairwise onto each other, respec-
tively.
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The relation between the types [ρ] and [ρ ◦ φ] originates from a simple phase multi-
plication U 7→ iU of admissible unitaries. Therefore, a classification of the set of admis-
sible unitaries has to be equivalent for both types: There exists an admissible unitary
for ρ′ = ρ ◦ φ, if and only if there exists one for ρ. Moreover, the spectral orbits (which
we introduce in the next section) and the corresponding gap conditions are similarly
related via a rotation by π/2 in the complex plane, i.e. multiplication by i. In particu-
lar, the index groups (see Proposition 2.3.8) of the two types will be the same. Hence,
we consider the symmetry types in the five pairs mentioned in the second bullet point
above to be equivalent, respectively. Consequently, we drop one type of each pair from
the list of distinct types in the following discussions, which further reduces the number
of distinct types from 43 to 38.
Corollary 2.2.12 (38-fold way). The number of independent symmetry types induced by the
characters u, r and s is 38.

All groups and types, together with their spectral orbit, their defining properties,
their images under φ as well as further quantities, which will be discussed in the fol-
lowing are listed in Table 2.1.

Connection to the Bernard LeClair symmetry classes [BL02]

Let us particularise the connection of the considerations here to the work by Bernard
and LeClair [BL02], which we already mentioned in the introduction to the present
chapter. The authors discuss symmetry classes for complex (non-hermitian) matrices
M , obeying one or more of the following set of symmetries8:

C sym. : cMc∗ = ϵcM , cc = ±1
P sym. : pMp∗ = −M , p2 = 1

Q sym. : qMq∗ =M∗, q2 = 1

K sym. : kMk∗ =MT , kk = ±1,

(2.37)

where c, p, q and k are unitary operators, implementing the symmetries. The symmetry
transformations are assumed to commute, which, on the level of the unitary operators,
implies

pc = ±cp, pk = ±kp, qp = ±pq,
qc = ±cq, qk = ±kq, ck = ±kc.

(2.38)

Bernard and LeClair identify 389 different symmetry classes, based on the involved sign
choices and equivalences they find. These classes correspond to the symmetry types we
identified above.

In order to translate the conditions to our setting, we first have to get rid of the basis
dependent operations (·) and (·)T . This can be done by taking c and k to be antiunitary
instead of unitary operators. We get

C sym. : cMc∗ = ϵcM , c2 = ±1
K sym. : kMk∗ =M∗, k2 = ±1

(2.39)

8Note that the notation is adjusted to the convention here.
9In the first version (2001) they identify 43 classes and corrected it to 38 in a second version (2020).
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and all commutation relations also boil down to just the sign choices, representing the
commutation character from our setting.

The symmetry transformations are then easily identified via the character values
(u, r, s). For unitaryM we get

C ≡ (−1, 1, ϵc), P ≡ (1, 1,−1),
Q ≡ (1,−1, 1), K ≡ (−1,−1, 1).

(2.40)

Comparing these with (2.33), we get C ≡ τ for ϵc = 1, C ≡ στ for ϵc = −1, P ≡ σ,
Q ≡ γ and K ≡ η. Together with the trivial symmetry, these are six of our eight non-
redundant symmetries. The missing ones (σγ ≡ (1,−1,−1) and ση ≡ (−1,−1,−1))
could be included by introducing signs ϵq and ϵk. But, as Bernard an LeClair argue, this
would not lead to fundamentally different symmetry transformations, since these can
also be archived from the given ones by considering iM instead of M , which exactly
matches the action of φ on γ and η in our approach (see e.g. Table 2.4).

To conclude this interlude, let us comment on the differences between the two ap-
proaches. While, in the end, considering an isomorphic set of symmetry transforma-
tions and counting the same number of different types emerging from these, Bernard
and LeClairs ansatz lacks the generality our approach provides. We start with an ar-
bitrary number of involutive symmetries, with an arbitrary continuous action on time
evolution operators, discuss the possible different types of representations and reduce
these to a minimal set of non-redundant types.

This way, we can be sure that the 38 symmetry types are indeed an exhaustive list
of structurally different symmetry types for unitary operators. In [BL02] on the other
hand, the authors define the symmetry transformations in a rather ad hoc way, without
going into great detail about the origin of such assumptions. Moreover, in our approach,
we chose to represent the symmetries by unitary and antiunitary operators, which, to-
gether with the different levels of generality our approach exhibits (group, symmetry
type, representation), gives a clearer picture as opposed to the corepresentations with
modified multiplications laws Bernard and LeClair use for their considerations. This is,
however, more a matter of taste than an actual difference.

2.3 The symmetry index
Having identified the possible symmetry types for the specific settings (Hamiltonians,
i.e. continuous-time systems and unitaries, i.e. discrete-time systems), we now proceed
with the classification task by defining an index for finite-dimensional representations
of any symmetry type. This will eventually lead to a classification of operators on sep-
arable Hilbert spaces by applying this index classification to the symmetry protected
finite-dimensional eigenspaces. The key structure for this task is the so-called symme-
try index, which labels the equivalence classes of finite-dimensional representations up
to trivial direct summands for each symmetry type. These equivalence classes naturally
form a group, which we call the index group, and the symmetry index assigns a unique
element of this group to each finite-dimensional representation of a symmetry type.
The formal definition of the symmetry index originated in [CGS+16] and was further
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developed and fully exploited for the symmetry types of the tenfold way in [CGG+18].
Here, we extend this definition to all 38 distinct symmetry types and compute the cor-
responding symmetry groups.

In order to define the index group and the symmetry index, we need to investigate
how the action of the symmetries influences the spectrum of the admissible operators
under consideration. Althoughwe are only dealing with finite-dimensional representa-
tions of the symmetry groups under considerations at the moment, we will, in foresight
of the following classification tasks, formulate the following also for operators on an
infinite-dimensional Hilbert space.
Lemma 2.3.1. LetH and U be an admissible Hamiltonian, respectively unitary for a symmetry
g with the character values (u, r) and (u, r, s), respectively. Then:

• When z ∈ σ(H) ⊂ R, we also have rz ∈ σ(H). I.e. symmetries with r = −1 impose a
reflection symmetry on the spectrum with respect to the origin.

• When λ ∈ σ(U) ⊂ C, we also have sλr ∈ σ(U). I.e. symmetries with r = −1 impose
a reflection symmetry with respect to the real line and symmetries with s = −1 impose a
reflection symmetry with respect to the origin on the spectrum of U .

Proof. HamiltoniansH : Let z be in the spectrum ofH , i.e. (H − z) is not invertible and
let ρg be the representing operator for g. Then

(H − z)−1 /∈ B(H)⇔
(
ρg(H − z)ρ∗g

)−1
/∈ B(H)

⇔ (rH − z)−1 /∈ B(H)
⇔ (H − rz)−1 /∈ B(H),

where we used z ∈ R in the second step.
Unitaries U : Let λ be in the spectrum of U . Then

(U − λ)−1 /∈ B(H)⇔
(
ρg(U − λ)ρ∗g

)−1
/∈ B(H)

⇔ (sUur − λu)−1 /∈ B(H)
⇔ (U − sλr)−1 /∈ B(H),

where, in the last step, we used U−1 = U∗ and λ−1 = λ.

For Hamiltonians the chiral symmetry (with (u, r) = (1,−1)) as well as the particle
hole symmetry (with (u, r) = (−1,−1)) impose a reflection with respect to the origin.

H :
0

r = −1

This singles out the zero as the only invariant point in the spectrum of admissible oper-
ators. For unitaries, the actions on the spectrum are slightly more complex. Symmetries
with r = −1 impose a reflection on the real line, whereas symmetries with s = −1 im-
pose a reflection on the origin. For a symmetry group with more than one symmetry,
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these relations impose certain orbits of eigenvalues of an admissible unitary under the
action of the whole group. Given an eigenvalue λ ̸= ±1,±i, each symmetry group im-
poses one of the following orbits: {λ}, {λ, λ∗},{λ,−λ} or {λ, λ∗,−λ,−λ∗}. Pictorially
these orbits are represented by a point, a vertical line, a diagonal line passing through
the origin or a rectangle.

U :

r = −1 s = −1 both symmetries

In principal, also the orbit {λ,−λ∗} is possible, but all symmetry groups, with this orbit
can be mapped to other ones via U 7→ iU (see the discussion before Corollary 2.2.12).
However, note that as a limit case of a rectangle, the horizontal line with {λ} = {±1},
as well as the vertical line {±i} are still contained.

This singles out certain elements of the spectrum in two of the situations. For r = −1,
the eigenspaces at ±1 are invariant under the symmetry. For the rectangular orbits, we
get two pairs of eigenspaces, each of which is invariant as a pair. On the one hand,
the combined±1-eigenspacesH+1⊕H−1 are invariant under the symmetry and on the
other, so are H+i ⊕ H−i, the eigenspaces corresponding to ±i. One might now argue
that this last property is also true for the reflection on the origin. However, the reflection
symmetry has the same action on every other point and, therefore, does not single out
specific eigenspaces. For the vertical reflection and the rectangular orbit, on the other
hand, the described parts of the spectrum are special because the orbit is reduced on
these points. Similar to Hamiltonians, our classification of admissible operators builds
on these invariant eigenspaces. In contrast to self-adjoint operators, however, there are
more than one of these invariant spaces, resulting in a richer classification.

In order to come up with the relevant equivalence relation between representations
of an arbitrary but fixed symmetry type, we will start by delimiting the concept of a
trivial representationwith respect to the symmetry indexwe are aiming for. Tomotivate
the following definition, let us consider two simple examples.
Example 2.3.2. Let H = C2 and consider a representation of the particle-hole symmetry η ≡
(−1,−1, 1), which we assume to act as the complex conjugation with respect to the standard
basis, i.e. η = K. Hence, by ηUη∗ = U , an admissible U must have real matrix elements.
Moreover, by r(η) = −1, η imposes a vertical orbit on the eigenvalues of U (see Lemma 2.3.1).
This means that all eigenvalues except those at ±1 must appear in pairs {λ, λ∗}. Hence, for
any continuous deformation of U in the set of admissible unitaries, the non-real eigenvalues are
moved in pairs. Consequently, e.g. σz cannot be continuously connected with 1without breaking
the symmetry on the way, since the−1 eigenspace is one-dimensional and therefore pinned to the
eigenvalues −1.
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Therefore, the set of η-admissible unitaries is split into two connected components, distinguished
by the −1 eigenspace dimension parity. This prototype of an invariant will later turn out to be
the only necessity also in arbitrary dimensions.

Example 2.3.3. Wedouble theHilbert space dimension, i.e.H = C4, but keep η = K. Moreover,
let us add another symmetry, namely σ ≡ (1, 1,−1), represented by σ = σz ⊗ 1. The resulting
symmetry type imposes a rectangular orbit on the eigenvalues of an admissible U . Consider the
following two examples:

U1 =

(
0 R(θ)

R(θ) 0

)
and U2 =

(
0 1

σz 0

)
, (2.41)

where R(θ) = exp(−ixσy) denotes the standard 2× 2 real rotation matrix. Both unitaries have
real matrix entries and are off-diagonal with respect to the σ-eigenbasis, and hence, admissible
for the symmetry representation under consideration.

While the eigenvalues of U1 ({±e±iθ}) can realize any rectangular orbit by varying θ, those
of U2 ({±1,±i}) are pinned to the symmetry invariant points of the spectrum.

and

Again, there is more than one connected component of admissible unitaries: one without eigen-
values, pinned to the symmetry invariant points and possibly multiple ones with “symmetry
protected” eigenspaces. Moreover, we again find, that while a reduced representation on one of
the symmetry invariant eigenspaces might allow for admissible unitaries, it leaves no room for
non-trivial homotopies.

In both examples above, we encountered unitaries, which did not allow for any con-
tinuous deformation without breaking the symmetry. In both cases, these unitaries
hosted sub-representations on their symmetry protected eigenspaces, on which only
special admissible unitaries exist (a one-dimensional one with U = ±1 in the first case
and a two-dimensional one with U ∈ {±σz,±iσz} in the second). These, in this sense,
non-trivial representations are what we will base our classification on. To this end, let
us specify what we mean by trivial in this context, or as we will call it balanced:

Definition 2.3.4 (Balanced). We call a representation of a symmetry type balanced if there
exists an admissible unitary operator, which is gapped at the symmetry protected points of the
spectrum.

Whenever a sub-representation on one of the symmetry protected parts of the spec-
trum of an admissible operator is balanced, we can continuously deform these eigen-
spaces of the spectrum away from ±1 and ±i. Indeed, the existence of a gapped ad-
missible unitary on these spaces leaves enough room for the deformations that where
excluded in the examples above. In general, picking the eigenbasis of the gappedunitary
inside the respective eigenspace, we can continuously connect the±1 or±i eigenvalues
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of the original operator with the eigenvalues of the gapped one, without changing the
eigenvectors.

Note that in this definition, we only include the existence of admissible unitaries
and do not address Hamiltonians. However, restricting ourselves to only unitaries is
sufficient for the following considerations. Indeed, the tenfold way is contained in the
38 distinct symmetry types for unitary operators. Moreover, we have the following cor-
respondence between Hamiltonians an unitaries for the symmetry types of the tenfold
way.
Lemma 2.3.5. Let ρ be a finite-dimensional representation of a symmetry type of the tenfold
way, i.e. s(g) = 1 for all g ∈ G. Then there exists an admissible (and gapped) Hamiltonian if
and only if there exists an admissible (and gapped) unitary.

Proof. Let g ∈ Gwith character values u = ±1, r = ±1 and s = 1, andU be an admissible
unitary U . Then

HU = i(U − U∗) (2.42)
defines a Hamiltonian, which is admissible for g in the Hamiltonian sense:

g(HU ) = g(iU)− g(iU∗) = ui(Uur − (U∗)ur) = rHU ,

where we used iu = ui for u = ±1 in the second and u2 = 1 as well as (U−U∗)r = r(U−
U∗) for r = ±1 in the last step. On the other hand, given an admissible HamiltonianH ,
denote by P± and P0 the eigenprojections corresponding to positive/negative and zero
eigenvalues of H , respectively. Then

UH = i(P+ − P−) + P0 (2.43)

defines an admissible unitary:

g(UH) = g(i(P+ − P−)) + g(P0) = iu(Pr − P−r) + P0 = urU = Uur,

where we used g(P±) = P±r, which follows from g(H) = rH .
Note that in particular, the symmetry protected eigenspaces of U andH result in the

symmetry protected eigenspace ofHU and UH , respectively. Therefore,HU and UH are
gapped if and only if U and H are.

Because of this observation, we restrict our considerations to unitary operators for
the rest of the chapter, keeping in mind that we could equally well work with Hamil-
tonians in the tenfold way. Later, however, when we address physical systems in one
dimension, i.e. quantum walks, considering unitaries instead of Hamiltonians makes a
difference also in case of the tenfold way. On the one hand, having two symmetry pro-
tected eigenspaces instead of one introduces an additional invariant for unitary opera-
tors compared to the Hamiltonian setting. On the other, for symmetry types containing
symmetries with s = −1, there is no such correspondence between unitaries andHamil-
tonians. For this reason, many of the stability properties of the topological classification
of operators, which are admissible for the tenfold way, do not transfer to the symmetry
types of the 38-fold way (see, e.g. Section 3.2, in particular, Proposition 3.2.8 and also
Section 3.5, in particular the subsections 3.4.3 and 3.5.1).
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The definition of a balanced representation leaves room for both situations discussed
earlier. On the one hand, the symmetry types, which leave invariant ±1 respectively
and on the other also the types, for whichH+1 ⊕H−1 andH+i ⊕H−i are invariant. We
will specify which of these situations is present when we compute the index groups for
the different scenarios. As already stated, balanced representations take the role of the
trivial class in our index classification and the index will, roughly speaking, measure
how much a given finite-dimensional representation differs from a balanced one. The
equivalence relation between two representations is defined as follows:

Definition 2.3.6 (Equivalence). Two finite-dimensional representations ρ and ρ′ of the same
symmetry type S (possibly with different dimensions) are called equivalent, if there are finite-
dimensional balanced representations β and β′ of the same symmetry type, such that ρ⊕ β and
ρ′ ⊕ β′ are unitarily equivalent, i.e. there is a unitary V , such that

ρ⊕ β = V (ρ′ ⊕ β′)V ∗. (2.44)

Note that this relation is obviously symmetric and reflexive and transitivity follows
from the observation, that the direct sum of balanced representations is balanced.

Given a symmetry type, the set of equivalence classes of finite representations with
respect to Definition 2.3.6, equipped with the direct sum of representatives as the oper-
ation naturally forms a commutative monoid. The neutral element is the equivalence
class of balanced representations. A natural step in this situation would be to con-
struct theGrothendieck group (see, e.g. [WO93, AppendixG]) from thismonoid, which
would then serves as the classifying structure for the given symmetry type. However, as
we will show now, for every representation ρ, there exist another representation ρ̃, such
that ρ ⊕ ρ̃ is balanced. In other words: the set of equivalence classes already forms an
abelian group with respect to the direct sum. This group will be called the index group
of the symmetry type and is the crucial structure underlying our topological classifica-
tion of quantum walks.

Lemma 2.3.7. Let ρ be a representation of some symmetry type [ρ]. Then there is a representation
ρ̃ of the same type, such that ρ⊕ ρ̃ is balanced.

The Lemma holds for both possibilities for the definition of a balanced representa-
tion. On the one hand, for the case, where “balanced” refers to the existence of a unitary
which is gapped at ±1 and on the other for the definition of balanced, with respect to
unitaries gapped at ±1 and ±i. Since it includes the first case, it suffices to prove the
latter case.

Proof. First note that we have to at least quadruple the dimension of the system, since
the representation we start with could be one-dimensional, and the smallest dimension
allowing for an admissible unitary with gaps at all symmetry protected points {±1,±i}
is four-dimensional (see e.g. Example 2.3.3). Given ρ, consider ρ̃ = (ur ·ρ)⊕ (s ·ur ·ρ)⊕
(s · ρ), where ur · ρ denotes the representation, where every ρg is replaced by ur(g)ρg.
Every ρ̃g is a direct sum of ±ρg with possibly different signs. Since multiplying with
±1 does not change the commutation character, ρ̃ is of the same type as ρ and we get
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ρ ⊕ ρ̃ = diag(ρ, ur · ρ, s · ur · ρ, s · ρ), which allows for the admissible unitary U =
1√
2

(
0 1
−1 0

)
⊗
(
1 −1
1 1

):
g(U) =

1√
2

(
0 1
−1 0

)
⊗
(
s · ur −s
s s · ur

)
= sUur

Note that in order to streamline the notation, we used just ur, s or 1 to denote the re-
spective multiplication operators on the finite-dimensional Hilbert space ρ is defined
on. The eigenvalues of U are ±e±iπ/4, and hence, ρ⊕ ρ̃ is balanced.

Note that if we are facedwith a symmetry typewith vertical eigenvalue orbit, i.e. one
where balancedness refers to gaps only at ±1, we can choose the simpler ρ̃ = ur · s · ρ.
With this U =

(
0 −1
1 0

) turns out to be admissible for ρ⊕ ρ̃ and gapped at ±1.

With this at hand, we are now able to formulate the main result of this section.

Proposition 2.3.8. Let S be a symmetry type and ρ be a finite-dimensional representation of S.
Then there exists an abelian group I(S) and a map si : ρ 7→ si(ρ) ∈ I(S), such that

i) si is surjective.

ii) si(ρ) = si(ρ′), if ρ = Uρ′U∗ for a unitary operator U .

iii) si(ρ⊕ ρ′) = si(ρ) + si(ρ′).

iv) si(ρ) = 0 if and only if ρ is balanced.

We call I(S) the index group of the symmetry type S and si(ρ) the symmetry index of the repre-
sentation ρ.

Note that we write the abelian group I(S) additively with neutral element 0.

Proof. Let I(S) be the set of equivalence classes of finite-dimensional representations
with respect to the equivalence relation from Definition 2.3.6. Then si can be defined
as the natural projection, mapping a finite-dimensional representation onto its equiva-
lence class. This already guarantees i). ii) follows from the definition of the equivalence
relation. The direct sum is an associative operation between finite-dimensional repre-
sentation and since ρ ⊕ ρ′ is unitarily equivalent to ρ′ ⊕ ρ, it establishes a commutative
operation on I(S). Since we already established the existence of an inverse in Lemma
2.3.7, the only thing we need to check is, that iii) does not depend on the representatives
ρ and ρ′. This also follows from Definition 2.3.6, since the equivalences ρ1 ∼ ρ2 and
ρ′1 ∼ ρ′2 imply the equivalence ρ1 ⊕ ρ′1 ∼ ρ2 ⊕ ρ′2. Hence, ⊕ is a well defined operation
on the equivalence classes, which turns the set of those into an abelian group. iii and
iv) are then a direct consequences of writing this abelian group additively with neutral
element 0.
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2.3.1 Index groups
Before we use the symmetry index for the topological classification of symmetric es-
sentially gapped unitaries, we compute the symmetry groups I(S) for all non-trivial
symmetry types S. To this end, let us collect some useful facts and assumptions, which
simplify these computations. In order to reduce notation, we denote the represented
symmetries simply by the symbols for the abstract group elements, given in (2.33), e.g.
σ instead of ρσ. It will be clear from the context, in which cases we consider the abstract
group elements or the actual (anti-) unitary operators on the Hilbert space.

Since an index group is defined via equivalence classes of finite-dimensional repre-
sentations with the group operation induced by the direct sum, the obvious strategy to
compute the index groups is to determine their generators: the irreducible representa-
tions (irreps) of the symmetry types. However, there is a subtlety to take into account.
In some cases, there exist representations, which do not allow for admissible unitaries
at all. This happens for example for the irreducible representations of some groups con-
taining σ ≡ (1, 1,−1) or τ ≡ (−1, 1, 1) with τ2 = −1 (see Lemma 2.3.10 for the precise
conditions). Since we aim for the classification of admissible unitary time evolution
operators, such irreducible representations do not contribute any valuable structure.
Therefore, we make the following assumption.

Assumption 2.3.9. We only consider representations of symmetry types, for which admissible
unitaries exist.

Besides computing such minimal representations, we need to characterize the bal-
anced representations for each type. On the one hand, the following lemma collects
some necessary conditions to fulfil Assumption 2.3.9. On the other, it collects necessary
conditions for balanced representations, which will be helpful for the actual computa-
tions later.

Lemma 2.3.10. Let ρ be a representation of some symmetry type S, such that there exist admis-
sible unitaries. Then:

i) If σ ≡ (1, 1,−1) is part of S, we must have trσ = 0.

ii) If S imposes a rectangular eigenvalue-orbit on admissible unitaries, dim ρ = 0 mod 2.

iii) If τ ≡ (−1, 1, 1) with τ2 = −1 is part of S, we have

dim ρ ≡ 0 mod
(
2 · |O1(S)|

)
, (2.45)

where |O1(S)| denotes the number of elements in the eigenvalue-orbits of the eigenvalue 1
under the action of the whole symmetry type S.

Moreover, let ρ be balanced. Then:

a) If γ ≡ (1,−1, 1) is part of S, we have tr γ = 0.

b) If σγ ≡ (1,−1,−1)S is part of S, we have trσγ = 0.
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c) If τ ≡ (−1, 1, 1) with τ2 = −1 is part of S, we have

dim ρ ≡ 0 mod
(
2 · |Oλ(S)|

)
, (2.46)

where |Oλ(S)| denotes the number of elements in the orbit of any eigenvalue λ /∈ {±1,±i}
of admissible unitaries under the action of the whole symmetry type S.

Proof. i): Let U be admissible. Then, in the σ-eigenbasis we have

σ =

(
1n 0
0 −1m

)
and U =

(
0 Unm

Umn 0

)
,

where Unm, Umn are n×m, resp.m× nmatrix blocks. By unitarity of U , each Ukl must
be unitary, which is only possible for n = m. Hence, we get trσ = n−m = 0.

ii): The extremal cases of rectangular eigenvalue-orbits are those containing only
±1 or ±i. Both contain at least two elements, wherefore an admissible U needs an even
number of eigenvalues.

a): Let tr γ ̸= 0, (w.l.o.g. tr γ > 0) and U be admissible, then there exists a basis,
such that

γ =

(
1n 0
0 −1m

)
and U =

(
Un Unm

Umn Um

)
,

with n > m and, the Ukl are n × m, resp. m × n matrix blocks. Admissibility of U
is now equivalent to Unm = −U∗mn, U∗n = Un and U∗m = Um. Unitarity of U implies
U∗nUn + U∗mnUmn = 1n. Moreover, since n > m, Umn has a non-trivial kernel K ⊂ Hn.
From this it follows that restricted to K, Un is unitary and due to the chiral symmetry
also self-adjoint. Therefore, Un and consequently alsoU have an eigenvalue at+1 or−1.
Hence, the representation cannot be balanced.

b): We can apply the same arguments as for γ, only with slight modifications: the
admissibility conditions are now Unm = U∗mn, U∗n = −Un and U∗m = −Um. With similar
reasoning, this forces U to have an eigenvalue at +i or −i, which is not balanced, since
every type containing σγ imposes a rectangular orbit on unitaries and hence, balanced
refers to an existing unitary with gaps at ±1 and ±i.

c) and iii): Let U be admissible and Uψ = λU . Then by
Uτψ = τU∗ψ = τλ∗ψ = λτψ,

τ leaves the eigenspaces of U invariant. Hence, by τ2 = −1, each of these eigenspaces
has even degeneracy. For iii) note that the λ = 1 (or equivalently λ = −1 or λ = ±i)
orbit is minimal.

Following Section 1.5.1 (in particular Lemma 1.5.8) and Section 2.1.2, we can now
easily identify the irreps of the symmetry types. Since we have to deal with at most
two unitary generators and one antiunitary one, there are, according to Corollary 2.1.9,
either at most four irreps maximally of dimension 2, or at most two irreps of dimension
four.

Wewill often determine index groups of the form nZ or nZ2, with n ∈ N. Of course,
these are isomorphic to Z and Z2, respectively, and we could equally well drop the
factor n. However, n refers to the dimensions of the minimal possible representations
and therefore carries an extra bit of information.
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Index group computations:

This section contains the computation of the non-trivial index groups for all 38 distinct
symmetry types. We collect the results in Table 2.1 on page 75.

Group 1 only contains the identity.

Group 2 is generated by σ ≡ (1, 1,−1), which does not single out an invariant point
in the spectrum. Hence, there exists no index group in the above sense.

Group 3 is generated by the chiral symmetry γ ≡ (1,−1, 1). Since γ is unitary, there is
only one symmetry type, with γ2 = 1.

Type 3 (AIII), γ: There are two one-dimensional irreps ρ± for this type, which are
defined by γ = ±1. By Lemma 2.3.10 tr γ = 0 is a necessary condition for a represen-
tation to be balanced. Moreover, by Lemma 2.3.7, the two irreps are inverses of each
other in I(S3). Indeed, U = iσx is admissible for γ = σz and gapped10. Hence, setting
si(ρ±) = ±1, we get

I(S3) = Z si(ρ) = tr γ. (2.47)

Groups 4 and 5: are generated by τ ≡ (−1, 1, 1) and στ ≡ (−1, 1,−1), respectively,
which do not single out an invariant point in the spectrum. Hence, there exists no index
groups in the above sense. There are two types, corresponding to τ2 = ±1 and σ2τ = ±1,
respectively.

Group 6: is generated by η ≡ (−1,−1, 1), which imposes a vertical orbit on the spec-
trum of an admissible U . There are two types, corresponding to η2 = ±1.

Type 8 (D), η2 = 1: By η2 = 1, there is always an invariant basis, with respect to
which η acts as the complex conjugation. Hence, there is only one one-dimensional irrep
with η = K. The only admissible unitaries are U = ±1, which are clearly not gapped.
However, combining two copies of the irrep admits the admissible and gapped unitary
U = iσy. Hence, the index group and symmetry index are given by

I(S8) = Z2 , si(ρ) = d mod 2. (2.48)

As already anticipated in Example 2.3.2.
10This is not the unitary suggested by Lemma 2.3.7 (iσy), but a unitarily equivalent one. We chose

iσx here because it enables us to directly reuse the present type later for some types of group 10 without
changing the generators.
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Type 9 (C), η2 = −1: Again, there is only one irrep, which is two-dimensional due
to η2 = −1. We can choose a basis in which η = iσyK. Again, U = iσy is admissible
and gapped. Hence, we conclude

I(S9) = 0. (2.49)

Group 7 is generated by the twounitary symmetriesσ ≡ (1, 1,−1) and γ ≡ (1,−1,−1),
which impose a rectangular orbit on eigenvalues of admissible unitary operators. There
are two different types, corresponding to c(σ, γ) = ±1 (which we abbreviate by cσγ and
similarly for the other cases in the following). Depending on this sign, the representa-
tion is either abelian, i.e. the irreps are one-dimensional and given by (γ, σ) = (±1,±1)
or the irreps are given by a copy of the Pauli matrices.

Type 10, cσγ = 1: This is the abelian case, where the irreps are characterized by
(σ, γ) = (±1,±1). However, by Lemma 2.3.10, whenever trσ ̸= 0, no admissible unitary
exists at all. Let πij , i, j = ± be the direct sum of two irreps respectively, such that
σ = σz for all i, j and i and j denote the respective signs of γ. I.e. in πij we have σ = σz ,
γ = diag(i, j), and σγ = diag(i,−j):

ρ π++ π+− π−+ π−−
γ 1 σz −σz −1
σγ σz 1 −1 −σz

. (2.50)

One readily checks that for each πij there exists an admissible unitary. However, the
representations can nevertheless not be balanced since they are two-dimensional, and
we need at least dimension four for a unitary with four gaps to exist.

By Lemma 2.3.10 a necessary condition for an admissible U , which is gapped at
±1 and ±i to exists is tr γ = trσγ = 0. Furthermore, by going through the possible
direct sums of building blocks πij , we verify that this condition is also sufficient. In the
following table, the check marks denote that an admissible unitary with gaps at±1 and
±i exists, and the crosses mean that no admissible unitary is gapped:

⊕ π++ π+− π−+ π−−

π++ × × × ✓
π+− × × ✓ ×
π−+ × ✓ × ×
π−− ✓ × × ×

(2.51)

For π++⊕π−− a possible unitary is given by U = 1/
√
2(1+ iσy)⊗σx, and for π+−⊕π−+

by U = 1/
√
2(iσz ⊗ σy + σx ⊗ σx). The other two combinations with a check mark are

obviously unitarily equivalent to these two cases.
Consequently, the symmetry group is given by

I(S10) = 2Z× 2Z , si(ρ) = (tr γ, trσγ). (2.52)
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Type 11, cσγ = −1: There is only one irrep ρ, which is given by the Pauli matrices.
Choose, e.g., σ = σz and γ = σx. Being two-dimensional, ρ cannot be balanced, since a
rectangular orbit without±1 and±i needs at least four dimensions. ButU = 1/

√
2(σx⊗

σx + iσy ⊗ σy) is admissible for ρ⊕ ρ and gapped at ±1 and±i. Hence, the index group
is given by

I(S11) = 2Z2 , si(ρ) = dim ρmod4. (2.53)

Group 8 is generated by σ ≡ (1, 1,−1) and τ ≡ (−1, 1, 1). These symmetries do not
single out invariant points in the spectrum, wherefore there are no index groups in the
sense defined above for the four different symmetry types of this group.

Group 9 is generated by σ ≡ (1, 1,−1) and η ≡ (−1,−1, 1), which impose a rectan-
gular orbit on the eigenvalues of admissible unitaries. Since there is only one unitary
generator, the unitary subgroup is irreducibly represented by σ = ±1. There then are
four types, corresponding to c(η, σ) = ±1 and η2 = ±1.

Type 16, (cση, η2) = (1,1): Symmetry type 16 is of type one in Lemma 1.5.8. There-
fore, the irreps are one-dimensional and can be chosen as σ = ±1 and η = K, the com-
plex conjugation with respect to the eigenbasis of σ. However, by Lemma 2.3.10, the
irreps do not allow for admissible unitaries. There is only one minimal representation
π, with σ = diag(1,−1) and η = K. Being two-dimensional π cannot be balanced, be-
cause of the rectangular orbit of admissible eigenvalues under the action of the whole
group. π⊕π on the other hand is balanced, sinceU = 1/

√
2
(
1 −1
1 1

)
⊗σy is admissible and

gapped at ±1 and ±i. Consequently, the index group is isomorphic to Z2. In order to
keep track of the fact, that a balanced representation has to be at least four-dimensional,
we write it as

I(S16) = 2Z2 , si(ρ) = dim ρmod4. (2.54)

Type 17, (cση, η2) = (1,−1): Symmetry type 17 is of type two in Lemma 1.5.8.
Hence, σ must be of the form σ = ±1 and, by η2 = −1, η = iσy. We denote these two
irreps by ρ±, where the sign distinguishes the sign of σ. By Lemma 2.3.10, none of the
irreps allows for unitaries to exist. Again, the minimal possible representation is given
by the direct sum of the two irreps π = ρ+ ⊕ ρ−. But in this case π is already balanced,
with the same unitary U as for type 16. Consequently:

I(S17) = 0. (2.55)

Type 18, (cση, η2) = (−1,1): This type falls under case three in Lemma1.5.8. Hence,
there is only one irrep ρ, with σ = σz and, by η2 = 1, η = σxK. The irrep allows for
admissible unitaries (i.e. U = σx), but since eigenvalue orbits are rectangular, it cannot
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be balanced. ρ⊕ ρ on the other hand is balanced, as considering U = 1/
√
2
(
1 −1
1 1

)
⊗ σx

shows. Similar to type 16, the index group is given by

I(S18) = 2Z2 , si(ρ) = dim ρmod4. (2.56)

Type 19, (cση, η2) = (−1,−1): Type 19 is the image of type 18 underφ from Lemma
2.2.11. The gap property at ±1 and ±i is invariant under multiplication by i, and there-
fore the index group is the same. Since the symmetry index is determined from the
dimension of the representation, the formula is not affected by φ.

Group 10 is generated by γ ≡ (1,−1, 1) and τ = (−1, 1, 1), which impose a vertical
orbit on the eigenvalues of admissible unitaries. The unitary subgroup is represented
by γ = ±1 (compare type 3) and there are four types, corresponding to the choices
c(γ, τ) = ±1 and τ2 = ±1.

Type 20 (BDI), (cγτ , τ2) = (1,1): Type 20 is of case 1 in Lemma 1.5.8, wherefore its
irreps ρ± are one-dimensional, with γ = ±1 and τ acting as the complex conjugation in
each irrep. Hence, we can apply the same arguments as for type 3, which again gives

I(S20) = Z , si(ρ) = tr γ. (2.57)

Type 21 (CII), (cγτ , τ2) = (1,−1): For this type γ and τ still commute, but because
of τ2 = −1 the type falls under case two in Lemma 1.5.8. Therefore, we again get two
irreps ρ±, which are of dimension 2 and correspond to γ = ±1 with τ = iσyK in both
cases. However, the arguments of type 3 are still valid and, since U = iσx⊗1 is gapped
and admissible for ρ+⊕ρ−, tr γ = 0 is again necessary and sufficient for a representation
to be balanced. Hence:

I(S21) = 2Z , si(ρ) = tr(γ). (2.58)

Type 22 (CI), (cγτ , τ2) = (−1,1): Because γ and τ anti-commute, this type is of
case three in Lemma 1.5.8. Hence, there is only one irrep ρ, with γ = σz and τ = σxK.
This is balanced, due to the existence of the gapped and admissible unitary U = iσx.
Consequently:

I(S22) = 0. (2.59)

Type 23 (DIII), (cγτ , τ2) = (−1,−1): This type is again of case three in Lemma
1.5.8, wherefore there is again only one irrep ρ, with γ = σz and τ = iσyK. The only
admissible unitaries for ρ are ±1, which are clearly not gapped. Combining two copies
of ρ on the other hand, admits the gapped unitary U = iσy ⊗ σx, wherefore we get

I(S23) = 2Z2 , si(ρ) = d mod 4. (2.60)
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Group 11 is generated by the two symmetries γ ≡ (1,−1, 1) and στ ≡ (−1, 1,−1),
which impose a rectangular orbit on the eigenvalues of admissible unitaries. The sym-
metry types are distinguished by the two signs c(γ, στ ) = ±1 and σ2τ = ±1.

Type 24, (cγστ , σ
2
τ ) = (1,1): The irreps of the unitary subgroup are given by γ =

±1. Since symmetry type 24 is if type one in Lemma 1.5.8, the basis can be chosen such
that στ = K is the complex conjugation in each irrep. Because the spectrum of any ad-
missible operator follows a rectangular orbit under the symmetries, no one-dimensional
representation allows for any admissible unitary. The same holds for any odd dimen-
sion. Hence, similar as for type 10, we define the minimal representations πij , in which
γ =

(
i 0
0 j

) and στ = K. It is then straight forward to find admissible unitaries for each
πij . However, being two-dimensional, none of these can be gapped at±1 and±i simul-
taneously. The following table shows whether the pairwise direct sums of the πij are
balanced or not.

⊕ π++ π+− π−+ π−−

π++ × × × ✓
π+− × ✓ ✓ ×
π−+ × ✓ ✓ ×
π−− ✓ × × ×

(2.61)

Note that since π+−⊕(π+− ⊕ π−+) ≃ π−+⊕(π+− ⊕ π+−) are unitarily equivalent, π+− ∼
π−+ are equivalent modulo balanced representations. tr γ = 0 is still necessary for a
representation to be balanced, but because of the considerations above it is not sufficient.
Instead, as the table shows, we also need the eigenspaces of γ to be even dimensional.
Hence, mapping ρ 7→ (tr γ,dimker(γ − 1) mod 2) = (tr γ, d+γ mod 2)we get

I(S24) = 2Z×Z2 , si(ρ) =
(
tr γ, d+γ mod 2

)
. (2.62)

Type 25, (cγστ , σ
2
τ ) = (1,−1): Symmetry type 25 falls under case two in Lemma

1.5.8. Consequently the irreps ρ± are given by γ = ±1 and στ = iσyK. None of the
irreps is balanced, due to Lemma 2.3.10. However, the direct sum ρ = ρ+ ⊕ ρ− of the
twodifferent irreps admits the admissible unitaryU = 1/

√
2
(

σx i·σz
i·σz −σx

), which is gapped
at ±1 and ±i. This renders the index group to be isomorphic to Z and setting the index
map to be tr γ, we find

I(S25) = 2Z , si(ρ) = tr γ. (2.63)

Type 26, (cγστ , σ
2
τ ) = (−1,1): In symmetry type 26 the antiunitary generator στ

anti-commutes with the unitary one (γ). Therefore, it falls under case three in Lemma
1.5.8, leaving only one one irrep ρ, defined by γ = σz and στ = σxK. Since ρ is two-
dimensional, it cannot be balanced. However, the sum of two copies ρ ⊕ ρ is balanced,
because it allows for the admissible unitary U = 1/

√
2
(

0 σx−i·1
i·1−σx 0

). Consequently,
the index group is given by

I(S26) = 2Z2 , si(ρ) = d mod 4. (2.64)
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Type 27, (cγστ , σ
2
τ ) = (−1,−1): Type 27 is similar to type 26, with the difference,

that the (single) irrep is defined by γ = σz and στ = i·σyK. Again, the sumof two irreps
is balanced, which is shown by admissibility of U = 1/

√
2
(

σz −i·σx
−i·σx −σz

). Therefore, we
again get

I(S27) = 2Z2 , si(ρ) = d mod 4. (2.65)

Group 12 is generated by the three symmetries γ ≡ (1,−1, 1), σ ≡ (1, 1,−1) and
τ ≡ (−1, 1, 1) and therefore contains all possible combinations of the character values
(u, r, s), which impose a rectangular orbit on the eigenvalues of admissible unitaries.
The symmetry types are distinguished by the four signs c(σ, γ), c(σ, τ) c(γ, τ) and τ2.
The first eight types (28 − 35) contain an abelian unitary subgroup. Therefore, we can
start the considerations with one of the previous types and add σ or τ appropriately,
by multiplying the dimension if needed. For the remaining types (36− 43) the unitary
subgroup exhibits two anti-commuting generators, wherefore the unitary irreps are al-
ways given by a copy of the Pauli matrices. We choose this as σ = σz and γ = σx. The
representation ρ of the whole type is then always unique (up to equivalence) and can be
obtained by adding τ appropriately, again by multiplying the dimension if necessary.

Type 28, (cσγ , cστ , cγτ , τ2) = (1, 1, 1,1): Type 28 falls under case one in Lemma
1.5.8. Therefore, we can tread it exactly as type 10, with an additional antiunitary gen-
erator. It is the simplest to choose η = γτ = K as the complex conjugation, which yields
τ = γη = γK. Since the gapped admissible unitaries we considered for type 10 are real,
they remain admissible also in this case, wherefore we again get

I(S28) = 2Z× 2Z , si(ρ) = (tr γ, trσγ). (2.66)

Type 29, (cσγ , cστ , cγτ , τ2) = (1, 1, 1,−1): This type is an example of case two in
Lemma 1.5.8. We can again start with the considerations for type 10 and double the
dimension for each representation in order to add τ . The specific realizations for σ and
γ can be obtained from those for type 10 via (σ, γ) 7→ (σ ⊗ 12, γ ⊗ 12) and we set τ =
(γ ⊗ iσy)K. We can then again use the same admissible gapped unitaries as before, to
construct unitaries for this type via Ui 7→ Ui ⊗ 12. This gives

I(S29) = 4Z× 4Z , si(ρ) = (tr γ, trσγ). (2.67)

Type 30, (cσγ , cστ , cγτ , τ2) = (1, 1,−1,1): Type 30 is similar to type 22 (CI), (with
the unique irrep γ = σz and τ = σxK), with an additional generator σ. By cσγ = cστ = 1
this additional generator can only be represented by σ = ±1, resulting in two inequiv-
alent irreps ρ±. However, by Lemma 2.3.10, the minimal representation admitting ad-
missible unitaries is ρ = ρ+⊕ ρ−, with γ = 1⊗ σz , τ = (1⊗ σx)K and σ = σz ⊗1. For ρ
we find the admissible gapped unitary U = 1/

√
2
(
σx ⊗

(
1 −1
1 1

)). Consequently, we get

I(S30) = 0. (2.68)
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Type 31, (cσγ , cστ , cγτ , τ2) = (1, 1,−1,−1): Type 31 contains type 23 (DIII), which
has only one irrep with γ = σz and τ = iσyK. By cσγ = cστ = 1, we can simply add
σ = ±1, resulting in two irreps ρ±. However, by Lemma 2.3.10, these do not allow for
any admissible unitaries, wherefore we get oneminimal representation via ρ = ρ+⊕ρ−,
with σ = σz ⊗ 1, γ = 1 ⊗ σz and τ = (1 ⊗ iσy)K. By Lemma 2.3.10, ρ is not balanced,
since 2 · |O(S)| = 8. For ρ ⊕ ρ, on the other hand, we certainly find an admissible
and gapped unitary. Indeed, note that ρ− = s · ρ+ and σxρ±σx = ur · ρ±. Hence,
ρ⊕ρ = ρ+⊕ρ−⊕ρ+⊕ρ− is unitarily equivalent to ρ+⊕ (ur ·ρ+)⊕ (ur · s ·ρ+)⊕ (s ·ρ+),
which is balanced for any choice of ρ+, by the arguments given in the proof of Lemma
2.3.7. We get

I(S31) = 4Z2 , si(ρ) = d mod 8. (2.69)

Type 32, (cσγ , cστ , cγτ , τ2) = (1,−1, 1,1): Starting with type 20 (BDI) (with the
one-dimensional irreps γ = ±1, τ = K) we need to add σ, such that cσγ = −cστ = 1.
Since type 32 falls under case three in Lemma 1.5.8, we get the two irreps ρ±with σ = σz ,
γ = ±1 and τ = σxK. By Lemma 2.3.10 these cannot be balanced (tr γ ̸= 0). Their sum
ρ = ρ+ ⊕ ρ− on the other hand admits the gapped unitary U = 1/

√
2
(
1 i
i 1

)
⊗ σx, which

yields
I(S32) = 2Z , si(ρ) = tr γ. (2.70)

Type 33, (cσγ , cστ , cγτ , τ2) = (1,−1, 1,−1): For this type we will make use of two
previous types. On the one hand, type 33 contains type 24 and on the other type 21 (CII).
The latter has two inequivalent irreps given by γ = ±1 and τ = iσyK. We need to add
σ, such that cσγ = −cστ = 1. This can be done by choosing σ = σz (or σx, which would
result in a unitarily equivalent irrep), yielding the two irreps ρ±. However, similar to
case 24, these irreps do not allow for any admissible unitaries: Admissibility for σ and γ
forces any admissible unitary to be of the form U = µσx+νσy, for appropriate µ, ν ∈ R.
But on such unitaries τ would impose the condition U = −U . From this we can also
conclude that the same holds for any sum of an odd number of irreps. Indeed, this
would imply a two-dimensional subspace, of the ±1/±i eigenspaces of U , carrying an
irrep and we get the same contradiction as above. Instead, similar to type 24, we define
minimal representations πij via σ = 1⊗ σz , γ =

(
i 0
0 j

)
⊗ 1 and τ = (1⊗ iσy)K, none of

which can be balanced due to τ2 = −1 and 2 · |O(S)| = 8. In fact, the consideration from
type 24directly transfer to this case andwe get the same combination table as before (see
(2.61)), with the only difference, that the dimensions of the involved representations are
doubled. Consequently, we get

I(S33) = 4Z× 2Z2 , si(ρ) =
(
tr γ, d+γ mod 4

)
. (2.71)

Types 34 and 35, (cσγ , cστ , cγτ , τ2) = (1,−1,−1,1) and (1,−1,−1,−1): Type 34
and 35 are the images of type 32 and 33 under φ from Lemma 2.2.11, respectively. Since
the gap property at ±1 and ±i is invariant under multiplication by i, the index groups
are the same. In the formulas for the symmetry index γ has to be replaced by φ(γ) = σγ .
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Type 36, (cσγ , cστ , cγτ , τ2) = (−1, 1, 1,1): Type 36 falls under case one in Lemma
1.5.8, wherefore τ can simply be added to the unitary irrep. We get ρ via σ = σz , γ = σx
and τ = K. Being two-dimensional, ρ cannot be balanced, but for ρ ⊕ ρ we find the
admissible gapped unitary U = 1

√
2(σz ⊗ σx + iσy ⊗ σy). Hence, we get

I(S36) = 2Z2 , si(ρ) = d mod 4. (2.72)

Type 37, (cσγ , cστ , cγτ , τ2) = (−1, 1, 1,−1): Adding τ to the unitary subgroup, we
find that type 37 is of case two in Lemma 1.5.8. Hence, we get one irrep ρwith σ = 1⊗σz ,
γ = 1 ⊗ σx and τ = iσy ⊗ 1. ρ is four-dimensional and by Lemma 2.3.10, it cannot be
balanced (2 · |O(S)| = 8). For two copies ρ ⊕ ρ, on the other hand, we find the unitary
U = 1/

√
2(σy⊗σy⊗σx+ i ·1⊗σz⊗σy), which is admissible and gapped. Consequently,

we get
I(S37) = 4Z2 , si(ρ) = d mod 8. (2.73)

Types 38 and 39, (cσγ , cστ , cγτ , τ2) = (−1, 1,−1,1) and (−1, 1,−1,−1): Type 38
and 39 are the images of type 36 and 37 under φ from Lemma 2.2.11, respectively. The
gap property at ±1 and ±i is invariant under multiplication by i, and therefore index
groups are the same. Since the symmetry indices are determined from the dimensions
of the representation, the formulas are not affected by φ.

