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Abstract

In this thesis, we develop phase-field fracture models for simulating fractures in compressible and
incompressible solids. Classical (primal) phase-field fracture models fail due to locking effects. Hence,
we formulate the elasticity part of the phase-field fracture problem in mixed form, avoiding locking.
For the elasticity part in mixed form, we prove inf-sup stability, which allows a stable discretization
with Taylor-Hood elements. We solve the resulting (3 × 3) phase-field fracture problem – a cou-
pled variational inequality system – with a primal-dual active set method. In addition, we develop a
physics-based Schur-type preconditioner for the linear solver to reduce the computational workload.
We confirm the robustness of the new solver for five benchmark tests. Finally, we compare numer-
ical simulations to experimental data analyzing fractures in punctured strips of ethylene propylene
diene monomer rubber (EPDM) stretched until total failure to check the applicability on a real-world
problem in nearly incompressible solids. Similar behavior of measurement data and the numerically
computed quantities of interest validate the newly developed quasi-static phase-field fracture model
in mixed form.

Keywords: incompressibility, mixed finite elements, phase-field fracture modeling, rubber-like ma-
terials, Schur preconditioning
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Chapter 1

Introduction

Many industrial applications crucially depend on the predictability of material behavior. Nearly
incompressible solids, as rubber-like materials, are used in many industry sectors and are of interest in
various sciences, i.e., engineering [95, 164] or medicine [96, 152]. Differences in temperature, external
forces and internal failures are factors that can ultimately force the material to crack – a process
whose understanding and simulation is an ongoing and highly relevant topic in engineering sciences
and numerical mathematics.
Within fracture mechanics, the classical (primal) phase-field fracture model [72, 35] is a well-established
approach for simulating crack propagation. Still, a reliable numerical simulation often is challenging.
Numerical simulations of cracks in nearly incompressible and incompressible solids on the basis of
the phase-field fracture model pose an additional challenge. The formulation leads to a coupled
variational inequality system (CVIS) – a nonlinear system of partial differential equations whose
inequality constraint must be solved carefully. Additionally, the particular property of incompressible
solids does not allow standard models. Employing a non-standard mixed problem formulation results
in solving an expensive (3 × 3) system, thereby increasing the computational workload concerning
memory and run-time, thus the computational cost. Therefore, the need for developing a problem-
specific parallel solver, preconditioned for efficiency, presents another challenge.
In this thesis, we develop phase-field fracture models for simulating fractures in compressible and in-
compressible solids. We formulate the well-known primal quasi-static phase-field fracture model with
elasticity equations in mixed form, avoiding volume-locking. The elasticity problem in mixed form is
inf-sup stable on a continuous level, allowing a stable finite element discretization with Taylor-Hood
elements. The newly developed phase-field fracture model can be used for simulating fractures for the
range from compressible to incompressible solids. In order to solve the resulting CVIS, we transfer a
primal-dual active set method from Heister et al. [87] to the mixed phase-field fracture formulation.
We derive a physics-based Schur-type preconditioner for the linear solver, chosen to allow for robust
and efficient solving. As an iterative linear solver, we use the generalized minimal residual method
(GMRES). Further on, we test our solver against five benchmark examples in two spatial dimensions
up to the incompressible limit. We compare numerical results to experimental data observing fractures
in punctured strips of nearly incompressible ethylene propylene diene monomer rubber (EPDM) to
check the applicability of the mixed model to a real-world problem. For the experiments and mea-
surement data, we collaborated with Deutsches Institut für Kautschuktechnologie e.V. (DIK), whose
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research focuses on rubber-like materials. The experimental data allows us to evaluate the performance
of the newly developed mixed model and, at the same time to point out both possible challenges and
opportunities.

In the following, we embed the topic of the thesis into the current state-of-the-art of modeling, nu-
merical solving, and validation with the help of experimental measurement data. We start with the
beginning of phase-field fracture modeling and end looking at the available experimental data to
progressively assemble the key research questions.

At the beginning of the 20th century, Griffith [81] developed an energetic approach for brittle fracture.
His work is regarded as the basis of the modern linear elastic fracture mechanics theory. According
to Griffith, a crack propagates when the reduction in potential energy due to crack growth is greater
or equal to the increase in surface energy [194]. We can apply his concept to elastic materials that
fracture in a brittle fashion. Francfort and Marigo [72], in 1998, formulated Griffith’s concept as a
handier energy functional depending on a sharp crack C. The resulting functional describes the energy
of a crack in an elastic medium.
From a numerical point of view, we still have an intractable problem since we do not know the location
of the sharp crack. Thanks to Bourdin et al. [35], and the idea of a diffusive approach for fractures,
we can work with a regularized energy functional. Instead of a sharp crack C, we get a smoothed
indicator function ϕ : Ω→ [0, 1], a length scale ε of the crack width, and a regularization parameter.
A rough idea of the indicator function generally known as the phase-field function ϕ is depicted in
Figure 1.1.

ϕ

x

sharp crack C

•
transition zone

0

1

2ε

ε ε

Figure 1.1: A smooth indicator function called phase-field ϕ, here depicted over a one-dimensional cracked domain.
The sharp crack C is approximated with a diffusive crack of bandwidth ε.

Kuhn and Müller [112] introduced the name ‘phase-field modeling’ for a variational approach of the
regularized energy functional. The method is applied in numerous studies in the calculus of variations,
numerical analysis, and computational engineering. Detailed overviews on phase-field fracture mod-
eling from mechanical and mathematical perspectives are given by Ambati et al. [4], Wu et al. [192],
Bourdin and Francfort [34], and Wick [184]. They agree that quasi-static brittle phase-field fracture is
a well-established approach to simulate complex crack phenomena, unknown cracks, crack nucleation,
branching, and merging. A further positive aspect of phase-field modeling is the relatively simple
realization in three dimensions. However, fractures are discontinuities in the displacement field. The
smeared crack surface is one of the disadvantages of phase-field fracture modeling, especially in the
crack tip: we need a reasonable resolution of the crack area for accurate results and a proper stress
intensity representation. At this point, mesh refinement strategies (pure refinement strategies or error
estimators) become relevant for reducing numerical simulations’ computational cost. Further, adaptive
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mesh refinement can significantly improve the quality of the numerical solution. We use an efficient
refinement strategy from Heister et al. [87, 88] and manufactured geometric refinement for specific sta-
tionary tests. In this context, having an error estimator and localized crack tip mesh refinement would
be even more beneficial. We developed a residual-based error estimator for the primal quasi-static
phase-field variational inequality in [124], also used by Basava et al. [22].
Concerning the discretization of phase-field fracture problems, we establish the Galerkin finite element
method [35]. We use a mesh of quadrilaterals and bilinear or biquadratic H1-conforming finite ele-
ments. Alternatively, Borden et al. [30] first used an isogeometric analysis discretization, and recently,
Goswami et al. [80] employed a physics-informed neural network.
Back to the underlying regularized energy functional, mainly in the context of phase-field fracture
problems, the Ambrosio-Tortorelli functionals [5, 6] with a linear or quadratic energy degradation
function (named AT1 or AT2, respectively) are considered. Wu [189, 190] and Wu and Nguyen [191]
suggested a unified phase-field theory for damage and quasi-brittle failure with different softening laws.
In contrast to the Ambrosio-Tortorelli functionals AT1 and AT2, in Wu’s model, the phase-field regu-
larization arises in a linear and a quadratic term. We propose the three mentioned energy functionals
and discuss differences substantiated with numerical studies. With the notion of Γ-convergence, we
can show for the AT2 functional under certain conditions on the regularization parameters that the
regularized phase-field functional converges towards the non-regularized functional from Francfort and
Marigo [72]. We retrace the proof of Γ-convergence in 1d according to Braides [40, 41] and present
numerical studies on the impact of the regularization parameters for a well-known benchmark test. For
the proof of Γ-convergence in higher dimensions and pressurized fractures, we refer to Sommer [157].
Another more mechanical tool is the chosen splitting approach of the Cauchy stress tensor arising in
all energy functionals to distinguish between fracture behavior in tension and compression [4]. A com-
monly used approach is based on a spectral decomposition given by Miehe et al. [130]. Amor et al. [7]
derive a volumetric-deviatoric decomposition of the elastic energy density. This thesis investigates the
two well-known approaches according to Miehe et al. [130] and Amor et al. [7]. Based on the proposed
modeling, we pass on to the numerical solving.
From a computational perspective, based on the considered energy functional, we have to solve a
minimization problem. We propose a first-order optimality system that yields the Euler-Lagrange
equations by minimizing the energy functional, which we have to solve numerically. As a solution, we
achieve stationary points of the energy functional.
According to Griffith’s law [81], we assume that cracks are irreversible, which means they cannot
heal. The crack irreversibility condition is an additional time-dependent constraint on the phase-field
variable yielding a CVIS. Several nonlinear solvers for the inequality constraint exist in the field of
phase-field fracture. A relatively simple approach concerning implementation is penalization, which
may suffer from ill-conditioning and slow convergence, e.g., Artina et al. [12]. Augmented Lagrangian
methods, e.g., presented by Wheeler et al. [176] and Wick [181] are closely related to penalization.
Miehe et al. [132, 130] proposed a history field [98] to realize the irreversibility constraint. Another
method derived from contact problems is proposed by Mang et al. [128, 124]. The idea is to use a
complementarity system and fix the constraint nodes embedded in the discrete system. We use a
primal-dual active set method from Heister et al. [87] to handle the inequality constraint. An active
set method is attractive since no adjustment of additional parameters is necessary, and it can be
interpreted as a semi-smooth Newton method yielding fast convergence of the solver [87].
In this thesis, we concentrate on the fracture behavior of rubber-like materials and the modeling of
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their incompressibility property. Incompressible solids do not change their volume under pressure.
Mathematically, this property leads to an ill-conditioned system because of a large material param-
eter. If the considered solid is nearly incompressible, i.e., ethylene propylene diene monomer rubber
(EPDM), solving the primal Euler-Lagrange equations fails due to volume locking effects. Locking in
finite element simulations results in underestimated solid displacements yielding unreliable solutions.
References on phase-field fracture and rubber-like materials are given for rate-dependent phase-field
damage models, e.g., Loew et al. [119, 120], and Faye et al. [68] for mass sink models from Volohk [172].
Three options to overcome the problem of locking effects in (nearly) incompressible solids could be
a Discontinuous Galerkin method, proposed by Cockburn et al. [57], Wihler [187], and Hansbo and
Larson [84], higher-order methods, or mixed methods. We avoid locking effects with the help of the
elasticity equation in mixed form, similarly to Braess [39] for saddle point problems with a penalty
term: we split the pure elasticity problem into a mixed system by introducing a Lagrange parameter,
namely pressure [128]. Using a mixed form embedded in the phase-field fracture problem is new
and yields a partial differential equations (PDE) system with three instead of two unknown solution
variables. It allows simulating fractures in compressible, nearly incompressible, and incompressible
solids. Fulfilling a continuous inf-sup condition allows a discrete inf-sup condition for problem stability.
We choose the discrete space for the displacement one order higher than for the introduced pressure
variable. Via Taylor-Hood elements, we achieve a stable discretization of the displacement-pressure
system, achieving a unique numerical solution. The mixed phase-field fracture problem formulation is
a (3× 3) system, which increases the computational workload significantly. Efficient iterative solving
and preconditioning become indispensable.
Since the 1990s, multilevel, geometric, and especially algebraic multigrid methods (AMG) have gained
importance [160] in efficient linear solving. Farrell and Maurini [67] proposed a nonlinear Gauss-
Seidel scheme with a Schur-complement preconditioner for elasticity problems. Heister and Wick [88]
derived a block-diagonal algebraic multigrid for solving the linear system. Recent works on geometric
multigrid, which enable solving the problem in parallel and matrix-free, are given by Jodlbauer et
al. [99, 98]. Further, Liu et al. [118] proposed a preconditioned conjugate gradient-based multigrid
method for heterogeneous materials in 3d. In the mentioned works, efficient preconditioning for
compressible solids is considered.
To the best of the author’s knowledge, no robust parallel linear solver for phase-field fracture in mixed
form is available in the literature. This thesis develops a robust and efficient Schur-type preconditioner
for the three-component phase-field fracture model. Apart from modeling and numerical solving, we
aim to simulate fractures in compressible up to incompressible solids, extending phase-field fracture
modeling.
In the recent past, many authors contributed improving the understanding of the fatigue behavior of
elastomeric (nearly incompressible) materials with phase-field fracture: Kumar et al. [114] discussed
a phase-transition theory to model cavitation and healing phenomena for Gent-Park experiments
with polydimethylsiloxane containing glass beads. Talamini et al. [162] applied their fracture model
to crack propagation experiments of styrene butadiene rubber of the model presented by Hocine et
al. [94]. Li and Bouklas [117] proposed a variational phase-field model based on a mechanical network
model for polydisperse elastomers combined with phase-field fracture modeling for large deformations.
Classical approaches to simulate the crack growth are based on energetic failure criteria using the
virtual crack extension method by Charrier et al. [51] or the crack tip closure method by Timbrell et
al. [166]. Similar approaches consider cohesive elements, e.g., Kaliske et al. [100] for an application
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using inelastic cohesive models.
We collaborated with the DIK within the department ‘Simulation and Continuum Mechanics’ to
validate our newly developed phase-field fracture model with a real-world fracture phenomenon. They
conducted experiments and systematic parameter identification on punctured EPDM strips with the
help of digital image correlation [127, 123]. EPDM is a nearly incompressible solid matching our new
mixed model related to this property. As quantities of interest, we evaluate the crack paths, load-
displacement curves, the maximal loading force, and the traverse displacements, which are available
from the qualitative experimental measurements.
In summary, the three significant novelties of this thesis are the following:

• Chapter 5: We develop a stable quasi-static phase-field fracture model in mixed form for com-
pressible and incompressible solids;

• Chapter 6: We derive a robust and efficient physics-based Schur-type preconditioner for the
phase-field fracture model from Chapter 5;

• Chapter 7: We validate the phase-field fracture model from Chapter 5 with the help of simulating
fractures in punctured EPDM strips and comparing the results with experimental data.

The implementation is derived from Example 8 of the instationary PDE Examples in DOpElib [62, 79],
and from the parallel-adaptive open-source framework pfm-cracks [89], which is based on the deal.II
finite element library [9, 18]. DOpElib and deal.II are sustainable open-source software libraries.

The thesis’ outline is given in the following:
Chapter 2: Preliminaries
We introduce the basic notation and define finite element spaces. Required key results from functional
analysis are given in Section 2.3. We list used symbols and abbreviations in Section 2.4.

Chapter 3: Discretization
In Chapter 3, the numerical discretization of the mixed phase-field fracture problem is described in-
tentionally before the modeling Chapters 4 and 5. We start with a linear-in-time extrapolation in the
phase-field variable ϕ to ‘convexify’ the equations. Then, we explain the overall solution algorithm: a
primal-dual active set method realizes the irreversibility constraint with a two-staged Newton method.
A stable discretization in space with Taylor-Hood elements is given in Section 3.2.3. In the last section,
we present the used adaptive mesh refinement strategies and available alternatives.

Chapter 4: Phase-field fracture modeling & simulations
Starting from Griffith’s concept of fracture mechanics [81], we give a brief introduction to the phase-
field approach and the first energy formulation from Francfort and Marigo [72]. Section 4.2 derives the
Euler-Lagrange equations from the energy minimization problem, where we embed the irreversibility
constraint in the function space of the phase-field function ϕ. The proof of Γ-convergence of the
variational phase-field fracture model (in 1d) links to Francfort and Marigo and Griffith’s concept for
a crack width ε → 0. In Section 4.6, we give the definitions of three energy functionals. Further, in
Section 4.7, we propose two well-known stress splitting approaches. The subsequent sections present
numerical studies based on the primal model where we investigate the impact of different energy func-
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tionals and stress splitting approaches for well-known academic examples.

Chapter 5: Modeling & simulations for incompressible solids
Considering incompressible solids and using the primal phase-field fracture model leads to the problem
of locking effects explained in Section 5.1. We derive a phase-field fracture model with the elasticity
part of the problem in mixed form to overcome locking. We prove well-posedness and an inf-sup
condition on the continuous level yielding a stable mixed formulation of the displacement-pressure
system. For the stable problem, we formulate a stable discrete problem with Taylor-Hood elements
from Chapter 3. The subsequent sections present numerical studies concerning locking effects and
the first numerical tests for simulating crack propagation based on the newly developed model. The
last section discusses and justifies a model modification we implemented to achieve a realistic pressure
solution.

Chapter 6: Efficient & robust linear solver
For efficient and parallel solving of the new phase-field fracture model for incompressible solids, we de-
velop in Chapter 6 a physics-based Schur-type block preconditioner and investigate numerical studies
based on five numerical examples. We confirm the robustness of the solver for specific tests. Further,
we point out and discuss the sensitivity of the solver concerning the parameters’ limit in Section 6.3.

Chapter 7: Simulating fractures in punctured EPDM strips
In Chapter 7 we compare experimental and numerical results considering crack propagation in punc-
tured EPDM strips that are elongated until total failure. In the first two sections, we investigate the
material compounding at the DIK, the mechanical properties, and the parameter identification. A
detailed comparison of numerical results and available experimental data for five test setups follows.
We address the most critical challenges to simulate cracks in punctured rubber-like strips. Inclusions
play a particular role, and we discuss the crack paths’ dependency on the underlying energy functional
and the chosen stress splitting in Section 7.5.

Chapter 8: Conclusions & outlook
We conclude the thesis with a recapitulation of the presented results and give ideas for future tasks
established from findings and challenges within the thesis.

Some results of the thesis at hand have been published in peer-reviewed journals, conference pro-
ceedings, or are recently submitted: [123, 128, 124, 69, 125, 153, 127, 22, 126]. References to own
publications are marked with an extra footnote at the beginning of the respective section.



Chapter 2

Preliminaries

This chapter contains the basic notation and preliminaries used throughout the thesis. In Section 2.1,
function spaces are defined, including a short outline of Hilbert and Sobolev spaces, norms, and bilinear
forms. Definitions of finite element spaces are given in Section 2.2. The most important symbols and
abbreviations are listed in Section 2.4.

2.1 Basic notation

We emanate from an open and bounded two-dimensional domain Ω ⊂ R2 with a boundary ∂Ω, which
can be decomposed of Dirichlet and Neumann boundaries, ∂ΩD and ∂ΩN , respectively. The outer
normal of ∂Ω is denoted by n [178]. On Ω, we denote the space of continuous functions by C(Ω), and
continuously differentiable functions by C1(Ω).

The Frobenius scalar product of two matrices A,B ∈ Rn×n of the same dimension is defined as

(A : B) :=
n∑
i=1

n∑
j=1

aijbij .

The maximum or minimum of two values is denoted by max{., .} or min{., .}, respectively. We define
the trace operator of a symmetric matrix A ∈ Rn×n to be

trA :=
n∑
j=1

Ajj = (A : 1) =
n∑
j=1

λj ,

where 1 denotes the n-dimensional identity matrix, and λj are the eigenvalues of the matrix A. The
transpose of a quadratic matrix A is AT , the inverse is denoted as A−1. For sufficiently smooth
functions, we use the gradient operator (∇), the divergence operator (∇ · u) and the Laplace operator
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(∆) defined by

∇p :=
d∑
j=1

∂p

∂xj
ej = (∂1u, . . . , ∂du)T , ∇u :=

d∑
i,j=1

∂u

∂xi
ei ⊗ ej ,

∇ · u :=
d∑
j=1

∂uj
∂xj

= tr∇u, ∆u = ∇ · (∇u) :=
d∑
j=1

∂2u

∂x2
j

,

for a scalar-valued function p : Ω → R, and a vector-valued function u : Ω → Rd, where d = 2 in the
frame of this thesis. The symbol ⊗ denotes the tensor product of two unit vectors ei and ej ∈ Rd.

The standard Lebesgue space of measurable functions u : Ω → R is defined as Lp(Ω), 1 ≤ p ≤ ∞,
which is Lebesgue-integrable to the p-th power. The space Lp(Ω) forms a Banach space with the
norm ‖u‖Lp(Ω). A Banach space is a complete and normed space. Complete means that we have a
normed space, and all Cauchy sequences converge with their limits in the same space. Sobolev spaces
are commonly denoted as Wm,p(Ω),m ∈ N, 1 ≤ p ≤ ∞, containing functions with distributional
derivatives of order up to m belonging to Lp(Ω) [177]. For p = 2, Hilbert spaces are defined as
H2(Ω) := Wm,2(Ω) with the norm ‖ · ‖H2(Ω) [188]. All functions in Wm,p(Ω) with zero traces on the
boundary ∂Ω are denoted as Wm,p

0 (Ω).

As one of the most important spaces we define the space L2(Ω) as

L2(Ω) := {u : Ω→ R2 is Lebesgue measurable |
∫

Ω
u2 dx <∞}. (2.1)

The space L2(Ω) contains all square-integrable functions, and as a complete space it is a Banach space.
For functions u, v ∈ L2(Ω), by

(u, v) :=
∫

Ω
u v dx,

the standard Euclidean L2(Ω) scalar-product is denoted. For tensor-valued functions U, V ∈ (L2(Ω))2×2,
it holds

(U, V ) :=
∫

Ω
(U : V ) dx.

Further, L2(Ω) is a Hilbert space with the associated norm

‖ · ‖V =
√

(u, u) =
(∫

Ω
|u(x)|2 dx

) 1
2

.

Further, we define the space

L∞(Ω) := {a : Ω→ Rd : ‖a‖∞ <∞},
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with the norm

‖a‖∞ := ess sup
x∈Ω
|a(x)|.

We define the Sobolev space H1
0 (Ω) consisting of (weakly) differentiable functions which vanish on the

Dirichlet boundary:

H1
0 (Ω) := {u ∈ H1(Ω) | u = 0 on ΓD ⊂ ∂Ω}, (2.2)

with

H1(Ω) := {u ∈ L2(Ω) | ∇u ∈ [L2(Ω)]2}, (2.3)

and the scalar product

(u, v)H1(Ω) =
∫

Ω
uv dx+

∫
Ω
∇u∇v dx.

The corresponding norm is defined as

‖u‖H1(Ω) := ((u, u)Ω + (∇u,∇u)Ω)
1
2 .

Together it leads to the definition of the Hilbert space
(
H1(Ω), ‖ · ‖H1(Ω)

)
. The corresponding vector-

valued function spaces for d = 2 are denoted by H1(Ω;R2) = H1(Ω) × H1(Ω). The H1(Ω) dual
parings are denoted as (u, v)−1,1. For further details on Lebesgue and Sobolev spaces, we refer, e.g.,
to [188, 1].
Preparatory for the Galerkin finite element method, we define a bilinear form [28].

Definition 1 (Bilinear form). Let V be a linear space over R. A map a : V × V → R is said to be a
bilinear form on V , if for every β, γ ∈ R and every u, v, w ∈ V , it holds

a(u, βv + γw) = βa(u, v) + γa(u,w),
a(βu+ γv, w) = βa(u,w) + γa(v, w).

A bilinear form a(u, v) is said to be symmetric if a(u, v) = a(v, u). The associated norm ‖ · ‖a of the
scalar product is defined by

‖u‖a := ((u, u)V ) 1
2 ∀v ∈ V.

2.2 Finite element spaces
In this thesis, we employ a Galerkin finite element discretization method in space. Basic literature on
finite elements can be found, e.g., in [39, 43, 53]. First, we define a finite element.

Definition 2 (Finite element (K,Q,Ψ) according to Ciarlet [53]). We decompose Ω into a discrete
mesh Th = {K1,K2, . . . ,KN} with mesh size h. For a cell K ∈ Th we define the finite element triple
(K,Q,Ψ) consisting of
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1. subdomains K ∈ Th,

2. a finite-dimensional space Q of functions on Th, which are the shape functions,

3. and a set of linearly independent functionals Ψ on Q, which are the degrees of freedom (dof).

In this thesis, we partition the domain into regular quadrilaterals Ki, i = 1, . . . , N . The cells K ∈ Th
are disjoint and cover the whole domain Ω. We assume having a regular mesh. For adaptive meshes
we allow one hanging node at each edge of cells. Instead of exact integrating, numerical quadrature
approximates the integrals over all dofs on each cell K. We use the Gauss-Legendre quadrature
using roots of the normalized Legendre polynomials [98]. The integrals are evaluated only on a
master element K0 = (0, 1)2 and mapped to a particular element K with a bilinear transformation
T : K0 → K. We define two continuous H1-conforming finite element spaces [43, 53] as

Qc1 := {uh ∈ C(Ω̄) ∩ L2
0(Ω);uh|K ∈ Q1(K) ∀K ∈ Th} ⊆ H1(Ω), (2.4)

Qc2 := {uh ∈ C(Ω̄) ∩H1
0 (Ω);uh|K ∈ Q2(K) ∀K ∈ Th} ⊆ H1(Ω), (2.5)

where Qp, p = 1, 2 denotes the space of polynomial-like functions of degree p on each cell K ∈ Th. On
the reference cell K0, the space Qp(K0) is defined as

Qp(K0) :=

span
d∏
j=1

x
αj

j , 0 ≤ αj ≤ p

 .

With the help of a transformation mapping T : K0 → K, we can define Qc2 and Qc1 elements on a cell
K as

Qc1(K) :=
{
q ◦ T−1 : q ∈ span {1, x, y, xy}

}
,

Qc2(K) :=
{
q ◦ T−1 : q ∈ span {1, x, y, xy, x2, y2, x2y, y2x, x2y2}

}
.

The dimension of the space Qp is (p + 1)d, yielding dimension four for Qc1 elements and dimension
nine for Qc2 elements. For visualization, see Figure 2.1.

• •

••
Qc1 Qc1 •

• • • •

•

•••

• • ••

•

•

•

•

Qc2 Qc2

Figure 2.1: Left: conforming quadrilateral elements of the type Qc
1 defined in Equation (2.4) with four dof per cell.

Right: conforming quadrilateral elements of the type Qc
2 defined in Equation (2.5) with nine dof per cell.

In the frame of this thesis, bilinear and biquadratic H1-conforming elements are used to discretize
a vector-valued function u (displacements), a scalar-valued pressure p, and a scalar-valued phase-
field ϕ. For the coupled pair (u, p) we use well-known finite elements, namely Taylor-Hood elements
Qc2Q

c
1, which fulfill an inf-sup condition (stability estimate) on the discrete level; see Section 5.3 for
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the well-posedness of the proposed problem and a proof of inf-sup stability on the continuous level.
Taylor-Hood elements are commonly used for the finite element discretization of the Navier-Stokes
equations, where the space of the velocities has a higher degree than the pressure polynomial. Bi-
quadratic shape functions (Qc2) are employed for the two-dimensional displacement field u and bilinear
shape functions (Qc1) for a pressure variable p. For the phase-field, bilinear shape functions (Qc1) are
used.

2.3 Tools from functional analysis
Let V be a Hilbert space with norm ‖ · ‖V . We consider a variational problem formulation of the
following form:
Find u ∈ V such that

a(u, ψ) = l(ψ) ∀ψ ∈ V. (2.6)

For the Lax-Milgram lemma, and Céa’s lemma, the following three properties are required for a
variational form of Equation (2.6):

• The right hand side l(·) is a bounded linear form:

∃ c > 0 : |l(u)| ≤ c‖u‖V ∀u ∈ V. (2.7)

• The bilinear form a(·, ·) is continuous on V × V :

∃ γ > 0 : |a(u, v)| ≤ γ‖u‖V ‖v‖V ∀u, v ∈ V. (2.8)

• a(·, ·) is coercive (or V -elliptic):

∃ δ > 0 : a(u, u) ≥ δ‖u‖2V ∀u ∈ V. (2.9)

Lemma 1 (Lax-Milgram according to Ern and Guermond [65]). Let a(·, ·) : V ×V → R be a continuous
and V -elliptic bilinear form. Then for each l ∈ V ∗ (dual space of V ) the variational problem

a(u, ψ) = l(ψ) ∀ψ ∈ V,

has a unique solution u ∈ V . Moreover, we have the stability estimate

‖u‖V ≤
1
α
‖l‖V ∗ = 1

α
sup
ψ 6=0

|l(ψ)|
‖ψ‖V

,

where α > 0.

Remark 1 (Lax-Milgram for linear PDEs). The Lax-Milgram lemma yields existence and uniqueness
of solutions to linear partial differential equations (PDE) plus a first stability estimate. The fully-
coupled phase-field fracture problem with stress splitting is a non-linear problem. If we decouple the
elasticity and phase-field problem, Lax-Milgram can be applied as presented in Section 5.1.



12 CHAPTER 2. PRELIMINARIES

Lemma 2 (Céa’s lemma according to Brenner and Scott [43]). Let V be a Hilbert space with norm ‖ ·
‖V , and Vh ⊂ V be a finite dimensional subspace. Let the three assumptions from Equations (2.7), (2.8),
and (2.9) hold true. Let u ∈ V and uh ∈ Vh be the solution of the variational problem

a(u, ψ) = l(ψ) ∀ψ ∈ V.

Then it holds

‖u− uh‖V = γ

α
inf

ψh∈Vh

‖u− ψh‖V ,

with α, γ > 0.

Céa’s lemma shows that the discrete solution uh is quasi-optimal in the sense that the error ‖u−uh‖V
is proportional to the best it can be using the subspace Vh.

Lemma 3 (Cauchy-Schwarz inequality). A special form of Hölder’s inequality for f, g ∈ L2(Ω) states
that

‖fg‖L1(Ω) ≤ ‖f‖L2(Ω)‖g‖L2(Ω).

Lemma 4 (Inequality used in Chapter 5). We will use the following relation:

r ≤ s2

r
+ t ⇒ r ≤ s+ t for r, s, t ∈ R+.

Proof We show that if r > s+ t it follows r > s2

r + t. Let r > s+ t

⇒ r − t > s ⇒ 1 > s

r − t
⇒ r > s · s

r − t
+ t = s2

r − t
+ t >

s2

r
+ t for r, s, t ∈ R+.

�

For standard literature on functional analysis we refer, e.g., to [2, 109, 175, 195].

2.4 Symbols and abbreviations
The used symbols and abbreviations are listed in the following Tables 2.1 and 2.2.
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Symbol description
Ω two-dimensional domain
∂Ω surface of the domain Ω
Ω̄ closure of domain Ω
Γ boundary of Ω
1 two-dimensional identity matrix
V function space H1

0 (Ω;R2)
W function space H1(Ω)
K convex subset of W, K := {ϕn ∈ W |ϕn − ϕn−1 ≤ 0 a.e. in Ω}
U function space L2(Ω)
(U, V ) Frobenius scalar product of two matrices U and V
(u, v) L2 scalar product of two functions u, v
a(·, ·) bilinear form
tr() trace operator
‖.‖n Sobolev-norm of order n
d spatial dimension
max{·, ·} maximum function
sup, inf supremum/infimum function
t loading time in incremental problems, unit s
C one-dimensional fracture/crack, unit m
l crack length
l0 initial crack length
I time/loading interval, unit s
T end time of loading interval I, unit s
n index of incremental step
δt incremental step size
Th discrete mesh of domain Ω
h spatial discretization parameter/cell diameter, unit m
u vector-valued displacement field with components ux and uy

uD continuation of the Dirichlet data of u
∇u gradient of displacements u : Ω→ R2

∆u Laplacian of displacements u : Ω→ R2

σ(u) Cauchy stress tensor
Elin(u) linearized strain tensor
ρ pressure quantity for pressurized fractures, unit Pa
ϕ continuous phase-field function between 0 and 1
ϕ0 initial value for phase-field function ϕ
∂tϕ time derivative of phase-field ϕ
τ Lagrange multiplier
U total solution vector for (u, ϕ)T or (u, p, ϕ)T

κ regularization parameter of the bulk term
ε regularization of the crack, unit m
g(ϕ) degradation function of bulk term
GC critical energy release rate, material dependent, unit N/mm
E Young’s modulus, unit MPa
K bulk modulus, unit MPa
λ, µ Lamé coefficients, material dependent, unit N/mm2

ν Poisson’s ratio
H1 1-dimensional Hausdorff measure
ES(C) crack surface energy
ET (u,C) total energy

Table 2.1: List of the most important used symbols.
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Abbreviation description
1d, 2d, 3d one, two or three dimensional in space
AS primal-dual active set method
AT1, AT2 Ambrosio-Tortorelli functionals
AMG algebraic multigrid method
COD crack opening displacement
CG conjugate gradients method
CPU central processing unit
CVIS coupled variational inequality system
deal.II C++ finite element library (Differential Equations Analysis Library)
DIC digital image correlation
DIK Deutsches Institut für Kautschuktechnologie e. V., Hannover
dof degrees of freedom
DOpElib C++ package - Differential Equations and Optimization Environment library
EPDM ethylene propylene diene monomer rubber
FE finite element
FEM finite element method
GMRES generalized minimal residual method
LBB Ladyzhenskaya–Babuška–Brezzi condition
ML Multi Level preconditioning package of Trilinos
PDE partial differential equations
SI International System of Units
TCV total crack volume

Table 2.2: List of abbreviations.

Conclusions of the chapter
Further theorems and lemmas are given in the thesis, where they are discussed or proven. Based on the
given notation, the next chapter describes the discretization of the CVIS derived in later Chapters 4
and 5.



Chapter 3

Discretization

In this chapter, we explain the discretization of the Euler-Lagrange equations derived in Chapter 4.
Further, in Chapter 5, the elasticity part of the phase-field fracture problem is formulated in mixed
form, which leads to a coupled variational inequality system (CVIS) with three unknowns. Since the
following two chapters on modeling contain first numerical results, the discretization of the primal
(Chapter 4) and the mixed phase-field fracture problem (Chapter 5) is the subject of this chapter.
We consider the following (later derived) primal problem formulation for pressurized fractures from
Chapter 4:

Formulation 1 (Primal phase-field fracture problem, pressure driven).
Let a pressure ρ ∈ L∞(Ω) be given. Find a vector-valued displacement function u ∈ V + {uD}, where
uD is a continuation of the Dirichlet data, and a phase-field function ϕ ∈ K := {ϕn ∈ W |ϕn−ϕn−1 ≤
0 a.e. in Ω}, such that (

g(ϕ)σ(u) , Elin(w)
)

+ (ϕ2ρ,∇ · w) = 0 ∀w ∈ V,

(1− κ)(ϕσ(u) : Elin(u), ψ−ϕ) + 2(ϕρ∇ · u, ψ − ϕ)

+GC
(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ K,

with the Cauchy stress tensor σ(u) := 2µElin(u) + λ tr(Elin)1, where Elin(u) = 1
2 (∇u + ∇uT ), and

λ, µ > 0. Further, g(ϕ) = (1 − κ)ϕ2 + κ, with κ > 0 sufficiently small, and GC > 0 is the critical
energy release rate or material toughness. The proposed formulation coincides with Proposition 3
from Section 4.2. The time-dependency is embedded in the convex subset K containing the crack
irreversibility condition.

The mixed problem formulation from Chapter 5 will be derived as:

Formulation 2 (Mixed phase-field fracture problem, pressure driven).
Let a pressure ρ ∈ L∞(Ω) be given. Find a vector-valued displacement function u ∈ V + {uD}, a
pressure function p ∈ U := L2(Ω) (defined in Equation (2.1)) and a phase-field function ϕ ∈ K, such
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that (
g(ϕ)σ(u, p) , Elin(w)

)
+ (ϕ2ρ,∇ · w) = 0 ∀w ∈ V,

g(ϕ)(∇ · u, q)− ( 1
λ
p, q) = 0 ∀q ∈ U ,

(1− κ)(ϕσ(u, p) : Elin(u), ψ−ϕ) + 2(ϕρ∇ · u, ψ − ϕ)

+GC
(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ K,

with the Cauchy stress tensor defined pressure-dependent as σ(u, p) := 2µElin(u) + p1, and κ > 0
sufficiently small. This formulation coincides with Formulation 11 from Section 5.2 aside from time-
lagging.

Remark 2 (Solving of the primal problem). For completeness, both the primal and the mixed problem
formulation are given above. In the following, we concentrate on the discretization of the mixed problem
Formulation 2. Numerical results in later chapters based on Formulation 1 are solved exactly as by
Heister et al. [87].

We want to solve the proposed CVIS numerically. The inequality arises from a constraint on the crack
behavior, which is explained in Section 4.2.
In both systems, products of ϕ and u intuitively lead to staggered/partitioned solving schemes,
e.g., [47]. The problem becomes strictly convex by fixing one variable and solving the other equation.
Proofs on alternating minimization are presented by Bourdin [32] and Burke et al. [49], stabilized stag-
gered iterations are employed by Brun et al. [47]. However, the convergence of the iteration between
the two minimization problems can be slow, and the coupling conditions are not fulfilled exactly as in
a monolithic solving scheme. Regarding robustness and efficiency, we prefer treating the phase-field
fracture problem in a monolithic fashion, e.g., [181, 182]. For example, for the single-edge notched
pure shear test, Gerasimov and de Lorenzis [76] stated that a pure monolithic scheme is more efficient
than alternating minimization. Another approach of Gerasimov et al. [77] is stochastic phase-field
modeling.
The coupling term g(ϕ)(Elin(u), Elin(w)) ≈ ϕ2(∇u)2 makes the PDE non-convex. If the existence of a
solution can be proved, it need not be unique [35]. To deal with the non-convex elasticity equation in
a monolithic approach, we use linearization by linear extrapolation in ϕ in the u-equation, according
to Heister et al. [87].
We explain the overall solution strategy and the spatial discretization in the adjacent section. We
use a primal-dual active set method from Heister et al. [87] applied to the proposed mixed elasticity
problem, which can be interpreted as a semi-smooth Newton method. In Section 3.3, we address
adaptive mesh refinement, where we employ a predictor-corrector refinement scheme from Heister et
al. [87].

3.1 Extrapolation and quasi-time discretization
Due to a quasi-static problem formulation, we have incremental steps instead of true time steps,
indexed by n = 1, . . . , N [184], which corresponds to a backward Euler discretization. The size of the
incremental steps in quasi-time is denoted as δt > 0, the quasi-time in incremental step n is denoted
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as tn. Formulation 2 in incremental form convexifies the displacement equation via extrapolation in
quasi-time.

3.1.1 Phase-field extrapolation
Extrapolation allows approximating a value via an estimation based on an iteration starting with
unknown values. A visualization of the linear-in-time extrapolation is given in Figure 3.1.

tn−2 tn−1 tn

•
•

•

ϕn−2
ϕn−1

ϕ̃ := ϕn

Figure 3.1: Linear-in-time extrapolation in time of ϕ̃; ϕn−2 and ϕn−1 from the previous time/incremental steps
are given.

Linear interpolation in time is stated as follows for the phase-field function ϕ [184]:

Proposition 1 (Linear-in-time extrapolation according to Heister et al. [87]).
Let ϕn be the phase-field solution in time step tn at incremental step n, n = 1, . . . , N . Linearize the
first term from Formulation 2 by a time-lagged extrapolation with

ϕ̃ := ϕ̃(ϕn−1, ϕn−2) = ϕn−2 tn − tn−1

tn−2 − tn−1
+ ϕn−1 tn − tn−2

tn−1 − tn−2
. (3.1)

We follow a common abuse of language by referring to t as time. Rigorously, as we place ourselves in the
context of quasi-static evolution, t is an increasing loading parameter [33]. Further, we emphasize that
the required regularity in time for extrapolation cannot be ensured by quasi-static problems, which
means that jumps in time can arise; see [184, 133, 181]. Recent work on a fully monolithic scheme
with a modified Newton method is given by Lampron et al. [115] who use an extrapolation correction
loop controlled by a damage-based criterion and promise a significant reduction in computation time.

Remark 3 (Enhanced extrapolation). There exist a simple but effective method to improve the ap-
proximation quality from the extrapolation in Equation (3.1); see Wick [184, Section 7.7.3] for further
details.

The incremental form of Formulation 2 is as follows:

Formulation 3 (Incremental form of mixed phase-field fracture problem, pressure driven). Let a
pressure ρ ∈ L∞(Ω) be given. We define ϕ̃ := ϕ̃(ϕn−1, ϕn−2). Given the initial data ϕn−1, ϕn−2 ∈ K.
Find un ∈ V, pn ∈ U and ϕn ∈ K for incremental steps n = 1, 2, . . . , N such that(

g(ϕ̃(ϕn−1, ϕn−2))σ(un, pn), Elin(w)
)

+ ((ϕ̃(ϕn−1, ϕn−2))2ρ,∇ · w) = 0 ∀w ∈ V,

g(ϕ̃(ϕn−1, ϕn−2))(∇ · un, q)− 1
λ

(∇pn,∇q) = 0 ∀q ∈ U ,

(1− κ)(ϕnσ(un, pn) : Elin(un), ψ−ϕn) + 2(ϕnρ∇ · un, ψ − ϕn)

+GC
(
−1
ε

(1− ϕn, ψ − ϕn) + ε(∇ϕn,∇(ψ − ϕn))
)
≥ 0 ∀ψ ∈ K,
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with σ(un, pn) = 2µElin(un) + pn1, and κ > 0 sufficiently small.

In the following, we use as short notation ϕ̃ instead of ϕ̃(ϕn−1, ϕn−2), and omit the incremental index
in the solution variables for readability. We define

F =

FuF p
Fϕ

 , (3.2)

where

Fu := (g(ϕ̃)σ(un, pn), Elin(w)) + (ϕ̃2ρ,∇ · w),

F p := g(ϕ̃)(∇ · un, q)− 1
λ

(∇pn,∇q),

Fϕ := (1− κ)(ϕnσ(un, pn) : Elin(un), ψ−ϕn) + 2(ϕnρ∇ · un, ψ − ϕn)

+ GC

(
−1
ε

(1− ϕn, ψ − ϕn) + ε(∇ϕn,∇(ψ − ϕn))
)
.

(3.3)

3.1.2 Numerical studies on monolithic versus quasi-monolithic solving
The following numerical study analyzes the impact of extrapolation in ϕ on the solution for a well-
known test example. Numerical results are presented for the single-edge notched shear test à la Miehe
et al. [132, 130], visualized in Figure 3.2.

slit

Γtopux

10 mm

x

y

10 mm

5 mm

Figure 3.2: Left: geometry and boundary conditions of the single-edge notched shear test. On the left and right
side and the lower part of the slit, the boundary condition in the y-direction is uy = 0 mm and traction-free in the
x-direction. On the bottom boundary, it holds ux = uy = 0 mm. On the top boundary, it holds uy = 0 mm and
in the x-direction we determine a time-dependent non-homogeneous Dirichlet condition: ux = t · 1 mm/s with an
incremental step size δt > 0. Right: Snapshot of the phase-field solution for the single-edge notched shear test after
total failure.