Type 40, (cσγ , cστ , cγτ , τ2) = (−1,−1, 1,1): Type 40 is of case one in Lemma 1.5.8,
wherefore we can simply add τ = σxK to the irrep of the unitary subgroup without
doubling the dimension. Being two-dimensional ρ is not balanced. ρ ⊕ ρ, on the other
hand, admits the gapped unitary U = 1/

√
2(σx ⊗ σx + iσz ⊗ σy), which yields

I(S40) = 2Z2 , si(ρ) = d mod 4. (2.74)

Type 41, (cσγ , cστ , cγτ , τ2) = (−1,−1, 1,−1): Type 41 is similar to type 37. Here,
the irrep ρ can be chosen as σ = 1⊗σz , γ = 1⊗σx and τ = (iσy⊗σx)K, and is again not
balanced. For ρ⊕ρwefind the gapped unitaryU = 1/2

[(
1 1
1 −1

)
⊗1⊗σx+

(−1 1
1 1

)
⊗1⊗σy

]
and we get

I(S41) = 4Z2 , si(ρ) = d mod 8. (2.75)

Type 42, (cσγ , cστ , cγτ , τ2) = (−1,−1,−1,1): Type 42 is an example of case two in
Lemma 1.5.8. Hence, the dimension doubles and we find an irrep by setting σ = 1⊗σz ,
γ = 1⊗σx and τ = (σy⊗σy)K. Since τ2 = 1, τ does not enforce a dimensional restriction
for the representation to be balanced. In fact, the irrep is already balanced, since there
exists the admissible and gapped unitary U = 1/

√
2
(

iσy σx

σx −iσy

)
. Consequently:

I(S42) = 0. (2.76)
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Type 43, (cσγ , cστ , cγτ , τ2) = (−1,−1,−1,−1): This last type is an example of case
one in Lemma 1.5.8. Hence, we can simply add τ to the irrep of the unitary subgroup
without doubling the dimension. The irrep ρ is given by σ = σz , γ = σx and τ = (iσy)K.
However, since τ2 = −1 forces each eigenspace of admissible unitaries to be of even
degeneracy and every unitary has to have at least two eigenspaces (±1 or±i), there are
no admissible unitaries for this irrep. Hence, the minimal representation is given by
ρ ⊕ ρ. Being four-dimensional, this representation cannot be balanced (2 · |O(S)| = 8)
but there exists the admissible unitary U = σy⊗σx. Doubling the dimension once more
allows for the admissible and gapped unitary U = 1/

√
2(σy ⊗ σx⊗ σx + i(1⊗ σy ⊗ σy)),

wherefore we get
I(S43) = 4Z2 , si(ρ) = d mod 8. (2.77)

Groups 13,14,15, and 16 are the images of the groups 3,6,10, and 11 under φ from
Lemma 2.2.11, respectively. The index groups of their corresponding types are there-
fore isomorphic. Note that while the groups 3,6, and 10 impose vertical eigenvalue or-
bits on admissible operators, the corresponding orbits for the groups 13, 14, and 15 are
horizontal. The symmetry index therefore corresponds to unitaries that are gapped at
±i instead of ±1. Group 16 on the other hand imposes a box-orbit on admissible uni-
taries, which is invariant under φ. The index formulas are the same, with γ replaced by
φ(γ) = σγ if present.

2.3.2 Index table
Table 2.1 lists all symmetry typeswithout redundant symmetries and collects the results
of the preceding and some subsequent sections. Let us go thought the content and
describe the content in the columns:

• Thedefiningproperties of the symmetry types are shown in the central two columns.
In phase convention II a type is uniquely determined by the signs of the squares
of the representing operators ρ2g (see Lemma 2.1.7).

• The symmetry types S are numbered in the second column and are organized
in the respective symmetry groups G, shown in the first column, where also the
respective action on the spectrum of admissible operators is indicated (via ↙, ↓
,□,←). If applicable, the corresponding names in the Cartan classification are
given in the fifth column.

• The third column contains the images φ(S) under the isomorphism induced by
U 7→ iU (see Lemma 2.2.11), where a blank entry stands for φ(S) = S. In case of
φ(S) ̸= S, the isomorphic partner which appears second is greyed out to indicate
the redundancy.

• The fourth column contains the corresponding perturbation symmetry type, again
with S̃ = S for the missing entries (see Section 3.2).
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u(g) 1 1 1 -1 -1 -1 -1
r(g) 1 -1 -1 1 1 -1 -1
s(g) -1 1 -1 1 -1 1 -1 Decoupling

G S φ(S) S̃ σ γ σγ τ στ η ση I(S) si condition
1 1 A
2: ↙ 2 + d±10 = d±01
3: ↓ 3 44 AIII + Z tr γ
4 4 AI +

5 AII - d10 = 0 mod 2
5: ↙ 6 7 +

7 6 - d10 = 0 mod 2
6: ↓ 8 45 D + Z2 d mod 2

9 46 C - 0
7: □ 10 11 + + + 2Z× 2Z (tr γ, trσγ)

11 10 + + - 2Z2 d mod 4 d±10 = d±01
8: ↙ 12 14 + + +

13 15 + - - d±10 = 0 mod 2

14 12 + + - d±10 = d±01
15 13 + - + d±10 = d±01

9: □ 16 + + + 2Z2
∗ d mod 4 d±10 = d±01

17 + - - 0† d±10 = d±01
18 19 + + - 2Z2 d mod 4 d±10 = d±01
19 18 + - + 2Z2 d mod 4 d±10 = d±01

10: ↓ 20 47 BDI + + + Z tr γ
21 48 CII + - - 2Z tr γ
22 49 CI + + - 0
23 50 DIII + - + 2Z2 d mod 4

11: □ 24 51 27 + + + 2Z×Z2
∗∗ (tr γ, d+γ mod 2)

25 52 26 + - - 2Z tr γ
26 53 25 + + - 2Z2 d mod 4
27 54 24 + - + 2Z2 d mod 4 d10 = 0 mod 2

12: □ 28 40 + + + + + + + 2Z× 2Z (tr γ, trσγ)
29 41 + + + - - - - 4Z× 4Z (tr γ, trσγ)
30 42 + + + + + - - 0†

31 43 + + + - - + + 4Z2
† d mod 8 d±10 = 0 mod 2

32 34 36 + + + + - + - 2Z tr γ

33 35 37 + + + - + - + 4Z× 2Z2
‡ (tr γ, d+γ mod 4)

34 32 38 + + + + - - + 2Z trσγ

35 33 39 + + + - + + - 4Z× 2Z2
‡ (trσγ , d

+
σγ mod 4)

36 38 32 + + - + + + - 2Z2 d mod 4

37 39 33 + + - - - - + 4Z2 d mod 8 d±10 = 0 mod 2
38 36 34 + + - + + - + 2Z2 d mod 4

39 37 35 + + - - - + - 4Z2 d mod 8 d±10 = 0 mod 2

40 28 + + - + - + + 2Z2 d mod 4 d±10 = d±01
41 29 + + - - + - - 4Z2 d mod 8 d±10 = d±01
42 30 + + - + - - - 0 d±10 = d±01
43 31 + + - - + + + 4Z2

‡ d mod 8 d±10 = d±01
13: ← 44 3 + Z trσγ

14: ← 45 8 + Z2 d mod 2
46 9 - 0

15: ← 47 20 + + + Z trσγ

48 21 + - - 2Z trσγ

49 22 + + - 0
50 23 + - + 2Z2 d mod 4

16: □ 51 24 54 + + + 2Z×Z2
∗∗ (trσγ , d

+
σγ mod 2)

52 25 53 + - - 2Z trσγ

53 26 52 + + - 2Z2 d mod 4
54 27 51 + - + 2Z2 d mod 4 d10 = 0 mod 2

Table 2.1: List of all non-redundant symmetry types for unitary operators. The list collects the
results from the previous sections (in particular Section 2.3.1) and also some results of Section
3.2 and Section 3.5. The contents of the table are described in detail in Section 2.3.2.
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• The third column from the right contains the index groups for each symmetry type
(see Section 2.3.1). Thereby, the index group is computed with respect to the gap
condition, which fits the action of the respective group (↙, ↓,□,←). The groups
which do not single out symmetry protected parts of the spectrum and therefore
do not allow for an index group in our sense are left blank.
In consequence ofAssumption 2.3.9 the index groups are for representationswhich
allow for admissible unitaries. If we drop this assumption and also consider repre-
sentations as building blocks, forwhich this is not true, some index groups change.
For the types which are affected, the index group changes are

∗ : I(S) 7→ Z× I(S) † : I(S) 7→ 2Z× I(S)
∗∗ : 2Z×Z2 7→ Z×Z2 ‡ : I(S) 7→ 2Z2 × I(S).

(2.78)

• The corresponding symmetry index formula is given in the second column from
the right. Thereby d±ρg refers to the dimension of the±1 eigenspace of ρg, whereas
d denotes the overall dimension of the representation.

• The last column contains the decoupling condition one needs on top of ind⇀ (U) = 0,
in order to decouple an admissible walk U (see Section 3.5). Thereby dij denotes
dimHij (see (3.70) in Section 3.3 and Section 3.5) and d±ij refers to the dimension
of the ±1 eigenspace of σ on Hij . Empty cells denote that ind⇀ (U) = 0 is already
sufficient for a decoupling to exist.
Note that for decoupling a system of type S, the decoupling condition for the cor-
responding perturbation type S has to be met. E.g. type 10 has perturbation sym-
metry type 11, which needs an extra decoupling condition. Hence, for walks of
type 10, there does not always exist a decoupling.
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symmetric quantum walks

Topological classification in physics is driven by the desire to reduce a given physical
system to its most fundamental characteristics. Framing the arena with a set of physical
andmathematical assumptions, such as the underlying spatial structure and the locality
properties imprinted by it, a symmetry type, and a class of possible deformations of a
system, the task is to pin down the differences in such systems and to find unique labels
for the different classes emerging from the set of assumptions. Besides mathematical
curiosity, there are also physical and even practical motivations. Choosing the set of
assumptions in the right way allows for describing and predicting phenomena such as
topologically protected edge states in samples of specific materials or artificially engi-
neered systems. The fact that such phenomena arise in consequence of a topological
classification based on minimal physical assumptions, such as locality and symmetries,
results in remarkable stability properties under the classes of allowed deformations en-
tering the theory, including local perturbations of a large sample or continuously driven
global deformations as well as global disorder of the system.

The archetypical example of a topological phenomenon in condensed-matter
physics, which opened up the whole field of of topological insulators and supercon-
ductors, was the integer quantum Hall effect, first observed by von Klitzing et al. in
1980 [KDP80]. In the experiment, Klitzinger et al. placed an effectively two-dimensional
semiconductor (more specifically a MOSFET 1) into a strong transverse magnetic field
at low temperature. They observed that the conductivity perpendicular to the gate field
and the magnetic field is quantized as a function of the magnetic field strength. Re-
markably, the conductivity does not depend on the exact geometry of the sample but
solely on the magnetic field strength. Alongside the quantized values of the conduc-
tivity, precisely this property singles out a topological phenomenon. Soon after the
first observation, theoretical explanations for the integer quantum Hall effect followed
[Lau81, AA81, Hal82, TKNdN82].

The quantization of the Hall conductance was explained in two fundamentally dif-
ferent ways. On the one hand, the conductance can be expressed via the (integer-
valued) Chern number of the energy bands in an infinite system, i.e. via a bulk-invariant
[TKNdN82]. On the other hand, based on an argument by Laughlin [Lau81], it can
be expressed by the winding of the edge-state energy in a system exhibiting a one-

1Metal-oxide-semiconductor field effect transistor.
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dimensional edge [Hal82, Hat93b]. The fact that these two ways of describing the phe-
nomenon coincide [Hat93a, Hat97] became one of the core principles in the topological
description of matter: Bulk-boundary correspondence. Turning around the line of rea-
soning, bulk-boundary correspondence has a remarkable consequence: the boundary
of a topologically non-trivial sample exhibits topologically protected edge states.

The systems exhibiting the integer quantum Hall effect fall under symmetry type
A in the tenfold way2, i.e. the corresponding Hamiltonian has no non-redundant invo-
lutive symmetries in the sense of Chapter 2. In particular, the external magnetic field
breaks time-reversal symmetry. In the 2000s, Kane and Mele predicted a Z2 valued in-
variant in two-dimensional systems without an external magnetic field and therefore
with restored time-reversal symmetry [KM05b, KM05a]. These systems fall under class
AII in the tenfold way, which, in two dimensions, indeed exhibits the index group Z2.
These so-called quantum spin Hall systems were experimentally observed soon after
their prediction by König et al. [KWB+07], and also transferred to three-dimensional
settings [Roy09]. For two-dimensional systems, bulk-boundary correspondence also
holds and was rigorously analysed and proven in [GP13] for quantum spin Hall sys-
tems and for Floquet topological insulators in [GT18].

Driven by the discoveries recapped above, the search for topologically non-trivial
phases of matter became an essential task in the condensed matter community (see,
e.g. the reviews [HK10, QZ11] and references therein). In particular, the search was
extended to all symmetry types of the tenfold way [SRFL08]. This finally lead to the
discovery of the well-known periodic table of topological insulators and supercon-
ductors by Kitaev [Kit09] (see also [SRFL09, RSFL10, KZ15]), which unveiled the deep
connection between the topological phases of matter and the tenfold way. The peri-
odic table lists all symmetry types and assigns the respective index groups in all spatial
dimensions, where 0 ≤ d ≤ 7 are enough, due to Bott periodicity [Kit09]. The table con-
tains the respective index group for each symmetry type, labelling the different possible
phases of matter.

Usually, the invariants like Chern- and edge-energy winding numbers are defined
over the Brillouin zone of the system, i.e. they are only well defined in case of trans-
lation invariance. On this footing, it is problematic to rigorously prove, e.g. invariance
of the topological phenomena under disorder or generally any perturbation braking
translation invariance. Beginning with work by Bellissard et al. [BvES94], more and
more advanced techniques such as non-commutative geometry, e.g. K-theory, entered
the discussion [BvES94, FM13, Thi16, SB16, GSB16]. Kitaevs work on the periodic ta-
ble is also built onK-theoretic arguments. For an overview ofK-theoretic methods for
topological insulators and superconductors, we recommend the book by Prodan and
Schulz-Baldes [PSB16].

In recent years quantum walks and periodically driven systems sparked interest
in the community of topological phases of matter for simulation and model building
and as topologically non-trivial systems in their own right. The topological classifica-
tion of quantum walks originates in [GNVW12], where the authors completely classify
discrete-time quantum walks on the one-dimensional lattice, i.e. unitaries with finite

2Note that the integer quantum Hall effect occurs in two-dimensional systems, for which A has a non-
trivial index group (see, e.g. [RSFL10]).
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interaction length. They show that the connected components with respect to norm-
continuous deformations in the set of such finite interaction length unitaries are la-
belled by a Z-valued index, measuring the net information flow across any possible
splitting of the one-dimensional line [Kit06]. They also show the converse, i.e. that
two such unitaries with the same index can always be deformed into each other on a
norm-continuous path. However, no further assumptions beyond the finite interaction
length, such as discrete symmetries or a protocol like structure, enter the discussion in
[GNVW12].

The first steps into the direction of the topological classification of symmetric quan-
tum walks from the perspective of topological insulators were done by Kitagawa et al.
[KRBD10, KBF+12], who showed that quantum walks provide a versatile platform for
topologically non-trivialmodels for all symmetry types of the tenfoldway. In [KRBD10],
the authors consider different quantum walk models, such as the simple coined quan-
tum walk U(θ) or the split-step quantum walk Uss(θ1, θ2), both defined onH = ℓ2(Z)⊗
C2 via

Uss(θ1, θ2) = S↓R(θ2)S↑R(θ1) and U(θ) = Uss(θ, 0), (3.1)
where S↑ (S↓) shifts the (1, 0)T ((0, 1)T ) component at each x ∈ Z one cell to the right
(left), andR(θ) = 1⊗exp(−iθσy) denotes the cell-wise σy-rotation by θ (see also Exam-
ple 1.4.6). The walks are particle-hole symmetric with η being the complex conjugation
with respect to the standard positional basis, and chiral symmetric with the (θ1 depen-
dent3) chiral symmetry γ with γ2 = 1. This renders the walks to be admissible for
symmetry type BDI. The walk unitaries are then analysed via their effective Hamiltoni-
ans, i.e. a Hermitian operator Heff fulfilling the relation

Uss(θ1, θ2) = e−iHeff (θ1,θ2), (3.2)

where we set ∆t = 1. Fourier transformation on the first tensor factor (F : ℓ2(Z) →
L(T)) yields

Heff (θ1, θ2) =

∫ π

−π
dk|k⟩⟨k| ⊗ [Eθ1θ2(k)σ · nθ1θ2(k)] , (3.3)

where σ = (σx, σy, σz) denotes the vector of Pauli-matrices, Eθ1θ2(k) denotes the quasi-
energy, andnθ1θ2(k) “defines the quantization axis for the spinor eigenstates at eachmo-
mentum k” [KRBD10]. Heff inherits the symmetry conditions from Uss, which implies
thatnθ1θ2(k) always rotates on a θ1 dependent great circle on the unit sphere, perpendic-
ular to the quantization axis of the spinor eigenstate of the chiral symmetry. Kitagawa
et al. identify the winding of nθ1θ2(k) around this great circle as a classifying integer-
valued invariant for the split-step quantum walk4. In analogy to Hamiltonian systems
and confirmed by numerical simulations of finite systems, the authors predict topo-
logically protected edge states at the boundary between bulks of different topological
phases in the sense of this winding number.

3This θ1 dependence of the chiral symmetry can be eliminated via a simple base-change by {ψ} 7→
{R(θ1/2)ψ} in each cell.

4Note that Kitagawa et al. only consider the absolute value of the winding number, without taking into
account the sign.
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Soon after the first publications in this direction, further techniques were devel-
oped, which unveiled the rich topological structure of symmetric quantum walks and
its effects on the behaviour of such systems [Kit12, Asb12, AO13, ATD14, OANK15,
CMM+16]. As discussed in the previous chapter, the symmetries single out two points
in the spectrum of admissible unitaries, opposed to only one in case of Hermitian op-
erators. These give room for a finer structure of symmetry protected eigenstates of ad-
missible operators [Kit12, Asb12]. Moreover, Asbóth et al. found that there is an im-
portant difference between quantum walks, considered as a single time-step unitary
without “remembering” the protocol between time-steps, and driven systems, driven
either discretely or continuously in time, as they are often considered in the literature
[AO13, ATD14]. In particular, for the split-step walk, they took both timeframes into
account

Uss(θ1, θ2) =
[
S↓R(θ2)

][
S↑R(θ1)

] and Ũss(θ1, θ2) =
[
S↑R(θ1)

][
S↓R(θ2)

]
, (3.4)

which unveiled more details about the topological properties of the protocol itself and
not just the one-step unitary5.

Topological aspects of symmetric quantum walks also lead to numerous experi-
ments and experimental proposals, exhibiting the effects of the topological nature of
the effective system underlying the experimental realization. These realizations and
proposals include photonic quantum walks, where the state is represented by single
photons in optical waveguides [KBF+12, ZXB+17, XZB+17], single-atom implementa-
tions, where actual atoms in an optical lattice represent the quantum state [GBA+16,
MCM+16, RAA17, SAM+19], implementations via superconducting qubits [RFR+17,
FRHG+17, BCS18], and time-multiplexed setups, where the state of the quantum walk
on the lattice is represented by a chain of laser pulses in an optical fibre loop [BNE+17,
BLN+18, CDQ+18, NGS+19].

We stress, however, that the works mentioned above do not aim for a topological
classification in the spirit of [GNVW12], i.e. of a whole class of systems falling under
some given set of assumptions. Most works concentrate on finding the existing topolog-
ical classes ofmatter from common knowledge in quantumwalkmodels or on unveiling
topological invariants of a specific model at hand. The major distinguishing aspect of
our work [CGS+16, CGG+18, CGS+18, CGG+21, CGWW21] is that we follow the gen-
eral ansatz of [GNVW12] in order to provide a fundamental classification of a large class
of models, with as few assumptions as possible.

Quite recently, various works on the topological classification of non-Hermitian sys-
tems subject to the Bernard-LeClair symmetry classes have been published [KSUS19,
ZL19, LC19]. While being of much interest in their own right, the considerations there
are not applicable for our goal of a topological classification of quantum walk, i.e. sym-
metric unitaries.

Besides the fact that we here consider unitary or at least essentially unitary oper-
ators, the main difference to the work mentioned above lies in the the gap condition.
As discussed in Section 2.3, the gap condition plays a crucial role in our definition of
the equivalence classes of finite-dimensional representations of the symmetry types.

5See Chapter 5 for a detailed discussion of such systems.
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Following the considerations there, our goal is to characterize the symmetry protected
subspaces of operators on possibly infinite-dimensional space. For this, we assume an
essential gap at the symmetry protected eigenspaces, i.e. at +1 and −1 or ±1 and ±i
together, respectively. As we will deduce, an eigenspace carries a symmetry protected
subspace, if and only if the eigenspace carries a non-trivial representation of the sym-
metry type in the sense of the previous chapter.

In [KSUS19, ZL19, LC19] the authors take a different route concerning the gaps.
While dealing with non-Hermitian systems, the techniques are chosen in the spirit of
the classification of Hamiltonians. The classification is performed via reducing the sys-
tems to Hermitian operators either by continuous deformations or by doubling the sys-
tem size. These Hermitian operators are then classified using known techniques. For
this, the operators under consideration are assumed to exhibit a point gap at zero (as
for Hamiltonians) or a line gap along the real or imaginary axis individually (but not
simultaneously). In case of a point gap, the dimension is doubled to create a Hermitian
operator. In case of a line gap, the spectrum is contracted to the axis perpendicular to
the gap line, which results in either a Hermitian or anti-Hermitian operator. For both
gap types, however, the classification has little to say about possible deformations of
symmetric unitaries, which stay unitary and symmetric on the continuous path (see the
gap discussion at the beginning of Section 2.3).

Before we give an overview of the content of this chapter, let us lay out the tasks we
are going to address:

• With a few exceptions, the literature on topological properties of quantumwalks is
model-driven. The topological features and their influence on possible detectable
properties of a system are usually only discussed for a rather restricted class of
models, e.g. the split-step walk. Of course, most of the findings and techniques
are easily transferred to othermodels at hand. However, to provide a fundamental
topological classification of quantum walks, one must not restrict considerations
to certain types of models.
On the other end of the spectrum lies a classification of quantum walks via K-
theoretic methods [SSB17, KKT20a, KKT20b]. While K-theory is a powerful tool
for general structural statements, it is, however, often not very helpful for spe-
cific models or even specific time evolution operators at hand. In particular, a
K-theoretic formulation requires stabilising the underlying algebra A under con-
sideration, i.e. one has to move fromA to the matrix algebrasMn(A) overA. This
stabilisation step makes it generally hard to decide whether, e.g. a homotopy be-
tween two specific operators with the same invariants exists without enlarging the
system.
Our work aims to fill the gap between the model-driven analysis and the abstract
treatment via purely K-theoretic arguments, thereby combining both sides’ advan-
tages. On the one hand, the generality and rigour of an abstract K-theoretic treat-
ment, and, on the other, the better digestibility of a model-driven ansatz, from a
physicists point of view.

• One of the most prominent features of topologically non-trivial quantum walks
with symmetries is the so-called bulk-boundary correspondence. That is, the
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3. TOPOLOGICAL CLASSIFICATION

appearance of symmetry protected eigenstates at the boundary between topolog-
ically different halves (bulks) of the system. In the literature on the topological
classification of quantum walks, this effect is often assumed as a standing con-
cept, which only has to be found in a given model system, or it is even raised to
the level of an argument in derivations. However, a statement as the guaranteed
existence of certain bound states is nothing that can be taken for granted but has
to be proven. Our setting enables us to precisely formulate and prove a general
version of bulk-boundary correspondence for symmetric quantumwalks without
relying on scientific folklore or analogy to other known systems.
Moreover, most work is done for translation-invariant systems or restricted types
of disorder, limited to specificmodel systems. Mostly, the invariants are expressed
in terms of winding numbers on the eigenbundles of the given operator over the
Brillouin zone, which need translation invariance to be well defined. Joining two
topologically different systems gives rise to a per se non-translation invariant set-
ting, wherefore we here aim for a theory without translation invariance in the first
place.

• While classifying quantumwalks via their effective Hamiltonians certainly allows
for non-trivial conclusions, one often misses properties, which are unique to uni-
tary systems as opposed to Hermitian ones. On the one hand, this ansatz limits
the considerations to the symmetry types of the tenfold way. On the other, dif-
ferent from Hermitian operators, unitaries subject to some symmetry types of the
tenfold way exhibit non-gentle perturbations. These are local (resp. compact)
perturbations of a given unitary, which respect the same symmetry condition but
cannot be undone on a norm-continuous path of admissible unitaries. In addi-
tion to the usual prediction of localised edge-states due to bulk-boundary corre-
spondence, these non-gentle perturbations give rise to further localised symmetry
protected eigenstates of a system under consideration. The main reason for non-
gentle perturbations is the aforementioned additional symmetry protected eigen-
space of symmetric unitaries. While these have been addressed in the literature,
non-gentle perturbations did, to our knowledge, not enter the discussion before
we gave a complete classification for quantum walks with symmetries from the
tenfold way [CGG+18].

• Last but not least, there is a subtle difference between a stroboscopic view onto
a continuously driven process and a purely time-discrete setting. This difference
becomes especially relevant in the presence of symmetries that reverse the time-
direction as, e.g., time-reversal or chiral symmetry. As mentioned, the effect of a
protocol vs a single time-step unitary have been addressed before [AO13, ATD14,
MBSO20], but the considerations in the literature are not up to the level of gener-
ality we are aiming for. However, for this chapter, we restrict ourselves to single
unitaries, i.e. a purely time-discrete setting, and address the properties of driven
systems in Chapter 4 and Chapter 5.

The results in this chapter have been obtained in collaboration with Christopher
Cedzich, AlbertroGrünbaum, Christoph Stahl, LuisVelázquez, AlbertWerner andRein-
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hard Werner. The main concepts have been published in [CGS+16, CGG+18, CGS+18,
CGWW21], where the symmetry types of the tenfold way are considered. Here, we
generalize our work there to the symmetry types beyond the tenfold way.

Following our ansatz in [CGS+16, CGG+18, CGS+18, CGWW21], we start with as
little assumptions as possible and work our way up to quantum walks on the one-
dimensional lattice, by adding further assumptions on our way. Thereby, we evaluate
the effects of each additional assumption on the classification in each step. On the one
hand, this allows for a thorough analysis of the effect each assumption has on the sys-
tems under consideration. On the other, we can collect intermediate results, which are
then applicable to a wide class of systems due to the “minimal set of assumptions” ap-
proach. In fact, we provide a complete classification of compact perturbations of admis-
sible unitaries on any discrete spatial structure with respect to norm-continuous defor-
mations, before we even introduce a locality condition. Hence, this classification applies
to walks on lattices in any dimension and also on arbitrary graphs.

The main ingredient of our classification is the symmetry indexwe already defined
for finite-dimensional symmetry representations in Proposition 2.3.8. We lift the defi-
nition to infinite-dimensional systems via reasonable gap assumptions on the unitary
operators under consideration. This index assigns each admissible unitary an element
of an abelian group and is defined separately for the symmetry protected eigenspaces
of an essentially gapped system under consideration. We prove the homotopy invari-
ance of the symmetry index and, as already broached above, use it to completely classify
compact perturbations preserving the symmetries.

We proceed by adding locality on the one-dimensional lattice to our setting. This
typically enters via a strict upper bound on the jump-length during one time step. How-
ever, there are several reasons why such bound might be to strict for the task of a topo-
logical classification. First, it does not get along with a standard time evolution operator
originating from an exponentiated time independent local Hamiltonian, or, more gen-
eral, the solution to the time dependent Schrödinger equation (see Section 1.3), which
exhibits exponentially decaying interaction terms. On the other, for many statements
it is convenient to work within a C∗-algebra, i.e. the norm-closure of a certain set of
operators, which is already closed under multiplication. This also needs a broader def-
inition of locality. We will discuss two different generalizations of strict locality in in-
creasing order of generality and compare them, respectively. Along the way we will
revisit a complete homotopy invariant for local unitaries on the one-dimensional lattice
[Kit06, GNVW12], the so-called information flow index, or just index. Wewill general-
ize this index to the broader definitions of locality, thereby connecting it to the Fredholm
index of a pair of projections [ASS94a, GNVW12, CGG+18, CGWW21], and also show
that it coincides with yet another index quantity in the literature [RRR04, Wil09]. We
call this generalized index the right Fredholm index for essentially local unitary op-
erators on the line and prove its completeness for unitaries subject to essential locality.
Moreover, we show that this index allows to distinguish between time-discrete unitaries,
that emerge from a continuous driving via an essentially local Hamiltonian and those
quantum walks for which this is not possible.

In a third step, we combine the symmetry indices with the locality assumption and
define the so-called left and right symmetry indices, which serve as the bulk indices in
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the classification of symmetric quantum walks from a solid state physics point of view.
We formulate the bulk-boundary correspondence for symmetric quantumwalks on the
basis of these indices. In order to split a one-dimensional system into two parts, while
keeping unitarity, we take up an idea from [GNVW12] and discuss the possibility to
gently decouple a givenwalkwhile keeping the symmetry constraints. As also shown in
[CGG+18], this is always possible for the symmetry types of the tenfoldway. Beyond the
tenfold way, however, there are further restrictions, wherefore we only get a weakened
form of bulk-boundary correspondence in this case. The robustness of the left and right
symmetry indices in case of the tenfold way originates from an alternative definition
of the symmetry index, which also allows for a valid index definition in case of merely
essentially unitary walks. This renders the aforementioned indices to be robust with
respect to arbitrary continuous deformations of the underlying operator as well as all
compact perturbations (even those which break unitarity), as long as the symmetry
constraints are respected. Using this additional robustness in case of the tenfoldway, the
classification in terms of the different symmetry indices turns out to be complete, which
is the main result of our work in [CGG+18]. The proof for the completeness, however,
will only be sketched here and the interested reader is referred to [CGG+18, Ced18].

3.1 The symmetry index for unitary operators
Having outlined our program, let us start by defining the basic concepts and struc-
tures needed for our classification. That is, before we turn our attention to actual one-
dimensional quantum walks, i.e. unitary operators on a one-dimensional lattice with
a locality condition, we first apply and generalize the concepts we encountered so far
to gapped unitaries on possibly infinite-dimensional separable Hilbert spaces. The first
part of this chapter is independent of any locality condition and therefore works for ev-
ery underlying discrete spatial structure. A concept motivated by later considerations
involving a one-dimensional lattice structure is compact perturbations, which do not
break the symmetry assumptions. The main result of this first part is the complete clas-
sification of said compact perturbations.

Let H be some separable Hilbert space carrying a representation of some symme-
try type. In contrast to the previous chapter, this representation is no longer finite-
dimensional. However, we will base our classification on finite-dimensional subspaces:
the symmetry protected eigenspaces of operators under consideration, which we will
assume do be finite. Although we do not take the underlying spatial structure into ac-
count, for now, we still have a single particle lattice system in mind. That is, the Hilbert
space has the form

H =
⊕
x∈Λ
Hx, (3.5)

for some countable set Λ and finite-dimensional cells Hx, such that each of these cells
carries a well defined finite-dimensional representation of the symmetry type:
Assumption 3.1.1. Let ρ be a representation of some symmetry type on H. We assume it to
split into balanced6 finite-dimensional direct summands ρx with respect to the direct sum (3.5).

6See Definition 2.3.4.
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Note that when no spatial structure is imposed on a system in the first place, the di-
rect sum decomposition part of the assumption is still reasonable since we could reduce
a given representation ρ and define Λ as the labelling set for the irreducible represen-
tations contained in ρ. In this case, the non-trivial part of the assumption is the bal-
ancedness of each summand, which generally requires to combine multiple irreducible
representations into one summand. While balanced cells are not indispensable for all
considerations below, this assumption sets the trivial reference for the classification. In
the context of a K-theoretic classification of topological phases of matter, it has been
argued in [Thi16] (also referring to [ASS90, ASS94b]7) that any topological phase clas-
sification of physical systems has to be relative, i.e. a classifying index should always
“measure” the difference between a system and some fixed reference. Hence, choosing
such a reference can be an integral part of any topological classification of physical sys-
tems. Assuming the individual cells to carry balanced representations ρx guarantees
the existence of a gapped unitary on the whole Hilbert space and, hence, a trivial refer-
ence system. Any finite number of unbalanced cells could also serve as such reference,
simply shifting all indices by some finite value. However, this would not be possible for
an infinite number of unbalanced cells, and further care had to be taken.

In order to apply the structures we defined in the previous chapter, we break down
the infinite representation to finite ones in yet another way. The classification is based
on the symmetry protected eigenspaces of operators under consideration. For this, we
assume these to be finite-dimensional, which is guaranteed by the following property:

Definition 3.1.2. Let U be a unitary operator, which is admissible for one of the symmetry types
with symmetry protected eigenspaces. We call U essentially gapped if its essential spectrum
is gapped at all symmetry protected points. That is, at ±1 for symmetry types with a vertical
eigenvalue-orbits, and at ±1 and ±i for those with rectangular orbits.

For the definition and some properties of the essential spectrum of an operator see
Section 1.2 (in particularDefinition 1.2.8 andLemma1.2.9). The assumption of an essen-
tial gap is crucial for all following considerations involving admissible unitaries. There-
fore, we include the property in the assumptions for the concept of admissibility:

Definition 3.1.3. We call a unitary operator admissible for a symmetry representation ρ if it
fulfils the symmetry conditions and is essentially gapped at the symmetry invariant points of the
spectrum.

In Section 2.1 we defined the symmetry index for finite-dimensional representations
and calculated the corresponding index groups for all non-redundant symmetry types.
The assumption of an essential gap for every admissible unitary allows us to apply this
symmetry index to its finite-dimensional symmetry invariant eigenspaces. Note that by
Definition 3.1.3, each symmetry representation induces finite-dimensional representa-
tions with well-defined symmetry indices on the symmetry invariant eigenspaces ±1,
resp. ±1 and ±i of admissible unitaries. Hence, the following indices are well defined:

7In fact, the relative index used in [ASS90, ASS94b] and further developed in [ASS94a] can be identified
with the information flow index of a quantum walk [GNVW12, CGG+18], which we will make heavy use
of for the classification of protocols and Floquet systems [CGWW21].
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Definition 3.1.4. Let U be an admissible unitary for a representation ρ of a symmetry type S
with either vertical (s = id, r ̸= id) or rectangular (r ̸= id, s ̸= id) eigenvalue orbit. The sym-
metry indices of U are then defined as the symmetry indices8 of the finite-dimensional represen-
tations on the symmetry protected eigenspaces. Denote by Hλ the respective finite-dimensional
eigenspaces of U and by si(Hk) = si(ρ|Hk

) the symmetry index of the finite-dimensional restric-
tion of ρ toHk. Then:

• For symmetry types with vertical orbits we define

si+(U) = si (H+1) and si−(U) = si (H−1) . (3.6)

• For symmetry types with rectangular orbits we define

si (U) = si (H+1 ⊕H−1) and si (U) = si (H+i ⊕H−i) . (3.7)

In both cases we denote by si(U) the sum of the two individual indices, i.e.

si(U) = si+(U) + si−(U) or si(U) = si (U) + si (U). (3.8)

For finite-dimensional Hilbert spaces the further condition in Definition 3.1.3 be-
comes void and we always have si(U) = si(ρ) for any representation. On the one hand,
the representation is reduced by the projections onto the symmetry invariant eigen-
spaces of U , and on the other, it is balanced by definition on the complement of their
union because U itself is gapped on the complement of these spaces (H+1 ⊕ H−1 for
vertical- andH+1 ⊕H−1 ⊕H+i ⊕H−i for box-orbits).

Corollary 3.1.5. For finite-dimensionalHilbert spaces the symmetry indices of Proposition 2.3.8
and Definition 3.1.4 coincide and we have

si(U) = si(ρ). (3.9)

Note that assuming each cell to be balanced implies si(U) = 0 in anyfinite-dimensional
setting. However, for infinite-dimensional Hilbert spaces this conclusion is not true in
general.

3.1.1 Homotopy invariance
In defining the symmetry indices for symmetry types, we aimed for the topological
classification of quantum walks. We now come to their key property: Homotopy in-
variance. That is, whenever we have a continuous path [0, 1] ∋ t 7→ Ut between two
unitaries U0 and U1, such that Ut is essentially gapped and admissible for all t, we get
si⋆(U0) = si⋆(U1) = si⋆(Ut) for all t and ⋆ ∈ {+,−} or ⋆ ∈ { , }, depending on the sym-
metry type under consideration. The homotopy invariance follows from the following
proposition.

8See Proposition 2.3.8.
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Proposition 3.1.6. Let U be admissible for a representation of some symmetry type. Then there
is an ε > 0, such that any Ũ with ∥U − Ũ∥ < ε, which is admissible for the same representation,
has the same symmetry indices. I.e.

si⋆(Ũ) = si⋆(U),

with ⋆ ∈ {+,−} or ⋆ ∈ { , }, depending on the type.

The first half of the proof is pretty standard in perturbation theory in terms of re-
solvents (see for example [Kat84, Ch. 2] or [RS78, Ch. XII]). However, we spell out the
details anyhow in order to give a self-contained picture here.

Proof. Let λ ∈ {±1} for ⋆ = ± and λ ∈ {±1,±i} for ⋆ ∈ { , } be a part of a minimal
eigenvalue orbit in the spectrum of U under the action of the symmetry representation.
By assumption,U is essentially gapped at eachλ. Therefore, around each of these points,
there exists a circle of radius δλ, which separates λ from all other parts of the spectrum of
U . Let δ be themaximal common radius for all such separating circles, and denote by Γλ

the circle around λ, with radius δ/2. Then, ∀λ the normof the resolventR(z) = (z−U)−1

is bounded by 2/δ for z ∈ Γλ. From the resolvent equation

R̃(z)−R(z) = R̃(z)(Ũ − U)R(z),

where R̃(z) denotes the resolvent of Ũ , we conclude that

R̃(z) = R(z)
(
1− (Ũ − U)R(z)

)−1
=

∞∑
n=0

R(z)
(
(Ũ − U)R(z)

)n
(3.10)

exists and is bounded by
2

δ

(
1− 2∥Ũ − U∥

δ

)−1
,

given that ∥Ũ − U∥ < δ/2. Indeed, in that case, the right hand side of (3.10) is R(z)
times a convergent series∑nA

n with ∥A∥ = ∥((Ũ − U)R(z))∥ < δ/2 · 2/δ = 1.
Let now Pλ be the spectral projection of U onto λ, which can be expressed as

Pλ =

∫
Γλ

dz

2πi
R(z)

[Kat84, III.6]. Moreover, let
Qλ =

∫
Γλ

dz

2πi
R̃(z), (3.11)

which is a well defined projection, since R̃(z) is bounded on and inside Γλ. Now, for
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∥Ũ − U∥ < δ/4 we get

∥Qλ − Pλ∥ =
∥∥∥∥∫

Γλ

dz

2πi

(
R̃(z)−R(z)

)∥∥∥∥ (3.12)

=

∥∥∥∥∥
∫
Γλ

dz

2πi

∞∑
n=1

R(z)
(
(Ũ − U)R(z)

)n∥∥∥∥∥
≤ δ

2

∞∑
n=1

∥∥∥R(z)((Ũ − U)R(z)
)n∥∥∥

≤
2
∥∥∥Ũ − U∥∥∥

δ − 2
∥∥∥Ũ − U∥∥∥ < 1,

where we inserted (3.10) in the first step, bounded the integral by the length of Γλ times
the norm on the integrand in the second step, also using ∥A + B∥ ≤ ∥A∥ + ∥B∥, and
evaluated the geometric series using ∥AB∥ ≤ ∥A∥∥B∥ in the last step. Finally, from
∥Qλ − Pλ∥ < 1we conclude, that dimQλH = dimPλH.

Let P⋆ and P̃⋆ be be the projections onto the symmetry invariant eigenspaces for U
and Ũ . Moreover, given P⋆ let Q⋆ be defined similar to the considerations above. Then
the finite-dimensional representations P̃⋆ρP̃⋆ and Q⋆ρQ⋆ have to differ by a balanced
representation. Indeed, by construction (Q⋆ − P̃⋆)Ũ(Q⋆ − P̃⋆) is a unitary, with gaps at
±1 or ±1 ∪ ±i, respectively. Therefore we get

si(P̃⋆ρP̃⋆) = si(Q⋆ρQ⋆). (3.13)

For symmetry types with symmetry indices given by the dimension of the represen-
tation9, this already proves the proposition. In all other cases, the (respective part of
the) symmetry index is Z-valued and can be expressed via a trace on the respective
subspace. si either equals the trace of one of the symmetries or the dimension of one
of its eigenspaces. However, by V 2

g = ±1 for any symmetry operator, such dimension
can be computed via tr(Vg ± 1)/2 or tr(Vg ± i1)/2. In both situations,with α being the
placeholder for either Vg or a combination (Vg ± λ)/2, we get

| si⋆(Ũ)− si⋆(U)| = | si(Q⋆ρQ⋆)− si(P⋆ρP⋆)| (3.14)
= | tr(Q⋆αQ⋆)− tr(P⋆αP⋆)|
≤ | tr(Q⋆αQ⋆)− tr(P⋆αQ⋆)|+ | tr(P⋆αQ⋆)− tr(P⋆αP⋆)|
≤ ∥Q⋆ − P⋆∥(∥αQ⋆∥1 + ∥αP⋆∥1)
≤ 2d∥Q⋆ − P⋆∥,

where ∥·∥1 denotes the tracenorm,which fulfils | tr(A1BC)− tr(A2BC)| ≤∥A1 −A2∥∥BC∥1.
In the last step we used ∥αP⋆∥1 ≤ ∥α∥∥P⋆∥1 ≤ dimP⋆H =: d. Since si is Z-valued, the
difference has to be zero, whenever (3.14) is smaller than one, i.e. if ∥Q⋆−P⋆∥ < 1/(2d).

9Respectively its parity or similar.
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3.2. COMPLETE CLASSIFICATION OF COMPACT PERTURBATIONS

Combining this with (3.12) we get si⋆(U) = si⋆(Ũ) for ∥Ũ − U∥ < εwith

ε =
δ

2

1

2d+ 1
. (3.15)

For every continuous path [0, 1] ∋ t 7→ Ut and any ε > 0 we then find a sequence
0 < t1 < . . . < tn < 1, such that ∥Uti+1 − Uti∥ < ϵ for all i = 1, . . . , n. Hence, we get
si⋆(U0) = si⋆(U1) = si⋆(Ut) for all t. This renders si⋆ to be homotopy invariants on the
set of admissible unitaries with a discrete underlying spatial structure. Note that we
did not infer any locality condition so far, such that these invariants are valid for any
underlying discrete structure, such as lattices or graphs.

In case of the tenfoldway, the same statement holds for admissible essentially gapped
Hamiltonians with si⋆ = si0. For a proof that is written explicitly in terms of Hamiltoni-
ans, see [CGG+18, Prop. II.6].
Corollary 3.1.7. For the symmetry types of the tenfold way, the same holds for Hamiltonians,
with si⋆ = si0.

Having established homotopy invariance of the symmetry index on the set of admis-
sible unitaries, we find ourselves in a good position to take a step back and elaborate on
the motivation behind the definitions and structures so far: Firstly, si⋆ and si =

∑
⋆ si⋆

are homotopy invariants and therefore contribute to the topological classification of the
set of objects they are defined on. We will later discuss that in case of the tenfold way,
si+ and si− already provide a complete classification for the set of admissible and es-
sentially gapped unitaries, with respect to norm-continuous deformations (see Section
3.6). Additionally, they are two in a set of three indices that completely classify the set
of essentially gapped and admissible quantum walks with respect to norm-continuous
deformations and compact perturbations.

Moreover, the symmetry index serves as a lower bound on the number of symme-
try protected eigenstates. In particular, by homotopy invariance of si⋆, this lower bound
is stable under continuous deformations in the set of admissible unitaries. As we will
discuss later, in many systems the sum of the respective indices si + si and si++si− is
also stable under local, respectively compact, admissible perturbations. This fact gives
rise to an instance of a well-known concept, namely bulk-boundary correspondence.
The instance in our case typically refers to the occurrence of symmetry protected, local-
ized states at the boundary of a symmetric lattice systemwith “non-trivial topology” or
at the crossover between “topologically different” halves of the system. We will equip
these rather vague statements with the necessary rigour later in Section 3.5.4.

3.2 Complete classification of compact perturbations
As already laid out in the introduction, we are not only interested in continuous defor-
mations of the unitary operators under consideration but also local or, more general,
compact perturbations respecting the symmetries. Thereby, compact perturbations are
the natural generalization of strictly local ones, which act only on a finite spatial region.
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In anticipation of the discussion of different locality conditions, let us define the versions
of perturbations we consider here.

Definition 3.2.1. Let U be unitary with an underlying spatial structure Λ (see (3.5) and the
discussion thereafter), which is admissible for a representation of one of the 38 symmetry types.
A perturbation U ′ of U is another unitary, which is admissible for the same representation. We
call a perturbation

i) gentle, if there exists a norm-continuous path t 7→ Ut, t ∈ [0, 1]withU0 = U andU1 = U ′,
such that Ut is admissible for every t.

ii) strictly local, if U ′ − U is non-zero only on finitely many cellsHx.

iii) finite rank, if U ′ − U has finite rank.

iv) compact, if U ′ − U is compact.

Note, that by definition we have ii) ⊂ iii) ⊂ iv), whereas each of these can either be
gentle or not. In the latter case we call the perturbation non-gentle. For Hamiltonians,
the distinction between i) and the other three types of perturbations, respectively, be-
comes void. In this case, any compact (finite rank or local) perturbation can be reached
via an admissible homotopy. Indeed, consider two admissible Hamiltonians H0 and
H1, such thatH1−H0 is non-zero only on finitely many cells, of finite rank, or compact.
Then

Ht = (1− t)H0 + tH1 = H0 + t(H1 −H0), t ∈ [0, 1] (3.16)
is a continuous deformation of H0 into H1, respecting the symmetries for all t10. The
crucial part is the compactness of H1 − H0, since it guarantees, that the essential gap
of Ht stays open for all t (see Lemma 1.2.9). But in principle, any perturbation (being
compact or not), which has this property results in a gentle one. Hence, the existence of
non-gentle perturbations is only possible for unitary operators and, aswewill see below,
the “non-gentleness” of a perturbation can be classified by the symmetry indices.

While for Hamiltonians any perturbation can be written additively as in (3.16), the
most convenient way in a unitary setting is to write a perturbation multiplicatively:

U ′ = V U, with V = U ′U∗, (3.17)

Properties ii)− v) in Definition 3.2.1 of such perturbations then translate to V −1 being
strictly local, finite rank or compact, and the task of continuously connecting U and U ′
boils down to contracting V to the identity, keeping the symmetry for Ut = VtU on
the way. Let us discuss such multiplicative perturbations V in detail. In preparation
for this, given a representation ρ of a symmetry type, consider the following induced
representation ρ̃ of the so-called perturbation symmetry type, the name of which will
become clear later on.

10Moreover,Ht heirs the weaker of the two locality conditions ofH0 andH1 (see Section 3.3).
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Lemma 3.2.2. Let [ρ] be a one of the 38 symmetry types, ρ an explicit representation, and G
the corresponding symmetry group. Moreover, let U be an admissible unitary. We define the
perturbation symmetry type to be the type [ρ̃] of the representation

ρ̃ : g 7→ ρ̃g = U
1
2
(1−ur(g))ρg =

{
Uρg ur(g) = −1
ρg ur(g) = 1

. (3.18)

ρ̃ respects phase convention II from Lemma 2.1.7 and its multiplication function is given by

m̃(g, h) = s(g)
1
2
(1−ur(h))m(g, h). (3.19)

Proof. First, note that the (anti-) unitarity of the group elements is not changed by (3.18).
Second, let us check that ρ̃ is indeed a projective representation of G. We have

ρ̃gρ̃h =
(
U

1
2
(1−ur(g))ρg

)(
U

1
2
(1−ur(h))ρh

)
= U

1
2
(1−ur(g))

(
s(g)Uur(g)

) 1
2
(1−ur(h))

ρgρh

= s(g)
1
2
(1−ur(h))m(g, h)

(
U

1
2
(1−ur(gh))ρgh

)
= s(g)

1
2
(1−ur(h))m(g, h)ρ̃gh,

where we used ur(g)ur(h) = ur(gh) in the third step. This also proves (3.19). Since
m̃ = ±m, we are still in the setting of Proposition 2.1.4 and Lemma 2.1.6. Moreover,
for the 38-fold way, we can always choose σ and/or γ as the unitary generators of G,
since the groups containing only σγ and the identity as unitary elements are ruled out
by Lemma 2.2.11 and the discussion thereafter. But evaluating m̃(ρ̃g, ρ̃g) for these two
symmetries we get σ̃2 = σ2 and γ̃ = γ2. Therefore, the phase convention of Lemma 2.1.7
is respected by ρ̃.