The domain Ω is a two-dimensional square of 10 mm length with a given crack (called geometrical
slit) on the right side at 5 mm tending to the midpoint of the square. On the bottom boundary, the
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square is fixed, and on the top boundary, a given displacement in the x-direction pulls to the left.
We follow the boundary conditions defined by Wick [182]: On the left and right sides, the boundaries
are defined to be traction-free (homogeneous Neumann conditions). The bottom boundary is fixed
via ux = uy = 0 mm. On the top boundary, it holds uy = 0 mm and in the x-direction we determine
a time-dependent non-homogeneous Dirichlet condition: ux = t · 1 mm/s for an interval I := [0, T ],
T > 0 with an incremental step size, δt = tn − tn−1 with δt > 0. The end time T is the incremental
loading once the specimen is broken. We emphasize that δt only arises in the inequality constraint
due to

∂tϕ ≈
ϕn − ϕn−1

δt
≤ 0.

Multiplying with δt yields

ϕn − ϕn−1 ≤ 0.

In practice, the equations on the boundary conditions are scaled with δt. For further details, we refer
to an open-source implementation in DOpElib [62, 79], |kmExample 8 and 9 of the instationary PDE
Examples. There, two files are available for assembling the PDE system:
localpde_fully_implicit.h and localpde_quasi_monolithic.h.
The implicit version is a fully monolithic scheme, while the quasi-monolithic assembly is extrapolated
in time. In the following, we compare the two assemblies.
The material and model parameters are given as follows: the Lamé coefficients are stated as λ =
121.15 kN/mm2 and µ = 80.77 kN/mm2. The critical energy release rate of the considered material is
GC = 2.7 N/mm. The incremental step size is chosen as δt = 10−4 s. We chose the bulk regularization
parameter κ = 10−8.
As a quantity of interest, we evaluate the load functions on the top boundary Γtop computed via

(Fx, Fy) := 1
|Γtop|

∫
Γtop

g(ϕ̃)σ(uh) · n ds, (3.4)

with the stress tensor σ(uh) depending on the discrete solution variable uh and the outer normal
vector n. Within the single-edge notched shear test, we are interested in the evaluation of Fx. The
computations are executed on a uniform refined mesh with 3 315 dof (Qc1 elements for u and ϕ, primal
Formulation 1) per loading/incremental step and end time for all tests is 0.014 s. In Table 3.1, the
maximal loading values Fx defined in Equation (3.4) are given for a fully monolithic scheme with 140
incremental steps from 0 to 0.014 s (which corresponds to an incremental step size of 10−4 s) compared
to results based on the quasi-monolithic approach using extrapolation.
With 1 400 incremental steps, which corresponds to an incremental step size of 10−5 s, the crack
starts propagating at a similar quasi-time point compared to the results based on the fully monolithic
approach even if the loading values differ, the maximal value is at a similar time point. Based on this
simple study, we can hope to decrease the incremental step size by around 1/10 (or more) if we use
an extrapolated phase-field in the displacement equation.
Miehe et al. [130] stated an incremental step size of 10−5 s for the first 500 incremental steps and
reduced to 10−6 s when crack propagation starts. With this, the crack starts propagating at a dis-
placement of around 0.009 mm, depending on the mesh size (around 20 000 cells).
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Model #incremental steps time crack start [s] maximal loading Fx [N ]
quasi-monolithic 140 0.01010 551.784
quasi-monolithic 160 0.00998 550.277
quasi-monolithic 180 0.00995 549.200
quasi-monolithic 200 0.00994 548.138
quasi-monolithic 280 0.00980 546.365
quasi-monolithic 700 0.00974 544.732
quasi-monolithic 1 400 0.00968 553.503
fully monolithic 140 0.00960 538.596

Table 3.1: Comparison of time of crack initiation for the single-edge notched shear test along to Miehe et al. [130]
for a fully monolithic approach (last line in blue) and the proposed quasi-monolithic one. In the last column, the
computed maximal loading force is given. These results were also contributed to [184, Section 8.9.3].

Remark 4 (Qualitative study). We emphasize, that the study on the monolithic and quasi-monolithic
scheme allows only to evaluate the behavior of extrapolation for one well-known academic test example
based on a relatively coarse uniform mesh. The result decreasing the step size around 1/10th can just
be seen as a magnitude to classify the error produced via extrapolation in time.

3.2 A primal-dual active set method

Several possibilities can be found in the literature to impose the irreversibility constraint. We just name
a few: simple penalization with a penalization parameter that penalizes the PDE when the constraint
is violated, Augmented Lagrangian, primal-dual active set method, or interior-point methods. For
further details, we refer to Wick [184, Section 5.2]. In this thesis, a primal-dual active set method
is used. One can show for model problems that the primal-dual active set method is equivalent to a
semi-smooth Newton method [93]. We employ Newton’s method instead of solving the system from
Formulation 3 directly for a solution vector U := (u, p, ϕ) ∈ V × U × K subject to the irreversibility
condition. As we see in Chapter 4, the inequality constraint arises from the inequality constraint on ϕ
such that ∂tϕ ≤ 0, and a convex subset ofW := H1(Ω) (defined in Equation (2.3)) which contains the
irreversibility condition: K := {ϕn ∈ W |ϕn − ϕn−1 ≤ 0 a.e. in Ω}. In the following, the constraint is
separated from the equations for introducing the primal-dual active set scheme.
The next two subsections follow basically [87] and [106] applied to the mixed problem Formulation 2
from Chapter 3 (derived in Chapter 5).

3.2.1 Newton’s method

We propose Newton’s method for solving Formulation 2 from Chapter 3.

Algorithm 1 (Newton’s method for the mixed phase-field fracture problem, pressure driven).
The solution vector in incremental step n is defined as Un := (un, pn, ϕn) ∈ V × U × K for n =
1, 2, . . . , N . Let U0, U1, U2, . . . , UK be a sequence of solutions and U0 is a given initial guess. Find
δUk for k = 1, 2, . . . ,K with

∇F (Uk)δUk = −F (Uk), with (δUk)ϕ ≤ 0 on Θ := {0} × {0} ×W, (3.5)
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and the update is computed via

Uk+1 = Uk + δUk,

until a stopping criterion (relative tolerance of 10−7) is fulfilled. From Equation (3.5), (δUk)ϕ ≤ 0 on
Θ implies that

Uk+1 = Uk + δUk ≤ Uk ≤ Uk−1 ≤ . . . ≤ U0 on Θ,

where U0 is the initial condition on Θ.

Equation (3.5) can be written as a system of the form

MkδUk = −F (Uk), for k = 1, 2, . . . ,K, (3.6)

with the JacobianMk := ∇F (Uk), where F is the right hand side consisting of the residuals defined
in Equation (3.3). The Jacobian and the solution vector are defined as

M =

Muu Mup Muϕ

Mpu Mpp Mpϕ

Mϕu Mϕp Mϕϕ

 , δUk =

δUuδUp

δUϕ

 ,

where we omit the incremental index k from the quasi-time discretization in the following for read-
ability. The components for the right hand side and the component-wise block entries of the Jacobian
M are defined as:

Fui := (g(ϕ̃)2µElin(u), Elin(χui )) + (g(ϕ̃)p,∇ · χui ) + (ϕ̃2ρ,∇ · χui ),

F pi := g(ϕ̃)(∇ · u, χpi )−
1
λ

(p, χpi ),

Fϕi := (1− κ)(ϕ2µElin(u) : Elin(u), χϕi ) + (1− κ)(ϕ(p1 : Elin(u), χϕi )

+ 2ρ(ϕ∇ · u, χϕi ) +GC(−1
ε

(1− ϕ, χϕi ) + ε(∇ϕ,∇χϕi )),

Muu
i,j = (g(ϕ̃)2µElin(χuj ), Elin(χui )),

Mpu
i,j = g(ϕ̃)(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(ϕ2µ(Elin(χuj ) : Elin(u) + Elin(u) : Elin(χuj )), χϕi ) + 2ρ(ϕ∇ · χuj , χ

ϕ
i ),

Mup
i,j = (g(ϕ̃)χpj ,∇ · χui ),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχpj1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(χϕj 2µElin(u) : Elin(u), χϕi ) + (1− κ)(χϕj (p1 : Elin(u)), χϕi ),

+ 2ρ(χϕj∇ · u, χ
ϕ
i ) +GC(1

ε
(χϕj , χ

ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )),

(3.7)
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with ansatz functions (χuj , χ
p
j , χ

ϕ
j ) ∈ Vh ×Uh ×Kh and test functions (χui , χ

p
i , χ

ϕ
i ) ∈ Vh ×Uh ×Kh for

i, j = 1, . . . , N with N total nodes.

3.2.2 Active set method
In a discrete form, the constraint can be rewritten as: ϕn ≤ ϕn−1. The rough idea of the primal-dual
active set method is to split the domain Ω into two subdomains: one with a Lagrange multiplier
τ ∈ {0} × {0} × W∗ (W∗ is the dual space of W), where the inequality constraint is an equality
constraint: ϕn = ϕn−1. The second domain is located where the inequality constraint holds strictly:
ϕn < ϕn−1. The problem is solved on the latter while the former subdomain is ignored. It results in
a two-staged Newton algorithm: a Newton iteration for the PDE on Ω and a linear Newton iteration
after eliminating all rows to be ignored. We can rewrite the variational inequality system with the
help of a Lagrange multiplier τ ∈ {0} × {0} ×W∗ as:

(MδU, Z) + (τ, Z) = (−F,Z) ∀Z ∈ V × U ×W,

C(δU, τ) = 0, (3.8)

where

C(δU, τ) = τ −max{0, τ + cδU},

for a given c > 0. The max-operation works component-wise. We gain good computational experience
with the heuristic choice c = E

ε , where E is Young’s modulus, and ε the crack’s bandwidth.
In the next step, Equation (3.8) is eliminated via splitting the domain into an active set A and an
inactive set N . On the active set, the constraint holds, and the solution U does not change, so no
PDE is solved. The unconstrained PDE system is solved on the inactive set and the constraint is
ignored; see Figure 3.3 for a simple visualization for an obstacle problem.

AN N

δU = 0τ = 0 τ = 0

constraintPDE PDE

Figure 3.3: Exemplary in one dimension for an obstacle problem: a clothesline touching the ground. Visualized is
the definition of the active set (A), the inactive set (N ), the Lagrange multiplier (τ) and the Newton update (δU).

The active set algorithm on a continuous level is given as follows:

Algorithm 2 (Active set on a continuous level according to Heister et al. [87]). Repeat for k = 0, . . .
until Ak does no longer change:

1. Compute the active and the inactive set via:

Ak+1 =
{
x| τk(x) + c Uk(x) > 0

}
,

N k+1 =
{
x| τk(x) + c Uk(x) ≤ 0

}
.
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2. Find δUk+1 ∈ V × U ×W and τk+1 ∈ {0} × {0} ×W∗ with

(MδUk+1, Z) + (τk+1, Z) = (−F,Z) ∀Z ∈ V × U ×W,

(δUk+1, ξ) = 0 on Ak ∀ξ ∈ {0} × {0} ×W∗,
τk+1 = 0 on N k.

As seen in Algorithm 2, the Newton algorithm proceeds in two steps: For a given δUk and τk we
compute the active set Ak and the inactive set N k and solve the system to find δUk+1 and τk+1. The
iteration is repeated until Ak and Ak+1 coincide.

3.2.3 Discrete active set

We employ a finite element discretization by subdividing the domain Ω ⊂ R2 into a regular mesh Th
of quadrilaterals [87]. A brief introduction to the finite element method was given in Section 2.2. The
mesh Th consists of N open cells {K1,K2, . . . ,KN} with mesh size h.
For the mixed problem, the vector-valued displacements u = (ux, uy)T are discretized using H1-
conforming bi-quadratic elements, i.e., as the ansatz and test space, we employ Qc2 finite elements
defined in Equation (2.5). The pressure p and the phase-field ϕ are discretized with H1-conforming
bilinear elements, i.e., as ansatz and test space, we use Qc1 finite elements defined in Equation (2.4);
see Figure 3.4 on the right. It leads to conforming discrete spaces Vh×Uh×Wh ⊂ V ×U ×W, defined

• •

•• u, ϕ •

• • • •

•

•••

• • ••

•

•

•

•

u u, p, ϕ

Figure 3.4: Left: conforming quadrilateral elements of the type Qc
1Q

c
1 for Chapter 4: Qc

1 for the displacement
variable u and for the scalar-valued pressure variable p (red bullets). Right: conforming quadrilateral Stokes-
elements of the type Qc

2Q
c
1Q

c
1 for Chapter 5: Qc

2 for the displacement components ux and uy (blue and red bullets)
and Qc

1 for the scalar-valued pressure variable p and the phase-field function ϕ (red bullets).

as

Vh := {uh ∈ H1
0 (Ω;R2), uh|K ∈ (Qc2(K))2 ∀K ∈ Th},

Uh := {ph ∈ L2(Ω), ph|K ∈ Qc1(K) ∀K ∈ Th},
Wh := {ϕh ∈ H1(Ω), ϕh|K ∈ Qc1(K) ∀K ∈ Th}.

Remark 5 (Number of degrees of freedom). Recall, that with Qc2 elements for the discretization in
both displacement components ux and uy, the total number of dofs increases significantly compared to
bilinear elements for u.

Based on the discretization of U , we can formulate a discrete active set scheme. We state Step 2 from
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Algorithm 2 as a linear system with block structure:(
M B

BT 0

)(
δUk+1

h

τk+1
h

)
=
(
−F
0

)
. (3.9)

By using quadrature only in the support points of τkh , the block entry BT becomes a diagonal matrix
defined as

Bii =
{

0 if τk,ih 6= 0,
1 if τk,ih = 0,

with τk,ih the i-th entry of τ from the last Newton iteration. Equation (3.9) is the system that is
solved in each iteration. The second row is used to eliminate entries in M where the phase-field is
constrained on the active set Ak. The eliminated entries are exactly those where the ith entry of τk+1

h

is non-zero. With M̂ and F̂ , instead of M and F , where the constrained rows are removed, we end
up with a simplified linear system:

M̂ δÛk+1
h = −F̂ .

The new entry τk+1
h can be computed from Uk+1

h via

(B)ii(τk+1
h )i = −(F )i − (MδUk+1

h )i,

where (·)i indicates the ith degree of freedom. For i ∈ Ak, it leads to

(τk+1
h )i = (B−1)ii(−(F )i − (MδUk+1

h )i).

The new active set Ak+1 and the new inactive set N k+1 are computed via

Ak+1 = {(B−1)ii(−(F )i − (MδUk+1
h )i) + c(δUk+1

h )i > 0},

N k+1 = {(B−1)ii(−(F )i − (MδUk+1
h )i) + c(δUk+1

h )i ≤ 0}.

The final primal-dual active set algorithm combines two Newton iterations. One outer iteration
computes the nonlinear problem and determines the active set. One inner iteration solves in each
outer step the linear system via computing the updates δUk+1

h and τk+1
h . Since the inner iteration

can cause that δUkh ≤ 0 is violated, we replace the condition with

Ukh + δUkh ≤ Uold
h ,

where Uold
h is the solution of the last incremental step. Further, we replace the residual used to

compute the active set by a nonlinear residual

R(Uk+1
h ) = −F (Uk+1

h ).

Algorithm 3 (Primal-dual active set method according to Heister et al. [87]). Repeat for k starting
from k = 0 until Ak no longer changes (Ak+1 = Ak) and the inactive set residual R̂(Ukh ) < TOL
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(given tolerance):

1. Assemble the full residual R(Ukh ) = −F (Ukh ).

2. Compute the active set Ak = {i| (B−1)iiR(Ukh )(τkh )i = −(F )i − (MδUkh )i}.

3. Assemble the matrixM = ∇F (Ukh ) and the right hand side F (Ukh ).

4. Eliminate rows and columns in Ak fromM and F to obtain M̂ and F̂ .

5. Find δÛkh ∈ Vh × Uh ×Wh such that

M̂(δÛkh ,Ψ) = −F̂(Ukh )(Ψ) ∀Ψ ∈ Vh × Uh ×Wh. (3.10)

6. Find a step size 0 < ω ≤ 1 using line search to get

Uk+1
h = Ukh + ωδÛkh ,

with the residual R̂(Uk+1
h ) < R̂(Ukh ) on the inactive set N k.

For details on the used backtracking line search method in the last step of the algorithm, we refer
to [136].

3.2.4 Setup of the weak system
In each iteration of the active set algorithm, the discrete system from Equation (3.10) has to be solved:

M(δUkh ,Ψ) = −F (Ukh )(Ψ),

where Ψ = (ψi)i=1,...,N is the basis function with N total dof; the right hand side is defined in
Equation (3.3) on a continuous level.
With a primitive order of the basis function (only non-zero in one component), we can separate the
vector valued basis into displacements, pressure, and phase-field functions and sort them in the named
order:

ψi =

χui0
0

 , for i = 1, . . . , Nu,

ψi =

 0
χpi
0

 , for i = Nu+1, . . . , Np,

ψi =

 0
0
χϕi

 , for i = Np+1, . . . , Nϕ,

with N = Nu +Np +Nϕ.
For non-pressurized fractures, in the block entries of the JacobianM we set ρ = 0.
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In the matrixM, the columns and rows are eliminated on dof that belong either to Dirichlet conditions
or to the active set (see Step 4 in Algorithm 3).
As a linear solver for the discretized mixed problem from Equation (3.10) with three components, in
Chapters 4, 5, and 7, a sparse direct solver is used, provided by UMFPACK [60, 59]. In Chapter 6, a
newly developed parallel solver based on a physics-based Schur-type block preconditioner is employed.
The base of the implementation is documented in the framework pfm-cracks by Heister and Wick [89].
This parallel-adaptive open-source framework is embedded in deal.II [9, 11, 18], which offers scalable
parallel algorithms for finite element computations. The deal.II library in turn, uses functionalities
from other libraries such as Trilinos [90].

3.2.5 Alternative realizing crack irreversibility
An alternative to realize the inequality constraint is based on a complementarity formulation1 of
Formulation 2 (Chapter 5), which was developed in [128, 124]. The crack irreversibility constraint can
be enforced with the help of a Lagrange multiplier ζ ∈ W∗, where W∗ is the dual space of W, similar
to, e.g., [102, 97, 144, 171].
We present the fundamental idea from [128, 124] based on the mixed phase-field fracture problem in
incremental and weak form (similar to Formulation 2 from Chapter 3 derived in Chapter 5), which is
stated as:
We assume ϕn−1 be given from the previous incremental step. Find un ∈ V, pn ∈ U , and ϕn ∈ K for
incremental steps n = 1, 2, . . . , N such that (

g(ϕn−1)σ(un, pn), Elin(w)
)

= 0 ∀w ∈ V,

g(ϕn−1)(∇ · un, q)− ( 1
λ
pn, q) = 0 ∀q ∈ U ,

(1− κ)(ϕnσ(un, pn) : Elin(un), ψ − ϕn)− GC
ε

(1− ϕn, ψ − ϕn)

+ εGC(∇ϕn,∇(ψ − ϕn)) ≥ 0 ∀ψ ∈ K.

(3.11)

To discretize the problem in space, we define a discrete subset

Knh := {ψh ∈ Wn
h | ψh(ι) ≤ (Inhϕn−1

h )(ι) ∀ι ∈ P},

where P is the set of dof on the current mesh, and Inh the nodal interpolation operator.
For n = 1, . . . , N and ϕn−1 given, find (unh, pnh, ϕnh) such that(

g(Inhϕn−1
h )σ(unh, pnh), Elin(wh)

)
= 0 ∀wh ∈ Vnh ,

g(Inhϕn−1
h )(∇ · unh, qnh)− ( 1

λ
pnh, q

n
h) = 0 ∀qh ∈ Unh ,

(1− κ)(ϕnhσ(unh, pnh) : Elin(unh), ψh − ϕnh)− GC
ε

(1− ϕnh, ψh − ϕnh)

+ εGC (∇ϕnh,∇(ψh − ϕnh)) ≥ 0 ∀ψh ∈ Knh .

(3.12)

With the help of a Lagrange multiplier ζ ∈ W∗, the problem formulation from Equation (3.11) can
be written equivalently as the following complementarity system:

1Parts of this section are published in [124].
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For n = 1, . . . , N and ϕn−1 given, find (un, pn, ϕn, ζn) such that

(g(ϕn−1)σ(un, pn), Elin(w)) = 0 ∀w ∈ V,

g(ϕn−1)(∇ · un, q)− ( 1
λ
pn, q) = 0 ∀q ∈ U ,

(1− κ)(ϕnσ(un, pnh) : Elin(un), ψ)− GC
ε

(1− ϕn, ψ)

+ εGC(∇ϕn,∇ψ) + (ζn, ψ)−1,1 = 0 ∀ψ ∈ W,

(ζn, ψ)−1,1 ≥ 0 ∀ψ ∈ W, ψ ≥ 0,
ϕn ≤ ϕn−1,

(ζn, ϕn−1 − ϕn)−1,1 = 0.

(3.13)

In Equation (3.13), the duality paring of W is denoted as (·, ·)−1,1. For the complementarity system
on a discrete level we define a dual basis Wn,∗

h of Wn
h as

Wn,∗
h := span {χ∗ι | ι ∈ P} , where (χ∗ι , χξ) = διξ,

for the nodal basis χξ of Wn
h . We define ζnh =

∑
ι∈P(ζnh )ιχ∗ι , with

(ζnh , χι) = −(1− κ)(ϕnhσ(unh) : Elin(unh), ψh) + GC
ε

(1− ϕnh, ψh)− εGC(∇ϕnh,∇ψh) ∀ι ∈ P,

the analogous discrete complementarity system reads as follows:

(g(Inhϕn−1
h )σ(unh), Elin(wh)) = 0 ∀wh ∈ Vnh ,

g(Inhϕn−1
h )(∇ · unh, qnh)− ( 1

λ
pnh, q

n
h) = 0 ∀qh ∈ Unh ,

(1− κ)(ϕnhσ(unh) : Elin(unh), ψh)− GC
ε

(1− ϕnh, ψh)

+ εGC(∇ϕnh,∇ψh) + (ζnh , χι) = 0 ∀ψh ∈ Wn
h ,

(ζnh , χι) ≥ 0 ∀ι ∈ P,

ϕn(ι) ≤ ϕn−1(ι) ∀ι ∈ P,

(ζnh , Inh , ϕn−1 − ϕn) = 0.

(3.14)

With the help of a complementarity function (x, y) 7→ x −max{0, x + cy}, c > 0 (we use c = 1), we
can formulate Equation (3.14) as an equality system:

(g(Inhϕn−1
h )σ(unh), Elin(wh)) = 0 ∀wh ∈ Vnh ,

g(Inhϕn−1
h )(∇ · unh, qnh)− ( 1

λ
pnh, q

n
h) = 0 ∀qh ∈ Unh ,

(1− κ)(ϕnhσ(unh) : Elin(unh), ψh)− GC
ε

(1− ϕnh, ψh)

+ εGC(∇ϕnh,∇ψh) + (ζnh , χι)−1,1 = 0 ∀ψh ∈ Wn
h ,

(ζnh )ι −max{0, (ζnh )ι + c((Inhϕn−1 − ϕn)(ι))} = 0, ∀ι ∈ P.

(3.15)

A code snippet of the implementation of the last equality of Equation (3.15) from Example 11 of the
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instationary PDE Examples in the open-source library DOpElib [62, 79] is given in the following:
if(fabs(state_fe_values[multiplier].value(i,q_point) - 1.) < std::numeric_limits<double>::epsilon())
{

//Equation for multiplier
local_vector(i) += scale * weight* (uvalues_[q_point][4]

- std::max(0.,uvalues_[q_point][4]+s_*(pf-old_timestep_pf)));
//Add Multiplier to the state equation
//find corresponding basis of state
for(unsigned int j = 0; j < n_dofs_per_element; j++)
{

if(fabs(state_fe_values[phasefield].value(j,q_point) - 1.)
< std::numeric_limits<double>::epsilon())
{

local_vector(j) += scale * weight* uvalues_[q_point][4];
}

}
}

We can see in the code snippet showing the assembly of the right hand side for the Lagrange multiplier,
that the Lagrange multiplier is the fourth component of the system (u, p, ϕ, ζ) and evaluated on all
quadrature points of ϕ.
Equation (3.15) is solved in [128, 124] with a residual-based Newton’s method. For further details
using a complementarity formulation, we refer to [124, Section 4.1].

Remark 6 (System of four components). The Lagrange multiplier ζ acts as a fourth variable in
the implementation. In contrast to other well-known methods as simple penalization or Augmented
Lagrangian [184], the proposed method using a Lagrange multiplier, is embedded in the whole system,
which allows a more accurate discretization without the necessity of additional iterations. On the other
hand, the PDE system has one further unknown variable, which leads to higher computational costs.

Remark 7 (Implementation in DOpElib [62, 79]). The proposed complementarity system with a
Lagrange multiplier as an additive solution variable is implemented in Examples 8, 10, 11, and 12 of
the instationary PDE Examples from DOpElib [62, 79]. In Example 8, 10, and 11, the primal phase-
field fracture model is considered, which yields three unknowns. Example 12, as presented in the code
snippet above, has four solution variables and allows computing fracture simulation in incompressible
solids.

3.3 Adaptive mesh-refinement
Considering fractures, mesh adaptivity could allow a good resolution of the crack width measured
by ε related to the spatial discretization parameter h such that h � ε (at least for low order finite
elements). Further, in many applications, the crack tip is of specific interest. We notice that mesh
refinement for phase-field fracture problems may be problematic since the (unknown) fracture path
may depend on the locally refined mesh. Then, numerical solutions would purely depend on the mesh
refinement algorithm, see e.g., Artina et al. [12], and discussions and references provided therein.
One of the first studies on local mesh adaptivity for phase-field fracture was undertaken by Burke
et al. [49]. Artina et al. [12] presented anisotropic mesh adaptivity. Goal-oriented error estimation
using dual-weighted residuals was addressed by Wick [180, 184]. Another method that purely focuses
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on fine meshes without error estimation in the crack region was developed by Heister et al. [87] for
simulations in two spatial dimensions, and the extension for three-dimensional computations was con-
sidered by Lee et al. [116]. With these last developments, a computational convergence analysis using
high-performance parallel computing and local mesh adaptivity was carried out [88].
All listed studies show that local mesh refinement is a key ingredient for phase-field fractures, partic-
ularly in working with sufficiently small phase-field regularization parameters ε and κ.

3.3.1 Predictor-corrector adaptivity
For adaptively refined meshes, we employ a predictor-corrector scheme from Heister et al. [87, Chapter
4], which allows refining the mesh locally depending on a propagating fracture with a chosen threshold
for the phase-field variable. Consequently, the mesh grows during the computation. If some cells
within the damage bands are not sufficiently refined (its refinement level is smaller than the present
maximum refinement level) at the end of a time step, the step is computed again with a refined mesh.
It was shown [87] that this intuitive refinement strategy is efficient and robust. A visualization of the
scheme is presented in Figure 3.5, where the mesh in the crack zone is refined adaptively from left to
right. With a certain threshold for the phase-field refinement (mostly between 0.5 and 0.8) we decide
how extensively the crack zone is resolved.

n→ (n+ 1)
−−−−−−−−→

(n+ 1)→ (n+ 2)
−−−−−−−−−−−−−→

Figure 3.5: Adaptive mesh refinement via predictor-corrector scheme from [87]. Three incremental steps (from left
to right), which were re-computed to catch the current crack zone with the finest mesh size.

Algorithm 4 (Predictor-corrector mesh adaptivity according to Heister et al. [87]). We assume to be
in incremental step n:

1. Given the solution (un, pn, ϕn) at incremental step n,

2. Predictor step: solve for (ũn+1, p̃n+1, ϕ̃n+1) at step n to predict the fracture path,

3. Refine the mesh in accordance with the preliminary solution (ũn+1, p̃n+1, ϕ̃n+1) by the given
threshold for the phase-field variable and go back to the solution and mesh (un, pn, ϕn),

4. Corrector step: Solve on the new mesh the new solution (un+1, pn+1, ϕn+1) in step n+ 1.

Go one incremental step further via n 7→ n+ 1 and go back to Step 1.

We briefly point out the most important advantages (,) and drawbacks (/) of the predictor-corrector
scheme [87]:

/ Even if the mesh is refined during the computation, which decreases the size of h, the crack’s
bandwidth ε is fixed, which does not allow to reduce the discretization error depending on ε;

/ The incremental step size has to be small enough, especially for fast fractures, to capture the
crack properly. It leads to the fact that with more incremental steps, the overall workload
increases due to the re-computed steps;
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, The crack location can be totally unknown, which is a great advantage, especially, if real-world
problems are considered; see Chapter 7;

, The algorithm is relatively simple to implement, especially in contrast to error estimators.

3.3.2 Geometric refinement
In stationary test cases, where the crack location is known, it is efficient to use geometrically pre-
refined meshes. See Figure 3.6 for an idea of the geometric refinement for a known crack location.
Further, for tests with inclusions or circular holes, such as the EPDM test from Chapter 7, having

Figure 3.6: Example for geometric mesh refinement for Sneddon’s benchmark. Domain of size (−20, 20)2, zone of
geometric refinement (−2, 2) × (−1, 1). Left: mesh after five steps of geometric refinement. Right: corresponding
snapshot of phase-field solution (blue unbroken, green to red in the broken zone) of Sneddon’s pressure-driven
benchmark with a stationary crack in the center of a 2d-square.

a sufficiently fine mesh around the inclusion can be relevant to avoid locking in the mesh. Strictly
speaking, geometric refinement is not a refinement scheme, but it is a simple approach to decreasing
the computational workload and still having a refined finite element mesh where a crack propagates
or a sufficiently fine mesh is required for other reasons. We denote it as geometric refinement in the
following since the mesh is refined according to the information on the geometry of the test setup.

3.3.3 Error-controlled adaptivity
Having an error estimator along with localized crack tip mesh refinement would be even more beneficial.
Considering a posteriori error estimation for adaptive refinement, the main difficulty lies in the proof
of efficiency since we focus on nonlinear and non-smooth problems. Regardless, some groups present a
convergence analysis for an adaptive finite element scheme, i.e., Burke et al. [49]. Recent work on goal-
oriented adjoint-based a posteriori error estimates for a nonlinear phase-field discontinuity problem is
given by Wick [186]. Further, we developed a residual-based error estimator for the primal quasi-static
phase-field variational inequality in [124]. We briefly introduce our approach in the following2, even if
the error estimator is not used in subsequent chapters of this thesis.

2Numerical results of this section are published in [124].
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In [124], we developed a residual-type a posteriori error estimator for the phase-field variational in-
equality, which is efficient, reliable, and robust concerning the phase-field regularization parameter ε.
The theoretical results are given for meshes of simplices and quadrilaterals and based on the previous
work of Walloth [108, 173]. We implemented the estimator in DOpElib [62, 79] and tested it for the
primal quasi-static phase-field fracture model derived in Chapter 4. Numerical results have been pub-
lished in [124, 125]. Further, we tested the estimator for the quasi-static fracture phase-field model for
nearly incompressible solids [128] (based on the model derived in Chapter 5). The main advantages
of the residual-based a posteriori error estimator of the variational inequality are:

, We improve the quality of the solution for given computational resources;

, We resolve the transition zone between ϕ = 0 and ϕ = 1, and the fracture tip;

, We avoid over-refinement in the full-contact zone.

Figure 3.7: Results from Mang et al. [124]. The phase-field function and the error indicators, respectively, after
six refinement steps depicted in specific time points (after 0.0116, 0.0118 and 0.0125 s) for the single-edge notched
shear test given on the current adaptive mesh to visualize the refinement strategy.

To get an idea how the developed error estimator works for adaptive refinement, we propose numerical
results in Figure 3.7, taken from [124]. Snapshots of the phase-field function and the error indicators
on the current mesh are presented for the single-edge notched pure shear test, described in Section 3.1.
Figure 3.7 shows, that the error estimation and the corresponding refinement strategy allows resolving
the zone around the crack. Further, in the last snapshot of the phase-field solution (upper row on
the right), we observe the advantage from the third bullet: in the broken zone we do not have over-
refinement.
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Remark 8 (Error estimator in DOpElib [62, 79]). The developed residual-based error estimator re-
quires varying spatial meshes in time, i.e., we use Rothe discretization3, where different spatial meshes
at different time-points are allowed in DOpElib [62, 79].

The implementation of the error estimator can be found in the open-source library DOpElib [62, 79].
DOpElib in turn, is based on the deal.II finite element library [10]. The error estimator is available in
Examples 8, 10, and 11 of the instationary PDE Examples in DOpElib [62, 79]. Further developments
on the error estimator for the adaptive solution of quasi-static phase-field fracture models are recently
presented by Walloth and Wollner [174].

Conclusions of the chapter
Time extrapolation in the phase-field function allows us to overcome the nonlinear behavior of the
displacement equation. We use a primal-dual active set method to solve the coupled variational in-
equality system of phase-field fracture. For discretization in space, we employ H1-conforming elements
Qc2 and Qc1. We use a predictor-corrector scheme for adaptively refined meshes and geometric mesh
refinement for stationary tests with a known crack location. With Chapter 3, we prepared the follow-
ing chapters: The next chapter derives the primal phase-field fracture model stated in Formulation 1
at the beginning of the current chapter. Numerical results from Chapter 4 base upon the solving and
discretization from Heister et al. [87]. The numerical results in Chapters 5, 6, and 7 are based on the
discretization and solving scheme from Chapter 3. Instead of a direct solver from UMFPACK [60, 59],
Chapter 6 poses a preconditioned iterative linear solver.

3Thanks to Prof. Dr.Winnifried Wollner and Dr.Mirjam Walloth for working together in Darmstadt on the
implementation of Rothe’s method in 2018/19, providing the basis for joint publications [124, 22].



Chapter 4

Phase-field fracture modeling &
simulations

In this chapter, we derive the classical (primal) variational phase-field fracture model, starting from
Francfort and Marigo [72], who formulated Griffith’s theory as an energy functional in 1998. In order
to get a numerically solvable problem, we adopt in Section 4.1 the approach by Bourdin et al. [35] from
2000, who derived a regularized energy functional depending on two variables: displacements u and a
phase-field ϕ – to which we refer hereafter as the primal phase-field energy problem. In Section 4.2, we
derive the first variation of the energy functional yielding the corresponding Euler-Lagrange equations
and our numerical problem. For completeness, we formulate in Section 4.3 the phase-field fracture
problem in strong form. We conclude the theoretical part of this chapter with Section 4.4 by formu-
lating the notion of Γ-convergence. Hence, we achieve a kind of convergence of the phase-field fracture
formulation to the non-regularized functional, describing the fracture behavior according to Griffith’s
criterion for crack propagation. Following up Γ-convergence in numerical computations, Section 4.5
conducts a detailed error analysis for a well-known benchmark test with analytical reference values.
The final two Sections 4.6 and 4.7 introduce modifications in the regularization function and Cauchy
stress tensor implemented to cure observed inaccuracies of the regularized energy function compared
to well-known benchmark tests.

4.1 Primal phase-field energy minimization problem
Francfort and Marigo [72], in 1998, picked up Griffith’s link from the existence of cracks and surface
energy, and proposed a variational model of quasi-static crack evolution.

Definition 3 (Surface energy according to Francfort and Marigo [72]). The surface energy ES(C) of
a crack C ⊂ Ω̄ is defined as

ES(C) =
∫
C

GC(s) dH1(s),

where H1 is the one-dimensional Hausdorff measure (in 2d) [85]. The surface energy ES(C) is strictly
increasing in C. The critical energy release rate is denoted by GC > 0.
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Remark 9 (Critical energy release rate GC). GC is the toughness of the material or energy per area
required for crack propagation. It describes the resistance of a material to break [30]. The critical
energy release rate depends on the considered material but is assumed to be constant over domain and
time. We use the unit N/mm, which is not a SI unit.

Definition 4 (Bulk energy according to Francfort and Marigo [72]). For a displacement field u : Ω→
R2 and a lower-dimensional crack C ⊂ R, the bulk energy EB(u,C) is defined as

EB(u,C) = inf
∫

Ω\C
σ(u) : Elin(u) dx,

where (σ(u) : Elin(u)) is the elastic energy density with the Cauchy stress tensor σ(u) of linearized
elasticity defined as

σ(u) := 2µElin(u) + λ tr(Elin(u))1, (4.1)

with material-dependent Lamé parameters µ, λ > 0. By 1, the (two-dimensional) identity matrix is
denoted. The symmetric linearized strain tensor Elin(u) is defined as

Elin(u) := 1
2(∇u+∇uT ). (4.2)

The bulk energy EB(u,C) is monotonically non increasing in C for any fixed u.

With the help of the two definitions, the total energy of a body with a given crack C is given by

ET (u,C) = EB(u,C) + ES(C).

Remark 10 (Dimension d = 2). In the frame of this thesis, we restrict ourselves to two-dimensional
domains. Of course, the presented definitions can be stated for higher d-dimensional displacement
fields with d > 2. Then, the Hausdorff measure would be (d− 1)-dimensional.

According to Francfort and Marigo [72], the total energy functional describes the energy of a crack
of an elastic solid concerning the displacement u, yielding an energy minimization problem of the
following form:

Formulation 4. Find u : Ω→ R2 and a crack C ⊂ R such that

min
u,C

ET (u,C) = 1
2(σ(u), Elin(u))−

∫
C

τ · u ds+GCH1(C),

with ∂tl(C) ≥ 0.

Traction forces are denoted by τ . The quantity l(C) in the additional time-dependent constraint is the
current crack length of C which increases or stays equal in time. The energy functional ET (u,C) con-
sists of three terms: the bulk energy term, the traction energy term, and the crack energy contribution.

Since the dependency of the functional on the actual crack C is intractable for numerical solution
approaches, we regularize Formulation 4. In the following, we give an explanation of the phase-field
method and its application to the energy functional ET (u,C).
The starting point of phase-field is the behavior of the displacement u when a crack occurs. The
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vector-valued function u describes the deformation in material points on a continuous level. If the
material tears, u becomes discontinuous in the fracture since there occurs a gap between two material
points. Thus, the idea is an indicator function, which displays discontinuities of u on Ω instead of a
lower-dimensional crack C. To be more precise, the function is equal to one, where u is continuous
and equal to zero, where u may have discontinuities (in the crack). This function would be called the
exact phase-field function.
Such an exact phase-field function is still a discontinuous function with discontinuities between zero
and one. So, we introduce an approximative phase-field function ϕ. The crack C is framed and
approximated with ΩF (fracture domain), which has a thickness of 2ε, where ε > 0. The phase-field
function ϕ is still supposed to be 1 within the unbroken domain and 0 within C, as depicted in
Figure 4.1. In the transition zone between the broken and unbroken domain, it holds 0 < ϕ < 1.

x

ϕ sharp crack C

•
transition zone ΩF

0

1

2ε

ε ε

Figure 4.1: Approximative phase-field function ϕ, here depicted over a one-dimensional cracked domain. The sharp
crack C is approximated with a diffusive crack of width ε.

For the regularized energy minimization problem, we introduce a loading (time) interval I := [0, T ],
where T > 0 is the end time value. A displacement function u : (Ω× I)→ R2 is defined on a domain
Ω ⊂ R2. Using the elliptic functional proposed by Ambrosio-Tortorelli [6, 5], we approximate a lower-
dimensional crack C ⊂ R ∈ Ω by a phase-field variable ϕ : (Ω × I) → [0, 1] with ϕ = 0 in the crack
(broken material) and ϕ = 1 in the unbroken material. The parameter ε > 0 determines the width of
the transition zone between the unbroken and the broken material; see Figure 4.1. On the boundary
∂Ω, we assume homogeneous Dirichlet boundary conditions for simplicity. For a complete formulation
of the phase-field model, further definitions are needed. A degradation function g(ϕ) is defined as

g(ϕ) := (1− κ)ϕ2 + κ, (4.3)

with a small regularization parameter κ > 0. The Cauchy stress tensor σ(u) (under the assumption of
isotropy, homogeneity, and symmetry [52]) was defined in Equation (4.1). The stress tensor depends
on the Lamé coefficients λ > 2

3µ and µ > 0. The relation of the first Lamé coefficient λ, the second
Lamé coefficient µ (also called shear modulus), and the Poisson ratio ν ∈ [0, 0.5], is given by

λ = 2νµ
1− 2ν .

This relation plays an essential role in this thesis because nearly incompressible solids are considered,
where ν → 0.5, which is equivalent to λ→∞.

Remark 11 (Lamé constants). We emphasize that the experimental determination of the Lamé con-
stants is derived from an expansion of the constitutive equation concerning the (nonlinear) Green-Saint-
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Venant strain tensor E(u) = 1
2 (∇u+∇uT +∇uT∇u), and is not related to the defined linearized strain

tensor Elin(u) [52, Chapter 3].

Remark 12 (Poisson ratio). The Poisson ratio is a unit-less quantity in [−1, 0.5], where 0.5 is the
incompressible limit. It describes the compressed material’s ratio into the two directions orthogonal to
the compression direction [184].

With the help of the definitions above, a fracture in a solid under deformation can be described via
minimizing the following energy functional Eε(u, ϕ):

Formulation 5 (Energy minimization). Let V := H1
0 (Ω;R2) and W := H1(Ω). Find a pair (u, ϕ) ∈

V ×W, where u : (Ω× I)→ R2 and ϕ : (Ω× I)→ [0, 1] such that

min
(u,ϕ)∈V×W

Eε(u, ϕ) = 1
2

∫
Ω
g(ϕ)σ(u) : Elin(u) dx+GC

∫
Ω

1
2ε (1− ϕ)2 + ε

2 |∇ϕ|
2 dx,

and ∂tϕ ≤ 0.
(4.4)

In Equation (4.4), the crack irreversibility condition is given as an additional constraint. The phase-
field function has to decrease in time. The constraint contains Griffith’s idea similar to Formulation 4
that a crack cannot heal. Only the irreversibility condition is time-dependent in a stationary mini-
mization problem formulation.
If pressure acts as an internal force on the crack boundary, pressure terms are added with a given
pressure ρ, yielding the following minimization problem:

Formulation 6 (Energy minimization pressure driven). Let a pressure ρ ∈ L∞(Ω) be given. Find a
pair (u, ϕ) ∈ V ×W, such that

min
(u,ϕ)∈V×W

Eε(u, ϕ) = 1
2

∫
Ω
g(ϕ)σ(u) : Elin(u) dx+

∫
Ω
ϕ2ρ∇ · u dx

+
∫

Ω
ϕ2∇ρ u dx+GC

∫
Ω

1
2ε (1− ϕ)2 + ε

2 |∇ϕ|
2 dx,

and ∂tϕ ≤ 0,

(4.5)

with regularization parameters κ, ε > 0. The degradation function g(ϕ) is defined in Equation (4.3).
A proper choice of the regularization parameters ε and κ is discussed in Section 4.5.