Note that the only property distinguishing between the types [ρ] and [ρ̃] is the alter-
nating character s. Hence, for the symmetry types of the tenfold way, which correspond
to groups with s ≡ 1, the two representation ρ and ρ̃ are actually of the same type. This
observation will be important later on for the characterization of local perturbations of
unitaries in case of the tenfold way. To begin with this characterization, the following
Lemma first settles the conditions for a perturbed unitary U ′ = V U to be admissible for
the same type as U , which also justifies the name perturbation symmetry type for [ρ̃]
above.

Lemma 3.2.3. Let U be a unitary, which is admissible for a representation ρ of one of the 38
symmetry types. Moreover let U ′ = V U be a perturbation of U . Then:

• U ′ is admissible for ρ if and only if V is admissible for the symmetry representation ρ̃ from
Lemma 3.2.2 in the following sense:

ρ̃gV ρ̃
∗
g = V ur(g). (3.20)
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• The subspace

HV = PVH := (V − 1)H = (V ∗ − 1)H = (V U − U)H (3.21)

is invariant under V , V ∗ and also under the action of ρ̃. We call HV the perturbation
subspace. If V is a compact perturbation, the spectrum of PV V PV , considered on HV ,
consists only of finitely degenerated eigenvalues, with +1 being the only possible limit
point. In particular, the −1 eigenspace H−V ⊂ HV of V is finite-dimensional and also
invariant under ρ̃.

Proof. On the one hand, assuming ur(g) = 1, admissibility of U ′ translates to

ρgV Uρ
∗
g = sV U ⇔ sρgV ρ

∗
gU = sV U ⇔ ρgV ρ

∗
g = V.

For ur(g) = −1, on the other hand, we get

ρgV Uρ
∗
g = sU∗V ∗ ⇔ sρgV ρ

∗
gU
∗ = sU∗V ∗ ⇔ (Uρg)V (Uρg)

∗ = V ∗.

In both cases the character s drops out of the condition for V , and we get ρ̃ from Lemma
3.2.2 together with (3.20) as the necessary and sufficient symmetry condition for V . The
equalities in (3.21) are a consequence of (V − 1) = (V ∗ − 1)(−V ) andH = VH = UH.
Moreover, the invariance of HV under V , V ∗ and the action of ρ̃ follows directly from
this equation.

The last part of the Lemma is a direct consequence of V − 1 being compact, the
definition of a compact perturbation and the invariance ofH−V under ρ̃ is a consequence
of the action on V (see, e.g., the discussion in Section 2.3).

While ρ̃ remains a representation of the same abstract group of involutive symme-
tries for unitary operators, its action on V will in general not be given by one of the
symmetry types of the 38-fold way, without redundancies. Indeed, the alternating char-
acter drops out of the symmetry condition. Hence, if we startedwith a symmetry group
containing σ ≡ (1, 1,−1), this symmetry becomes redundant for V . Therefore, for ρ̃ con-
sidered as the representation of a symmetry group for V , the elements might no longer
be uniquely labelled by the character triplet (u, r, s). In other cases, however, ρ̃ might
still be part of the 38-fold way. In particular, if we started with a symmetry type from
the tenfold way, we get [ρ̃] = [ρ].

Nevertheless, we can use the perturbation symmetry type and an adapted index
(defined below) for a topological classification of compact perturbations, which do not
break the symmetry (see Theorem 3.2.6 below). For the tenfold way, due to [ρ̃] = [ρ],
this classification of perturbations turns out to be already determined by the indices si±
(see Proposition 3.2.8).

Definition 3.2.4. Let U be an admissible unitary and V be a compact perturbation, such that
U ′ = V U is also admissible. We define the perturbation index of U ′ with respect to U as

si(U ′ : U) = s̃i−(V ) := si
(
P−V ρ̃P

−
V

)
, (3.22)

with P−V H = H−V .
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Let us briefly check that s̃i−(V ) is indeed well defined: By Lemma 3.2.3, the −1 ei-
genspace of V is finite-dimensional for a compact perturbation and also invariant under
ρ̃. Hence, P−V ρ̃P−V defines a finite-dimensional representation of the symmetry type [ρ̃].
The action of ρ̃ on V imposes a vertical orbit on eigenvalues, or the orbit is trivial. Hence,
by Definition 2.3.4, balanced refers to the existence of an admissible unitary, which is
gapped at ±1. One has to be a bit careful concerning the fact that ρ̃ is not necessarily
part of the 38-fold way. In particular, we cannot just read off the corresponding index
groups in Table 2.1. However, the considerations in Section 3.1 and, in particular, the
definition of the symmetry index do not require the underlying symmetry group to be
free of redundant symmetries. Therefore, si(V U : U) = s̃i−(V ) is defined equally well
also in this situation. We do not compute all the perturbation index groups here but
only discuss some examples below. The computations are similar to the index group
computations in Section 2.3, with the difference that the character s drops out of the
symmetry condition.

Corollary 3.2.5. Let U be an admissible unitary for some symmetry type and t 7→ Ut = VtU be
a continuous family of admissible compact perturbations of U . Then t 7→ si(Ut : U) is constant.

Proof. The perturbation index is defined as a symmetry index in the sense of Defini-
tion 3.1.4. Therefore it is constant for a continuous family of compact perturbations, by
Proposition 3.1.6.

The perturbation index allows us to classify compact admissible perturbations of
admissible unitary operators up to gentle perturbations.

Theorem 3.2.6. Let U and U ′ = V U admissible for a representation ρ, with a compact pertur-
bation V . Then the following are equivalent:

i) si(U ′ : U) = 0

ii) There is a continuous path t 7→ Vt of ρ̃ admissible unitaries onHV , connecting V with 1
and hence, a continuous path Ut = VtU of ρ admissible unitaries, connecting U and V U .

Proof. Thedirection ii)⇒ i) follows from the homotopy invariance of s̃i−(V ) and s̃i−(1) =
0. For the other direction, consider V restricted to HV . First note that (3.20) either im-
poses a trivial or a vertical orbit on the eigenvalues of V . In the first case, we can move
every eigenvalue of V to 1 without touching the eigenvectors, which provides the ad-
missible path.

If the orbits are non-trivial, V is gapped on the complement of H−V in HV , where-
fore, on this subspace, we can deform the eigenvalues pairwise to +1, again without
touching the eigenvectors. This leaves us with V = 1HV

− 2P−V . Now, by si(U ′ : U) =

s̃i−(V ) = si
(
P−V ρ̃P

−
V

)
= 0, there exists an admissible unitary onH−V , which is gapped at

±1. Performing the same trick on this unitary, we can deform it to −1 and +1, which
finally provides a continuous admissible path between V and 1 onHV .

Theorem 3.2.6 is the first completeness result involving the symmetry index si. The
perturbation index provides a complete classification of compact symmetric perturba-
tions for unitaries of all 38 symmetry types.
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Since all index groups are additive under direct sums, it implies that non-gentle
perturbationswith orthogonal perturbation subspaces addup in the perturbation index.
While in the setting of the following corollary we always get si(U ′′ : U) = si(U ′′ : U ′) +
si(U ′ : U), orthogonal perturbations subspaces simplify this relation in the following
way:
Corollary 3.2.7. Let U be admissible for one of the 38 symmetry types, and U ′ = V1U and
U ′′ = V2U

′ = V2V1U be compact admissible perturbations ofU , such thatHV2V1 = HV1⊕HV2 .
Then

si(U ′′ : U) = si(V1U : U) + si(V2U : U). (3.23)
In particular, two non-gentle perturbations can cancel out each other, when their

individual perturbation indices have opposite values.
Since the perturbation index is purely relative, the question arises, how the pertur-

bation index connects to the absolute homotopy invariants11 si⋆(U) and si⋆(U
′), (⋆ ∈

{±, }), defined in Definition 3.1.4. As we will see later, for the tenfold way, the com-
bined index si = si++si− is invariant under every compact perturbation, which respects
the symmetries. The individual terms si⋆ on the other hand can be changed under such
perturbations. We already saw this in Example 2.3.2 for type 8 (D) and in Example 2.3.3
for type 16 (which is not part of the tenfold way)12.

It is clear by homotopy invariance that a compact perturbation, which changes si⋆
cannot be gentle. This raises the question, whether every non-gentle perturbation can be
detected by the si⋆-indices. Indeed, this is the case for the symmetry types of the tenfold
way: In this case, a perturbation is non-gentle if and only if it changes si±. Furthermore,
the fact that the perturbation symmetry type for V is the same as the original symmetry
type for U allows us to directly express the perturbation index in terms of the indices
si±:
Proposition 3.2.8. LetU be admissible for a symmetry type of the tenfold way and letU ′ = V U
be an admissible compact perturbation of U . Then

si(U ′ : U) = si−(U
′)− si−(U) = −

(
si+(U

′)− si+(U)
)
. (3.24)

Proof. We first give a sketch of the proof, which makes clear the line of argument, and
fill in the details (D1-D4) below. The main concept is depicted in Figure 3.1. The sec-
ond equality in (3.24) follows from si = si++si− and the invariance of si under compact
perturbations (which will be shown later in Section 3.5.1). Hence, we focus on the first
equality. In a preparatory step, we continuously deform V into 1 − 2P , where P is
the projection onto the −1-eigenspace of V , as described in the proof of Theorem 3.2.6.
Hence, for the rest of the proof we can assume V = 1 − 2P . Again, by the same argu-
ments as above, ρ̃ commutes with P and we denote by ρ̃P the finite-dimensional sym-
metry representation P ρ̃P on PH. Further denoting by N and N ′ the −1-eigenspace

11Note that the “absolute” indices are absolute only for the set of operators we consider here (essentially
gapped unitaries with symmetry). In a broader sense, they are still relative (see [Thi16] and the discus-
sion after Assumption 3.1.1) since we assumed the underlying Hilbert space to consist of balanced cells,
ensuring a gapped reference unitary.

12For a finite-dimensional representation of any symmetry type, all admissible unitaries are compact
perturbations of each other.
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⊕P0H P1H

⊕N ′1H N ′0H ⊕N0H N1H

si(ρ̃P )

si(ρN)si(ρN ′)

si
(
ρN′

0

)
= si

(
ρN0

)
identical

si
(
ρN′

1

)
= s̃i

(
ρP0

)
via (U + 1)−1

s̃i
(
ρP1

)
= − si

(
ρN1

)
via P

Figure 3.1: Mappings between the relevant subspaces for a compact perturbation U ′ =
(1 − 2P )U (from the proof of Proposition 3.2.8). The mapping operators between the
spaces are shown below the arrows. The resulting equations for the symmetry indices of
the respective representations restricted to the subspaces are denoted above the arrows.
See also [CGG+18, Fig. 6].

projections of U and U ′, respectively, (3.24) is equivalent to
si(ρ̃P ) = si(ρN ′)− si(ρN ). (3.25)

We split each subspaceXH (X = N,N ′, P ) intoXH = X0H⊕X1H, where theX0s
are defined as

N0H = NH ∩ P⊥H
N ′0H = N ′H ∩ P⊥H
P0H = PH ∩N⊥H

(3.26)

and X1H = (X − X0)H denotes their complement, respectively. Then Ni and N ′i (i =
1, 2) commute with ρ and Pi commutes with ρ̃, which induces the symmetry represen-
tations ρNi , ρN ′

i
and ρ̃Pi (D1). Hence, we can rewrite (3.25) as
si(ρ̃P0) + si(ρ̃P1) = si(ρN ′

0
) + si(ρN ′

1
)− si(ρN0)− si(ρN1). (3.27)

The statement now follows from by the following three identifications (D2-D4):
si(ρN ′

0
) = si(ρN0), si(ρ̃P1) = − si(ρN1) and si(ρ̃P0) = si(ρN ′

1
). (3.28)

Details:

(D1) Symmetry invariance of Ni, N
′
i and Pi:

Let us start with N0H. Invariance of N0H under ρ also implies invariance of N1H,
because their direct sum NH is the −1-eigenspace of U , which is also invariant. Let
φ ∈ N0H, then we get

Pρgφ = PρgU
1
2
(ur(g)−1)U

1
2
(1−ur(g))φ = ur(g)P ρ̃gφ = ur(g)ρ̃gPφ = 0 (3.29)

where we used the definition of the perturbation symmetries13, [P, ρ̃g] = 0, which fol-
lows by admissibility of V for ρ̃, and U 1

2
(1−ur(g))φ = ur(g)φ, due to φ ∈ NH. Hence,

13U
1
2
(1−ur(g))ρg = s(g)ρgU

1
2
(ur(g)−1) = ρ̃g
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ρgφ ∈ N0H for every g, wherefore N0 and therefore also N1 are invariant under ρ. The
same arguments apply for N ′i . For Pi, note that P commutes with the symmetries of ρ̃.
Moreover, since N commutes with U and also with ρ, it also commutes with ρ̃, where-
fore P0H and P1H are invariant under ρ̃.

(D2) si(ρN ′
0
) = si(ρN0):

This is trivially true due toN0 = N ′0: On kerP , U is not affected by V , and therefore this
part of the −1 eigenspace is not changed by the perturbation. Consider the eigenvalue
equation U ′ψ = −ψ, which, inserting V = 1− 2P , reads

(U + 1)ψ = 2PUψ. (3.30)

The solutions ψ ∈ N ′0H correspond to the case where both sides are identically zero.
(D3) si(ρ̃P1) = − si(ρN1):

Note that on NH, the kernel of P is given by N0H. Hence, considered as a map
P : N1H → P1H, P is a bijection. Moreover, as already seen in (3.29) and the discussion
thereafter, P intertwines ρ on N1H with ρ̃′ = urρ̃g on P1H. Taking the polar isometry
of this intertwining map, we get a unitary equivalence between ρN1 and ρ̃′P1

, wherefore
we conclude si(ρ̃′P1

) = si(ρN1). The modification for ρ̃′ = urρ̃, however, is exactly the
one, which leads to the inverse element of the index group (see Lemma 2.3.7). Hence,
we get si(ρN1) = si(ρ̃′P1

) = − si(ρ̃P1).
(D4) si(ρ̃P0) = si(ρN ′

1
):

In order to tackle this last equality, we need to investigate the solutions to the eigen-
value equation (3.30) in detail. We already discussed those solutions, where both sides
are identically zero in (D2), since these span N ′0H = N0H. N ′1H on the other hand is
spanned by the non-zero solutions. Let φ ̸= 0 be a vector, which is equal to both sides
in (3.30). Then, by the right hand side of (3.30), we get φ ∈ PH and by the left hand
side we get φ ∈ N⊥H. Hence, φ ∈ P0H. Moreover, by φ = (U + 1)ψ ̸= 0, we also have
ψ ∈ N⊥H. Restricted toN⊥H, the inverse of (U+1) exists14, wherefore we can compute
ψ form φ via ψ = (U + 1)−1φ. Inserting this back into (3.30), multiplying everything
with P0 from the left and using φ = P0φ, we get the consistency condition

−iHφ := P0(1− U)(U + 1)−1P0φ = 0, (3.31)

which defines a ρ̃P0 admissible HamiltonianH on P0H. Indeed, inserting 1 = U∗U , we
get

P0(1− U)U∗U(U + 1)−1P0 = P0(U
∗ − 1)(1+ U∗)−1P0

= −
[
P0(1− U)(U + 1)−1P0

]∗
,

(3.32)

14Such a restricted inverse is also called a pseudo inverse. It is bounded due to the essential gap condi-
tion. For simplicity, we simply denote it by (U +1)−1, given, that we restrict considerations to ker(U +1)⊥

here.
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which shows self-adjointness of H . Moreover, we have

ρ̃gHρ̃
∗
g = ρ̃g

[
iP0(1− U)(U + 1)−1P0

]
ρ̃∗g

= u(g)
[
iP0ρ̃g(1− U)(U + 1)−1ρ̃∗gP0

]
= u(g)

[
iP0(1− Uur(g))(Uur(g) + 1)−1P0

]
= u(g)ur(g)

[
iP0(1− U)(U + 1)−1P0

]
= r(g)H,

(3.33)

where we used ρ̃gUρ̃∗g = ρgUρ
∗
g = Uur(g) (s ≡ 1 here) in the third step, and (3.32) in the

fourth step. Hence, H is admissible for ρ̃. Now, since there obviously exists a gapped
Hamiltonian on P0H⊖ kerH (H itself), by Lemma 2.3.5, we conclude that

si(ρ̃P0) = si(ρ̃kerH). (3.34)

Finally, we relate the symmetry representations ρ̃kerH and ρN1 with each other. Every
φ, which is a non-zero realization of (3.30), fulfils the consistency condition (3.31) and,
moreover, the vectors ψ solving (3.30) spanN ′1H. Therefore, multiplying φ = (U +1)ψ
with (U + 1)−1 from the left, we conclude that (U + 1)−1 bijectively maps kerH onto
N ′1H. Moreover, by

(U + 1)−1ρ̃gφ = (U + 1)−1U
1
2
(1−ur(g))ρgφ

= ρg(U
ur(g) + 1)−1U

1
2
(ur(g)−1)φ

= ρg

(
U

1
2
(1+ur(g)) + U

1
2
(1−ur(g))

)−1
φ

= ρg(U + 1)−1φ,

(3.35)

(U + 1)−1 intertwines the symmetry representations ρ̃P0 and ρN ′
1
. Note that we used

s(g) = 1 for all g, which is valid for all symmetries from the tenfold way. Similar as in
(D3), the polar isometry of (U + 1)−1 defines a unitary equivalence of these represen-
tations, wherefore we get

si(ρ̃kerH) = si(ρN ′
1
), (3.36)

which together with (3.34) finishes the proof.
For symmetry types that are not part of the tenfold way, a formula as (3.24) would

have the fundamental problem that the two sides of the equation were no longer part of
the same algebraic structure since the index group for U and U ′ is in general different
from the perturbation index group. It might still be possible to detect the gentleness
of a compact perturbation by changes of the indices si⋆ without having an explicit for-
mula. However, this is not possible in general. We conclude the section with three
finite-dimensional examples, which show that beyond the tenfold way, any possible re-
lation between the gentleness of a perturbation and the symmetry indices si and si
can occur:

• Typeswith non-trivial index groups that do not allow for non-gentle perturbations
at all.
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• Non-gentle perturbations that do not affect si and si .

• Non-gentle perturbations that are detectable by si and si .

First, we take a closer look at unitaries of symmetry type 10, which has a non-trivial
index group but a trivial perturbation index group, i.e. every compact perturbation
turns out to be gentle. Second, we discuss an explicit example of symmetry type 27,
exhibiting non-gentle perturbations with si(U ′ : U) ̸= 0, which do not change the sym-
metry indices, i.e. si (U ′) = si (U) and similarly for si . Finally, we give an example of
a non-gentle perturbation of symmetry type 11, which changes the symmetry indices
si and si .

Example 3.2.9 (Symmetry type 10). Type 10 consists of the three unitary symmetries σ, γ
and σγ , which commute pairwise and therefore all square to +1 in phase convention II. The
perturbation symmetry type is defined by

σ̃ = σ, γ̃ = Uγ, and σ̃γ = Uσγ . (3.37)

According to Lemma 3.2.2 it is equivalent to type 11, apart from the action on a perturbation V .
As discussed in the proof of Lemma 3.2.2, the squares of the generators σ̃ and γ̃ remain unchanged
but we get σ̃2γ = −1 and the symmetry operators now anti-commute pairwise.

Considering the appropriate symmetry action (3.20) for a perturbation now already renders
each representation of ρ̃ to be balanced. Indeed, setting

Ṽ = iσ̃, (3.38)

we find, that Ṽ is admissible with respect to (3.20), and by Ṽ 2 = −1 also gapped at ±1. In
particular, for any admissible perturbation U ′ = V U of a type 10 admissible unitary U , the rep-
resentation ρ̃ leaves invariantH−V , wherefore the perturbation subspace always hosts the gapped
admissible unitary iσ̃H−

V
. Hence, we get

si(U ′ : U) = 0 (3.39)

for every compact perturbation, which by Theorem 3.2.6 implies that every compact perturbation
is gentle.

At first sight, the considerations above seem to imply that there are no finite-
dimensional unitaries of symmetry type 10 with non-trivial symmetry indices si⋆ be-
cause any finite-dimensional unitary is just a compact perturbation of the identity.
Hence, if there are no non-gentle compact perturbations, there can also not be a non-
trivial unitary. However, this reasoning is based on the implicit assumption that the
identity is admissible, which is wrong. The identity cannot be admissible for any type
involving a symmetry with s = −1, e.g. type 10.

Example 3.2.10 (Symmetry type 27). Symmetry type 27 consists of the three symmetries
γ, στ and ση, the latter two of which are antiunitary. It is characterized by σ2η = −σ2τ = 1
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and imposes a rectangular eigenvalues-orbit on admissible unitaries. On H = C4, consider the
explicit representation ρ given by

γ =

(
σz 0
0 σz

)
, στ =

(
−iσy 0
0 −iσy

)
K, and ση =

(
σx 0
0 σx

)
K. (3.40)

This representation exhibits the admissible unitary

U =
1√
2

(
σz −iσx
−iσx −σz

)
, (3.41)

with spec(U) = {±e±iπ/4}. Hence, ρ is balanced and we have si⋆(U) = 0, for ⋆ ∈ { , }.
The corresponding perturbation symmetry type according to Lemma 3.2.2 is type 24. However,
considering the action on multiplicative perturbation operators (3.20), type 24 becomes equiv-
alent to type 20 (i.e. BDI), which is part of the tenfold way. The corresponding perturbation
representation ρ̃ is given by

γ̃ =
1√
2

(
1 −σy
−σy −1

)
, σ̃τ =

1√
2

(
−σx −iσz
−iσz σx

)
K, and σ̃η = ση (3.42)

For finite-dimensional representations ρ̃ of typeBDI the symmetry index s̃i−(V ) of an admissible
unitary V can be calculated via s̃i−(V ) = 1/2 tr (γ̃(1− V )) ([CGG+18], see also Section
2.3.1). Hence, the admissible perturbation

V =
1√
2

(
−1 σy
σy 1

)
, with s̃i−(V ) =

tr
(
γ̃(1− V )

)
2

= 2 (3.43)

has a non-trivial perturbation index. The resulting perturbed unitary U ′ = V U evaluates to

U ′ =

(
−σz 0
0 −σz

)
. (3.44)

U ′ is already in diagonal form, such that we can simply read of the eigenvalues, which are con-
tained in {±1}, wherefore we trivially get si (U ′) = 0. Moreover, since the real eigenvalues
span the whole space and we started with a balanced representation we also get si (U ′) = 0.
Hence, to conclude, we constructed an example of a non-gentle perturbation U ′ = V U , with
si(U ′ : U) = 2, of a type 27-admissible unitary, which leaves invariant the symmetry indices
si⋆. This certainly rules out a general version of Proposition 3.2.8 beyond the tenfold way.

In both examples above, the symmetry indices were invariant under the non-gentle
perturbations under consideration. Let us close the discussion with an example of a
non-gentle perturbation of type 11, which changes si and si .
Example 3.2.11 (Symmetry type 11). Type 11 corresponds to the same group as type 10, i.e. it
contains σ, γ and σγ , with the difference, that σ and γ anti-commute. For this example it suffices
to consider only one irreducible representation, which is given by a copy of the Pauli-matrices
(up to a factor of i for the third symmetry). Without loss of generality, we chose

σ = σz γ = σx σγ = iσy. (3.45)
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Being two-dimensional, this representation is certainly not balanced, since the eigenvalue-orbits
are rectangular (see Section 2.3.1). It is easy to see, that

U = γ and U ′ = σγ (3.46)

serve as admissible unitaries. Since U has eigenvalues ±1 and U ′ has eigenvalues ±i, they
certainly have different values of si and si , namely

si (U) = si (U ′) = 2 (∈ 2Z2) and si (U) = si (U ′) = 0. (3.47)

Consequently, since si⋆ are homotopy invariants, the corresponding perturbation between U and
U ′

V = U ′U∗ = σγγ = σ (3.48)
is non-gentle.

3.3 Locality and index
One of the key ingredients for the definition of quantum walks, or rather any physical
system, is locality, that is, some kind of bound on the spreading of information through
a lattice per unit of time. The usual standing assumption for locality in discrete-time
quantum walks is a strict upper bound on the jump-length in every time step (com-
pare Section 1.4), but for many use cases, this assumption is too rigid. Given, e.g. a
time-independent Hamiltonian H with interaction terms that only affect neighbouring
cites on a lattice, respectively, the time evolution operator Ut = exp(iHt) generically
does not end up being strictly local, but exhibits interaction between far away cites with
exponentially decaying strength [LR72].

Starting with strict locality, we first generalise this concept to band dominated op-
erators, which are norm-limits of strictly local ones. After a second generalisation step,
our standing assumption will be essential locality. Being a rather weak locality as-
sumption, essential locality still allows for a complete topological classification of uni-
tary operators on the one-dimensional lattice via an integer valued index. We go on
and discuss a classifying index for local operators. Starting with the information flow
index [Kit06, GNVW12] for strictly local walks on the one-dimensional lattice, we ar-
rive at the right Fredholm index for band dominated and essentially local operators.
[RRR04, Wil09, CGG+18, CGWW21]. This index is complete for the set of essentially
local operators and precisely distinguishes the unitaries that allow for a Floquet type
driving from those for which no such drivings exist [GNVW12, CGWW21]. Thereby
we also discuss the concept of decoupling an essentially local unitary with respect to
a splitting of the one-dimensional lattice into two half-chains. This decoupling will be
the basis for later definitions of topological invariants with additional symmetries in
Section 3.5. Moreover, the decoupling construction is one of the main ingredients in
Chapter 4, where we prove that any strictly local unitary on the one-dimensional lattice
can be factorised into a sequence of shift and coin operations [CGW21].
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3.3.1 Locality conditions
Let us start by recalling the framework from Section 1.4, i.e. the underlyingHilbert space
for single particles on the one-dimensional lattice with inner degrees of freedom. Simi-
larly to (3.5), let

H =
⊕
x∈Z
Hx, (3.49)

where the cell dimensions dx = dimHx are uniformly bounded from above, i.e. there
exists a d ∈ N, such that dx < d for all x ∈ Z. We address parts of the system, e.g. a
single cell, a collection of cells, or a whole half-chain via the projections

PxH = Hx, PX =
⊕

x∈X⊂Z
Hx, P≥x = P[x,∞). (3.50)

Typically, if not specified otherwise, we will abbreviate P = P≥0.

Definition 3.3.1. An operator A onH as in (3.49) is called strictly local or banded, if there
exists an L ∈ N, such that

⟨ψm, Aψn⟩ = 0, ∀ψx ∈ Hx, such that |n−m| > L. (3.51)

We call the minimal L, for which this is valid, the jump length or interaction length of A.

If not specified otherwise, we will choose a basis, which respects the order of the
underlying spacial structure, i.e. the basis elements of the individual cellsHx are labelled
right after another, following those ofHx−1, and to be followed by those ofHx+1 and so
on in both directions (−∞ ← x → ∞). This leads to a straight forward identification
of any Hilbert space of the form (3.49) with ℓ2(Z) equipped with the standard basis,
by regrouping Z into the cells Hx. Considered as a doubly infinite matrix with respect
to this basis, the non-zero matrix elements of a strictly local operator A all lie on the
(max(dimHx)) · (2L+ 1) = dmax(2L+ 1) diagonals around the main diagonal, i.e.

A =


d(2L+ 1)


.

Hence, the term banded.

Observation 3.3.2. As long as the local cell Hilbert spaces are uniformly bounded from above,
a strictly local operator with respect to some one-dimensional local structure is strictly local with
respect to any other one-dimensional local structure. This fails if we allow the cell dimensions to
diverge.
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The identification allows us to think of the decomposition into local cells more as an
additional “graining” of ℓ2(Z), which does not affect the locality with respect to ℓ2(Z).
Hence, we will mostly speak about banded operators and their generalisations on H =
ℓ2(Z) in the following, keeping in mind that everything also applies to the “grained”
versionsH =

⊕
Hx.

Given two banded operators A and B, it is obvious that their sum, their product,
and their adjoints are again banded, with jump lengths

LA∗ = LA, LA+B = max{LA, LB}, and LAB ≤ LA + LB. (3.52)

In other words, the set of banded operators on H forms a ∗-algebra. The first gener-
alisation step for the locality condition is to close this algebra in operator norm and to
consider the resulting C∗ algebra as the new set of “local” operators.

Definition 3.3.3. An operatorA onH is called band-dominated if there is a norm-convergent
sequence of strictly local operators An, such that

lim
n→∞

An = A. (3.53)

We denote the C∗-algebra of band-dominated operators onH by Abd.

We will not discuss the algebra of band-dominated operators here in detail. The
interested reader is referred to [RRS98, RRR04, Wil09] and further references therein.
Instead, let us introduce our standing assumption for a “local” operator: essential lo-
cality. It is a weaker notion of locality than band-dominatedness and is motivated by
two observations: The more fundamental one is the fact that essential locality is the
most general form of locality, for which the right Fredholm index (or sometimes just
called the index) of an operator with a locality condition makes sense and is complete.
However, while this was the driving force for us to come up with the definition, we will
content ourselves with this bit of outlook here since we discuss the index in great de-
tail a little later. For the second observation, consider the commutator of a strictly local
operator with a half-space projection P≥x. By definition, its rank is upper bounded by
2L. Hence, every strictly local operator has a finite rank commutator with every half-
space projection. Note, however, that this is insufficient, as the following example of a
band-dominated but not a strictly local operator shows.

Example 3.3.4. Let

ψ =

∞∑
x=1

1/
√
2
x
ψx and φ =

−∞∑
x=−1

1/
√
2
|x|
φx (3.54)

for some normalized ψx, φx ∈ Hx, and set A = |φ⟩⟨ψ|+ |ψ⟩⟨φ|. Then [A,P≥0] has rank 2, but
we get

⟨φ−x, Aψx⟩ = 1/2x ̸= 0 ∀x > 0, (3.55)
and hence, there is no L, such that (3.51) is fulfilled.
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It would not be too unreasonable to lift the finite rank of [A,P≥x] to the strict locality
assumption, replacing strictly finite jump length, but this would not include all band-
dominated operators. A similar lift of assumptions happens in the generalisation step to
essentially local operators. The approximation property of band dominated operators
transfers to the commutator with a given half-space projection. Hence, the commutator
of a band-dominated operator with the P≥x is the norm limit of finite rank operators,
and therefore compact (see Section 1.2). While every band dominated operator has
a compact commutator with any half-space projection, the opposite is not necessarily
true (see Example 3.3.10). Raising the compactness of the commutator to the defining
property results in essential locality:

Definition 3.3.5. An operator A on H is called essentially local, if its commutator with the
halfspace projection P≥0 is compact. An essentially local unitary is called a quantum walk.

Essential locality will be the standing assumption for quantumwalks for the remain-
der of this thesis, andwewill particularly specify strict locality when strictly local walks
are under consideration (e.g. in Chapter 4).

At first sight, essential locality seems to be ill-defined because the definition depends
on the choice of the specific half-space projection P≥0. Nevertheless, as the following
lemma show, the definition is, in fact, independent of the cut point:

Lemma 3.3.6. The commutator of an operatorAwith a half-space projection P≥x is compact for
every x ∈ Z if and only ifA is essentially local in the sense above. In particular, an operator of the
form A = AL ⊕ AR, with AL/R acting only on the half-spaces P<xH and P≥xH, respectively,
is essentially local.

Proof. For the non-trivial direction, letA be essentially local, i.e., let [A,P≥0] be compact.
Then, for every x ∈ Z, Q := P≥x − P≥0 is of finite rank. Therefore

[A,P≥x] = [A,P≥0 +Q] = [A,P≥0] + [A,Q], (3.56)

differs from [A,P≥0] by a finite rank operator, and hence, is also compact.
For A = AL ⊕AR we have [A,P ] = 0.

Similar to band-dominated operators, the set of essentially local operators forms a
C∗ algebra:

Lemma 3.3.7. Let H as above. Then the set of essentially local operators Ael ⊂ B(H) forms a
C∗-algebra.

Proof. A∗ is essentially local if and only ifA is. Moreover, by [P,AB] = A[P,B]+[P,A]B
and [P,A+B] = [P,A]+[P,B], the product and the sumof two essentially local operators
A,B are again essentially local. Hence,Ael is a ∗-subalgebra ofB(H) andwe only need to
check that it is norm-closed: Let {An ∈ Ael}n be a norm-convergent series of essentially
local operators with limit A. Then, ∥[P,A] − [P,An]∥ = ∥[P,A − An]∥ ≤ 2∥A − An∥
implies that [P,A] is the limit of a norm convergent series of compact operators. Since
the compact operators are a norm-closed ideal in B(H), [P,A] must be compact and
hence, A is essentially local.
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The fact that Ael is a C∗-algebra is not just an interesting observation but enables us
to apply the machinery of C∗-algebras. In particular, we get the following corollary of
Theorem 1.3.1 in Section 1.3.
Corollary 3.3.8. Let ∂tU(t) = −iH(t)U(t) be a Hamiltonian driving with a piecewise con-
tinuous function [0, 1] ∋ t 7→ H(t) ∈ Ael of essentially local Hamiltonians with U(0) ∈ Ael.
Then the solution

U(t) = T exp

(
−i
∫ t

0
H(s)ds

)
∈ Ael. (3.57)

is essentially local, and therefore an essentially local quantum walk, for all t ∈ [0, 1].

This allows us to treat Hamiltonians and quantum walks on the same footing re-
garding the locality conditions. The more restricting strict locality would leave a dis-
crepancy between the two pictures: Hamiltonian time evolution on the one hand and
discrete-time quantumwalks on the other. In particular, the Floquet operator of any pe-
riodically driven systemwith an essentially localHamiltonian drivingH(t) is a quantum
walk. Note that all we needed was the fact that the essentially local operators form a C∗
algebra, wherefore the same statement holds for band dominated operators.

Another property of essentially local operators, which will turn out to be helpful
later on, is the following:
Lemma 3.3.9. LetA ∈ Ael be a Fredholm operator15. Then its absolute value |A| =

√
A∗A and

its polar isometry UA are essentially local.

Proof. The statement about the absolute value already follows from the continuous func-
tional calculus for C∗-algebras (see Section 1.2). For the polar isometry, however, this is
not generally true. But for A ∈ Ael we get

[P,A] = [P,UA|A|] = UA[P, |A|] + [P,UA]|A|, (3.58)
wherefore [P,UA]|A| is the difference of compact operators. Since A is Fredholm, the
onlyway for [P,UA]|A| to be compact is compactness of [P,UA] or, equivalently, essential
locality of UA.

Above, we provided an example of an operator, which is band-dominated but not
strictly local. Let us also give an example of an essentially local operator that is not
band-dominated, thereby showing that the inclusion Abd ⊂ Ael is proper.
Example 3.3.10. Let H = ℓ2(Z) and {ex}x∈Z be the standard positional basis for H. We
define an operator A as a permutation of basis elements via a bijective mapping between the sets
{e3x}x∈Z and {e3x+1, e3x+2}x∈Z. In particular we set

Aex =


e⌊x/2⌋+1 x ≡ 0 mod 3

e2x−2 x ≡ 1 mod 3

e2x−1 x ≡ 2 mod 3.

(3.59)

It can easily be checked that this is indeed a bijection on Z. Figure 3.2 shows a matrix plot of a
section of A around zero. From this, it becomes apparent that A has matrix elements of value 1,

15See Section 1.2.
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A =




Figure 3.2: Matrixplot of a section of A, for x ∈ [−30, 30]. Black squares represent
matrix elements Anm = 1 and all others are 0. The red lines depict a possible banded
operator, from which it becomes clear that A has matrix elements of value 1 outside of
any possible banded region.

whose distance to the main diagonal increases linearly in x. This implies thatA has at least norm-
distance 1 to every banded operator. Therefore, there cannot exist a norm-convergent sequence of
banded operators converging to A, and hence, A is not band dominated. On the other hand, by
definition, for x ≥ 0 and ey = Aex we also get y ≥ 0. Hence, A commutes with the half-space
projection P≥0 and is therefore essentially local.

Interlude: Locality for translation invariant operators. A translation invariant opera-
torA on ℓ2(Z)⊗Cd acts as a multiplication operator Â(k) in momentum space, i.e. after
Fourier transformation (see Section 1.4.2) we get

(̂Aψ)(k) = Â(k)ψ̂(k), ψ̂ ∈ L2(T)⊗ Cd, Â(k) ∈ B(Cd). (3.60)

For these, the different locality conditions can be expressed via continuity conditions on
the multiplication operator Â(k) [CGS+18]. We already discussed this for strictly local
operators, for which Â(k) turns out to be a Laurent polynomial in eik. The following
theorem collects the results for band dominated and essentially local operators from
[CGS+18, Propositions 2.1 and 2.2].

Theorem3.3.11. LetA be a translation invariant operator on ℓ2(Z)⊗Cd and Â(k), k ∈ [−π, π]
the corresponding multiplication operator. Then A is

i) strictly local, if and only if Â(k) is a Laurent polynomial of finite degree in eik.

ii) band-dominated, if and only if Â(k) is continuous with periodic boundary conditions.

iii) essentially local, if and only if Â(k) is quasi-continuous with periodic boundary conditions.

The notion of quasi-continuity [Pel03, BS06] is defined as follows: Let L∞ be the
Banach space of essentially boundedmeasurable (possibly matrix-valued) functions on
the unit circle with periodic boundary conditions and denote by C the subalgebra of
continuous functions. Moreover, letH∞ ⊂ L∞ be the subalgebra of functions with van-
ishing Fourier coefficients for negative powers. A function f is called quasi continuous
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if it lies in (C + H∞) ∩ (C + H∞), i.e. it can be written as f = g + h with g ∈ C and
h ∈ H∞ and a similar decomposition exists for f∗.

The continuity properties of the multiplication operators of local operators allow for
the definition of winding numbers of, e.g. their determinant as indices for translation
invariant walks [CGS+18, GNVW12, Pel03]. In this thesis, however, we do not discuss
the details of the classification when translation invariance is assumed but concentrate
our considerations to the general case.

3.3.2 Indices for local operators
We now come to the definition of one of the most important quantities for the topo-
logical classification of quantum walks: the right Fredholm index or information flow
index. To our knowledge, it was first introduced as the flow of a unitary operator by Ki-
taev [Kit06] and further developed as a complete index for strictly local quantumwalks
by Gross et al. [GNVW12], where also a corresponding version for quantum cellular
automata was defined. In [Kit06] it was also connected to the index of a pair of projec-
tions, defined in [ASS94a]. Inspired by [ASS94a], we further generalised the index to
essentially local unitaries in [CGG+18], where its connection to another known index
quantity, namely the right Fredholm index [RRR04, Wil09] (there, for band dominated
operators) was established. The generalised index is a complete homotopy invariant for
the set of essentially local unitaries on ℓ2(Z) [CGWW21]. In this subsection, wewill first
define the index on the different levels of generality and discuss its properties. We then
close the section with the completeness of the right Fredholm index for essentially lo-
cal unitaries, a decoupling construction for essentially local unitaries with trivial index,
and a characterisation of continuously driven one-dimensional lattice systems. The lat-
ter will serve as the motivating result for Chapter 5, where we focus on driven systems
with chiral symmetry.

The information flow index

We start by introducing the flow of a unitary matrix for strictly local unitaries as it is
defined in [Kit06].

Definition 3.3.12. Let U be a banded unitary onH according to (3.49). Then its information
flow index is defined as 16

ind (U) =
∑

x<0≤y
tr(PxUPyU

∗)− tr(PyUPxU
∗). (3.61)

The map U 7→ ind (U) is continuous and, as we will see later, ind (U) is integer-
valued. Therefore, it must be constant on norm-continuous paths of banded operators.
Actually, U does not have to be strictly local for the expression (3.61) to be well defined

16Note that in [Kit06] and [GNVW12] the index is defined the other way around, resulting in ind →
−ind . We chose this definition here, because it aligns better with later considerations and is also in line
with our work in [CGG+18, CGS+18, CGWW21].
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and integer valued. By [Kit06, Theorem C.1] it suffices to assume a weaker form of
locality, namely algebraic decay of matrix blocks:

∥Uyx∥2HS = tr(U∗PyUPx) ≤ c|x− y|−2α, ∀x, y ∈ Z (3.62)
with constants α > 1, c > 0 and ∥ · ∥2HS denoting the Hilbert-Schmidt norm. This con-
dition guarantees [U,P ], (P = P≥0), to be a Hilbert-Schmidt operator and is therefore
also sufficient for U to be essentially local (since every Hilbert-Schmidt operator is com-
pact). Indeed, we have [P,U ] = PUP⊥ − P⊥UP , with P⊥ = 1 − P . Considering the
individual terms gives

∥PUP⊥∥2HS = tr
(
U∗PUP⊥

)
=
∑

x<0≤y
tr (U∗PyUPx)

≤
∑

x<0≤y
c|x− y|−2α = c

∞∑
n=1

n · n−2α = c
∞∑
n=1

n−α,

(3.63)

which converges if and only if α > 1, and similarly for the other term. In [CGS+18]
(3.62) was given for the matrix norm instead of the Hilbert-Schmidt norm, but since
∥A∥2HS ≤ d∥A∥2, for a complex d× d-matrix, (3.63) remains true after replacing c by dc.

Instead of directly proving that the expression in (3.61) is integer valued, we give an
alternative definition, which was also introduced in [Kit06], and further elaborated on
in [GNVW12]. This will in the end also lead to the general form of the index as the right
Fredholm index of U , i.e. the Fredholm index of the right half-chain restriction PUP of
U , which is integer-valued by definition and coincides with the definitions given before.
Assuming for the moment strict locality of U , consider the commutator of U and P . For
ψx ∈ Hx, ψy ∈ Hy we get the matrix elements

⟨ψx, [U,P ]ψy⟩ =

{
⟨ψx, Uxyψy⟩ − ⟨ψy, Uyxψx⟩ x < 0 ≤ y
0 else. (3.64)

Comparing (3.64) with (3.61), we find that the index is given by
indU = tr (UPU∗ − P ) = tr (Q− P ) . (3.65)

Note that the necessary condition for this to bewell defined is thatQ−P = UPU∗−P
is a trace class operator, which is also in line with the condition (3.62) given in [Kit06].
Expressing the index as the trace of the difference of two projections makes the connec-
tion between the information flow index and the index of a pair of projections, defined
in [ASS94a], which finally leads to the right Fredholm index of U .

The right Fredholm index

The right Fredholm index [RRR04, Wil09]17 is a straight forward generalization of the
information flow index above to weaker locality conditions. Let us first define the index
for essentially local operators and prove its equivalence to the information flow index
for strictly local unitaries afterwards.

17In [RRR04, Wil09] it is called the plus-index.

107



3. TOPOLOGICAL CLASSIFICATION

Lemma 3.3.13. Let U be an essentially local unitary onH and P a half-space projection. Then
its projection to the half-line PUP is a Fredholm operator on PH. Its Fredholm index

ind
⇀

(U) = dimkerPH(PUP )− dimkerPH(PU
∗P ) (3.66)

is called the right Fredholm index of U . Moreover, ind⇀ is additive under products of essentially
local unitaries U, V , i.e.

ind
⇀

(UV ) = ind
⇀

(U) + ind
⇀

(V ). (3.67)
Proof. We can write U as

U = (1− P )U(1− P ) + PUP + P [P,U ] + [U,P ]P

= UL ⊕ UR +K,
(3.68)

with UR = PUP |PH and similarly for UL and (1− P ). Thereby,K is compact by essen-
tial locality of U . Therefore, UL ⊕ UR is unitary up to a compact operator and hence,
Fredholm. But since it is given by a direct sum, also the individual summands have to
be Fredholm on their respective subspaces.

For equation (3.67) note, that

PUV P − PUPV P = PU(1− P )V P = [P,U ](1− P )V P (3.69)

is compact, by essential unitarity of U . Hence, PUV P and (PUP )(PV P ) have the same
Fredholm index. But the latter is the product of the two Fredholm operators PUP and
PV P , since both, U and V are assumed to be essentially local. The statement in (3.67)
then follows by additivity of the Fredholm index under products of Fredholm operators
(Lemma 1.2.7).

In [ASS94a] the index of a Fredholm pair of projections is introduced, which con-
sists of two projections Q and P , such that the operator QP , considered as a map
QP : ranP → ranQ is Fredholm. Their index is defined as the Fredholm index of QP
with the appropriate restrictions to ranP , and ranQ from the right and the left. Setting
Q = UPU∗ for an essentially local unitary, this index coincides with the index defined
above. In order to show this equality, as well as the equivalence to the flow index in case
of a banded unitaryU defined in (3.65), we introduce the following subspaces (compare
[Hal69]):

H00 = {φ ∈ H
∣∣ Pφ = Qφ = 0} = kerP ∩ kerQ

H11 = {φ ∈ H
∣∣ Pφ = Qφ = φ} = imgP ∩ imgQ

H10 = {φ ∈ H
∣∣ Pφ = φ ∧ Qφ = 0} = imgP ∩ kerQ

H01 = {φ ∈ H
∣∣ Pφ = 0 ∧Qφ = φ} = kerP ∩ imgQ

H⊥ =
⋂
pq

H⊥pq.

(3.70)

This decomposition of the Hilbert space with respect to P andQwill also turn out to be
helpful later on for the decoupling of essentially (or strictly) local unitarieswith ind

⇀
= 0.

Inspired by [ASS94a], let us introduce the two self-adjoint operators

A = P −Q and B = 1− P −Q. (3.71)
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The following lemma describes how A relates to the subspaces introduced above and
the connection of these to the index (compare [ASS94a, Proposition 3.1]):
Lemma 3.3.14. Let P be a half-space projection and Q = UPU∗ be related to P via an essen-
tially local unitary U . Moreover, let A be defined as above. Then:

(1.) The spectrum of A consists of finitely degenerated isolated eigenvalues and 0 is the only
limit point. Moreover:

H00 ⊕H11 = kerA

H10 = ker(A− 1)
H01 = ker(A+ 1)

H⊥ =
⊕

λ∈σ(A)
0<λ<1

ker(A− λ)⊕ ker(A+ λ).

(3.72)

In particular, onH⊥, the eigenvalues of A come in pairs ±λ, with 0 < λ < 1.

(2.) We have
ind
⇀

(U) = dimH01 − dimH10. (3.73)

(3.) When A is trace class we get ind⇀ (U) = − tr(A).

Note, that by [ASS94a, Proposition 3.1], (2.) connects the right Fredholm index to
the Fredholm index of QP : ranP → ranQ defined therein.

Proof. (1.): By P −Q = [P,U ]U∗ and essential locality of U ,A is compact, which implies
the stated spectral properties (Lemma 1.2.4). For the relations to the spacesHpq andH⊥
note, that A and B from (3.71) fulfil the two equations

AB +BA = 0 (3.74)
A2 +B2 = 1, (3.75)

which both follow from straight forward algebra. The inclusion “⊆” in the first equation
in (3.72) is trivial. So let φ ∈ kerA. From (3.75) it follows, that kerA = kerA2 =
ker(1− B2). Hence, we either get Bφ = φ or Bφ = −φ, which by Pφ = Qφ (on kerA)
implies Pφ = Qφ = 0 in the first case and Pφ = Qφ = φ in the second, proving the
inclusion “⊇”. The equalities for H10 and H01 follow by similar reasoning, using that
for φ ∈ ker(A− 1)⊕ ker(A+ 1) (3.75) implies B2φ = Bφ = 0.

OnH⊥ it follows from (3.75) and the equalitieswe established so far, that 0 < A2 < 1
and therefore also 0 < B2 < 1. Hence we also get kerB ⊥ H⊥. Now let φ ∈ H⊥ be an
eigenvector of A, with eigenvalue λ (i.e. Aφ = λφ with 0 < |λ| < 1). Then, by (3.74),
A(Bφ) = −λ(Bφ), which yields a second eigenvector Bφ of A inH⊥, corresponding to
the eigenvalue −λ.

(2.): Using Q = UPU∗, we get

H10 = {φ ∈ PH|UPU∗φ = 0} = {φ ∈ PH|PU∗Pφ = 0}
= kerPH(PU

∗P )
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and similarly also

H01 = {φ ∈ QH|QUQφ = 0} = kerQH(QUQ).

Now, by φ ∈ QH ⇒ U∗φ ∈ PH, this gives

U∗H01 = {U∗φ = ψ ∈ PH|UPUPψ = 0} = {ψ ∈ PH|PUPψ = 0}
= kerPH(PUP ).

In particular dimH01 = dimkerQH(QUQ) = dimkerPH(PUP ), which proves the state-
ment.

(3.) is a direct consequence of (1.) and (2.).

Of course, the definition of ind⇀ via a Fredholm index also applies to strictly local
operators and by item (3.) in the Lemma above, we know that this definition coincides
with Definition 3.3.12, i.e. ind (U) ≡ ind

⇀
(U). This finally also proves the integer valued-

ness of the former. We take the right Fredholm index as the standing definition in all
cases from now on.

Example 3.3.15. The prototypical example of a local unitary on ℓ2(Z) with non-trivial index is
the bilateral shift from Definition 1.4.4:

Sex = ex+1, (3.76)

where {ex}x∈Z denotes the standard positional basis for ℓ2(Z).
PSP , considered on PH, is the unilateral shift, the standard example of a Fredholm operator

with a non-trivial Fredholm index. The kernel of PSP is trivial on PH, whereas the kernel of
PS∗P on PH is spanned by the basis element e0. Therefore

ind
⇀

(S) = 0− 1 = −1. (3.77)

Beside being a good standard example, the powers of the shift can also be used, to reach every
index value, which proves that the map ind⇀ : Asl ⊂ Ael → Z is onto. By Lemma 3.3.13 we get

ind
⇀

(Sn) = −n, ∀n ∈ Z. (3.78)

Note, that this allows us to achieve a trivial index for any unitary, by simply multiplying with
the appropriate shift.

ind
⇀

(USind
⇀

(U)) = ind
⇀

(U)− ind
⇀

(U) = 0, ∀U ∈ Ael. (3.79)

If dimHx > 1, the partial shift Sϕ from Definition 1.4.4 can be considered as the standard
example. All considerations above apply similarly.
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Properties of the index

Having established the index for the types of locality we consider in this thesis, let us
continue with its properties. The most fundamental one is its invariance under norm-
continuous deformations.

Lemma 3.3.16. Let [0, 1] ∋ t 7→ Ut be a norm-continuous family of essentially local unitaries.
Then

ind
⇀

(Ut) = ind
⇀

(U0) ∀t ∈ [0, 1]. (3.80)

Proof. Since Ut is a norm-continuous path of essentially local operators, PUtP defines a
norm-continuous path of Fredholm operators on PH, the statement follows from norm-
continuity of the Fredholm index (Lemma 1.2.7).

This, of course, also establishes norm-continuity in the sets of strictly local and band-
dominated operators. The Fredholm index is not only constant on norm-continuous
paths of Fredholm operators but also under additive compact perturbations, which
gives rise to a further invariance property of the index.

Lemma 3.3.17. Let U,U ′ be essentially local unitaries, such that U − U ′ is compact. Then

ind
⇀

(U) = ind
⇀

(U ′). (3.81)

Proof. Again, the invariance follows directly from properties of the Fredholm index,
since any compact perturbation U ′ of U gives rise to a compact perturbation PU ′P of
PUP . Since the Fredholm index is invariant under the addition of compact operators
(see Lemma 1.2.7), the statement follows.

This property allows us to define the index also for essentially unitary operators,
which are defined es as follows (see, e.g. [Lan84] for a detailed discussion on essentially
unitary operators):

Definition 3.3.18. An operatorU is called to be essentially unitary, ifU∗U−1 andUU∗−1
are compact.

Since the right Fredholm index only needs Fredholmness of PUP , the index from
Lemma 3.3.13 is well defined and stable under continuous as well as compact perturba-
tions also on the set of essentially unitary operators.

So far, we have discussed the basic properties and invariances of the index for quan-
tum walks. We collect the main results for this section in the following theorem, which
we will often use in the remaining chapters. For strictly local unitaries, the statements
were already proven in [GNVW12], but in order to provide a complete picture, we will
give the full proof also here. For essentially local unitaries, we established item (1.) in
[CGG+18] and items (2.) and (3.) in [CGWW21].

Theorem 3.3.19. Let U,U ′ be essentially (strictly) local unitaries on a Hilbert space H with a
one-dimensional spatial structure as in (3.49). Then
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(1.) Decoupling: There exists is a compact (local) perturbation Ũ = V U of U , such that
Ũ = UL ⊕ UR, if and only if ind⇀ (U) = 0. Thereby, the direct sum is with respect to a
splitting of the Hilbert space into half-spacesH = HL ⊕HR = (1− P )H⊕ PH, and UL

and UR are unitary.

(2.) Completeness: There is a norm continuous path t 7→ Ut of essentially (strictly) local
unitaries with U0 = U and U1 = U ′, if and only if ind⇀ (U) = ind

⇀
(U ′).

(3.) Floquet type: U is a Floquet unitary if and only if ind⇀ (U) = 0.
This means there exists an essentially (or strictly) local Hamiltonian driving [0, 1] ∋ t 7→
H(t) = H(t)∗, such that

U = U(1) = T exp

(
−i
∫ 1

0
H(t)dt

)
(3.82)

is the endpoint of the solution to ∂tU(t) = −iH(t)U(t), U(0) = 1, where ∥H(t)∥ is
bounded for all t ∈ [0, 1] and piecewise constant.

We split the proof into three parts, proving each statement separately and discuss
some of their implications and corollaries in between.

Proof of Theorem 3.3.19 (1.) Decoupling: Since a decoupled unitary Ũ implies that UR =

PŨP |PH is unitary, it follows that a decoupling is only possible if ind⇀ (U) = ind F (UR) =
0. Conversely, we need to construct a decoupling for any U with ind

⇀
(U) = 0. A unitary

is decoupled if and only if it commutes with P . Hence, by PV U = V UP ⇔ PV = V Q,
the decoupling unitary V needs to be another intertwining unitary for P and Q, with
the additional assumption that V − 1 is compact (local).

We prove the existence of V in two steps, separately on the spaces H00 ⊕H11 ⊕H⊥
andH10⊕H01. Starting withH00⊕H11⊕H⊥, a first candidate, which is also discussed
in [ASS94a], isB from (3.71). It fulfils PB = BQ = −PQ, but equals−1 onH11, which
is infinite-dimensional in general. Therefore 1−B is not guaranteed to be compact. This
can be fixed by flipping the sign on half of the chain, e.g. bymultiplyingBwith (1−2P ),
leading to an operator that was also considered in [Kat84] (in a different context):

X = (1− 2P )B = 1− P −Q+ 2PQ = 1+AQ− PA. (3.83)

X still intertwines P and Q, and it is straight forward to check, that X is normal:

X∗X = XX∗ = B2 = (X +X∗)/2. (3.84)

By this it also follows that the spectrum ofX lies on a the circle (a−1/2)2+b2 = 1/4 (for
z = a+ ib ∈ C), i.e. a circle of radius 1/2 around 1/2 (see Figure 3.3). Moreover, we see
that the kernel ofX is precisely given byH10⊕H01 = ker(A2−1). The last expression in
(3.83) alsomakes clear that 1−X is indeed compact sinceA is compact for an essentially
local U . Clearly, X is not unitary. However, by the compactness of 1 − X , the only
limit point in the spectrum of X is 1, and the remaining spectrum consists of finitely
degenerated isolated eigenvalues. This allows us to project every eigenvalue different
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Re

Im
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Figure 3.3: Visualisation of the spectra ofX (inner circle) and VX (outer circle). Orange
points denote isolated eigenvalues, and the green point denotes the only limit point in
the spectrum of both operators. The dashed lines depict the correspondence between
the respective eigenvalues. Figure taken from [CGG+18].

from 1 onto the unit circle as depicted in Figure 3.3. The resulting operator VX is unitary
on the complement of its kernel and inherits from X the properties of intertwining P
and Q and being a compact perturbation of the identity. Put differently: instead of X ,
we consider its polar isometry

VX = (X∗X)−1/2X, (3.85)

which is unitary on the complement of kerX .
Intertwining P andQ on the remaining subspace kerX = H10⊕H01 is equivalent to

swapping the direct summands. By ind
⇀

(U) = 0 in combination with Lemma 3.3.14, the
two summands are of the same finite dimension. Hence we can choose any swapping
unitary VkerX , such that VkerXH10 = H01 and vice versa. The overall decoupling is then
given by

V = VX ⊕ VkerX . (3.86)
Since VkerX is a finite-dimensional unitary, 1 − V is compact whenever 1 − VX is.

Hence, we are done for essentially local unitaries. Moreover, note that the constructed
V acts trivially onH00⊕H11. For strictly local unitaries, the complement of these space,
namely H⊥ ⊕ H10 ⊕ H01, is contained in a finite collection of cells H−L ⊕ . . . ⊕ HL.
Therefore, 1 − V acts non-trivially only on this finite number of cells and hence, the
decoupling is local.

Corollary 3.3.20. The decoupling in (1.) of Theorem 3.3.19 can be chosen gentle. I.e. there is a
continuous path of compact perturbations [0, 1] ∋ t 7→ Ut = VtU , such that U1 is decoupled.

Proof. V is a compact perturbation of the identity, i.e.V −1 is compact. Therefore, 1 is the
only limit point in spectrum of V and all other parts are isolated eigenvalues. Hence, we
can continuously move every eigenvalue of V to 1, without changing the eigenspaces.
This way, the resulting Vt remains a compact perturbation of the identity for all t.
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Proof of Theorem 3.3.19 (2.) Completeness (and (3.) for strict locality):
The only if part is already clear by invariance of ind⇀ (·) under norm-continuous defor-
mations of the argument. This applies to both types of locality. It remains to construct
a continuous path between any two unitaries with the same index. We do this by show-
ing that any local unitary on H =

⊕
Hx with index ind

⇀
(U) = n can be deformed into

S−n, where S denotes a standard reference shift, which shifts a one-dimensional sub-
space of each Hx to the right. As a first step, note that U = S−n(SnU) and ind

⇀
(SnU) =

ind
⇀

(Sn)+ind
⇀

(U) = 0. Hence, it suffices to show that every local unitarywith index zero
can be deformed into the identity without breaking the respective locality condition on
the way. We will do this separately for the two locality conditions:

Strict locality:18 In case of a strictly local unitaryU with interaction length L, the de-
coupling constructed above acts onHx−L⊕ . . .⊕Hx+L−1 in order to decouple the walk
with respect to P<xH⊕ P≥xH. Hence, we can decouple the unitary simultaneously be-
tween every multiple of 2L cells without worrying about the decouplings interfering
with each other. The resulting unitary Ũ = V U =

⊕
n Ũn will be block diagonal with

every block consisting of 2L cells. Moreover, the decoupling unitary V =
⊕

m Vm is
also block diagonal, with the same block size, but shifted by L blocks with respect to
the decomposition of Ũ . Hence,

U = V ∗Ũ =





 (3.87)

is the product of two block-diagonal unitaries19. Being block-diagonal, both operators
are certainly strictly local, with an interaction length smaller or equal to 2L. We can now
deform each finite-dimensional block to the identity in the following way: consider the
spectral decomposition of each block

Ũn =
∑
i

eiαn,i |φn,i⟩⟨φn,i| and V ∗m =
∑
i

e−iβm,i |ψm,i⟩⟨ψm,i|, (3.88)

and set
H

Ũ ,n
=
∑
i

−2αn,i|φn,i⟩⟨φn,i| and HV ∗,m =
∑
i

2βm,i|ψm,i⟩⟨ψm,i|. (3.89)

Finally, we combine these into a single time depend, but piecewise constantHamiltonian
on the full space via

H(t) =

{⊕
nHŨ ,n

if 0 ≤ t ≤ 1/2⊕
mHV ∗,m if 1/2 < t ≤ 1

, (3.90)

18There is an alternative proof, which uses the result from Chapter 4. By Theorem 4.2.2 every strictly
local unitary can be written as a shift coin sequence. Decomposing U and U ′ with respect to the same
shift-register, we just deform each coin to the identity in each cell. We are then left with a product of shift
operations, which multiplies to Sind

⇀
(U) = Sind

⇀
(U′).

19Note that, although depicted all the same for better illustration, the individual blocks might be of
different sizes due to dimHx ̸= dimHy .
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for t ∈ [0, 1]. We get a continuous path

[0, 1] ∋ t 7→ U(t) = T exp

(
−i
∫ t

0
H(s)ds

)
, (3.91)

which connects U = U(1)with the identity 1 = U(0). Since we kept the block structure
during the process, U(t) is strictly local for all t. This also proves the “if”-part of item
(3.) for strictly local unitaries.

Essential locality: Let V U = UL ⊕ UR be a gentle decoupling for U , the existence
of which we have already established. Since every decoupled unitary commutes with
the half-space projection with respect to the point of decoupling, V U stays essentially
local for every deformation of UL and UR. Since the unitary groups on (1 − P )H and
PH are path-connected, respectively, we can deform UL and UR to the identities on the
respective half-spaces, providing uswith the desired deformation ofU to1 on thewhole
space.

While the classification via the right Fredholm index is complete for strictly and es-
sentially local unitary operators, respectively, it is, to our knowledge, not knownwhether
the same holds for band dominated operators.

Open question: Does Theorem 3.3.19 (2.) also hold for band-dominated unitaries? Or,
equivalently: Is the unitary group in the C∗-algebra of band dominated operators on ℓ2(Z+)
path connected?

The proof techniques for strict and essential locality above are both not applicable
for band dominated operators. On the one hand, for band dominated operators, the
decoupling space H10 ⊕ H01 ⊕ H⊥ for a single decoupling is not contained in a finite
number of cells, such thatwe cannot perform an infinite number of decouplings simulta-
neously in order to break down the operator into a product of block-diagonal ones, with
finite-dimensional blocks. On the other, it is not known whether the unitary group of
the algebra of band-dominated operators on a half-line ℓ2(Z+) is path-connected. The
latter question is also mentioned in [RRR04], where the authors report having tried to
prove this factwithout succeeding. Moreover, the index is conjectured to be complete for
band-dominated operators in a more recent work [KKT20a]20, where the authors find
the same way of generalising the flow index via the right Fredholm index [RRR04]21, as
can be found in our work [CGG+18, CGS+18, CGWW21] (and as detailed above).

It remains to prove item (3.) for essentially local untiaries:
Proof of Theorem 3.3.19 (3.) Floquet type (for essential locality): The “only if” part fol-
lows again from the invariance of the index under norm-continuous deformations. Ev-
ery continuously driven process is continuously connected to the identity (t→ 0). Since
we already did the strictly local case in the proof of (2.), let U be essentially local.

20The conjecture (Conjecture 6.3 in combination with the comment following Corollary 6.5) is contained
in the first version of the arXiv publication. In an updated version [KKT20b] the authors removed the part
containing it and instead refer to future work.

21In [RRR04] the authors discuss the right (and left) Fredholm index in its own right, without the context
of the information flow index.

115



3. TOPOLOGICAL CLASSIFICATION

Differently from the strictly local case, the essentially local operators on H form a
C∗-algebra Ael. This allows us to solve the task of constructing a Hamiltonian driv-
ing by using the continuous functional calculus. The existence of a continuous path
of essentially local unitaries [0, 1] ∋ t 7→ Ut, connecting U with the identity is guaran-
teed by (2.). Moreover, there certainly exists a set of finitely many intermediate points
0 = t0 < t1 < t2 < . . . < tn = 1, with ∥Utk − Utk−1

∥ < 2. I.e., setting Vk = UtkU
∗
tk−1

,
k = 1, . . . n, we get

U = VnVn−1 . . . V1, (3.92)
with ∥Vk − 1∥ < 2. Now, in every C∗-algebra A, a unitary V with ∥V − 1∥ < 2 can be
written as V = exp(−iH), with a self-adjoint element H ∈ A. Indeed, if ∥V − 1∥ < 2,
V must be gapped at −1. Hence, we can set H = i log(V ), where the branch cut of
the logarithm is set to the negative real axis and therefore, log(·) is continuous on the
spectrum of V , which guarantees log(V ) ∈ A. Hence, for each Vk we find an Hk, such
that Vk = exp(−iHk) = exp

(
−i
∫ tk
tk−1

Hk/(tk − tk−1)dt
)
. The concatenation of the Vk

can then be expressed as

U = T exp

(
−i
∫ 1

0
H(t)dt

)
, with H(t) =



H1/t1, if 0 < t < t1
... ...

Hk/(tk − tk−1), if tk−1 < t < tk
... ...

,

(3.93)
i.e. H(t) is a piecewise constant Floquet driving for U .

The right Fredholm index decides whether a given discrete time evolution can be
realised by some continuous driving process or not. One could now argue that this
immediately rules out all discrete-time evolutions with non-trivial indices since, in the
end, every process has to be driven continuously. We would not go so far as to question
this last statement, but instead emphasise another aspect: The physical implementation
for a designed system often only exploits part of the degrees of freedom of the underly-
ing physical system (say, an arrangement of atoms in an optical lattice [KFC+09], or a
sequence of laser pulses [SCP+10]). Consequently, the subsystem under consideration
(be it the only one, one has control over, or simply the one one is interested in) might
well exhibit index-wise non-trivial discrete-time evolutions, although the overall driv-
ing process was continuous. A particularly simple example for this is the bi-directional
shift operation, which is often used for the definition of a quantum walk (see Section
1.4): (

S 0
0 S∗

)
∈ B

(
C2 ⊗ ℓ2(Z)

)
,

(
φx

ψx

)
7→
(
φx+1

ψx−1

)
. (3.94)

The direct summands S and S∗ have a non-trivial index, whereas the overall unitary is
in the connected component of the identity. Hence, there exists a driving process for the
whole unitary, but not for its individual components. In fact, by doubling the system,
any non-trivial evolution can be trivialised via U 7→ U ⊕ U∗ [GNVW12]. However, the
setting one deals with might restrict the access to the system to only one of the blocks
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at full-time periods, which results in a non-trivial discrete time evolution. Precisely this
non-triviality of a subsystem will be a cornerstone for the classification of chiral sym-
metric driven systems we will discuss later in Chapter 5. There, similar to the example
above, the chiral symmetry imprints a 2 × 2 substructure onto the Hilbert space, with
respect to which the operators can be considered as 2× 2 block-matrices.

3.4 Decoupling under symmetry
We turn our focus back to symmetric unitaries, now equipped with a locality condi-
tion, i.e. quantum walks. So far, we discussed the symmetry index for admissible, that
is, symmetric and essentially gapped unitaries, independently of the underlying lattice
structure. In this section, we combine these general considerations with the concept of
splitting the one-dimensional system into two half-chains, i.e. decoupling. This gives
rise to another index quantity, the left and right symmetry indices, which serve as the
bulk indices for the bulk-boundary correspondence of one-dimensional quantumwalks.
Moreover, in the case of the tenfold way, the right symmetry index becomes one of a
set of three homotopy invariants (si, si+,⇀sı ), which provides a complete classification of
symmetric quantum walks [CGG+18]. Beyond the tenfold way, the situation is more
complicated, and wewere not able to generalize this result to all symmetry types. How-
ever, a weakened form of bulk-boundary correspondence also holds for the symmetry
types beyond the tenfold way.

In this section, we first add the symmetry conditions to the decoupling construction
from the last section. That is, we discuss the possibility of (gently) decoupling a given
walk while keeping the symmetries of any symmetry type under consideration. For the
symmetry types of the tenfold way with non-trivial index group, this is always possi-
ble. Beyond those, we will meet decoupling conditions, which must be fulfilled for a
decoupling to exist. The necessary condition ind

⇀
(U) = 0, on the other hand, is always

fulfilled for admissible walks. Whenever the symmetry type contains a symmetry with
ur(g) = −1, we get

ind
⇀

(U) = ind
⇀

(ρgUρ
∗
g)

22 = ind
⇀

(s(g)Uur(g)) = ur(g) ind
⇀

(U) = − ind
⇀

(U). (3.95)

Hence, ind⇀ = 0 holds for admissible unitaries of those types. However, the gap assump-
tion we made earlier already implies ind

⇀
= 0 for every unitary under consideration,

independent of the symmetry type. As the following result from [CGG+18, Proposi-
tion VII.1] shows, the essential spectrum of any unitary operator with non-trivial index
is the full unit circle (see also [Lan84, Corolary 2] and [BDF73, Theorem 3.1]). Con-
versely, this means that any gapped unitary must have trivial index.
Lemma 3.4.1. Let U be an essentially local unitary operator with ind⇀ (U) ̸= 0. Then the essen-
tial spectrum of U is the full unit circle.

Theproof relies on the so-calledWold-vonNeumanndecomposition ([vN29, Sect. X],
[NFBK10, Sect. I, Theorem 1.1]), which states that every isometry V can be decomposed

22ρg commutes with the half-space projection P and dimker(A) = dimker(ρgAρ
∗
g) for allA ∈ B(H)with

a unitary or antiunitary ρg .
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into a direct sum S̃ ⊕ Ṽ , of a unilateral shift S̃ and a unitary Ṽ . Let us briefly sketch the
idea behind this: Consider an isometry V , i.e. V ∗V = 1 and V V ∗ = 1−PV for some pro-
jection PV . Define H̃0 = PVH and successively build a “cell structure” via H̃n = V nH̃0.
By construction V now acts as a unilateral shift S̃ on⊕n H̃n

23. Moreover, V leaves in-
variant the complement, i.e. V

(
H⊖

(⊕
n H̃n

))
=
(
H⊖

(⊕
n H̃n

))
, and is therefore a

surjective isometry on that space, which defines the unitary Ṽ .
Proof. We use theWold-von Neumann decomposition to show that every essentially lo-
cal unitarywith non-trivial index is a compact perturbation of a direct sum that contains
at least one unilateral shift as a direct summand. Since the essential spectrum of the uni-
lateral shift is equal to the unit circle24, the essential spectrum of U also has to contain
the full unit circle.Note that the unilateral shift S̃ not necessarily shifts with respect to
the cell structure underlying the locality condition of U , which, however, is not relevant
for the conclusion about the spectrum of U .

Without loss of generality, let ind⇀ (U) = n < 0 (otherwise consider U∗ instead) and
S be a bilateral shift with ind

⇀
(S) = n. We can write U = S(S∗U) and since ind⇀ (S∗U) =

n−n = 0, the right factor of U can be decoupled intoW (S∗U) = UL⊕UR via a compact
perturbationW by Theorem 3.3.19. The resulting U ′ = S(UL⊕UR) = SWS∗U is a com-
pact perturbation of U . We further manipulate U ′ into U ′′ = (1−P )U ′(1−P ) +PU ′P ,
where P is the half-space projection matching the splitting of UL ⊕ UR. By essential
locality, U ′′ is still a compact perturbation of U and hence, they have the same essential
spectrum. We now set

VR = PU ′P |PH = (PSP |PH)UR = SRUR, (3.96)
where SR is a unilateral shift on PH with Fredholm index n < 0 (i.e. S∗RSR = 1R and
SRS

∗
R = 1 − Kn for some a rank n projection Kn) and similarly for VL. Note, that by

construction, VR is an isometry on PH:
V ∗RVR = U∗RS

∗
RSRUR = 1R and VRV

∗
R = SRS

∗
R = 1R −Kn. (3.97)

Therefore, we can apply theWold-vonNeumann decomposition, which yields VR = S̃⊕
ṼR with a unilateral shift S̃ and a unitary Ṽ 25. The result is a direct sum decomposition
U ′′ = VL ⊕ VR = VL ⊕ (S̃ ⊕ Ṽ ), which contains a unilateral shift as a direct summand.
Hence, the essential spectrum of U ′′ and U must be the full unit circle.

By the preceding lemma, every essentially local and essentially gapped unitary can
be decoupled via the method presented in the proof of Theorem 3.3.19. Note that the
essential gap assumption always also guarantees a strict gap somewhere around ±1 or
±i, since otherwise these eigenspaces could not be finitely degenerate.

Let us now add symmetries to the decoupling construction. It turns out that the part
VX onH00⊕H11⊕H⊥ of the decoupling we constructed in the proof of Theorem 3.3.19
is already admissible.

23Of course, one has to show that the H̃n are orthogonal subspaces of H, but we skip this here.
24The spectrum of the unilateral shift is the closed unit diskD, with the essential spectrum sitting on the

boundary ∂D = S1 (see also Example 1.2.10).
25We stress again, that S̃ ̸= SR and Ṽ ̸= UR.
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3.4.1 Admissibility of the partial decoupling VX onH00 ⊕H11 ⊕H⊥
For the decoupling construction we used the decomposition of the Hilbert space with
respect to the two projections P and Q = UPU∗, where P = P≥x is a half-space projec-
tion, and the decoupling splits the unitary between x and x − 1. Hence, to investigate
the possibility of a symmetric decoupling, let us study the action of the symmetries of
a given type [ρ] on these projections. In order to archive an admissible multiplicative
decoupling, we need to consider the respective perturbation symmetry type [ρ̃] instead
of [ρ] itself (see Lemma 3.2.2).
Lemma 3.4.2. Let U be admissible for a representation ρ of a symmetry type [ρ], P a half-space
projection and Q = UPU∗. Moreover, let [ρ̃] be the corresponding perturbation symmetry type
according to Lemma 3.2.2. Then

ρ̃gP ρ̃
∗
g =

{
P, if ur(g) = 1

Q, if ur(g) = −1
and ρ̃gQρ̃

∗
g =

{
Q, if ur(g) = 1

P, if ur(g) = −1.
(3.98)

Proof. This follows from straight forward algebra, using the definition of the perturba-
tion symmetry representation ρ̃ = U

1
2
(1−ur(g)))ρg (see (3.18)). For ur(g) = 1 we have

ρ̃g = ρg and since we assume the symmetries to act cell wise26, every half-space pro-
jection P naturally commutes with all symmetries. Moreover, by ρgU = Uρg due to
ur(g) = 1, the same is true for Q. For ur(g) = −1 on the other hand, we get

ρ̃gP = UρgP = UPU∗Uρg = Qρ̃g

ρ̃gQ = UρgUPU
∗ = UU∗PUρg = P ρ̃g.

(3.99)

The observation above allows us to prove admissibility for the partial decoupling VX
on H00 ⊕H11 ⊕H⊥ from the proof of Theorem 3.3.19. Moreover, we can show that the
partial decoupling VX ⊕ 1kerX is gentle.
Lemma 3.4.3. Let U be admissible for a representation of any symmetry type [ρ]. Then the par-
tial decoupling operator VX onH00⊕H11⊕H⊥ is admissible for the corresponding perturbation
symmetry type [ρ̃], and U ′ = (VX ⊕ 1kerX)U is a gentle perturbation of U .

Proof. This is easily seen for the operator X = 1 − P − Q + 2PQ from the proof of
Theorem 3.3.19:

ρ̃gXρ̃
∗
g =

{
X, if ur(g) = 1

X∗, if ur(g) = −1 .

The polar isometry VX of X inherits these relations with the symmetries and hence we
get

ρ̃gVX ρ̃
∗
g = V

ur(g)
X .

Gentleness of VX ⊕1kerX follows from Theorem 3.2.6 and the fact that, by construction,
VX has only eigenvalues with positive real part, wherefore s̃i−(VX ⊕ 1kerX) = si(U ′ :

U) = 0.
26See Assumption 3.1.1
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To decouple a symmetric walk without breaking the symmetry, we are hence left
with the task of constructing an admissible gentle decoupling VkerX on the finite di-
mension space H10 ⊕ H01. As we will see below, this is not possible in general for all
symmetry types. However, for most of the symmetry types of the tenfold way (exclud-
ing AII), the situation turns out to be a bit easier and we can indeed construct a gentle
decoupling [CGG+18]. We first discuss the gentle decoupling for the symmetry types
of the tenfold way and turn to the obstructions for the types beyond afterwards.

3.4.2 Gentle decoupling for the tenfold way
A necessary condition for a gentle decoupling VkerX onH10⊕H01 is that ρ̃ doesn’t force
VkerX to have a symmetry protected eigenspace at −1. We can use Proposition 3.2.8 to
verify that this is indeed not the case for the symmetry types of the tenfold way.

Lemma 3.4.4. Let U be essentially local and admissible for a representation ρ of a symmetry
type from the tenfold way. Then the representation ρ̃, restricted toH10 ⊕H01 is balanced.

Proof. Given U and a half-space projection P , consider the unitary U ′ = (1− 2P )U(1−
2P ) =: V U . By essential locality of U , V U is a compact perturbation of U . Because
1 − 2P commutes with the symmetries of ρ, U ′ is also admissible for ρ. Hence, V =
(1− 2P )(1− 2Q) is admissible for ρ̃. Moreover, U and U ′ are unitarily equivalent, by a
symmetry commuting unitary. Therefore, they must have the same symmetry indices
si−(U) = si−(U

′). Applying Proposition 3.2.8 to U and U ′, we find, that s̃i−(V ) = 0,
i.e. the symmetry representation of ρ̃, restricted to the −1-eigenspace of V is balanced.
Moreover, the−1 eigenspace of V is equal toH10⊕H01. Indeed, V φ = −φ is equivalent
to (P + Q)φ = φ = (1 − B)φ, with B from (3.71), and, as discussed in the proof of
Lemma 3.3.14, kerB = ker(A− 1)⊕ ker(A+ 1) = H10 ⊕H01.

With this, we can construct a gentle decoupling also onH10⊕H01 for the symmetry
types of the tenfoldway. Thereby type 5 (resp. AII) is the only symmetry type, forwhich
an additional assumption, namely dimH10 ≡ 0 mod 2 is needed.

Lemma 3.4.5. Let K = H10⊕H01, withHij according to (3.70), corresponding to a quantum
walk U , that is essentially gapped and admissible for a symmetry representation ρ of the tenfold
way. Moreover, for type 5 in Table 2.1 (resp. AII) let dimH10 ≡ 0 mod 2. Then there exist a ρ̃
admissible unitary V on K with V 2 = −1 and VHij = Hji.

Proof. First note that by Lemma 3.4.1 and Lemma 3.3.14 we have dimH10 = dimH01,
which is necessary for a swapping unitary to exist.

The proof will be case by case. We start with the symmetry types including a chiral
symmetry γ̃ (AIII, BDI, CI, CII and DIII), where we distinguish between the commuting
types (AIII, BDI and CII) and the two remaining ones (CI and DIII)27. Afterwards, we
tackle the remaining types (A, D, C, AI and AII), by mostly reusing the constructions of
the cases earlier. If needed, we construct V specifically, by choosing a basis. Thereby, we

27The term “commuting types” refers to the phase convention of Lemma 2.1.7, which we chose as the
standing assumption here, since we also assumed this convention in the discussion of perturbations (see
Section 3.2). In the phase convention of Lemma2.1.5 thesewould be the typeswith γ2 = 1, as in [CGG+18].
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always choose the basis, such that it respects the splitting K = H10 ⊕H01 and denote it
by {χij

n }n, with i ̸= j ∈ {0, 1}.

• For AIII, BDI and CII, consider A = P −Q, which, restricted to H10 ⊕H01, acts as
+1 on the first summand and as −1 on the second. Moreover, since γ̃ intertwines
P andQ, we get γ̃A = −Aγ̃. Now, let V = Aγ̃. By the phase convention of Lemma
2.1.7, whichwe chose as the standing assumption here, we always have γ2 = 1 and
therefore, by Lemma 3.2.2, also γ̃2 = 1. Hence, γ̃ is self-adjoint, which implies
V ∗ = −V ⇒ V 2 = −1. Moreover, since the symmetry representations for the
present cases are commutative, V is automatically admissible by ρ̃gA = ur(g)Aρ̃g,
which follows from Lemma 3.4.2.

• For CI, H10 and H01 are even-dimensional, because they are left invariant by η̃,
with η̃2 = −1. We choose a basis {χ10

n }n for H10, which fulfils χ10
2k = η̃χ10

2k−1 and
extend it toH01 via χ01

n = τ̃χ10
n . Setting V χ10

n = −χ01
n and V χ01

n = χ10
n then defines

the admissible V with V 2 = −128.

• In case of DIII we have η̃2 = 1, wherefore we can choose an η̃-invariant basis
{χ10

n }n for H10 and again set χ01
n = τ̃χ10

n . Since ρ̃ is balanced on K, its dimension
is a multiple of four, and therefore each subspace Hij is again even-dimensional.
Hence, we can define an admissible V via V χij

2k−1 = χji
2k and V χij

2k = −χji
2k−1, with

V 2 = −128.

• In case of A,D, C and AI we are free to choose the basis arbitrarily for A, η̃-invariant
for D, similar to type CI for C (without having to relate the two basis sets via τ̃),
and related via τ̃ for AI. In all cases V can then be chosen as for type CI.

• For type AII, we can use the construction for type DIII without having to worry
about the basis being η̃-invariant. Thereby, the extra assumption of dimH10 =
0 mod 2 guarantees that we can choose the basis pairwise, as needed.

So far we only saw, that dimH10 = 0 mod 2 is sufficient for the existence of V in case
of AII. But it is also necessary, as the following observation shows: Let V be a swapping
unitary on H10 ⊕ H01 that is admissible for τ̃ with τ̃2 = −1. Moreover, choose a basis
as in case AI and AII above. Then, by τ̃V τ̃∗ = V ∗, the off diagonal blocks Vi of V fulfil
V T
i = −Vi. Since V swapsH10 andH01, these blocks are unitary, which is only possible

in even dimensions. Note that this applies to all types involving τ̃ ≡ (−1, 1, 1) with
τ̃2 = −1, but only AII needs the extra assumption because it is automatically fulfilled in
the other cases.

Assembling the different steps, we can now formulate the gentle decoupling theo-
rem for the symmetry types of the tenfold way (compare [CGG+18, Theorem VII.4]).

28By construction, V is admissible for η̃ and τ̃ . The admissibility for γ̃ follows automatically and is
independent of the phase convention.
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Theorem 3.4.6 (Gentle decoupling theorem for the tenfold way). Let U be an essentially
local essentially gapped unitary, which is admissible for one of the symmetry types of the tenfold
way, such that dimH10 = 0 mod 2 for type AII. Then there exists an admissible, compact, and
gentle perturbation V U = UL⊕UR, which decouplesU into two unitaries on the two half-spaces,
respectively.

Proof. Let V = VX⊕VkerX be as in the proof of Theorem 3.3.19. Thereby VX is admissible
by Lemma 3.4.3, and we set VkerX equal to the V constructed in Lemma 3.4.5.

3.4.3 Additional invariants beyond the tenfold way
We already saw that the partial decoupling on H00 ⊕ H11 ⊕ H⊥ is admissible for all
38 types. On H10 ⊕ H01, on the other hand, we had to construct specific unitaries for
each type of the tenfold way. Thereby we used the balancedness of the perturbation
symmetry representation ρ̃ on H10 ⊕ H01 (which, for the tenfold way, is of the same
symmetry type as ρ). In order to show that this representation is indeed balanced, we
used Proposition 3.2.8, which is not applicable for the types beyond the tenfold way.
Beside this, there is another fundamental restriction: The alternating symmetry σ (with
σUσ∗ = −U) gives rise to a second decoupling invariant U 7→ dec (U) ∈ Z in addition
to ind

⇀
(U). We will first discuss this invariant in general and particularise its influence

on the structure ofH10 ⊕H01 afterwards.
Let σ be an alternating symmetrywith trσ = 0 in each cell29, and letU be admissible

for σ. Then, in the σ-eigenbasis, U is of the form

U =

(
0 A
B 0

)
, (3.100)

with unitary operatorsA andB andweget ker(U) = ker(A)⊕ker(B), aswell as ker(U∗) =
ker(B∗)⊕ker(A∗). Since the same applies to the projected versionsPXP, X ∈ {U,A,B},
we also get ind⇀ (U) = ind

⇀
(A) + ind

⇀
(B).

Now, let U ′ = V U be a gentle decoupling for U (assuming its existence for a mo-
ment). Then U ′ is admissible for σ if and only if σV = V σ. This enforces V to be block
diagonal with respect to the σ eigenbasis:

V =

(
VA 0
0 VB

)
, i.e. U ′ =

(
0 VAA

VBB 0

)
. (3.101)

That is, to decouple U while obeying the σ symmetry, we need to decouple A and B
separately. Denoting by dec (U) := ind

⇀
(A) the right Fredholm index of the upper right

corner in (3.100), we get:
Lemma 3.4.7. Let U a quantum walk, which is admissible for an alternating symmetry σ. Then
there exists a gentle σ-symmetric decoupling for U , if and only if ind⇀ (U) = 0 and dec (U) =
ind
⇀

(A) = 0.

Proof. We already saw that there is a σ-symmetric gentle decoupling for U , if and only
if there is one for A and B, respectively. I.e., if and only if ind⇀ (A) = dec (U) = 0 and
ind
⇀

(B) = ind
⇀

(U)− dec (U) = 0.
29Otherwise there are no admissible local unitaries in the individual cells, i.e. no trivial local reference.
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Note that differently from ind
⇀

(U) = 0, dec (U) = 0 is not enforced by the gap condi-
tion on U , because the spectral properties of U do not transfer to the off-diagonal blocks
A and B as it would be the case for a direct sum. Let us provide two examples, which
are admissible for the same representation of type 10 and are both maximally gapped30.
One of the two examples can be decoupled, while the other one cannot:

Example 3.4.8. Consider the Hilbert space ℓ2(Z) ⊗ C4. In each cell, let the generators of type
10 be defined by σx =

(
1 0
0 −1

)
and γx =

(
σz 0
0 σz

)
. OnH, we consider the two walks

U1 =
1√
2


S S
−S S

S∗ S∗

−S∗ S∗

 and U2 =
1√
2


1 S
−S∗ 1

1 S
−S∗ 1


(3.102)

where, as usual, S denotes the bilateral right-shift on ℓ2(Z). It is straight forward to check thatU1

and U2 are admissible for the given symmetry representation and that they are also both gapped
at ±1 and ±i (U4

i = −1⇒ σ(Ui) ⊂ {±e±iπ/4}).
Since the representation is already given in σ-eigenbasis, we can simply read off the upper

right blocks Ai entering the decoupling invariant dec (U). The decoupling indices evaluate to
dec (U1) = ind

⇀
(A1) = −2 and dec (U2) = ind

⇀
(A2) = 0. Hence, we can find an admissible

decoupling for U2, but no decoupling exists for U1.

By Lemma 3.4.3 the partial decoupling VX can always be chosen admissible. Hence,
the decoupling condition has to manifest itself on kerX = H10⊕H01. Let us investigate
this in detail. Since σ leaves the spacesHij invariant, we can arrange its eigenbasis, such
that

σ =


1d+10

−1d−10
1d+01

−1d−01

 , (3.103)

where d±ij = 1
2

∣∣tr ((σ ∓ 1)PHij

)∣∣ denotes the dimension of the overlap of the ±1 eigen-
space of σ withHij . Since a decoupling V has to swap theHij , while leaving the eigen-
spaces of σ invariant it must be of the form

V =


V +
10

V −10
V +
01

V −01

 , (3.104)

where we labelled the blocks V ±ij with the pair {ij} of the respective target space, i.e.
V ±ij : Hji → Hij . The block-structure of V now enforces

d±10 = d±01, (3.105)
30In the sense that the spectrum is contained in {±e±iπ/4}.
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additionally to d10 = d01. In other words, the index condition has to be fulfilled in each
σ-eigenspace separately, which is equivalent to ind

⇀
(A) = ind

⇀
(B) = 0, i.e. dec (U) =

0. From this consideration we also see that for some symmetry types the presence of
additional symmetries ρg with c(σ, ρg) = −ur(g) = 1 already guarantees dec (U) = 0
for any admissible unitary. In this case ur(g) = −1 forces ρg to swapH10 andH01, while
leaving invariant the σ-eigenspaces due to c(σ, ρg) = 1, which results in d±10 = d±01. For
other types, the condition needs to be assumed for a decoupling to exist.

So far we met the necessary and sufficient decoupling conditions d10 = 0 mod 2 for
symmetry type 5 (AII: only τ , with τ2 = −1) and d±10 = d±01 for symmetry type 2 (only
σ). For some symmetry types, e.g. type 13, yet another condition needs to be fulfilled.
Type 13 is generated by σ and τ , with c(σ, τ) = 1 and τ2 = −1. Since τ swaps the
spaces H10 and H01, but leaves invariant the σ-eigenspaces, d±10 = d±01 is automatically
fulfilled. Moreover, each block of V in (3.104) has to fulfil (V ±ij )T = −V ±ij , similar to the
condition for type AII in the proof of Lemma 3.4.5. This is only possible for matrices in
even dimension, and therefore

d±10 = 0 mod 2 (3.106)
is a necessary condition.

Concluding the discussion with the following lemma, we state that there are no fur-
ther decoupling conditions. That is, each type of the 38-foldway can either be decoupled
from the outset or if and only if one of the three conditions above is fulfilled. We also
listed the decoupling condition for each type in Table 2.1.

Lemma 3.4.9. Let K = H10 ⊕H01, withHij according to (3.70), correspond to an essentially
gapped and admissible quantum walk for a symmetry representation ρ of one of the 38 symmetry
types. Then there exists a ρ̃-admissible unitary V on K with V 2 = −1 and VHij = Hji if and
only if ρ̃ fulfils the corresponding decoupling condition in the following table:

Condition Types
None 1, 3, 4, 6, 8-10, 12, 20-26, 28-30, 32, 33, and 36
d10 = 0 mod 2 5, 7, and 27
d±10 = d±01 2, 11, 14-18, and 40-43
d±10 = 0 mod 2 13, 31, and 37

Proof. Similar to the proof of Lemma 3.4.5, we have to construct V separately case by
case. This makes the proof rather tedious, wherefore we do not present it here. The
computations for the types beyond the tenfold way are given in Appendix A.

3.5 The left and right symmetry index
The gentle decoupling allows us to split a given quantum walk into two independent
half-line unitaries without changing the symmetry index. This allows us to attribute
symmetry indices to the left and right half-system, respectively, which have to add up to
the total symmetry index defined via the symmetry protected eigenspaces of the whole
underlying walk:

si(UL ⊕ UR) = si(UL) + si(UR) (3.107)
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For this section, we will first assume the decoupling condition (see Table 2.1) to be met
for any walk under consideration and address possible applications to walks that can-
not be decoupled later. For systems subject to the symmetry types of the tenfold way,
the left and right symmetry indices serve as proper homotopy invariants not only in
the formulation of bulk-boundary correspondence for quantum walks, but also for the
complete topological classification. Beyond the tenfold way, we still get a similar corre-
spondence but were not able to prove the invariance of the bulk-indices under arbitrary
deformations of thewhole system31 for all symmetry types. The left and right symmetry
indices are invariant under local, respectively compact perturbations, and in particular,
they do not depend on the decoupling position. This last fact has the consequence that
the indices can be computed arbitrarily far to the right (left). Hence, they do only de-
pend on the infinite tail of the half-chain. For example, given a crossover scenario of
two bulks joined into one system, the left and right symmetry indices only depend on
the two bulk systems individually and not on how the crossover is engineered.

Let us begin with the formal definition of the left and right symmetry index:
Definition 3.5.1. Let U be a strictly local walk, which is admissible for a representation of a
symmetry type from the 38-fold way. Moreover, let the corresponding decoupling condition be
fulfilled and V U = UL ⊕ UR be a gentle decoupling of U at some x. We define the left and
right symmetry index as

↼sı (U) = si(UL) and ⇀sı (U) = si(UR), (3.108)

where the symmetry indices si(UL) and si(UR) are defined on the half-spaces HL and HR, re-
spectively.

Per se, the left and right symmetry indices are not well defined, because they might
depend on the specific decoupling V one chooses in order to archive V U = UL ⊕ UR

or on the cut position. However, this is not the case (compare [CGS+16], where this
technique was used for the symmetry types of the tenfold way).
Theorem 3.5.2. Let U be as in Definition 3.5.1. Then we have

si(U) = ↼sı (U) + ⇀sı (U) (3.109)

and ↼sı and ⇀sı are
i) independent of the cut-position.

ii) invariant under local admissible perturbations.

Note that by item ii) the left and right symmetry indices also become independent of
thewaywe decoupleU in order to getUL⊕UR. Every decoupling of a strictly local walk,
be it gentle or not, is a local perturbation of a gently decoupled walk defining ↼sı and ⇀sı .
Moreover, this also shows the invariance of si under local perturbations, whenever a
decoupling is applicable.

31Defined as symmetry indices of the half-space unitaries, the left and right indices are invariant under
the deformations of these, but not necessarily under deformations of the underlying full chain walk prior
to the decoupling.
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Proof. By assumption, we can always choose a gentle decoupling. Since the symmetry
index is a homotopy invariant (see Proposition 3.1.6), we get

si(U) = si(V U) = si(UL ⊕ UR) = si(UL) + si(UR) =
↼sı (U) + ⇀sı (U). (3.110)

i): Let V U = UL ⊕ UR be decoupled at some point n and ↼sı (U),⇀sı (U) be the cor-
responding left and right indices. Moreover, let V ′V U = UL ⊕ UM ⊕ U ′R be further
decoupled additionally atm > n. We get

si(U) = si(UL) + si(UM ) + si(U ′R) =
↼sı (U) + si(UM ) + ⇀sı ′(U). (3.111)

Now, since UM is a unitary on a finite number of cells n ≤ x < m we have si(UM ) = 0
by Assumption 3.1.1 in combination with Corollary 3.1.5. Hence,

⇀sı (U) = ⇀sı ′(U), (3.112)
independently of the cut positionm. The same follows for ↼sı withm < n.

ii): Let V U be a local admissible perturbation of U and M ⊂ Z the labelling set of
the supporting cells of V − 1. We can decouple U twice, such that

U = UL ⊕ UM ⊕ UR and V U = UL ⊕ U ′M ⊕ UR. (3.113)
Thereby, we enlargeM until |M | > 2L, where L is the interaction length of the strictly
local walk, which guarantees that the decouplings do not interfere with each other.
This way, we “cut out” the local perturbation. By the same argument as before we get
si(UM ) = si(U ′M ) = 0, i.e. ⇀sı (U) = ⇀sı (V U) and the same for ↼sı .

Note that Theorem 3.5.2 does not claim homotopy invariance of↼sı and⇀sı . Onemight
argue that these indices are defined via the symmetry index si of the half-space systems
after gently decoupling the system, and therefore naturally have to be invariant under
continuous admissible perturbations. Surely, this reasoning implies that, e.g., ⇀sı is a
homotopy invariant for the set of half-space unitaries UR. However, taken as quantities
for the full system U , such a conclusion is not possible at this point. Although being
gentle, the decoupling is not continuous with respect to deformations of the underlying
walk U , i.e. a continuous path of admissible walks t 7→ U does not necessarily lead to
a continuous path of admissible half-space walks UR(t). Let us illustrate this via an
example:
Example 3.5.3. Let U be a strictly local walk, which is admissible for a symmetry type that
exhibits non-gentle perturbations (see Section 3.2). Moreover, let U1 = V1U and U2 = V2U
be local non-gentle perturbations of U , such that HV1 ⊂ (1− P )H and HV2 ⊂ PH, where the
regions have a distance of at least 2L to the cut point, and si(U1 : U) = si(U2 : U) ̸= 0. In other
words, V1 is located on the left half-chain and V2 on the right, whereas both are “non-gentle in
the same way”.

Then, W = V2V
∗
1 is a gentle perturbation of U1 withWU1 = U2. Indeed, by V ∗1 U1 = U ,

we have si(V ∗1 U1 : U1) = si(U : U1) = − si(U1 : U), and therefore we get

si(WU1 : U1) = si(V2U1 : U1) + si(V ∗1 U1 : U1)

= si(V2U : U)− si(V1U : U)

= 0,

(3.114)
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Figure 3.4: Visualisation of the construction in Example 3.5.3. Top: U1 (left) and its
decoupled version (right). Bottom: U2 and its decoupled version. The non-gentle per-
turbations V1, V2 are depicted in blue and arrows indicate the existence of a homotopy.

where we used Corollary 3.2.7 in the first step and the fact that V1 and V2 do not spatially interfere
with each other in the second. This shows that moving a local perturbation to a disjoint set of
cells can be archived on a continuous path of walks, i.e. is a gentle deformation.