Because we assume the pressure to be constant, with ∇ρ = 0, the third term in Equation (4.5)
vanishes [184]. The last integral is called Ambrosio-Tortorelli approximation [5, 6] for the weighted
Hausdorff measure GCH1(C) [85] of the lower-dimensional crack C.

4.2 Primal phase-field fracture problem in weak form

For a variational problem formulation, we reformulate the problem statement as a CVIS. Therefore,
proper ansatz and test spaces have to be chosen. For the variational form, directional derivatives of
the energy functional are needed for minimizing the functional.
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Definition 5 (Directional derivatives in Banach spaces). Let A,B be normed vector spaces and let D
be non-empty. Let f : D → B be a given mapping. If the limit

f ′(v)(h) = lim
s→0

f(v + sh)− f(v)
s

= d

ds
f(v + sh)|s=0, v ∈ D, h ∈ A,

exists, then f ′(v)(h) is called the directional derivative of the mapping f at v into the direction h.

We derive the Euler-Lagrange equations, which arise if we solve the first variation instead of a min-
imization problem (first-order optimality conditions). In the calculus of variation and classical me-
chanics, Leonhard Euler and Joseph-Louis Lagrange developed a system of second-order PDEs whose
solutions are stationary points of the given minimized functional [71].
Further, we have to handle the time-dependent crack irreversibility condition for a variational form of
the energy minimization problem from Formulation 5 or 6 (Section 4.1). We need two definitions for
using a common approach for obstacle problems. We formulate optimality conditions for a minimizer
ϕ from a convex subset of W, which fulfills the irreversibility [20]. In the context of quasi-static
modeling, we use incremental steps instead of time steps. The index of increments is denoted as
n in the following. Two definitions are required to reformulate the time-dependent irreversibility
constraint as a constraint on the current phase-field ϕn := ϕ(tn) related to the phase-field from the
previous incremental step ϕn−1 := ϕ(tn−1).

Definition 6 (Convex set). A set K is called a convex set if it holds for any u, v ∈ K

su+ (1− s)v ∈ K, for all s ∈ [0, 1].

Definition 7 (Convex functional). Assume K to be a convex set. A functional E : K → R is convex
if and only if

E(su+ (1− s)v) ≤ sE(u) + (1− s)E(v) ∀u, v ∈ K and s ∈ [0, 1].

Proposition 2. The subset K := {ϕn ∈ W |ϕn−ϕn−1 ≤ 0 a.e. in Ω}, with W = H1(Ω), is a convex
set.

Proof Let ϕ,ψ ∈ K be given. Then it holds

sϕ+ (1− s)ψ ∈ H1(Ω) for s ∈ [0, 1].

Further,

0 ≤ sϕ+ (1− s)ψ ≤ sϕn−1 + (1− s)ϕn−1 = ϕn−1 ≤ 1.

Thus also sϕ+ (1− s)ψ ∈ K. �

Based on the definition of the convex subset

K := {ϕn ∈ W |ϕn − ϕn−1 ≤ 0 a.e. in Ω},

the Euler-Lagrange equations with variational inequality are stated first and proven afterwards.
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Proposition 3 (Primal phase-field fracture problem/Euler-Lagrange equations).
Find a pair (u, ϕ) ∈ V × K such that

(g(ϕ)σ(u), Elin(w)) = 0 ∀w ∈ V,

(1− κ)
(
ϕσ(u) : Elin(u), ψ − ϕ

)
+GC(−1

ε
(1− ϕ), ψ − ϕ)

+ GCε(∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ψ ∈ K.

(4.6)

Derived from the energy minimization problem from Formulation 6, the Euler-Lagrange equations for
pressurized phase-field fractures are given in the following.

Proposition 4 (Primal phase-field fracture problem/Euler-Lagrange equations, pressure driven).
Let a pressure ρ ∈ L∞(Ω) be given. Find a pair (u, ϕ) ∈ V × K such that(

g(ϕ)σ(u) , Elin(w)
)

+ (ϕ2ρ,∇ · w) = 0 ∀w ∈ V,

(1− κ)(ϕσ(u) : Elin(u), ψ−ϕ) + 2(ϕρ∇ · u, ψ − ϕ)

+ GC

(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ K.

The Propositions 3 and 4 build the basis for all later chapters. We state the proof of Proposition 4,
derived from Formulation 6. For the proof of Proposition 3, the proof coincides to the given one with
ρ = 0.
Proof For simplicity, the index n is omitted in the proof. We obtain the coupled system via
computing the directional derivatives of Eε(u, ϕ) into the directions w and (ψ − ϕ) denoted as

E′ε(u, ϕ)(w),
E′ε(u, ϕ)(ψ − ϕ),

and use the convexity of the energy functional in the second argument while keeping the displacements
u fixed for u,w ∈ V and ψ ∈ K. The derivation of the Euler-Lagrange equations is split into two parts
for the two directional derivatives:

a) We start with E′ε(u, ϕ)(w).
For the first term of the u-equation from Formulation 6, we use [184, Proposition 18], which
states that

(σ(u) : Elin(u))′(w) = 2σ(u) : Elin(w),

since the Cauchy stress tensor σ(u) is symmetric. It leads to(
1
2

∫
Ω

(g(ϕ)σ(u) : Elin(u) dx
)′

(w) = 1
2

∫
Ω
g(ϕ)(σ(u) : Elin(u))′(w) dx

=
∫

Ω
g(ϕ)σ(u) : Elin(w) dx

= (g(ϕ)σ(u), Elin(w)).
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For the pressure term, the linearity of the divergence operator gives(∫
Ω
ϕ2ρ∇ · u dx

)′
(w) =

∫
Ω
ϕ2ρ∇ · w dx = (ϕ2ρ,∇ · w).

The last two terms from Proposition 4 (Ambrosio-Tortorelli approximation of a crack C) are
independent of u. Next, building the sum of all directional derivatives for E′ε(u, ϕ)(w) reads

E′ε(u, ϕ)(w) = (g(ϕ)σ(u), Elin(w)) + (ϕ2ρ,∇ · w).

b) We obtain the second directional derivative E′ε(u, ϕ)(ψ−ϕ) via computing the directional deriva-
tives into the direction (ψ−ϕ) ∈ K for ψ,ϕ ∈ K and using the convex property of K, see Propo-
sition 2. We assume u to be fixed and let ϕ be the minimum of Eε(u, ϕ). Since K is convex, it
holds

ϕ+ s(ψ − ϕ) = sψ + (1− s)ϕ ∈ K, for s ∈ [0, 1], (4.7)

and further

Eε(u, ϕ+ s(ψ − ϕ)) ≥ Eε(u, ϕ), (4.8)

because ϕ is assumed to be a minimizer. So, Eε(u, ϕ+ s(ψ−ϕ)) is non decreasing on [0, 1], thus
its right-sided derivative at 0 is non-negative [20]. With the help of Equations (4.7) and (4.8) it
follows

E′ε(u, ϕ)(ψ − ϕ) = d

ds
Eε(u, ϕ+ s(ψ − ϕ))|s=0

= d

ds
Eε(u, sψ + (1− s)ϕ)|s=0 ≥ 0.

We build gradually the directional derivative of the stress term, the pressure term and the crack
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regularization terms:

E′ε(u, ϕ)(ψ − ϕ) = d

ds
Eε(u, ϕ+ s(ψ − ϕ))|s=0

= d

ds

1
2

∫
Ω

[(1− κ)(ϕ+ s(ψ − ϕ))2 + κ]σ(u) : Elin(u) dx|s=0

+ d

ds

∫
Ω

(ϕ+ s(ψ − ϕ))2ρ∇ · u dx|s=0

+ d

ds
GC

∫
Ω

1
2ε (1− ϕ− s(ψ − ϕ))2 dx|s=0

+ d

ds
GC

∫
Ω

ε

2(∇(ϕ+ s(ψ − ϕ)))2 dx|s=0

= 1
2

∫
Ω

[(1− κ)(2ϕ(ψ − ϕ) + 2s(ψ − ϕ)(ψ − ϕ))]σ(u) : Elin(u) dx|s=0

+
∫

Ω
2(ψ − ϕ)(ϕ+ s(ψ − ϕ))ρ∇ · u dx|s=0

+ GC

∫
Ω

1
2ε2(1− ϕ− s(ψ − ϕ))(−(ψ − ϕ)) dx|s=0

+ GC

∫
Ω

ε

22(∇(ϕ+ s(ψ − ϕ))∇(ψ − ϕ)) dx|s=0

=
∫

Ω
[(1− κ)ϕ(ψ − ϕ)]σ(u) : Elin(u) dx

+
∫

Ω
2(ψ − ϕ)ϕρ∇ · u dx+GC

∫
Ω

1
ε

(1− ϕ)(ψ − ϕ) dx

+ GC

∫
Ω
ε(∇(ψ − ϕ)ϕ) dx

= ((1− κ)ϕσ(u) : Elin(u), ψ − ϕ) + (2ϕρ∇ · u, ψ − ϕ)

+ GC

(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0

The computed directional derivatives lead to Proposition 4: a CVIS with the irreversibility condition
embedded in a convex subset K ⊂ W. Details on constraints of obstacle and contact problems can be
found, e.g., in [102, 103]. �

4.3 Primal phase-field fracture problem in strong form

We started with an energy minimization phase-field fracture problem with irreversibility condition
(Section 4.1) and derived the Euler-Lagrange equations with inequality constraint (Section 4.2). In
this section, we formulate the problem in strong form. The equivalence of the minimization problem,
the weak form, and a strong problem could be shown, which has to be conducted carefully and goes
beyond the scope of this thesis. For completeness, the continuous problem formulation of phase-field
fracture referred to Miehe et al. [130] is given in the following.

Formulation 7 (Primal phase-field fracture model in strong form). Find u : (Ω × I) → R2 and
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ϕ : (Ω× I)→ R such that

−∇ · (g(ϕ)σ(u)) = 0 in (Ω× I),

(1− κ)ϕσ(u) : Elin(u)− GC
ε

(1− ϕ)− εGC∆ϕ ≤ 0 in (Ω× I).
(4.9)

The crack irreversibility condition is determined by

∂tϕ ≤ 0 in (Ω× I). (4.10)

For simplicity, we assume Dirichlet boundary conditions for the displacement function u stated as

u = uD on (∂Ω× I),

and boundary conditions for the phase-field function via

ε∂nϕ = 0 on (∂Ω× I),

To link the phase-field equation from Equation (4.9) and the crack irreversibility constraint from Equa-
tion (4.10), a complementarity condition is required:(

(1− κ)ϕσ(u) : Elin(u)− GC
ε

(1− ϕ)− εGC∆ϕ
)
· (∂tϕ) = 0 in (Ω× I).

An initial condition

ϕ(x, 0) = ϕ0 in (Ω× {0}),

completes the problem formulation.

If a pressurized fracture phenomenon is considered, pressure terms (with given pressure ρ) are added
in the strong problem formulation:

Formulation 8 (Pressure-driven primal phase-field fracture model in strong form). Let ρ : (Ω× I)→
R be a given (constant) pressure. Find u : (Ω× I)→ R2 and ϕ : (Ω× I)→ [0, 1] such that

−∇ ·
(
g(ϕ)σ(u)− ϕ2ρ

)
= 0 in (Ω× I),

(1− κ)ϕσ(u) : Elin(u)− GC
ε

(1− ϕ)−εGC∆ϕ +2ϕρ∇ · u ≤ 0 in (Ω× I).

As denoted in Formulation 7, the complementarity condition of the two stated equations, boundary and
initial conditions are required. The crack irreversibility is an added constraint.

Proving the equivalence of a similar strong and weak problem formulation would require a careful use
of the fundamental lemma of the calculus of variations, see [54]. Further, embedding theorems for
Sobolev spaces have to be used to transition from a weak to a strong form. For further details, we
refer to Adams and Fournier [1], and Ciarlet [53].
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4.4 Notion of Γ-convergence for phase-field fracture
We use the notion of Γ-convergence to establish sharp interface limits when working with phase-field
fracture formulations. For ε→ 0 (h→ 0) we can prove that minima of the regularized energy functional
converges in the sense of Γ-limits to minima of the non-regularized functional which describes the
fracture behavior according to Griffith. In this section, the Γ-convergence theorem is given for an
energy functional similar to Formulation 5 from Section 4.1 Ω ⊂ R. The section is based on [41, 64].

Formulation 9 (General energy functional for phase-field fracture modeling).

Eε(u, ϕ) = 1
2

∫
Ω

((
(1− κ)ϕ2 + κ

)
(2µ+ λ)|∇u|2 + ρ ϕ∇u

)
dx

+1
2GC

∫
Ω

(
1
ε

(1− ϕ)2 + ε|∇ϕ|2
)
dx.

(4.11)

Remark 13 (Simplified notation in elasticity term). In the proof of Γ-convergence, an energy func-
tional as in Formulation 9 is assumed. In Formulation 6 from Section 4.1, we have the bulk energy
term (σ(u) : Elin(u)) instead of (2µ+ λ)|∇u|2. In one dimension one can easily see that

σ(u) : Elin(u) = (2µ+ λ)|∇u|2.

The proof of Γ-convergence in higher dimensions for the pressurized phase-field fracture problem is
given by Sommer [157].

We see that under certain conditions, the phase-field fracture problem from Formulation 9 is a valid
choice as an approximation of the Ambrosio-Tortorelli [5, 6] functional

ET (u,C) = 1
2

∫
Ω

(
(2µ+ λ)|∇u|2 + ρ∇u

)
dx+GC#(S(u)), (4.12)

where S(u) is the set of discontinuities of u and #(S(u)) is the cardinality of S(u). To formulate the
Γ-convergence theorem, the following definitions are required.

Definition 8. (Space of piecewise constant functions) For Ω ∈ Rn the space of piecewise constant
functions is defined by

PC(Ω) =
{
f : Ω→ R

∣∣∣∣∣ ∃ non-overlapping Ii ⊂ Ω s.t.
⋃
i

Īi = Ω, ci ∈ R : f |Ii = ci ∀ i
}
.

Definition 9. (Space of piecewise H1-functions) For Ω ∈ Rn the space of functions, which are piece-
wise of H1, is defined by

PH1(Ω) =
{
f : Ω→ R

∣∣∣∣∣ ∃ non-overlapping Ii ⊂ Ω s.t.
⋃
i

Īi = Ω : f ∈ H1(Ii) ∀ i
}
.

The general definition of Γ-convergence reads:

Definition 10. (Γ-convergence) Let X be Banach space. For a given sequence of functions (fj) :
X → R and a function f∞ : X → R, the sequence (fj) Γ-converges in X to f∞ if for all x ∈ X it
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holds

(i) for every sequence (xj) converging to x

f∞(x) ≤ lim inf
j→∞

fj(xj) (lim inf inequality),

(ii) there exists a sequence (xj) converging to x such that

f∞(x) ≥ lim sup
j→∞

fj(xj) (lim sup inequality).

The function f∞ is called the Γ-limit of (fj) and we write f∞ = Γ-limj fj.

The following theorem verifies the use of the developed approximation functional and guarantees
that a minimizer of the functional in Equation (4.11) converges to a minimizer of the functional in
Equation (4.12) as ε → 0. Note that Theorem 1 is formulated for one incremental step, and since it
holds for each step, the indices are dropped for better readability.

Theorem 1. The regularized functional Gj : L1(Ω)× L1(Ω)→ R, defined by

Gj(uj , ϕj) =
{
Eεj (uj , ϕj) if (uj , ϕj) ∈ H1(Ω)×K,
+∞ otherwise,

Γ-converges, as

εj → 0+ for j →∞ and κ = O(εj),

to the functional G : L1(Ω)× L1(Ω)→ R, given by

G(u, ϕ) =
{
ET (u,C) if ϕ = 1 a.e. and u ∈ PH1(Ω),
+∞ otherwise.

Further, if (uj , ϕj) is a minimizer of Gj, then (uj , ϕj) (possibly a subsequence) converges to a mini-
mizer of G.

Proof The proof in 1d is separated into three parts: the lower semicontinuity inequality (Part 1 ),
the upper semicontinuity inequality (Part 2 ), and the property of convergence of minimizers of Gj to
a minimizer of G (Part 3 ). We stress that the execution of this proof1 is a detailed version of the
proof given by Braides [40, 41], which we present in Appendix A. �

Theorem 1 allows stating that Eε(u, ϕ) is a valid choice as an approximation of ET (u,C) if the
conditions for Γ-convergence are fulfilled: κj = O(εj), and the displacement function uj and the
phase-field function ϕj converge as ε→ 0. It implies that the choices of κj and εj are crucial for the
validity of the results, which leads to the next section.

1The proof was prepared by Kolditz [106]. His Bachelor’s thesis was co-supervised by the author of the thesis
on hand.
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4.5 Error analysis on the relation of h, κ, and ε

In this section2, the impact of the regularization parameters ε > 0 and κ > 0, and the discretization
parameter h, is discussed. A regularization parameter κ regularizes the bulk energy and should be
as small as possible to avoid over-estimating the bulk energy (resulting in an under-estimation of the
surface crack energy). In practice, it means: the greater the value of κ, the slower the crack grows.
Bellettini and Coscia [24] proved Γ-convergence of the regularized energy functional for κ→ 0, ε→ 0
and h → 0 with κ � ε and h � ε. In 1999, Bourdin et al. [31] presented the Γ-convergence of the
discretized Mumford and Shah functional [135] Eε,h(u, ϕ) for image segmentation with the assumption
h� κ� ε, which allows that Eε,h(u, ϕ) converges to min(F ), as ε→ 0. In the first numerical results
on images, the parameters are chosen such that h� κ� ε. Bourdin et al. [35] presented a phase-field
fracture model based on the Ambrosio-Tortorelli functional [5, 6] with the restrictions h � ε and
h � κ. Borden in 2012 [29] determined κ = 0 for a dynamic phase-field fracture model and argues
that a positive small κ is not necessary to obtain Γ-convergence, proved by Braides 1998 [40]. In a
dynamic phase-field fracture model, the second time derivative in u is not degraded, avoiding zero
entries in the discrete system [184], and confirming the statement from a numerical perspective. The
idea of the following tests is to understand the conducted error analysis for a reliable setting for κ, ε
and h, for one benchmark test with exact reference values. Throughout the series of numerical tests,
we use the Landau notation for evaluating the limit behavior of the considered parameters:

k = O(f) ⇐⇒ k

f
→ 0.

4.5.1 Configuration of Sneddon’s benchmark

We consider a stationary benchmark test [153], where constant pressure is applied in the inner of
a pre-existing crack in the middle of a domain, and only the crack width varies. This test setup is
motivated by Sneddon [155], and Sneddon and Lowegrub [156], and used in several other publications,
e.g., [33, 176, 134, 88, 153, 22, 181, 180, 116]. We restrict ourselves to a 1d fracture C on a two-
dimensional domain Ω = (−10, 10)2 as depicted in Figure 4.2 on the left. The fracture is centered
horizontally within Ω and has a constant half crack length l0 = 0.25 and varying width. Precisely,
the crack width corresponds to 2h, where h is the minimal cell diameter of the mesh. The mesh is
pre-refined geometrically in the crack zone, as depicted exemplarily for one adaptive refinement step
in Figure 4.2 on the right, where the crack zone is resolved with the smallest mesh size. The driving
force is given by a constant pressure ρ = 10−3 Pa in the inner crack. The parameter setting is given
in Table 4.1.
Two specific quantities of interest are discussed: the crack opening displacement (COD) and the total
crack volume (TCV). The COD is defined on an infinite domain via

COD(x) := [u · n](x) ≈
∫ ∞
−∞

u(x, y) · ∇ϕ(x, y) dy.

2Results from Section 4.5 are under review, see [107].
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(−10, 10)

(−10,−10) (10,−10)

(10, 10)

domain Ω

crack C
transition zone of size ε

(−4,−4)

(−4, 4)

(4,−4)

(4, 4)

Figure 4.2: Left: geometry of the two-dimensional Sneddon’s test. Right: zoom-in to the pre-refined crack zone in
[−4, 4]× [−4, 4] with two global refinement steps and one local refinement step (geometrically pre-refined).

The maximum of COD is reached in x = 0 and thus given by

CODmax := [u · n](0) ≈
∫ ∞
−∞

u(0, y) · ∇ϕ(0, y) dy.

The analytical solution for an infinite domain is given by Sneddon and Lowengrub [156], via

CODref = 2ρl0
E′

(
1− x2

l20

) 1
2

,

where E′ := E
1−ν2 with the Young’s modulus E, and the Poisson ratio ν. The TCV can be computed

numerically via

TCV =
∫

Ω
u(x, y) · ∇ϕ(x, y) d(x, y).

The analytical solution [156] is given by

TCVref = 2πρl20
E′

.

4.5.2 Numerical studies on the relation of h, κ, and ε

As stated in Theorem 1 on a continuous level, for Γ-convergence, a specific choice of the regularization
parameters κ and ε is required. Further, we need to choose ε > h to ensure that the mesh does not
omit the crack (at least for linear finite elements). Transferred from the notion of Γ-convergence from
Section 4.4, we state:

κ = O(ε) and h = O(ε), (4.13)
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Parameter definition value

Ω domain (−10, 10)2

h diagonal cell diameter test-dependent
l0 half crack length 0.25
GC material toughness 1.0 N/mm
E Young’s modulus 1.0 MPa
µ Lamé parameter 0.42N/mm2

λ Lamé parameter 0.28N/mm2

ν Poisson’s ratio 0.2
ρ applied pressure 10−3 Pa
ε bandwidth of the initial crack test-dependent
κ regularization parameter test-dependent

Table 4.1: Setting of the material and numerical parameters used for the numerical tests with Sneddon’s benchmark.

as ε → 0, which is numerically desirable but challenging. A possible choice, similar to Wheeler at
al. [176, Case 4], is

Case 1: κ = 0.25h0.5 and ε = 0.25h0.25. (4.14)

This setting satisfies the Γ-convergence conditions introduced in Equation (4.13) for all h < 0.5.
Further, h < ε is satisfied for all h < 0.5.

Remark 14 (Comparison to literature). In contrast to Engwer and Schumacher [64], ε, κ and h are
not decreased proportionally, but according to the above condition, such that κ� ε and h� ε.

−0.5 −0.25 0 0.25 0.5
0

1

2

3

4

5
·10−4

x

C
O
D

h = 0.0221, κ = 0.0371628, ε = 0.0963882
h = 0.0110, κ = 0.0262780, ε = 0.0810525
h = 0.0055, κ = 0.0185814, ε = 0.0681567
h = 0.0027, κ = 0.0131390, ε = 0.0573128
ref. [156]

Figure 4.3: Visualization of the CODs for different h with κ and ε set as in Case 1 from Equation (4.14). The
corresponding TCV and CODmax values are given in Table 4.2.

Satisfying the relations of κ and ε as denoted in Case 1, the numerically achieved COD values and
TCV values are given in Figure 4.3 and Table 4.2 for different minimal mesh sizes h. By decreasing h,
the COD values do not converge to the analytical solution proposed by Sneddon and Lowengrub [156].
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Misleadingly, the TCV value for h = 0.022 is relatively close to the exact reference. Since TCV is the
integral of the COD curve, and even if the exact COD is underestimated, the approximative bell curve
is wider than the exact one, which results in a larger (or in this case better) TCV value. Resolving the
crack area, h can be assumed to be sufficiently small for satisfactory COD and TCV values compared
to the literature, e.g., [88]. One reason for imprecise COD values may be the regularization parameter
κ. To give quantitative arguments for this observation, in Table 4.3, an error analysis on κ for the
TCV value is given.

h CODmax TCV # dof

0.0221 0.000286517 0.000313325 43 605
0.0110 0.000274623 0.000276284 100 089
0.0055 0.000267051 0.000253393 176 709
0.0027 0.000263680 0.000239692 628 533

ref. [156] 0.000480000 0.000376991 -

Table 4.2: Results of maximal crack opening displacement (CODmax), total crack volume (TCV) and degrees
of freedom (# dof) for different mesh sizes h and the relations of Case 1 from Equation (4.14) compared to the
reference values of Sneddon and Lowengrub [156].

We identify possible reasons for the non-satisfactory results for two relevant quantities of interest
(COD and TCV). The idea is to analyze the TCV-error for different parameter settings, especially
for different values of κ. Thus, Table 4.3 provides detailed test results.

κ TCV TCV error

h = 5.52427 · 10−3 0.000239171 36.5 %
0.5h = 2.762135 · 10−3 0.000290719 22.8 %

0.25h = 1.381068 · 10−3 0.000330106 12.4 %
10−1 h = 5.52427 · 10−4 0.000361447 4.1 %
10−2 h = 5.52427 · 10−5 0.000384297 1.9 %
10−3 h = 5.52427 · 10−6 0.000386788 2.60 %

10−12 h = 5.52427 · 10−15 0.000387067 2.67 %
ref. [156] 0.000376991 -

Table 4.3: Error in the total crack volume (TCV error) in percentage (compared to the exact TCVref = 0.000376991
on an infinite domain) for different choices of κ depending on the diagonal cell diameter h = 0.00552427 and fixed
ε = 2h.

With a tolerance of less than 4 % TCV error, κ should be smaller than 10−5, see Table 4.3. Thus we
determine

κ = 0.25h0.5 < 10−5,

which leads to a discretization parameter h ≈ 10−9. This would yield an unrealistic number of dof.
Even if only the known crack zone [−0.26, 0.26]×[−0.4, 0.4] is refined, the problem would have a size of
approximately 1017 dof. Thus we need to find a setting for κ, which does not violate the Γ-convergence
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conditions, but tends to zero faster with h. Another possible choice is given by:

Case 2: κ = 10−3 h0.75 and ε = 0.25h0.25. (4.15)

In Case 2, h = O(κ) and κ = O(ε) is satisfied, and κ is small enough for promising results of the
two chosen quantities of interest with h ≈ 10−5, without exceeding the computational capacity. The
behavior of κ, ε and h for Case 2 is visualized in Figure 4.4. We can see that κ is small, even for large
h. This is a major computational advantage compared to Case 1 since we do not need as many dof as
in Case 1. Figure 4.5 provides results for Case 2.

0 0.27 1.1 4.4

·10−2

0

5 · 10−2

0.1

0.15

h

ε
or
κ

κ = 0.25h0.5 (Case 1)
ε = 0.25h0.25 (Case 1 & 2)
κ = 10−3 h0.75 (Case 2 & 3)
ε = 0.4h0.7 (Case 3)
h

Figure 4.4: Visualization of ε and κ set as in Case 1 from Equation (4.14), and Case 2 from Equation (4.15). We
can see that κ is small in Case 3 from Equation (4.16) even for large h, and ε satisfies ε > h and h = O(ε) for
reasonable h while being close to h.
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h = 0.0221, κ = 5.73 · 10−5, ε = 0.0963882
h = 0.0110, κ = 3.41 · 10−5, ε = 0.0810525
h = 0.0055, κ = 2.03 · 10−5, ε = 0.0681567
h = 0.0027, κ = 1.20 · 10−5, ε = 0.0573128
h = 0.0013, κ = 7.16 · 10−6, ε = 0.0481941
ref. [156]

Figure 4.5: Visualization of the COD values for different h with h-dependent κ, and ε set as in Case 2 from
Equation (4.15). The corresponding TCV and CODmax values are given in Table 4.4.

As we can see in Figure 4.5 and Table 4.4, the results are closer to the reference values for Case 2 than
for Case 1 but there is still a recognizable error.
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h CODmax TCV # dof

0.0221 0.000548804 0.000536082 43 605
0.0110 0.000531268 0.000487890 100 089
0.0055 0.000517768 0.000456257 176 709
0.0027 0.000509288 0.000435760 628 533
0.0013 0.000503050 0.000421441 2 416 869

ref. [156] 0.000480000 0.000376991 -

Table 4.4: Results of computations based on the relations of Case 2 from Equation (4.15).

ε TCV TCV error

64h = 0.35355328 0.000909849 141.35 %
32h = 0.17677664 0.000608694 61.46 %
16h = 0.08838832 0.000478809 27.00 %
8h = 0.04419416 0.000425164 12.78 %
4h = 0.02209708 0.000402041 6.64 %
2h = 0.01104854 0.000390668 3.63 %
h = 0.00552427 0.000384213 1.92 %

ref. [156] 0.000376991 -

Table 4.5: Error in TCV in percentage (compared to the exact TCV = 0.000376991 on an infinite domain) for
different choices of ε depending on the diagonal cell diameter h = 0.0055 and fixed κ = 10−6 h.

Since κ is small enough, in the next step, we investigate the error in the bandwidth ε. The error
analysis in Table 4.5 indicates that the impact of ε is sufficiently small for ε ≈ 3.8× 10−4. We expect
the error to reduce further for smaller h yielding smaller ε. For the error analysis, we chose ε = h as
the smallest reasonable choice since ε indicates the thickness of the crack, and if ε < h, the numerical
grid could omit the crack with linear finite elements. We propose a third setting, where ε is smaller
compared to Case 1 and Case 2 and closer to h while not violating ε > h:

Case 3: κ = 10−3 h0.75 and ε = 0.4h0.7. (4.16)

The numerical results of the same tests based on the setting in Case 3 are given in Figure 4.6 and
Table 4.6. Compared to the reference solution given by Sneddon and Lowengrub [156], we achieve
good results for small discretization parameters h.

h CODmax TCV # dof

0.0221 0.000513461 0.000432474 43 605
0.0110 0.000499444 0.000406175 100 089
0.0055 0.000489812 0.000391876 176 709
0.0027 0.000484421 0.000384389 628 533
0.0013 0.000481000 0.000380047 2 416 869

ref. [156] 0.000480000 0.000376991 -

Table 4.6: Numerical results of two quantities of interest (CODmax and TCV), and dof (# dof) for different h with
h-dependent κ and ε set as in Case 3 defined in Equation (4.16).
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h = 0.0221, κ = 5.73 · 10−5, ε = 0.0277392
h = 0.0110, κ = 3.41 · 10−5, ε = 0.0170755
h = 0.0055, κ = 2.03 · 10−5, ε = 0.0105112
h = 0.0027, κ = 1.20 · 10−5, ε = 0.0064704
h = 0.0013, κ = 7.16 · 10−6, ε = 0.0039830
ref. [156]

Figure 4.6: Visualization of the COD values for different h with h-dependent κ and ε, set as in Case 3 defined
in Equation (4.16). For the smallest h, the numerical and the reference values coincide nearly perfectly. The
corresponding TCV and CODmax values are given in Table 4.6.

The results of this section show that the best setting for the three relevant parameters is

κ = 10−3 h0.75,

ε = 0.4h0.7,

if h→ 0. In this case, we obtain for the largest h a TCV error of 14.72 % and a COD error of 6.97 %.
The errors reduce to 0.81 % (TCV) and 0.2 % (COD) on a mesh with around 2.5 million dof. This is
a major improvement compared to the settings of Case 1 and Case 2 and handles the requirements on
ε and κ satisfactorily while not being restricted to a too fine mesh resolution.

Remark 15 (The relation of ε and h in practice). The often-used setting ε = 2 h and κ set sufficiently
small, can give satisfactory results for a certain application even if conditions for Γ-convergence are
violated.

4.6 Three definitions of the energy functional
The regularized phase-field fracture approach of Bourdin et al. [35] was inspired by the Ambrosio-
Tortorelli functionals [5, 6]. In the following, three energy functionals are presented: AT2, the
Ambrosio-Tortorelli functional with a quadratic energy degradation function; AT1, the Ambrosio-
Tortorelli functional with a linear energy degradation function; and Wu’s functional [189] with a
linear and a quadratic part in the energy degradation function. In the previous chapters, the problem
formulations were based on the classically used functional AT2. In phase-field fracture, also AT1 is
an often used energy functional. Via the linear term depending on ϕ, it guarantees an ideally linear
stress-strain response up to the elastic limit stress for linearly elastic solids [193]. The focus of this
section is the pure definition of the energy functionals. The previously introduced pressure terms are
omitted in the following.
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4.6.1 AT2 functional

The AT2 functional (named according to Tanné et al. [163]) is defined as

AT2 : Eε(u, ϕ) = 1
2

∫
Ω
g(ϕ)σ(u) : Elin(u) dx

+ GC

∫
Ω

1
2ε (1− ϕ)2 dx+GC

∫
Ω

ε

2 |∇ϕ|
2 dx.

(4.17)

It is the energy functional we used in all previous sections, especially in Section 4.4, where we dicussed
the notion of Γ-convergence (in 1d).

4.6.2 AT1 functional

Bourdin et al. [37] introduced a similar functional with a stress-softening behavior. The damage model
remains purely elastic without damage until the stress reaches the critical value [123]. The functional
is defined as

AT1 : Eε(u, ϕ) = 1
2

∫
Ω
g(ϕ)σ(u) : Elin(u) dx

+ GC

∫
Ω

3
8ε (1− ϕ) dx+GC

∫
Ω

3
8ε|∇ϕ|

2 dx.

(4.18)

The proof of Γ-convergence can also be conducted for the AT1 functional, see [70].

4.6.3 Wu’s functional

To decrease the impact of a possibly material-dependent length scale parameter ε, Wu [189, 190] and
Wu and Nguyen [191] proposed a unified phase-field theory for damage and quasi-brittle failure with
different softening laws. For simulating fractures in EPDM rubber in Chapter 7, we follow Wu’s energy
functional defined as

Wu: Eε(u, ϕ) = 1
2

∫
Ω
g(ϕ)σ(u) : Elin(u) dx

+ GC

∫
Ω

1
πε

(
2(1− ϕ)− (1− ϕ)2) dx+GC

∫
Ω

1
π
ε|∇ϕ|2 dx.

(4.19)

Aside from different coefficients, Wu’s energy functional in Equation (4.19) compared to the functionals
in Equations (4.17) and (4.18) uses a combination of a linear and a quadratic part in the crack energy
term, which yields the useful property of finite support for a localized phase-field [189]. The numerical
consequences for a real-world application of this choice are described in Section 7.5. The Euler-
Lagrange equations of Wu’s energy functional in Equation (4.19) can be stated as follows:

Proposition 5 (CVIS of Wu’s energy functional). Given the initial data ϕn−1, ϕn−2 ∈ K. Find ϕ ∈ K
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and u ∈ V + {uD}, such that

(g(ϕ̃)2µElin(u), Elin(w)) + (g(ϕ̃)λtrElin(u)1, Elin(w)) = 0 ∀w ∈ V,

(1− κ)(ϕ2µElin(u) : Elin(u), ψ − ϕ) + (1− κ)(ϕλ∇ · u 1 : Elin(u), ψ− ϕ)

+2GC
π

(−1
ε
ϕ, ψ − ϕ) + 2GC

π
ε(∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ψ ∈ K.

(4.20)

Proof The proof works analogously to the proof of Proposition 3. �

Wu’s energy functional builds the basis for the problem formulation used in Chapter 7, where we
simulate fractures in punctured rubber strips.

4.6.4 Numerical studies on the choice of the energy functional

We conduct numerical tests for the three proposed energy functionals from the previous section to
understand the differences considering crack propagation. As a test case, we use the well-known single-
edge notched tension test adopted from [130]. The geometry and boundary conditions are displayed in
Figure 4.7 on the left. The domain Ω is a two-dimensional square of 10 mm length with a given crack
(geometrical slit) on the right side at 5 mm, tending to the midpoint of the square. On the bottom
boundary, the square is fixed, and on the top boundary, a time-dependent force in the x-direction
pulls to the left. We follow the boundary conditions described by Wick [182]: On the left and right
sides, the boundaries are defined to be traction-free (homogeneous Neumann conditions). The bottom
boundary is fixed via uy = 0 mm. On the top boundary, it holds ux = 0 mm, and in the y-direction,
we determine a time-dependent non-homogeneous Dirichlet condition:

uy = t · 1 mm/s,

where t ∈ I = (0, T ), T > 0 with an incremental step size δt > 0. The end time T corresponds to the
loading once the specimen is broken.
The material and model parameters are given as follows: the Lamé coefficients are λ = 121.15 kN/mm2

and µ = 80.77 kN/mm2. The critical energy release rate of the considered material is GC = 2.7 N/mm.
The loading increment is chosen as δt = 10−4 s and decreased to 10−6 s if the crack starts propagating.
We determine the bulk regularization parameter κ = 10−8. To compare the numerical results for the
three energy functionals, we evaluate the load functions on the top boundary Γtop computed via

(Fx, Fy) := 1
|Γtop|

∫
Γtop

g(ϕ̃)σ(uh) · n ds, (4.21)

with the stress tensor σ(uh) depending on the discrete solution variable uh and the outer normal
vector n. Within the single-edge notched tension test, we are interested in the evaluation of Fy.
Our goal is to observe and discuss the behavior of the single-edge notched tension test for the three
energy functional approaches, as defined in Equations (4.17), (4.18), and (4.19). We conduct three
computations (ε = h, 2h, 4h) with h = 0.011 for each functional on the same uniform mesh. In
Table 4.7, the maximal loading values and the real time at the maximal loading point are given,
respectively.
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Figure 4.7: Single edge notched tension test. Left: geometry and boundary conditions. Right: phase-field result at
the end of the simulation for all three test runs based on the three energy functionals.

Functional ε maximal loading [N] time at maximal loading [s]

AT2 h 852.903 0.0063
AT1 h 915.169 0.0066
Wu h 1 021.820 0.0076

AT2 2h 802.978 0.0061
AT1 2h 874.401 0.0065
Wu 2h 942.652 0.0069

AT2 4h 761.452 0.0060
AT1 4h 825.228 0.0061
Wu 4h 889.830 0.0066

Table 4.7: Study on the three energy functionals for the single-edge notched tension test: maximal loading values
and time values for AT2, AT1 and Wu, for three settings of the crack width ε = h, 2h, 4h. Same tests as in
Figures 4.8 and 4.9.
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Figure 4.8: Left: load-time step curves for the single-edge notched tension test with the AT2 functional, uniform
refined meshes and three relations for ε and h. The incremental step size is 10−4 s for the first 62 steps and reduced
to 10−6 s. Right: load-time step curves for the single-edge notched tension test with the AT1 functional, uniform
refined meshes and three relations for ε and h. The incremental step size is 10−4 s for the first 65 steps and reduced
to 10−6 s.

The load-time step curves in Figure 4.8 on the left and on the right are similar. For AT1 in Figure 4.8
(the plot on the right), the maximal value is approximately 75 N above the results for AT2. Further,
for both Ambrosio-Tortorelli functionals [5, 6], the maximal value is smaller, and the descent of the
curve is steeper for larger ε when the cracks starts propagating.
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Figure 4.9: Load-time step curves for the single-edge notched tension test with Wu’s functional, uniform refined
meshes and three relations for ε and h. The incremental step size is 10−4 s for the first 100 steps and reduced to
10−6 s.

In Figure 4.9, the maximal value is larger than the maximal value based on AT1. Further, the loading
decreases slower than with AT1 or AT2. On the other hand, the curves look smoother, and we can
observe the same behavior as for the Ambrosio-Tortorelli functionals [5, 6], that with a larger ε-h
relation, the energy releases faster.
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4.7 Splitting of the Cauchy stress tensor

In the classical Euler-Lagrange equations from Proposition 3 (Section 4.2), only damage or fracture
due to tensile forces is considered. In the following, we consider the two most popular approaches
to consider shear stresses in a material, given by Miehe et al. [130] and Amor et al. [7]. There exist
several further stress splitting definitions; see e.g., [196, 159, 158, 48, 73, 27, 66]. Comparison studies
on different approaches are given, e.g., in [3, 66, 184]. The Euler-Lagrange equation with degraded
stress tensor

g(ϕ̃)σ(u) = g(ϕ̃)σ+(u) + σ−(u),

have the following form:

Proposition 6 (Euler-Lagrange equations with stress splitting). Given the initial data ϕn−1, ϕn−2 ∈
K. Find a pair (u, ϕ) ∈ V × K such that

(g(ϕ̃)σ+(u), Elin(w)) + (σ−(u), Elin(w)) = 0 ∀w ∈ V,

(1− κ)
(
ϕσ+(u) : Elin(u), ψ − ϕ

)
+GC(−1

ε
(1− ϕ), ψ − ϕ)

+ GCε(∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ψ ∈ K.

Remark 16 (Wording for stress splitting). In the literature, there are several names for the same
meaning of splitting σ properly: stress splitting, Cauchy stress splitting, strain energy splitting, or
energy splitting.

The two most common approaches by Miehe et al. [130] and Amor et al. [7] are given in the following
subsections, where we define σ+(u) and σ−(u) from Proposition 6.

4.7.1 Stress split à la Miehe

Based on thermo-dynamical arguments from Miehe, Hofacker, and Welschinger [132], we distinguish
between compressive and tensile loading [30]. By only applying the phase-field parameter to the tensile
part of the elastic energy density, crack propagation under compression would be prohibited [30]. The
definition of Miehe et al. [130] is based on a spectral decomposition. The tensile stresses are named
σ+(u), the compressive stresses are summarized in σ−(u). They are defined as:

σ+
Miehe(u) = 2µE+

lin(u) + λmax {0, tr (Elin(u))}1,

σ−Miehe(u) = 2µ
(
Elin(u)− E+

lin(u)
)

+ λ (tr (Elin(u))−max {0, tr(Elin(u))})1,

with the strains [184]

Elin(u) := PΛPT , E+
lin(u) := PΛ+PT .
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We introduce the cut-off function

[x]+ :=
{
x, if x > 0,
0, if x ≤ 0.

The matrices P and Λ form the spectral decomposition with the help of the eigenvalues λ1(u) and
λ2(u) of the strain tensor Elin(u) [184]:

Λ =
(
λ1 0
0 λ2

)
, Λ+ =

(
[λ1]+ 0

0 [λ2]+

)
.

The corresponding eigenvectors are denoted by v1(u) and v2(u). The matrix P in E+
lin(u) is defined as

P := (v1(u), v2(u)).

The thermodynamic consistency of σ+(u) and σ−(u) has been discussed by Miehe et al. [132] and
Pham et al. [138]. A detailed description of the spectral decomposition and its implementation are
given in [87, Appendix A].