Hence, by Theorem 3.2.6, there is a norm-continuous admissible path between U1 and U2.
However, decoupling both walks, we find that the corresponding half-chain walks on the right
U2,R = V2U1,R are non-gentle perturbations of each other, which excludes a norm-continuous
admissible path between U1,R and U2,R on PH. See Figure 3.4 for an illustration.

By invariance of ↼sı and ⇀sı under local perturbations, the continuous deformation
of the example above does not change these indices, indicating that they might still be
proper homotopy invariants. However, the example demonstrates that we cannot rely
on the gentleness of the decoupling to conclude such property since there might be
other, non-local deformationswith similar effects. Moreover, the example shows that the
individual components of ↼sı and ⇀sı , namely ⇀sı ⋆ and ⇀sı ⋆, with ⋆ ∈ {±, }, are certainly
not homotopy invariants of U in general. In particular in case of the tenfold way, where
si± directly measure the gentleness of a perturbation (see Proposition 3.2.8), ↼sı± and
⇀sı± have to change in the example above. Hence:

Corollary 3.5.4. The quantities ↼sı ⋆(U) and ⇀sı ⋆(U), with ⋆ ∈ {±, }, are in general neither
invariant under continuous deformations of U , nor under compact (local) perturbations.

While not provably invariant under continuous deformations, ↼sı and ⇀sı still add up
to the invariant quantity si, which, by the discussion following Corollary 3.1.7 in Section
3.1.1, serves as a lower bound on the number of symmetry protected eigenspaces of U .
Moreover, the argument in the proof for invariance of ↼sı and ⇀sı under local perturba-
tions also shows that these indices can be computed arbitrarily far to the left and to the
right, respectively. Hence, they only depend on the infinite tails to the left and the right,
i.e. the behaviour of a walk at infinity. This fact allows us to call them bulk-indices, i.e.
quantities which depend only on the idealized infinite chunks of a system that can be
treated as a homogeneous bulk32. In this sense, Theorem 3.5.2 may be understood as
the bulk-boundary correspondence for symmetric quantum walks, which is one of the
mainmotivating concepts behind the topological classification of lattice systems. Before
we detail the bulk-boundary correspondence, however, let us introduce more robust in-
variants for the symmetry types of the tenfoldway and discusswhere the generalization
fails beyond it.

32Wee will elaborate on the term bulk in Section 3.5.4.
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3.5.1 Robust symmetry indices for the tenfold way
For the symmetry types of the tenfold, we can define the symmetry indices, in particu-
lar ↼sı and ⇀sı , in a more robust way [CGG+18]. Recall Lemma 2.3.5, where we showed
that for the symmetry types of the tenfold way, there exists an admissible gapped uni-
tary for a finite-dimensional representation, if and only if there exists a gapped Hamil-
tonian. This makes the index groups from Table 2.1 valid in both settings: walks and
Hamiltonians. We can now use this correspondence to redefine left and right symmetry
indices.

In doing so, we extend the definition of the symmetry index si (not the individual
ones si±) to the set of merely essentially unitary operators similar to the considerations
for right Fredholm index ind⇀ (see Definition 3.3.18). Moreover, we will see later that we
can express all symmetry indices for chiral symmetric protocols in terms of Fredholm
indices, which will allow us to completely classify such protocols (see Chapter 5).
Definition 3.5.5. Let U be an essentially unitary essentially gapped operator33, which is admis-
sible for a representation of a symmetry type of the tenfold way. Then

Im(U) :=
U − U∗

2i
(3.115)

is an admissible and essentially gapped Hamiltonian for the same representation. Moreover, we
can define the symmetry index si(U) via

si(U) := si (Im(U)) = si
(
ρker Im(U)

)
. (3.116)

Let us briefly check the claims made in the definition above. Im(U) is self-adjoint by
definition, and its admissibility follows via

ρg Im(U)ρ∗g =
u(g)

2i
ρg(U − U∗)ρ∗g =

u(g)ur(g)

2i
(U − U∗) = r(g) Im(U). (3.117)

Moreover, the essential gaps ofU at±1directly transfer to the essential gap of Im(U) at 0.
For unitary operators the two definitions for si(U) (Definition 3.1.4 and Definition 3.5.5)
coincide, because in this case the combined eigenspaces of U at ±1 directly translate to
the kernel of Im(U). Therefore, we make Definition 3.5.5 the standing definition for the
symmetry index of unitaries, which are admissible for a symmetry type of the tenfold
way. It is important to note that via thismethod, we lose the possibility of distinguishing
the two essential gaps for unitary operators, wherefore we cannot define the individual
indices si± via Im(U). However, these rely on symmetry protected eigenspaces of the
operator and are therefore not applicable for essentially unitary operators anyhow.

Similar to the right Fredholm index in Lemma 3.3.13 we can now define the symme-
try index also for walks projected down to a half-line. The essential locality condition
guarantees that the projected version PUP of any (essential) unitary walk is essentially
unitary on the half-space PH, wherefore we can define the right symmetry index ⇀sı (U)
as the symmetry index si(PUP ) on PH.

33Note, that an essentially unitary operator is not necessarily normal, such that we cannot think of “es-
sentially gapped” as being gapped up to finite-dimensional eigenspaces. However, it is still well defined
via gaps the essential spectrum.
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Definition 3.5.6. Let U be an admissible walk (possibly only essentially unitary) for one of the
symmetry types of the tenfold way. We define its left and right symmetry indices via

⇀sı (U) := si (PUP |PH) and ↼sı (U) := si
(
P⊥UP⊥|P⊥H

)
. (3.118)

Defined this way, ⇀sı and ↼sı have much stronger invariance properties:
Theorem 3.5.7. Let U, si,↼sı and ⇀sı be defined as above. Then

si(U) = ↼sı (U) + ⇀sı (U), (3.119)

and ↼sı ,⇀sı are
i) independent of the cut-position.

ii) invariant under compact admissible perturbations.

iii) invariant under continuous deformations of U in the set of admissible essentially unitary
operators.

For exactly unitary strictly local walks, ⇀sı ,↼sı coincide with the quantities defined in Definition
3.5.1.

Proof. We prove this for ⇀sı . For ↼sı the proof is completely analogous.
Invariance under continuous and compact perturbations: Any norm-continuous

path t 7→ Ut in the set of essentially unitary admissible unitaries gives a norm-continuous
path of admissible self-adjoint imaginary parts Im(PUtP ). Hence, invariance under
norm-continuous perturbations simply follows form the invariance of si on the set of
self-adjoint operators (Corollary 3.1.7). Now, as already mentioned in Section 3.2, any
compact perturbationH ′ of an admissible HamiltonianH can be archived via a continu-
ous path of admissible Hamiltonians by “turning on” the perturbation using the convex
combination

t 7→ Ht = H + t(H ′ −H), t ∈ [0, 1]. (3.120)
Hence, invariance under compact perturbations follows automatically. From this we
also get

si(U) = si(P⊥UP⊥ ⊕ PUP ) = ↼sı (U) + ⇀sı (U), (3.121)
because U and P⊥UP⊥ ⊕ PUP are compact perturbations of each other.

Equivalence to the decoupling method: Any decoupling U ′ = UL⊕UR of an essen-
tially unitary operator U is a compact perturbation of U . Hence, ⇀sı (U) = ⇀sı (U ′). Now,
since PU ′P |PH = UR and ker(U ′ − 1)⊕ ker(U ′ + 1) = ker (Im(PU ′P )|PH), we get

⇀sı (U) = ⇀sı (U ′) = si
(
ρker(UR+1) ⊕ ρker(UR−1)

)
= si

(
ρker(Im(PU ′P )|PH)

)
= si

(
PU ′P |PH

)
,

(3.122)

where in the second and third last line the symmetry indices are considered as usual for
finite-dimensional representations (Proposition 2.3.8), whereas in the last line it refers
to Definition 3.5.5.
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Independence of the cut position: Choosing a different cut position is just a compact
perturbation and therefore follows from the point above. To be more precise: Let P≥a
and P≥b be half-space projections with b > a and PM = P≥aP<b, i.e. PMH = Ha ⊕ . . .⊕
Hb−1. Then

P≥aUP≥a = (PM + P≥b)U(PM + P≥b) = P≥bUP≥b +K, (3.123)

withK = PMUPM +PMUP≥b+P≥bUPM compact, because PM has finite rank. Hence,
⇀sı (U) = si(P≥aUP≥a) = si(P≥bUP≥b). (3.124)

The similarity to the right Fredholm index mentioned before Definition 3.5.6 be-
comes explicit for the particular example of symmetry type 3 (AIII), which contains only
the chiral symmetry γ. We will discuss walks of this type in great detail in Chapter 5.
However, let us give a brief preview, demonstrating the robustness of the symmetry
indices when they are defined as above.

Example: Chiral symmetric walks

In every representation of symmetry type 3 we can choose the chiral symmetry γ to
square to the identity. Switching to its eigenbasis, we get

γ =

(
1 0
0 −1

)
and U =

(
α β
−β∗ δ

)
, (3.125)

with α∗ = α and δ∗ = δ, for each admissible unitary U , due to γUγ∗ = U∗. Note that
by Assumption 3.1.1, each cell carries a balanced representation (i.e. tr γx = 0). Hence,
the eigenspaces of γ are both infinite-dimensional. Moreover, the matrix blocks of an
admissible U are essentially local if and only if U is. In the chiral eigenbasis we get

2i Im(U) =

(
0 β
−β∗ 0

)
. (3.126)

In this form, the essential gap condition is equivalent to Fredholmness of β 34. In par-
ticular, evaluating tr γ on ker (Im(U)) yields

si(U) = tr
(
γ|ker(Im(U))

)
= ker(β∗)− ker(β) = −ind (β), (3.127)

i.e. the Fredholm index of the off-diagonal block β. By essential locality of β, also PβP
from PUP is Fredholm, and therefore the right symmetry index evaluates to

⇀sı (U) = − ind
⇀

(β). (3.128)

The connection of the symmetry indices to the Fredholm-type indices once again proves
the robustness of the former ones. Wewill heavily use these correspondences laterwhen
we discuss the complete set of indices for chiral symmetric protocols in Chapter 5.

34See Chapter 5 for a more details.
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For translation invariant systems with chiral symmetry, ⇀sı can be expressed in yet
another form. By the Gohberg-Krein theorem [GGK93, XXIII.5, Thm. 5.1], the right
Fredholm index of β is equal to the negative winding number of det(β̂(k)) [CGS+18],
i.e.

⇀sı (U) = − ind
⇀

(β) = wind
(
k 7→ det(β̂(k))

)
(3.129)

where β̂(k) denotes the Fourier transformation of β. This correspondence connects the
right symmetry index to the ad hoc definitions of topological invariants in earlier works,
e.g. [AO13]. In [CGS+18] we discuss similar correspondences of the right symmetry
indices towinding numbers for the remaining non-trivial symmetry types of the tenfold
way (see also [Sta18]).

3.5.2 No robust indices beyond the tenfold way
For the symmetry types beyond the tenfold way, we do not know equally robust invari-
ants from the symmetry indices. The reason for this lies in the more complex balanced-
ness condition, namely the fact that a balanced finite-dimensional representation has to
admit unitaries with four instead of two gaps in the spectrum. While it remains possi-
ble to transfer the problem to aHamiltonian and define left- and right symmetry indices
this way, we cannot rely on the homotopy stability of these simpler systems as for the
tenfold way.

For all non-trivial symmetry types beyond the tenfold way we are concerned with
box-eigenvalue orbits (see Lemma 2.3.1). Consequently, the eigenspaces at ±1 and ±i
have to be combined in order to be invariant under the symmetries. This suggests to
transfer the idea of Definition 3.5.5 to the individual indices si⋆ instead of their sum∑

⋆ si⋆, using Im(U) for si and Re(U) for si . We get
ker (Im(U)) = H+1 ⊕H−1 and ker (Re(U)) = H+i ⊕H−i (3.130)

and therefore also
si (U) = si

(
ρker Im(U)

) and si (U) = si
(
ρkerRe(U)

)
. (3.131)

One is attempted to conclude that due to (3.131) we can define si and si also for essen-
tially unitary admissible operators, and therefore also for PUP , which would provide
a method to define left and right-sided symmetry indices without the need of a gentle
decoupling. For this, we needed a correspondence between unitaries and Hamiltonians
similar to Lemma 2.3.5, which enabled us to rephrase the task in terms of Hamiltoni-
ans in Definition 3.5.5 and use the topological stability for the symmetry index of those.
However, we do not have such a direct correspondence beyond the tenfoldway. Instead,
each eigenspace of Im(U) and Re(U) has to be evenly degenerate, such that the symme-
try that maps the respective spaces from the corresponding unitary box orbit onto each
other acts as a swapping operator inside these degenerated spaces:

U
Im(U)Re(U) (3.132)
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That is, for a finite-dimensional representation of a symmetry type with box orbit,
there exists a gapped admissible unitary, if and only if there exist a gapped admissi-
ble Hamiltonian with evenly degenerate eigenspaces35. Adding this degeneracy as an
assumption on the set of admissible Hamiltonians, we could go on and define the sym-
metry indices on this set. Being just a reformulation, these naturally inherited the ho-
motopy invariance from the unitary formulation, similar to the tenfold way.

However, the extra condition is not automatically fulfilled for essentially unitary op-
erators. In that case, the admissibility of an essentially unitary operator A does not
necessarily lead to appropriately degenerate null spaces of Im(A) and Re(A). In par-
ticular, the degeneracy condition does not survive the projection of a unitary U onto a
half-line. We will readily discuss an example walk of symmetry type 10, which exhibits
non-degenerate null spaces of Im(PUP ). Hence, the expression of the symmetry in-
dices in terms of Im(U) and Re(U) does not unveil further stability properties as it was
the case for the symmetry types of the tenfold way.

Nevertheless, (3.131) can still be helpful for computing the symmetry indices in spe-
cific cases (see the examples below).

3.5.3 Spatial invariants via forgetting symmetries
If a walk is admissible for a symmetry type beyond the tenfold way containing a chiral,
particle-hole and/or time-reversal symmetry, it can also be considered a tenfold way
admissible walk by keeping only a subgroup of symmetries. While in some cases, the
forgotten additional symmetries trivialize the tenfold- left and right symmetry indices,
there are symmetry types where this forgetting method enables us to obtain robust in-
variants beyond the tenfold way. We will not discuss the subtleties of classifying sym-
metry types via forgetting symmetries in full detail here but restrict ourselves to three
specific types, namely 10, 11 and 24. For type 10, we can restore the complete symmetry
index out of the more robust symmetry indices of tenfold subtypes, whereas no index
information can be inferred from the tenfold subtypes in the case of type 11. Type 24
lies in between those two examples. That is, the tenfold subtype carries part of the index
information of the whole type.

We close this discussion with a detailed analysis of an example walk of symmetry
type 10 and a brief discussion of an example walk of symmetry type 11. A variant of
the type 10 symmetric walk has already been realized in the lab by Barkhofen et al. in a
“time-multiplexing optical fibre-loop”-setup [BLN+18].

Type 10

Type 10 consists of the symmetries σ, γ and σγ , commuting with each other (see also
Example 3.2.9), and

σUσ∗ = −U, γUγ∗ = U∗, and σγUσ
∗
γ = −U∗. (3.133)

For any U we have
si (U) = (tr γ, trσγ) |ker Im(U) and si (U) = (tr γ, trσγ) |kerRe(U). (3.134)

35For this statement, it does not matter whether one chooses Im(U) or Re(U).
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It turns out that two of the four components can be reduced to tenfold type symmetry
indices by simply forgetting some of the symmetries of type 10, while the two other
components are trivial for any admissible unitary, anyhow. Let us start with the trivial
components: the second component of si is given by trσγ , evaluated on the combined
±1 eigenspace ofU . On this space, however, σγ acts as a swappingunitary,mappingH+1

to H−1 and vice versa. Consequently, its trace on this space is always trivial. A similar
reasoning applies to the first component of si , i.e. tr γ on the combined ±i eigenspace.
We get

si (U) =
(
tr γ|ker Im(U) , 0

) and si (U) =
(
0 , trσγ |kerRe(U)

)
. (3.135)

Considering now the first component of si , note that this precisely matches the
symmetry index of U , considered as a walk of type AIII, i.e. with only the chiral symme-
try γ. Hence,

si (U) =
(
siγAIII(U) , 0

)
, (3.136)

where the subscript AIII refers to the reduced type and the superscript γ to the symme-
try constituting that type (specifying both seems redundant, but will important just a
thought ahead).

An equally simple reduction can be archived for the second component of si . On the
one hand, note that σγ acts as a normal chiral symmetry for iU . On the other, the factor
of imoves the eigenspaces at±i to±1. Hence, we can express the second component of
si as the symmetry index of iU , considered as a walk of type AIII with chiral symmetry
σγ :

si (U) =
(
0 , si

σγ

AIII(iU)
)
. (3.137)

In both cases, the individual components are either directly expressed as tenfold-
type indices or as isomorphic pictures of such. Hence, they exhibit well defined left and
right symmetry indices, i.e.

si (U) = ↼sı (U) + ⇀sı (U) and si (U) = ↼sı (U) + ⇀sı (U). (3.138)

In particular, we get a bulk-boundary correspondence for each symmetry protected ei-
genspace individually. However, note that we needed to express the symmetry indices
in terms of tenfold-type indices, which was possible due to the special formula for the
symmetry index for type 10 (si(ρ) = (tr γ, trσγ)). This direct correspondence to some
type of the tenfold way is generally not be possible for all types.

Type 11

Similar to type 10, type 11 consists of the symmetries σ, γ and σγ , but with anti-
commuting generators σ and γ. Hence, all irreducible representations are isomorphic
to a copy of the Pauli-matrices (see also Example 3.2.11). The symmetry index is given
by si(ρ) = d mod 4 and for admissible U we get

si (U) = dim (ker Im(U)) mod 4 and si (U) = dim (kerRe(U)) mod 4.
(3.139)
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Forgetting two of the symmetries, while keeping γ or σγ , similarly to type 10 before, does
not reveal any invariants from the subtypeAIII forU , respectively iU . Since γ and σγ anti-
commute, they have to swap their respective eigenspaces. Hence, in any representation
trγ = trσγ = 0, andwe always get siγAIII(U) = ⇀sı γAIII(U) = 0 and si

σγ

AIII(iU) = ⇀sı σγ

AIII(iU) = 0.
On the other hand, type 11 always allows for a gentle decoupling, which enables us

to define left and right symmetry indices properly, and, as the example below shows,
these can take non-trivial values.

Type 24

Type 24 consists of the symmetries γ, στ and ση, with commuting generators and σ2τ =
σ2η = 1. In this case, in contrast to type 11, forgetting symmetries provides part of the
index information, but not all of it as it was the case for type 10. The index group is
given by I(S) = 2Z×Z2 and the symmetry index of a finite-dimensional representation
is computed via

si(ρ) =
(
tr γ, d+γ mod 2

)
, (3.140)

where d+γ = dimker(γ − 1) denotes the dimension of the +1-eigenspace of γ. Hence,
the first component of si(ρ) can be inferred from the subtype AIII, by only considering
γ. The second component, however, carries no non-trivial index-value when only γ is
considered. Indeed, it can be changed e.g., by adding the balanced AIII-representation
γ = σz

36.

Example: A walk of symmetry type 10

Let us discuss an example of symmetry type 10 in detail. Consider the following walk
on ℓ2(Z)⊗ C4, inspired by [BLN+18]:

U =

(
0 S∗↓R(θ)

σxR(−θ)S↓σx 0

)
=


cθ −sθ
Ssθ Scθ

cθS
∗ −sθ

sθS
∗ cθ

 , (3.141)

where R(θ) = exp(−iσyθ) denotes the standard rotation around the σy-axis in a two-
dimensional subspace in each cell (with (cθ, sθ) = (cos(θ), sin(θ)) and

S↓ =

(
1 0
0 S∗

)
(3.142)

is the shift down operation from Example 1.4.6. Note that while being irrelevant in the
translation invariant case, the order of operations (e.g. Ssθ v.s. sθS) becomes impor-
tant when position dependent coin angles θx are chosen. The walk is admissible for a
representation of symmetry type 10, generated by

σ = 1⊗
(
1 0
0 −1

)
and γ = 1⊗

(
σx 0
0 σx

)
. (3.143)

Moreover, U is translation invariant and, therefore, has only essential spectrum
36Note that this representation is not balanced for type 24.
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Figure 3.5: Spectrum and position distribution for U with θ = π/8, for the initial state
ψ = (1, i, 1, i)/2 at x = 100 after n = 20, 110 and 200 steps.
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Figure 3.6: Spectrum and position distribution for Ũ with θx≥100 = π/8 and θx<100 =
−π/8, for the initial state ψ = (1, i, 1, i)/2 at x = 100 after n = 20, 110 and 200 steps.

[CGS+18]. The spectrum is absolutely continuous and contained in four intervals on
the unit circle specified by ±e±iλ with λ ∈ [θ (mod π/2),−θ (mod π/2)] and the full
unit circle at the endpoints θ = nπ/2, n ∈ Z. In particular, U is gapped at±1 and±i for
θ ̸= nπ/2, n ∈ Z, and for θ = (n+ 1/2)π/2 the spectrum is contained in ± exp(±iπ/4),
i.e. U has flat bands. Choosing e.g. θ = π/8 we get the spectrum and propagation be-
haviour shown in Figure 3.5.

The decoupling index of U is determined by dec (U) = ind
⇀

(S∗↓) = −1. Hence, U
cannot be decoupled and we cannot define the left and right symmetry indices directly.
Moreover, as we will see below, Im(PUP ) and Re(PUP ) exhibit one-dimensional null
spaces, which rules out a definition of si and si in terms of these operators. However,
as also reported in [BLN+18] we can still observe symmetry protected edge states for
certain choices of θ in U . If we choose θ ∈ (0, π/2) for x ≥ 0 and θ ∈ (−π/2, 0) for x < 0,
the resulting operator Ũ hosts a pair of symmetry protected edge states at the boundary
(see Figure 3.6). This can be seen most easily for the flatband case, i.e. θx≥0 = π/4 and
θx<0 = −π/4, which give

Ũ =
1√
2


1 1− 2P

S(2P − 1) S
S∗ 1− 2P

(2P − 1)S∗ 1

 , (3.144)

with P = P≥0, as usual. In this case we can directly determine the eigenspaces at ±1
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and ±i and compute si and si . By homotopy invariance of si⋆, these must have the
same value also for other choices of 0 < θx≥0 < π/2 and −π/2 < θx<0 < 0. For (3.144)
the ±1 and ±i eigenspaces of Ũ are each one-dimensional and spanned by

ψ+1 =
1

2

[
e−1 ⊗

(
0, 0,−1/

√
2, 1/
√
2
)
+ e0 ⊗

(
−1, 1,−1/

√
2, 1/
√
2
)]

ψ−1 =
1

2

[
e−1 ⊗

(
0, 0,−1/

√
2, 1/
√
2
)
+ e0 ⊗

(
1,−1,−1/

√
2, 1/
√
2
)]

ψ+i =
1

2

[
e−1 ⊗

(
0, 0,−1/

√
2, 1/
√
2
)
+ e0 ⊗

(
−i,−i, 1/

√
2,−1/

√
2
)]

ψ−i =
1

2

[
e−1 ⊗

(
0, 0,−1/

√
2, 1/
√
2
)
+ e0 ⊗

(
i, i, 1/

√
2,−1/

√
2
)]
,

(3.145)

where en denotes the basis element in ℓ2(Z) corresponding to the n’th cell. Evaluating
(tr(γ), tr(σγ)) on the combined eigenspaces H+1 ⊕ H−1 and H+i ⊕ H−i according to
Table 2.1 and Definition 3.1.4 we get

si (Ũ) = (−2, 0) and si (Ũ) = (0, 2) . (3.146)

The non-trivial values of the symmetry indices guarantee that the eigenspaces are in-
deed symmetry protected and cannot change under homotopies, which keep the sym-
metries and the essential gap. In particular, they are stable for the ranges of θ described
above.

Although we cannot decouple the model without breaking the σ-symmetry, we are
able to retrieve left and right symmetry indices from the AIII-subtypes, according to the
discussion above. This underlines the topological stability and allows to predict the
edge states via bulk-boundary correspondence (see Section 3.5.4). We again choose the
flatband case, i.e. θ = π/4 for the right half of the system and θ = −π/4 for the left half.
The relevant operators are Im(PŨP ) and Im(P⊥ŨP⊥) for the subtype containing only
γ, and Re(PŨP ) and Re(P⊥ŨP⊥) for the subtype containing only σγ . In the first case,
the nullspaces are given by

ker
(
Im(PŨP )|PH

)
= span

{
e0 ⊗ (1,−1, 0, 0) /

√
2
}

ker
(
Im(P⊥ŨP⊥)|P⊥H

)
= span

{
e−1 ⊗ (0, 0, 1,−1) /

√
2
}
,

(3.147)

and evaluating tr γ on these spaces yields ⇀sı γAIII(Ũ) = ↼sı γAIII(Ũ) = −1 for the symme-
try indices with respect to only the chiral symmetry. Similarly, for the σγ-subtype, the
nullspaces of Re(PŨP ) and Re(P⊥ŨP⊥) are given by

ker
(
Re(PŨP )|PH

)
= span

{
e0 ⊗ (1, 1, 0, 0) /

√
2
}

ker
(
Re(P⊥ŨP⊥)|P⊥H

)
= span

{
e−1 ⊗ (0, 0, 1,−1) /

√
2
} (3.148)

which yield ⇀sı σγ

AIII(iŨ) = ↼sı σγ

AIII(iŨ) = 1.
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The left and right symmetry indices for the whole symmetry type are then indi-
vidually stable for each symmetry protected eigenspace H and H . According to the
discussion on type 10 above, we get the four components

↼sı (Ũ) = (−1, 0) ⇀sı (Ũ) = (−1, 0)
↼sı (Ũ) = (0, 1) ⇀sı (Ũ) = (0, 1).

(3.149)

Thesemay be combined in two differentways, which on the one hand defines the overall
left and right symmetry indices

⇀sı (Ũ) = ⇀sı (Ũ) + ⇀sı (Ũ) = (−1, 1)
↼sı (Ũ) = ↼sı (Ũ) + ↼sı (Ũ) = (−1, 1),

(3.150)

and on the other yields the eigenspace indices

si (Ũ) = ⇀sı (Ũ) + ↼sı (Ũ) = (−2, 0)

si (Ũ) = ↼sı (Ũ) + ⇀sı (Ũ) = (0, 2).
(3.151)

Note that (3.150) seems to be in contradiction with (3.135), since both components of
the indices are non-zero. However, (3.135) only holds for the symmetry indices asso-
ciated to unitaries that are admissible for type 10. Since the present example does not
allow for a decoupling,⇀sı ⋆(Ũ) is not defined as such, but obtained from the AIII-subtype
symmetry index.

Example: A walk of symmetry type 11

For this example, we consider the symmetry representation of type 11 generated by

σ = 1⊗
(
1 0
0 −1

)
and γ = 1⊗

(
0 σx
σx 0

)
. (3.152)

Note the difference in γ to the previous example, resulting in anti-commuting generators
σγ = −γσ. Moreover, let

U(θ1, θ2, θ3, θ4) =

(
0 S↑R(θ2)S↓R(θ1)

S↑R(θ4)S↓R(θ3) 0

)
, (3.153)

which is admissible for the symmetry representation above. U is an off-diagonally dou-
bled version of the split-step walk, which we already briefly mentioned in Section 1.4
and which we will study in detail in Section 5.4. Therefore, let us here only mention the
bare necessities to underline our point above, i.e. that there exist walks of type 11, which
exhibit non-trivial values of ⇀sı and ↼sı .

The walk U(θ1, θ2, θ3, θ4) can be decoupled between x = 0 and x = −1 by setting
θ2 = θ4 = π/2, locally at x = −1, while leaving the choice for the remaining angles
completely free. Because the decoupling is realised by choosing certain coin angles,
which can be reached on a continuous path of angles, it is clearly gentle.
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Let us particularly consider the two different translation invariant scenarios

UI = U(π/2, 0, π/2, π/2) and UII = U(π/2, 0,−π/2, π/2). (3.154)

Without the decoupling coin at x = −1, both choices are gapped walks with flat bands
in the sense that the spectra are contained in {±e±iπ/4}. After adding the decoupling
coin at x = −1, the resulting walks ŨI and ŨII each exhibit 4 eigenvalues differing from
{±e±iπ/4}.

For ŨI we get two eigenvalues at ±1. The corresponding eigenspaces are spanned
by

ψ±,R = e0 ⊗ (∓1, 0, 1, 0) /
√
2

ψ±,L = e−1 ⊗ (0,∓1, 0, 1) /
√
2,

(3.155)

i.e. on each side of the cut, we get one eigenspace for each eigenvalue±1. Consequently,
the left and right symmetry index components evaluate to

⇀sı (ŨI) =
↼sı (ŨI) = 2 mod 4 and ⇀sı (ŨI) =

↼sı (ŨI) = 0 mod 4, (3.156)

which gives
⇀sı (UI) =

↼sı (UI) = 2 mod 4. (3.157)
For ŨII , on the other hand, we get two eigenvalues at ±i, with the eigenspaces

φ±,R = e0 ⊗ (±i, 0, 1, 0) /
√
2

φ±,L = e−1 ⊗ (0,±i, 0, 1) /
√
2.

(3.158)

Again, each half-space hosts two eigenspaces for each eigenvalue ±i, resulting in
⇀sı (ŨII) =

↼sı (ŨII) = 0 mod 4 and ⇀sı (ŨII) =
↼sı (ŨII) = 2 mod 4, (3.159)

i.e. we again get
⇀sı (UII) =

↼sı (UII) = 2 mod 4 (3.160)
Note that the left and right symmetry indices have the same values in both scenarios,

but are composited in different ways. While the non-trivial values for ŨI originate in
the real symmetry protected eigenspaces at ±1, those for ŨII have their origin in the
imaginary symmetry protected eigenspaces at ±i. Hence, combining the two scenario
into a single walk Ũ , e.g., with UII on the left and UI on the right half chain, we get the
non-trivial indices

si (Ũ) = si (Ũ) = 2 mod 4. (3.161)
These are homotopy invariants and, in particular, stable under continuous deforma-
tions of the angles (θ1, θ2, θ3, θ4), as long as the essential gaps are not closed. Hence, a
crossover like Ũ produces topologically protected eigenstates at the symmetry protected
parts of the spectrum.
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3.5.4 Bulk-boundary correspondence
Since ⇀sı and ↼sı are independent of the cut-position, they can be calculated arbitrarily
far to the right and to the left, respectively. Therefore, we can justifiably call them
bulk-invariants, i.e. invariants, which do not depend on how crossover regions are
designed, but only on the bulk of a system. A bulk is the standing concept of a sys-
tem that is “large enough”. Usually, this means that, although finite, a system can be
treated as infinite for all practical purposes. Therefore, one allows oneself to apply the
techniques and findings for infinite systems, such as spectral bands and correspond-
ing winding numbers. However, often this term lacks a precise definition but is as-
sumed to be common knowledge, and the necessary properties are often only vaguely
sketched. To avoid this, we here define a bulk to be a half-infinite system. This means
that a bulk-unitary/walk is an essentially local (possibly essentially unitary) operator
on PH =

⊕
x≥0Hx. It might emerge from a unitary/walk U on the whole Hilbert space

by decoupling (U 7→ U ′ = UL⊕UR) as suggested by Section 3.5 or simply by projecting
down to the half-line (PUP and P⊥UP⊥) as in Section 3.5.1.

For physical applications, where no system is infinite, this definition of a bulk re-
quires an idealization step [CGG+18]. Whenever a system is large in the sense that its
spatial extent is much bigger than the localization length of the system, we treat it as
practically infinite. This can be done by periodically extending the system to infinity,
or, if a specific model with disorder stemming from a known (or guessed) distribution
is under consideration, extending the disordered system, while drawing from the same
distribution. We stress that this idealization step is crucial in order to define bulk invari-
ants. On the one hand, in our theory, every finite piece is trivial with respect to ↼sı and
⇀sı . On the other, the classifying indices in the literature often rely on winding numbers
in the bundles defined by the band structures of a translation-invariant system. These
are not defined if the system is not infinite in at least one direction. Moreover, also more
sophisticated techniques, e.g., a classification using K-theoretic methods, need properly
infinite systems to be applicable.

An interesting property of the topological classification of lattice systems, be it con-
tinuously driven time evolutions by a Hamiltonians or quantum walks in discrete time,
is the so-called bulk-boundary correspondence. It asserts the equality of two differ-
ent kinds of invariants: On the one hand, bulk invariants like winding numbers for
translation-invariant systems and on the other, boundary-invariants depending on the
eigenspace at the boundary of a system. In the case of the symmetry types of the tenfold
way, bulk-boundary correspondence manifests itself in the equation

si++si− = ↼sı + ⇀sı . (3.162)

The left side is the sum of the symmetry indices corresponding to the finite-dimensional
eigenspaces of a walk operator under consideration, which, in an appropriately homo-
geneous (e.g., translation invariant) system, are always associated with the boundary
or with spatially finite perturbations [CGS+18]. The right side consists of the left- and
right symmetry indices, which are proper homotopy invariants in the tenfold way, and
only depend on the half infinite systems to the left and to the right.

139



3. TOPOLOGICAL CLASSIFICATION

For the symmetry types beyond the tenfold way, we have the similar formula

si + si = ↼sı + ⇀sı . (3.163)

It is important to stress, however, that this is in general no bulk-boundary correspon-
dence in the typical sense. The left and right symmetry indices are not provably homo-
topy invariant, and it might well be that in this case, the proper bulk invariants do not
coincide with ↼sı and ⇀sı .

The physical implication of bulk-boundary correspondence in our one-dimensional
setting is that every system inwhich two bulks of different topological classes are joined
possesses symmetry protected bound states near the boundary. Thereby, one system
could be the vacuum, i.e. a half-line system in a non-trivial topological class always
hosts bound states at the edge. This implication is true in both scenarios, as the following
corollary shows. According to the different levels of the robustness of ⇀sı and ↼sı for the
different sets of symmetry types in Section 3.5 and Section 3.5.1, we distinguish two
different levels of generality. In both cases, we consider walks, which are crossovers
between two bulks:
(1) Exactly unitary strictly local walks U , which are admissible for a symmetry type

beyond the tenfold way and exhibit well defined left- and right symmetry indices
according to Definition 3.5.1. Moreover, U is assumed to equal two admissible
strictly local walks UL and UR on the left, respectively the right half-chain in the
sense that there exist a < b ∈ Z, such that

P<a(U − UL)P<a = P≥b(U − UR)P≥b = 0. (3.164)

(2) Exactly unitary essentially local walks U , which are admissible for a symmetry
type of the tenfold way, with left and right symmetry indices according to Defini-
tion 3.5.6. Moreover, U is assumed to equal admissible essentially local walks UL

and UR in the limits far to the left and far to the right, i.e. U fulfils

lim
x→−∞

∥P<x(U − UL)P<x∥ = lim
x→∞

∥P≥x(U − UR)P≥x∥ = 0. (3.165)

Corollary 3.5.8. LetU be as in one of the scenarios above, and si,⇀sı and↼sı be defined accordingly.
Then

si(U) = ↼sı (UL) +
⇀sı (UR) (3.166)

defines a lower bound on the number of symmetry protected eigenstates via | si(U)| if I(S) ∼= nZ
ormZ2 and max(|a|, |b|) for I(S) ∼= A×B, a ∈ A, b ∈ B and A,B ∈ {nZ,mZ2}.

Proof. Scenario (1): U coincides with UL on the left half-chain and with UR on the
right half-chain, with a finite crossover region in between. Hence, (3.166) is a direct
consequence of Theorem 3.5.2.

Scenario (2): Any unitary crossover between UL and UR according to (3.165) is a
compact perturbation of U . In particular, by (3.165), P≥xUP≥x−P≥xURP≥x is the norm
limit of finite rank operators and therefore compact. Hence, we get ⇀sı (U) = ⇀sı (UR), and
similarly also ↼sı (U) = ↼sı (UL).
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In both scenarios, we have
si(U) =

∑
⋆

si⋆(U) (3.167)

and, as discussed at the end of Section 3.1.1, si⋆ is a lower bound on the dimension of
the respective symmetry protected eigenspaces of U .

While the symmetry index si provides a lower bound on the total number of pro-
tected eigenstates corresponding to real eigenvalues ±1/±i, we cannot distinguish be-
tween these eigenvalues in general. In fact, as Example 3.5.3 shows, the distribution
of eigenstates between the eigenvalues ±1/±i depends on how the crossover is man-
ufactured and can therefore not be determined by quantities that are invariant under
local (compact) perturbations. This is only the case for single-timestep unitaries, i.e.
the scenario of a quantum walk we are concerned with here. In Chapter 5 we discuss
another kind of quantum walk definition, which relies on a (possibly discrete) proto-
col in contrast to a single time-step. Protocols bridge between purely discrete quantum
walks and continuously driven Floquet systems. We will focus exclusively on chiral
symmetric systems and investigate the influence of such symmetry on the whole driv-
ing process. Thereby, we find that the chiral symmetry stabilizes the predicted edge
states in a protocol and enables us to distinguish between the eigenvalues ±1 in the
bulk-boundary correspondence, which then predicts the protected edge states for each
eigenvalue separately (see Section 5.5.2).

3.6 Completeness for the tenfold way
A remarkable property of the symmetry indices, and also the main result of our work
in [CGG+18], is that in case of the tenfold way, they provide a complete classification
with respect to continuous and/or compact deformations in the set of admissible walks.
The result holds for almost all symmetry types of the tenfold way (all but 1, 4 and 5 in
Table 2.1)37, but we will also comment on completeness for these outliers. We state the
completeness results here and also sketch the proofs. However, the remaining main
topic of this thesis will be the complete classification of chiral protocols and Floquet
systems in Chapter 5. Therefore, we do not provide the full proofs here, but refer the
interested reader to [CGG+18, Ced18] for the detailed version.

The completeness result covers three different scenarios, each equipped with a set
of allowed deformations. In each scenario there is a subset of the indices (si,↼sı ,⇀sı , si±),
which labels the connected components up to the allowed deformations. That is, two
objects can be obtained from each other via these deformations if and only if their values
of the respective subset of indices coincide. The scenarios are the following:

(I) Admissible quantum walks up to continuous deformations with the indices

(si,⇀sı , si+) . (3.168)
37A, AI and AII
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(II) Admissible quantum walks up to continuous deformations as well as compact
perturbations, with the indices

(si,⇀sı ) . (3.169)

(III) Admissible unitaries (without a locality assumption) up to continuous deforma-
tions, with the indices

(si, si+) . (3.170)

Before we state the completeness theorem, let us comment on why we have to re-
strict ourselves to the tenfold way here. We already saw, that the indices in each sce-
nario cannot be directly generalized to complete index sets for the remaining symmetry
types of the 38-fold way. On the one hand, concerning scenarios I and II, as discussed
in Section 3.5.2, we were not able to come up with a definition of the right symme-
try index ⇀sı , which is robust against continuous deformations in the set of essentially
unitary essentially local unitaries. On the other, in Example 3.2.10, we discussed a non-
gentle perturbation of a walk of symmetry type 27, which could not be detected by the
spectral-dependent indices si⋆, ruling out a direct generalization of the index pair (si, si+)
to (si, si⋆) (⋆ ∈ { , }) in scenario III.
Theorem 3.6.1. For the symmetry types 3, 8, 9, 20, 21, 22 and 2338 in Table 2.1, and each Sce-
nario above, the corresponding set of indices is complete. Moreover, each index combination can
be realized by joining two strictly local translation invariant walks with a finite crossover region.

We sketch the proof strategy and state the needed intermediate results, without
proving all of them. We already discussed the invariance properties of the indices under
consideration in detail in earlier sections an chapters. Hence, we are left with construct-
ing actual deformations between two given walks/unitaries with the same indices. One
of themayor steps for this task is the so called flattening construction, a version of which
will also be important in Chapter 5. Therefore, we discuss our proof from [CGG+18]
here, which shows the existence of a flattening path, without explicitly constructing one.
Later in Chapter 5, whenwe specialize on driven systems with chiral symmetry, we also
provide an explicit construction for walks of this type.
Lemma 3.6.2. In all three scenarios above and for all symmetry types in Theorem 3.6.1 every
walk/unitaryU can be continuously deformed, without breaking the assumptions of the scenario,
into a flatband walk/unitary U ♭, such that

• the±1 eigenspaces of U ♭ are finite-dimensional and do not contain any balanced represen-
tations of the symmetry type, respectively.

• the spectrum of U ♭ is contained in {±1,±i}.

See Figure 3.7 for an illustration.

Proof. The proof is split into two steps: By the admissibility condition, the eigenspaces
ofU are finite-dimensional and isolated from the rest of the spectrum. Let ρ+ be any bal-
anced subrepresentation of the +1 eigenspace of U . Then there exists a gapped unitary

38AIII, D, C, BDI, CII, CI and DIII
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Figure 3.7: Flattening the band structure.

V , which is admissible for ρ+. Moreover, letH = −i log V be a corresponding Hamilto-
nian, where we chose the branch cut of the logarithm at −1. Then t 7→ Vt = exp(iHt),
t ∈ [0, 1] provides a continuous path, which removes the respective part of the +1 ei-
genspace of U . A similar construction works for −1. This can be done until the ±1
eigenspaces of U no longer contain balanced representations. Since these changes on U
are of finite rank, they do not harm essential locality.

In the second step we deform the non-real parts of the spectrum to ±i. This can be
done in the continuous functional calculus of the C∗ algebra of essentially local opera-
tors. Note that the admissibility conditions for U are valid also for any Laurent poly-
nomial in U , with real coefficients. Moreover, by the Weierstraß Theorem, we conclude
that any continuous function f on the unit circle, with (f(z))∗ = f(z∗), applied to U in
the functional calculus also fulfils the admissibility conditions39. Hence, we certainly
find a continuous path between the functions f0(z) = z and f1(z) = sign(Im(z))i for
| Im(z)| > ε, where ϵ is determined by the gap size of U .

Sketch of proof for Theorem 3.6.1. First note, that we already established completeness of
si+ (or equivalently si−) for compact admissible perturbations. I.e., proving complete-
ness of si and ⇀sı for scenario (II) also establishes completeness of si, ⇀sı and si+ for sce-
nario (I)40. Hence, we only focus on scenario (II) and (III). The proof is done in several
steps:

• In the first step one reduces the scenarios (II) to the third one (III). This is done
by first decoupling a given walk U via a gentle decoupling. Since any decoupled
walk is essentially local (see Lemma 3.3.6) we can then freely deform UL and UR

separately, without having to dealwith any locality condition. Note that for thiswe
have to employ the full potential of essential locality, and this reduction is clearly
not possible for strictly local or band dominated walks (compare Example 3.3.10).
As already discussed, the individual invariants ↼sı± and ⇀sı± of UL and UR are not
invariant with respect to homotopies of the full unitaryU . Hence, given twowalks
U and U ′, it is not guaranteed, that we end up with si±(UL/R) = si±(U

′
L/R). How-

ever, one can show, that this can always be archived via a compact perturbation41.
39This only works for symmetries, with s = 1 (i.e. the tenfold way). Since for s = −1 only odd powers

of U are admissible in the same way as U itself.
40There are some subtleties to respect for this argument to hold throughout the whole following con-

struction. However, for this sketch of a proof, we will generously omit those and invite the interested
reader to study the full proof in [CGG+18] or [Ced18].

41Or even a gentle one, see 40.
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• In the second and third step one shows completeness for scenario (III). Given two
admissible unitariesU1 andU2 for the same representation of a symmetry type and
with the same symmetry indices si±, we apply Lemma 3.6.2 to both of them. This
provides us with two admissible unitaries with the same spectrum and, moreover,
with the samemultiplicities of the finite-dimensional eigenspaces. Hence, they are
unitarily equivalent with a symmetry commuting unitary V , i.e.U2 = V U1V

∗ (see
[CGG+18, discussion below Lem. VIII.2]).

• The last step is to show that the set of symmetry commuting unitaries has only one
connected component with respect to continuous deformations (see
[CGG+18, Lem. VIII.3]), which finishes the proof.

We excluded three types of the tenfold way in Theorem 3.6.1, namely 1, 4 and 542.
This is due to their lack of a spectral orbit, that singles out invariant points of the spec-
trum. For all three types, each spectral projection commutes with the symmetries.
Hence, the symmetry indices si± are always trivial, because we can always move away
any finite-dimensional eigenspace from ±1. However, the essential gap condition pre-
vents us from also doing so with essential parts of the spectrum. I.e. a unitary with
essential spectrum below and above the real line is topologically different from one,
where only the upper part of the unit circle carries essential spectrum. This observa-
tion already results in a complete classification: Denoting by n± the rank of the spectral
projection onto the part of the spectrum with positive/negative imaginary part we get:

Proposition 3.6.3. For the symmetry types 1, 4 and 5 there are three connected components
of admissible unitaries with respect to continuous deformations and/or compact perturbations:
Either n+ < ∞, n− < ∞ or both are infinite. The same is true for essentially local unitaries,
i.e. walks.

For the proof see the discussion below Thm. VIII.1 in [CGG+18].
With this, we end the general discussion about the topological classification of single

time-step quantum walks with involutive symmetries and turn our focus to driven sys-
tems with or without chiral symmetry. In Chapter 5 we pick up the results we archived
so far in the discussion of chiral protocols. On the one hand, we completely classify
such protocols and relate the findings to the complete classification of single time-step
unitaries presented above. This includes a stronger version of bulk-boundary correspon-
dence, which allows us to distinguish between the two symmetry protected eigenspaces
in chiral protocols. The classification will be completely in terms of Fredholm type in-
dices. That is we use the results from Section 3.3 and apply it to the new setting. On the
other hand, we discuss the possibility of non-gentle perturbations in discretely driven
systems, picking up the discussion from Section 3.2.

42A, AI and AII
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4 Shift-coin decomposition for
strictly local quantum walks

In the preliminary Section 1.4 we discussed different possibilities of defining strictly lo-
cal walks. On the one hand, we presented the axiomatic definition, in which a quantum
walk is just a unitarywith finite interaction length (Definition 1.4.1). On the other, quan-
tum walks are often defined constructively as a sequence of shift and coin operations
(Definition 1.4.5). Of course, a finite sequence of shifts and coins results in a strictly local
walk in the sense of the axiomatic approach, but the converse is not clear from the outset.
In this chapter, we show that the two approaches are equivalent. That is, any banded
unitary can be factorised into a sequence of shift and coin operations with respect to an
almost arbitrary1 but fixed one-dimensional cell structure. The results presented in this
chapter were obtained in collaboration with Christopher Cedzich and ReinhardWerner
and have been published in part in [CGW21].

Both approaches to quantum walks have their benefits, depending on the underly-
ing setting or task. From a mathematical point of view, it is generally more convenient
to define a quantum walk axiomatically. As we discussed in the previous chapter, this
definition provides a straightforward lift to different C∗-algebras of band-dominated or
essentially local operators, suitable for the earlier discussions. However, the constructive
approach for quantum walks via a shift-coin sequence is favourable for many applica-
tions and experimental realisations. This includes the construction of explicit models
as analogues of condensed matter systems [KRBD10, SK10, FOZ17, SAM+19, CFGW20,
PFM20] (see also the introductions to Section 1.4 andChapter 3), aswell as the design of
algorithms based on quantum walks [Kem03, AKR05, VA12] (see also the introduction
to Section 1.4).

Moreover, as we already discussed in Section 3.3, there is a significant difference
between quantumwalks as single time step unitaries, and those which arise from a con-
tinuous driving process. The latter are always trivial with respect to the right Fredholm
index, whereas a simple shift already provides an ind

⇀ -wise non-trivial example of a sin-
gle time-step unitary. A protocol like a shift-coin sequence fills a gap between these two
pictures. On the one hand, it emphasises the underlying driving process, in contrast to
just the full time-step unitary. On the other, it allows for non-trivial index values and is
still discrete.

In the translation-invariant case, where quantum walks may be represented as Lau-
1For the precise conditions, see below.