4.7.2 Stress split à la Amor

Alternatively, Amor et al. [7] propose a volumetric-deviatoric decomposition of the elastic energy
density [4], splitting the stress tensor into a volumetric and a deviatoric part.

σ+
Amor(u) = (λ+ µ) max {0, tr (Elin(u))}1 + 2µ

(
Elin(u)− 1

3tr (Elin(u))1
)
,

σ−Amor(u) = (λ+ µ) (tr (Elin(u))−max {0, tr(Elin(u))})1.

The Cauchy stress splitting à la Amor et al. [7] allows preventing interpenetration of the crack faces
under compression [4]. A relevant technical advantage is that it is easier to implement than Miehe’s
splitting.

Remark 17 (Drawback Amor’s splitting). We emphasize that for the single-edge notched pure shear
test according to Miehe et al. [130], different crack paths are observed if Amor’s splitting is used
with less than 20 000 quadrilateral elements (uniform refinement and bilinear Qc1 elements) [3]. The
drawback is that a sufficiently fine mesh is required for realistic crack paths.

4.7.3 Numerical studies on the choice of strain energy split

With the help of the well-known single-edge notched shear test described in Section 3.1, we point
out differences in the numerical results if Miehe’s or Amor’s splitting approach is considered, or if no
splitting of σ(u) is used (as in Section 4.7). For all tests in this study, the underlying energy functional
is the functional AT2 from Equation (4.17) (Section 4.6.1). We use the predictor-corrector scheme
from Section 3.3.1 for adaptive mesh refinement.
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Figure 4.10: Snapshots of the phase-field function ϕ at the end-time T = 0.02 s of the single-edge notched shear
test without Cauchy stress splitting for five refinement levels; 1 to 5 refinement steps from top to bottom with the
predictor-corrector scheme according to [87], threshold 0.8. Left two columns: ε = 0.044 fixed for all computations.
Right two columns: ε = 2h depending on the current minimal mesh size.
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Figure 4.11: Snapshots of the phase-field function ϕ at the end-time T = 0.02 s of the single-edge notched shear
test according to Miehe et al. [130] (left) and Amor et al. [7] (right) for five adaptive refinement levels; 1 to 5
refinement steps from top to bottom with the predictor-corrector scheme according to [87], threshold 0.8. For all
computations ε = 2h depending on the current minimal mesh size.
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Figure 4.12: Load-displacement curves related to the results from Figures 4.10, and 4.11 from top to bottom: in the
first plot, the load-displacement curves for five refinement levels (1 to 5 refinement steps from top to bottom with
the predictor-corrector scheme according to [87], threshold 0.8) , are given without stress splitting, in the second
plot with Miehe splitting, and the bottom plot with Amor splitting. The computed loading on the top boundary
is plotted versus the number of incremental steps. The incremental step size is 10−5 s.
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The results without any splitting approach in Figure 4.10 show three crack path behaviors depending
on the chosen mesh refinement level for ε = 2h (right two columns). The crack grows straight to the
left boundary for one and two levels of adaptive refinement (first two rows), which differs from the
expected crack path for this test. For three and four refinement steps (third and fourth row), the
crack pattern is more realistic and similar to Miehe’s splitting results. In the last row, the crack splits
in the initial crack tip, and two cracks propagate in a curved pattern (crack branching) to the left
boundary, similar to the (isotropic) results presented by Ambati et al. [3].
In Figure 4.11, the phase-field results for five computations with different refinement levels are given
for both splitting schemes (on the left Miehe, on the right Amor). Further, the meshes are given to
observe the adaptively refined mesh with the predictor-corrector scheme described in Section 3.3.1
with a threshold of 0.8. For all computations with ε = 2h, the crack is getting sharper with a higher
resolution of the crack zone. For the results based on Amor’s split, we observe what we mentioned
in Remark 17: for refinement levels one and two, the crack propagates nearly straight to the left
boundary, which does not give the expected crack behavior within the single-edge notched shear test.
With three refinement levels, in Figure 4.11, in the middle row on the right, with a sharper crack zone,
the phase-field solution becomes more realistic. For refinement level four and five, the Newton/Active
set solver does not converge within 100 steps. The results with Miehe’s split in Figure 4.11 on the left
are robust with refinement, so the crack behavior is independent of h.
In Figure 4.12, the load-displacement curves are given for the three cases: no splitting, splitting
according to Miehe and splitting according to Amor. In the first given load-displacement curves,
we observe the natural behavior of the loading force on the top boundary of the considered two-
dimensional square: the loading force increases until a certain maximum of around 400 N. At the point
where the crack starts propagating, the loading force is immediately decreasing until the material is
broken. In the second and third load-displacement plot, first, the maximal loading is much higher
(≈ 800 N) and at total failure of the material (fracture until the left boundary), there is still a loading
force. Especially with Miehe’s splitting, the loading does not release as physically expected if the
material is broken. Scattering effects in the curves can be ignored due to adaptively refined meshes,
especially with coarse starting grids.

Conclusions of the chapter
Starting from the energy minimization problem of Francfort and Marigo [72], we derived the Euler-
Lagrange equations for the primal phase-field fracture model based on different energy functionals
and stress splitting approaches. Especially the studies in Section 4.6.4 and 4.7.3 will be taken up
in Section 7.5 for the application of interest, observing the crack behavior for a more complex real-
world problem. The Euler-Lagrange equations from Formulations 3 and 4 (Section 4.2) form the
basis for the next chapter. Chapter 5 comprises phase-field fracture modeling for crack propagation
in compressible and incompressible solids. The key idea is formulating the elasticity part of the
Euler-Lagrange equations in mixed form to avoid locking effects in incompressible solids.



Chapter 5

Modeling & simulations for
incompressible solids

In this chapter1, we focus on phase-field fracture modeling for incompressible solids. Nearly in-
compressible solids as rubber-like materials arise in various sciences, i.e., engineering [95, 164] or
medicine [96, 152]. Relevant for industry is the design of reliable rubber products [111]. Rubbers
are frequently used in engineering, e.g., for tires, shock absorbers, seals, and laminated bearing pack-
ages [169]. Hyperelastic rubbers are attractive because they withstand high strain levels without
permanent rupture deformation [137]. Considering numerical simulations, the particular property of
incompressible solids makes it challenging to successfully explain or reproduce crack propagation in
rubbers [161]. Section 5.1 clarifies the problematic effects in incompressible solids within the primal
phase-field fracture Formulations 3 and 4 from Section 4.2. In the subsequent Section 5.2, we derive
a new model that simulates fractures in compressible and incompressible solids. We show an inf-sup
condition in Section 5.3 and further the well-posedness of the elasticity part of the problem. With
the help of the new form and the discretization from Chapter 3, we present the first numerical results
in Sections 5.4 and 5.5. We complete this chapter with Section 5.6 by substantiating the benefit of a
modification in the problem formulation with numerical results.

5.1 Locking effects
Compressibility is a material property describing the volume change under forces. Purely incompress-
ible solids do not exist, but in theory, rubber-like materials are often assumed to be incompressible.
This property requires a lot of energy to produce a small change of density [39].
Six relevant material parameters can determine the compressibility behavior of a material: bulk modu-
lus (K), Young’s modulus (E), Lamé’s first parameter (λ), shear modulus or Lamé’s second parameter
(µ), Poisson’s ratio (ν), and the P-wave modulus (M). The relation of the Lamé coefficient λ > 0 to
the Poisson ratio ν ∈ [0, 0.5] and the Lamé coefficient µ > 0 is given by

λ(µ, ν) = 2νµ
1− 2ν . (5.1)

1Parts of this chapter are already published in [128].
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If ν tends to 0.5 (incompressible limit), the parameter λ increases such that λ� µ. With the help of
the other quantities, λ could be defined as

λ(K,E) = 3K(3K − E)
9K − E , λ(K,µ) = K − 2µ

3 ,

λ(K, ν) = 3Kν
1 + ν

, λ(E, ν) = Eν

(1 + ν)(1− 2ν) .

The elastic properties of homogeneous linear elastic materials are uniquely determined by any two
moduli among these. In this thesis, we consider linear elasticity, constant temperature and focus
on the relation of the Lamé coefficient and the Poisson ratio as defined in Equation (5.1). From a
modeling perspective, incompressibility is challenging. To understand why, we consider the phase-field
fracture model from Formulation 3 (Section 4.2) as a baseline and reduce the PDE system to the linear
elasticity problem. For the following discussion on locking effects, we show the problem statement’s
boundedness, continuity, and coercivity for well-posedness. Further, and more relevant for a discussion
on locking effects, specific properties of the bilinear form a(·, ·) allow proposing Céa’s Lemma 2 for
our problem of interest.

Proposition 7 (Well-posedness of the linear elasticity problem). Let V := H1
0 (Ω;R2), defined in

Equation (2.2), and we assume Dirichlet and Neumann boundary conditions. Let f ∈ L2(Ω). The
problem of finding u ∈ V such that

(2µElin(u) + λ tr(Elin(u))1, Elin(w)) = (f, w), ∀w ∈ V,

is well-posed.

Proof For the proof of existence and uniqueness of a solution, we use Lax-Milgram from Lemma 1.
We define the bilinear form

a(u,w) := (2µElin(u) + λ tr(Elin(u))1, Elin(w)) ,

and the right hand side

l(w) := (f, w).

a) The linearity of the right hand side is obtained with standard arguments [184], yielding

|l(w)| ≤ ‖f‖L2(Ω)‖w‖V .

b) For the continuity of the bilinear form a(·, ·) we use two estimates:

Elin(u) : Elin(u) ≤ ∇u : ∇u,
(∇ · u)2 ≤ d∇u : ∇u,

where d denotes the dimension of the vector field. In this thesis, we determine d = 2. Proofs of
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the estimates in two dimensions are given by Cinatl [55]. Further, it holds

(σ(u), Elin(w)) = 2µ(Elin(u), Elin(w)) + λ(tr(Elin(u))1, Elin(w))
= 2µ(Elin(u), Elin(w)) + λ(∇ · u,∇ · w),

which leads to the following estimate

a(u,w) = (2µElin(u) + λ tr(Elin(u))1, Elin(w))

= 2µ(Elin(u), Elin(w) + λ(∇ · u,∇ · w)

=
∫

Ω
2µElin(u) : Elin(w) dx+

∫
Ω
λ(∇ · u ∇ · w) dx

≤ 2µ
∫

Ω
∇u : ∇w dx+ 2λ

∫
Ω
∇u : ∇w dx

≤ 2(µ+ λ)
∫

Ω
uw +∇u : ∇w dx

= 2(µ+ λ)‖u‖V‖w‖V .

c) Coercivity:
For proving the coercivity of a(·, ·), Korn’s inequality is used according to Ciarlet [52, Chapter
6], which yields

a(u, u) =
∫

Ω
2µElin(u) : Elin(u) dx+

∫
Ω
λ(∇ · u)2 dx

≥ 2µc
∫

Ω
Elin(u) : Elin(u) dx = 2µc ‖Elin(u)‖2L2(Ω)

≥ 2µc ‖u‖2V ,

where c > 0 is constant. Thus, a(u, v) is coercive and we conclude via Lax-Milgram (Lemma 1),
that the problem is well-posed.

�

Remark 18 (Excursus: Coercivity of a(·, ·) depending on κ). In Proposition 7, we consider the pure
elasticity equation. In the context of phase-field fracture, the bilinear form a(·, ·) has a time-lagged
coefficient g(ϕ̃). We define ϕ̃ := ϕ̃(ϕn−1, ϕn−2), see Proposition 1, and use in the following the
time-lagged ϕ̃ with given ϕn−1 and ϕn−2. The degradation function is defined as

g(ϕ̃) = (1− κ)ϕ̃2 + κ,

with κ > 0 sufficiently small. For ϕ̃ = 0 (in the fracture zone), we have

g(ϕ̃) = κ.
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In the unbroken material, i.e., ϕ̃ = 1, it holds

g(ϕ̃) = 1.

In particular, we define (analogously to Proposition 7):

α := inf
x∈Ω

αµg (ϕ(x)) , c := sup
x∈Ω

cµg (ϕ(x)) .

for given α0 > 0 and c0 > 0. The constants αµ and cµ arise in considering the coercivity and continuity
of the bilinear form from Equation (5.5).

We recall, that via

|aϕ̃(u,w)| ≤ c‖u‖V‖w‖V for c > 0 ∀u,w ∈ V, (continuity)

aϕ̃(w,w) ≥ α‖w‖2V for α > 0 ∀w ∈ V, (coercivity)

the bilinear form a(·, ·) is continuous and V-elliptic. For small κ, the coercivity estimate may become
critical.

The properties of the bilinear form a(·, ·) from Proposition 7 allow giving a first best approximation
error bound for the discrete solution uh of the problem via Céa’s lemma; see Lemma 2.

Proposition 8 (Céa lemma for linear elasticity according to Wick [183]). Let Vh ⊂ V be a finite
dimensional subspace of V. Let a(·, ·) : V×V be a symmetric, continuous, and V-elliptic bilinear form.
Let u ∈ V be the solution and uh ∈ Vh be the discrete solution of the variational problem. Then it
holds

‖u− uh‖V ≤
γ(µ, λ)
α

inf
vh∈Vh

‖u− vh‖V ,

where γ(µ, λ) > 0 is the continuity constant depending on the Lamé coefficients λ and µ. Further, α >
0 is the coercivity constant of a(·, ·) on V [43]. As shown above, we can specify the best approximation
estimate for the linear elasticity problem such that

‖u− uh‖V ≤
2(µ+ λ)

2µc inf
vh∈Vh

‖u− vh‖V .

Proof For the linear PDE, Galerkin orthogonality holds:

a(u− uh, wh) = 0 ∀wh ∈ Vh.

For wh = (uh − vh) ∈ Vh it holds

2µc ‖u− uh‖2V ≤ a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, wh)
= a(u− uh, u− vh) ≤ 2(µ+ λ)‖u− uh‖V‖u− vh‖V ,
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which yields

‖u− uh‖V ≤
2(µ+ λ)

2µc ‖u− vh‖V ,

and gives us the best approximation estimate

‖u− uh‖V = inf
vh∈Vh

2(µ+ λ)
2µc ‖u− vh‖V .

�

Considering λ → ∞, the constant 2(µ+λ)
2µc becomes large and leads to significantly larger errors than

the approximation error [39]. This situation is well-known in solid mechanical simulations as Poisson
or volume-locking [15]. Secondly, considering the discretized elasticity problem, the choice of finite
elements plus a large λ have an impact on the norm of the discretized displacement [55] since

‖uh‖V ≤
1

2(µ+ λ) · ch
‖f‖V ,

with a mesh-dependent constant ch. For λ → ∞, ‖uh‖V is forced to be small for fixed h [39]. For
h→ 0, ch is decreasing which allows for balancing a large λ. Thus, for finer meshes or a more accurate
discretization of u we can expect ‖uh‖V to be not underestimated for large λ [55]. In the next section,
we reformulate the elasticity problem avoiding Poisson locking.

5.2 A quasi-static phase-field fracture model in mixed form

One possibility to avoid locking effects is a Discontinuous Galerkin (DG) method, e.g., [57]. Wih-
ler [187] used the DG method for linear elasticity problems, Hansbo et al. [84] studied in particular
(nearly) incompressible elasticity problems. We choose to split the displacement equation into a mixed
system, see for instance, Braess [39] for saddle point problems with a penalty term.
For this, we define p : Ω→ R

p := λ∇ · u with p ∈ U := L2(Ω),

and formulate the primal linear elasticity problem as a mixed system:

Formulation 10 (Linear elasticity in weak and mixed form). For given ϕ ∈ K, find u ∈ V + {uD}
and p ∈ U such that

2µ (g(ϕ)Elin(u), Elin(w)) + (g(ϕ)p,∇ · w) = 0 ∀w ∈ V,

(g(ϕ)∇ · u, q)− 1
λ

(g(ϕ)p, q) = 0 ∀q ∈ U .
(5.2)

Remark 19 (Comment on λ). In Equation (5.2), the coefficient λ arises in the denominator. For
this reason, a large penalty parameter λ is less harmful.

We show the equivalence of the primal and the mixed elasticity problem in the following:
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Proposition 9 (Equivalence of primal and mixed problem formulation).
The primal linear elasticity problem

2µ(g(ϕ̃)Elin(u), Elin(w)) + λ(g(ϕ̃)∇ · u,∇ · w) = 0 w ∈ V, (5.3)

and the elasticity problem in mixed form

2µ(g(ϕ̃)Elin(u), Elin(w)) + (g(ϕ̃)p,∇ · w) = 0 ∀w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀q ∈ U ,
(5.4)

are equivalent problem formulations.

Proof Let u, p be solutions of the mixed form. It means there exists a λ ∈ R+ such that Equa-
tion (5.4) is fulfilled. It holds

g(ϕ̃)∇ · u, q) = 1
λ

(g(ϕ̃)p, q) ∀q ∈ U ,

which is equivalent to

λ(g(ϕ̃)∇ · u, q) = (g(ϕ̃)p, q).

For w ∈ V it holds ∇ · w ∈ U . With q = ∇ · w, it follows

λ(g(ϕ̃)∇ · u,∇ · w) = (g(ϕ̃)p,∇ · w) = (g(ϕ̃)p,∇ · w).

Inserting this in the first equation of Equation (5.4) shows that u also solves:
Let u ∈ V be a solution of Equation (5.3), then it holds:

2µ(g(ϕ̃)Elin(u), Elin(w)) + λ(g(ϕ̃)∇ · u,∇ · w) = 0 ∀w ∈ V.

To show the other direction, we define p ∈ U with p := λ(∇ · u). It follows

2µ(g(ϕ̃)Elin(u), Elin(w)) + (g(ϕ̃)p,∇ · w) = 0 ∀w ∈ V,

(g(ϕ̃)λ∇ · u− p, q) = 0 ∀q ∈ U .

This is equivalent to

(g(ϕ̃)∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀q ∈ U ,

which shows the equivalence of Equations (5.3) and (5.4). �

To derive the linear elasticity problem in mixed form, we assume ϕ̃ to be given and ignored the phase-
field inequality. Going back to the (coupled) phase-field fracture problem, we formulate the phase-field
model with a mixed form of the u-equation:

Formulation 11 (Phase-field fracture problem in weak and mixed form).
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Given the initial data ϕn−1, ϕn−2 ∈ K. Find u ∈ V + {uD}, p ∈ U and ϕ ∈ K, such that

2µ (g(ϕ̃)Elin(u), Elin(w)) + (g(ϕ̃)∇ · w, p) = 0 ∀w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀q ∈ U ,

(1− κ) (ϕ 2µElin(u) : Elin(u), ψ − ϕ) + (1− κ) (ϕλ∇ · u1 : Elin(u), ψ − ϕ)

+ GC

(
−1
ε

(1− ϕ), ψ − ϕ
)

+GCε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ψ ∈ K.

As in Chapter 4, we give the problem formulation in mixed form also for pressurized fractures.

Formulation 12 (Phase-field fracture problem in weak and mixed form, pressure driven).
Let ρ ∈ L∞(Ω) be given. Given the initial data ϕn−1, ϕn−2 ∈ K. Find u ∈ V + {uD}, p ∈ U and
ϕ ∈ K, such that (

g(ϕ̃))σ(u, p) , Elin(w)
)

+ (ϕ̃2ρ,∇ · w) = 0 ∀w ∈ V,

g(ϕ̃)(∇ · u, q)− g(ϕ̃)( 1
λ
p, q) = 0 ∀q ∈ U ,

(1− κ)(ϕσ(u, p) : Elin(u), ψ−ϕ) + 2(ϕρ∇ · u, ψ − ϕ)

+GC
(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ K,

with the Cauchy stress tensor defined pressure-dependent as σ(u, p) := 2µElin(u) + p1.

Combined with stress splitting from Section 4.7, the problem in mixed form for pressurized fractures
is stated as:

Formulation 13 (Phase-field fracture problem in weak and mixed form with stress splitting, pressure
driven).
Let ρ ∈ L∞(Ω) be given. Given the initial data ϕn−1, ϕn−2 ∈ K. Find u ∈ V + {uD}, p ∈ U and
ϕ ∈ K such that

g(ϕ̃)
(
σ+(u, p), Elin(w)

)
+
(
σ−(u, p), Elin(w)

)
+ (ϕ̃2ρ,∇ · w) = 0 ∀ w ∈ V,

g(ϕ̃) (∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀ q ∈ U ,

(1− κ)
(
ϕσ+(u, p) : Elin(u), ψ − ϕ

)
+ 2(ϕρ∇ · u, ψ − ϕ)

+GC
π

(
−1
ε
ϕ, ψ − ϕ

)
+ GC

π
ε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K,

where

g(ϕ)σ(u, p)+ + σ−(u, p) = σ(u, p).

The definitions of σ(u, p)+ and σ(u, p)− depend on the chosen stress splitting.

For Miehe’s splitting approach, we define the positive part of the pressure p+ ∈ L2(Ω) as p+ :=
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max{p, 0}, such that the tensile and compressive parts of the strain tensor are reformulated to:

σ+
Miehe(u, p) := 2µE+

lin(u) + p+
1,

σ−Miehe(u, p) := 2µ
(
Elin(u)− E+

lin(u)
)

+
(
p− p+)

1.

If the stress splitting approach according to Amor et al. [7] is considered, the stress tensor σ(u, p) is
split into:

σ+
Amor(u, p) := µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1,

σ−Amor(u, p) := µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1.

Remark 20 (Block entries for different energy functionals). In Section 4.6, three energy functional
are proposed: AT2, AT1, and Wu’s functional. In Chapter 5, we use AT2. The corresponding block
entries of the Jacobian for the finite element discretization are given for the three energy functionals
and two stress splitting schemes in Appendix B.

5.3 Well-posedness of the mixed problem formulation

According to Hadamard [83], a given problem is well-posed if it is uniquely solvable and has a stable
solution. Considering the primal phase-field fracture problem and decoupling the elasticity equation
from the phase-field inequality in Section 5.1 yields two linear equations. We applied the Lax-Milgram
lemma [185, 13] for the existence and uniqueness of a solution. Similarly, we discuss the well-posedness
of the proposed phase-field fracture problem in mixed form in Formulation 11 from Section 5.2. The
final result of this section is Theorem 5.

Remark 21 (Similarity to Stokes problem). The elasticity equation in mixed form has a saddle point
structure with a penalty term, which allows reusing established results for the Stokes problem [39].
The similarity to Stokes-type problems is further used in Chapter 6, deriving a robust and efficient
preconditioner.

We start with the phase-field fracture problem in mixed form from Formulation 11 (Section 5.2): Let
ϕ̃ ∈ K be given. Find u ∈ V + {uD}, p ∈ U and ϕ ∈ K such that

2µ (g(ϕ̃)Elin(u), Elin(w)) + (g(ϕ̃)∇ · w, p) = 0 ∀w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀q ∈ U ,

(1− κ) (ϕ 2µElin(u) : Elin(u), ψ − ϕ) + (1− κ) (ϕλ∇ · u1 : Elin(u), ψ − ϕ)

+ GC

(
−1
ε

(1− ϕ), ψ − ϕ
)

+GCε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ψ ∈ K,
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and we restrict ourselves to the elasticity part of the CVIS:

2µ (g(ϕ̃)Elin(u), Elin(w)) + (g(ϕ̃)∇ · w, p) = 0 ∀w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(g(ϕ̃)p, q) = 0 ∀q ∈ U .

Further, we assume the phase-field variables ϕ̃ to be a given coefficient with sufficient regularity.
We define the symmetric bilinear form

aϕ̃(u,w) := (g(ϕ̃)2µElin(u), Elin(w)) , (5.5)

and further introduce the bilinear forms

bϕ̃(w, p) := (g(ϕ̃)∇ · w, p) ,
cϕ̃(p, q) := (g(ϕ̃)p, q) ,

(5.6)

and general (sufficient regular) right hand sides l1 and l2. For the estimates of continuity and coercivity,
we emphasize that g(ϕ) enters, which is different from the proof of Proposition 7. First, we assume κ
to be small but constant. For cϕ̃(p, q) we define a norm |q|c := cϕ̃(q, q) 1

2 . Because aϕ̃(u,w) = aϕ̃(w, u)
and cϕ̃(p, q) = cϕ̃(q, p), the bilinear forms a(·, ·) and c(·, ·) are symmetric. The quadratic form (g(ϕ)
Elin(u), Elin(w)) is coercive on the whole space, and the penalty term can be seen as a regular
perturbation [39]. We get the following form based on the definitions in Equations (5.5) and (5.6).

Formulation 14 (Elasticity problem in mixed form). Given the initial data ϕn−1, ϕn−2 ∈ K. Find
(u, p) ∈ V × U such that

2µaϕ̃(u,w) + bϕ̃(w, p) = l1 ∀w ∈ V,

bϕ̃(u, q)− 1
λ
cϕ̃(p, q) = l2 ∀q ∈ U .

We define a bilinear form Aϕ̃ summing up the single terms:

Aϕ̃(u, p;w, q) := 2µaϕ̃(u,w) + bϕ̃(w, p) + bϕ̃(u, q)− 1
λ
cϕ̃(p, q), (5.7)

and the right hand side l := l1 + l2. The natural norm for a saddle point problem with a penalty term
is given by

|||(w, q)||| := ‖w‖V + ‖q‖U + 1
λ
|q|c. (5.8)

Remark 22 (Assumptions on κ and ϕ). As discussed in Remark 18 (Section 5.1), we assume ϕ to
be fixed and given and κ to be small but constant. We are aware that a small κ has an impact on the
coercivity of the bilinear form Aϕ̃(u, p;w, q) defined in Equation (5.7).

In the following, we prove the well-posedness of Formulation 14, including a λ-independent stabil-
ity estimate. In the following, we use three theorems, from Bartels [21, Theorem 6.3 and 6.4] and
Braess [39, Theorem 4.13], which are given first.
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Theorem 2 (Brezzi’s splitting theorem according to Bartels [21]). Assume V and U Hilbert spaces
(with dual spaces V∗ and U∗, respectively), aϕ̃ : V × V → R be a symmetric, bounded, and positive
semi-definite bilinear form, and bϕ̃ : V × U → R a bounded bilinear form. Then, the operator

L : V × U → V∗ × U∗, (u, p) 7→ (aϕ̃(u, ·) + bϕ̃(·, p), bϕ̃(u, ·))

is an isomorphism, i.e., a saddle point problem of the form:
Finding (u, p) ∈ V × U such that

aϕ̃(u, p) + bϕ̃(w, p) = f(w), ∀w ∈ V,
bϕ̃(u, q) = g(q), ∀q ∈ U ,

is uniquely solvable if

a) the bilinear form aϕ̃(·, ·) is coercive on ker(B), where B : V → U∗, i.e., there exists an α > 0
such that

aϕ̃(w,w) ≥ α‖w‖2V ∀w ∈ ker(B),

b) and the bilinear form bϕ̃(·, ·) satisfies an inf-sup condition, i.e., there exists β > 0 such that

inf
q∈U

sup
w∈V

bϕ̃(w, q)
‖w‖V‖q‖U

≥ β.

The inf-sup or Ladyzhenskaya–Babuška–Brezzi (LBB) condition is a sufficient condition for a saddle
point problem to have a unique solution that depends continuously on the input data; in some sense,
it substitutes coercivity conditions for the bilinear forms [43]. To show the inf-sup stability of the
saddle point problem with a penalty term, we use Theorem 4.13 from Braess [39], which is stated as
follows:

Theorem 3 (Inf-sup for saddle point problem with a penalty term according to Braess [38, 39]).
Suppose the hypotheses of Theorem 2 be fulfilled and that aϕ̃(·, ·) is elliptic on V. Then the mapping L
as defined by the saddle point problem with a penalty term from Formulation 14 satisfies the following
inf-sup condition:

inf
(u,p)∈V×U

sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(u, p)||| · |||(w, q)||| ≥ γ > 0, ∀ 0 ≤ 1

λ
≤ 1,

where γ is independent of λ. The natural norm |||(·, ·)||| is defined in Equation (5.8).

Further, we use a generalized version of the Lax-Milgram Lemma 1.

Theorem 4 (Generalized Lax-Milgram according to Bartels [21]). Assume that X = V × U . The
linear operator L : X → X∗ is an isomorphism if and only if the associated bilinear form Aϕ̃(·, ·; ·, ·)
(defined in Equation (5.7)) with right hand side l(·, ·), defined as

Aϕ̃(u, p;w, q) = l(w, q),

is bounded, satisfies an inf-sup condition, and is nondegenerated, i.e.,
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a) there exists a constant cA ≥ 0 such that

|Aϕ̃(u, p;w, q)| ≤ cA|||(u, p)||||||(w, q)|||,

with the norm defined in Equation (5.8).

b) there exists a constant γ > 0 such that

inf
(u,p)∈V×U

sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(u, p)||| · |||(w, q)||| ≥ γ,

c) and for all (w, q) ∈ V×U there exist a pair (u, p) ∈ V×U with Aϕ̃(u, p;w, q) 6= 0 (nondegeneracy).

Further, if Aϕ̃(·, ·; ·, ·) is symmetric, then the inf-sup condition implies nondegeneracy.

For Theorem 3, the assumptions and the statements a) and b) of Brezzi’s splitting Theorem 2 have to
be satisfied: the bilinear form aϕ̃(u,w) has to be symmetric, bounded and positive semi-definite, which
is given via the symmetric definition in Equation (5.5), and the proof of boundedness and ellipticity
of aϕ̃(u,w) on the whole space from Section 5.1. Further, bϕ̃(u, q) has to be bounded and should fulfill
an inf-sup condition. We start with the boundedness of bϕ̃(u, q):

Proof (Boundedness of bϕ̃(u, q))

bϕ̃(u, q) = |
∫

Ω
(∇ · u)q dx| ≤

∫
Ω
|(∇ · u)q| dx

= ‖(∇ · u)q‖L1(Ω) ≤ ‖∇ · u‖Ł2(Ω)‖q‖Ł2(Ω)‖

≤ ‖∇u‖L2(Ω)‖q‖L2(Ω) ≤ ‖u‖H1
0 (Ω)‖q‖L2(Ω).

�

Next, we proof, that bϕ̃(·, ·) is inf-sup stable:

Proof (Inf-sup for bϕ̃(·, ·)) According to Girault and Raviart [78] one can show that for given q ∈ U
there exists w̃ ∈ V such that ∇ · w̃ = q and

‖w̃‖V ≤ c‖q‖U , (5.9)

with a positive constant c > 0. It holds

sup
w∈V

bϕ̃(w, q)
‖w‖V

= sup
w∈V

(∇ · w, q)
‖w‖V

≥ (∇ · w, q)
‖w‖V

= (q, q)
‖w‖V

, for ∇ · w = q

= ‖q‖2U
‖w‖V

≥ 1
c
‖q‖U .
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Since we chose q ∈ U arbitrarily plus Equation (5.9), it follows

inf
q∈U

sup
w∈V

b(w, q)
‖w‖V‖q‖U

≥ 1
c

=: βb.

�

Lemma 5. Let the assumptions of Theorem 2 be given. If it holds

2µaϕ̃(u, u)
‖u‖V

+ sup
q∈U

bϕ̃(u, q)
‖q‖U + 1

λ |q|c
≥ α‖u‖V , for some α > 0, (5.10)

or

sup
(w,q)∈V×W

Aϕ̃(u, 0;w, q)
|||(w, q)||| ≥ α̃‖u‖V with some α̃ > 0, (5.11)

then the inf-sup condition of Theorem 3 follows.

Proof (of Lemma 5) First, the equivalence of Equations (5.10) and (5.11) is shown. Then, we prove
the inf-sup condition using the two equivalent expressions.
The inequality in Equation (5.10) can be derived via Equation (5.11) because it holds

α‖u‖V ≤
2µaϕ̃(u, u)
‖u‖V

+ sup
q∈U

bϕ̃(u, q)
‖q‖U + 1

λ |q|c
= Aϕ̃(u, 0;u, 0)

|||(u, 0)||| + sup
q∈U

Aϕ̃(u, 0; 0, q)
|||(0, q)|||

≤ 2 sup
(w,q)∈V×U

Aϕ̃(u, 0;w, q)
|||(w, q)||| .

Here, the definition of Aϕ̃(·, ·; ·, ·) from Equation (5.7) is used.
Assuming α̃ ≥ α

2 implies that Equation (5.10) results from Equation (5.11). Now, the other direc-
tion is proven. By Cauchy Schwarz inequality for the definite form aϕ̃(·, ·), it holds aϕ̃(u,w)2 ≤
aϕ̃(u, u)aϕ̃(w,w), which allows the following estimate:

α̃‖u‖V ≤ sup
(w,q)∈V×U

Aϕ̃(u, 0;w, q)
|||(w, q)||| ≤ sup

(w,q)∈V×U

2µaϕ̃(u,w)
|||(w, q)||| + sup

(w,q)∈V×U

bϕ̃(u, q)
|||(w, q)|||

= sup
w∈V

2µaϕ̃(u,w)
‖w‖V

+ sup
q∈U

bϕ̃(u, q)
|||(0, q)||| ≤ sup

w∈V

(2µaϕ̃(u, u))1/2aϕ̃(w,w)
1
2

‖w‖V
+ sup
q∈U

bϕ̃(u, q)
|||(0, q)|||

≤ supw∈V
2µ‖a‖aϕ̃
‖w‖V

+ sup
q∈U

bϕ̃(u, q)
|||(0, q)|||

≤
[

sup
(u,w)∈V×V

aϕ̃(u,w)
‖u‖V‖w‖V

] 1
2

aϕ̃(u, u) 1
2 + sup

q∈U

bϕ̃(u, q)
|||(0, q)||| ,
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where the sup-norm ||a|| is defined as:

||a|| := sup
(u,w)

aϕ̃(u,w)
‖u‖V‖w‖V

.

In the first estimate, the Cauchy-Schwarz inequality from Lemma 3 is used. In the last step, with
x ≤ y + z ⇒ x ≤ 2y + z2/x from [39] we get Equation 5.11. the equivalence is shown.
Next, utilizing the equivalent statements, we prove that the inf-sup condition from Theorem 3 follows:
Assume (u, p) ∈ V × U . For a better overview, we define

SUP := sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(w, q)||| . (5.12)

Via the estimate

Aϕ̃(u, p;u,−p) = 2µaϕ̃(u, u) + 1
λ
cϕ̃(p, p) ≥ 1

λ
cϕ̃(p, p) = 1

λ
|p|2c ,

it follows that

1√
λ
|p|c ≤

Aϕ̃(u, p;u,−p)
|||(u, p)|||

|||(u, p)|||
1√
λ
|p|c

≤ |||(u, p)|||1√
λ
|p|c

SUP. (5.13)

In the last step the estimate is given via the SUP-norm defined in Equation (5.12). The inf-sup
condition of bϕ̃(w, q) is stated as

inf
q∈U

sup
w∈V

bϕ̃(w, q)
‖w‖V‖q‖U

≥ β, β > 0, (5.14)

which provides:

β‖p‖U ≤ sup
w∈V

bϕ̃(w, p)
‖w‖V

= sup
w∈V

Aϕ̃(u, p;w, 0)− 2µaϕ̃(u,w)
‖w‖V

≤ sup
w∈V

Aϕ̃(u, p;w, 0)
‖w‖V

+ sup
w∈V

|2µaϕ̃(u,w)|
‖u‖V‖w‖V

||u||V

≤ SUP + 2µ‖a‖‖u‖V .

(5.15)
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Via the estimate in Equation (5.11) it follows

α̃‖u‖V ≤
2µaϕ̃(u, u)
‖u‖V

+ sup
q∈U

bϕ̃(u, q)
‖q‖U + 1

λ |q|c

≤ |||(u, p)|||
‖u‖V

SUP + sup
q∈U

Aϕ̃(u, p; 0, q)
|||(0, q)||| + sup

q∈U

1
λcϕ̃(p, q)
|||(0, q)|||

≤ |||(u, p)|||
‖u‖V

SUP + SUP + sup
q∈U

1
λcϕ̃(p, q)
‖q‖U + 1

λ |q|c

≤ |||(u, p)|||
‖u‖V

SUP + SUP + sup
q∈U

1
λcϕ̃(p, q)

1
λ |q|c

≤ |||(u, p)|||
‖u‖V

SUP + SUP + sup
q∈U

1√
λ
cϕ̃(p, p) 1

2 cϕ̃(q, q) 1
2

|q|c

≤ |||(u, p)|||
‖u‖V

SUP + SUP + 1√
λ
|p|c.

(5.16)

Here, the definition of Aϕ̃(·, ·; ·, ·), the triangle inequality, and the Cauchy-Schwarz inequality from
Lemma 3 are used.
For the next step, we use Lemma 4, which states that:

r ≤ s2

r
+ t ⇒ r ≤ s+ t for r, s, t ∈ R+.

From Equation (5.16) we consider two cases on the following:

i) 1√
λ
|p|c ≤

1
2 α̃‖u‖V ,

ii) 1√
λ
|p|c >

1
2 α̃‖u‖V ,

and show that for both cases inf-sup estimates for Aϕ̃(u, p;w, q) can be found:

i) We assume that

1√
λ
|p|c ≤

1
2 α̃‖u‖V .

From Equation (5.16) it holds

α̃‖u‖V ≤
|||(u, p)|||
‖u‖V

SUP + SUP + 1√
λ
|p|c,

which is equivalent to

α̃‖u‖V −
1√
λ
|p|c ≤ SUP

(
‖u‖V + ‖p‖U + 1√

λ
|p|c

‖u‖V
+ 1
)
.
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And we can follow

1
2 α̃‖u‖V ≤ SUP

(
‖u‖V + ‖p‖U + 1√

λ
|p|c

‖u‖V
+ 1
)
.

Via Equation (5.15) we achieve further

1
2 α̃‖u‖V ≤ SUP

(
‖u‖V + ‖p‖U + 1√

λ
|p|c

‖u‖V
+ 1
)
≤ SUP

(
2 +

1
βSUP
‖u‖V

+ 2µ‖a‖
β

+ 1
2 α̃
)
,

which is equivalent to

‖u‖V ≤ SUP
(

4
α̃

+
2
α̃βSUP
‖u‖V

+ 4µ‖a‖
α̃β

+ 1
)
.

In a next step we use Lemma 4 with

r = ‖u‖V , s =
√

2
α̃β

SUP, t = SUP 4
α̃

+ SUP 4µ‖a‖
α̃β

+ SUP.

Thus we obtain

‖u‖V ≤ SUP
(

4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1
)
.

Bounds for the other norms are derived via Equation (5.15) and Lemma 4:

‖u‖V + ‖p‖U + 1√
λ
|p|c ≤ SUP

(
4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1
)

+ 1
β

(SUP + 2µ‖a‖‖u‖V) + 1
2 α̃‖u‖V .

Further, via the definition of the natural norm and the estimate from the proof of Lemma 5, we
get

|||(u, p)||| ≤ SUP
(

4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1
)

+ 1
β
SUP + 2µ

β
‖a‖‖u‖V + 1

2 sup
(w,q)∈V×W

A(u, 0;w, q)
|||(w, q)|||

≤ SUP
(

4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1
)

+ 1
β
SUP

+ 2µ
β
‖a‖ 1

α̃
sup

(w,q)∈V×W

A(u, 0;w, q)
|||(w, q)||| + 1

2 sup
(w,q)∈V×W

A(u, 0;w, q)
|||(w, q)|||

≤ SUP
(

4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1
)

+ 1
β
SUP + 2µ

βα̃
‖a‖SUP + 1

2SUP

=
(

4
α̃

+
√

2
α̃β

+ 4µ‖a‖
α̃β

+ 1+ 1
β

+ 2µ
βα̃
‖a‖+ 1

2

)
SUP

=
(

4
α̃

+
√

2
α̃β

+ 6µ‖a‖
α̃β

+ 3
2 + 1

β

)
SUP.
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It yields

1
γ̃
≤ SUP 1

|||(u, p)||| = sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(w, q)||||||(u, p)||| .

Here, we defined a constant γ̃ > 0. In the last step, the definition of SUP from Equation (5.12)
is applied. Because (u, p) ∈ V × U is chosen arbitrarily, it holds

1
γ̃
≤ inf

(u,p)∈V×U
sup

(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(w, q)||||||(u, p)||| .

With γ̃ > 0 and γ = 1
γ̃ , the condition is fulfilled.

ii) As the second case, we consider

1√
λ
|p|c >

1
2 α̃‖u‖V . (5.17)

First, via Equations (5.15) and (5.17) it follows

‖p‖U ≤
1
β
SUP + 4µ‖a‖

α̃β

1√
λ
|p|c. (5.18)

Using Equations (5.13) and (5.18) in the second step, and the assumption from Equation (5.17),
we conclude with Lemma 4 that

1√
λ
|p|c ≤ SUP

‖u‖V + ‖p‖U + 1√
λ
|p|c

1√
λ
|p|c

≤ SUP
(
‖u‖V
1√
λ
|p|c

+
1
βSUP
1√
λ
|p|c

+
4µ‖a‖ 1√

λ
|p|c

α̃β 1√
λ
|p|c

+ 1
)

≤ SUP
(

2
α̃

+
1
βSUP
1√
λ
|p|c

+ 4µ‖a‖
α̃β

+ 1
)

= SUP
(

2
α̃

+ 4µ‖a‖
α̃β

+ 1
)

+
1
βSUP

2

1√
λ
|p|c

≤ SUP
(

2
α̃

+ 4µ‖a‖
α̃β

+ 1
)

+
√

1
β
SUP

=
(

1 + 2
α̃

+ 1√
β

+ 4µ‖a‖
α̃β

)
SUP.

(5.19)

We give the bounds for the other norms derived using Equations (5.13), (5.15), (5.16) and the
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results from Lemma 4.

‖p‖U + 1√
λ
|p|c ≤ SUP 1

β
+ 4µ‖a‖

α̃β

1√
λ
|p|c + SUP

(
1 + 2

α̃
+ 1
β

+ 4µ‖a‖
α̃β

)

= SUP
(

1
β

+ 1 + 2
α̃

+ 2
β

+ 4µ‖a‖
α̃β

)
+ 4µ‖a‖

α̃β

1√
λ
|p|c.

This is equivalent to

‖u‖V + ‖p‖U + 1√
λ
|p|c ≤ SUP

(
1
β

+ 1 + 2
α̃

+ 1
β

+ 4µ‖a‖
α̃β

)
+ 4µ‖a‖

α̃β

1√
λ
|p|c + 2

α̃

1√
λ
|p|c

= SUP
(

1
β

+ 1 + 2
α̃

+ 1
β

+ 4µ‖a‖
α̃β

)
+
(

4µ‖a‖
α̃β

+ 2
α̃

)
1√
λ
|p|c.