145



4. SHIFT-COIN DECOMPOSITION

rent polynomials in eik, where k denotes the Fourier-parameter, such a factorisation al-
ready exists [Vog09]. The shift coin sequence is obtained by factorising the correspond-
ing matrix-valued Laurent polynomial, building on techniques from the theory of filter
banks [VD89, BJ02, GNS01]. In [Vog09] the factorisation is then used to embed any
translation-invariant one-dimensional quantum walk into an interacting many-particle
system, as the one-particle sector of particle-number conserving Quantum cellular au-
tomaton (QCA) [SW04, Arr19, Far20]. Establishing a shift-coin protocol for any banded
unitary generalises this method to non-translation invariant quantum walks.

Another task requiring shift-coin protocols is to couple quantum walks to external
electromagnetic fields, which are implemented via commutation phases of the shift op-
erators [CRW+13, GAS+13, CGWW19, SAM+19].

Last but not least, the possibility of factorising a banded unitary with respect to
any given cell structure is a desirable technique also from an experimenters point of
view. Many experimental realisations of quantum walks rely on a sequence of shifts
and coins. Moreover, in most implementations, the underlying physical system heavily
restricts the dimension of the local coin spaces, which restricts the set of possibly imple-
mentable protocols. However, our factorisation method provides a shift-coin sequence
for any banded unitary for any cell structure. In particular, the desired protocol on
some cell structure that does not fit the physical implementation at hand can always be
interpreted as a banded unitary without any cells and then be re-factorised with respect
to the structure fitting the experimenters needs. This re-coining procedure might also
help implement quantum walk based algorithms in physical implementations, thereby
acting as a compiling step for the implementation.

4.1 Translation invariant quantum walks
We begin with a summary of the result from [Vog09] for translation-invariant quantum
walks. These can be considered as matrix-valued Laurent polynomials in eik via the
Fourier transformation, where k is the Fourier parameter (see Section 1.4.2):

U(k) =

L+∑
n=−L−

eiknUn. (4.1)

Note that, in slight deviation from our earlier conventions, we here distinguish the inter-
action lengths to the left (L−) and to the right (L+) in order to match the considerations
in [Vog09]. The L given earlier would then be defined as L = max{L+, L−}. A coin is
given by a unitary d×dmatrix, where d is the dimension of the single cell Hilbert space
and a partial shift with respect to φ ∈ Hx takes the form

Sφ = 1d + (eik − 1)Pφ, (4.2)

with Pφ being the projection onto the subspace spanned by φ. Setting φ ≡ (1, 0, . . . , 0)
for a standard reference shift, this becomes

S = diag(eik, 1, . . . , 1). (4.3)
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Building on techniques from the theory of filter banks [GNS01, Mey96], Vogts proves
in [Vog09] that up to a global factor of eikL− , every translation invariant walk with finite
jump length can be decomposed into a finite sequence of coin operations and powers of
the reference shift in (4.3). We will not repeat the proof of the following result here, but
refer the reader to [Vog09, Prop. 6.3].

Lemma 4.1.1. Let U(k) be a unitary d× d matrix over Laurent polynomials in eik with index
n. Then there exist coins C0, C1, . . . , Cn+dL− , such that

U(k) = e−ikL−C0SC1S . . . Cn+dL−−1SCn+dL− . (4.4)

Of course, the global factor eikL− ·1 can also be decomposed into a sequence of coins
and the reference shift S as follows:

e−ikL− · 1 = SL−
(
Cπ(12)S

L−Cπ(12)

)
. . .
(
Cπ(1d)S

L−Cπ(1d)

)
,

whereCπ(ij) denotes the permutation-unitary, which swaps the i’th and j’th basis vector
and leaves invariant the remaining ones. In total, since the absolute value of the index
|n| is bounded from above by d·max{L+, L−}, the number of shifts and coins needed for
this decomposition (counting monomials in S as a single factor) is of order O(dL). We
will see that in the generalised version for arbitrary banded unitaries on homogeneous
cell structures, the number of factors will be of orderO(d2L2). However, this might well
be an artefact of the proof technique. We will not tackle the optimisation of the length
of the shift coin sequence but focus solely on proving the existence of a finite sequence.

4.2 Banded unitary operators on the line
We now come to the general case: strictly local quantum walks or banded unitaries
without assuming translation invariance. The setting will be that of Definition 1.4.1,
with an additional condition on the local cell dimensions dx = dimHx. We do not
assume the cellsHx to be of the same dimension. However, as discussed in Section 3.3,
we generally assume auniformupper boundon dx. Wehave to add a further assumption
for this section, namely a lower bound for the dimension of at least some of the cells.
Let us begin with a no-go example when the cells are too small:

Example 4.2.1. Consider the simplest possible cell structure, with only one-dimensional cells
Hx = C, i.e.H = ℓ2(Z). By Observation 3.3.2 the specific underlying structure does not restrict
the set of possible banded unitaries, as long as no further assumptions as translation invariance
are met. Hence, every banded unitary on every one-dimensional spatial structure with bounded
cell dimensions can be considered a banded unitary on ℓ2(Z) by relabelling the basis.

However, the set of banded unitaries, which shifts and coins can realise, is very restricted on
ℓ2(Z). With Hx = C, the coin operations are confined to diagonal unitaries, i.e. multiplication
with phases Cϕx = λxϕx locally. Such building blocks do not leave enough freedom to generate
all banded unitaries. In fact, any sequence U = Cn+1S

kn . . . C2S
k1C1 of shifts and coins of

this kind has non-trivial matrix elements only on the − ind
⇀

(U)’s diagonal, where ind⇀ (U) =
−
∑

i ki. Clearly, not every banded unitary is of this form.
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If we assume the cells to be at least two-dimensional, on the other hand, the situation
drastically changes, as the following theorem shows. We do not need to assume dx > 1
for every x, but only for “sufficiently many” ones:
Theorem 4.2.2. Let U be a unitary on H =

⊕
x∈ZHx, such that there exist positive integers

d, r ∈ N with

dimHx < d and r < dim (Hx ⊕ . . .⊕Hx+r−1) , ∀x. (4.5)
Then the following are equivalent:

1) U is strictly local, i.e. banded.

2) U can be written as a finite product of partial shifts Sφi :

U = Snk
φn . . . S

nk

φ2S
n1

φ1 (4.6)

3) U can be written as a finite product of coin operations Ci and powers of a fixed reference shift
S:

U = Ck+1S
nkCk . . . S

n1C1 (4.7)

Let us first comment on the conditions on the cell dimensions. We already discussed
the upper bound d in Section 3.3 as a physical assumption. Here itwill becomenecessary
for the proofs of 1)⇒ 3) and 3)⇒ 2). The lower bound, on the other hand, is new here
and guarantees that each consecutive set of r cells contains at least one cell of dimension
dx > 1, i.e. it bounds the maximal length of consecutive one-dimensional cells, which
turned out to be problematic in the example above. The bound is necessary for the
proof of Lemma 4.2.3, which contains the main ingredient for the proof of 1)⇒ 3). The
equivalence 2)⇔ 3) also holds without this lower bound. We first prove 2)⇔ 3) and
address 1)⇒ 3) afterwards. The implications 3)⇒ 1) and 2)⇒ 1) are trivial.

2)⇒ 3): Let S ≡ Sχ be the reference shift for 3). Then, for any partial shift Sφ we
define the coin

Cφ =
⊕
x

(1x − |χx⟩⟨χx| − |φx⟩⟨φx|+ |χx⟩⟨φx|+ |φx⟩⟨χx|) . (4.8)

With this, we get Sφ = CφSχC
∗
φ ≡ CφSC

∗
φ, i.e. any partial shift can be written as a

sequence of coins and the reference shift S.
3)⇒ 2):Weneed to realize the coin operations as products of partial shifts. Consider

the shifts Sφ and Sφ̃ with respect to {φ} ≡ {. . . , φx−1, φx, φx+1, . . .} and {φ̃}, such that
φ̃x = λxφx, with phases λx ∈ T. For these, we get

S∗φSφ̃φx =
λx+1

λx
φx = µxφx and S∗φSφ̃ψx = ψx (4.9)

for φx ⊥ ψx ∈ Hx. Hence, by choosing some initial value λ0 = 1, we can iteratively pick
phases λx in order to realize any set of phases {µx} via (4.9). This way, for every choice
of local vectors {φx} and phases {µx}, we get the operator

S∗φSφ̃ =
⊕
x∈Z

(
(1x − Pφx) + µxPφx

)
. (4.10)
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which acts as the identity everywhere except on a one-dimensional subspace PφxHx in
each cell, where it multiplies with µx. This already suffices to realize every coin, since
we can diagonalize Ci|Hx locally in each cell and write Ci as a product of at most d pairs
S∗
φiSφ̃i , where d = max dx is the maximal cell dimension2.
In order to prove the remaining non-trivial implication 3) ⇒ 1), we make use of

the decoupling construction in Theorem 3.3.19, which allows us to write any banded
unitary as the product of two block-unitaries with overlapping blockings into groups of
2L cells (see (3.87) in Section 3.3.2 or (4.22) below). Before we prove the general case,
let us consider a simpler one with only one factor where only one of the blocks differs
from the identity. The proof for this simpler case already contains the key element for
the general statement.

Lemma 4.2.3. Let U1 be a unitary on H =
⊕

xHx, such that U1 differs from the identity only
on a subspace H1 ⊕ . . . ⊕ Hr with r < dim (H1 ⊕ . . .⊕Hr). Then U1 can be written as a
sequence of coin operations and a fixed reference shift.

Proof. Choose a basis {ϕx,i}dxx=1 in each cell Hx, such that the reference shift S is the
partial shift Sϕx,1 , which maps the first basis element ϕx,1 ∈ Hx of each cell to the first
basis element ϕx+1,1 ∈ Hx+1 in the neighbouring cell to the right. We will occasionally
call the set of one-dimensional subspaces spanned by these {ϕx,1}x the shift-register.

Denote by D the finite-dimensional part of U1, which acts on ⊕r
x=1Hx. D is an

N ×N -dimensional unitary, withN =
∑r

x=1 dx. EveryN ×N -dimensional unitary can
be factorized into a product of N(N − 1)/2 elementary unitary operations of the form

Mnm =


1

(Mnm)11 (Mnm)12
1

(Mnm)21 (Mnm)22
1

 ≡


 , (4.11)

[Mur62, RZBB94, SHH10]. Thereby,Mnm differs from the identity only in the 4 matrix
elements at (n, n), (n,m), (m,n) and (m,m), which are replaced by the entries of a 2× 2
unitary (Mnm)ij . The factorisation is of the form

D =

N−1∏
n=1

(
N∏

m=n+1

Mnm

)
≡
( )

. . .

( )( )
. . .

( )
. . . . . .

( )
.

(4.12)
Note that in [SHH10] the decomposition is finer: There,D is decomposed into rotations,
structured as theMnm above, multiplied with additional phase shifts, i.e. diagonal uni-
taries. However, for this proof, we can absorb these phases into the elementary unitaries
Mnm. Of course, this factorisation remains true when we embed everything back into
the full Hilbert space by padding all finite-dimensional matrix blocks with identities on
the two semi-infinite half-chains.

2Note, that for cells with dx < d, we need to realize more factors then eigenvectors. But in this case, we
can choose any vector φi>dx

x ∈ Hx and adjust phases, such that µi>dx
x = 1. This way, for i > dx, each factor

S∗
φiSφ̃i just acts as the identity onHx.
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The key step is now, to show that any such embedded elementary unitary can be
written as a product

Mnm = C∗3S
−k2C∗2S

−k1C1S
k1C2S

k2C3, (4.13)

where S is the shift with respect to the shift-register as described above and Ci are coin
operations acting non-trivially only on the non-trivial domain of D. Replacing every
Mnm in the factorisation above then provides a shift-coin decomposition for U1.

Consider the following two labellings of the basis for H1 ⊕ . . . ⊕ Hr: On the one
hand, there are the local basis vectors ϕx,i of the cellsHx and on the other, we denote by
{ψi}Ni=1 a consecutive labelling, which is related to the former as

{ψ1, . . . ψd1 , ψd1+1, . . . . . . , ψN} = {ϕ1,1, . . . , ϕ1,d1 , ϕ2,1, . . . . . . , ϕr,dr}. (4.14)

With these we can address the non-trivial matrix elements ofMnm via
Mnm =(Mnm)11|ψn⟩⟨ψn|+ (Mnm)12|ψn⟩⟨ψm|

+(Mnm)21|ψm⟩⟨ψn|+ (Mnm)22|ψm⟩⟨ψm|.
(4.15)

If ψn and ψm belong to the same cell, Mnm is a coin operation itself and we set C1 =
Mnm, ki = 0, and C2 = C3 = 1.

Otherwise, let ψn ∈ Ha, ψm ∈ Hb and Hc be a cell with dimHc > 1. Moreover, let
k1 = c− a and k2 = c− b. We then set C1 = 1L ⊕ Cc ⊕ 1R, where Cc acts on Hc and is
given by

Cc =

(Mnm)11 (Mnm)12
(Mnm)21 (Mnm)22

1

 . (4.16)

This way, in S−k1C1S
k1 , thematrix element (Mnm)11 ends up acting inHa and (Mnm)12,

resp. (Mnm)21 map fromHc toHa or vice versa, while (Mnm)22 remains untouched. Let
us accompany the proof with a specific example that is suitable for visualisation, while
keeping the written proof steps completely general. For this, consider r = 3 with qubit
cells, i.e. Ha ⊕ Hc ⊕ Hb = C6, in which we want to realise someM26. Choosing Hc as
the middle cell, the first step can be depicted as  Sk1−−−−−−→

  ,

where the black squares denote the (not furhter specified) matrix elements of theM26

we want to realise, and the blue lines illustrate the decomposition of C6 into the three
cells Ha

⊕
Hc ⊕ Hb. We then move (Mnm)22 into the shift register in Hc and (Mnm)11

away from the shift register by conjugating with

C2 = Γ(ϕc,1, ϕc,2)Γ(ϕa,1, ϕa,2), (4.17)

where
Γ(φ, χ) = 1−

(
|φ⟩⟨φ|+ |χ⟩⟨χ|

)
+ |χ⟩⟨φ|+ |φ⟩⟨χ|

) (4.18)
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swaps the respective vectors in the argument and leaves invariant their complement.  C2−−−−−→

 
After conjugating with another shift Sk2 , we get S−k2C∗2S−k1C1S

k1C2S
k2 , in which

(Mnm)11 and (Mnm)22 end up inHa andHb, respectively, and the off-diagonal elements
map between these spaces.  Sk2−−−−−−→

 
In a final step, we move these matrix elements to the correct positions inside each cell
via conjugation with

C3 = Γ(ϕa,2, ψn)Γ(ϕb,1, ψm). (4.19)  C3−−−−−→

 
With this, every matrix element ends up where it belongs, and we get

Mnm = C∗3S
−k2C∗2S

−k1C1S
k1C2S

k2C3, (4.20)

as wanted. Replacing every factor in (4.12) finally provides us with a shift-coin decom-
position for U1.

Note that if dimHb > 1, as it is the case for standard examples with dx > 1 ∀x, we
can setHc = Hb. With this we may choose k2 = 0 and the decomposition simplifies to

Mnm = C̃∗2S
−kC1S

kC̃2, (4.21)

with k = k1 and C̃2 = Γ(ϕa,1, ψn)Γ(ϕb,2, ψm). In our visualisation example this simpli-
fied version corresponds to  S−−−−→

  C̃2−−−−−→

  .

With this at hand, we are now able to assemble the remaining proof-direction for
Theorem 4.2.2:

Proof of Theorem 4.2.2, 1)⇒ 3). For the construction we will assume ind⇀ U = 0. If this is
not the case, we construct the shift-coin sequence for U ′ = SnU , with n = ind

⇀
(U). Then

U ′ has trivial index and the factorisation for U follows from that of U ′ by multiplying
with an additional shift-factor: U = S−nU ′.
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ind
⇀

(U) = 0 allows us to decouple the walk between every lcd(2L, r) cells, as in the
proof of Theorem 3.3.19 (2.). Thereby lcd denotes the lowest common denominator,
L the interaction length of U and r the integer entering the bound on the cell dimen-
sion. Choosing lcd(2L, r) as the block size guarantees that on the one hand, the de-
couplings do not interfere with each other, such that U is given as the product of two
block-diagonal unitaries

U =





 . (4.22)

On the other hand, each block contains at least one cell with dimension dimHx > 1 as
in Lemma 4.2.3.

If the cells are all of equal size, we also end up with equally sized blocks in each of
the two factors above. We can then directly apply the factorisation (4.12) in parallel to
each block, with the same number of factors, respectively (also keeping possibly trivial
factorsMnm = 1). For the shift-coin decompositions, the blocks can then share the same
“shift-skeleton” globally, andwe only have to choose the appropriate coin operations for
each block locally. This way, the factors Mnm can be realised for all blocks simultane-
ously, which yields a shift-coin decomposition with 5(2(dL)2−dL) = O((dL)2) factors3.

Otherwise, we utilise the uniform upper bound on the cell dimensions. There is only
a finite number of possible configurations Hx ⊕ . . . ⊕Hx+lcd(2L,r) with 1 ≤ dim(Hx) <
d, ∀x. Hence, we can further factorise (4.22), collecting all blocks with the same con-
figuration in each factor, respectively. This leads to a finite product of block-diagonal
unitaries, with possibly only sparsely distributed blocks of the same size and cell struc-
ture, respectively:

 =

 1

1



1

1
1
1



1
1
1
1


We can then apply the shift-coin decomposition of Lemma 4.2.3 for each factor sepa-
rately, using a global shift-skeleton each time. The result will still be a finite sequence of
shift and coin operations, which finishes the proof.

In the proof above, we focus on the existence of a shift-coin decomposition and there-
fore, we took the most straightforward route to keep it as simple as possible. Thereby,
we accepted a very long sequence of shift and coin operations. The number of factors
can surely be improved, which raises the question of how to find a sequence of minimal
length for a given strictly local unitary. However, we will content ourselves with the
existence statement in this work and leave the optimisation question open.

Let us comment on where the assumptions on the cell dimensions were crucial: The
upper bound entered the discussion at two points of the proof. In both situations, it

3Note that for equally sized cells, we must have r = 1 and all cells are at least two-dimensional.
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guaranteed that the constructed sequences of the respective building turn out to be fi-
nite. On the one hand, in the last step of 1)⇒ 3), it guarantees the existence of a common
shift skeleton for the realisation of the different elementary unitaries in each block. On
the other, in 3) ⇒ 2) it guarantees the existence of d = maxx dx. The lower bound is
necessary for the proof of Lemma 4.2.3, which we used for 1) ⇒ 3). There, we defined
the coin C1 = 1L ⊕ Cc ⊕ 1R, where Cc contains a non-trivial 2 × 2 unitary. Of course
this is only possible for dc > 1.

As already described in the proofs, the factorisation becomes considerably simpler
in case of Hx = H0 for all x. This is for example the case, when a given translation-
invariant walk is “re-coined” to a different local cell size. Note that such a re-coining
of translation-invariant walks is not captured by the technique described in Section 4.1,
since the cell dimension stays fixed in that case. Indeed, the result of such a process is
not necessary translation-invariant with respect to the new cells. We invite the reader
to study the example we provided in [CGW21], where a quantum walk with three-
dimensional coins is re-coined for a cell structurewith two-dimensional cells, i.e. qubits.
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5 Topological classification of chiral
symmetric protocols

In this chapter, we consider chiral symmetric quantumwalks, protocols and periodically
driven systems, i.e. Floquet systems, at half-period. The underlying questionmotivating
the following discussion is: “What is a chiral symmetric quantum walk”? There are
several possible answers to this question: A quantum walk can be understood as the
Floquet operator of a periodically driven system, a single time-step unitary without a
Floquet history or a protocol with a fixed sequence of single operations, e.g., shifts and
coins as in the previous chapter. These scenarios are fundamentally different in how a
chiral symmetry acts. For a single time-step unitary U , the symmetry action is imposed
on U itself, i.e. mapping it to its adjoint. For periodically driven systems, it is natural to
assume the symmetry to act at any point in time on the driving Hamiltonian H(t), t ∈
[0, T ] and not only at the endpoint of the evolution, namely on the Floquet operator
U(T ). These conceptually different notions of chiral symmetric quantum walks result
in similar but, nevertheless, slightly different topological classifications.

We already gave an overview on the literature on the topological aspects of discrete-
time quantum walks and quantum walk protocols in the introduction of Chapter 3. Let
us also give a brief overview of the literature on the topological aspects of symmetric
Floquet systems, which have also been studied in a wide range of different contexts.
The development started roughly simultaneously with that of topological phases in
quantum walks [KBRD10], and it was soon found that Floquet systems host additional
“anomalous edge-states” [RLBL13] that are not present in static systems. Different
symmetries from the tenfold way were examined [ATD14, OANK15, CDFG15, Fru16,
RH16, RH17a], leading to a periodic table of Floquet topological insulators [RH17b].
Beside that, topological phases in Floquet systems where studied in different contexts,
including interacting systems [PMV16], systems with an additional time-glide symme-
try [MPV17,MBSO20], using K-theory [SSB17], and two-dimensional systemswith dis-
order [GT18]. Of particular interest for our considerations is the influence of chiral sym-
metry on Floquet systems in one dimension [ATD14, OANK15, LHR18, MBSO20]. In
these publications, the authors observe that a chiral symmetry singles out the time evo-
lution operator at half period U(T/2), which will also be the main structural element for
our theory. In particular, in [MBSO20], the effect of the chiral symmetry on a Floquet
setting is analysed. Moreover, the authors additionally consider a time-glide symmetry
[MPV17], which imposes a structure on the Floquet driving that is similar to the chiral
symmetric setting. The ansatz in [MBSO20] is also centred around the half-step oper-
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ator. However, the authors restrict their consideration to translation-invariant systems,
i.e. they work with winding numbers in Fourier space as invariants. Besides that, the
processes under consideration are assumed to originate from a time-continuous Floquet
driving, which we explicitly do not assume.

The project presented in this chapter grew out of an apparent contradiction be-
tween the results in [AO13] and our classification in Section 3.6 and [CGG+18]. Our
classification in terms of three symmetry indices (si,⇀sı , si+) is complete, i.e. there can-
not be a finer structure on the set of chiral symmetric quantum walks than imposed
by these three indices, without further constraints. Nevertheless, in [AO13] such a
finer structure is found for the split-step example. The difference leading to this is the
assumed underlying scenario. Both works are on quantum walks, but while [AO13]
considers the whole protocol, we worked with single-timestep unitaries. The essential
structure, which captures both points of view lies somewhat in between these two set-
tings. Each chiral symmetric quantum walk exhibits a half-step operator F , which is
singled out by the chiral symmetry and constitutes two different timeframes of the pro-
cess [AO13, ATD14, LHR18]. That is, in continuous time, two different Floquet opera-
tors for the same process, distinguished by different choices for the origin of the period.
Working directly with the half-step operator, we can treat Floquet drivings, protocols
and single time-step walks on a common footing.

We provide a complete topological classification of half-step operators via a set of
five integer-valued indices, thereby resolving the apparent discrepancy between [AO13]
and [CGG+18]. The idea of considering different timeframes of a walk process origi-
nates from [AO13]. Building on this idea, we further enhance the roll of the half-step
operator and combine it with our theory [CGG+18, CGS+18]. We also show that even
without an underlying protocol or continuous driving process, there always exists a
half-step operator for any chiral symmetric walk. This allows us to use the half-step
operator as the constituting element for any of the three scenarios sketched above, and
therefore, to unify the different ansatzes for the topological classification of chiral sym-
metric one-dimensional quantum walks. The results presented in this chapter were ob-
tained in collaboration with Christopher Cedzich, Albert Werner and Reinhard Werner
and have been published in [CGWW21].

We begin with fixing the setting. That is, we investigate the influence of chiral sym-
metry on driven systems and lay down the assumptions, as well as the classification
task. From this, we identify the half-step operator as the structural ingredient to study.
We proceed with analysing the basic properties and index relations for the half-step
operator in Section 5.2, where we also establish its existence for any chiral symmetric
walk. The main result of this chapter is presented in Section 5.3, where we derive a
set of five independent integer-valued indices for the classification of chiral half-step
walks, prove its completeness, and show that there are no empty classes with respect
to this index set by providing a generating example. In Section 5.5 we analyse the rela-
tions and differences between the classification of single time-step walks from Section
3.6 and the classification in terms of the half-step operator presented in this chapter. We
end the chapter with a discussion of compact perturbations in the current setting and
some thoughts on half-step operators on finite systems, e.g. quantumwalks on a ring of
N cells.

156



5.1. SETTING

5.1 Setting
As usual, we work on a Hilbert space with a one-dimensional structure according to
(3.49). On this, we want to pin down the differences between the scenarios for chiral
symmetric quantumwalks from the point of view of a topological classification. On the
level of a single time-step quantum walk U , the chiral symmetry relation is γUγ∗ = U∗.
In the Floquet setting, i.e. in a continuously driven system with a time-periodic driving
Hamiltonian H(t) (see Section 1.3), the action of the chiral symmetry on H(t) is best
understood by considering it as the combination of the physically more intuitive time-
reversal and particle-hole symmetry, even when these two are not part of the setting.
A particle-hole symmetry η acts as ηH(t)η∗ = −H(t), mapping positive to negative
energies and vice versa, and a time-reversal symmetry τ as τH(t)τ∗ = H(−t), reversing
the direction of time. Combining the two gives the action of the chiral symmetry

γH(t)γ∗ = −H(−t), (5.1)

which we study in the following. Combining this symmetry condition with periodicity
in time, i.e. H(t) = H(t + 1), where, without loss of generality, we fixed the period to
T = 1, gives

H(1− t) = −γH(t)γ∗. (5.2)
Hence, the first half of the driving period t ∈ [0, 1/2] already determines the full period.
This condition transfers to the time-ordered exponentials according to (1.23) as

γU(t)γ∗ = γT e−i
∫ t
0 H(s)dsγ∗

=
∞∑
n=0

(
1

i

)n ∫ t

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1γH(sn)γ

∗ · · · γH(s1)γ
∗

=

∞∑
n=0

(
−1
i

)n ∫ t

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1H(−sn) · · ·H(−s1)

=
∞∑
n=0

(
1

i

)n ∫ 1−t

1
dsn

∫ 1−sn

1
dsn−1 · · ·

∫ 1−s2

1
ds1H(sn) · · ·H(s1)

= T e−i
∫ 1−t
1 H(s)ds

= U(1− t)U(1)∗,

(5.3)

where we substituted variables according to si → 1−si and used the time-periodicity in
the third step (compare [RH17b, Appendix A]). The last expression describes the time
evolution operator from 1 to t, backwards in time.

For t = 1/2we find
U(1) = γU(1/2)∗γ∗U(1/2), (5.4)

i.e. the Floquet-operator U(1) can be expressed in terms of the operator at half period
U(1/2). Hence, in presence of chiral symmetry, the long time behaviour of the Floquet
evolution is already determined by the half-step operator

F = T e−i
∫ 1/2
0 H(s)ds. (5.5)
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Emphasizing the half-step operator F instead of only the Floquet operator gives rise to
two timeframes U and U ′ of the driving process:

U = γF ∗γ∗F and U ′ = FγF ∗γ. (5.6)

Both operators represent stroboscopic snapshots of the continuous time evolution, but
with shifted origin in time, one starting at t = 0 and the other at t = 1/2. Both ex-
pressions are chiral symmetric, without further conditions on F . Indeed, the first half
period [0, 1/2] ∋ t 7→ H(t) of the driving can be arbitrary, as long as the second period
is related to the first one according to (5.2).

The close relationship between general quantum walks and Floquet systems raises
the question, whether a timeframe decomposition as in (5.6) exist for any single time-
step quantum walk or quantum walk protocol, like, e.g. shift-coin sequences. For our
theory, we take the half-step operator as a setting in its own, without assuming it to
originate from a Floquet driving. Hence, we distinguish the following three scenarios:

(H) Floquet scenario: Aquantumwalk is the Floquet operator of a periodically driven
process in continuous time, i.e. via a periodic family of bounded time dependent
(local) Hamiltonians H(t)with H(t+ 1) = H(t).

(F ) Half-step scenario: A quantum walk is defined by a unitary (local) half-step op-
erator F via (5.6).

(U) One-step scenario: A quantum walk is a (local) unitary operator U .

Note that we added the locality condition only in brackets, indicating that each of these
scenarios might be considered with or without it. As in Chapter 3, we start without
assuming a locality condition and add it to the discussion later. Considering scenario
(F ) as a setting in its own right allows us to include discrete protocols into the classi-
fication that cannot be realized via a Floquet driving process1, that is, protocols of the
form U = U2n . . . U1, where the chiral symmetry is imposed via γUiγ

∗ = U∗2n−i+1. This
fits into the half-step scenario with the half-step operator F = Un . . . U1. The individual
steps Ui might be any (ind⇀ -wise non-trivial) unitaries without an underlying continu-
ous driving.

The three scenarios are listed in increasing order of generality, i.e. a Floquet driving
always defines a half-step operator F and a corresponding walk U , but not necessarily
vice versa. These relations are expressed in the diagram

H(t) F

U

U ′

(5.5)
(5.6) ,

(5.7)

1The full walk operator of, e.g., the split-step walk (see Example 1.4.6 and Section 5.4), can always be
considered as the Floquet operator of a continuously driven system, due to the chiral symmetry and the
essential gap (see Section 3.4 and Theorem 3.3.19). However, the protocol structure with the partial shifts
separated from each other cannot.
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where each arrow represents a norm-continuousmap from the left scenario to the corre-
sponding one on the right, respectively. Hence, any norm continuous deformation turns
out to be norm-continuous also in the more general scenario. Therefore, a topological
classification of one-step unitaries U and U ′ also provides a classification of half-step
operators F (at least partly) and Floquet drivings H(t). We impose three constraints,
which differ slightly in each scenario:

Chiral symmetry: On the level of one-stepwalks, chiral symmetry is imposed as usual,
via γUγ∗ = U∗. For Floquet systems, we assume (5.2) to hold. There is no chiral
symmetry condition on the level of half-step walks since it is imposed implicitly
in how timeframes U and U ′ are built from F .

Gap condition: A gap condition is imposed for all scenarios implicitly via U and U ′.
We only consider processes with essentially gapped timeframes U and U ′. Note
that by the unitary equivalence of the two, they share the same spectrum.

Essential locality: Essential locality is assumed on each level separately. Since the
mappings between the scenarios are continuous, an essentially local Hamiltonian
drivingH(t) always results in an essentially local half-step walk F , which always
defines essentially local timeframes U and U ′.

The question about differences between the scenarios is now a question about the in-
version of the arrows, i.e. given a walk U or a pair of timeframes (U,U ′), can we find
a half-step operator F , and given an F , can we find a bounded driving process H(t)?
We already answered the latter question in Theorem 3.3.19, where we showed that an
essentially local unitary F exhibits a Floquet driving if and only if ind⇀ (F ) = 0. Let us
collect the questions we demand our theory to answer:

• Inversion of arrows: Does any chiral symmetricwalkU exhibit a half-step operator
F ? Moreover, what are the conditions on a pair of walks (U,U ′) to originate from
the same F ?

• Complete topological classification: Here, we focus on scenario (F ), i.e. half-step
walks, under the assumptions listed above. This includes showing that there are
no empty classes, which we do by providing a generating example.

• Connection to the symmetry indices: Chiral symmetric walks are completely clas-
sified by the symmetry indices (see Section 3.6). Given two timeframes U and
U ′ with a common half-step walk F , to what extend do their topological classes
determine the topological class of F ?

We answer the question about the existence of F in Section 5.2 (see Theorem 5.2.9 and
Corollary 5.2.11), provide a complete classification of half-step walks in Section 5.3 (see
Theorem 5.3.1), and discuss the connection of the F -indices to the walk indices in Sec-
tion 5.5 (see Corollary 5.5.1).
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5.2 The half-step operator
We now turn our focus to the half-step operator as the object of interest. First, we collect
its essential properties and index relations, which we later use for the classification. For
this, we first omit the essential locality assumption, keeping inmind that results that are
valid for essentially unitary operators are readily applicable to the half-space compres-
sions of any unitary operators under consideration, similar to the definition of ind⇀ in
Section 3.3.2 and ⇀sı in Section 3.5.1. This way, the indices requiring essential locality are
automatically also covered. Whenever essential locality becomes a non-trivial or crucial
assumption, we will state it as such. From Section 5.3 on, essential locality will again be
fixed in the set of assumptions.

5.2.1 General properties and indices
Before diving into the classification, let us pick a standard basis and fix the notation we
will use during this chapter. We are concerned with driven time evolutions that exhibit
chiral symmetric full-period unitary operators. This allows us to express everything in
the chiral eigenbasis, which will be the basic structure in the following. As usual, we
assume each cell to be balanced, wherefore tr γx = 0 for every x. Hence, in its eigenbasis,
each γx is of the form γx = σz⊗1dx/2 and rearranging the basis appropriately allows us
to decompose the full Hilbert space in the same way. I.e.

H = C2 ⊗ H̃, with γ = σz ⊗ 1 =

(
1 0
0 −1

)
= Γ+ − Γ−. (5.8)

where Γ± denote the eigenprojections of γ. With respect to this decomposition, every
operator becomes a 2 × 2-block matrix and the chiral blocks of the two timeframes U
and U ′2 and the half-step operator F will be denoted by

U =

(
α β
−β∗ δ

)
, U ′ =

(
α′ β′

−β′∗ δ′

)
, and F =

(
A B
C D

)
. (5.9)

By construction the one-dimensional structure of the underlying Hilbert space transfers
to H̃ and therefore, each block in the decompositions above inherits possibly present
locality properties of the full operatorwith respect to the same cell structure, with halved
cells. The chiral blocks of U and U ′ are determined from F via the timeframe equations
U = γF ∗γF and U ′ = FγF ∗γ:

α = A∗A− C∗C α′ = AA∗ −BB∗

β = A∗B − C∗D β′ = BD∗ −AC∗

δ = D∗D −B∗B δ′ = DD∗ − CC∗.
(5.10)

Thus, α, δ, α′ and δ′ are self-adjoint. Note, however, that this extra condition on α, δ,
as well as the relation between the off-diagonal blocks β,−β∗ is not only a speciality
of unitaries with a timeframe structure but holds in general for any chiral symmetric

2See also (3.125) in Section 3.5.1.
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unitary in the chiral eigenbasis2. The relations between the chiral blocks of U and U ′
and, in particular, their relations to the chiral blocks of the half-step operator F allow
us to express the defining properties and the symmetry indices for U and U ′ in terms of
these blocks. We start with the essential gap condition3

Lemma 5.2.1. Let F be an essentially unitary half-step operator for an essential unitary
U with chiral symmetry. Then the following are equivalent

i) U and U ′ are essentially gapped at ±1.

ii) The off-diagonal chiral blocks β and β′ of U and U ′ are Fredholm.

iii) The chiral blocks A,B,C and D of F are Fredholm.

This remains true if we drop the “essentials”, i.e. for a strictly unitary half-step operator F , the
corresponding unitaries U,U ′ are gapped if and only if the chiral blocks of F , resp. β and β′, are
invertible.

Proof. We will prove this for strictly unitary operators F and U,U ′ and exactly gapped
U,U ′. For essentially unitary and essentially gapped operators, it then automatically
follows by considering the images of the involved operators in the Calkin algebra (see
Definition 1.2.5).

i)⇔iii): Since U and U ′ are unitarily equivalent, it suffices to consider only U . So
let F and U be exactly unitary. U is gapped if and only if U ∓ 1 = γF ∗γF ∓ 1 =
γF ∗γ (F ∓ γFγ) are invertible. Since γF ∗γ is unitary, it follows that

F − γFγ = 2

(
0 B
C 0

)
and F + γFγ = 2

(
A 0
0 D

)
(5.11)

have to be invertible. Clearly this is the case if and only if the blocks A,B,C and D
themselves are invertible.

i)⇔ii): U is gapped at ±1 if and only if

2i Im(U) = U − U∗ = 2

(
0 β
−β∗ 0

)
(5.12)

is gapped at 0, i.e. invertible. Clearly this is the case if and only if β is invertible. The
same holds for U ′ and β′.

Remark 5.2.2. Using the proof of Lemma 5.2.1 i) ⇔ ii) we can express the ±1 eigenspaces of
U and U ′ in terms of its matrix blocks in a simple way, which will turn out to be useful later on.
As already mentioned in the proof, the combined ±1 eigenspace of U is equal to the null space of
Im(U), which equals kerβ∗ ⊕ kerβ. Using this, we can directly evaluate U(φ,ψ) = ±(φ,ψ),
with β∗φ = βψ = 0, which yields

ker(U ± 1) = ker(α± 1)⊕ ker(δ ± 1). (5.13)
3Note that the equivalence i)⇔ ii) was already established in [CGS+18].
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The essential gap is the standing assumption for the topological classification of chi-
ral symmetric unitaries. We will therefore also adopt it here.

Assumption 5.2.3. All half-step operators F are assumed to constitute essentially gapped (es-
sentially) unitary operators as their timeframes. I.e. their chiral blocks A,B,C and D are as-
sumed to be Fredholm.

In particular, the chiral blocks have well defined Fredholm indices, which raises the
question to what extent these can be used as classifying topological invariants for half-
step walks F . The first thing that comes to mind in this direction is to express the Fred-
holm index of F itself in terms of the indices of its chiral blocks.

Lemma 5.2.4. Let F be an essentially unitary half-step operator. Then its Fredholm index is
given by

ind (F ) = ind (B) + ind (C) = ind (A) + ind (D). (5.14)

Proof. Using the essential unitarity of F on the level of the chiral blocks, we get that
A∗B + C∗D is compact. Hence, since β = A∗B − C∗D is Fredholm for essentially
gappedU andU ′we get ind (β) = ind (2A∗B) = ind (−2C∗D). In particular this implies
ind (B)− ind (A) = ind (D)− ind (C), which proves the second equality in (5.14).

Now, since X ∈ {A,B,C,D} is Fredholm, we find another Fredholm operator XI ,
such thatXXI − 1 andXIX − 1 are compact (see Lemma 1.2.7). Hence, starting with
A∗B + C∗D we can write

D = −C∗IA∗B +K = −CCIC∗IA∗B +K = CMA∗B +K, (5.15)

withK compact4 andM := CIC∗I positive. With this we can factorize F into

F =

(
A B
C −CMA∗B +K

)
=

(
1 0
0 C

)(
A 1

1 −MA∗

)(
1 0
0 B

)
+K. (5.16)

Clearly, the first and last factor are Fredholm operators with indices ind (C) and ind (B).
The middle factor is invertible, as we will show separately after this proof and, in par-
ticular, Fredholm with trivial index. Hence, we get

ind (F ) = ind (F +K) = ind (C) + ind (B). (5.17)

Lemma 5.2.5. LetM be a positive and A be an arbitrary operator. Then

X =

(
A 1

1 −MA∗

)
(5.18)

is invertible.
4K is to be understood as a placeholder for any compact operator here and does not have to be the same

in every expression.
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Proof. Evaluating X(φ,ψ) = 0 and X∗(φ,ψ) = 0 we find that the kernels of X and X∗
are given by

ker(X) = {(MA∗ψ,ψ) | (1+AMA∗)ψ = 0}
ker(X∗) = {(φ,−A∗φ) | (1+AMA∗)φ = 0} .

(5.19)

SinceM is positive, (1 + AMA∗) is strictly positive and has a trivial kernel, wherefore
ker(X) = ker(X∗) = 0.

The next invariants that come to mind are the symmetry indices si,⇀sı and si± of
the timeframes U and U ′. We start with si and si±, which are well defined also with-
out locality assumptions and discuss ⇀sı , which require locality on the one-dimensional
lattice, later. However, as already mentioned, formulating everything for merely essen-
tially unitary operatorswhenever possible allows us to apply the results to the half-space
projections of essentially local operators later.

Lemma 5.2.6. In both settings of Lemma 5.2.1 (essentially and exactly unitary), we get

si(U) = ind (A)− ind (B) = ind (C)− ind (D)

si(U ′) = ind (C)− ind (A) = ind (D)− ind (B).
(5.20)

Proof. Using Definition 3.5.5 and the formula for the symmetry index for type 3 (≡ AIII)
in Table 2.1, we can express the symmetry index of U as the trace of γ, restricted to the
kernel of

Im(U) =
U − U∗

2i
=

1

i

(
0 A∗B − C∗D

D∗C −B∗A 0

)
= i

(
0 β
−β∗ 0

)
, (5.21)

with
ker Im(U) = {(φ+, φ−) | φ+ ∈ ker(β∗) and φ− ∈ ker(β)} . (5.22)

Evaluating the trace of γ on this subspace, we find si(U) = dimker(β∗) − dimker(β)
= ind (β∗). By essential unitarity of F , A∗B + C∗D is compact, such that 2iB∗A and
−2iD∗C are compact perturbations of β∗. Hence, we get

si(U) = ind (β∗) = ind (B∗A) = ind (D∗C), (5.23)

which proves the claimed formula for si(U) via the product property of the Fredholm
index. By the same line of reasoning, with β′ = BD∗ −AC∗, we get

si(U ′) = ind (β′∗) = ind (CA∗) = ind (DB∗). (5.24)

The results so far are valid for essentially unitary operators F,U and U ′. We proceed
with the indices that require the spectral decomposition of U and U ′, i.e. si±. In order
to say something about these, exact unitary is needed. Hence, before we relate those
invariants to the indices of the chiral blocks, let us discuss some general properties of
exactly unitary 2×2 block-operatorswith Fredholmblocks. Thesewill lead to a standard
form for any F , which we will use in several situations. So let F any 2× 2-block unitary
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with Fredholm blocks A,B,C and D. We will repeatedly make use of the unitarity
conditions on the level of the blocks, so let us state them here:

F ∗F = 1 :

A∗A+ C∗C = 1 (5.25)
B∗B +D∗D = 1 (5.26)
B∗A+D∗C = 0 (5.27)

FF ∗ = 1 :

AA∗ +BB∗ = 1 (5.28)
CC∗ +DD∗ = 1 (5.29)
AC∗ +BD∗ = 0 (5.30)

Let ψ ∈ kerA. Then, by (5.27), we get D∗Cψ = 0, i.e. Cψ ∈ kerD∗ and therefore
C kerA ⊂ kerD∗. This is an isometric embedding, because C is isometric on kerA by
(5.25). Moreover, let φ ∈ kerD∗. Then, by (5.30), we get C∗ kerD∗ ⊂ kerA. Again, this
embedding is isometric by (5.29). Hence, we conclude that kerA and kerD∗ are unitarily
equivalent, with C restricted to those spaces being the unitary relating the two. With
similar arguing we find the following four unitary equivalences

C kerA = kerD∗ B kerD = kerA∗

D kerB = kerC∗ A kerC = kerB∗.
(5.31)

In particular, the respective kernels have the same dimension, wherefore we get
ind (A) = −ind (D) and ind (B) = −ind (C). (5.32)

Note, that these relations simplify the expression for ind (F ) in Lemma 5.2.4. However,
this only holds for exactly unitary F and therefore does not apply, e.g., to the corre-
sponding right Fredholm index equation.

We can further relate the kernels of the chiral blocks of F to the ±1 eigenspaces of
the two corresponding unitariesU andU ′. As alreadymentioned in the proof of Lemma
5.2.6, the ±1-eigenspaces H± = ker(U ± 1) of U are given by the kernels of (F ∓ γFγ).
This yields H+ = kerC ⊕ kerB and H− = kerA ⊕ kerD. Via a similar calculation as
in the proof of Lemma 5.2.6, we find that the ±1-eigenspaces H′± of U ′ are equal to the
kernels of (γF ∗γ ∓ F ∗), which givesH′+ = kerB∗ ⊕ kerC∗ andH− = kerA∗ ⊕ kerD∗.

In summary, using also Remark 5.2.2, we get
H+ = ker(α− 1)⊕ ker(δ − 1) = kerC ⊕ kerB

H− = ker(α+ 1)⊕ ker(δ + 1) = kerA⊕ kerD
(5.33)

and
H′+ = ker(α′ − 1)⊕ ker(δ′ − 1) = kerB∗ ⊕ kerC∗

H′− = ker(α′ + 1)⊕ ker(δ′ + 1) = kerA∗ ⊕ kerD∗.
(5.34)

Let us extract the relevant index information from the discussion above, before we
go on and discuss the standard form for half-step unitaries F .
Lemma 5.2.7. LetF be an exactly unitary half-step operator for essentially gapped unitaries
U,U ′. Then the ±1 eigenspaces and the corresponding indices si± are well defined and we get

si+(U) = ind (C) = −ind (B) and si−(U) = ind (A) = −ind (D) (5.35)
and

si±(U
′) = ± si±(U). (5.36)
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Proof. The direct sums in (5.33) already respect the splitting Γ+H⊕Γ−H of the Hilbert
space into the eigenspaces of γ. Hence, we can subtract the dimensions of the involved
kernels of A,B,C andD to evaluate the trace of γ onH± andH′±. Together with (5.31)
and (5.32) this gives the claimed formulas.

We can now use the findings of the discussion above in order to define a standard
form for any half-step unitary F for essentially gapped unitaries U and U ′. From (5.33),
we know that the chiral blocks of F considered as mappings between the complements
of the±1-eigenspacesH± andH∓ of U and U ′,respectively, are invertible. Denote these
spaces by

K = (H+ ⊕H−)⊥ and K′ = (H′+ ⊕H′−)⊥. (5.37)
With respect to these spaces, together with appropriately rearranged direct summands
in (5.31) we can decompose the Hilbert space in two different ways:

H = (kerC ⊕ kerB )⊕ (kerA ⊕ kerD )⊕K
= (kerB∗ ⊕ kerC∗)⊕ (kerA∗ ⊕ kerD∗)⊕K′.

(5.38)

The direct sum pairs inside the parentheses are with respect to the eigenspace decom-
position of γ and the first two summands of the outer sums correspond to H+ ⊕ H−
andH′+ ⊕H′−, respectively. In these decompositions, we then consider F as a mapping
between the timeframes U and U ′.

Definition 5.2.8 (Standard form for F ). Let F be an exactly unitary half-step operator for
essentially gapped unitaries U and U ′. We define the standard form for F considered as a
mapping between the two decompositions of the Hilbert space in (5.38) as

F =

(
A+ 0
0 D+

)
⊕
(

0 B−
C− 0

)
⊕
(
AK BK
CK DK

)
. (5.39)

Here, A+ : kerC → kerB∗, B− : kerD → kerA, C− : kerA → kerD∗ and D+ : kerB →
kerC∗ are the finite-dimensional unitary restrictions of the operators operators from (5.31) and
AK, BK, CK andDK are invertible operators between (Γ+⊕Γ−)K and (Γ+⊕Γ−)K′. For exactly
gapped unitaries U and U ′, the (co-) kernels of A,B,C andD vanish and we getH = K = K′.

It is important to note that the finite-dimensional unitaries A+, B−, C− and D+ are
not necessarily of the same size. In fact, by Lemma 5.2.7 and (5.31) the dimension dif-
ference of A+ and D+ determines ind (B) = − si+(U) = − si+(U

′), whereas that of C−
and B− determines ind (A) = si−(U) = − si−(U

′). As we will see later, any combination
of (si+, si−) ∈ Z2 can be realized not only abstractly but also with strictly local half-step
operators F constituting strictly local quantum walks U and U ′.

5.2.2 Existence of the half-step operator
From the point of viewof chiral symmetric quantumwalksU andU ′, the question arises,
under which conditions there exists a half-step operator F . In this section, we discuss
the necessary conditions on U and U ′ to admit a common half-step operator F , and
explicitly construct this F . In the case where only one timeframe U is kept fixed, the
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situation simplifies. Wewill show that then there always exists and F producing this U .
The constructionwill naturally respect essential locality but is not exclusively applicable
to essentially local unitaries, i.e. walks, but also to general chiral symmetric unitaries
without any locality assumption.

We already came across one of the necessary conditions, namely the index equation
(5.36) in Lemma 5.2.7, which also fixes the relation between si(U) and si(U ′).

Theorem 5.2.9. Let U and U ′ a pair of chiral symmetric unitaries, with essential gaps at ±1.
Then the following are equivalent:

i) There exists a half-step operator F , such that

U = γF ∗γF and U ′ = FγF ∗γ. (5.40)

ii) The symmetry indices of U and U ′ fulfil the necessary condition

si±(U) = ± si±(U
′), (5.41)

and U and U ′ are unitarily equivalent with a unitary V that intertwines γK and γK′ :

U ′ = V UV ∗ and γK′VK = VKγK. (5.42)

If U and U ′ are essentially local, the statement holds with essentially local F and V .

In (5.42), VK, γK, and γK′ denote the restriction of V and γ to K and K′ respectively.
Since V is the unitary equivalence operator for U and U ′, its restriction is a unitary VK :

K → K′. The intertwining property then guarantees that this unitary additionally maps
the γ eigenspaces restricted to K and K′ onto each other. Note that U and U ′ are chiral
symmetric for the same γ, but γK and γK′ refer to the possibly different complements of
the ±-eigenspaces of U and U ′, respectively.

Proof. i)⇒ ii) : We already established the index condition in Lemma 5.2.7. Unitary
equivalence alone is guaranteed by F itself, since U ′ = FUF ∗. However, to show the
extra condition involving γK and γ′K we need to invest some work. We construct the
unitary V in the same standard form decomposition as in Definition 5.2.8. Since the
extra condition on V only involves K and K′, we can use the first two summands F+

and F− in (5.39) as a mapping between U and U ′ restricted toH+ ⊕H− andH′+ ⊕H′−,
respectively. Hence, we set

V = F+ ⊕ F− ⊕ VK, (5.43)
and are left with the construction of VK : K → K′ with VKγK = γK′VK. For this task we
will drop the K subscript to lighten notation, keeping in mind the following mapping
directions for the upcoming operators

U, γ, F̃ : K → K, F, V : K → K′ and U ′, γ′ : K′ → K′. (5.44)

Consider U and its chiral blocks α, β,−β∗ and δ. Since, restricted to K, U is gapped at
±1 and unitary, β is invertible by Lemma 5.2.1. Consequently (by unitarity of U on K)
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|α| < 1 and |δ| < 1, such that 1± α as well as 1± δ are strictly positive operators. With
this, and denoting by Vβ the polar unitary of β, let

F̃ =
1√
2

( √
1+ α Vβ

√
1− δ

−V ∗β
√
1− α

√
1+ δ

)
. (5.45)

By the off-diagonal unitarity conditions of U we have αβ = βδ and β∗α = δβ∗, which
also holds after replacing β with its polar isometry. Therefore we get √1− αVβ =
Vβ
√
1− δ. Moreover, the diagonal unitarity conditions of U yield β = Vβ

√
1− δ2 =√

1− α2Vβ . Using these identities, it follows by straightforward computation, that F̃ is
unitary and in particular, that it is a chiral symmetric square root for U . I.e. F̃ 2 = U ,
with γF̃γ = F̃ ∗, which gives

U = γF̃ ∗γF̃ = γF ∗γ′F. (5.46)
Multiplying the second equality with Fγ from the left and F̃ ∗ from the right, we get
V γ = γ′V with V := FF̃ ∗,which also gives

U ′ = FγF ∗γ′ = V F̃γF̃ ∗V ∗γ′

= V F̃γF̃ ∗γV ∗ = V F̃ 2V ∗

= V UV ∗,

(5.47)

as needed.
Switching back to thewholeHilbert space, we can assembleV = F+⊕F−⊕VK, which

provides us with a unitary equivalence operator for V UV ∗ = U ′, with the necessary
intertwining property for γK and γK′ . Note that since V was constructed in terms of
F and U , or rather continuous functions of α and δ and the polar isometry of β, it is
automatically essentially local whenever U and F are (see Section 3.3).

ii)⇒ i) : We again use the standard form for the construction. Let us start with the
finite rank summands F±, which are supposed to map between the real eigenspaces of
U and U ′, i.e. F± : H±,→ H′±. By assumption, U and U ′ are unitarily equivalent, i.e.
dim(H±) = dim(H′±). By (5.33) and (5.34) this is equivalent to

dimker(α± 1) + dimker(δ ± 1) = dimker(α′ ± 1) + dimker(δ′ ± 1). (5.48)
Moreover, combining (5.33) and (5.34) with Lemma 5.2.7, the index condition si±(U) =
± si±(U

′) becomes
dimker(α∓ 1)− dimker(δ ∓ 1) = ±

(
dimker(α′ ∓ 1)− dimker(δ′ ∓ 1)

)
. (5.49)

Together, these two dimension-conditions yield
dimker(α− 1) = dimker(α′ − 1) dimker(α+ 1) = dimker(δ′ + 1)

dimker(δ − 1) = dimker(δ′ − 1) dimker(δ + 1) = dimker(α′ + 1).
(5.50)

Therefore, we certainly find finite-dimensional unitaries
A+ : ker(α− 1)→ ker(α′ − 1) C− : ker(α+ 1)→ ker(δ′ + 1)

D+ : ker(δ − 1)→ ker(δ′ − 1) B− : ker(δ + 1)→ ker(α′ + 1).
(5.51)
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Arranging these unitaries as in (5.39) provides us with F+ and F−. Thereby, the specific
choices for these unitaries do not matter, since every choice yields

γ±F
∗
±γ
′
±F± = ±P± and F±γ±F

∗
±γ
′
± = ±P ′±, (5.52)

whereP±, P ′± denote the projections ontoH±,H′±, and γ±, γ′± the corresponding restric-
tions of γ. Note that, due to (5.50),

γ+ =

(
1ker(α−1) 0

0 −1ker(δ−1)

)
and γ′+ =

(
1ker(α′−1) 0

0 −1ker(δ′−1)

)
(5.53)

have the same matrix representation on the different but isomorphic subspacesH+ and
H′+, but

γ− =

(
1ker(α+1) 0

0 −1ker(δ+1)

)
and γ′− =

(
1ker(α′+1) 0

0 −1ker(δ′+1)

)
(5.54)

are actually different. This difference is necessary for si±(U) = tr(γ±) = ± tr(γ′±) =
± si±(U

′). Since F± are of finite rank, we do not need to take essential locality into ac-
count at this point. The resulting F will be essentially local if and only if the infinite-
dimensional block FK is.

In order to construct FK, we decompose the unitary equivalence operator V into
V = V+ ⊕ V− ⊕ VK, where VK : K → K′ is assumed to intertwine γK and γ′K. We use F̃K
from the first proof direction and set FK = VKF̃K. By a computation similar to (5.46)
and (5.47), FK fulfils the timeframe equations on K and K′

UK = γKF
∗
KγK′FK and U ′K′ = FKγKF

∗
KγK′ . (5.55)

Moreover, if U and V are essentially local, FK inherits this property.
In summary, we constructed

F =

(
A+ 0
0 D+

)
⊕
(

0 B−
C− 0

)
⊕ VK√

2

( √
1+ α Vβ

√
1− δ

−V ∗β
√
1− α

√
1+ δ

)
, (5.56)

where α, δ, Vβ are the blocks of U , resp. its polar isometry, restricted to K, A+, B−, C−,
D+ are arbitrary unitaries of dimension dimker(α± 1) and dimker(δ ± 1) (see (5.51)),
and VK is the restriction of V to K and K′ from the right and from the left, respectively.

Instead of fixing two timeframesU andU ′ one could also ask the question for a single
U , i.e. which chiral walks U admit a half-step operator F . Or, in other words, which
chiral walks U allow the assignment of a second timeframe U ′. A critical condition for
this is the existence of an appropriate V as in Theorem 5.2.9. V has to identify the spaces
K and K′, such that γ and γ′ are intertwined. Moreover, it also needs to be essentially
local if the setting demands it to be. Let us, therefore, squeeze in a small technical lemma
before we answer the question of whether an F exists for a single timeframe without
further restrictions in the affirmative.
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Lemma 5.2.10. Let Q1 and Q2 be two finite rank projections on a Hilbert H space with a one-
dimensional lattice structure (see (3.49)). Then there exists an essentially local partial isometry
Λ, such that

Λ∗Λ = 1−Q1 and ΛΛ∗ = 1−Q2. (5.57)
If rankQ1 = rankQ2, there exists a (unitary) finite rank perturbation V of the identity, such
that Q1 = V ∗Q2V .

Proof. Let us start with the second statement, which is rather obvious and only included
here for completeness. LetQ ⊂ H be a finite-dimensional subspace containingQ1H and
Q2H5. In Q, let {φi

1} and {φi
2} with i = 1, . . . ,dimQ be eigenbases of Q1 and Q2, such

that the first dimQj vectors correspond to the +1 eigenvalue of Qj , respectively. Then

V = 1Q⊥ ⊕
∑
i

|φi
2⟩⟨φi

1| (5.58)

is a finite rank perturbation of the identity. In particular V is essentially local and inter-
twines Q1 and Q2.

Turning to the first statement, we can reduce the problem to the simpler one of con-
structing an essentially local co-isometry I with I∗I = 1 − Q and II∗ = 1, with only
one finite rank projectionQ. Indeed, given two such isometries I1 and I2 forQ1 andQ2,
we set Λ = I∗2I1, which fulfils (5.57).

For the construction of I , let rankQ = n, P = P≥0 be the usual half-space projection,
and S be the generalized shift, with respect to some shift register {φx}x (w.l.o.g. we can
choose φx to be the first basis vector of some base choice in each cell). Sandwiching S
with P defines the unilateral shift on PH, which fulfils (PS∗nP )(PSnP ) = P and

(PSnP )(PS∗nP ) = P −
n−1∑
k=0

|φk⟩⟨φk| =: P −N. (5.59)

Hence, for
Ĩ := (1− P ) + PS∗nP (5.60)

we get
Ĩ Ĩ∗ = 1 and Ĩ∗Ĩ = 1−N. (5.61)

By construction Ĩ is essentially (even strictly) local. By the second statement of the
lemma, there exists an essentially local unitary V with Q = V ∗NV because we chose Ĩ
such that rankN = rankQ . Therefore, setting I = ĨV provides us with an essentially
local co-isometry with

I∗I = V ∗Ĩ∗ĨV = V ∗(1−N)V = 1−Q and II∗ = Ĩ Ĩ∗ = 1, (5.62)

as needed.

With this at hand, the existence of an F for a single timeframe follows straightfor-
wardly:

5E.g., the minimal one, spanned by {ψ + φ | ψ ∈ Q1H, φ ∈ Q2H}
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Corollary 5.2.11. Let U be a chiral symmetric essentially gapped unitary. Then there exists a
half-step unitary F , such that

U = γF ∗γF. (5.63)
If U is essentially local, this F can also be chosen essentially local.

Proof. The proof is similar to the one for Theorem 5.2.9, the only difference being that
the decomposition of H into H′± and K′ is not fixed by a second timeframe. Hence, we
can choose an appropriate decomposition and show, that everything just works out. So
let ker(α′ ± 1) and ker(δ′ ± 1)6 be some finite-dimensional spaces with dimensions as
fixed in (5.50). This also defines K′ as the complement of the chosen spaces. In order to
construct an appropriate V , which identifiesK andK′, we apply Lemma 5.2.10. Thereby,
the intertwining relation for γK and γK′ , can be fulfilled by constructing V separately
for each chiral eigenspace. Concretely, consider K± = Γ±K and K′± = Γ±K′. Both are
the complements of finite-dimensional subspaces of Γ±H, respectively. Hence we find
partial isometries V ± such that V ±∗V ± = K± and V ±V ±∗ = K′±. Combining them as

V =

(
V + 0
0 V −

)
(5.64)

provides us with an appropriate partial isometry onH, which unitarily mapsK ontoK′,
while intertwining γK and γK′ .

Applying the arguments from the ii)⇒ i) proof direction of Theorem 5.2.9 finishes
the proof.

Having established the existence of the half-step operatorF for twogiven timeframes
U,U ′ with appropriate index relations, or a single chiral unitary U it is natural to inves-
tigate whether a given F is uniquely determined by U and U ′. The following lemma
describes, to what extend a half-step operator for a given chiral unitary U or pair of
timeframes (U,U ′) can vary, while producing the same timeframes.

Lemma 5.2.12. Let F0 be a half-step operator for an admissible unitary U , i.e. U = γF ∗0 γF0.
Then:

i) Any other F is also a half-step operator for U if and only if F = V F0, with a γ commuting
unitary V . In the chiral eigenbasis this means

F =

(
V+ 0
0 V−

)
F0, (5.65)

with arbitrary unitary blocks V±. Similarly, if U ′ = F0γF
∗
0 γ is kept fixed instead of U , the

condition is F = F0V
′, with V ′γ = γV ′.

ii) F is a half-step operator for both timeframesU andU ′ if and only if F = V F0 with [γ, V ] =
[U ′, V ] = 0 or F = F0V

′ with [γ, V ′] = [U, V ′] = 0.
6Note, that ker(α′ ± 1) and ker(δ′ ± 1) are to be understood only as a denotation for certain finite-

dimensional subspaces here, without referring to actually existing operators α′ and δ′.
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Proof. i): Since any other F for U fulfils γF ∗γF = γF ∗0 γF0, we immediately get

F ∗γF = F ∗0 γF0 ⇔ FF ∗0 γ = γFF ∗0 . (5.66)

Hence F = (FF ∗0 )F0 is a γ-commuting unitary times F0. For U ′ the computation is
analogous.

ii): This also follows from straightforward computation. Let F = V F0, then, by
γV = V γ, due to i),

U ′ = (V F0)γ(F
∗
0 V
∗)γ ⇔ V U ′V ∗ = U ′, (5.67)

and similarly for F = F0V
′ and U .

5.3 Complete set of indices
We now come to the central part of this chapter, the topological classification of half-
step walks. In Section 5.2, where we discussed the fundamental properties of F , we
expressed the symmetry indices of U and U ′ in terms of Fredholm indices of the chiral
blocks of F . Following this path, we will further characterize F in terms of Fredholm
indices in this chapter, which leads to a complete classification by five integer-valued
indices.

To this end, remember that we already identified five different indices directly as-
sociated with F : The Fredholm indices of the four chiral blocks A,B,C and D, as well
as the index of F itself, if F is merely essentially unitary. However, the results of Sec-
tion 5.2 show, that these five indices are not independent: By Lemma 5.2.4 we can drop
ind (F ), because it is completely determined by the indices ot the four blocks A,B,C
andD. Moreover, by Lemma 5.2.7 we can also drop two of these. Doing so also resolves
the dependencies imposed by Lemma 5.2.6, such that the considerations above do not
introduce further restrictions. Without loss of generality we chose ind (A) and ind (B)
as the remaining independent indices. We know from Corollary 5.2.11 that for every
chiral symmetric gapped walk U , there exists a half-step walk F . In particular, every
pair (si+, si−) can be realized in this way. Combining this with Lemma 5.2.7, we find
that ind (A) and ind (B) are independent since any pair in Z2 can be realized via an F .

However, the two indices ind (A) and ind (B) are insufficient to characterize any half-
step walk completely. In particular, the considerations so far did not yet include any
locality assumption. Taking locality into account leads to another set of five indices. For
an essentially local F also the chiral blocks have to be essentially local because any half-
space projection commutes with the chiral symmetry. Hence, compressing the blocks
to a half-space via P · P according to Lemma 3.3.13 again provides us with Fredholm
operators on PH. These add the five right Fredholm indices ind⇀ (·) of A,B,C,D, and F
itself to the list of indices.

We can again identify some of the indices as dependent ones and therefore cross
them from the list. Lemma 5.2.6 and Lemma 5.2.4 are also valid for essentially unitary
operators. Similarly, the half-space compressions of essentially local unitaries U and
U ′ are essentially unitary and yield the right symmetry indices according to Definition
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3.5.6. Hence, we can apply the two lemmas also to the half space compressions of F and
its chiral blocks, which gives

⇀sı (U) = ind
⇀

(A)− ind
⇀

(B) = ind
⇀

(C)− ind
⇀

(D)
⇀sı (U ′) = ind

⇀
(C)− ind

⇀
(A) = ind

⇀
(D)− ind

⇀
(B)

(5.68)

and

ind
⇀

(F ) = ind
⇀

(B) + ind
⇀

(C) = ind
⇀

(A) + ind
⇀

(D). (5.69)

Lemma 5.2.7 on the other hand needs exact unitarity and therefore has nothing to say in
this scenario. Again, by (5.69), the index of F itself is determined by those of its chiral
blocks and can be dropped. Moreover, the two equivalent relations between the right
Fredholm indices of the chiral blocks given by (5.68) allow us to drop one further index.
Without loss of generality, we choose ind⇀ (A), ind

⇀
(B) and ind

⇀
(C) as the remaining three

indices. These three indices are again independent. However, their independence is
not as obvious as before for ind (A) and ind (B). We will show this, by constructing a
generating example, which allows us to realize every possible index combination. But
first, let us formulate the main result of this chapter. The remainder of the section is
dedicated to the proof of this theorem.

Theorem 5.3.1. Let F be a unitary essentially local half-step walk for essentially gapped chiral
walks U and U ′. Assign to F the quintuple(

ind (A), ind (B), ind
⇀

(A), ind
⇀

(B), ind
⇀

(C)
)
∈ Z5. (5.70)

Then these indices are invariant under continuous deformations in the set of essentially local
half-step walks as well as under compact perturbations. The classification in terms of the index
quintuple is complete, i.e. two half-step walks F and F ′ are connected via a norm continuous
path of half-step walks if and only if their index quintuples coincide. Moreover, any combination
in Z5 can be realized by suitable F .

The invariance of the five indices is straightforward. Deforming F inside the class
of half-step walks with essentially gapped timeframes U and U ′, the chiral blocks stay
Fredholm for continuous and trivially also for compact perturbations. Hence, the invari-
ance of ind (A) and ind (B) already follows from the invariance of the Fredholm index.
Moreover, as already discussed above, any half-space projection commuteswith the chi-
ral symmetry, whereas the chiral blocks of F are essentially local for every essentially
local F . Hence the invariance of ind⇀ (A), ind

⇀
(B) and ind

⇀
(C) follow from Lemma 3.3.16

and Lemma 3.3.17.

5.3.1 The generating example
We will prove the independence and realisability of the five indices by constructing a
generating example. For each quintuple of indices there exists a choice of parameters
for the example realising the given indices.
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LetH = C2⊗ H̃ according to (5.8) and S some partial shift with ind
⇀

(S) = −1 on H̃.
The generating example then involves the following two unitary operators:

f(a, b) =
1√
2

(
Sa Sb

S−b −S−a
)

and T (c) =

(
Sc 0
0 1

)
, a, b, c ∈ Z. (5.71)

As one readily checks, f(a, b) is a valid half-step operator, producing exactly gapped
timeframes. According to (5.69) we get ind⇀ (f(a, b)) = 0 for all a, b ∈ Z. Hence, by
Theorem 3.3.19, there exists a local decoupling f(a, b) 7→ fL(a, b) ⊕ fR(a, b). Since the
left and right half of the system are no longer connected, we are free to choose the pa-
rameters a and b independently on each side, i.e. fL(aL, bL) ⊕ fR(aR, bR) still provides
a valid half-step operator with essentially gapped timeframes.
Definition 5.3.2. WithH, fL/R(aL/R, bL/R) and T (c) as above, we define the generating ex-
ample as

F (aL, bL, aR, bR, c) = T (c)
(
fL(aL, bL)⊕ fR(aR, bR)

)
. (5.72)

Note that we have ind (Sa) = 0, ind⇀ (Sa) = −a and ind
(
P⊥SaLP⊥ ⊕ PSaRP

)
=

aL−aR, where the argument in the last expression is a compact perturbation of the upper
left corner of fL(aL, bL)⊕fR(aR, bR), which therefore has the same right Fredholm index.
Using similar identities, we find that the index quintuple for the generating example F
is given by

(aL − aR, bL − bR,−aR − c,−bR − c, bR) . (5.73)
I.e. the index quintuple for F is obtained by applying the integer matrix

M =


1 0 −1 0 0
0 1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 −1
0 0 0 1 0

 with M−1 =


1 0 −1 1 1
0 1 0 0 1
0 0 −1 1 1
0 0 0 0 1
0 0 0 −1 −1

 (5.74)

to the parameter vector (aL, bL, aR, bR, c). Since M is invertible and the inverse is also
an integer matrix, we conclude that, conversely, every index combination in Z5 can be
realized via this example by chosing the parameters according to

(aL, bL, aR, bR, c) =M−1
(
ind (A), ind (B), ind

⇀
(A), ind

⇀
(B), ind

⇀
(C)
) (5.75)

Moreover, since we showed that the index quintuple can reach every vector in Z5, we
also showed their independence.

5.3.2 Completeness proof
It remains to prove the completeness statement. We do this in several steps: First,
we establish the so-called flattening construction, which enables us to deform each F
into a simpler form. Thereby, “flattening” refers to the spectrum of the correspond-
ing timeframes similar to Lemma 3.6.2. We then use Theorem 3.3.19 and the standard
form derived in Definition 5.2.8 to show that each F with trivial right Fredholm in-
dices ind⇀ (A), ind

⇀
(B), and ind

⇀
(C) can be deformed into a particularly simple reference
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operator F0. All other values of these three indices can then be reached by multiply-
ing the reference operator with appropriate shift combinations. We finish the proof
by explicitly constructing a homotopy between two F s that share the same values for
(ind (A), ind (B), 0, 0, 0).

The flattening construction

In Section 3.6 the flat band condition referred to a walk, whose spectrum is contained
in {±1,±i}, where the finite-dimensional eigenspaces at ±1 do not contain any bal-
anced sub-representations. Here we relax this condition a bit and only demand finite-
dimensional eigenspaces at ±1. We will comment on the implications of this relaxation
later, after the proof of Lemma 5.3.4 and start here by expressing this relaxed flatband
condition on the timeframes U and U ′ in terms of the half-step walk.

Lemma 5.3.3. Let F be a half-step walk for U and U ′ with chiral blocks A,B,C and D. Then
the following are equivalent:

i) U and U ′ are essentially flatband.

ii)
√
2X , for X ∈ {A,B,C,D} are essentially unitary.

Proof. As in to the proof of Lemma 5.2.1 we formulate the proof for the exact case, i.e.
for the images of the involved operators in the Calkin algebra. The “essential” versions
then follow automatically.

Let U and U ′ be exactly flatband, with spectrum in {±i}. This means U = −U∗ and
similarly for U ′. By (5.10) this is equivalent to A∗A = C∗C, B∗B = D∗D, AA∗ = BB∗

and CC∗ = DD∗, which, using the unitarity conditions for F , is equivalent to
√
2X

being unitary for X ∈ {A,B,C,D}, as claimed.

Keeping in mind that (essential) flatbandedness refers to the timeframes U and U ′
we also call the half-step walk F (essentially) flatband whenever it has (essentially)
unitary chiral blocks up to a factor of

√
2.

In Lemma 3.6.2 we saw that every (tenfold way) admissible walk U can be con-
tinuously deformed into an essentially flatband one, and this was used to prove the
completeness result for tenfold way admissible quantum walks. As indicated, this de-
formation can also be done in the present scenario, directly on the level of F .

Lemma 5.3.4. Let F be a half-step walk. Then there exists a norm-continuous path t 7→ Ft,
t ∈ [0, 1], of half-step walks, such that F0 = F and F1 is essentially flatband, i.e. constitutes
essentially flatband walks U and U ′.

Proof. We again start with the exactly gapped case: Let F be the half-step walk for ex-
actly gapped walks U and U ′. Then, by Lemma 5.2.1, all blocks are invertible. Using the
polar decomposition, we can express each block as X = UX |X| = UX

√
X∗X . Since all

blocks are invertible, the polar isometries UX are unitary. Moreover, using the unitarity
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conditions (5.25)-(5.30) we can express the absolute values of all blocks via the absolute
value |A| =

√
A∗A of A and the polar isometries of the blocks:

A = UA

√
A∗A B = UB

√
1− U∗BUAA∗AU∗AUB

C = UC

√
1−A∗A D = UD

√
U∗BUAA∗AU∗AUB,

(5.76)

where we used A∗A+ C∗C = 1 for C, XX∗ = UXX
∗XU∗X and AA∗ + BB∗ = 1 for B,

as well as D∗D +B∗B = 1 for D. The remaining unitarity conditions are equivalent to
D = −(C∗)−1A∗B = −CA∗(B∗)−1, which, inserting the identifications above, reduces
to

UD = −UCU
∗
AUB. (5.77)

Now let
F1 =

1√
2

(
UA UB

UC UD

)
, (5.78)

which is unitary by the reduced condition on the polar isometries. Since each block
of F1 is unitary up to a factor of

√
2 it fulfils the flatband condition in Lemma 5.3.3.

Moreover, by (5.76), it suffices to find a continuous path, which connects A∗A and 1/2
in order to construct a path between F and F1. An especially simple one is the linear
interpolation t1/2+(1− t)A∗A. Thereby, the unitarity condition on the polar isometries
then also guarantees unitarity of Ft along the path. We did not yet take locality into
account. However, by Lemma 3.3.9, the polar isometries and the absolute values are
essentially local. Further, the deformation of

√
A∗A stays in theC∗-algebra of essentially

local operators, which follows from the continuous functional calculus. Hence, each Ft

is a well defined half-step walk.
For the general case wewill use the standard form established in Definition 5.2.8, i.e.

F =

(
A+ 0
0 D+

)
⊕
(

0 B−
C− 0

)
⊕
(
AK BK
CK DK

)
, (5.79)

where the first two summands are associated with the ±1-eigenspaces of U and U ′ and
contain finite-dimensional unitaries A+, D+, B−, C− (of different dimension), whereas
the right most block consists of invertible blocks and reproduces the gapped parts of U
and U ′. Consequently, we do not have to touch the first two summands, which reduces
the problem to the scenario of exactly gapped walks U and U ′.

Deforming the right summand according to the first half of the proof, we get the
polar unitaries of each block XK. Considering these as isometries on the full space and
combining them with the finite-dimensional unitary blocks X±, we can consider these
as the polar isometries of A,B,C,D. In general, these are proper partial isometries that
constitute an essentially flatband half-step walk F1.

As alreadymentioned, after the flattening construction from Lemma 3.6.2 the finite-
dimensional real eigenspaces ofU andU ′wouldnot contain balanced sub-representations
of the chiral symmetry. In the standard form this would correspond to only one of
the blocks in the first two summands F± being present, respectively. For ind (A) > 0
(ind (A) < 0) the kernel of A∗ (A) would have to be trivial, wherefore only B− (C−)
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was present in the second summand, whereas ind (B) > 0 (ind (B) < 0) would result
in only A+ (D−) being present in the first summand. However, reducing the first two
block matrices in the standard form to single blocks makes the picture of the standard
form a bit less intuitive, wherefore we leave it there and discuss the finite-dimensional
spacesH± later, without this simplification.

With the flattening construction at hand, we can proceed and assemble the complete-
ness proof. The index quintuple contains two different kinds of indices, which require
different techniques during the proof. On the one hand, there are the Fredholm indices
of A and B, and on the other the right Fredholm indies of A,B and C. Similar to the
completeness proof for the right Fredholm index for essentially local unitaries, it suffices
to prove connectedness of the trivial component with respect to the latter three indices.
Indeed, given F , let (a, b, c) = (ind⇀ (A), ind

⇀
(B), ind

⇀
(C)
) and consider

F̃ =

(
Ã B̃

C̃ D̃

)
=

(
Sa 0
0 Sc

)(
A B
C D

)(
1 0
0 Sb−a

)
. (5.80)

For F̃ the right Fredholm indices evaluate to[
ind
⇀

(Ã) = ind
⇀

(SaA)
]
=
[
ind
⇀

(C̃) = ind
⇀

(ScC)
]
=
[
ind
⇀

(B̃) = ind
⇀

(SaBSb−a)
]
= 0.

(5.81)
Any homotopy of F̃ lifts to F by multiplying with the inverse shift-combinations from
left and right, respectively. Hence, we are free to assume the right Fredholm indices to
be zero for the rest of the proof.

Lemma 5.3.5. Let F be a half-step walk in standard form, with ind⇀ (A) = ind
⇀

(B) = ind
⇀

(C) =
0. Then there is a continuous path of half-step walks connecting F and

F0 =

(
1d(C) 0

0 1d(B)

)
⊕
(

0 1d(D)

1d(A) 0

)
⊕ 1√

2

(
1 1

1 −1

)
, (5.82)

with d(X) = dimker(X).

Proof. We start by flattening F according to Lemma 5.3.4. Deforming the first two sum-
mands is then straightforward since we only have to connect each finite-dimensional
block A+, B−, C− and D+ continuously to the identity, which is certainly possible for
finite-dimensional unitaries without further restrictions. Since the blocks are of finite
rank, any deformation of them stays essentially local. For the right summand, we again
drop the subscript K for the blocks XK. Up to a factor of

√
2, we are left with the three

unitary blocks UA, UB, UC and the fourth one UD = −UCU
∗
AUB . The right Fredholm

indices of the first three blocks are trivial, wherefore they are homotopic to the identity
on an essentially local unitary path by Theorem 3.3.19. Keeping UD = −UCU

∗
AUB dur-

ing this process guarantees unitarity of the block matrix and thereby also deforms UD

to −1, as needed.

Now suppose, we are given two half-step walks F1 and F2 with ind (A1) = ind (A2),
ind (B1) = ind (B2), and ind

⇀
(Ai) = ind

⇀
(Bi) = ind

⇀
(Ci) = 0. According to Lemma 5.3.5
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we can deform both of them into unitaries which have the structure of (5.82). However,
the decompositions intoH± andK, andH′± andK′ from the standard fromare in general
different forF1 andF2. Moreover, the index relations ind (A1) = ind (A2) = d(Ci)−d(Bi)
and ind (B1) = ind (B2) = d(Di) − d(Ai) only fix the differences d(Ci) − d(Bi) and
d(Ai) − d(Di), and not the individual values of the d(Xi). We first concentrate on the
second problem, beginning with the first summand. Without loss of generality let n =
d(C1) − d(C2) > 0, which, by ind (A1) = ind (A2), also implies n = d(B1) − d(B2). We
can split a 2n-dimensional part off of the left summand of F1, and rearrange the basis,
such that (

1d(C1) 0

0 1d(B1)

)
≡
(
1d(C2) 0

0 1d(B2)

)
⊕
(
1n 0
0 1n

)
. (5.83)

This can then be continuously deformed into(
1d(C2) 0

0 1d(B2)

)
⊕ 1√

2

(
1n 1n
1n −1n

)
. (5.84)

In a final rearranging of the basis, we then include the right 2n-dimensional summand
intoFK, which adjusts the size of the first summandofF1 to the size of the first summand
of F2. We can treat the second summand in a similar way, splitting off σx ⊗ 1n and
deforming into(

0 1d(D1)

1d(A1) 0

)
∼
(

0 1d(D2)

1d(A2) 0

)
⊕ 1√

2

(
1n 1n
1n −1n

)
(5.85)

as the intermediate step. Finally, we move the finite-dimensional subspaces H±,i and
H′±,i, i = 1, 2, i.e. the complements of K and K′ for F1 and F2 onto each other, respec-
tively. For this, let V± and V ′± be unitaries with V±H±,1 = H±,2 and V ′±H′±,1 = H′±,2
according to Lemma 5.2.10. That is, finite rank perturbations of the identity that inter-
twine the projections onto the respective subspaces. In particular, V± and V ′± can be
chosen essentially local. We can further assume them to respect the splitting into the
γ-eigenspaces, by applying Lemma 5.2.10 to Γ±H separately. With these we get

F2 = V ′−V
′
+F1V

∗
+V
∗
−. (5.86)

Finally, we get a continuous path between F1 and F2 by continuously deforming V±
and V ′± to the identity on paths of finite rank perturbations, which finishes the proof of
Theorem 5.3.1.

5.4 Example: The split-step walk
Before we compare the classification of half-step walks above with the classification of
the timeframes as discrete time quantum walks, let us discuss a motivating example:
The well known split-step walk (see also Example 1.4.6), which was first introduced by
Kitagawa et al. in [KRBD10]. This model became the workhorse among the example
models for the topological classification of symmetric quantum walks [Kit12, Asb12,
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AO13, ATD14, TAD14, KBF+12, CGS+16, Sta15, CGG+18, CGG+21], which makes it
the good example model to apply our theory to.

The split-step walk is defined as a shift coin sequence onH = ℓ2(Z)⊗ C2 via
Uss = S↓C2S↑C1, (5.87)

where S↑ (S↓) denotes the partial shift Sφ from Definition 1.4.4, with φx = (1, 0) (resp.
Sφ with φx = (0, 1)), i.e.

S↑ =

(
S 0
0 1

)
and S↓ =

(
1 0
0 S∗

)
, (5.88)

with the usual bilateral right shift S on ℓ2(Z). Ci are possibly position dependent coin
operations with σxCiσx = C∗i . In the standard split-step walk, the coins are usually
defined as real rotations Ci(x) = R(θi(x)) = exp(−iθi(x)σy). Due to σxS↑/↓σx = S∗↓/↑
and σxCiσx = C∗i , Uss is chiral symmetric with γ = (1 ⊗ σx)C1, which is self-adjoint
and squares to the identity, rendering it a valid chiral symmetry in the context of the
first part of this thesis. With C1 also γ is position dependent, wherefore it is some-
times not considered a valid chiral symmetry [Asb12]. However, a simple base-change
R(−π/4)

√
C1 ·
√
C1
∗
R(π/4) transforms Uss into

R(−π/4)
√
C1S↓C2S↑

√
C1R(π/4) = R(θ1/2− π/4)S↓R(θ2)S↑R(θ1/2 + π/4), (5.89)

which is chiral symmetric for γ = 1⊗σz . In this form themost straight forward half-step
operator is

F = R(θ2/2− π/4)S↑R(θ1/2 + π/4). (5.90)
With c± = cos((θ1 ± θ2)/2) and s± = sin((θ1 ± θ2)/2) this gives

F =
1

2

(
(c+ + s−)1+ (c+ − s−)S (c− − s+)1− (c− + s+)S
(c− + s+)1− (c− − s+)S (c+ − s−)1+ (c+ + s−)S

)
. (5.91)

Turning to the translation invariant standard example of the split-step walk, i.e.
θi(x) = θi, let us calculate its indices for different values of θ1 and θ2. For this task,
the following Lemma is helpful:
Lemma 5.4.1. Let S be the bilateral right-shift on ℓ2(Z) and a, b ∈ C. Then a1+bS is Fredholm
with trivial index if and only if |a| ≠ |b|. Moreover, a+ bS is essentially local with

ind
⇀

(a1+ bS) =

{
−1 if |a| < |b|
0 if |a| > |b|.

(5.92)

In particular, the gaps close if and only if |a| = |b|, which follows from Lemma 5.2.1
in combination with the result above.
Proof. S is normal and the spectrum consists of thewhole unit circle, with σe(S) = σ(S).
Therefore σe(a1 + bS) = σ(a1 + bS) = a + bσ(S) = {a + beiϕ|ϕ ∈ [0, 2π)}, which
contains 0 if and only if |a| = |b|. This shows the first part of the Lemma. The second
statement on ind

⇀
(a1 + bS) follows from the fact that, by continuously changing a and

b, we get continuous paths of essentially local Fredholm operators between a1+ bS and
S if |a| < |b| (see Example 3.3.15), and between a1+ bS and 1 if |a| > |b|.
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From (5.91) and Lemma 5.4.1 we can now directly compute the indices for the trans-
lation invariant split-step walk. First note that ind (A) = ind (B) = 0 for all values of θ1
and θ2. In fact this is true for every translation invariant walk [CGS+18]. Let us further
evaluate the gap-closure condition |a| = |b|, which is met for at least one of the four
matrix elements of F in (5.91) whenever

θ2 = ±θ1 mod π. (5.93)

These conditions correspond to the white lines in the parameter plane for (θ1, θ2) in Fig-
ure 5.1. Consequently, since changing the coin angles continuously is a gentle perturba-
tion, the plaquettes between these lines correspond to parameter values with constant
indices, respectively. Hence, we can evaluate these indices by picking particularly sim-
ple parameter values in each plaquette. Picking, e.g., the centers of the plaquettes I and
II , which correspond to the parameter pairs (0, π/2) and (0,−π/2), respectively, we get

FI =
1√
2

(
S −S
1 1

)
and FII =

1√
2

(
1 1

−S S

)
, (5.94)

with the obvious index triples (−1,−1, 0) and (0, 0,−1) for (ind⇀ (A), ind
⇀

(B), ind
⇀

(C)).
EvaluatingF for all other plaquettes in a similarway, we get the following index regions:

θ1

θ2IVIII

II

I

(
ind
⇀

A, ind
⇀

B, ind
⇀

C
)

(⇀sı (U),⇀sı (U ′))

I (−1,−1, 0) ( 0, 1)

II ( 0, 0,−1) ( 0,−1)
III (−1, 0,−1) (−1, 0)

IV ( 0,−1, 0) ( 1, 0)

Figure 5.1: Regions corresponding to different topological phases in the (θ1, θ2)-
parameter plane for the split-step walk. Figure taken from [CGWW21].

Note that on the level of the single timeframes (without considering the other time-
frame, respectively) the patches I and II are labelled equally by ⇀sı = 0 and similarly
for the patches III and IV with ⇀sı ′ = 0. Hence, taken individually, each timeframe has
only three phases instead of four.

For the sake of completeness, let us demonstrate that there exist “bridges” between
these 0-plaquettes if only one timeframe is considered. We again consider the respective
flat-band representativeswith parameters corresponding to the centres of the respective
plaquette. Since changing from one timeframe to the other amounts to exchanging the
parameters θ1 and θ2 for the split-step walk, both scenarios correspond to similar flat-
band operators, namely

UI =

(
0 −1
1 0

)
and UII =

(
0 1

−1 0

)
. (5.95)
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These are continuously connected on a chiral symmetric path via

t 7→ Ut =

(
0 −eitπ1

e−itπ1 0

)
, t ∈ [0, 1], (5.96)

with U0 = UI and U1 = UII .
In summary, the example above demonstrates that the two timeframes distinguish

different regions of topological phases of the driving process. We need to consider both
to distinguish all phases in the present example. However, while translation-invariant
chiral drivings are described by the three indices (ind⇀ (A), ind

⇀
(B), ind

⇀
(C)) ∈ Z3, there

are only the two (⇀sı (U),⇀sı (U ′)) ∈ Z2 on the level of timeframes. Therefore, something
must be missing on that level.

5.5 Connection to the symmetry indices

Let us further investigate how the symmetry indices of two timeframes U and U ′ with a
common half-step operator F are related to each other. As discussed in Section 3.6 the
homotopy type of each timeframe is uniquely labelled by the index triple (si,⇀sı , si+). In
order to streamline notation we often abbreviate si(U) as si and si(U ′) as si′ and similarly
for ⇀sı ,⇀sı ′, si± and si′±. At least one of these six indices must be redundant since the com-
plete classification of half-step walks determines the classification of U and U ′ in terms
of only five indices. Nevertheless, it might well be that the walk indices do not cover
the full classification. So what are the restrictions on these six indices for a timeframed
setting?

5.5.1 Index relations
We already discovered the necessary condition si± = ± si′± in Theorem 5.2.9. Evaluating
this condition together with si = si++si− we find

si± = ± si′± =
si± si′

2
. (5.97)

Hence, in a timeframed setting, si± and si′± are completely determined by si and si′. This
reduces the six indices to four, showing that the walk indices cannot fully describe the
driven setting. Moreover, this means that si and si′ have to fulfil

si ≡ si′ mod2 (5.98)
in order to be realisable by timeframes U and U ′. Apart from this condition, the remain-
ing four indices are independent. Combining (5.20), (5.68) and (5.73) we get

si = aL − bL − (aR − bR) ⇀sı = −(aR − bR)
si′ = −(aL + bL) + aR + bR

⇀sı ′ = aR + bR + c
(5.99)

for the generating example from Section 5.3.1. Provided that (5.98) is fulfilled, (5.99)
can be inverted, which yields

(aL, bL, aR, bR, c) =

(
aR +

si− si′

2
, aR −

si+ si′

2
+ ⇀sı , aR, aR + ⇀sı ,⇀sı ′ −⇀sı − 2aR

)
.

(5.100)
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Note that aR is a free parameter, i.e. for each choice of aR the indices of U and U ′ of the
generating example with (5.100) evaluate to the given values (si,⇀sı , si′,⇀sı ′). Hence, all
index combinations (si,⇀sı , si′⇀sı ′) ∈ Z4 fulfilling (5.98) can be realised. Since aR appears
as a summand with coefficient 1 in the other parameters aL, bL, bR, each of these could
equally well be chosen freely by adjusting aR accordingly. It seems that this is not pos-
sible for c, because we cannot solve c = ⇀sı ′ − ⇀sı − 2aR for aR in general (⇀sı ′ − ⇀sı is not
necessarily even, as the split-step walk shows). However, we will readily see that there
is an additional condition on ⇀sı and ⇀sı ′, involving ind

⇀
(F ), which is determined by c in

the generating example.
Adding ind

⇀
(F ) to the four of walk indices supplements them to a complete index

set. To see this, let us first verify that ind⇀ (F ) is not already determined by the four walk
indices. This can be done, by expressing the walk indices and ind

⇀
(F ) as vectors in the

space Z5 of the five complete indices (ind (A), ind (B), ind
⇀

(A), ind
⇀

(B), ind
⇀

(C)
):

si ≡ (1,−1, 0, 0, 0) ⇀sı ≡ (0, 0, 1,−1, 0)
si′ ≡ (−1,−1, 0, 0, 0) ⇀sı ′ ≡ (0, 0,−1, 0, 1)

ind
⇀

(F ) ≡ (0, 0, 0, 1, 1),

(5.101)

Clearly these vectors are linearly independent. Using (5.68) and (5.69), we get

ind
⇀

(F ) + ⇀sı + ⇀sı ′ = 2 ind
⇀

(C) ≡ 0 mod 2. (5.102)

With this, ind⇀ (F )±⇀sı±⇀sı ′ is always even,wherefore (keeping inmind that c = − ind
⇀

(F ))
we can chose aR = 1/2(⇀sı ′ − ⇀sı + ind

⇀
(F )) in(5.100). Hence, choosing the parameters

(aL, bL, aR, bR, c) as(
ind
⇀

(F ) + ↼sı −↼sı ′
2

,
ind
⇀

(F )−↼sı −↼sı ′
2

,
ind
⇀

(F )−⇀sı + ⇀sı ′
2

,
ind
⇀

(F ) + ⇀sı + ⇀sı ′
2

,− ind
⇀

(F )

)
,

(5.103)
realises any combination of (si,⇀sı , si′,⇀sı ′ ind⇀ (F )

) via the generating example, provided
that (5.98) and (5.102) are fulfilled. Note that we used ↼sı = si−⇀sı and ↼sı ′ = si′−⇀sı ′,
which also fulfil (5.102), in order to shorten the expression.

Corollary 5.5.1. A quintuple of indices(
si(U),⇀sı (U), si(U ′),⇀sı (U ′), ind⇀ (F )

) (5.104)

can be realised by a half-step operator F , if and only if

si(U) ≡ si(U ′) mod 2 and ind
⇀

(F ) ≡ ⇀sı (U) + ⇀sı (U ′) mod 2. (5.105)

Moreover, there is a one-to-one correspondence between this set of indices and the index quintuple
from Theorem 5.3.1. Hence, also (5.104) is a complete set of indices with respect to homotopies
and compact perturbations of half-step walks.

Proof. The first part of the statement was proven above. For the second part, we already
know that all five indices are homotopy invariants. As indicated in the corollary, wewill
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prove the completeness bymapping the indices to the index set in Theorem 5.3.1, which
we proved to be complete and realisable for any quintuple in Z5.

By (5.101), the mapping from the index quintuple of Theorem 5.3.1 to the index set
discussed here can be done by applying the invertible matrixM ′ to the former:

M ′ =


1 −1 0 0 0
0 0 1 −1 0
−1 −1 0 0 0
0 0 −1 0 1
0 0 0 1 1

 , with M ′−1 =
1

2


1 0 −1 0 0
−1 0 −1 0 0
0 1 0 −1 1
0 −1 0 −1 1
0 1 0 1 1

 . (5.106)

Note, however, that differently from the conversion matrix M in (5.74), the inverse of
M ′ is not an integer matrix. Nevertheless, applying M ′−1 only to the allowed index
quintuples ⇀

v = (si,⇀sı , si′,⇀sı ′, ind⇀ (F )), the result will always be integer-valued and we
can reach any vector in Z5. Indeed, for indices fulfilling (5.105) we can write ⇀

v =
(si,⇀sı , si−2k,⇀sı ′,⇀sı + ⇀sı ′ + 2l), for some integers k, l ∈ Z. From this we get

M ′−1
⇀
v =

(
ind (A), ind (B), ind

⇀
(A), ind

⇀
(B), ind

⇀
(C)
)

= (k, k − si, l + ⇀sı , l, l + ⇀sı + ⇀sı ′),
(5.107)

which span Z5.
At this point, one could ask why we did not use the complete index set (5.104) for

our classification in the first place. However, the additional constraints in (5.105) were
not apparent at all from the beginning, andwe only discovered them using the “detour”
via the unconstrained index set (5.70) from Theorem 5.3.1. Moreover, taking (5.70) as
the classifying set has the advantage of being the more fundamental choice, at least in
some sense, since these are given by the well known Fredholm index itself or the right
Fredholm index, which we derived from the information flow index in Section 3.3.2.

5.5.2 Bulk-boundary correspondence
For a single walk operator U with chiral symmetry, the bulk-boundary correspondence
result in Corollary 3.5.8 predicts a lower bound on the number of eigenstates corre-
sponding to eigenvalues ±1, given by | si(U)| = |↼sı (U) + ⇀sı (U)|. However, it was not
possible to distinguish between the eigenvalue+1 and−1. Taking into account a second
timeframe, allows us to predict the lower number of +1 and −1 eigenvalues separately.

Let U and U ′ be timeframes of some chiral driving, such that they are crossovers of
(exactly gapped) bulk walks UL, UR, U ′L and U ′R. I.e. U and U ′ become equal to UL and
U ′L far to the left and to UR and U ′R far to the right, respectively, in the sense of (3.165)
in Corollary 3.5.8. Then we get

si(U) = ↼sı (UL) +
⇀sı (UR) =

⇀sı (UR)−⇀sı (UL) and si(U ′) = ⇀sı (U ′R)−⇀sı (U ′L).
(5.108)

Inserting this into (5.97), the indices si±(U) = ± si±(U
′) evaluate to

si±(U) = ± si±(U
′) =

(⇀sı (UR)±⇀sı (U ′R)
)
−
(⇀sı (UL)±⇀sı (U ′L)

)
2

. (5.109)
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Hence, the second timeframe stabilizes the ±1 eigenspaces and allows to distinguish
them in the bulk-boundary correspondence. This observation can also be understood
in the context of non-gentle compact perturbations. In the following section, we will see
that there are nonon-gentle perturbations of timeframed systems, the possible crossovers
are restricted, and those, whichwould result in shifting an eigenvalue from+1 to−1 are
excluded. However, before we detail this, let us focus on the present crossover scenario.

If we assume the crossover to be valid also on the level of half-step walks, i.e. F is
a crossover of FL far to the left and FR far to the right, such that FL/R is the half-step
walk for UL/R and U ′L/R, we can further simplify (5.109). In this case we can express
⇀sı (UL/R) and ⇀sı (U ′L/R) in terms of the respective chiral blocks of FL and FR according
to (5.68). We get

si+(U) = ind
⇀

(CR)− ind
⇀

(CL) = −
(
ind
⇀

(BR)− ind
⇀

(BL)
) (5.110)

and

si−(U) = ind
⇀

(AR)− ind
⇀

(AL) = −
(
ind
⇀

(DR)− ind
⇀

(DL)
)
, (5.111)

where we used ind
⇀

(FL) = ind
⇀

(FR), which is a necessary condition for a crossover be-
tween FL and FR to exist (see Theorem 3.3.19), in combination with (5.69).

These formulas confirm those from [ATD14], and [AO13] if the correspondingwind-
ing formulas in case of translation-invariant systems are considered [CGS+18]. More-
over, they generalize the work of [ATD14] to non-translation invariant systems, and, in
particular, also to half-step operators that do not stem from continuously driven Floquet
process (see also [MBSO20]). This makes the theory applicable to, e.g., the split-step
walk7.