Finally it holds

|||(u, p)||| ≤ SUP
(

1
β

+ 1 + 2
α̃

+ 1
β

+ 4µ‖a‖
α̃β

)
+
(

4µ‖a‖
α̃β

+ 2
α̃

)(
1 + 2

α̃
+ 1√

β
+ 4µ‖a‖

α̃β

)
SUP

= SUP
((

1
β

+ 1 + 2
α̃

+ 1
β

+ 2‖a‖
α̃β

)
+
(

2‖a‖
α̃β

+ 2
α̃

)(
1 + 2

α̃
+ 1√

β
+ 2‖a‖

α̃β

))
= SUP (γ̃1 + γ̃2),

which can be summarized as one constant γ̃ := γ̃1 + γ̃2. We conclude

1
γ̃
≤ SUP 1

|||(u, p)||| = sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(w, q)||||||(u, p)||| .

Because γ̃ > 0 and (u, p) ∈ V × U were chosen arbitrarily, the inf-sup condition is fulfilled with
γ = 1

γ̃ as in Case 1, which shows Lemma 5.

�

Proof (of Theorem 3) The coercivity on V with

aϕ̃(u, u) ≥ α‖u‖2V ,

allows justifying Equation (5.10). In Lemma 5, two equivalent statements were given, which proves
Theorem 3. �

Theorem 5 (Well-posedness of the elasticity problem in mixed form). If the assumptions of Brezzi’s
splitting theorem 2 are fulfilled, and aϕ̃(·, ·) is elliptic on V, then Formulation 14 is a well-posed
problem satisfying the following inf-sup condition:

inf
(u,p)∈V×U

sup
(w,q)∈V×U

Aϕ̃(u, p;w, q)
|||(u, p)||||||(w, q)||| ≥ γ > 0, ∀ 0 ≤ 1

λ
≤ 1,
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where γ is independent of λ.

Proof The inf-sup stability is proven in Theorem 3. For the existence and uniqueness of a solution of
the inf-sup stable problem Formulation 14, we use the generalized Lax-Milgram Theorem 4. Condition
b) in Theorem 4 is fulfilled via Theorem 3 for the bilinear form Aϕ̃(u, p;w, q). Further, the bilinear
form Aϕ̃(u, p;w, q) defined in Equation (5.7) is symmetric, which implies c) from Theorem 4. From the
assumption from Brezzi’s splitting theorem, we fulfill a) from Theorem 4 aside from the boundedness
of cϕ̃(p, q), which is proven in the following:
By using the Cauchy-Schwarz inequality from Lemma 3, we get

|cϕ̃(p, q)| =
∣∣∣∫

Ω
pq dx

∣∣∣≤ ∫
Ω
|pq| dx ≤

(∫
Ω
|p|2 dx

) 1
2
(∫

Ω
|q|2 dx

) 1
2

= ‖p‖U‖q‖U .

�

Remark 23 (Well-posedness with restrictions). With the help of Brezzi’s splitting theorem and a
generalized Lax-Milgram theorem, we could prove the existence, uniqueness, and an inf-sup condition
independent of λ > 0 for the mixed elasticity problem from Formulation 14. The statement is restricted
to the assumptions that ϕ and κ are given and constant.

The proof of a stable problem formulation allows formulating a stable discrete problem formulation of
Formulation 10. The discretized system reads:

Formulation 15 (Linear elasticity in weak and mixed form, discretized). Given the initial data
ϕn−1
h , ϕn−2

h ∈ Kh. Find uh ∈ Vh ⊂ V and ph ∈ Uh ⊂ U such that

2µ (g(ϕ̃)Elin(uh), Elin(w)) + (g(ϕ̃)ph,∇ · w) = 0 ∀w ∈ Vh,

(g(ϕ̃)∇ · uh, q)−
1
λ

(g(ϕ̃)ph, q) = 0 ∀q ∈ Uh.

We discretize the PDE system with stable Taylor-Hood elements of the type Qc2Qc1 for the pair (u, p).
For the discretization of ϕ we also use bilinear Qc1 finite elements.

Proposition 10 (Stable Taylor-Hood elements). We still assume ϕ 6= 0 and κ > 0 small and fix.
Taylor-Hood-elements of the type Qc2Qc1 fulfill a discrete inf-sup or Babuska-Brezzi-condition [14, 44]

min
qh∈Uh

{
max
wh∈Vh

(qh, g(ϕ̃)∇ · wh)
‖qh‖ ‖∇wh‖

}
≥ γh ≥ γ > 0,

with a stability constant γh, which has to be greater than the stability constant γ on the continuous
level.

Proof For the proof we refer to Verfürth [170]. �

5.4 Numerical studies on locking observed in a hanging block
To study locking, we consider a hanging block, see Figure 5.1, similar to [101] and increase the Lamé
coefficient λ while µ = 1.0 is constant. The computations are based on Formulation 5.3 and the AT2
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functional from Section 4.6.1. The discretization and numerical solving of the problem are given in
Chapter 3. As established in Section 5.1, for large λ, Céa’s lemma is not reliable. Because we do

body force
×

point (2,0)

4.0 mm

4.0 mm

Figure 5.1: Left: geometry and boundary conditions of a hanging block. Two-dimensional square of length 4.0 mm.
A body force f = −10−4 N/mm2 is applied to the hanging block. The block is fixed on the top boundary. Point
evaluation for ux in (2, 0) on the bottom boundary of the block. Right: solution of the displacement in the
y-direction of a hanging block for ν = 0.25.

not have a fracture, the phase-field inequality does not play a role. We compare results based on
Formulation 3, and our newly developed mixed problem Formulation 11. For the primal formulation,
usually Qc1Qc1 elements are used for (u, ϕ). For the mixed form, we use Qc2Qc1 Taylor-Hood elements
for the pair (u, p) and Qc1 elements for the phase-field variable ϕ, denoted as Qc2Qc1Qc1. For a fair
comparison of the problem sizes, we further run tests based on the primal form with Qc2Qc1 elements.
The total numbers of dof are given for all tests in the legend of Figure 5.2.
In Figure 5.2, the maximal displacement in a certain point (2, 0) (marked in Figure 5.1) is given as
positive values (even if we have negative displacements). For four refinement levels of uniform refined
meshes, three computations are conducted for seven different settings of λ: for the primal form with
Qc1Q

c
1 and Qc2Q

c
1 elements, and for the mixed form with Qc2Q

c
1Q

c
1 elements. The Lamé coefficient

λ is λ = 1, 10, 100, 1 000, 10 000, 100 000, 1 000 000, while µ = 1.0 is fixed. For the computations
based on Formulation 11, convergence of the maximal displacement can be observed with increasing
λ towards a value of around 0.5, while the computations based on Formulation 3 underestimate the
displacement value. The results become more accurate for finer meshes and Qc2Q

c
1 elements. The

computed displacement in a certain point (2, 0) in the y-direction naturally decreases with a higher
Poisson ratio due to the higher stiffness of the material. The proposed study confirms the observations
from Section 5.1, where we explained locking effects. Further examples, studies, and theoretical aspects
on locking phenomena in the literature can be found, e.g., in [121, 15, 65, 23].

5.5 First numerical results for crack propagation based on the
mixed model

In this section, we present the first numerical results based on a test case with a propagating fracture,
and reference values from the literature for ν = 0.3. Employing Formulation 11 from Section 5.2, we
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Figure 5.2: Maximal displacement values uy in the point (2, 0) given for the hanging block test for different finite
elements on uniform refined meshes based on the primal Formulation 3 (Qc

1Q
c
1 and Qc

2Q
c
1) and mixed problem

Formulation 11 (Qc
2Q

c
1Q

c
1).

conduct three studies2 for the single-edge notched shear test proposed in Section 4.7.3:

• Study 1: comparison of low-order and higher-order finite elements

• Study 2: mesh refinement studies

• Study 3: varying Poisson’s ratio

The programming code of the numerical tests in this section is built on Example 8 of the instationary
PDE Examples in the open-source library DOpElib [62, 79]. DOpElib, in turn, is based on the deal.II
finite element library [9, 18].

Parameter value
λ0 121.15 kN/mm2

µ0 80.77 kN/mm2

ν0 0.3
GC 2.7 N/mm
h0 0.044 mm
ε0 2h0
δt 10−4 s
κ 10−10

Table 5.1: Settings of material and numerical parameters for the single-edge notched pure shear test.

2Results of Section 5.5 are published in [128].
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5.5.1 Comparison of low order and higher-order finite elements
In the first set of computations, we concentrate on a comparison of bilinear and biquadratic finite
elements. Such studies improve retracing the behavior of the numerical solution because we need
higher-order finite elements when discretizing our proposed mixed formulation with Taylor-Hood ele-
ments. For this reason, we first use the primal Formulation 3 from Section 4.2 and employ two finite
element combinations. We list the setting of the material and numerical parameters in Table 5.1.
In the following, we consider three finite element settings as in the previous section:

• Formulation 3 from Section 4.2 with Qc1Qc1 elements for (u, ϕ)

• Formulation 3 from Section 4.2 with Qc2Qc1 elements for (u, ϕ)

• Formulation 11 from Section 5.2 with Qc2Qc1Qc1 elements for (u, p, ϕ)

The load-displacement curves in Figure 5.3 have a similar course for all finite element settings. The
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Figure 5.3: Load-displacement curves for the single-edge notched shear test with a uniform refined mesh for the
primal formulation with Qc

1Q
c
1 and Qc

2Q
c
1 elements compared to the new mixed model Qc

2Q
c
1Q

c
1. All computations

with a mesh size of h = 0.022 mm.

load-displacement curves for ν = 0.3 based on Formulations 3 and 11 conform to the plots shown
in the literature, e.g., [4] and [181]. The loading force increases until the critical energy release rate
is reached and the material cracks. The crack propagation releases energy, and the loading force
decreases after a certain maximal point until the material is broken at the bottom left corner; to
remember the expected crack path behavior of the pure shear test, see Figure 3.2 on the right side.

5.5.2 Spatial mesh refinement studies
Mesh refinement studies are performed with a varying mesh size parameter h. The load-displacement
curves in Figure 5.4 are based on Formulation 11 with Qc2Qc1Qc1 elements. In the refinement studies,
we notice that we vary the discretization parameter h while the bandwidth of the transition zone ε
is fixed via ε0 = 2h0. Here, h0 corresponds to the mesh size of the coarsest mesh. The only study
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where we vary ε proportionally to the currently chosen h is depicted in Figure 5.5 to see the difference
to Figure 5.4. In Figure 5.4, we see the course of the load-displacement curves with different levels
of global refinement and fixed bandwidth ε. Besides the first test with h = 0.044 mm, the load-
displacement curves are similar. Figure 5.5 contains the load-displacement curves of the single-edge
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Figure 5.4: Load-displacement curves for the single-edge notched shear test with four different uniformly refined
meshes. Based on Formulation 11 with Qc

2Q
c
1Q

c
1 elements for (u, p, ϕ). Poisson’s ratio is ν = 0.3. The bandwidth

ε is fixed by ε = ε0 = 0.088 mm.
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Figure 5.5: Load-displacement curves for the single-edge notched shear test with four different uniformly refined
meshes. Based on Formulation 11 with Qc

2Q
c
1Q

c
1 elements for (u, p, ϕ). Poisson’s ratio ν = 0.3. ε = 2h depending

on the current mesh size.

notched shear test with different choices of h, and depending on the current uniformly refined mesh
via the relation ε = 2h. This sensitivity of the curves in Figure 5.5 also observed Heister et al. [87].
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5.5.3 Variations in Poisson’s ratio
We turn our attention to increasing Poisson ratios. To this end, our newly developed mixed phase-
field system (Formulation 11) becomes crucial. The relevant load-displacement curves are given in the
following for Poisson ratios from 0.3 to 0.4999. We discuss the numerical results via load-displacement
curves and illustrations of the crack path of the phase-field function at specific time steps with large
Lamé coefficient λ.
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ν = 0.4999, λ = 403 769 · 103 kN/mm2

Figure 5.6: Load-displacement curves for the single-edge notched shear test with h = 0.011 mm (50 115 dof),
different Poisson ratios and λ while µ = 80.77 · 103 kN/mm2. Based on Formulation 11 with Qc

2Q
c
1Q

c
1 elements for

(u, p, ϕ).

Figure 5.6 displays the load-displacement curves with different Poisson ratios ν. With an increasing ν,
the loading values generally seem to be higher. The curves have a sharper maximal loading, and the
crack progresses later. The more incompressible a solid is, the more robust it appears to be against
displacement forces.
Figure 5.7 presents plots of the phase-field function at specific time steps with an increasing Poisson
ratio (ν = 0.3, ν = 0.49, and ν = 0.4999 from left to right). The propagation of the crack starts
later with an increasing Lamé coefficient λ. For ν = 0.4999, the loading of 0.03 mm (0.03 s) does not
suffice that the crack tends to the bottom left corner. For this reason, in Figure 5.8 on the left, the
phase-field function at later time steps is depicted for ν = 0.499 and ν = 0.4999. Further, plots of the
corresponding pressure field in Figure 5.8 on the right in the same two time steps allow observing the
nearly incompressible behavior with ν = 0.4999.
In all studies within the single-edge notched pure shear test, the load-displacement curves and the
behavior of the phase-field function, the same pattern could be observed: the higher ν, the later the
crack propagation starts.
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Figure 5.7: Phase-field function, from red-broken to blue-unbroken, with loading uy = 0.012, 0.015, 0.02, and
0.03 mm from top to bottom line, and for ν = 0.30 (left), for ν = 0.49 (middle) and for ν = 0.4999 (right) with
h = 0.011 mm.
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Figure 5.8: Phase-field function (left) and pressure field (right) with loading uy = 0.033 and uy = 0.042 mm from
top to bottom line and for ν = 0.499 (left) and for ν = 0.4999 (right) with h = 0.011 mm.

5.6 Modification in the model for a natural pressure field
With the help of the newly developed phase-field fracture model in mixed form, we could see that
computing fracture simulation in nearly incompressible solids is possible; see Section 5.5. In Figure 5.8,
we observe high pressure values inside the propagating crack and a wider crack for higher Poisson
ratios. Since benchmark results on nearly incompressible solids are rarely available, we cannot verify
or evaluate the experiences within the single-edge notched shear test and changed material parameters.
In 2019, when the author of this thesis started to collaborate with the DIK, the main intention was
to improve the understanding, how crack propagation in nearly incompressible solids behaves and
how the new mixed model performs for a nearly incompressible real-world application. A detailed
answer to that question is given for punctured EPDM strips in Chapter 7. For now, we figure out
an essential modification in the model formulation which allows natural pressure solutions for higher
Poisson ratios.
We consider modifications of the derived pressure equation from the mixed Formulation 11 for a
more natural pressure field over the specimen with zero pressure values in the crack. Three possible
formulations of the pressure equation from Formulation 11 are given as follows:

a) The incompressibility condition separated from the mixed problem formulation states

(g(ϕ̃)∇ · u, q)−
(
g(ϕ̃) 1

λ
p, q

)
= 0, (5.20)

which is the original derivation from the primal problem. For λ→∞, the second term vanishes
and ∇ · u = 0 is fulfilled. Further, and more relevant for now, in the crack with ϕ = 0 and
g(ϕ) = κ, we have

(κ∇ · u, q)−
(κ
λ
p, q
)

= 0 ⇔ (κ∇ · u, q) =
(κ
λ
p, q
)
.

Here, for high Poisson ratios, the pressure values are expected to be large, especially in the
transition zone of the fracture. It leads to an unrealistic crack behavior, as seen in Figure 5.8,
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and justifies the maximal pressure values in the origin of the propagating fracture where ϕ = 0.
High Poisson ratios even strengthen the effect that the pressure function balances κ and λ.

b) To avoid incompressibility in the broken part of the domain, we considered as the second option
a λ-dependent incompressibilty condition, such that

(g(ϕ̃)∇ · u, q)−
(
g(ϕ̃) 1

ϕλ+ (1− ϕ)λcomp
p, q

)
= 0. (5.21)

For the considered test case λcomp = 1.83031 N/mm2, the material differs regarding the stiffness
with a Poisson ratio of ν = 0.3 in the inner crack. It yields a linear decrease of λ from the crack
boundary to the inner of the crack, which could fasten the crack growth. Further, it does not
allow having an empty crack, but it changes the material’s stiffness over the crack.

c) As a third option, we propose the following:

(g(ϕ)∇ · u, q)− ( 1
λ
p, q) = 0, (5.22)

which would yield for ϕ = 0:

(κ∇ · u, q)−
(

1
λ
p, q

)
= 0 ⇒ p→ 0 for λ→∞.

This formulation allows small pressure values where ϕ = 0 even for high Poisson ratios and small
κ, which is desired. Further, we preserve the symmetry of the inner saddle point problem with
penalty term.

To compare the numerical results based on the three proposed formulations for the pressure equation
in Equations (5.20), (5.21), and (5.22), we consider a two-dimensional rectangle similar to the proposed
geometry from Chapter 7. We consider a strip of length 28 mm and width 20 mm. The strip is fixed
on the top boundary and stretched on the bottom boundary downwards via quasi-time-dependent
Dirichlet boundary conditions. We have an initial crack with ϕ = 0 on the left side of size 1 mm on a
height of 6 mm measured from the bottom boundary. We use three levels of adaptive refinement via
the predictor-corrector scheme from Section 3.3.1 with ε = 4h. The material parameters are stated
as GC = 0.97 N/mm, λ = 60 N/mm2, µ = 1.22 N/mm2 and ν = 0.49 (nearly incompressible). In
Figure 5.9, we present snapshots of the phase-field solution after total failure and the pressure field
before the material is broken to observe the pressure field behavior. The three proposed formulations
for the pressure equation are used for simulating crack propagation in the strip from the left to the
right boundary. In the first row, snapshots of the phase-field solution are given. Below, the pressure
field is given. The pressure field in the first snapshot based on Equation (5.20) has maximal values
on the crack boundary close to the initial slit, similar to Figure 5.8 from Section 5.5.3. In addition,
the phase-field solution shows a wide crack compared to the other results on the same mesh, which
is also similar to Figure 5.8. In the pressure field of the second snapshot based on Equation (5.21),
the highest pressure values are in the initial crack, even if the material is broken. The shape and
width of the corresponding phase-field function in the middle are more natural than on the left side.
In the snapshots on the right in Figure 5.9, the phase-field and pressure field based on the mixed
problem formulation with the pressure equation from Equation (5.22) are given. We point out that
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the pressure field is intentionally given earlier in quasi-time to see the pressure values in front of the
crack tip. We have zero pressure values in the crack, and the maximal values are located where the
crack propagates.

Figure 5.9: Snapshots of the phase-field solution after total failure (first row) and pressure field (second row) in
rubber-like strips compared with a given notch at 6 mm and non-homogeneous Dirichlet boundary conditions. From
left to right, the three proposed options to handle the incompressible solid behavior in the crack are given: on the
left ν = 0.49 in the whole domain, in the middle small λ in the crack domain, and on the right, the degradation
function g(ϕ) just weights the divergence term. The last column looks the most natural, with the highest pressure
values in front of the crack tip.

We assume that Equation (5.22) is the most natural approach to have an empty crack without retroac-
tive effects of the pressure solution on the phase-field and the crack behavior. We conclude the section
with the new model formulations using Equation (5.22) as the pressure equation.

Formulation 16 (Modified mixed phase-field fracture formulation). Be ϕ̃ := ϕ̃(ϕn−1, ϕn−2). Let
the solutions of the previous incremental steps ϕn−1, ϕn−2 ∈ K be given. Find u := un ∈ {uD + V},



88 CHAPTER 5. MODELING & SIMULATIONS FOR INCOMPRESSIBLE SOLIDS

p := pn ∈ U and ϕ := ϕn ∈ K for the incremental steps n = 1, 2, . . . , N such that

(g(ϕ̃)σ(u, p), Elin(w)) = 0 ∀ w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(p, q) = 0 ∀ q ∈ U ,

(1− κ) (ϕσ(u, p) : Elin(u), ψ − ϕ) +GC

(
−1
ε
ϕ, ψ − ϕ

)
+GCε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K.

Also for pressurized fracture, we modify the incremental model problem.

Formulation 17 (Modified mixed phase-field fracture formulation, pressurized). Let ρ ∈ L∞(Ω) be
given. Be ϕ̃ := ϕ̃(ϕn−1, ϕn−2). Let the solutions of the previous incremental steps ϕn−1, ϕn−2 ∈ K
be given. Find u := un ∈ {uD + V}, p := pn ∈ U and ϕ := ϕn ∈ K for the incremental steps
n = 1, 2, . . . , N such that

(g(ϕ̃)σ(u, p), Elin(w)) + (ϕ̃2ρ,∇ · w) = 0 ∀ w ∈ V,

(g(ϕ̃)∇ · u, q)− 1
λ

(p, q) = 0 ∀ q ∈ U ,

(1− κ) (ϕσ(u, p) : Elin(u), ψ − ϕ) 2(ϕρ∇ · u, ψ − ϕ)

+GC
(
−1
ε
ϕ, ψ − ϕ

)
+ GCε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K.

Conclusions of the chapter
We derived quasi-static phase-field fracture modeling in mixed form to avoid locking effects in solids
with high Poisson ratios. For the elasticity problem in mixed form, we proved an inf-sup condition
independent of λ, and further, the well-posedness of the partial problem stated in Theorem 5. We
discretized the pair (u, p) from the mixed elasticity problem with Qc2Q

c
1 elements. First numerical

results were presented in Sections 5.4 and 5.5. For a natural pressure field solution, we modified the
pressure equation, properly achieving zero pressure values inside the crack.
Based on the new model formulation in mixed form (Formulations 16 and 17, the following two
chapters have different subjects: Chapter 7 contains a detailed description of conducted experiments
in punctured rubber strips and fracture simulations based on the newly developed and modified phase-
field fracture model in mixed form.
Chapter 6 focuses on solving the linear system arising in each Newton step. As a linear solver for
the discretized mixed problem with three components, we used a sparse direct solver provided by
UMFPACK [60, 59]. Chapter 6 presents a robust and efficient linear solver to increase computational
efficiency. We precondition the solver GMRES with a Schur-type preconditioner. With the help of
five numerical tests, we check the robustness of the solver.



Chapter 6

A robust & efficient linear solver

In this chapter, we develop a physics-based Schur-type preconditioner for robust and efficient solving
of the mixed phase-field fracture model (Formulations 16 and 17 from Section 5.6). Our mixed model
from Chapter 5 is a CVIS with three unknowns, which increases the overall workload compared to
the primal phase-field fracture model from Chapter 4. Up to this chapter, we use a direct linear
solver from UMFPACK [60, 59] provided in deal.II [9], to solve the linear system in each Newton step.
The software library deal.II [9] offers scalable parallel algorithms for finite element computations [17].
Further, functionalities from other libraries can be used, such as Trilinos [90, 91], including the ML
package [168, 74]. Direct solvers are robust, but iterative linear solvers are more attractive concerning
memory, parallelization, and computational effort. Because the reliability of iterative techniques
depends much more on the quality of the preconditioner than on the particular Krylov solver [148],
efficient preconditioning at this point is an indispensable tool. We use GMRES as a linear solver
preconditioned with the conjugate gradient method (CG) and algebraic multigrid (AMG) from the
ML package.
First, in Section 6.1, we introduce a block diagonal preconditioner from Heister and Wick [88, 89] as a
benchmark solver for the primal phase-field fracture problem. In Section 6.2, a robust iterative solver1

for the mixed problem formulation from Chapter 5 is derived leveraging the saddle-point structure of
the inner elasticity problem in mixed form with a physics-based preconditioner. Section 6.3 presents
numerical results of five examples in two dimensions to confirm the robustness of the solver concerning
the Poisson ratio, the discretization and regularization parameters.

6.1 Block-diagonal preconditioner of the primal problem

As a first preconditioner, we employ the block-diagonal preconditioner from Heister and Wick [88, 89]
for the extrapolated primal phase-field fracture problem from Formulation 3 (Section 4.2). The primal

1The derivation of the Schur-type preconditioner and its basic implementation was developed mainly during a
research stay of the author in February 2020 in the group of Prof. Dr. Timo Heister at Clemson University, SC,
USA.
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problem formulation has the following block structure:

Mprimal =
(
Muu Muϕ

Mϕu Mϕϕ

)
=
(
g(ϕ̃)Au 0
E L

)
,

where Au is the mass matrix of the displacements, E contains the coupling terms of u and ϕ, and L
is a Laplacian-like matrix of the phase-field function ϕ. We use the linear-in-time extrapolation with
ϕ̃ := ϕ̃(ϕn−1, ϕn−2) from Section 3.1.1. For the definition of the block entries of the primal problem
formulation, we refer to Equation (3.7). As a preconditioning matrix, the following diagonal matrix
is used:

Pprimal :=
(
Puu Puϕ

Pϕu Pϕϕ

)
=
(
g(ϕ̃)Au 0

0 L

)
,

where

g(ϕ̃)Aui,j = (g(ϕ̃)σ(χuj ), Elin(χui )),

Li,j = (1− κ)(χϕj σ(u) : Elin(u), χϕi ) + 2ρ(χϕj∇ · u, χ
ϕ
i )

+ GC

(
1
ε

(χϕj , χ
ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )
)
, (6.1)

with ansatz functions (χuj , χ
ϕ
j ) ∈ Vh ×Wh and test functions (χui , χ

ϕ
i ) ∈ Vh × Kh for i, j = 1, . . . , N

with N total nodes. For right preconditioning of the linear systemMδU = F , the inverse of Pprimal

is given as:

P−1
primal =

(
(g(ϕ̃)Au)−1 0

0 L−1

)
.

The diagonal blocks correspond to the linear elasticity problem and a mixture of a Laplacian and
mass-matrix of the phase-field [88]. The blocks (g(ϕ̃)Au)−1 and L−1 are approximated with a single
v-cycle of AMG, which is provided as part of the ML package [168, 74] of the Trilinos library [90, 91].
This approach has been tested in various numerical simulations; see [88, 184, 89, 98]. It serves to
compare linear iteration numbers with the new solver for the mixed model presented in the next
section.

Remark 24 (Matrix-free geometric multigrid solver for primal problem). Jodlbauer et al. [99, 98]
recently developed a matrix-free geometric multigrid preconditioner for the primal phase-field fracture
problem. The matrix-free approach allows overcoming the substantial memory requirements of stan-
dard, sparse matrix-based methods, particularly for high-order polynomial shape functions.

6.2 Schur-type preconditioner of the mixed problem

Instead of solving the arising linear system in each Newton step directly we apply right preconditioning
to reduce the condition number of the system matrix M. A linear system MδU = F is called right
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preconditioned with P−1, if we substitute δU = P−1~x, solve

MP−1~x = F,

and compute the solution vector δU via δU = P−1~x. For fast convergence of GMRES, the condition
number of (MP−1) should be smaller than the condition number ofM. With GMRES, the residual
is minimized in each iteration over an increasing subspace. Further, the condition number of (MP−1)
should be independent of discretization and regularization parameters.

6.2.1 Preconditioning the (3× 3) linear system

The system matrix Mmixed of the mixed phase-field fracture from the modified mixed problem For-
mulation 16 or Formulation 17 (Section 5.6) has the following block structure2:

Mmixed =

Muu Mup Muϕ

Mpu Mpp Mpϕ

Mϕu Mϕp Mϕϕ

 =

g(ϕ̃)Au g(ϕ̃)BT 0
g(ϕ̃)B − 1

λMp 0
E F L

 , (6.2)

where block Au is the mass matrix of the displacements, B and BT are symmetric off-diagonal blocks
coupling u and p, and Mp is the mass matrix of the pressure variable. The blocks E, F and L from
Equation (6.2) consist of the entries from the phase-field equation, where L is Laplacian-like. For the
definition of the entries of the blocks Au, Mp, E, F , and L, we refer to Appendix B, where the blocks
correspond to Muu, Mpp, Mϕu, Mϕp, and Mϕϕ, respectively. If we reduce the (3 × 3) system from
Equation (6.2) to the elasticity blocks, the saddle point structure is apparent:

M(2×2) =
(
g(ϕ̃)Au g(ϕ̃)BT
g(ϕ̃)B − 1

λMp

)
. (6.3)

For this saddle-point problem with a penalty term, we use a block triangular preconditioner [25], first
considered by Bramble and Pasciak in 1988 [42], and frequently used for Stokes-type problems [56] and
the Oseen equations [104], where mesh-independent convergence can be observed. The non-symmetric
block triangular matrix has the following form for preconditioningM(2×2):

P(2×2) =
(
Puu Pup

P pu P pp

)
=
(
g(ϕ̃)Au g(ϕ̃)BT

0 S(2×2)

)
, (6.4)

where S is the Schur complement block exactly defined as

S(2×2) = − 1
λ
Mp − g(ϕ̃)BT · [g(ϕ̃)Au]−1 · g(ϕ̃)B. (6.5)

The implemented Schur complement is not build up with an expensive matrix-matrix multiplication.
Instead, the fully dense inverse matrix (of a sparse matrix) is approximated properly; see Section 6.2.2
for further details. With the help of the preconditioning block matrix P(2×2), the system matrix

2Parts of this section are accepted as a PAMM proceeding from the GAMM annual meeting, 2021 [86].
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M(2×2) can be decomposed into a lower and an upper triangular matrix

M(2×2) =
(
g(ϕ̃)Au g(ϕ̃)BT
g(ϕ̃)B − 1

λMp

)
=
(

I 0
g(ϕ̃)B(g(ϕ̃)Au)−1 I

)(
g(ϕ̃)Au g(ϕ̃)BT

0 S(2×2)

)

=
(

I 0
B(Au)−1 I

)(
g(ϕ̃)Au g(ϕ̃)BT

0 S(2×2)

)
= L(2×2) · P(2×2).

(6.6)

It follows

M(2×2) · P−1
(2×2) = L(2×2),

where L(2×2) is a well-conditioned (only one distinct eigenvalue equal to one [56]) lower triangular
matrix, for which a method like GMRES would converge in at most two steps [25] if we assume
an exact inverse P−1

(2×2). According to Verfürth [170], for inf-sup stable discretizations of the linear
elasticity problem, the Schur-complement is spectrally equivalent to the mass matrix, which yields

Ŝ−1
(2×2) := −

((
1
λ

+ g(ϕ̃)
2µ

)
Mp

)−1
. (6.7)

Inverting the block matrix P(2×2) with the simplified Schur block Ŝ−1
(2×2) yields the preconditioning

matrix of the elasticity problem in mixed form:

P̂−1
(2×2) :=

(
(g(ϕ̃)Au)−1 −(g(ϕ̃)Au)−1g(ϕ̃)BT Ŝ−1

(2×2)
0 Ŝ−1

(2×2)

)

=
(

(g(ϕ̃)Au)−1 −(Au)−1BT Ŝ−1
(2×2)

0 Ŝ−1
(2×2)

)
.

(6.8)

Wee need the inverses of the Laplacian-like matrix (g(ϕ̃)Au)−1 and the Schur complement matrix
Ŝ−1

(2×2) in the block preconditioning matrix P̂−1
(2×2).

Remark 25 (Differences to Stokes-type problems). Commonly, this Schur complement approach is
used for Stokes-type problems and incompressible fluid dynamics, see, e.g. [148, 63]. Even if the
elasticity part of the considered phase-field fracture problem has a similar saddle-point structure, aside
from the phase-field function, material and regularization parameters complicate the situation: λ→∞
leads to a purely κ-dependent block Ŝ−1

(2×2), and κ → 0 increases the condition number of the block
(g(ϕ̃)Au)−1 in the crack, where ϕ = 0.

In the following, we transfer the idea of preconditioning with a Schur-type block matrix to the (3× 3)
system matrixMmixed from Equation (6.2).
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As a preconditioning matrix forMmixed, we define:

Pmixed =

Puu Pup Puϕ

P pu P pp P pϕ

Pϕu Pϕp Pϕϕ

 =

g(ϕ̃)Au g(ϕ̃)BT 0
0 S 0
0 0 L

 ,

such that

Mmixed =

g(ϕ̃)Au g(ϕ̃)BT 0
g(ϕ̃)B − 1

λMp 0
E F L



=

 I 0 0
B(g(ϕ̃)Au)−1 I 0
E(g(ϕ̃)Au)−1 −E(g(ϕ̃)Au)−1BTS−1 + FS−1 I


g(ϕ̃)Au g(ϕ̃)BT 0

0 S 0
0 0 L


= L(3×3) · P(3×3),

where the Schur complement is defined in Equation (6.5). As for the reduced (2 × 2) system from
Equation (6.6), we could decompose the system matrixMmixed into a lower and an upper triangular
matrix. The block L is a Laplacian-like block matrix of the phase-field transferred to a weighted mass
matrix for ε → 0; see Equation (6.1). We ignore the coupling terms E and F of displacements and
pressure with the phase-field variable in the preconditioning block matrix. As for the (2× 2) problem,
we reduce the inverse of the Schur complement Ŝ to a mass matrix of the pressure field as follows:

P̂−1
mixed =

(g(ϕ̃)Au)−1 −A−1
u BT Ŝ−1 0

0 Ŝ−1 0
0 0 L−1

 ,

with

Ŝ−1 = −
((

1
λ

+ g(ϕ̃)
2µ

)
Mp

)−1
.

According to Silvester and Wathen [154], the chosen approximation Ŝ−1 via a mass matrix of the
pressure field is spectrally equivalent to the exact definition of S−1 from Equation (6.5). For the
incompressible limit ν = 0.5, the Schur complement approximation remains

Ŝ−1 = −
(
g(ϕ̃)
2µ Mp

)−1
= − 2µ

g(ϕ̃) (Mp)−1
.

With a spectrally equivalent approximation of S−1, respectively, the condition number of MP̂−1
mixed

can be assumed to be independent of h. Assembling P̂−1
mixed requires the inverses of the blocks A−1

u ,
Ŝ−1, and L−1. In the following section, we propose proper preconditioning schemes for approximations
of the three inverses, and the algorithm for building the preconditioner P̂−1

mixed.
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6.2.2 Preconditioning algorithm
We have to approximate the exact inverses of Au, Ŝ and L properly. In the construction of the approx-
imations, it is essential to realize that iterative solvers do not need an element-by-element representa-
tion of the preconditioner but only the results of a matrix-vector product [110]. We approximate the
blocks L−1 and Ŝ−1 in P̂−1

mixed by one v-cycle of AMG. Multigrid methods can allow mesh-independent
convergence [82], which remains unclear for our system with various limiting processes.
This section focus on the preconditioning algorithm for the GMRES solver which allows solving a
systemMδU = F with right preconditioning. We focus on the matrix-vector multiplication P̂−1

mixed~x

with ~x = (xu, xp, xϕ̃)T given as

P̂−1
mixed~x =

(g(ϕ̃)Au)−1 −(g(ϕ̃)Au)−1g(ϕ̃)BT Ŝ−1 0
0 Ŝ−1 0
0 0 L−1


xuxp
xϕ



=

(g(ϕ̃)Au)−1xu − (g(ϕ̃)Au)−1g(ϕ̃)BT Ŝ−1xp
Ŝ−1xp
L−1xϕ

 . (6.9)

The resulting vector in Equation (6.9) is built up step by step in the implementation. The key point
is to recognize that we do not need the actual elements of the matrix P̂−1

mixed. In deal.II [9, 11], the
matrices and preconditioners given to solver classes need a vmult() member function [61]. In the
following algorithm, we list the solving steps with right preconditioning. The matrix-vector product
to build P̂−1

mixed~x, is done in the member function vmult() in a solver class.

Algorithm 5 (Evaluation of P̂−1
mixed~x).

1. Approximate Ŝ−1 via AMG and compute q := Ŝ−1xp;

2. Compute r := xu − g(ϕ̃)BT q;

3. Approximate (g(ϕ̃)Au)−1 via CG preconditioned with AMG and compute s := (g(ϕ̃)Au)−1r;

4. Approximate L−1 via AMG and compute t := L−1xϕ.

We evaluated the expression (g(ϕ̃)Au)−1g(ϕ̃)BT Ŝ−1 from right to left to avoid matrix-matrix products.
Later, in Figures 6.7 and 6.11, Step 1 from Algorithm 5 is modified such that the approximation of
Ŝ−1 is also computed via a CG solver preconditioned with one v-cycle AMG.
For the used solvers GMRES CG, and AMG from the ML package [168, 74] of the Trilinos library [90,
91], the following tolerances are chosen:

• GMRES with a relative tolerance of 10−5 and maximal 700 iterations;

• CG with a relative tolerance of 10−6 and maximal 200 iterations.

Recall that the linear system is solved at each step of Newton’s method with an absolute tolerance
of 10−7. We use four CPUs on a single machine with four E7 v3 CPUs for all computations. The
following section shows numerical results based on the new preconditioner for the mixed phase-field
fracture problem for simulating fractures in compressible and incompressible solids efficiently.
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6.3 Numerical results
This section substantiates the proposed iterative solver by five numerical test configurations in two
spatial dimensions. To facilitate the readability of the tables from the next sections, we give an
overview, how to read them. For the five tests, we conduct numerical studies with different emphases:
we investigate robustness in h, κ, λ, ε, we use different models (‘primal’ from Chapter 4 versus
‘mixed’ from Chapter 5) and different finite element discretizations. In the top row of each table,
we summarize the key aspect of the current numerical study: the name of the example, the observed
task, the modeling, and – if required – further test-specific settings. The white rows in the tables
correspond to results based on the primal phase-field fracture model and the solver from Section 6.1
or to reference values. The colored rows belong to computations based on the mixed model and
Qc2Q

c
1Q

c
1 for ν = 0.2 (yellow), ν = 0.4999 (blue) and ν = 0.5 (red). Green rows mark computations

with stabilized equal-order elements for ν = 0.2, pink rows are used for ν = 0.5 and ε = 2h (otherwise
ε is fixed). Further, it holds; the stronger the color, the finer the mesh.
The five test configurations with attributes are given in the following:

1. Section 6.3.1: a hanging block similar to [101] for ν = 0.2, 0.4999 and 0.5, uniform mesh refine-
ment, mixed (Qc2Qc1Qc1) versus primal (Qc2Qc1), ε fixed, κ = 10−8;

2. Section 6.3.2: a hanging block with an initial slit for ν = 0.2, 0.4999 and 0.5, uniform mesh
refinement, mixed (Qc2Qc1Qc1) versus primal (Qc2Qc1), ε fixed and ε = 2h, κ = 10−2, 10−5, 10−8;

3. Section 6.3.3: Sneddon’s test [155, 156] for ν = 0.2, 0.4999 and 0.5, uniform mesh refinement,
mixed (Qc2Qc1Qc1 and Qc1Qstab

1 Qc1), ε fixed and ε = 2h, κ = 10−2, 10−8;

4. Section 6.3.4: Sneddon’s test layered [22] for ν = 0.2, 0.4999 and 0.5 in the inner domain,
adaptive mesh refinement (geometric), mixed (Qc2Qc1Qc1 and Qc1Qstab

1 Qc1), ε = h, κ = 10−2, 10−8;

5. Section 6.3.5: single-edge notched tension test for ν = 0.3, 0.45, and 0.49, adaptive mesh refine-
ment (predictor-corrector scheme), mixed (Qc2Qc1Qc1), ε = 4h, κ = 10−8.

With the help of numerical studies, we check the robustness of the new Schur-type preconditioner
via evaluating the required number of linear iterations for different mesh sizes, Poisson ratios, κ, and
different finite element discretizations. Besides, we discuss challenges and point out difficulties.

Remark 26 (Model problem ‘primal’ versus ‘mixed’). The results marked with ‘primal’ are based
on Formulation 3 from Section 4.2 and solved with the block preconditioner from Section 6.1. All
numerical tests of the hanging block, hanging block with slit, and single-edge notched shear test with
the attribute ‘mixed’ are based on Formulation 16, and the ‘mixed’ numerical tests of Sneddon’s test
configurations (pressurized fracture) are based on Formulation 17, both from Section 5.6. We use the
AT2 functional and no stress splitting in the current chapter.

6.3.1 Hanging block
As a first stationary test, we consider a hanging block similar to [101], where a constant body force
is given. We used this test configuration already in Section 5.4 tests on locking effects. A square
of length 4.0 mm is fixed on the top boundary, and the body is deformed by the acting force, as
displayed in Figure 6.1. As material parameters, we determine GC = 50.0 N/mm, Young’s modulus
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E = 10−3 MPa, and µ and λ depend on the chosen Poisson ratio. This example allows testing the
robustness of the preconditioned linear solver for the elasticity problem in mixed form without any
fracture (ϕ = 1 on the whole domain).

body force
×

point (2,0)

4.0 mm

4.0 mm

Figure 6.1: Left: geometry and boundary conditions of a hanging block. Right: displacement solution in
the y-direction of a hanging block for ν = 0.2 and the finest computation from Table 6.1. Applied force
f = −10−4 N/mm2.

As a quantity of interest, the displacement in the point (2, 0) in the y-direction is evaluated and
denoted as uy(2, 0) in Table 6.1. In Table 6.1, the numerical results for a hanging black are given. We
confirm the robustness of the linear solver (column labeled with ∅lin) for different uniform refinement
levels. For this study, the crack width ε is fixed (which is not relevant for this test case), and we refine
the mesh size h for three Poisson ratios ν = 0.2, 0.4999, and ν = 0.5 (incompressible limit). In yellow,
blue, and red, we depict the results for the mixed problem, for three Poisson ratios, respectively, and
Qc2Q

c
1Q

c
1 elements for (u, p, ϕ). In the non-colored rows, the results based on the primal Formulation 3

from Section 4.2, and the preconditioner proposed in Section 6.1, are given for comparison. There,
Qc2Q

c
1 elements are used for (u, ϕ) for a fairer comparison between the two models (problem size and

discretization). In short notation, we use ‘primal’ and ‘mixed’ for the two models from Chapters 4
and 5, respectively. Naturally, we do not get results with the primal problem formulation for the
incompressible limit. The listed linear and CG iterations values are average values for the second and
last computed quasi-time step. The number of Newton/Active set steps (#AS) is also listed for the
last computed step. In total, two quasi-time steps are computed. We observe a stable number of
three Newton iterations. Further, the number of CG iterations (∅CG) for approximating (g(ϕ̃)Au)−1

increases with an increasing problem size (#dof) due to AMG not being h-independent. The results
in the linear solver (GMRES, denoted as ∅lin) are promising for the three considered Poisson ratios
with less than nine iterations on average per Newton/AS step. We confirm robustness in h of the
linear solver for all three settings of ν, which also implies the robustness in λ. In the last column of
Table 6.1, the computed maximal displacement in the lowest point (2, 0) in the y-direction is naturally
decreasing with a higher Poisson ratio.
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Hanging block: robustness in h and λ; mixed versus primal; κ = 10−8

model FE ν h ε #dof ∅lin ∅CG #AS uy(2, 0)
mixed Qc2Q

c
1Q

c
1 0.2 0.353 0.707 2 756 5 17 3 -0.7673

mixed Qc2Q
c
1Q

c
1 0.2 0.176 0.707 10 628 5 19 3 -0.7674

mixed Qc2Q
c
1Q

c
1 0.2 0.088 0.707 41 732 6 25 3 -0.7674

mixed Qc2Q
c
1Q

c
1 0.2 0.044 0.707 165 380 6 30 4 -0.7674

mixed Qc2Q
c
1Q

c
1 0.2 0.022 0.707 658 436 5 37 3 -0.7674

mixed Qc2Q
c
1Q

c
1 0.2 0.011 0.707 2 627 588 6 64 3 -0.7674

primal [87] Qc2Q
c
1 0.2 0.353 0.707 2 467 1 - 3 -0.7673

primal [87] Qc2Q
c
1 0.2 0.176 0.707 9 539 1 - 3 -0.7674

primal [87] Qc2Q
c
1 0.2 0.088 0.707 37 507 5 - 3 -0.7674

primal [87] Qc2Q
c
1 0.2 0.044 0.707 148 739 5 - 3 -0.7674

primal [87] Qc2Q
c
1 0.2 0.022 0.707 592 387 5 - 3 -0.7674

primal [87] Qc2Q
c
1 0.2 0.011 0.707 2 364 419 6 - 3 -0.7674

mixed Qc2Q
c
1Q

c
1 0.4999 0.353 0.707 2 756 6 16 3 -0.5068

mixed Qc2Q
c
1Q

c
1 0.4999 0.176 0.707 10 628 6 17 3 -0.5073

mixed Qc2Q
c
1Q

c
1 0.4999 0.088 0.707 41 732 8 24 3 -0.5075

mixed Qc2Q
c
1Q

c
1 0.4999 0.044 0.707 165 380 8 28 3 -0.5076

mixed Qc2Q
c
1Q

c
1 0.4999 0.022 0.707 658 436 8 40 3 -0.5077

mixed Qc2Q
c
1Q

c
1 0.4999 0.011 0.707 2 627 588 8 63 3 -0.5077

primal [87] Qc2Q
c
1 0.4999 0.353 0.707 2 467 1 - 3 -0.5008

primal [87] Qc2Q
c
1 0.4999 0.176 0.707 9 539 1 - 3 -0.5046

primal [87] Qc2Q
c
1 0.4999 0.088 0.707 37 507 5 - 3 -0.5063

primal [87] Qc2Q
c
1 0.4999 0.044 0.707 148 739 5 - 3 -0.5071

primal [87] Qc2Q
c
1 0.4999 0.022 0.707 592 387 5 - 3 -0.5075

primal [87] Qc2Q
c
1 0.4999 0.011 0.707 2 364 419 6 - 3 -0.5076

mixed Qc2Q
c
1Q

c
1 0.5 0.353 0.707 2 756 4 16 3 -0.5066

mixed Qc2Q
c
1Q

c
1 0.5 0.176 0.707 10 628 4 18 3 -0.5071

mixed Qc2Q
c
1Q

c
1 0.5 0.088 0.707 41 732 7 24 3 -0.5074

mixed Qc2Q
c
1Q

c
1 0.5 0.044 0.707 165 380 6 27 3 -0.5075

mixed Qc2Q
c
1Q

c
1 0.5 0.022 0.707 658 436 6 40 3 -0.5075

mixed Qc2Q
c
1Q

c
1 0.5 0.011 0.707 2 627 588 6 63 3 -0.5076

Table 6.1: Hanging block similar to [101] for ν = 0.2, 0.4999 and 0.5, uniform mesh refinement, mixed (Qc
2Q

c
1Q

c
1)

versus primal (Qc
2Q

c
1), ε fixed, κ = 10−8. Problem size in #dof, average number of linear GMRES iterations

(∅lin) per Newton/active set (AS) step, the average number of inner CG iterations (∅CG) per linear iteration,
number of Newton/AS (#AS), and goal functional displacement in a certain point (uy(2, 0) in mm). Applied force
f = −10−4 N/mm2.
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6.3.2 Hanging block with initial slit
As the second test configuration, we modify the hanging block test from the previous section such that
we have an initial geometrical slit of length 2.0 mm with an interpolated initial condition ϕ = 0 in the
crack; see Figure 6.2. The force acting on the hanging block is reduced to f = −8.0 · 10−7 N/mm2.
In Figure 6.2 on the right, the solution of the phase-field function is given on the deformed block for

×
point (0,1.99)

ϕ = 0

body force

2.0 mm

4.0 mm

2.0 mm

Figure 6.2: Left: geometry and boundary conditions of a hanging block with a slit. Right: deformed geometry with
phase-field solution; 41 924 dof. In the geometrically pre-refined slit we interpolate ϕ = 0 as an initial condition.
No propagating crack. Applied force f = −8.0 · 10−7 N/mm2.

ν = 0.2 on a uniform refined mesh with 41 924 dof. We evaluate the displacement in the y-direction
in a certain point (0, 1.99) on the lower opening crack lip.
Tables 6.2 and 6.3 show analogously to Table 6.1 the iteration numbers of numerical tests for the
hanging block with a slit, based on the preconditioned linear solver for the mixed and primal problem
formulation for three Poisson ratios ν, and h refinement. Here, we use κ = 10−2 to avoid observed
effects for small κ on the CG solver for the block (g(ϕ̃)Au)−1. For the incompressible limit ν = 0.5,
Table 6.3 presents the results for ε fixed, and further in the pink rows, results for ε = 2h are listed.
The nearly constant number of GMRES iterations confirms the robustness in ε for ν = 0.5, tested for
the hanging block with a slit on five levels of uniform refined meshes; see the last five rows in Table 6.3.

Remark 27 (High iteration number in the primal-dual active set method). In Table 6.3 in the pink
rows, many active set/Newton iterations are required for ε → 0. Here, not the Poisson ratio is
responsible, but the refinement in h and ε. For finer meshes with small ε, the active set algorithm
oscillates between a certain non-equal number of active nodes from the constraint. This effect leads to
high total Newton iterations, even if the Newton algorithm converges.

To check the impact of κ, we conduct tests with three mesh refinements, three Poisson ratios ν,
and three settings of κ = 10−2, 10−5, 10−8. We focus on the impact of κ on the number of inner
CG iterations. In Table 6.4, slightly more linear iterations are required for finer meshes and higher
Poisson ratios, but independent of κ. The number of linear iterations on average per Newton step
has an upper bound of 12 iterations. The number of CG iterations does not depend significantly on
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Hanging block slit: robustness in h and λ; mixed versus primal; κ = 10−2

model FE ν h ε #dof ∅lin ∅CG #AS uy(0, 1.99)
mixed Qc2Q

c
1Q

c
1 0.2 0.353 0.707 2 804 4 24 3 -0.3871

mixed Qc2Q
c
1Q

c
1 0.2 0.176 0.707 10 724 4 25 3 -0.5189

mixed Qc2Q
c
1Q

c
1 0.2 0.088 0.707 41 924 10 32 32 -0.4919

mixed Qc2Q
c
1Q

c
1 0.2 0.044 0.707 165 764 4 36 31 -0.0825

mixed Qc2Q
c
1Q

c
1 0.2 0.022 0.707 659 204 8 50 53 -0.0824

mixed Qc2Q
c
1Q

c
1 0.2 0.011 0.707 2 629 124 8 79 38 -0.0815

primal [87] Qc2Q
c
1 0.2 0.353 0.707 2 507 1 - 3 -0.3368

primal [87] Qc2Q
c
1 0.2 0.176 0.707 9 619 1 - 3 -0.4479

primal [87] Qc2Q
c
1 0.2 0.088 0.707 37 667 5 - 5 -0.4434

primal [87] Qc2Q
c
1 0.2 0.044 0.707 149 059 5 - 38 -0.0818

primal [87] Qc2Q
c
1 0.2 0.022 0.707 593 027 7 - 35 -0.0820

primal [87] Qc2Q
c
1 0.2 0.011 0.707 2 365 699 8 - 35 -0.0810

mixed Qc2Q
c
1Q

c
1 0.4999 0.353 0.707 2 804 10 24 3 -0.2181

mixed Qc2Q
c
1Q

c
1 0.4999 0.176 0.707 10 724 9 25 3 -0.2869

mixed Qc2Q
c
1Q

c
1 0.4999 0.088 0.707 41 924 6 32 29 -0.1295

mixed Qc2Q
c
1Q

c
1 0.4999 0.044 0.707 165 764 7 38 36 -0.0576

mixed Qc2Q
c
1Q

c
1 0.4999 0.022 0.707 659 204 10 52 38 -0.0585

mixed Qc2Q
c
1Q

c
1 0.4999 0.011 0.707 2 629 124 11 80 41 -0.0578

primal [87] Qc2Q
c
1 0.4999 0.353 0.707 2 507 1 - 3 -0.2077

primal [87] Qc2Q
c
1 0.4999 0.176 0.707 9 619 1 - 3 -0.2788

primal [87] Qc2Q
c
1 0.4999 0.088 0.707 37 667 4 - 4 -0.2789

primal [87] Qc2Q
c
1 0.4999 0.044 0.707 149 059 5 - 31 -0.0587

primal [87] Qc2Q
c
1 0.4999 0.022 0.707 593 027 7 - 31 -0.0583

primal [87] Qc2Q
c
1 0.4999 0.011 0.707 2 365 699 8 - 34 -0.5076

Table 6.2: A hanging block with an initial slit for ν = 0.2 and ν = 0.4999, uniform mesh refinement, mixed
(Qc

2Q
c
1Q

c
1) versus primal (Qc

2Q
c
1), ε fixed, κ = 10−2. Problem size in #dof, average number of linear GMRES

iterations (∅lin) per Newton/active set (AS) step, the average number of inner CG iterations (∅CG) per linear
iteration, number of Newton/AS (#AS), and goal functional displacement in a certain point (uy(0, 1.99)). Applied
force f = −8 · 10−7 N/mm2.
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Hanging block slit: robustness in h, λ and ε for ν = 0.5; mixed; κ = 10−2

model FE ν h ε #dof ∅lin ∅CG #AS uy(0, 1.99)
mixed Qc2Q

c
1Q

c
1 0.5 0.353 0.707 2 804 9 23 3 -0.0578

mixed Qc2Q
c
1Q

c
1 0.5 0.176 0.707 10 724 9 24 3 -0.2835

mixed Qc2Q
c
1Q

c
1 0.5 0.088 0.707 41 924 7 32 33 -0.0955

mixed Qc2Q
c
1Q

c
1 0.5 0.044 0.707 165 764 6 37 38 -0.0584

mixed Qc2Q
c
1Q

c
1 0.5 0.022 0.707 658 436 9 53 36 -0.0583

mixed Qc2Q
c
1Q

c
1 0.5 0.011 0.707 2 629 124 11 80 39 -0.0579

mixed Qc2Q
c
1Q

c
1 0.5 0.353 0.707 2 804 9 23 3 -0.2166

mixed Qc2Q
c
1Q

c
1 0.5 0.176 0.353 10 724 7 25 4 -0.1033

mixed Qc2Q
c
1Q

c
1 0.5 0.088 0.176 41 924 6 30 14 -0.0701

mixed Qc2Q
c
1Q

c
1 0.5 0.044 0.088 165 764 5 36 109 -0.0572

mixed Qc2Q
c
1Q

c
1 0.5 0.022 0.044 658 436 7 40 805 -0.0516

Table 6.3: A hanging block with an initial slit for ν = 0.5, uniform mesh refinement, mixed (Qc
2Q

c
1Q

c
1) versus

primal (Qc
2Q

c
1), ε fixed and ε = 2h, κ = 10−2. Problem size in #dof, average number of linear GMRES iterations

(∅lin) per Newton/active set (AS) step, the average number of inner CG iterations (∅CG) per linear iteration,
number of Newton/AS (#AS), and goal functional displacement in a certain point (uy(0, 1.99)). Applied force
f = −8 · 10−7 N/mm2.

the size of κ for this test setup. Further, the required CG iterations seem to be independent of λ but
sensitive to the mesh size. Aside from the robustness in h and λ, we confirm the robustness in κ for
the hanging block test with a slit.

6.3.3 Sneddon’s pressure-driven cavity

As a third example, we consider a benchmark test [153] (already described in Section 4.5), which is
motivated by the book of Sneddon [155] and Sneddon and Lowengrub [156]. We restrict ourselves
to a 1d fracture C on a 2d domain Ω = (−10, 10)2 as depicted on the left in Figure 6.3 (same as
Figure 4.2). In this domain, an initial crack with length 2l0 = 2.0 and thickness h of two cells is
prescribed with the help of the phase-field function ϕ, i.e., ϕ = 0 in the crack and ϕ = 1 elsewhere.
As boundary conditions, the displacements u are set to zero on ∂Ω. We use homogeneous Neumann
conditions for the phase-field variable, i.e., ε∂nϕ = 0 on ∂Ω. The driving force is given by a constant
pressure ρ = 10−3 Pa in the interior of the crack. An overview of the parameter setting is given in
Figure 6.3 on the right.
Two quantities of interest are discussed, similar to Section 4.5: the crack opening displacement (COD)
and the total crack volume (TCV). The analytical solution (from [156]) can be computed via

CODref = 2pl0
E′

(
1− x2

l20

) 1
2

, (6.10)

where E′ := E
1−ν2 , E is the Young modulus and ν is the Poisson ratio. The TCV can be computed

numerically with

TCV =
∫

Ω
u(x, y) · ∇ϕ(x, y)d(x, y).
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Hanging block slit: robustness in κ; mixed
h κ ν ∅lin ∅CG #AS

0.044 10−2 0.2 4 36 31
0.044 10−5 0.2 5 37 33
0.044 10−8 0.2 4 37 32
0.044 10−2 0.4999 6 38 36
0.044 10−5 0.4999 5 38 33
0.044 10−8 0.4999 5 39 35
0.044 10−2 0.5 6 38 38
0.044 10−5 0.5 5 39 35
0.044 10−8 0.5 6 38 37
0.022 10−2 0.2 5 37 3
0.022 10−5 0.2 7 51 34
0.022 10−8 0.2 7 50 35
0.022 10−2 0.4999 8 40 3
0.022 10−5 0.4999 9 52 35
0.022 10−8 0.4999 9 52 39
0.022 10−2 0.5 9 53 36
0.022 10−5 0.5 8 52 33
0.022 10−8 0.5 9 52 53
0.011 10−2 0.2 8 79 38
0.011 10−5 0.2 9 69 37
0.011 10−8 0.2 9 69 36
0.011 10−2 0.4999 8 80 34
0.011 10−5 0.4999 11 69 37
0.011 10−8 0.4999 11 70 35
0.011 10−2 0.5 11 80 39
0.011 10−5 0.5 10 69 35
0.011 10−8 0.5 12 70 41

Table 6.4: Hanging block with initial geometrical and phase-field slit. Study for Qc
2Q

c
1Q

c
1 with three uniform

refinement levels, ε = 0.707 mm fixed, and 165 380 dof on three settings of κ = 10−2, 10−5, 10−8 to understand the
sensitivity of the inner CG solver for (Au)−1. Average number of linear GMRES iterations (∅lin) per Newton/active
set (AS) step, the average number of inner CG iterations (∅CG) per linear iteration, number of Newton/AS (#AS).
Applied force f = −8 · 10−7 N/mm2.

ν CODmax (reference) TCV2d (reference)
0.2 1.9200× 10−3 6.03186× 10−3

0.4999 1.5001× 10−3 4.71302× 10−3

0.5 1.5000× 10−3 4.71239× 10−3

Table 6.5: Manufactured reference values of the crack opening displacement (CODmax) and the total crack volume
(TCV2d) from [153], and given in Equation (6.10) for an infinite domain.
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(−10, 10)

(−10,−10) (10,−10)

(10, 10)

domain Ω

crack C
transition zone of size ε

Parameter value
Ω (−10, 10)2

h test-dependent
l0 1.0
GC 1.0 kN/mm
E 1.0MPa
µ 0.42 N/mm2

λ test-dependent
ν 0.2, 0.4999, 0.5
ρ 10−3 Pa

Figure 6.3: Left: geometry of the two-dimensional Sneddon’s test in 2d. Domain of size (−10, 10)2 with a pressurized
fracture. Right: setting of material and numerical parameters for Sneddon’s benchmark test.

The analytical solution (from [156]) is given by

TCVref = 2πpl20
E′

.

In Table 6.5, the manufactured reference values (on an infinite domain) of COD and TCV are given
for the three considered Poisson ratios.

To reduce the computational workload, and as an alternative to Qc2Qc1Qc1 finite elements, we use equal-
order finite elements. For a stable formulation with equal-order elements, we stabilize the elasticity
problem in mixed form mainly with an h-dependent Laplacian term (∇p,∇q). The idea of a consistent
stabilization is that the additional terms vanish if we insert the continuous solution U := (u, p, ϕ)T ,
which is well-known for incompressible fluid flow; see for example [151, Chapter 3] or [141, Chapter
6.2]. It yields full Galerkin orthogonality. Standard literature on streamline upwind/Petrov Galerkin
formulations is given, e.g., by Brooks and Hughes [46], and Texduyar et al. [165]. The elasticity prob-
lem in mixed form consistently stabilized is given in the following:

Formulation 18 (Consistent stabilization for equal-order discretization, pressure-driven).
Let ρ ∈ L∞(Ω) be given. Given the initial data ϕn−1, ϕn−2 ∈ K. Find u := un ∈ V, p := pn ∈ U and
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ϕ := ϕn ∈ K for incremental steps n = 1, 2, . . . , N with {u, p, ϕ} ∈ V × U × K such that

(g(ϕ̃)σ(u, p), Elin(w)) + (ϕ̃2ρ,∇ · w) = 0 ∀w ∈ V,

g(ϕ̃)(∇ · u, q)− 1
λ

(p, q)− αh2(∇p,∇q)− αh2(2µg(ϕ̃)Elin(u) : Elin(u),∇q) = 0 ∀q ∈ U ,

(1− κ)(ϕσ(u, p) : Elin(u), ψ−ϕ) + 2(ϕρ∇ · u, ψ − ϕ)

+ GC

(
−1
ε

(1− ϕ,ψ − ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ K,

where h is the cell-diameter, ρ is the given pressure for Sneddon’s test, and α > 0 has to be chosen
properly. We chose α = 1.

The corresponding block entries of the Jacobian based on Formulation 18 are given in Appendix B.1.

Table 6.6 shows the numerical results on uniformly refined meshes for Sneddon’s test for Qc2Qc1Qc1 and
stabilized equal-order elements (Qc1Qstab

1 Qc1).
In Table 6.6, for κ = 10−8, the average number of CG iterations increases with a decreasing mesh
size. We observe an increase in the CG iteration numbers in particular for the incompressible limit
ν = 0.5 and finer meshes, where we finally do not get convergence in the solver for smaller h. Already
for ν = 0.4999 and a problem size of less than 300 000 dof, the average number of CG iterations is
above 100.

Remark 28 (Difficulties considering small κ). In Table 6.6, compared to Table 6.8, we can evaluate the
impact of the setting of κ. We compute Sneddon’s test for different mesh sizes h, fixed bandwidth ε, for
three Poisson ratios ν = 0.2, 0.4999, and ν = 0.5, and for three sizes of κ = 10−2, κ = 10−5, κ = 10−8.
Values towards 1 for κ are critical, but from a numerical perspective, we use high values for κ to
understand large numbers of CG iteration numbers approximating the ill-conditioned matrix block
(g(ϕ̃)Au)−1, where ϕ = 0. The number of required iterations for this test case depends on the size of
κ. Further, we observe an increased number of CG iterations for high Poisson ratios. The number of
GMRES and AS iterations do not differ significantly for different κ.

To retrace the mentioned difficulties from Remark 28 we consider the preconditioning matrix with
limiting values for κ and λ: κ→ 0, and λ→∞. This would yield the following block behavior in the
crack nodes where ϕ = 0:

P̂−1
mixed =

(g(ϕ̃)Au)−1 −A−1
u BT Ŝ−1 0

0 Ŝ−1 0
0 0 L−1

 =

→∞ −A−1
u BT Ŝ−1 0

0 →∞ 0
0 0 L−1

 .

If we consider an incompressible solid and sufficiently small κ, we do have a critical block (g(ϕ̃)A−1
u ,

and an ill-conditioned Schur-complement block. This observation is confirmed by the numerical results
from Table 6.7, where a CG solver preconditioned with AMG is used to approximate Ŝ−1. The
numerical results in Table 6.7 are based on the same tests as in Table 6.6 but for ν = 0.4999 and
ν = 0.5. The number of linear iterations is moderate, and maximum six CG iterations are needed for
Ŝ−1.
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Sneddon’s test: robustness in h, λ, ε; κ = 10−8; mixed
FE ν h ε #dof ∅lin ∅CG #AS CODmax TCV

Qc2Q
c
1Q

c
1 0.2 0.707 1.414 16 484 3 26 4 0.00282 0.0240

Qc2Q
c
1Q

c
1 0.2 0.353 1.414 64 964 6 28 6 0.00270 0.0189

Qc2Q
c
1Q

c
1 0.2 0.176 1.414 257 924 9 35 4 0.00260 0.0164

Qc2Q
c
1Q

c
1 0.2 0.088 1.414 1 027 844 12 31 5 0.00252 0.0150

Qc1Q
stab
1 Qc1 0.2 0.707 1.414 6 724 6 8 2 0.00280 0.0235

Qc1Q
stab
1 Qc1 0.2 0.353 1.414 26 244 8 9 3 0.00269 0.0188

Qc1Q
stab
1 Qc1 0.2 0.176 1.414 103 684 9 11 3 0.00260 0.0164

Qc1Q
stab
1 Qc1 0.2 0.088 1.414 412 164 9 12 5 0.00252 0.0150

ref. [156] 0.2 0.0019200 0.00603
Qc2Q

c
1Q

c
1 0.4999 0.707 1.414 16 484 3 31 6 3.0383e-05 0.000257

Qc2Q
c
1Q

c
1 0.4999 0.353 1.414 64 964 7 46 8 3.6024e-05 0.000254

Qc2Q
c
1Q

c
1 0.4999 0.176 1.414 257 924 6 107 39 3.9899e-05 0.000252

Qc2Q
c
1Q

c
1 0.4999 0.088 1.414 1 027 844 5 57 24 4.2265e-05 0.000250

ref. [156] 0.4999 0.0015001 0.004713
Qc2Q

c
1Q

c
1 0.5 0.707 1.414 16 484 3 31 3 2.9937e-20 7.1504e-20

Qc2Q
c
1Q

c
1 0.5 0.353 1.414 64 964 6 25 2 1.3258e-19 2.3835e-19

Qc2Q
c
1Q

c
1 0.5 0.176 1.414 257 924 5 59 7 1.9309e-19 7.8981e-19

Qc2Q
c
1Q

c
1 0.5 0.088 1.414 1 027 844 - - - - -

Qc2Q
c
1Q

c
1 0.5 0.707 1.414 16 484 11 37 3 2.4585e-15 1.2562e-14

Qc2Q
c
1Q

c
1 0.5 0.353 0.707 64 964 6 32 3 2.3632e-18 1.0069e-17

Qc2Q
c
1Q

c
1 0.5 0.176 0.353 257 924 10 30 3 6.5953e-18 1.4749e-16

Qc2Q
c
1Q

c
1 0.5 0.088 0.176 1 027 844 14 38 3 1.2397e-18 2.6778e-18

ref. [156] 0.5 0.0015000 0.0047124

Table 6.6: Sneddon’s pressure-driven cavity in 2d. Average number of linear GMRES iterations (∅lin) per Newton
step, the average number of CG iterations (∅CG) per linear iteration, number of Newton/AS steps (#AS). Based
on the newly developed mixed model Qc

2Q
c
1Q

c
1 (or Qc

1Q
stab
1 Qc

1) elements for different problem sizes and setting of
the length scale parameter ε for three Poisson ratios. Quantities of interest: CODmax and TCV. κ = 10−8. Uniform
refined meshes.

Sneddon’s test: robustness in h, λ, ε; κ = 10−8; mixed; CG+AMG for Ŝ−1

FE ν h ε #dof ∅lin ∅CG (g(ϕ̃)Au)−1 ∅CG Ŝ−1 #AS
Qc2Q

c
1Q

c
1 0.4999 0.707 1.414 16 484 3 26 1 3

Qc2Q
c
1Q

c
1 0.4999 0.353 1.414 64 964 8 56 6 8

Qc2Q
c
1Q

c
1 0.4999 0.176 1.414 257 924 6 106 6 38

Qc2Q
c
1Q

c
1 0.4999 0.088 1.414 1 027 844 6 42 6 69

Qc2Q
c
1Q

c
1 0.5 0.707 1.414 16 484 10 36 1 3

Qc2Q
c
1Q

c
1 0.5 0.353 1.414 64 964 6 26 6 8

Qc2Q
c
1Q

c
1 0.5 0.176 1.414 257 924 6 63 6 37

Qc2Q
c
1Q

c
1 0.5 0.088 1.414 1 027 844 7 41 6 101

Table 6.7: Sneddon’s pressure-driven cavity in 2d. Average number of linear GMRES iterations (∅lin) per Newton
step, the average number of CG iterations (∅CG) per linear iteration, CG plus AMG is used for (g(ϕ̃)Au)−1

and Ŝ−1, number of Newton/AS steps (#AS). Based on the newly developed mixed model Qc
2Q

c
1Q

c
1 elements for

different problem sizes and setting of the length scale parameter ε for two Poisson ratios. Uniform refined meshes.
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In Tables 6.6, 6.7 and 6.8, considering the quantities of interest CODmax and TCV, they get vanishingly
small for high Poisson ratios. In incompressible solids, a closed domain does not change its volume;
the opening of the initial crack in the interior of the domain is avoided. For ν = 0.2, the quantities
of interest are acceptable compared to the reference values from Table 6.5. Also for ν = 0.2, since all
computations are conducted with uniformly refined meshes, moderate problem sizes, and fixed ε, we
cannot expect excellent results in the quantities of interest.

Sneddon’s test: robustness in h, λ, ε; κ = 10−2; mixed
FE ν h ε #dof ∅lin ∅CG #AS CODmax TCV

Qc2Q
c
1Q

c
1 0.2 0.707 1.414 16 484 2 16 4 0.00248 0.0224

Qc2Q
c
1Q

c
1 0.2 0.353 1.414 64 964 8 18 4 0.00227 0.0173

Qc2Q
c
1Q

c
1 0.2 0.176 1.414 257 924 9 18 15 0.00206 0.0145

Qc2Q
c
1Q

c
1 0.2 0.088 1.414 1 027 844 15 28 5 0.00190 0.0129

Qc1Q
stab
1 Qc1 0.2 0.707 1.414 6 724 6 8 2 0.00245 0.0221

Qc1Q
stab
1 Qc1 0.2 0.353 1.414 26 244 8 9 2 0.00224 0.0171

Qc1Q
stab
1 Qc1 0.2 0.176 1.414 103 684 9 10 6 0.00205 0.0144

Qc1Q
stab
1 Qc1 0.2 0.088 1.414 412 164 9 12 8 0.00190 0.0129

ref. [156] 0.2 0.0019200 0.0060
Qc2Q

c
1Q

c
1 0.4999 0.707 1.414 16 484 13 16 3 3.0833e-05 0.000269

Qc2Q
c
1Q

c
1 0.4999 0.353 1.414 64 964 8 18 14 3.1739e-05 0.000242

Qc2Q
c
1Q

c
1 0.4999 0.176 1.414 257 924 6 18 93 3.3667e-05 0.000224

Qc2Q
c
1Q

c
1 0.4999 0.088 1.414 1 027 844 7 26 65 3.4560e-05 0.000216

ref. [156] 0.4999 0.0015001 0.004713
Qc2Q

c
1Q

c
1 0.5 0.707 1.414 16 484 9 14 3 1.7339e-19 5.8895e-19

Qc2Q
c
1Q

c
1 0.5 0.353 1.414 64 964 9 18 14 2.3734e-19 5.6268e-18

Qc2Q
c
1Q

c
1 0.5 0.176 1.414 257 924 11 18 14 5.6547e-20 6.0823e-18

Qc2Q
c
1Q

c
1 0.5 0.088 1.414 1 027 844 5 26 39 7.7351e-19 2.2733e-17

Qc2Q
c
1Q

c
1 0.5 0.707 1.414 16 484 9 14 3 1.5881e-19 5.8895e-19

Qc2Q
c
1Q

c
1 0.5 0.353 0.707 64 964 6 17 3 1.9290e-19 1.8057e-18

Qc2Q
c
1Q

c
1 0.5 0.176 0.353 257 924 6 18 3 4.1847e-19 2.1156e-18

Qc2Q
c
1Q

c
1 0.5 0.088 0.176 1 027 844 10 26 3 2.4801e-18 9.5514e-18

ref. [156] 0.5 0.0015000 0.0047124

Table 6.8: Sneddon’s pressure-driven cavity. Average number of linear GMRES iterations (∅lin) per Newton step,
average number of CG iterations (∅CG) per linear iteration, average number of Newton/AS steps (#AS). Based on
the newly developed mixed model Qc

2Q
c
1Q

c
1 (or stabilized Qc

1Q
c
1Q

c
1) elements for different problem sizes and setting

of the length scale parameter ε for three Poisson ratios. Quantities of interest: CODmax and TCV. κ = 10−2.
Uniform refined meshes.

In Table 6.8, the same computations are conducted as in Table 6.6 and Table 6.7 for κ = 10−2 to
discuss the statement of Remark 28. The COD values are close to the reference values. Here, a large
regularization parameter κ = 10−2 stabilizes the block (g(ϕ̃)Au)−1. Further, the linear iterations are
stable, and also the inner CG iterations are relatively constant. In the last four rows of Table 6.8,
similar to Table 6.3, results of four tests with ε = 2h are listed to check the robustness in ε for ν = 0.5,
which can be confirmed for Sneddon’s benchmark test.
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6.3.4 Sneddon’s pressure-driven cavity, layered

As a fourth test case, the pressure-driven cavity from [153] is modified similarly to [22]. We consider
a two-dimensional domain Ω = (−20, 20)2. In contrast to the previous Sneddon test, a compressible
layer of size 10 is added around the incompressible domain to allow deforming of the solid on a finite
domain. So the Poisson ratio changes over the domain for the layered Sneddon test. We expect to
get better results concerning COD and TCV on a finite domain compared to the reference values on
an infinite domain. A sketch of the geometry is given in Figure 6.4 on the left. The setting of the
material and numerical parameters is the same as in the previous section.

(−20, 20)

(−20,−20) (20,−20)

(20, 20)

compressible layer

(in)compressible domain

crack C
transition zone of size ε

Figure 6.4: Left: geometry of the two-dimensional Sneddon’s test with a compressible layer of size 10. Further,
the inside of the initial crack is assumed to be compressible [22]. Right: Close zoom-in to the geometrically refined
mesh around the crack, used in Table 6.10.

In Figure 6.4 on the right, a zoom-in snapshot of the inner domain is given to see the geometric
refinement for the tests in Tables 6.9, 6.10, and 6.11. Aside from the adaptively refined mesh, we set
ε = h, depending on the current mesh size. The total numbers of dof (#dof) on Ω are listed in the
numerical results in Tables 6.9 to 6.11.
In Table 6.9, the results for the Sneddon test in 2d with a compressible layer around a possibly
incompressible domain are given for three Poisson ratios and adaptively refined meshes, with ε = h,
and κ = 10−2. We choose κ = 10−2 to avoid the effects of κ on the inner CG iterations. We observe
with large κ that the computed quantities of interest CODmax and TCV are not converging with mesh
refinement to the exact values from Table 6.5 because a large κ changes the material property. In
Table 6.9, the numbers of GMRES iterations are moderate for ν = 0.2. For higher Poisson ratios,
we observe high linear iteration numbers. The incompressibility and the mesh adaptivity seem to
significantly impact the linear solver. We observe the same effects for κ = 10−8 in Table 6.10.
In Table 6.10, the numerical results of the same tests are given as in Table 6.9 for κ = 10−8. Results for
ν = 0.2 and stabilized equal-order elements are added in green rows. For higher Poisson ratios, small
κ, and stabilized equal-order elements, GMRES does not converge, as observed for the previous test;
see Table 6.6. Analogously to Table 6.7, Table 6.11 contains the numerical results for the Sneddon
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Sneddon layered adaptive: robustness in h, λ, ε; ε = h κ = 10−2; mixed
FE ν h #dof ∅lin #AS CODmax TCV

Qc2Q
c
1Q

c
1 0.2 0.353 257 924 18 3 0.00214077 0.0097207

Qc2Q
c
1Q

c
1 0.2 0.176 263 604 25 4 0.00188194 0.0069353

Qc2Q
c
1Q

c
1 0.2 0.088 282 484 20 3 0.00163459 0.0055415

Qc2Q
c
1Q

c
1 0.2 0.044 350 804 17 3 0.00136002 0.0044906

Qc2Q
c
1Q

c
1 0.2 0.022 610 164 19 4 0.00104379 0.0034504

Qc2Q
c
1Q

c
1 0.2 0.011 1 620 244 24 6 0.00071731 0.0024168

Qc2Q
c
1Q

c
1 0.2 0.0055 5 606 324 28 6 0.00043963 0.0015294

ref. [156] 0.2 0.00192000 0.0060318
Qc2Q

c
1Q

c
1 0.4999 0.353 257 924 40 2 0.00205349 0.0108334

Qc2Q
c
1Q

c
1 0.4999 0.176 263 604 52 2 0.00168136 0.0069892

Qc2Q
c
1Q

c
1 0.4999 0.088 282 484 58 3 0.00143863 0.0052347

Qc2Q
c
1Q

c
1 0.4999 0.044 350 804 58 3 0.00122931 0.0041947

Qc2Q
c
1Q

c
1 0.4999 0.022 610 164 62 4 0.00099810 0.0033284

Qc2Q
c
1Q

c
1 0.4999 0.011 1 620 244 150 4 0.00073786 0.0024681

Qc2Q
c
1Q

c
1 0.4999 0.0055 5 606 324 318 7 0.00048545 0.0016595

ref. [156] 0.4999 0.00150019 0.0047130
Qc2Q

c
1Q

c
1 0.5 0.353 257 924 40 2 0.00205332 0.0108334

Qc2Q
c
1Q

c
1 0.5 0.176 263 604 52 2 0.00168117 0.0069889

Qc2Q
c
1Q

c
1 0.5 0.088 282 484 59 3 0.00143847 0.0052343

Qc2Q
c
1Q

c
1 0.5 0.044 350 804 57 4 0.00122920 0.0041944

Qc2Q
c
1Q

c
1 0.5 0.022 610 164 65 4 0.00099804 0.0033282

Qc2Q
c
1Q

c
1 0.5 0.011 1 620 244 155 4 0.00073784 0.0024681

Qc2Q
c
1Q

c
1 0.5 0.0055 5 606 324 271 7 0.00048545 0.0016595

ref. [156] 0.5 0.00150000 0.0047124

Table 6.9: Sneddon’s pressure-driven cavity layered. Average number of linear GMRES iterations (∅lin) per Newton
step, number of Newton/AS steps (#AS). Computations based on the newly developed mixed model with Qc

2Q
c
1Q

c
1

elements for different problem size, ε = h for three Poisson ratios. Quantities of interest: CODmax and TCV.
κ = 10−2. Geometrically refined mesh in the area around the crack zone as depicted in Figure 6.4.
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Sneddon layered adaptive: robustness in h, λ, ε; ε = h, κ = 10−8; mixed
FE(u, p, ϕ) ν h #dof ∅lin #AS CODmax TCV
Qc2Q

c
1Q

c
1 0.2 0.353 257 924 10 3 0.00242526 0.0107193

Qc2Q
c
1Q

c
1 0.2 0.176 263 604 20 3 0.00221789 0.0080340

Qc2Q
c
1Q

c
1 0.2 0.088 282 484 18 3 0.00208683 0.0069646

Qc2Q
c
1Q

c
1 0.2 0.044 350 804 29 6 0.00200814 0.0064862

Qc2Q
c
1Q

c
1 0.2 0.022 610 164 26 4 0.00196329 0.0062530

Qc2Q
c
1Q

c
1 0.2 0.011 1 620 244 32 3 0.00193890 0.0061344

Qc2Q
c
1Q

c
1 0.2 0.0055 5 606 324 40 3 0.00192609 0.0060733

Qc1Q
stab
1 Qc1 0.2 0.353 103 684 7 4 0.00242340 0.0105394

Qc1Q
stab
1 Qc1 0.2 0.176 105 956 14 3 0.00221747 0.0079727

Qc1Q
stab
1 Qc1 0.2 0.088 113 508 14 4 0.00208628 0.0069425

Qc1Q
stab
1 Qc1 0.2 0.044 140 836 12 13 0.00200734 0.0064770

Qc1Q
stab
1 Qc1 0.2 0.022 244 580 13 14 0.00196228 0.0062479

Qc1Q
stab
1 Qc1 0.2 0.011 648 612 15 11 0.00193775 0.0061306

Qc1Q
stab
1 Qc1 0.2 0.0055 2 243 044 23 31 0.00192485 0.0060698

ref. [156] 0.2 0.00192000 0.0060318
Qc2Q

c
1Q

c
1 0.4999 0.353 257 924 40 2 0.00223914 0.0116630

Qc2Q
c
1Q

c
1 0.4999 0.176 263 604 74 5 0.00187365 0.0077192

Qc2Q
c
1Q

c
1 0.4999 0.088 282 484 229 4 0.00168693 0.0060788

Qc2Q
c
1Q

c
1 0.4999 0.044 350 804 511 4 0.00159278 0.0053537

Qc2Q
c
1Q

c
1 0.4999 0.022 610 164 601 6 0.00154436 0.0050158

Qc2Q
c
1Q

c
1 0.4999 0.011 1 620 244 565 5 0.00151941 0.0048527

Qc2Q
c
1Q

c
1 0.4999 0.0055 5 606 324 641 5 0.00150668 0.00477248

ref. [156] 0.4999 0.00150019 0.0047130
Qc2Q

c
1Q

c
1 0.5 0.353 257 924 40 2 0.00223891 0.0116629

Qc2Q
c
1Q

c
1 0.5 0.176 263 604 73 5 0.00187338 0.0077187

Qc2Q
c
1Q

c
1 0.5 0.088 282 484 227 4 0.00168667 0.0060782

ref. [156] 0.5 0.00150000 0.0047124

Table 6.10: Sneddon’s pressure-driven cavity layered. Average number of linear GMRES iterations (∅lin) per
Newton step, number of Newton/AS steps (#AS). Computations based on the newly developed mixed model with
Qc

2Q
c
1Q

c
1 (or Qc

1Q
stab
1 Qc

1) elements for different problem size, ε = h for three Poisson ratios. Quantities of interest:
CODmax and TCV. κ = 10−8. Geometrically refined mesh in the area around the crack zone as depicted on the
right in Figure 6.4.
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test layered for high Poisson ratios and small κ. In contrast to Table 6.10, we approximate Ŝ−1 with
a CG solver which is preconditioned with AMG.

Remark 29 (Difficulties with equal-order elements). We proposed a stabilized equal-order discretiza-
tion in Formulation 18 of the mixed problem formulation, similar to the common use for the Navier-
Stokes equations. The advantages would be having a reduced problem size, and secondly, the attraction
of the simplicity of linear finite elements [63]. This approach is not advised for our mixed phase-field
fracture framework combined with high Poisson ratios. For large λ, the naturally stabilizing mass
term (p, q) becomes small or vanishes. Further, the stabilizing terms contain ∇p with mesh-dependent
coefficients. But the pressure approximation in the crack region yields high gradients, which yields an
‘over-stabilization’. We follow that consistent stabilization cannot be used in the current state. For
this reason, Taylor-Hood finite elements are the choice to obtain stable solutions.

Sneddon layered adaptive: robustness in h, λ, ε; ε = h, κ = 10−8; mixed; CG for two blocks
FE(u, p, ϕ) ν h #dof ∅lin #AS CODmax TCV
Qc2Q

c
1Q

c
1 0.4999 0.353 257 924 40 2 0.00223914 0.0116630

Qc2Q
c
1Q

c
1 0.4999 0.176 263 604 70 4 0.00187365 0.0077192

Qc2Q
c
1Q

c
1 0.4999 0.088 282 484 165 4 0.00168693 0.0060788

Qc2Q
c
1Q

c
1 0.4999 0.044 350 804 153 4 0.00159278 0.0053537

Qc2Q
c
1Q

c
1 0.4999 0.022 610 164 145 5 0.00154436 0.0050158

Qc2Q
c
1Q

c
1 0.4999 0.011 1 620 244 139 5 0.00151941 0.0048527

Qc2Q
c
1Q

c
1 0.4999 0.0055 5 606 324 148 5 0.00150668 0.0047724

ref. [156] 0.4999 0.00150019 0.0047130
Qc2Q

c
1Q

c
1 0.5 0.353 257 924 40 2 0.00223891 0.0116629

Qc2Q
c
1Q

c
1 0.5 0.176 263 604 70 4 0.00187338 0.0077187

Qc2Q
c
1Q

c
1 0.5 0.088 282 484 200 4 0.00168667 0.0060782

Qc2Q
c
1Q

c
1 0.5 0.044 350 804 229 4 0.00159254 0.0060782

Qc2Q
c
1Q

c
1 0.5 0.022 610 164 238 7 0.00154414 0.0050151

Qc2Q
c
1Q

c
1 0.5 0.011 1 620 244 220 5 0.00151920 0.0048521

Qc2Q
c
1Q

c
1 0.5 0.0055 5 606 324 222 5 0.00150648 0.0047718

ref. [156] 0.5 0.00150000 0.0047124

Table 6.11: Sneddon’s pressure-driven cavity layered with Qc
2Q

c
1Q

c
1 elements and ε = h. Average number of

linear GMRES iterations (∅lin) per Newton step, number of Newton/AS steps (#AS). CG plus AMG is used for
(g(ϕ̃)Au)−1 and Ŝ−1: the average number of CG iterations for (g(ϕ̃)Au)−1 is 38 for ν = 0.4999 and 36 for ν = 0.5.
The average number of CG iterations for Ŝ−1 is 8 for ν = 0.4999 and 7 for ν = 0.5. Computations based on the
newly developed mixed model with Qc

2Q
c
1Q

c
1 elements for different problem size, ε = h for three Poisson ratios.