5.6 Compact perturbations and finite systems
A property that quantum walks exhibit in contrast to Hamiltonian or continuously
driven systems is the existence of non-gentle perturbations. We discussed this in great
detail in Section 3.2. In particular, in Proposition 3.2.8, we saw that si± decide about the
gentleness of a perturbation in case of the tenfoldway, i.e., in particular, for chiral walks.
The (discretely) driven systems via any F we consider in this section lie somewhat be-
tween the Floquet setting and quantum walks considered as a single discrete timestep.
This raises the question of whether compact perturbations of a non-continuously driven
F can produce non-gently perturbations on the level of U and U ′ or not, i.e. on which
level non-gentle perturbations fail to exist.

5.6.1 Compact perturbations
The complete index quintuple for half-step walks F consists entirely of (right-) Fred-
holm indices. These are inherently invariant under compact perturbations. Therefore,

7The theory was already applied to the Hadamard quantum walk (which is a special case of the split-
step walk) in [OANK15, Sect. IV], however, without rigorously proving that the formulas are valid also for
ind
⇀

(F ) ̸= 0.
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no compact perturbation can change the topological class of a given F , and by complete-
ness, every compact perturbation is continuously connected to the identity.

Corollary 5.6.1. Let F be a half-step walk for a chiral symmetric protocol. Then any compact
perturbation of F is gentle.

Proof. We already argued above why this is true, using the completeness result for half-
stepwalks. However, this can also be seen on the level ofU andU ′: Clearly, any compact
perturbation of F results in a compact perturbation ofU andU ′. Now, by Theorem 3.5.7,
the symmetry indices si(U) and si(U ′) are invariant under compact perturbations. Since
these also determine si+(U) = si+(U

′) (see (5.97)) in the timeframed setting, also those
are invariant under compact perturbations of F . Finally, Proposition 3.2.8 tells us that
the perturbations of U and U ′ are gentle.

The corollary above seems to raise a contradiction: We know from Corollary 5.2.11
that every chiral symmetric walk with essential gaps exhibits a half-step walk F . In
particular, we also find an F after non-gently perturbing a given walk U . This apparent
contradiction is resolved by the following observation:

Corollary 5.6.2. Let F1 and F2 be two half-step walks, such that U1 and U2 (both in the same
timeframe, e.g.Ui = γF ∗i γFi) are non-gentle compact perturbations of each other. Then F1−F2

is not compact, i.e. F1 and F2 are non-compact perturbations of each other.

Let us exemplify this via an example:

Example 5.6.3. Consider the split-step walk from Section 5.4 with the parameters (θ1, θ2) =
(0,−π/2). I.e. we get F = R(−π/2)S↑R(π/4), which results in U =

⊕
x(iσy)

x, where the
superscript denotes the cell, in which the respective block acts.

The arch-typical example of a non-gentle perturbation is to replace the θ2-rotating coin in the
split-step protocol by σx in a single cell, e.g. at x = 1 [CGG+18, Sta15]. In the present example
this changes the action of Ũ = V U only at x = 0, where iσy is replaced by σz .

Ũ =

[⊕
x<0

(iσy)
x

]
⊕ (σz)

0 ⊕

[⊕
0<x

(iσy)
x

]
≡ iσy iσy iσy iσyσz

x = 0

(5.112)

Since the cells are in chiral eigenbasis, we can directly read off the change in the symmetry indices.
Being block-diagonal and purely off-diagonal inside each block, we trivially had si±(U) = 0 before
inserting the σx-coin. After the perturbation on the other hand, we get si±(Ũ) = ±1. Hence, the
perturbation is non-gentle by Proposition 3.2.8. By Corollary 5.2.11, however, there still exists
a half-step walk F̃ for Ũ , which must be a non-compact perturbation of F by Corollary 5.6.2. In
fact, the non-gentle perturbation on the level of U will turn out to originate from the joining of
two topologically different bulks on the level of F .

A possible half-step operator for Ũ is

F̃ = R(−π/2)S̃↑R(π/4), with S̃↑ = (P≤0 + P>0σx)S↑ (P≤0 + P>0σx) , (5.113)
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i.e. F̃ originates from F , by effectively replacing the shift S↑ by S∗↓ on the right half of the chain:

S↑ ≡ 7→ S̃↑ ≡
x = 0

(5.114)

Clearly, F̃ is a non-compact perturbation of F . Moreover, F̃ is the crossover between the two
bulks

FL =
1√
2

(
1 1

−S S

)
and FR =

1√
2

(
S S
−1 1

)
, (5.115)

with indices (0, 0, 0, 0,−1)L and (0, 0,−1,−1, 0)R. Inserting these index values into (5.110)
and (5.111) we get si±(Ũ) = ±1, confirming the observations above.

The example demonstrates a non-gentle compact perturbation, which stems from a
bulk-boundary scenario on the level of F . This raises the question of whether all non-
gentle perturbations of chiral quantum walks U are just bulk-boundary settings of the
underlying protocol in disguise. We answer this question in the affirmative, at least to
some extend: It turns out that up to a gentle compact perturbation on the walk level,
every non-gentle perturbation can be realized via a crossover between topologically dif-
ferent half-step operators FL and FR. Alternatively, phrased more casually, a compact
perturbation’s “non-gentleness” can always be realized via a bulk-boundary scenario of
half-step walks.
Corollary 5.6.4. Any non-gentle compact perturbation of an essentially gapped chiral walk U
is a gentle compact perturbation of a crossover between two topologically different half-step walks
FL and FR for U .

Proof. Let U be some chiral walk with half-step operator F and Û a compact non-gentle
perturbation of U with si(Û : U) = si−(Û) − si−(U) = n (see Proposition 3.2.8). More-
over similarly to the example above, we denote by S↑ the partial shift up. Note that in
general we have dimHx ̸= 2, but we can simply chose a basis vector in the Γ+ subspace
in each cell and shift it to the right. We again construct S̃↑ similarly to the example
above, with a generalized σx, swapping the full Γ± eigenspaces in each cell whenever
dimHx > 2. Let V = S∗↑ S̃↑, which, expressed in the same pictorial way as in the example
above, acts as

V ≡ (5.116)

and set
F̃ = V nF. (5.117)

Then F̃ is a crossover between FL = F and FR =
(
S∗ 0
0 S

)
F . By Lemma 5.2.12 FL and

FR result in the same walk U but they are clearly in different topological classes of half-
step walks. In particular we get ind⇀ (AR) = ind

⇀
(AL) + n, ind⇀ (BR) = ind

⇀
(BL) + n, and

ind
⇀

(CR) = ind
⇀

(CL)− n, while ind (AR) = ind (AL) and ind (BR) = ind (BL).
The corresponding walk Ũ = γF̃ ∗γF̃ is a compact perturbation of U , with

si−(Ũ) = ind (Ã) = ind (A) + n = si−(U) + n = si−(Û). (5.118)
Hence, by Theorem 3.2.6 and Proposition 3.2.8, Û is a gentle compact perturbation of
the crossover Ũ .
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5.6.2 Finite systems
Corollary 5.6.2 has an important consequence on perturbations of half-step walks on
finite systems. In finite systems there exist chiral walks, which are not driven by a half-
step operator F : given any finite F with timeframes U and U ′, let Ũ be a non-gentle
perturbation of U . Then for any half-step operator F̃ of Ũ , F − F̃ would have to be non-
compact, which is not possible on a finite-dimensional Hilbert space. So what are the
conditions for a half-step operator to exist for a given chiral unitaryU on a finite system?

We begin by considering general chiral unitaries without taking a possible spatial
structure or locality assumption into account.
Lemma 5.6.5. Let U be a chiral unitary on a finite-dimensional Hilbert space with a balanced
representation of the chiral symmetry8. Then there exists a half-step operator F , such that U =
γF ∗γF if and only if

si−(U) = 0. (5.119)
Proof. For the only if part, it suffices to find an example unitary U0 with half-step oper-
ator F0, such that si−(U0) = 0. Then, by the arguments above, every other U exhibiting
a half-step operator F has to be a gentle perturbation of U0, i.e. by Proposition 3.2.8 we
get si−(U) = si−(U0) = 0. This U0 is easily found by choosing

F0 =
1√
2

(
1 1

1 −1

)
(5.120)

as in the proof of Lemma 5.3.5, yielding U0 = iσy⊗1. This is exactly gapped, wherefore
we get si−(U0) = 0.

For the converse, let U be chiral symmetric with si(U) = si+(U) = si−(U) = 0. We
can then use the same construction as in the proof of Theorem 5.2.9, and set

F =

(
1 0
0 1

)
+

⊕
(
0 1

1 0

)
−
⊕ 1√

2

( √
1+ α Vβ

√
1− δ

−V ∗β
√
1− α

√
1+ δ

)
K
, (5.121)

where the splitting F = F+⊕F−⊕FK is again with respect toH± and their complement
K and α, β, δ refer to the matrix elements of U restricted to K.

Taking also a second timeframe U ′ into account, it is clear that the index condition
si±(U) = ± si±(U) in Theorem 5.2.9 becomes void for si±(U) = si±(U

′) = 0. Moreover,
the trivial indices also simplify the extra condition on the unitary equivalence operator
there:
Corollary 5.6.6. Let U and U ′ be two chiral walks with si−(U) = si−(U

′) = 0 on a finite-
dimensional Hilbert space with a balanced representation of the chiral symmetry. Then there
exists a half-step unitary F with U and U ′ as its timeframes if and only if there exists a unitary
V , such that

U ′ = V UV ∗ and V γ = γV. (5.122)
8Note that the purpose of assuming a balanced representation, i.e. tr γ = 0, is to guarantee a trivial

reference for the symmetry index (see Assumption 3.1.1 and the discussion thereafter). Any non-trivial
value for tr γ would just shift this reference, and the condition for an F to exist would change to si−(U) =
tr γ.
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Proof. By tr γ± = tr γ′± = 09 on the real eigenspaces of U and U ′, we get γ± ≡ γ′±
10. We

again use the construction from the proof of Theorem 5.2.9, but instead of the V there,
we are free to replace the mapping V± fromH± ontoH′± by any unitary blocks without
changing the relation between U and U ′, which are equal to ±1 on these spaces. In
particular we can chose V± = 12 ⊗ Ṽ±. With these we get V γ± = γ′±V± and together
with the relation (5.42) this condition indeed becomes V γ = γV .

On the other hand, given any γ-commuting unitary equivalence operator V for U
and U ′, we can set F = V FU , with FU as in (5.121). This gives

γF ∗γF = γF ∗UV
∗γV FU = γF ∗UγFU = U (5.123)

and

FγF ∗γ = V FUγF
∗
UγV

∗ = V UV ∗ = U ′. (5.124)

In the second relation, we used γF ∗Uγ = FU (1− 2P−) and F 2
U = U(1− 2P−), which are

both straightforward consequences of the definition of FU (keeping in mind that the
right summand of FU is a chiral symmetric square root of UK, as we discussed in the
proof of Theorem 5.2.9).

The absence of globally non-gentle perturbations of the timeframes does not exclude
locally non-gentle perturbations. That is, globally gentle perturbations of a finite system
consisting of multiple localized perturbations on separate regions cancelling each other
out. So let us, once again, assume a local structure, which we can do in two ways: The
most obvious is just a finite piece of chain, which might emerge from an infinite system
by decoupling at two positions and cutting out the middle piece. On the other hand, we
can think of a system on a ring. While this might seem unnatural initially, especially in
the limit of many cells, it shares more properties with the infinite system than the chain.
In particular, it is possible to have a non-trivial flow index on the ring (although not
defined via a Fredholm index)whereas this is not possible on the finite chain. Moreover,
we can always assume a chain to be part of a ring system with a finite perturbation,
decoupling it at some position.

Things change significantly compared to the infinite system when it comes to the
locality assumption on the unitary operators themselves. Essential locality and band
dominatedness are not useful for finite systems: On a finite-dimensional Hilbert space
any operator is compact, such that also every operator is essentially local. Moreover,
any operator is banded. Therefore we assume strict locality in this setting, with an in-
teraction that is small compared to the system size.

We can still define a flow index according to Definition 3.3.12, but the summation
has to be stopped at some point larger than the localization length. Otherwise, the con-
tributions from the left side would interfere with those of the right-hand side. However,
for strictly local unitaries, the flow index is a locally computable invariant [GNVW12],
and therefore, it makes sense to consider only a finite piece for the calculation. Any
chain-like system, on the other hand, can be considered as a decoupled ring or middle

9Abbreviating γ± = γ|H± and γ′
± = γ|H′

±
.

10Note that these still act with respect to different subspacesH±, resp. H′
± ofH.

187



5. CHIRAL SYMMETRIC PROTOCOLS

piece of a twice decoupled infinite system. Hence, the flow index can only be trivial (see
Theorem 3.3.19).

Denote byN the number of cells in a ring system. Similar to infinite systems, a shift
(with respect to the shift register spanned by φx) is then defined via

Sφx = φx+1 mod N , (5.125)
where incrementing the subscript is taken moduloN to close the ring between theN ’th
and the first cell. As discussed above, we can then locally compute its index, which
evaluates to ind

⇀
(S) = −1. Coin operations act in each cell separately anyhow, such that

no further adjustments are needed.
Let us resume Example 5.6.3 andwrap it onto a ring in order to construct an example

for two locally non-gentle perturbations on the ring.
Example 5.6.7. In the scenario of Example 5.6.3 we identifyN and 0 in order to wrap the system
onto a ring ofN cells. This way, the non-gently perturbedwalk Ũ equals σz at x = N . By Lemma
5.6.5 there exists no F for Ũ . However, let us reverse the line of argument of the infinite example
and start with an F̃ composed of two different bulks, both of which produce the same U when
they are considered individually. Let

S̃↑ =
(
(1⊗ σx)P≤N/2 + P>N

)
S↑
(
(1⊗ σx)P≤N/2 + P>N

)
, (5.126)

which, again, effectively changes the shift fromS↑ toS∗↓ one half of the system. On a ring, however,
this produces two crossovers, one between x = N and x = 1 and the other between x = N/2−1
and x = N/2. In addition to the perturbation at x = N , this introduces another “opposite”
non-gentle perturbation, changing U from iσy to −σz (instead of σz) at x = N/2. We get

Ũ =

N/2−1⊕
x=1

(iσy)
x

⊕ (−σz)N/2 ⊕

 N⊕
x=N/2+1

(iσy)
x

⊕ (σz)
N ≡

iσy

iσy

iσy

iσy

iσy

iσy

iσy

iσy

-σz

σz

x = N
x = 1

x = N/2

.

(5.127)
We can again read off the indices, which evaluate to si±(Ũ) = 0. Thereby, the perturbation at
x = n provides the same contribution to si± as in the previous example, namely ±1, but the
perturbation on the other end of the ring cancels this out via contributing ∓1. This can also be
evaluated via (5.110) and (5.111) with swapped bulks FL and FR compared to Example 5.6.3.

The discussion and example above demonstrate that finite systems on a ring pro-
vide a well suited model to simulate the effects of infinite one-dimensional quantum
walk protocols with chiral symmetry. On the one hand, they exhibit non-trivial infor-
mation flow indices. On the other, while a single non-gentle perturbation of protocols
always stems from a bulk-edge scenario needing two semi-infinite half-chains, the above
demonstrated concept of two opposite non-gentle perturbations allows to simulate a
single non-gentle perturbation on one side of the ring, by simply “forgetting” about the
other side.
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Conclusion and outlook

In this thesis, we provided a topological classification of one-dimensional quantum
walks with discrete symmetries. Thereby, we approached the topic from different per-
spectives and emphasised their respective influence on the classification.

We beganwith a detailed analysis of the possible types of symmetries. Assuming an
arbitrary group of involutive symmetries with continuous action on unitary operators,
we tackled the question of which non-trivial types of symmetries exist for a topolog-
ical classification of unitary operators on discrete spatial structures. We developed a
reduction procedure to identify the non-trivial differences in arbitrarily large but finite
symmetry groups. Thereby, we identified 38 fundamentally different classes. These 38
classes contain and generalise the well-known tenfold way for self-adjoint operators to
the setting of unitary operators, i.e. quantum walks. Aiming for a topological classi-
fication of operators with symmetry protected topological eigenspaces, we defined an
equivalence relation for finite-dimensional representations of these 38 symmetry types.
We showed that the resulting equivalence classes equippedwith the direct sum between
representations naturally form a group: the index group. We concluded the first chapter
with the computation of these groups for all non-trivial symmetry types.

Turning our attention to the actual topological classification of quantum walks, we
took the first perspective and considered quantum walks as single time-step unitaries.
Using the index groups, we defined homotopy invariants for unitaries on discrete spatial
structures that are essentially gapped at the symmetry invariant parts of the spectrum,
the so-called symmetry indices. Using these, we provided a complete classification of
compact symmetric perturbations of admissible unitary operators. This classification
is independent of the underlying spatial structure and therefore applies to any lattice
dimension or any graph with uniformly bounded local cell dimensions that carry a bal-
anced symmetry representation. We thereby generalised our corresponding result from
[CGG+18], which originally only applied to the symmetry types of the tenfold way, to
all 38 symmetry types.

Taking the structure of a one-dimensional lattice into account, while putting the
symmetries to the side for a moment, we added a locality condition to the set of as-
sumptions and detailed a well-known invariant for one-dimensional quantum walks:
the information flow index. This index already provides a complete classification of
unitaries on the line with finite maximal jump-length. We generalised the locality con-
dition arriving at essential locality, which became the standing assumption for the rest of
the thesis. Observing that the information flow index can be expressed as the Fredholm
index of the half-space operator, that is, the operator projected to one half of the lattice,
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we generalised it to the setting of essentially local unitaries on the one-dimensional lat-
tice. Moreover, we showed that also in this merely essentially local setting, this so-called
“right Fredholm index” is complete and, in particular, distinguishes between processes
that are driven continuously in time and the purely discrete setting, in the sense that an
essentially local unitary admits a continuous driving by an essentially local Hamiltonian
if and only if its right Fredholm index is trivial.

An essential technique in proving the completeness of the information flow index
and the right Fredholm index in their respective scenarios was the gentle decoupling
construction, which splits an (essentially) local unitary into two separate unitaries on
the two halves of a one-dimensional system via a gentle and compact perturbation. Tak-
ing the symmetries into account again, we continued investigating the existence of such
gentle decouplings under the presence of symmetries. This led to the definition of the
left and right symmetry indices associated with the two halves of a one-dimensional
symmetric quantum walk. These indices add up to the general symmetry index from
before, are robust with respect to local perturbations, and therefore, depend only on
the semi-infinite halves of the system and not on how the crossover between the two
halves is engineered. This way, they serve as the second ingredient for the so-called
bulk-boundary correspondence, connecting the properties of the two bulks of a one-
dimensional systemwith the finite-dimensional eigenspaces associatedwith the bound-
ary between these bulks. For the symmetry types of the tenfold way, the left and right
symmetry indices are proper homotopy invariants even for merely essentially unitary
essentially local operators on the line. We sketched the proof for the completeness of a
subset of three symmetry indices of quantumwalks that are admissible for a symmetry
type of the tenfold way. In general, i.e. beyond the tenfold way, we could not lift the
left and right symmetry indices to similarly robust invariants. However, we provided a
partial classification and demonstrated that for some cases it is possible to infer part of
the strong invariance properties via tenfold way subtypes of the respective symmetry
types. We discussed this based on three different examples and thereby touched upon
the problems to tackle beyond the tenfold way.

Our second perspective for the topological classification of quantumwalks was that
of driven processes. These are either continuously driven (Floquet) systems or dis-
crete protocols. We first affirmatively answered the long-standing question of whether
every quantum walk with finite jump length on a one-dimensional lattice with finite-
dimensional local cells can be factorised into shift and coin operations with respect to
the given cell structure. We then analysed such protocols in the presence of chiral sym-
metry. For these, we provided a complete classification in terms of five Fredholm type
integer-valued indices depending on the half-step operator.

Moreover, we investigated the conditions for a half-step operator for a chiral sym-
metric quantum walk or a pair of chiral symmetric timeframes to exist in the first place.
Precisely pinning down the differences in the topological classification of different un-
derlying concepts of a quantum walk, we resolved an apparent contradiction between
our topological classification of single time-step quantum walks and other ansatzes in
the literature. We closed the chapter with a discussion on the implications of the theory
for the infinite one-dimensional lattice to finite systems. There, we found that the exis-
tence of a half-step operator is more restricted in finite systems. In particular, no quan-
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tumwalk on a finite-dimensional systemwith a non-gentle perturbation can be realised
via a chiral symmetric protocol. However, opposite pairs of non-gentle perturbations
turned out to be possible, which restores the feasibility of studying such phenomena on
finite-dimensional systems, e.g. via simulation, by only paying attention to a part of the
system.

Outlook
For any thesis, one has to find an end at some point, and this always comes with the
slightly unsatisfactory feeling of leaving open ends behind and untrodden paths in
front. Hence, let us finally comment on a collection of topics we did not discuss and, in
particular, possible further directions of research.

Complete classification of band dominated unitaries
A point we only briefly touched upon in Section 3.3 are band dominated operators.
While the right Fredholm index is a valid homotopy invariant also in this case, it is
to our knowledge not known whether it is complete in that scenario, but, as already
mentioned in Section 3.3 was conjectured in [KKT20a] (see the open question on page
115). Proving this would also guarantee a continuous driving to exist for every band
dominated unitary on the one-dimensional lattice with vanishing right Fredholm index.

Complete classification of unitaries for the 38-fold way
The most apparent open end in Chapter 3 is the complete classification of symmetric
quantum walks with an essential gap for all symmetry types of the 38 fold way. For the
symmetry types of the tenfold way, we saw that the set of symmetry indices (si,⇀sı , si+)
provides such complete classification. In that case, we could express the right symmetry
index for unitary operators as a symmetry index of a correspondingHamiltonian, which
enabled us to generalise it to essentially unitary and essentially local operators, provid-
ing the necessary homotopy stability and deformation freedom for the completeness
proof. Beyond the tenfold way, however, no such direct correspondence exists. To fix
this gap, one has to tackle the general homotopy classification of symmetric essentially
gapped and essentially unitary operators also beyond the tenfold way. Such classifica-
tion might, however, well exceed the considerations in terms of symmetry indices.

Optimal shift-coin sequences for strictly local walks
We left open the question of optimising the shift-coin sequence in Chapter 4. We ap-
proached the topic out of mathematical curiosity and, therefore, only focused on prov-
ing the existence of such a sequence for every strictly local walk. However, minimising
the number of factors would be an important point for algorithmic applications or ex-
perimental realisations that rely on a shift-coin sequence.

Additional symmetries for protocols
In Chapter 5 we focused on chiral symmetry exclusively when we discussed the classifi-
cation of protocols. An obvious extension of the discussion would be to add additional

191



CONCLUSION AND OUTLOOK

symmetries, e.g. like the particle-hole or time-reversal symmetry. For continuously
driven two-dimensional systems, this has been addressed, e.g. in [CDFG15, CDF+15].
The generic example of a quantum walk protocol that cannot be realised by a continu-
ously driven process is the split-step walk. This model is already symmetric with re-
spect to the particle-hole and time-reversal symmetry and the classification in terms of
symmetry indices does not change when these symmetries are added, since the types
AIII and BDI share the same index properties. However, on the protocol level, further
subtleties might enter the classification and, in particular, the existence of a half-step
operator for a given walk included a condition involving the chiral symmetry. The half-
step operator is also singled out by the time-reversal symmetry, such that a classification
in terms of F seems to be feasible also in that case. The decomposition with respect to
the symmetry eigenbasis is, however, not possible without a unitary symmetry. Hence,
a careful investigation of the influence of further symmetries is required.

Higher lattice dimensions
The complete classification of compact perturbations we provided in Section 3.2, does
not assume any locality condition at all. Moreover, in every spatially finite dimension,
every local perturbation is compact. Hence, our classification of compact perturbation is
already valid in any lattice dimension. All our considerations beyond that are concerned
with the one-dimensional lattice. Hence, a direction for generalisation that immediately
comes to mind is to consider quantumwalks on higher dimensional lattices. There exist
a variety examples andmodel systems in that direction in the literature [KRBD10, Kit12,
GP13, RLBL13, CDFG15, CDF+15, AE15, GT18, CDQ+18, SAM+19, MBSO20, AM20].
However, similar to the one-dimensional case, these are often concerned with trans-
lation invariant systems, continuous-time systems, are model driven, or only consider
part of the symmetries from the tenfold way.

One of the phenomena, e.g., in two-dimensional systems, is the appearance of sym-
metry protected edge currents along the edge between two topologically distinct phases
of a two-dimensional material, similar to the quantum Hall effect. The main problem
for tackling such a phenomenonwith the theory presented in this thesis is that it heavily
depends on the finite-dimensional symmetry protected eigenspaces. While this restric-
tion is capable of dealingwith edge states at the boundaries of one-dimensional systems,
an edge current corresponds to the essential part of the spectrum, wherefore we would
have to waive the essential gap assumption.

Another difficulty in directly generalising our results is to properly define the essen-
tial locality condition, which we formulate via compactness of the commutator between
the walk and a half-space projection, on higher dimensional lattices. It is highly depen-
dent on the one-dimensional structure of the lattice, namely on the fact that the edge
between two halves of the system is zero-dimensional. Consider, for example, a two-
dimensional lattice. Then, the edge between two halves is a one-dimensional line, and
even a simple shift in the lattice direction perpendicular to this line shifts an infinite-
dimensional subspace across the edge. Experimenting with different versions of half-
space commutator like conditions, we so far could not develop a reasonable generalisa-
tion of essential locality in terms of commutators.

This concerns the definition of essential locality. Band-dominated operators on the
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other hand do not rely on such a condition bound to one dimension. An operator (on the
one-dimensional lattice) is called band dominated if it is the limit of banded operators,
i.e. ones with strictly finite jump length. Although the operators are not necessarily
“banded” anymore in higher dimensions, limits of finite jump-length operators make
perfect sense also there. So one option would be to just stick with band dominated
unitaries as the definition for quantum walks.

Another possibility would be to tackle the question of locality from a more abstract
point of view, via course structures [Roe03]. It would exceed the scope of this outlook
to define the concept of a coarse structure properly. Hence, we limit this discussion to
only a coarse introduction and some general comments. A coarse structure on a lattice
X can be thought of as a collection of neighbourhoods for allowed interactions, that
is, sets Λi ⊂ X × X of pairs (x, y), which decide whether the interaction term ⟨y,Ax⟩
of an operator A is non-zero or not. The collection of these sets has to be closed un-
der taking subsets, taking inverses ((x, y) 7→ (y, x),∀(x, y) ∈ Λ)), under composition
((x, y) ∈ Λ1, (y, z) ∈ Λ2 → (x, z) ∈ Λ3), and under unions. An operator is said to be
controlled by the coarse structure if its non-trivial interaction terms are contained in a
set Λ. Thereby, the rules guarantee that the multiplication and addition of two local
operators and their adjoints and inverses are again local. In other words, the controlled
operators with respect to a coarse structure form a ∗-algebra. The norm-closure of this
algebra is called the uniform Roe algebra of the coarse structure.

The algebra of band dominated operators corresponds to the uniform Roe algebra of
themetric coarse structure onZ, that is, the controlled sets consist of pairs (x, y) ∈ Z×Z
for which there exists an l ∈ N, such that ∥x − y∥ < l. Operators controlled by this
coarse structure are precisely given by the strictly local operators on the underlying lat-
tice. This works in any lattice dimension, and hence, as mentioned above, there is no
problem of generalisation to higher dimensions. Identifying the appropriate uniform
Roe algebra for essentially local operators helps to generalise the concept to higher di-
mensions. For this, one needs yet another concept of a coarse structure: To every com-
pactificationX (with edge ∂X = X \X) of the underlying latticeX , there corresponds
a so-called topological coarse structure [Roe03]. Roughly speaking, it consists of sets of
pairs (xi, yi) ∈ X × X , such that limxi = lim yi = ω, i.e. {xi} and {yi} have the same
limit point ω ∈ ∂X .

The algebra of essentially local operators on the one-dimensional lattice equals the
uniform Roe algebra of the topological coarse structure corresponding to the two-point
compactification of Z [Sch20]. That is, we distinguish the natural two directions to-
wards infinity on Z. For controlled operators, this means that there are only finitely
many jump terms between the two half-chains for every cut point, which yields our def-
inition of essential locality in the norm-closure of controlled operators. We propose the
spherical compactifications of the underlying lattice Zn (see also [Wil09]) as a reason-
able generalisation so higher lattice dimensions.Note, however, that differently from the
one-dimensional case, the number of directions towards infinity becomes uncountable,
such that a simple Z valued invariant, measuring the direction of net information flow
as in the one-dimensional case becomes unlikely.
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Many-particle systems – quantum cellular automata
Another obvious direction for further researchwhenever quantumwalks are under con-
sideration is the generalisation to their many-particle analogues: Quantum cellular au-
tomata (QCAs). In the strictly local case, these are defined as automorphisms of the
quasilocal algebra corresponding to the lattice system under consideration, with finite
interaction length [SW04]. For these, there exists an analogue of the information flow
index on the one-dimensional lattice [GNVW12]. It is a multiplicative rational number
valued index and can be thought of as the ratio (instead of the difference) of the net in-
formation flow from left to right over right to left. This index is complete, i.e. there exists
a strongly continuous path of automorphisms between twoQCAs on the same cell struc-
ture, if and only if they share the same index. Moreover, a QCA can be decoupled simi-
larly to walks, if and only if it has a trivial index of 1. Recently, this index has been gen-
eralised to weaker notions of locality [RWW20], which couldmake the index applicable
as an invariant describing the edge current in two-dimensional chiral Floquet systems as
described in [PFM+16] (see also the discussion in [RWW20]). The question of local im-
plementability of QCAs with trivial index was also addressed in [WW20]. Beyond that,
several works on the topological classification of QCAs were published in recent years,
including one-dimensional as well as higher dimensional systems with or without sym-
metry [Has13, CPGSV17, ŞSBC18, RHR18, HFH18, SNBV+19, GSSC20, FH20, Haa21].

In two of these works, strictly local QCAs are identified with matrix product uni-
taries (MPUs) [CPGSV17, ŞSBC18]. In [CPGSV17], the authors also consider involu-
tive symmetries of the MPU, which may be identified with some of the symmetries in
the tenfold way, and classify the correspondingMPUswith respect to continuous defor-
mations. These considerations are restricted to strictly local QCAs. It is an interesting
question whether the considerations in [CPGSV17] can be combined with the generali-
sation to weaker locality conditions in [RWW20].

Another possible direction of research is investigating the possibility of decompos-
ing QCA into fundamental building blocks like shift and coin operations, similarly to
the factorisation of quantum walks. Similar to quantum walks, a QCA is locally imple-
mentable if and only if it has a trivial index [GNVW12]. This means that there exist
two subdivisions of the lattice into finite collections of cells, respectively, with respect to
which the QCA can be implemented by successively applying local operations in these
finite blocks (compare (4.22)). A similar construction as in Chapter 4 might be possible
in order to decompose these blocks into fundamental operations, respecting the indi-
vidual cells given from the outset. Such decomposition could then serve as a compiling
step in order to implement a desired QCA in a limited experimental setup.
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A Decoupling conditions for all
symmetry types (proof of Lemma
3.4.9)

Similar to the proof of Lemma 3.4.5, where we established the decoupling onH10⊕H01

for the symmetry types of the tenfold way, we will construct a decoupling unitary V
separately for every type. The decoupling unitary V on H10 ⊕ H01 has to swap the
spacesHij , and therefore must be of the form

V =

(
V10

V10

)
, (A.1)

where we labelled the blocks Vij with the pair {ij} of the respective target space, i.e.
Vij : Hji → Hij . We guarantee that the decoupling is gentle via the condition V 2 = −1,
which implies that the−1-eigenspace is empty. Note that V has to be admissible for the
perturbation type ρ̃, i.e. with respect to ρ̃gV ρ̃∗g = V urg , according to Lemma 3.2.3. In the
following list of symmetry types we therefore already consider the perturbation type ρ̃,
without displaying the twiddle every time.

Similar to the proof of Lemma 3.4.5 we build appropriate bases {χn} and {φn}, with
n = 1, . . . , dij , forH10 andH01, respectively, incorporating the action of the symmetries
via their commutation relations. This way, we get explicit representations of the sym-
metry types, with respect to which we can construct admissible swapping unitaries V .
The relevant dimensions are denoted by

dij = dimHij and d±ij = dim (ker(σ ∓ 1) ∩Hij) . (A.2)
When σ is part of the symmetry type, we chose the bases to be σ-eigenbases and indicate
this via {χ±n } and {φ±n }, with

σχ±n = ±χ±n and σφ±n = ±φ±n . (A.3)
In this basis σ is of the form (3.103) and a decoupling unitary V further decomposes
into blocks as in (3.104). Let us display both again here, for easier reference:

σ =


1d+10

−1d−10
1d+01

−1d−01

 , V =


V +
10

V −10
V +
01

V −01

 . (A.4)
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For each group in the following list, we display the generators in angle brackets.
Note that we choose the generators such that the constructions for the present task are
as simple as possible. Hence, these choices occasionally differ from those in Section 2.3.1,
where we computed the index groups for the (non-perturbation) symmetry types. The
different symmetry types are then indicated via their distinguishing properties. That
is, the value of the commutation character cgh : (g, h) 7→ ±1 on the generators, and the
square of the antiunitary generator.

Group and type 1 (A), ⟨1⟩: Decoupling condition: None.
This is the trivial group with only the trivial symmetry type. The existence of a decou-
pling is guaranteed by the gap condition (see Theorem 3.3.19 and Lemma 3.4.1).

Group and type 2, ⟨σ⟩: Decoupling condition: d±10 = d±01.
We already established the condition for symmetry type 2 in Section 3.4.3.

Group and type 3 (AIII), ⟨γ⟩: Decoupling condition: None.
This group is part of the tenfold way. There always exists a decoupling (see Lemma
3.4.5).

Group 4, ⟨τ⟩: The two types 4 (AI, τ2 = 1) and 5 (AII, τ2 = −1) of this group belong to
the tenfold way. For AI there always exists a decoupling and for AII we need to assume
d10 = 0 mod 2 (see Lemma 3.4.5).

Group 5, ⟨στ ⟩: The two types 6 and 7 of this group are equivalent to the types of group
4 (AI and AII), due to the action of the perturbation symmetry type we consider here
(see Lemma 3.2.3). Hence, no condition is needed for symmetry type 6, whereas we
need to assume d10 = 0 mod 2 for symmetry type 7.

Group 6, ⟨η⟩: The two types 8 (D, η2 = 1) and 9 (C, η2 = −1) for this group belong to
the tenfold way and there always exists a decoupling (see Lemma 3.4.5).

Group 7, ⟨σ, γ⟩:

Type 10, cσγ = 1: Decoupling condition: None.
Because γ is a σ-commuting unitary that swaps theHij , the extra condition d±10 =
d±01 is automatically fulfilled. Choosing a basis with σ as in (A.4) and γ = σx⊗1d10
we find V = iσy ⊗ 1d10 , which is admissible and fulfils V 2 = −1.

Type 11, cσγ = −1: Decoupling condition: d±10 = d±01.
For this type γ anti-commutes with σ, such that the necessary condition d±10 = d±01
is not automatically fulfilled. Assuming it, on the other hand, is sufficient: Let
{χ±n } be a σ-eigenbasis forH10. Since γ swaps theHij , we can define a basis {φ±n }
of H01 via φ±n = γχ∓n . By cγσ = −1 it follows that σφ±n = ±φ±n , i.e. in this basis σ
is again of the form (A.4). We find the same admissible V = iσy ⊗1d10 as for type
10.
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Group 8, ⟨σ, τ⟩:

Type 12, (cστ , τ2) = (1,1): Decoupling condition: None.
Let {χ±n } and {φ±k } be σ-eigenbases for H10 and H01, respectively. Since σ and
τ commute and τ swaps the spaces Hij with τ2 = 1, these can be chosen such
that τχ±n = φ±n and τφ±n = χ±n . Hence, d±10 = d±01 is fulfilled. We can define an
admissible V with V 2 = −1 via V χ±n = φ±n and V φ±n = −χ±n .

Type 13, (cστ , τ2) = (1,−1): Decoupling condition: d±ij = 0 mod 2.
As before, we have d±10 = d±01, because τ leaves invariant the σ-eigenspaces but
swaps the spaces Hij . In the basis introduced in type 12, τ acts as τχ±n = φ±n and
τφ±n = −χ±n . Now, since any V is of the form (A.4), the admissibility condition
for τ forces each of the four blocks Vij of V to fulfil Vij = −V T

ij (compare type 5
(AII) of the tenfold way). This means that the eigenspaces of σ, restricted to the
individual Hij have to be even or, equivalently, a multiple of four on the whole
space (since they are equally distributed between H10 and H01). Assuming this
condition to be met, we can define V χ±2k−1 = φ±2k, V χ±2k = −φ±2k−1, V φ±2k−1 = χ±2k
and V φ±2k = −χ±2k−1, which fulfils the requirements for a gentle decoupling.

Type 14, (cστ , τ2) = (−1,1): Decoupling condition: d±10 = d±01.
We need to assume the condition from type 2, since there is noHij-swapping sym-
metry that leaves invariant the σ-eigenspaces. Assuming d±10 = d±01 = d±, we also
get d+ = d−, because τ swaps the eigenspaces of σ. In the basis chosen above τ
acts as τχ±n = φ∓n and τφ±n = χ∓n . V can then again be chosen as for type 12.

Type 15, (cστ , τ2) = (−1,−1): Decoupling condition: d±10 = d±01.
This type can be treated exactly as type 14, replacing τ by στ , which acts on V and
Hij in the same way.

Group 9, ⟨σ, η⟩: Both, σ and η leave Hij invariant. Hence, d±10 = d±01 is a necessary
condition for all types of this group. Moreover, it is also sufficient in all cases. For all
cases we construct a σ-eigenbasis according to the action of η, respectively.

Type 16, (cση, η2) = (1,1): Decoupling condition: d±10 = d±01.
η leaves invariant the eigenspaces of σ. Hence, we can choose η to be just the
complex conjugation with respect to the σ-eigenbasis. Assuming d±10 = d±01, we
can define V = iσy ⊗ 1d++d− as before.

Type 17, (cση, η2) = (1,−1): Decoupling condition: d±10 = d±01.
This time, η2 = −1 further forces d±ij to be even. We can choose the bases such
that ηζ±2k−1 = −ζ±2k and ηζ±2k = ζ±2k−1, for ζ ∈ {χ, φ}. We again get the admissible
V = iσy ⊗ 1d++d− .

Type 18, (cση, η2) = (−1,1): Decoupling condition: d±10 = d±01.
By cση, we get d+ = d− and we can choose the basis such that ηζ±n = ηζ∓n for
ζ ∈ {χ, φ}. Once again we can choose V = iσy ⊗ 1d++d− .

197



A. DECOUPLING CONDITIONS FOR ALL SYMMETRY TYPES

Type 19, (cση, η2) = (−1,−1): Decoupling condition: d±10 = d±01.
Similar to the equivalence between the types 14 and 15, the considerations for type
19 are equivalent those to type 18, after replacing η by ση

Group10, ⟨γ, η⟩: This group exhibits the symmetry types 20−23 (BDI,CII,CI andDIII),
which are part of the tenfold way (see Lemma 3.4.5).

Group 11, ⟨γ, στ ⟩: This group exhibits the symmetry types 24− 27. Due to the action
of the perturbation symmetry type (see Lemma 3.2.3), these are equivalent to the four
types of the tenfold way (in the same order). However, the symmetry type 27 is special:

Type 27, (cγστ , στ ) = (−1,−1): Decoupling condition: d10 = 0 mod 2.
This symmetry type is equivalent to DIII, but we need to assume dimH10 = 0 mod
2. For type DIII this follows from the fact that the representation on H10 ⊕ H01

is balanced, which is equivalent to the overall dimension being a multiple of four
and hence, dimH10 = 0 mod 2. This is not necessarily true for the symemtry types
beyond the tenfold way (see Lemma 3.4.4). Hence, we cannot use this argument
here but have to assume the condition instead.

Group 12, ⟨σ, γ, η⟩: For the following 8 types, the condition d±10 = d±01 is always guar-
anteed by γ, since σ and γ commute in these cases. Hence, we write d± := d±10 = d±01.

Type 28, (cσγ , cση, cγη, η2) = (1, 1, 1,1): Decoupling condition: None.
We can consider this type as type 10 with an additional symmetry η = K acting
as the complex conjugation. Since the construction for type 10 was real-valued,
nothing changes by adding η.

Type 29, (cσγ , cση, cγη, η2) = (1, 1, 1,−1): Decoupling condition: None.
Again, we consider this type as type 10 and add η, which squares to −1. Since
the representation is still abelian, η leaves invariant all eigenspaces and also the
Hij . Therefore, the dimension of each space is doubled, and η is given by η =
1d++d−⊗iσy. This does not interferewithV from type 10, making it an appropriate
choice also in this case.

Type 30, (cσγ , cση, cγη, η2) = (1, 1,−1,−1): Decoupling condition: None.
Because η commutes with σ and fulfils η2 = −1, d+ and d− are even. Hence, we
can choose a σ-eigenbasis, such that ηχ±2k−1 = −χ±2k and ηχ±2k = χ±2k−1. We then
extend this basis toH01 via φ±n = γχ±n (and vice versa via γ2 = 1), which is again
a σ-eigenbasis with ηφ±2k−1 = φ±2k and ηφ±2k = −φ±2k−1 due to the commutation
relations between the symmetries. With respect to these bases we define V via
V χ±n = (−1)nφ±n and V φ±n = (−1)n−1χ±n for a suitable decoupling.

Type 31, (cσγ , cση, cγη, η2) = (1, 1,−1,1): Decoupling condition: d±ij = 0 mod 2.
We can choose an η-invariant σ-eigenbasis for H10 and extend it to H01 via γ. Be-
cause of cγη = −1, η then acts as −K on H01. That is, we get γ = σx ⊗ 1d10 and
η = (σz ⊗ 1d10)K. The admissibility conditions now force every block Vij of V
(see (A.4)) to fulfil Vij = V ∗ij due to γ and Vij = −Vij due to η. This implies
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Vij = −V T
ij , which can only be realized by a unitary in even dimensions. On the

other hand, assuming d± to be even is sufficient. Indeed, defining the blocks Vij as
V13 = 1d+/2⊗σy, V24 = 1d−/2⊗σy and Vji = −V ∗ij , generates a suitable decoupling
unitary V .

Type 32, (cσγ , cση, cγη, η2) = (1,−1, 1,1): Decoupling condition: None.
Since η swaps the σ-eigenspaces, but leaves invariantHij we get d+ = d−. Hence,
we can choose the basis forH10 with ηχ±n = χ∓n . Extending this basis viaφ±n = γχ±n
gives ηφ±n = φ∓n . Setting V = iσy ⊗1 then provides a suitable decoupling unitary.

Type 33, (cσγ , cση, cγη, η2) = (1,−1, 1,−1): Decoupling condition: None.
This type is quite similar to type 32 above, with the slight adjustments ηχ±n = ∓χ∓n
and ηφ±n = ∓φ∓n . We can still use the same V .

Type 34, (cσγ , cση, cγη, η2) = (1,−1,−1,−1): Decoupling condition: None.
The basis for H10 can be chosen as for type 33, i.e. ηχ±n = ∓χ∓n . The action on φ±n
is then determined by cγη = −1, i.e. ηφ±n = ±φ±n . This gives σ = 12⊗σz ⊗1d with
d± = d, γ = σx ⊗ 12d and η = (σz ⊗ iσy ⊗ 1d)K. A decoupling is then given by
V = iσy ⊗ σz ⊗ 1d.

Type 35, (cσγ , cση, cγη, η2) = (1,−1,−1,1): Decoupling condition: None.
Type 35 relates to 34 as 32 does to 33. Everything stays the same, except η, for
which we get ηχ±n = χ∓n and the same for φ±n . That is, η = (σz ⊗ σx ⊗ 1d)K,
admitting the same V as for 34.

For the remaining eight types, γ swaps the σ-eigenspaces, which gives d±10 = d∓01 instead
of the necessary condition d±10 = d±01. In the following four cases, however, d±10 = d±01 is
fulfilled due to τ , which is swaps theHij and commutes with σ. Hence, we have d±ij = d.
We can therefore fix σ and γ and adjust only η and d to match the conditions of the type.
Hence, in all following cases we chose a σ-eigenbasis, such that φ±10 = γχ∓10 and vice
versa. Assuming the necessary condition d±10 = d±01 = d for the types 40-43, we always
get

σ = 12 ⊗ σz ⊗ 1d and γ = σx ⊗ σx ⊗ 1d. (A.5)

Type 36, (cσγ , cση, cγη, η2) = (−1,−1, 1,1): Decoupling condition: None.
We can choose the basis, such that ηχ±n = χ∓n and φ±n = γχ∓n , which, by cγη = 1,
induces ηφ±n = φ∓n . This gives η = (12 ⊗ σx ⊗ 1d)K and we find the admissible
V = iσy ⊗ 12d.

Type 37, (cσγ , cση, cγη, η2) = (−1,−1, 1,−1): Decoupling condition: d±ij = 0 mod 2.
The only difference to type 36 is η2 = −1. Taking this into account during the basis
construction, we set ηχ±n = ±χ∓n and ηφ±n = ∓φ∓n , i.e. η = (σz⊗ iσy⊗1d)K . Now,
the d× d blocks Vij of any admissible V (which must be of the form (3.104)) have
to fulfil V24 = V ∗13 = −V13 and V42 = V ∗31 = −V31, where the first equalities are due
to γ and the second due to η, respectively. This gives V13 = −V T

31, which is only
possible for even d. Assuming d to be even, we can define V = σx⊗σz⊗(iσy⊗1d/2).
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Type 38, (cσγ , cση, cγη, η2) = (−1,−1,−1,−1): Decoupling condition: None.
The difference to type 37 is cγη = −1, which becomes visible in the action of η on
φ±n . We get ηχ±n = ±χ∓n as before, but ηφ±n = ±φ∓n . Hence, η = (12 ⊗ iσy ⊗ 1d)K
and, once again, V = iσy ⊗ 12d is admissible.

Type 39, (cσγ , cση, cγη, η2) = (−1,−1,−1,1): Decoupling condition: d±ij = 0 mod 2.
By η2 = 1, we can set ηχ±n = χ±n as for type 36. Combining this with cγη = −1
leads to ηφ±n = −φ∓n , i.e. we get η = (σz⊗σx⊗1d)K. Similar to type 37, this forces
the blocks of V = (3.104) to fulfil Vij = −V T

ij and hence, we need d = 0 mod 2.
Assuming this, on the other hand, we can use the same V as for type 37.

In the remaining types, all Hij-swapping symmetries (γ, σγ , τ and στ) anti-commute
with σ. Hence, we need to assume d±10 = d±01 for a decoupling to exist. Doing so, we
again get d±ij = d due to γ and we can choose a basis in which σ and γ are as in (A.5).
In all four cases this assumption is also sufficient:

Type 40, (cσγ , cση, cγη, η2) = (−1, 1, 1,1): Decoupling condition: d±10 = d±01.
We can choose the basis, such that ηχ±n = χ±n and ηφ±n = φ±n . Hence, η = K and
we find the admissible unitary V = iσy ⊗ 12d.

Type 41, (cσγ , cση, cγη, η2) = (−1, 1, 1,−1): Decoupling condition: d±10 = d±01.
The only difference to type 40 is η2 = −1. Hence, d is even andwe get η = 12d⊗iσy,
which allows for the same V .

Type 42, (cσγ , cση, cγη, η2) = (−1, 1,−1,−1): Decoupling condition: d±10 = d±01.
Again, d is even due to η2 = −1. We chose the basis, such that ηχ±2k−1 = −χ±2k and
ηχ±2k = χ±2k−1. Combining cγη = −1 with φ±n = γχ±n then gives ηφ±2k−1 = φ±2k and
ηφ±2k = −φ±2k−1, i.e. η = (σz ⊗ 12 ⊗ (1d/2 ⊗ iσy))K. An admissible V is then given
by V = iσy ⊗ 12 ⊗ (1d/2 ⊗ σz).

Type 43, (cσγ , cση, cγη, η2) = (−1, 1,−1,1): Decoupling condition: d±10 = d±01.
We can choose the basis {χ±n } η-invariant. For {φ±n } this means ηφ±n = −φ±n , due
to cγη = −1 and therefore we get η = (σz ⊗ 12d)K. An admissible V is then given
by V = iσx ⊗ σz ⊗ 1d.
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