Quantities of interest: CODmax and TCV. κ = 10−8. Geometrically refined mesh in the area around the crack zone
as depicted on the right in Figure 6.4.

The results of CODmax and TCV in Tables 6.10 and 6.11 look promising for all three Poisson ratios.
We stress that the number of Newton steps is relatively constant for the Taylor Hood elements, and
increasing up to 31 steps for the stabilized Qc1 elements. For ν = 0.5 the solver does not converge with
sufficiently small κ and h→ 0. An explanation is given in Remark 28 (Section 6.3.3). In Table 6.11 for
high Poisson ratios, the modified approximation of Ŝ−1 changes the behavior of the linear solver. With
a relative tolerance of 10−6 for the preconditioned CG solver for (g(ϕ̃)Au)−1 and Ŝ−1, we observe that
more GMRES iterations are required. The number of linear iterations is relatively high, but nearly
constant for ν = 0.4999 and ν = 0.5. The number of linear iterations increases for higher Poisson ratios
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with adaptive refined meshes and ε = h. The results of CODmax and TCV match the manufactured
reference values from Table 6.5.
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stab
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stab
1 Qc1, h = 0.0055
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stab
1 Qc1, h = 0.00276

ref. [156]

Figure 6.5: Crack opening displacements (COD) for various refinement levels for Qc
1Q

stab
1 Qc

1 elements, geometrical
refinement around the crack area and ν = 0.2. Results from Table 6.10. COD computed from −1.5 to 1.5. Initial
crack in x ∈ [−1.0, 1.0].
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Figure 6.6: Crack opening displacements (COD) for various refinement levels for Qc
2Q

c
1Q

c
1 elements, geometrical

refinement around the crack area and ν = 0.4999. Results from Table 6.10. COD computed from −1.5 to 1.5.
Initial crack in x ∈ [−1.0, 1.0].

In Figures 6.5, 6.6, and 6.7, the computed crack opening displacement (COD) values are given for
ν = 0.2 (with Qc1Qstab

1 ), ν = 0.4999 (with Qc2Qc1Qc1), and ν = 0.5 (with Qc2Qc1Qc1 and CG solver for
Ŝ−1). The maximal COD values (x = 0) are listed in Table 6.10, and in Table 6.11 for ν = 0.5. The
crack opening displacement curves converge to the corresponding reference curves with an increasing
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Figure 6.7: Crack opening displacements (COD) for various refinement levels for Qc
2Q

c
1Q

c
1 elements, geometrical

refinement around the crack area and ν = 0.5. Results from Table 6.11. COD computed from −1.5 to 1.5. Initial
crack in x ∈ [−1.0, 1.0].

number of geometric refinement steps for all three chosen Poisson ratios in Figures 6.5, 6.6, and 6.7.
In Figure 6.8, the solutions of ux, uy, p, and ϕ are presented as zoom-in snapshots for ν = 0.5 with a
compressible layer, based on Table 6.11. Especially the pressure field (upper left snapshot) is expected
to have zero values in the interior of the crack and the maximal values in the crack tip on the left and
the right of the pre-defined initial crack. Further, in Figure 6.8, the mesh on the finest refinement level
is given on the bottom left. On the bottom right, the crack zone is shown, on which the computed
solutions are presented above to get an impression of the mesh size around the fracture.

6.3.5 Single edge notched pure tension test

As the last example, we use the single-edge notched tension test from Miehe et al. [130], similar to Sec-
tion 4.6.4 testing with three Poisson ratios. We use the predictor-corrector scheme from Section 5.5.2
for two steps of adaptive mesh refinement on four times uniformly refined mesh with a phase-field
threshold of 0.5. The parameter setting is the same as in Section 4.6.4, but we use the mixed problem
formulation and discretization from Chapter 3 and vary the Poisson ratio; see Table 6.12.

ν µ λ #dofs
0.3 80.77 · 103 121.15 · 103 19 584
0.45 80.77 · 103 726.93 · 103 19 704
0.49 80.77 · 103 3957.73 · 103 19 498

Table 6.12: Parameter setting for three tests with different Poisson’s ratios for the single-edge notched tension test
with κ = 10−8, and ε = 4h. The maximal number of dof (#dofs) is given in the last column for the test cases. For
all tests, four uniform (h = 0.011) and two adaptive refinement steps are conducted with a phase-field threshold of
0.5 for predictor-corrector.

We consider the bulk and crack energy as two further numerical quantities of interest. The bulk energy
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Figure 6.8: Sneddon 2d layered. Upper four snapshots: zoom-in solutions from left to right, and top to bottom:
the pressure field, the phase-field, the displacement in the x-direction and the displacement in the y-direction. The
solutions are for ν = 0.5 from Table 6.11 on the finest level with Qc

2Q
c
1Q

c
1 elements. The solutions fit the reference

values from [22]. Lower two snapshots show on the left the whole domain (−20, 20)2 with the adaptively refined
mesh in the last refinement step. On the bottom right, a zoom-in snapshot of the crack zone is given on the domain,
where the upper snapshots are taken.
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EB can be computed via

EB(u, ϕ) =
∫

Ω
(g(ϕ̃)ψ(Elin(u)) d(x, y),

where the strain energy functional is defined as

ψ(Elin(u)) := µ tr
(
Elin(u)2)+ 1

2λ tr (Elin(u))2
.

Here, no manufactured reference values are provided and we only present values computed numerically.
Further, we compute the crack energy EC via

EC(u, ϕ) = GC
2

∫
Ω

(
(ϕ− 1)2

ε
+ ε|∇ϕ|2

)
d(x, y). (6.11)

Again, no manufactured reference values are provided. At least for ν = 0.3, we can compare our results
for EB and EC with reference values from the literature, e.g., [3, 128]. In Figures 6.9, 6.10, and 6.11,
on the left side, the bulk and the crack energy are plotted versus the incremental step number. On
the right of Figures 6.9 to 6.11, the average number of linear iterations and the number of Newton/AS
steps are plotted. The number of linear iterations behaves differently for ν = 0.3 from the results for
higher Poisson ratios. While for ν = 0.3, in Figure 6.9 on the right, the linear iterations decrease if
the crack starts propagating, in Figures 6.10 and 6.11, the linear iterations increase up to an average
of more than 70 iterations at the end of the crack simulations.
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Figure 6.9: Left: bulk (EB) and crack energy (EC) for the single-edge notched tension test, AT2 functional, adaptive
refined meshes. The incremental step size was 10−4 s for the first 58 steps and reduced to 10−5 s. Right: number
of linear iterations on average per Newton step (∅lin), and number of active set/Newton steps (#AS) against the
incremental steps. The crack starts propagating at incremental step 66, mesh refinement starts at step 57. ν = 0.3.

In Figure 6.13, snapshots of the pressure field and phase-field are given for ν = 0.49, where – to the
author’s knowledge – no reference values are available in the literature. The crack paths look similar
as for ν = 0.3, but a slight asymmetry is visible in the crack path. We decided to present the crack
path during the simulation to depict the pressure field with the maximal value in front of the crack
tip while the pressure values in the crack are zero.
The computed bulk and crack energies in Figures 6.9, and 6.10 fit well to results in the literature,
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Figure 6.10: Left: bulk (EB) and crack energy (EC) for the single-edge notched tension test, AT2 functional,
adaptive refined meshes. The incremental step size was 10−4 s for the first 55 steps and reduced to 10−5 s. Right:
number of linear iterations on average per Newton step (∅lin), and number of active set/Newton steps (#AS)
against the incremental steps. The crack starts propagating at incremental step 56, mesh refinement starts at step
52. ν = 0.45.
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Figure 6.11: Left: bulk (EB) and crack energy (EC) for the single-edge notched tension test, AT2 functional,
adaptive refined meshes. The incremental step size was 10−4 s for the first 48 steps and reduced to 10−5 s. Right:
number of linear iterations on average per Newton step (∅lin), and number of active set/Newton steps (#AS)
against the incremental steps. The crack starts propagating at incremental step 60, mesh refinement starts at step
52. ν = 0.49.
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e.g., [87]. The bulk energy increases until the critical energy release rate is reached, and the crack
energy increases when the crack propagates while the bulk energy releases. Also, in Figure 6.11,
the bulk and crack energy curves fit the observed crack pattern in Figure 6.14. For ν = 0.49 with
snapshots of the solutions at two certain incremental steps in Figure 6.14, no comparable results in the
literature are available. The crack pattern differs from the snapshots for smaller Poisson ratios. We
observe that the crack has an orientation to the upper left corner, and a second crack develops from
the singularity in the corner, where non-homogeneous Dirichlet boundary conditions and Neumann
boundary conditions meet.
In Figure 6.12, the pressure and phase-field solution is given for ν = 0.3 after total failure. The crack
propagates from the center of the geometry to the left boundary, as we expect it. Further, one can
see a pure zero pressure field after total failure.

Figure 6.12: Snapshots of the solution for the single-edge notched tension test with ν = 0.3. Adaptive mesh refine-
ment with predictor-corrector. Pressure field (left) and phase-field (right) on deformed two-dimensional domain in
incremental steps 88, which is the last computed step.

Figure 6.13: Snapshots of the solution for the single-edge notched tension test with ν = 0.45. Adaptive mesh re-
finement with predictor-corrector. Pressure field (left) and phase-field (right) on deformed two-dimensional domain
in incremental step 70, where the crack propagates as in Figure 6.12.

Remark 30 (Pressure field in the inside of the crack). In Figure 6.14, the crack is as sharp as for
smaller Poisson ratios and the inside of the crack has zero pressure values. In contrast to the results
in Figure 5.8, the pressure solution is more realistic. In Figure 5.8, the pressure fields for high Poisson
ratios were given for the single-edge notched shear test, which assumes different boundary conditions,
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but the geometry and parameter setting are the same. The crack in Figure 6.14 has an adequate size
regarding the mesh size and bandwidth, but no artificially wide crack resulting from high pressure values
in the interior of the crack. The reason is a small change in the problem formulation, allowing zero
pressure values in the crack; see Section 5.6 for further details.

Figure 6.14: Snapshots of the solution for the single-edge notched tension test with ν = 0.49. Adaptive mesh refine-
ment with predictor-corrector. Pressure field (left) and phase-field (right) on deformed two-dimensional domain at
two incremental steps, where the crack starts propagating (first row) and in the last computed step (second row).

Conclusions of the chapter
We conducted numerical tests for five test configurations for different Poisson ratios up to the in-
compressible limit. For the first two test cases, hanging block and hanging block with a slit, we
confirmed the robustness and efficiency of the physics-based preconditioner, discretized with Qc2Qc1Qc1
finite elements. An impact of κ on the number of CG iterations (preconditioned with AMG) could
be explicitly seen for Sneddon’s test case and κ = 10−8. For the stabilized equal-order discretization
with Qc1Qstab

1 Qc1 elements, the numerical results look promising for the compressible parameter setting
tested for both proposed Sneddon tests and the single-edge notched shear test.
The next chapter focuses on a practical application of the developed mixed model from Chapter 5:
At the DIK, punctured EPDM strips were elongated until total failure, and the crack behavior was
retraced with a Digital Image Correlation system (DIC) for qualitative measurement data. The fol-
lowing chapter aims a detailed description of the conducted experiments and a critical comparison
of experimental and numerical results for validating our newly developed mixed phase-field fracture
model for fractures in nearly incompressible solids as EPDM.



Chapter 7

Simulating fractures in punctured
EPDM strips

In this chapter1, we present crack propagation experiments evaluated by Digital Image Correlation
(DIC) for a carbon black-filled ethylene propylene diene monomer rubber (EPDM). Our primary focus
is the crack evolution in one-sided notched EPDM strips containing a circular hole and stretched until
total failure. A picture of the experimental setup is given in Figure 7.1. Using the experimentally

Figure 7.1: Experimental setup: punctured EPDM strip fixed via bulges on the top, and bottom boundary. The
specimen has a small given notch on the left side and a (originally) circular hole. The strip is elongated on the
bottom boundary until total failure.

identified material parameters, we apply the newly established mixed phase-field fracture model from
Section 5.6 to simulate crack propagation in punctured EPDM strips. To discuss agreements and point
out challenges, we compare the crack paths, the maximal force response, the traverse displacement at

1Parts of this chapter are published in [123].
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the crack start, and the force-displacement curves of the experimental and numerical results. While
often in the published literature, models are developed and discussed on a purely theoretical basis,
e.g., [117], or historical data, e.g., [114, 162], we check our mixed phase-field fracture model against
a systematically conducted experimental series. Therefore, a technically used EPDM compound is
characterized for its mechanical and fracture properties, described in Sections 7.1 and 7.2. Being
well aware of geometric and material nonlinearities dealing with rubber and high strains, we neglect
those effects focusing on the modeling approach and the qualitative comparison to the experiments.
We present the crack path results from the experiments in Section 7.3. The corresponding results
from numerical simulations are given in Section 7.4. The last Section 7.5 picks up on the topic of
Sections 4.6 and 4.7: we investigate the dependency of the crack paths in punctured EPDM strips on
the chosen energy functional and Cauchy stress splitting.

7.1 Material compounding and sample preparation
For the experimental study2 a sulphur crosslinked EPDM (Keltan 2450) filled with 60 phr carbon black
N550 is used. The EPDMmixture, see Table 7.1, is prepared on a 5.0-liter mixer adding the ingredients
step-wise. The crosslinking agent and catalysts are admixed at a roller at 60◦C. The samples, 2 mm
thick specimens for all experiments, are compression moulded at 170◦C for six minutes, corresponding
to “t90” plus two minutes of a corresponding vulcameter test. If required for the experiments, we
pierce notches and circular inclusions in the specimens after vulcanisation.

Remark 31 (EPDM and rubbers). In the experimental context, we add some comments on the
properties of rubber from Schaefer [149]. Rubber is an elastic and viscous material that allows wide
usage in many different fields. In the frame of this thesis, we focus on vulcanized rubber because
unvulcanized rubber would start to flow after a while. Sometimes rubber is meant to be natural rubber,
so elastomer is used instead of rubber. EPDM is a special kind of vulcanized elastomer.

Ingredients EPDM Carbon black
N550

PEG-
4000 Oil Zinc

oxid
Stearic
acid Sulphur TBBS TBzTD

Phr 100 60 5.0 5.0 5.0 3.0 0.7 1.0 3.5
Admixed at Mixer Roller

Admixed after
min 0 2/3@1

1/3@2 2m30 1 2m30 1 1 1 1

Table 7.1: Recipe of the investigated EPDM mixture (phr =̂ parts per hundred parts of rubber related to mass
parts).

7.2 Parameter identification
We identify the material parameters via experiments with the help of DIC. Subsequently, we present
first numerical test results in Section 7.2.3 to identify a proper value of the critical energy release rate

2The experiments and corresponding material parameter evaluations from Sections 7.1, 7.2, and 7.3, were con-
ducted at and from the Deutsches Institut für Kautschuktechnologie e.V. (DIK) within the department ‘Simulation
and Continuum Mechanics’. We identified an interesting and challenging test setup that results in this chapter’s
experiments within the collaboration. In the first months, the essential task was communicating about the com-
pounding, geometry, and behavior of EPDM. I thank Dr.Nils Hendrik Kröger and Andreas Fehse for their time
until achieving a clear description of the experiments and a fair comparison between experiments and simulations.
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GC via available load-displacement curves from the experiments.

7.2.1 Elastic constants
The mechanical material properties are determined on a ZWICK Universal test machine in four loading
modes - uniaxial, planar (pure shear), biaxial tension, and confined (volumetric) compression. The
tests are conducted with an (initial) strain rate of approximately 50 % per minute and a pre-force of
1 N; see Figure 7.2 (black line). The later defined material model uses a linear elastic approach such
that the minor nonlinear behavior has to be estimated by, e.g., the average behavior until a certain
strain, a lower or upper bound, or alternative with an estimate for Young’s modulus consistent with
the Neo Hooke model (estimate holds for the initial stiffness, therefore one possibility for an upper
bound definition), see Figure 7.2 (gray line for ‘up to 150 % estimate’ and green line for ‘Neo Hooke
estimate’). The bulk modulus is derived by volumetric compression experiments within the constant
response region of 1 000 to 2 000 N, see Figure 7.3. For parameter identification is we use a minimization
for the least square sum of the absolute errors between experiment and prediction, considering the
varying strain range. The resulting parameters are depicted in Table 7.2. The estimation of linear
material behavior might deviate for strains under 50% but is a solid assumption for higher strains
appearing in the later crack path experiments for this particular EPDM.
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Figure 7.2: Uniaxial tension test (stress σ versus strain ε) and prediction of the elastic behavior based on parameter
identifications of the elastic moduli related to specific fitting strain ranges.

To emphasize the relations between the already used Lamé coefficients λ and µ, the Poisson ratio ν,
and the Young modulus E given from the experiments [52], we give the formulas for λ and µ depending
on ν and E:

λ(E, ν) = Eν

(1 + ν)(1− 2ν) , µ(E, ν) = E

2(1 + ν) .

Remark 32. In the numerical implementation in deal.II [9] derived from the framework pfm-cracks [89],
we have λ and µ as input variables. From the experiments we have the bulk modulus K and Young’s
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Figure 7.3: Volumetric compression test and estimation of the bulk modulus by a linear fit in the range between
1 and 2 kN. The force F and displacement u are depicted in sense of compression, compared to tension the sign
would switch. We refer to [75, 142] for details on the experimental setup.

modulus E.

Parameter upper Neo Hooke 10 20 80 150 400 lower
E [MPa] 10.1 7.20 7.83 5.95 3.59 3.54 3.64 3.34
K [MPa] 2 595 2 595 2 595 2 595 2 595 2 595 2 595 2 595
λ [MPa] 2 592.75 2 593.40 2 593.26 2 593.68 2 594.20 2 594.21 2 594.19 2 594.26
µ [MPa] 3.37 2.40 2.61 1.98 1.20 1.18 1.21 1.11

ν 0.49978 0.49985 0.49983 0.49987 0.49992 0.49992 0.49992 0.49993

Table 7.2: Young’s modulus E, bulk modulus K, Lamé coefficients λ and µ and Poisson ratio ν for different
identification variants of E (upper and lower bound, resp. results for parameter fit up to X% of strain, and
estimated by Neo Hookean model); see Figures 7.2 and 7.3. Parameters set in light blue are used in the simulations
from Section 7.4.

7.2.2 Critical energy release rate

We use pure shear tests to determine the (critical) energy release rate GC . The specimens have a length
of 196 mm, a height of 28 mm, and a thickness of 1.8 mm. A ZWICK 1445 universal test machine was
used for the tests. The traverse velocity is chosen to be 200 mm/min. Two tests are conducted:
standard pure shear tests until the break and pure shear tests with notched samples. The notched
sample has an initial crack l0 of 47 mm. In the second case, we apply a square pattern to the specimen
such that a DIC recording can follow the crack growth; see Figure 7.5 on the lower right. The crack
growth is correlated with the recorded force-displacement curves. The resulting force-displacement
and crack growth curves are shown in Figure 7.4. We determine the critical (strain) energy release
rate based on the data using the following formula from [147, 146]:
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GC = −∂U
∂A

∣∣∣∣∣
α

= −dU
dA

∣∣∣∣∣
α

.

Here, U is the stored elastic energy, and dU is the difference between the sample with and without
a crack, see [147, 146] for further details. With Fw and uw being the force-displacement data of the
sample without a crack, Fc and uc being the data of the sample with a crack, and α as the stretch,
dU reads as

dU =
∫
α

Fwduw −
∫
α

Fcduc.

The crack area dA depends on the specimen thickness t and the crack length l0 + l. Here, l0 is the
initial crack length of 47 mm and l is the length of the growing crack [147, 146]:

dA = (l0 + l) · t.

From the experimental results, we approximate the stationary value of the critical strain energy
release rate GC by 17.0 N/mm, see Figure 7.5. The result coincides in general with literature results,
e. g. [145] for carbon black-filled styrene-butadiene rubber. Already in the 60s, Rivlin and Thomas [143]
presented characteristic energy for thin natural rubber strips with a cut and identified the critical
energy between 10.0 and 20.0 N/mm.
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Figure 7.4: Force-displacement curves (displacement u in the y-direction measured on the top boundary versus force
Fy) for a notched sample and a sample without a notch. The crack growth evaluated from DIC from Figure 7.5 is
given depending on the displacement is plotted in blue.
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Figure 7.5: Estimated (critical) strain energy release rate GC versus the crack length of a single-edge notched pure
shear tension test. The average value in the stable crack growth region after 5.0 mm crack length is approximately
17.0 N/mm.

7.2.3 Numerical studies on the critical energy release rate

This section tracks the discussions we had at that time in parameter identification. While the team of
Dr.Nils Hendrik Kröger at the DIK conducted the first experiments and evaluated the pure shear tests
for parameter identification, we started the first numerical tests with the Lamé coefficients as input
parameters, but not yet with the critical energy release rate GC computed from the experiments as
explained above, according to Klüppel et al. [105]. At that time, the load-displacement curves for four
to six conducted experiments per notch height were available, which we used for a first comparison
(see Figure 7.9 in Section 7.3).

Remark 33 (Reference to numerical solving in Section 7.4). For information on the used model,
numerical solving, and computing of the loading forces for comparison of simulation and experiment,
we refer to Section 7.4 and Chapter 3. In each Newton/active-set step, the linear system is solved
with a direct solver from UMFPACK [60, 59] (as in all numerical results apart from Chapter 7).

Figure 7.6 (black lines) displays the load-displacement curves of five punctured EPDM strips with a
notch height of 18 mm. At the beginning of the load-displacement curves, one can see the nonlinear
behavior of the material, not represented by the linear elasticity model, though. The numerical tests
are displayed in colored curves for two parameter settings (150% fit and Neo Hookean) for three values
for GC to identify a first approximative value of the critical energy release rate GC .
In particular, the pink curve with test name ‘GC = 18.0 N/mm, 150 % fit’ coincides with ‘experiment 2’
in the first maximum value when the crack propagates from the initial slit to the hole. Even if the load-
displacement curves of experiments and simulations in Figure 7.6 differ mainly in the displacement
value at total failure and maximal loading, two points can be captured: With GC = 18.0 N/mm,
the maximal displacement is relatively close to the experimentally achieved maximal displacements.
Secondly, for all load-displacement curves in Figure 7.6, two loading peaks are similar and close to
reality: the first one, when the crack starts propagating from the initial slit, the second one when the
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Figure 7.6: Load-displacement curves for the EPDM benchmark test with a notch at 18 mm and adaptively refined
meshes. Here, the load-displacement curves are compared for three settings of the critical energy release rate
GC = 0.845, 3.6, 18.0 N/mm with the experimental data (five experiments). Load measured on the top boundary.
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crack propagates from the deformed inclusion to the right boundary until total failure. Aside from
the main deficit using a linear elasticity model for nonlinear material behavior, a further reason could
be the coarse finite element mesh used for the experiments (two steps of adaptive mesh refinements
are used on a relatively coarse starting mesh).
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Figure 7.7: Load-displacement curves for the EPDM benchmark test with notch at 6 mm and adaptively refined
meshes. Here, the load-displacement curves are compared for three settings of the critical energy release rate
GC = 0.845, 3.6, 18.0 N/mm with the experimental data (four experiments). Load measured on the top boundary.

In Figure 7.7, the load-displacement curves are given by experimental data (black lines) and numerical
computations (colored lines) for the tests with a notch height of 6 mm. in the numerical results, this test
configuration is the only one of five notch heights where the crack path does not lead into the circular
inclusion, which is also visible in the general shape of the load-displacement curves; see Section 7.3
for further details on the crack path behavior. Once the critical energy release rate is reached, and
the crack starts propagating from the initial slit, the loading decreases towards zero (total failure).
The reached maximal displacement of the simulations is close to the maximal displacement of the
experiments for GC = 18.0 N/mm in Figure 7.7. Observing the pink and dark-red curves for both
parameter settings and GC = 18.0 N/mm, due to the linear behavior at the beginning of the load-
displacement curves, the maximal value is larger than in the experiments, but the displacement values
are similar at the crack starting point. From the results for GC = 18.0 N/mm, we further deduce
that the critical energy release rate should be slightly smaller than GC = 18.0 N/mm, computed in
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Section 7.2.2.

Remark 34 (Quasi-time steps). We assume that a significant part of the errors in the maximal loading
and displacement in Figures 7.6 and 7.7 stems from the quasi-static model. Fractures in punctured
EPDM rubber propagate fast (broken within approximately 0.1 s), which is challenging to capture with a
quasi-static model. Dynamic phase-field fracture model could allow investigating the stated hypothesis.

Remark 35 (Constant GC). In the frame of this thesis, GC is assumed to be constant during the
simulations. Some measurements and considerations give evidence to suggest that this is not the case
in reality. The critical energy release rate – the required force when the material starts to crack –
depends on the material’s temperature, which can be assumed to be 5-10 degrees Celsius higher in the
crack tip. Further comments on this topic (thermo-elasticity) are given in Chapter 8 in the future
tasks.

7.3 Crack path experiments
In order to investigate the crack path behavior, punctured strips are elongated with 200 mm/min
(related to traverse velocity) in a ZWICK Universal test machine until total failure, as seen in Figure 7.1
and in the following Figure 7.8.

Figure 7.8: Snapshots of the experimental setup during stretching one of the punctured EPDM strips with a notch
height of 12 mm until total failure in a ZWICK Universal test machine at the DIK.

An inhomogeneous forming strain and stress field during the experiment is introduced by a circular
hole of 8 mm diameter in the upper right part of the strip; see Figure 7.14. A similar experimental
setup was proposed and investigated by Ozelo et al. [137].
Variations of the experiments are realized by varying the position of the given notch on the left
side with a length of 1 mm at 6, 10, 12, 14, and 18 mm height (from the bottom boundary). In all
experiments, the hole has an impact on the crack path. While for 6 and 10 mm, the crack is diverted
towards the hole but propagates below the hole towards the right edge, for 12, 14, and 18 mm the
crack propagates into the hole, and grows further nearly at the middle right interior edge of the hole
towards the boundary edge of the specimen; see Figures 7.9 and 7.10. Comparing the start of the
propagating fracture, the notch height only has a minor influence on the force response. Although
the distance between the initial notch and the circular hole is the shortest for the 14 mm test, the
resistance is strong. We do not observe a clear trend between initial notch position and the start of the
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Figure 7.9: Overview of the executed tests concerning tracking of the crack paths, backside of tested punctured
strips, with an initially given notch of 1 mm length and 18, 14, 12, 10, and 6 mm notch height (top to bottom).
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force drop in the global displacement in Figure 7.13. The deviation in the (starting) crack behavior
between the same experiments is typical for carbon black-filled rubbers. Despite the deviations in the
force drop, the crack path is stable within the group of the same experiments for one notch height;
see Figure 7.10.

Figure 7.10: Evaluation of the averaged crack paths (4 to 6 experiments in Figure 7.9) of the tested punctured
EPDM strips with given notches at the height of 6, 10, 12, 14, and 18 mm measured from the bottom boundary
above the bottom bulges (left to right).
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Figure 7.11: Two force-displacement curves for each notch height and test runs without an initial notch. Force
response Fy versus the traverse displacement u measured in the y-direction on the top boundary of the EPDM
strips.

In Figure 7.12, the maximal loading forces at the crack start are given for the experiments on punctured
strips with different notch heights compared to the numerical results for each test. Concerning the
experiments, we see a fully evolved crack to the opposite edge (6 and 10 mm) respectively or an evolved
crack to the hole (12, 14, and 18 mm) in Figures 7.9, 7.10, and 7.11. In red (left bar) and blue (right
bar) in Figure 7.12, the numerical results for the force maximum are plotted, based on the two colored
parameter settings from Table 7.2 for the notch heights of 6 to 18mm.
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Figure 7.12: Maximal loading force Fy at the crack start measured on the top boundary, of experiments and finite
element simulations. In gray (middle bar for each test), the averaged force maximum of 4 to 6 experiments in
dependence of traverse displacement. The numerically achieved force maxima are given in red and blue (left and
right for each notch height).
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Figure 7.13: Traverse displacement u in the y-direction at the first force maximum of experiments and finite element
simulations. In gray (middle bar), the average displacement of (4 to 6) experiments, in red and blue (left and right
bar for each notch height), the numerically achieved displacements at the first force maximum are given.
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In Figure 7.13, we present the experimental and numerical results of the traverse displacement at the
first force maximum from Figure 7.12. The grey bars in the middle give the experimental weighted
results, including the natural scattering of the experiments. In red (left bar) and blue (right bar),
the results for the maximal displacement at the force maximum are plotted based on the parameter
settings from Table 7.2.

7.4 Numerical simulations of punctured EPDM strips

We use the model from Chapter 5 based on Wu’s functional (Section 4.6.3) and Amor’s split (Sec-
tion 4.7.2) for simulating crack propagation in punctured EPDM strips. The presented model in
Section 5.2 builds the basis to simulate cracks in nearly incompressible solids with the help of a stable
problem formulation in mixed form and discretized with Taylor-Hood elements (Qc2Qc1Qc1) from Sec-
tion 3.2.3.
We start with the Euler-Lagrange equations in incremental form. Then, a detailed spatial convergence
study is presented for the EPDM test with a notch height of 6 mm. Further, we compare the crack
paths of simulation and experiments for the two chosen parameter settings from Table 7.2. Finally,
we conclude the section with a discussion on the experimental and numerical results.

7.4.1 Phase-field fracture model in mixed form for EPDM

We combine Formulation 11 from Section 5.2 with Wu’s energy functional definition from Equa-
tion (4.19) and Amor’s volumetric-deviatoric splitting approach from Section 4.7.2. From that, our
newly introduced mixed phase-field fracture problem based on Wu’s energy functional and strain
energy splitting of Amor et al. [7] in incremental form is given as:

Formulation 19 (Mixed phase-field formulation). Let the solutions of the previous incremental steps
ϕn−1, ϕn−2 ∈ K be given. Find u := un ∈ {uD +V}, p := pn ∈ U and ϕ := ϕn ∈ K for the incremental
steps n = 1, 2, . . . , N such that

g(ϕ̃)
(
σ+(u, p), Elin(w)

)
+
(
σ−(u, p), Elin(w)

)
= 0 ∀ w ∈ V,

g(ϕ̃) (∇ · u, q)− 1
λ

(p, q) = 0 ∀ q ∈ U ,

(1− κ)
(
ϕσ+(u, p) : Elin(u), ψ − ϕ

)
+ 2GC

π

(
−1
ε
ϕ, ψ − ϕ

)
+2GC

π
ε (∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K,

with Amor’s splitting approach depending on u and p:

σ+(u, p) := µmax
{

0, tr
(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3 tr
(
E+

lin(u)
)
1

)
+ p+

1,

σ−(u, p) := µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1.
(7.1)

The block entries of the model formulation based on Wu’s functional and Amor’s splitting are given
in Appendix B.7.
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For the numerical simulation of the crack propagation in punctured strips in a two-dimensional setup
with the help of the phase-field fracture model from Section 5.2, we reduce the geometry to the area of
interest between the bulges on the bottom and top part, where the specimens are fixed. The geometry
is given in Figure 7.14.

Remark 36 (Inclusions and phase-field). Considering holes in a material combined with phase-field
fracture modeling is a challenging task; see Section 7.5, or [192, Section 8.2] and [129], for examples
and further comments on the difficulty of inclusions.

We determine homogeneous Dirichlet boundary conditions uy = 0 on the top boundary, and the strips
are fixed in the horizontal direction on the top, and bottom boundary with ux = 0. The following
boundary condition characterizes the loading force on the bottom boundary Γforce in the y-direction:

uy = −t · 200 mm/min, for t ∈ I := [0; total failure], (7.2)

where t denotes the total time. In a quasi-static context, the time interval I is divided into incremental
steps of size δt. Further, the phase-field is fixed via ϕ = 0 in the given notch as an initial boundary
condition. We decided to handle the given notch on the left side of size 1 mm with an initial condition
ϕ = 0 such that the material is broken in the notch area. In addition, we describe the initial crack
geometrically by doubling the dof on the respective faces similar to Wick [182, Section 5.1.]. This
allows the material to open in the notch, and the maximal stress is obtained in the notch tip, which
imitates the observed opening of the notch in running experiments.

Γtop

×
(12, 18)

�8 mm

notch

28 mm

20 mm Γforce

Figure 7.14: Left: geometry and boundary conditions of punctured EPDM strips for numerical simulations. Load
force on Γforce defined in Equation (7.2). Right: geometry of punctured EPDM strips produced at the DIK. The
specimens have a thickness of 1.8 mm and the bulges on the top and the bottom of the specimen are of size 2.0 mm,
which are not taken into account in the numerical simulation.
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Parameter description value
h discretization parameter (coarsest) 0.3 mm

# ref number of adaptive refinement steps 0 to 3
ε bandwidth 2h
δt incremental step size 10−2 s
κ regularization parameter 0.01h

phase-field threshold for refinement 0.7

Table 7.3: Numerical parameters for the phase-field fracture simulation of punctured EPDM strips. Parameters ‘#
ref’ and the threshold for predictor-corrector are required for the adaptive test runs in Section 7.4.2. The numerical
parameters h, ε, δt and κ are valid for all numerical test runs.

The numerical parameters are listed in Table 7.3. The setting of the numerical parameters in Table 7.3
applies for all numerical results considering the spatial convergence study with the 6 mm test using
adaptive refinement. The incremental step size δt and the size of κ are the same for all numerical tests.
Related to the material parameter setting, we choose two setups. The colored material parameters in
Table 7.2 reflect the parameter settings based on two different assumptions for a linear stress-strain
relation: Young’s modulus is estimated via a Neo Hookean model and a fit of 150 % of the strain. In
all following numerical results and especially in the figures of this section, the material parameters’
setting differs via naming it ’150 % fit’ or ’Neo Hooke’. The bulk modulus K = 2 595 MPa listed in
Table 7.2 is specified via an averaged value of fitted values. The critical energy release rate is adopted
from Section 7.2.2 with GC = 17.0 N/mm. We use the experimentally determined critical energy, not
the fitting on force-displacement one from Section 7.2.3.

Remark 37 (Plane stress). We stress that it is sufficient to assume plane stress since the experimental
specimens are thin, which justifies two-dimensional numerical simulations.

7.4.2 Spatial convergence study

To study spatial convergence of the finite element simulation, we start with tests for one of the five
test setups: the given notch is at the height of 6 mm, where experimentally we do not expect the crack
propagating towards the hole but in an ‘S’-curve from left to right. For this example, we conduct four
tests on a global pre-refined mesh with a discretization parameter hstart = 0.3 mm and three tests with
one to three adaptive refinement steps. The numerical results are given in Figure 7.4.2. The number
of dof for all conducted test runs of spatial convergence are listed in Table 7.4. While refining the area
around the crack adaptively with the help of the predictor-corrector scheme from [87] (Section 3.3.1),
which decreases h locally, the length scale parameter ε is fixed. Consequently, for all computations
considered in Figure 7.15, it holds ε = 0.6 mm. To get an idea how the predictor-corrector scheme
works within the propagating fracture, we depict the meshes at five certain loading points for one test
(6 mm, Neo Hooke, hole) in Figure 7.16.
Besides spatial convergence, we want to avoid locking effects that could arise in the mesh around the
circular hole. The test with a notch at 6 mm height gives a crack path away from the hole, even if the
inclusion impacts the crack pattern. The refinement series is conducted for both material parameter
settings (Neo Hooke and 150 % strain fit) without an inclusion.
In total, we observe three points in Figure 7.15:



132 CHAPTER 7. SIMULATING FRACTURES IN PUNCTURED EPDM STRIPS

0 5 10 15 18 20 22 24 26 28 30 32
0

20

40

60

80

100

120

140

u in mm

F
y
in

N

150 % fit, 0 ref, hole
150 % fit, 1 ref, hole
150 % fit, 2 ref, hole
150 % fit, 3 ref, hole
150 % fit, 0 ref
150 % fit, 1 ref
150 % fit, 2 ref
150 % fit, 3 ref
Neo Hooke, 0 ref, hole
Neo Hooke, 1 ref, hole
Neo Hooke, 2 ref, hole
Neo Hooke, 3 ref, hole
Neo Hooke, 0 ref
Neo Hooke, 1 ref
Neo Hooke, 2 ref
Neo Hooke, 3 ref

Figure 7.15: Numerical refinement study: force-displacement curves (displacement u in the y-direction versus
force Fy) for the EPDM benchmark test based on the material parameters of Table 7.2 (150 % fit of strain)
compared the material parameters of Table 7.2 with a notch at 6 mm, hstart = 0.3 and ε = 2hstart = 0.6 mm fixed.
GC = 17.0 N/mm. The computation of the force response Fy on the top boundary is defined in Equation (4.21) in
Section 4.6.4.

• We compare the results based on the Neo Hookean material parameters from Table 7.2 with the
computation based on the 150 % strain fit assumption;

• We present the numerical results based on the geometry in Figure 7.14 with a given notch and a
circular hole in the upper right part of the strips compared to results based on the same geometry
with a given notch but without a hole. The results in Figure 7.15 based on the punctured strips
are marked with the attribute ‘hole’ in the legend;

• The third point discussed in Figure 7.15 is spatial convergence of the force-displacement curves
with an increasing number of adaptive refinement steps, while the crack width ε is fixed as in
Table 7.3 even if h is getting smaller in the crack area. In the legend of Figure 7.15 the number
of refinement steps (’# ref’) is given for each force-displacement curve.

The increase of the force response based on the punctured strips is lower than without a circular
inclusion. From this, one could follow that the inclusion makes the material more elastic and decreases
the material stiffness. We observe a significant difference between the force-displacement curves of the
tests based on the 150 % fit or Neo Hookean material parameters. All Neo Hookean tests have a lower
maximal force, leading to a smaller displacement when the crack starts propagating (see Figures 7.12
and 7.13). In Figure 7.15, we observe spatial convergence within tests from 0 to 3 adaptive refinement
steps.
In Figure 7.17, the numerically and the experimentally achieved force-displacement curves have a
similar course. To retrace the differences in the load-displacement curves while the crack propagates,



CHAPTER 7. SIMULATING FRACTURES IN PUNCTURED EPDM STRIPS 133

Test description #dof u (#dof p) = (#dof ϕ)
150 % fit & Neo Hooke, 0 ref, hole 49 984 6 352

150 % fit, 1 ref, hole 65 284 8 277
150 % fit, 2 ref, hole 117 400 14 815
150 % fit, 3 ref, hole 304 786 38 288

150 % fit, 0 ref 51 906 6 577
150 % fit, 1 ref 70 376 8 898
150 % fit, 2 ref 135 220 17 028
150 % fit, 3 ref 369 498 46 359

Neo Hooke, 1 ref, hole 65 420 8 294
Neo Hooke, 2 ref, hole 119 396 15 067

Neo Hooke, 3 ref, hole (Fig. 7.16) 293 572 36 880
Neo Hooke, 0 ref 51 906 6 577
Neo Hooke, 1 ref 70 446 8 907
Neo Hooke, 2 ref 136 742 17 308
Neo Hooke, 3 ref 371 840 46 650

Figure 7.19 237 436 29 877
Figure 7.20 391 656 49 192
Figure 7.21 427 932 53 731
Figure 7.22 437 544 54 934
Figure 7.23 581 724 72 979

Table 7.4: Degrees of freedom (#dof) for all numerical test runs with a notch height 6 mm from Figure 7.15, and
the Figures 7.19 to 7.23 for the displacement u (Qc

2 elements) and the pressure variable p (Qc
1 elements), which has

the same number of dof as the phase-field variable ϕ (Qc
1 elements). The number of dof for the test with adaptive

predictor corrector mesh refinement from Figure 7.15 are given for the mesh at total failure in the last computed
incremental step.

Figure 7.16: Adaptively refined meshes at five specific time points for the numerical simulation based on the Neo
Hookean material parameter setting from Table 7.2 and three steps of adaptive refinement steps via the predictor-
corrector scheme from [87]; see the blue-green curve in Figure 7.15 (’Neo Hooke, 3 ref, hole’). In the last snapshot,
the mesh has 293 572 dof for the solid displacements and 36 880 dof for the pressure and the phase-field variable.
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Figure 7.17: Comparison of the force-displacement curves (displacement u in the y-direction versus force Fy) for
the samples with a notch at 6 mm height (experiments 1 to 4 versus simulations).

in Figure 7.18, snapshots of the phase-field function are given on the deformed domain (ux and uy) at
specific displacements applied on the bottom boundary to see the difference between the Neo Hookean
and the 150 % fit setting. We notice that the material cracks earlier with the Neo Hookean parameter
setting from Table 7.2. In addition, the material starts inverting, which is a non-physical effect because
of missing contact conditions.

Figure 7.18: FEM simulation via mixed phase-field fracture modeling of crack propagation in punctured EPDM
strips based on the material parameters of Table 7.2 for Neo Hooke (transparent) and 150 % fit (strong color)
with a given notch at 6.0 mm and 0 mm, 17 mm, 19 mm, 20 mm, 27 mm and 28 mm y-displacement on the bottom
boundary from left to right.

Here, not just the results on the finest mesh ‘Neo Hooke, 3 ref’ and ‘150 % fit, 3 ref’ from Figure 7.15
are given in Figure 7.17, but also the results from a second test run, where we geometrically pre-
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refined two times the area from 2 mm below the notch until 1 mm above the circular hole in addition
to a globally pre-refined mesh with cell diameter h = 0.3. See Figure 7.23, for the finite element
mesh used for the dashed and colored force-displacement curves given in Figure 7.17. The force-
displacement curves from the simulations computed on the geometrically pre-refined meshes yield
better results compared to the experiments than the results based on adaptively refined meshes and
fixed bandwidth ε. The observed mesh-sensitivity of phase-field fracture models is widely discussed in
the literature, e.g., in [4, 128, 87, 124, 182]. Further, we indicate that the length scale ε, the relation
ε-h, and the incremental step size δt can impact the accurate shape of the force-displacement curves.

7.4.3 Crack paths comparison
Figures 7.19 to 7.23 show the phase-field functions for five notch heights compared to the experimental
crack paths after total failure. The finite element meshes are geometrically pre-refined, including the
hole and the given notch. The used numbers of dof in Figures 7.19 to 7.23 are listed in the lower part of
Table 7.4. For the tests with a given notch at 18 mm, 14 mm, 12 mm and 6 mm, the crack paths of the
simulation coincide sufficiently with the average crack paths from four to six conducted experiments
in Figures 7.19, 7.20, 7.21, and 7.23. Furthermore, the numerically achieved crack paths for the two
parameter settings ‘Neo Hooke’ and ‘150% fit’ are similar for all five tests with different notch heights.
The location and angle from where the crack passes the circular inclusion varies slightly; see e.g.,
Figure 7.21. In Figure 7.22, snapshots of the phase-field function for both parameter settings are
given for the test with a notch at 10 mm. In the experiments for this test case, the crack propagates
close to the hole but not into the hole. Compare also Figure 7.9 for the 10mm test (second row from
the bottom), especially the first, third, and fourth test specimen, where the crack propagates close
to the hole. The phase-field fracture simulation shows a fracture path similar to those of the 14 and
18mm tests. One reason could be that the crack width ε is, from a numerical point of view, not small
enough to allow cracks close to the boundary of the hole without cracking into it.

Figure 7.19: Snapshots of the phase-field function after total failure compared to the experimental results for the
samples with a notch at 18 mm height. From left to right: the geometrically pre-refined mesh, the phase-field
function based on the Neo Hookean parameter setting from Table 7.2, the phase-field function based on the 150 %
strain fit parameter setting from Table 7.2, the experimental results from 5 executed experiments.

In the numerical results in Figure 7.19 to 7.22, we observe that the location where the crack propagates
from the hole to the right boundary of the EPDM strips is in the middle of the hole and goes straight
to the right (shortest way for the crack). In the experiments the angles and paths of the crack paths
on the right of the hole vary a lot; see, for example, Figure 7.19.
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Figure 7.20: Snapshots of the phase-field function after total failure compared to the experimental results for the
samples with a notch at 14 mm height. From left to right: the geometrically pre-refined mesh, the phase-field
function based on the Neo Hookean parameter setting from Table 7.2, the phase-field function based on the 150 %
strain fit parameter setting from Table 7.2, the experimental results from 4 executed experiments.

Figure 7.21: Snapshots of the phase-field function after total failure compared to the experimental results for the
samples with a notch at 12 mm height. From left to right: the geometrically pre-refined mesh, the phase-field
function based on the Neo Hookean parameter setting from Table 7.2, the phase-field function based on the 150 %
strain fit parameter setting from Table 7.2, the experimental results from 4 executed experiments.

Figure 7.22: Snapshots of the phase-field function after total failure compared to the experimental results for the
samples with a notch at 10 mm height. From left to right: the geometrically pre-refined mesh, the phase-field
function based on the Neo Hookean parameter setting from Table 7.2, the phase-field function based on the 150 %
strain fit parameter setting from Table 7.2, the experimental results from 6 executed experiments.
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Figure 7.23: Snapshots of the phase-field function after total failure compared to the experimental results for
the samples with a notch at 6 mm height. From left to right: the geometrically pre-refined mesh, the phase-field
function based on the Neo Hookean parameter setting from Table 7.2, the phase-field based on the 150 % strain fit
parameter setting from Table 7.2, the experimental results from 4 executed experiments.

7.4.4 Discussion of experimental and numerical results

Despite the assumed simplifications related to geometrical and material nonlinearities, our mixed
model can capture the behavior qualitatively and quantitatively while interpreting the mechanical
model variations as lower and upper estimates; see Figures 7.12 and 7.13. The experimental data
related to the tracking of the crack paths and the respective numerical simulations suggest a clear
dependency on the initial crack position, which the numerical simulations confirm. In the bottom
row in Figure 7.9 and in Figure 7.23, even for an initial crack near the lower boundary (6 mm) far
from the hole, the impact of the inhomogeneous stress/strain field is still apparent. The crack starts
perpendicularly to the direction of tension on the right side (here: backside), but is diverted upwards
later on and returns to a perpendicular path in the end. This effect is observed in the experimental
data till initial cracks with a notch height of 10 mm. The path is diverted downwards at the end of
the crack path for specimens marked with #7 in Figure 7.9 (second row from below, third specimen
from the left). In the finite element simulation, the crack path within the 10 mm test differs such that
the crack propagates into the hole, as seen in the 12, 14, and 18 mm tests. For initial cracks at 12,
and 14 mm height, the path proceeds in a curved shape into the hole and continues perpendicular on
the other side. At 18 mm height, approximately on the position of the circle’s center, the initial crack
propagates directly perpendicular into the hole and propagates likewise on the other side until complete
rupture. The same can be observed in the numerical results for the tests with a notch height of 12, 14,
and 18 mm. Evaluating the statistics of the experiments, repeatability is given. The repetitions of
the tests indicate that minor variations, e.g., small changes in the initial crack length or its angle,
have small effects on the general crack path. Although dealing with a carbon black-filled rubber, no
bifurcations in the crack paths for the EPDM compound were observed. Due to the high variation in
the onset of total failure in the experiments, the calibration of related phase-field parameters might
be tricky in the future.
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7.5 Numerical studies on the impact of energy functional and
stress split

Our choice of the energy functional and the strain energy splitting in Section 7.4.3 is deliberately fitted
to the experiments proposed in this chapter. We made the experience that even with a given notch,
the crack starts propagating from the circular hole in the interior of the EPDM strip and propagates
simultaneously to the left and right, if the mixed phase-field fracture model is based on an Ambrosio-
Tortorelli functional [5, 6] (AT1 or AT2, see [163] for a comparison of AT1 and AT2 considering crack
nucleation) and the elastic energy splitting approach of Miehe [130]. This high sensitivity around the
inclusion also for a small incremental step size δt and proper adaptive refinement schemes led us to the
energy functional of Wu [189] and Amor’s volumetric-deviatoric energy splitting [7]. For example by
Wu et al. [192], a pre-cracked sample with two holes is presented in a compressible solid. Besides the
fact that different crack path results are presented depending on the mesh, the boundary conditions,
initial conditions, and the underlying phase-field model, inclusions are an additional challenge [192,
Section 8.2]. Other references on computing and discussing crack propagation in solids with inclusions
are, e.g., [197, 12, 120, 113].
Related to the first studies on different functional and stress splitting approaches, in Sections 4.6.4
and 4.7.3, in this section, we conduct numerical studies based on the mixed problem formulation and
for simulating cracks in punctured EPDM strips to retrace our choice of functional and splitting for
punctured EPDM strips3.
Three energy functionals and two(commonly used) stress splitting approaches were proposed in Sec-
tions 4.6 and 4.7. This leads to six possible combinations of energy functionals and splitting ap-
proaches. For the mixed problem formulation from Formulation 19 (Section 7.4.1) and in the context
of experiments with punctured EPDM strips, we briefly repeat the energy functionals and stress
splitting schemes depending on u, p, and ϕ. The AT2 functional is defined as

AT2 : Eε(u, p, ϕ) :=
∫

Ω

g(ϕ)
2 σ(u, p) : Elin(u) dx

+
∫

Ω

GC
2

(1− ϕ)2

ε
dx+

∫
Ω

GC
2 ε|∇ϕ|2 dx.

(7.3)

The block entries of the Jacobian based on the Euler-Lagrange equations derived from the AT2 func-
tional, are given in Appendix B.2 and B.5 with Miehe and Amor splitting, respectively.
The AT1 functional is defined as

AT1 : Eε(u, p, ϕ) :=
∫

Ω

g(ϕ)
2 σ(u, p) : Elin(u) dx

+
∫

Ω

3GC
8

1− ϕ
ε

dx+
∫

Ω

3GC
8 ε|∇ϕ|2 dx.

(7.4)

Wu’s energy functional in Equation (4.19) uses a combination of a linear and a quadratic part in the
crack energy term, which has the advantage of finite support for a localized phase-field [189].
The block entries of the Jacobian based on the Euler-Lagrange equations derived from the AT1 func-

3Results of this section are published in [127].
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tional, are given in Appendix B.3 and B.6 with Miehe and Amor splitting, respectively.
We refer to Wu [189] for a unified phase-field fracture model with the energy functional

Wu : Eε(u, p, ϕ) :=
∫

Ω

g(ϕ)
2 σ(u, p) : Elin(u) dx

+
∫

Ω

GC
π

2(1− ϕ)− (1− ϕ)2

ε
dx+

∫
Ω

GC
π
ε|∇ϕ|2 dx.

(7.5)

The block entries of the Jacobian based on the Euler-Lagrange equations derived fromWu’s functional,
are given in Appendix B.4 and B.7 with Miehe and Amor splitting, respectively.
In the model formulations from Equations (7.3), (7.4), and (7.5), we do not distinguish between fracture
behavior in tension and compression. The most popular approaches of stress splitting are given by
Miehe et al. [130, 132] and Amor et al. [7]; see Section 4.7 for further details. From [130, 132], proposed
in Section 4.7.1, we differentiate between compressive and tensile loading. The tensile and compressive
parts of the strain tensor can be defined with Miehe’s split [130, 132] as:

σ+
Miehe(u, p) := 2µE+

lin(u) + p+
1,

σ−Miehe(u, p) := 2µ
(
Elin(u)− E+

lin(u)
)

+
(
p− p+)

1.
(7.6)

Amor et al. [7] proposed a volumetric-deviatoric decomposition of the elastic energy density: (same
definition as in Equation (7.1)):

σ+
Amor(u, p) := µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1,

σ−Amor(u, p) := µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1.
(7.7)

Via

g(ϕ)σ(u, p) = g(ϕ)σ+(u, p) + σ−(u, p),

the energy functionals from Equations (7.3), (7.4), and (7.5) could be reformulated, such that we end
up with six combinations of functional and splitting definition resulting six phase-field fracture models
for incompressible solids. In the following, we present the numerically achieved crack paths for these
six models.

Remark 38 (Description of the mixed models). Implicitly in the current section, the six developed
phase-field fracture models are given. In Section 5.6, we derived the final incremental Formulations 16
and 17 based on the AT2 functional and no Cauchy stress split. In Formulation 19 from Section 7.4.1,
we presented the model in mixed form based on Wu’s functional and Amor’s splitting scheme, which
is chosen as the best fitting model for fractures in punctured EPDM strips. The block entries of the
discrete systems of all six models are given in Appendix B, which can be of interest for implementing
of the models.

The test setup and the geometry remains the same as in Section 7.4. The numerical parameters for the
numerical studies of this section are given in Table 7.5. In the frame of this study, we assume to have
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Poisson ratio ν = 0.49 and a critical energy release rate Gc = 0.97 N/mm (to reduce the simulation
run-time for this study). For adaptively refined meshes, we use three steps with the predictor-corrector
scheme on a uniform mesh according to [87] with a threshold of 0.5 for the phase-field variable; see
Section 3.3.1.

Parameter description value
λ Lamé’s first parameter 60 N/mm2

µ shear modulus 1.22 N/mm2

ν Poisson’s ratio 0.49
GC critical energy release rate 0.97 N/mm
ε bandwidth 3h
δt incremental step size 10−3 s
κ regularization parameter 0.01h

Table 7.5: Material and numerical parameters for results presented in Figures 7.24 to 7.29.

In Figures 7.24 to 7.29, the numerically achieved crack paths are presented for five initial notch heights
from 6 to 18 mm from the bottom boundary compared to the experimentally observed crack paths
(see Figure 7.9). Further, in the six Figures 7.24 to 7.29, the crack paths results differ due to energy
functionals and stress splitting approaches.

Figure 7.24: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM
strips based on AT2 functional from Equation (7.3) and Miehe splitting from Equation (7.6) with a given notch at
6, 10, 12, 14 and 18 mm from left to right.

The crack path results based on the AT2 functional from Equation (4.17) for both stress splitting
approaches have a more smeared crack zone compared to the other energy functionals. In other,
words, the AT2 functional with a quadratic term has a less steep gradient in the phase-field function
than AT1 or Wu’s approach. Aside from this, for all five notch heights in Figures 7.24 and 7.25, the
crack starts propagating from the hole to the left and right. The crack paths in Figures 7.26 and 7.27
have a thinner zone where the phase-field variable ϕ has values between 0 and 1, which means the
AT1 functional allows a sharper crack area. Aside from the third test in Figure 7.26 and the fourth
in Figure 7.27, the computed crack paths do not match the experimentally achieved crack paths from
Figure 7.9. A high sensitivity around the circular hole is observed for all AT2 and AT1 tests.
Based on Wu’s functional and Miehe’s split, the crack paths for all five test configurations match with
the experiments in Figure 7.28, but we can not achieve convergence of the nonlinear solver within
100 Newton steps for the first two tests with a notch height of 6 and 10 mm at the time point of
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Figure 7.25: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM
strips based on AT2 functional from Equation (7.3) and Amor splitting from Equation (7.7) with a given notch at
6, 10, 12, 14 and 18 mm from left to right.

Figure 7.26: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM
strips based on AT1 functional from Equation (7.4) and Miehe splitting from Equation (7.6) with a given notch at
6, 10, 12, 14 and 18 mm from left to right.

Figure 7.27: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM
strips based on AT1 functional from Equation (7.4) and Amor splitting from Equation (7.7) with a given notch at
6, 10, 12, 14 and 18 mm from left to right.
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the displayed snapshots. A reason could be the observed sensitivity on the incremental step size or
the mesh size around the inclusion. In Figure 7.29, the crack paths for all five test cases behave
similarly to the experimentally observed crack paths. It can be inferred that the Wu functional with
Amor splitting fits best to this experimental setup and possibly more general to configurations with
holes [192].

Figure 7.28: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM strips
based on Wu’s energy functional from Equation (7.5) and Miehe splitting from Equation (7.6) with a given notch
at 6, 10, 12, 14 and 18 mm from left to right.

Figure 7.29: Snapshots of the phase-field solution (from blue - unbroken to red - broken) in punctured EPDM strips
based on Wu’s energy functional from Equation (7.5) and Amor splitting from Equation (7.7) with a given notch
at 6, 10, 12, 14 and 18 mm from left to right.

Conclusions of the chapter
In Sections 7.1 and 7.2 we determined the material compounding, the mechanical properties, and
the (critical) strain energy release rate via digital image correlation (DIC) for a carbon-black-filled
EPDM rubber. The DIK provided a reliable and profound database for crack propagation experiments
concerning technically used EPDM to validate fracture models for (carbon black) filled (synthetic)
elastomers. We proposed the newly developed quasi-static mixed phase-field fracture model based on
Wu’s model [189] and Amor’s strain energy split [7] for incompressible solids, derived from Chapter 5.
We substantiated the new model with satisfactorily numerical simulations of crack propagation in
punctured EPDM strips in Section 7.4. Even though we used a quasi-static model with the assump-
tion of linear elasticity, the crack paths of the numerical simulations were promising compared to
the qualitative experimental data. Due to the complexity of the experimental setup and our newly
developed mixed phase-field fracture model, such comparisons are a major effort, and our modeling



CHAPTER 7. SIMULATING FRACTURES IN PUNCTURED EPDM STRIPS 143

approach yields upper and lower estimates of the fracture behavior in EPDM. The following last
chapter concludes the main results of this thesis. Therein, future and open tasks are given.





Chapter 8

Conclusions & outlook

In the thesis at hand, we rose to the challenge of phase-field fracture modeling and reliable numerical
simulation of fractures in compressible and incompressible solids – motivated by the interest of industry
and other sciences that either depend on the predictability of material behavior or whose future
research can base on our fundamental research. We summarize the main results concerning modeling,
solving, and validation in the following.
Derived from a primal phase-field fracture model, we developed a phase-field fracture model in mixed
form to overcome locking effects arising for high Poisson ratios. We proved the inf-sup stability of the
mixed model’s elasticity part and discretized it with Taylor-Hood elements (Chapter 5). The mixed
phase-field fracture problem is coupled and nonlinear variational system (CVIS) with an additional
time-dependent irreversibility constraint. In the frame of this thesis, we avoided the nonlinearity with
the help of extrapolation in the phase-field function ϕ, and solved the inequality constraint with a
primal-dual active set method. Our numerical results are based on the mixed form for well-known
benchmark examples and high Poisson ratios and support our approach. For a natural behavior of
the pressure field, we modified the added pressure equation to get an empty crack without impacting
pressure values from inside.
We designed a robust and efficient linear solver for the (3×3) block system to reduce the computational
workload, memory, and run-time (Chapter 6). For the linear solver (GMRES), we developed a physics-
based Schur-type block preconditioner. We partly derived it from Stokes-type problems, where we
consider the block containing the incompressibility (λ→∞) as a perturbation or penalty term. With
one v-cycle of AMG or a CG solver, we approximated the three inverse blocks in the preconditioning
matrix. We implemented the new solver in deal.II [9] derived from the parallel-adaptive framework
pfm-cracks [89]. Based on five benchmark examples, we confirmed the robustness of the linear solver in
the discretization parameter h and the crack width ε. In particular, the numerical results for a modified
stationary benchmark test with analytical reference values up to the incompressible limit approve our
preconditioner and model concerning iteration numbers and computed quantities of interest.
Finally, we could validate the new model with the help of qualitative measurements in punctured
EPDM strips with an initial notch stretched until total failure (Chapter 7). For the experimental
measurement data yielding a well-defined test setup, identified parameters with Digital Image Cor-
relation, and data on specific quantities of interest, we collaborated with the Deutsches Institut für
Kautschuktechnologie e.V. The crack paths, the maximal loading force, and the traverse displacement
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from experiments and numerical simulations behaved similarly.
We conclude the thesis by proposing future tasks in the following:

Complementarity system for realizing the crack irreversibility constraint
We proposed an attractive alternative for the irreversibility constraint briefly in Section 3.2.5, where
the inequality is resolved with a Lagrange multiplier embedded in the discrete system. This approach
has the advantage of resolving the constraint more accurately and without additional iterations for
the constraint. In the case of our mixed model, we would get a (4 × 4) block system with unknowns
(u, p, ϕ, ζ). One future task could be to work further on complementarity systems and to consider
efficient solving of the resulting linear system of increased dimension. The implementation of the com-
plementarity system is available open-source for the primal phase-field fracture problem with three
components in Example 8, 10, and 11 of the instationary PDE Examples of DOpElib [62, 79]. The
implementation of the mixed phase-field fracture problem with four components is given in Example
12 of the same package for a pressurized fracture example.

Domain decomposition for efficient solving
The robustness of our preconditioned linear solver becomes critical in κ and λ if both are tending to
their limits: λ→∞ and κ→ 0. For small κ, we noticed in the modeling of phase-field fracture that we
have coercivity loss in the elasticity equations leading to an ill-conditioned problem. A solution could
be an overlapping domain-decomposition method with the broken and the unbroken domains, which
overlap in the transition zone where 0 < ϕ < 1. Classic literature on domain decomposition is given
by Quarteroni and Valli [140], Toselli and Widlund [167], and Smith et al. [19]. An additive-Schwarz
method could overcome the ill-conditioned problem in the crack nodes; see e.g., Beuchler and Nepom-
nyaschikh [26]. Ideally, such a solver could avoid the observed sensitivities triggered by the material
and regularization parameters ε, λ, and κ. Splitting the system’s stiffness into two sub-problems could
increase the efficiency of the computations.

High-performance computing
Another aspect is parallel computing. In Chapter 6, we used four CPUs (on a single machine with four
E7 v3 CPUs). As a future task, parallel studies could be conducted similar to Jodlbauer et al. [98],
investigating scalability, speed up, and efficiency regarding the detected difficulties considering small
κ, small h, and large λ.

Computations in 3d
As we considered in this thesis, the third dimension is neglectable for benchmark tests and thin strips,
and 2d computations are justifiable (Chapter 7). In the future, 3d computations could be caught up
for broader usage of the new model and to evaluate the performance of the designed linear solver in
higher dimensions.

Nonlinear modeling for EPDM including viscoelasticity and temperature effects
Our mixed model could capture crack propagation behavior in EPDM qualitatively and quantitatively
despite the assumed simplifications related to geometrical and material nonlinearities. To simulate
fractures in punctured EPDM strips, we used a quasi-static model assuming linear elasticity, small
deformations, a constant critical energy release rate, and constant temperature. Considering the
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highly nonlinear behavior of filled rubbers in cyclic applications, nonlinear geometrical and material
effects could be addressed in the future. Further, viscoelasticity, temperature effects due to energy
dissipation, static hysteresis, and permanent deformations become more relevant within cyclic dynamic
loading. Carleo et al. [50] benchmarked several models to describe those effects; see Plagge et al. [139].
Prospectively, the combination of sophisticated mechanical material models and phase-field fracture
for describing crack propagation in rubbers seems promising. We would be specifically interested in
combining the developed mixed form with models on fractured thermo-elastic solids [131, 16, 37, 122,
150], dynamic fracture [36, 30, 122, 179, 198], and hyperelastic fracture [92]. A prototype system of a
dynamic thermo-elastic phase-field configuration for incompressible solids could read:
Let Ω ⊂ Rd, d = 2, 3 be a domain and I := (0, T ) be a time interval with end time T > 0. Find
vector-valued displacements u : Ω × I → Rd, a scalar-valued pressure p : Ω × I → R, a phase-field
indicator function ϕ : Ω× I → [0, 1], and a temperature τ : Ω× I → R such that

∂2
t u−∇ · (g(ϕ)σ(u, p, τ)) = 0 in Ω× I,

g(ϕ)∇ · u− 1
λ
p = 0 in Ω× I,

∂tϕ+ ϕ(1− κ)(σ(u, p, τ) : ∇u) + GC
ε

(1− ϕ)−GCε∆ϕ ≤ 0 in Ω× I,

∂tϕ ≤ 0 in Ω× I,

(∂tϕ+ ϕ(1− κ)(σ(u, p, τ) : ∇u) + GC
ε

(1− ϕ)−GCε∆ϕ) · ∂tϕ = 0 in Ω× I,

∂tτ −∇ · (γ∇τ) = f in Ω× I,

plus initial and boundary conditions. Here, g(ϕ) is the degradation function, γ is the thermal con-
ductivity, and f is the heat source term. The form of the solid stress tensor σ(u, p, τ) depends on the
(nonlinear) material model, see e.g., [131, 122, 150]. Recent work on this topic of thermo-viscoelasticity
with a similar phase-field fracture model, but different finite element discretization, is given by Arash
et al. [8]. For large deformation and simulating the failure of viscoelastic elastomers, see Brighenti et
al. [45].





Appendix A

Proof of Γ-convergence in 1d

We prove for the 1d case that the energy functional defined as

Eε(u, ϕ) = 1
2

∫
Ω

(
[(1− κ)ϕ2 + κ](2µ+ λ)|∇u|2 + ρ ϕ∇u

)
dx+ 1

2GC
∫

Ω

(
1
ε

(1− ϕ)2 + ε|∇ϕ|2
)
dx,

is a valid choice as an approximation of the Ambrosio-Tortorelli functional [5, 6]

ET (u,C) = 1
2

∫
Ω

(
(2µ+ λ)|∇u|2 + ρ∇u

)
dx+GC#(S(u)).

The theorem of Γ-convergence was given in Theorem 1 in Section 4.4 and is repeated in the following
for completeness.

Theorem 6 (Γ-convergence). The regularized functional Gj : L1(Ω)×L1(Ω)→ R ∪ {∞}, defined by

Gj(u, ϕ) =
{
Eεj (uj , ϕj) if (uj , ϕj) ∈ H1(Ω)×K,
+∞ otherwise,

Γ-converges, as

εj → 0+ for j →∞ and κ = O(εj),

to the functional G : L1(Ω)× L1(Ω)→ R ∪ {∞}, given by

G(u, ϕ) =
{
ET (u) if ϕ = 1 a.e. and u ∈ PH1(Ω),
+∞ otherwise.

Furthermore, if (uj , ϕj) is a minimizer of Gj, then (uj , ϕj) (possibly a subsequence) converges to a
minimizer of G.

Proof In Part 2 of the proof of Theorem 1, we use the following lemma:
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Lemma 6. If (εj) is a sequence of positive numbers converging to 0 and

sup
j
Eεj (u, ϕj) <∞, j →∞,

then there exists a subsequence of (ϕj) converging in L1(Ω) to some function ϕ ∈ PC(Ω) which satisfies
ϕ ∈ Z = {v ∈ PC(Ω)| v = 1 a.e. in Ω}. Further, for every η > 0 there exists a finite set S = Sη such
that ∣∣∣max

I
ϕj −min

I
ϕj

∣∣∣ ≤ η
on each fixed compact subset I of Ω \ S.

The proof of Lemma 6 can be found in [41, Lemma 6.2].

Part 1: We prove the lower semicontinuity inequality

G(u, ϕ) ≤ lim inf
j→∞

Gj(uj , ϕj).

Let be

εj → 0+, uj → u in L1(Ω), ϕj → ϕ in L1(Ω),

as j →∞. Further, we set κ = κj = O(εj). Up to subsequences we can assume

uj → u a.e. in Ω, ϕj → ϕ a.e. in Ω,

and
lim
j→∞

Gj(u, ϕ) = C < +∞. (A.1)

In the first step, we prove that ϕj → 1 in L2(Ω). This property is useful in a later step. For this, the
possible negativity of the pressure terms needs to be handled using Young’s inequality. For arbitrary
δ > 0 it holds

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx

≥
∫

Ω

1
2(1− κj)ϕ2

j (2µ+ λ)|∇uj |2 dx−
∫

Ω

(
1
2δ |ρ|

2 + δ

2 |ϕj∇uj |
2
)
dx

≥
(

1
2(1− κj)−

δ

2

)
(2µ+ λ) ‖ϕj∇uj‖2L2(Ω) −

1
2δ ‖ρ‖

2
L2(Ω) . (A.2)

Choosing δ < (1− κj) leads to

lim inf
j→∞

1
2GC

∫
Ω

1
εj

(1− ϕj)2 dx ≤ lim inf
j→∞

(
1
2(1− κj)−

δ

2

)
(2µ+ λ) ‖ϕj∇uj‖2L2(Ω)

+ 1
2GC

∫
Ω

1
εj

(1− ϕj)2 + εj |∇ϕj |2 dx.
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Using Equation (A.1) and Equation (A.2) yields

lim inf
j→∞

1
2GC

∫
Ω

1
εj

(1− ϕj)2 dx

≤ lim inf
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx+ 1

2δ ‖ρ‖
2
L2(Ω)

+ 1
2GC

∫
Ω

1
εj

(1− ϕj)2 + εj |∇ϕj |2 dx

≤ lim inf
j→∞

Gj(uj , ϕj) + 1
2δ ‖ρ‖

2
L2(Ω) ≤ C + 1

2δ ‖ρ‖
2
L2(Ω) =: C̃.

Multiplying with 2εj

GC
> 0 yields

lim inf
j→∞

∫
Ω

(1− ϕj)2 dx ≤ lim inf
j→∞

2εj
GC

C̃.

With Fatou’s Lemma we get ∫
Ω

(1− ϕ)2 dx ≤ lim inf
j→∞

∫
Ω

(1− ϕj)2 dx,

and obtain ∫
Ω

(1− ϕ)2 dx ≤ lim inf
j→∞

2εj
GC

C̃ = 0.

Hence, ϕ = 1 almost everywhere in Ω and ‖ϕj − 1‖L2(Ω) → 0 as j →∞ and therefore

ϕj → 1 in L2(Ω).

In a next step, we prove that u ∈ H1(I) for I ⊂ Ω \ S(u). Since ϕj → ϕ = 1 almost everywhere,
it follows from Lemma 6 that a finite set S exists such that for every fixed open set I compactly
embedded in Ω \ S it holds 1

2 < ϕj <
3
2 on I. For every such fixed I, it can be assumed without

restrictions that u ∈ L1(I). Further, it follows from the estimate

1
2(2µ+ λ) sup

j

∫
I

|∇uj |2 ≤ sup
j

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx < +∞,

that

‖∇uj‖2L2(I) < +∞.

Thus, since H1(I) is reflexive, ∇uj yields a subsequence ∇ujk
which converges weakly in H1(I).

Without loss of generality we can set j = jk. With ϕj → 1 in L2(I) and uj ⇀ u in H1(I) it follows∫
I

|∇u|2dx ≤ lim inf
j→∞

∫
I

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2dx

I⊂Ω
≤ lim inf

j→∞

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2dx < +∞.

(A.3)
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Hence u ∈ H1(I) and since this estimate is independent of I, even u ∈ PH1(Ω) and S(u) ⊂ S. In the
following, we show that the lower semicontinuity inequality is independent of the pressure term. At
first, subtracting the pressure term of Gj from G (with the integral over I) leads to∫

I

ρ∇u dx−
∫
I

ρϕj∇uj dx =
∫
I

ρ(∇u− ϕj∇uj) dx.

Since ϕ = 1 almost everywhere, it holds

∣∣ ∫
I

ρ∇u− ϕj∇uj dx
∣∣≤ ∣∣ ∫

I

ρ (∇u−∇uj) dx
∣∣+
∣∣ ∫
I

(ρ− ϕj)∇uj dx
∣∣

≤
∣∣ ∫
I

ρ (∇u−∇uj) dx
∣∣+ ‖ρ− ϕj‖‖∇uj‖. (A.4)

Thus

lim inf
j→∞

∣∣ ∫
I

ρ∇u− ϕj∇uj dx
∣∣ ≤ lim inf

j→∞
ρ

(∫
I

|ϕ|
∣∣∇u−∇uj∣∣ dx+ ||∇uj ||L2(I)||ϕ− ϕj ||L2(I)

)
= ρ

(
lim inf
j→∞

∫
I

|ϕ|
∣∣∇u−∇uj∣∣ dx+ lim inf

j→∞
||∇uj ||L2(I)||ϕ− ϕj ||L2(I)

)
= ρ (0 + 0) = 0.

Hence,
lim inf
j→∞

∫
I

ρϕj∇uj dx =
∫
I

ρ∇u dx. (A.5)

To estimate the bulk energy term, we assume t ∈ S(u). Then t1j , t
2
j , sj exist such that t1j < s < t2j

with

lim
j→∞

t1j = lim
j→∞

t2j = lim
j→∞

sj = t,

lim
j→∞

ϕj(t1j ) = lim
j→∞

ϕj(t2j ) = 1,

lim
j→∞

ϕj(sj) = 0.

Otherwise, a neighbourhood I of t would exist such that u ∈ H1(I) and t /∈ S(u). A particular case
of Young’s inequality, which states x2 + y2 ≥ 2xy, leads to∫ sj

t1
j

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt ≥ 2

∫ sj

t1
j

(√
1
ε

(1− ϕj)
√
ε|∇ϕj |

)
dt ≥

∣∣∣∣2 ∫ sj

t1
j

(1− ϕj)∇ϕj dt
∣∣∣∣.

Application of the substitution rule yields∫ sj

t1
j

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt ≥ 2

∣∣∣∣ ∫ ϕ(sj)

ϕ(t1
j
)

(1− s) ds
∣∣∣∣.
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The estimate of the second integral follows the same idea. Thus

lim inf
j→∞

∫ sj

t1
j

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt ≥ lim inf

j→∞
2
∣∣∣∣ ∫ ϕ(sj)

ϕ(t1
j
)

(1− s) ds
∣∣∣∣ = 2

∫ 1

0
(1− s) ds = 1,

and

lim inf
j→∞

∫ t2j

sj

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt ≥ lim inf

j→∞
2
∣∣∣∣ ∫ ϕ(t2j )

ϕ(sj)
(1− s) ds

∣∣∣∣ ≥ 2
∫ 1

0
(1− s) ds = 1.

We repeat the argument for all ti ∈ S(u) yielding

∑
ti∈S(u)

lim inf
j→∞

GC
2

[ ∫ si,j

t1
i,j

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt+

∫ t2i,j

si,j

(
1
ε

(1− ϕj)2 + ε|∇ϕj |2
)
dt

]
(A.6)

≥ GC
2

∑
ti∈S(u)

(1 + 1) = #GC(S(u)),

and taking into account the arbitrariness of I in Equation (A.3), it holds that

lim inf
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕj)2 + εj |∇ϕj |2) dx

is equal to Equation (A.6) since it vanishes on all intervals [t2i,j , t1i+1,j ] because of ϕj → 1 on I ⊂
Ω \ S(u). Thus

GC#(S(u)) ≤ lim inf
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕ)2 + εj |∇ϕj |2) dx.

It remains to expand Equation (A.5) on the whole domain Ω using the same arguments as in Equa-
tion (A.6). Let ti ∈ S(u) and t1i,j and t2i,j be defined as before. Then, Equation (A.3) and Equa-
tion (A.5) with Ii = (t2i−1,j , t

1
i,j) as depicted in Figure A.1

t1i−1,j

ti−1

t2i−1,j t1i,j

ti

t2i,j t1i+1,j

ti+1

t2i+1,j

Ii Ii+1

Figure A.1: Visualization of Ii.
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lead to

1
2

∫
Ω

(2µ+ λ)|∇u|2 + ρ∇u dx = lim
j→∞

∑
ti∈S(u)

1
2

∫
Ii

(2µ+ λ)|∇u|2 + ρ∇u dx

≤ lim inf
j→∞

∑
ti∈S(u)

1
2

∫
Ii

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx

≤ lim inf
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx

− lim inf
j→∞

∑
ti∈S(u)

∫ t2j

t1
j

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx.

The last subtraction is necessary since the red parts in Figure A.1 are not included in
⋃
Ii. Due to

(uj , ϕj) ∈ H1(Ω;R2), ρ being constant and limj→∞ t1j = limj→∞ t2j = t it holds

− lim inf
j→∞

∑
ti∈S(u)

∫ t2j

t1
j

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx = 0.

To sum up, the two major estimates, which were shown, are

1
2

∫
Ω

(2µ+ λ)|∇u|2 + ρ∇u dx ≤ lim inf
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 + ρϕj∇uj dx, (A.7)

and

GC#(S(u)) ≤ lim inf
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕ)2 + εj |∇ϕj |2) dx. (A.8)

These two inequalities give us the lower semicontinuity inequality:

G(u, ϕ) ≤ lim inf
j→∞

Gj(uj , ϕj).

Part 2: The second part proves the upper semicontinuity inequality:

G(u, ϕ) ≥ lim sup
j→∞

Gj(uj , ϕj). (A.9)

The idea is to construct recovery sequences for u ∈ PH1(Ω) and ϕ = 1 almost everywhere; see
Figure A.2.
It suffices considering the case Ω = (−1, 1) with S(u) = {0}. For a general case with finitely many jump
discontinuities, we can scale Ω and repeat similar steps for every jump point. Let be κ = κj = O(εj).
Set ξj = O(εj) and let uj ∈ H1(Ω) with uj(t) = u(t) if |t| > ξj . For |t| ≤ ξj , uj is Lagrange-interpolated
linearly with −ξj and ξj as grid points. The Lagrange-polynomials are given by

L
(1)
0 (t) = t− ξj

−ξj − ξj
= t− ξj
−2ξj

, L
(1)
1 (t) = t− (−ξj)

ξj − (−ξj)
= t+ ξj

2ξj
.



APPENDIX A. PROOF OF Γ-CONVERGENCE IN 1D 155

The interpolation is then given by

uj |[−ξj ,ξj ] = u(−ξj)
t− ξj
−2ξj

+ u(ξj)
t+ ξj
2ξj

= u(−ξj)
ξj − t
2ξj

+ u(ξj)
t+ ξj
2ξj

= u(−ξj)ξj − u(−ξj)t+ u(ξj)t+ u(ξj)ξj
2ξj

= ξj(u(−ξj) + u(ξj)) + t(u(ξj)− u(−ξj))
2ξj

= u(ξj)− u(−ξj)
2ξj

· t+ u(ξj) + u(−ξj)
2 ,

such that uj is given by

uj(t) :=


u(ξj)−u(−ξj)

2ξj
· t+ u(ξj)+u(−ξj)

2 if |t| ≤ ξj
u if |t| > ξj .

Since it obviously holds uj → u in L1(Ω), all the deductions from Part 1 hold as well.
The construction of ϕj proceeds as follows. With fixed η > 0, let T > 0 and ϕ̄ ∈ H1(0, T ) be such
that ϕ̄(0) = 0, ϕ̄(0) = 1, 0 ≤ ϕ̄ ≤ 1 and∫ T

0
(1− ϕ̄)2 + |∇ϕ̄|2dt ≤ 1 + η. (A.10)

Define

ϕj(t) :=


0 if |t| ≤ ξj
ϕ̄
(
|t|−ξj

εj

)
if ξj < |t| < ξj + εjT

1 if |t| ≥ ξj + εjT.

Since ξj → 0 as j →∞ it holds

lim
j→∞

{t ∈ R : |t| ≤ ξj} = {0},

thus 0 ≤ ϕj ≤ 1 and ϕj → 1 a.e. in Ω.

We show Equation (A.9) proving the following three inequalities:

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx ≤

1
2

∫
Ω

(2µ+ λ)|∇u|2 dx, (A.11)

lim sup
j→∞

1
2

∫
Ω
ρϕj∇uj dx ≤

1
2

∫
Ω
ρ∇u dx, (A.12)

lim sup
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕj)2 + εj |∇ϕj |2) dx ≤ GC#(S(u)). (A.13)
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u

uj

−ξj ξj

ϕj

−ξj ξj

Figure A.2: Visualization of the recovery sequences uj and ϕj ; similar to [41].

Starting with Equation (A.11), the left-hand side can be estimated by

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx

= lim sup
j→∞

1
2

∫ −ξj−εjT

−1
[(1− κj)ϕ2

j + κj ](2µ+ λ)|∇uj |2 dx

+ lim sup
j→∞

1
2

∫ −ξj

−ξj−εjT

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx

+ lim sup
j→∞

1
2

∫ ξj

−ξj

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx

+ lim sup
j→∞

1
2

∫ ξj+εjT

ξj

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx

+ lim sup
j→∞

1
2

∫ 1

ξj+εjT

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx.

Inserting the definitions of ϕj and uj yields

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx = lim sup

j→∞

1
2

∫ −ξj−εjT

−1
(2µ+ λ)|∇u|2 dx

+ lim sup
j→∞

1
2

∫ −ξj

−ξj−εjT

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇u|2 dx

+ lim sup
j→∞

1
2

∫ ξj

−ξj

κj(2µ+ λ)|∇uj |2 dx

+ lim sup
j→∞

1
2

∫ ξj+εjT

ξj

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇u|2 dx

+ lim sup
j→∞

1
2

∫ 1

ξj+εjT

(2µ+ λ)|∇u|2 dx.
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Due to εj → 0 and [(1− κj)ϕ2
j + κj ]→ ϕ2

j ≤ 1 as j →∞, it holds

lim sup
j→∞

1
2

∫ −ξj

−ξj−εjT

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇u|2 dx = 0,

lim sup
j→∞

1
2

∫ ξj+εjT

ξj

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇u|2 dx = 0.

Since uj is linear on [−ξj , ξj ], the integral over this interval is given as

lim sup
j→∞

1
2

∫ ξj

−ξj

κj |∇uj |2 dx = lim sup
j→∞

1
2

∫ ξj

−ξj

κj

∣∣∣∣u(ξj)− u(−ξj)
2ξj

∣∣∣∣2 dx
= lim sup

j→∞

1
2

∫ ξj

−ξj

κj
(u(ξj)− u(−ξj))2

4ξ2
j

dx

= lim sup
j→∞

1
2

[
κj

(u(ξj)− u(−ξj))2

4ξ2
j

x

]ξj

−ξj

= lim sup
j→∞

κj
(u(ξj)− u(−ξj))2

4ξj

= lim sup
j→∞

1
4

κj√
κjεj

(u(ξj)− u(−ξj))2

= lim sup
j→∞

1
4

√
κj
√
εj

(u(ξj)− u(−ξj))2 = 0.

Hence

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx = lim sup

j→∞

1
2

∫ −ξj−εjT

−1
(2µ+ λ)|∇u|2 dx

+ lim sup
j→∞

1
2

∫ 1

ξj+εjT

(2µ+ λ)|∇u|2 dx ≤ 1
2

∫
Ω

(2µ+ λ)|∇u|2 dx,

and the first Equation (A.11), given by

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx ≤

1
2

∫
Ω

(2µ+ λ)|∇u|2 dx,

is proven.
For Equation (A.12), we have to show that ϕj → 1 in L2(−ξj − εjT, ξj + εjT ). We observe by
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construction of ϕj that

||ϕj − 1||2L2(−ξj−εjT,ξj+εjT ) =
∫ −ξj

−ξj−εjT

(ϕj − 1)2 dt+
∫ ξj

−ξj

(ϕj − 1)2 dt+
∫ ξj+εjT

ξj

(ϕj − 1)2 dt

=
∫ −ξj

−ξj−εjT

[
ϕ̄

(
−t− ξj
εj

)
− 1
]2

dt+
∫ ξj

−ξj

(0− 1)2 dt

+
∫ ξj+εjT

ξj

[
ϕ̄

(
t− ξj
εj

)
− 1
]2

dt

=
∫ −ξj

−ξj−εjT

[
ϕ̄

(
−t− ξj
εj

)
− 1
]2

dt+
∫ ξj

−ξj

1 dt

+
∫ ξj+εjT

ξj

[
ϕ̄

(
t− ξj
εj

)
− 1
]2

dt.

Now, we consider the substitution

s = |t| − ξj
εj

with ds = dt

εj
. (A.14)

Since s(ξj) = s(−ξj) = 0 and s(ξj + εjT ) = s(−ξj − εjT ) = T , it follows

||ϕj − 1||2L2(−ξj−εjT,ξj+εjT ) = 2
∫ T

0
εj (ϕ̄(s)− 1)2

ds+
∫ ξj

−ξj

1 dt

≤ 2
∫ T

0
εj (ϕ̄(s)− 1)2 + εj |∇ϕ̄(s)|2ds+

∫ ξj

−ξj

1 dt.

This can be estimated via Equation (A.10) such that

||ϕj − 1||2L2(−ξj−εjT,ξj+εjT ) ≤ 2εj(1 + η) + 2ξj .

The right-hand side tends to 0 as j →∞. Hence, it holds true that ϕj → 1 in L2(−ξj− εjT, ξj + εjT ).
This is used to estimate the pressure terms restricted to (−ξj − εjT, ξj + εjT ). The Hölder inequality
leads to∫ ξj+εjT

−ξj−εjT

ρϕj∇u dx ≤
∫ ξj+εjT

−ξj−εjT

|ρϕj∇u| dx

≤ ρ||∇u||L2(−ξj−εjT,ξj+εjT )||ϕj − 1||L2(−ξj−εjT,ξj+εjT )
j→∞−→ 0. (A.15)

Since ϕj = 0 on [−ξj , ξj ] and uj = u on Ω \ [−ξj , ξj ], Equation (A.12) can be handled as follows:

1
2

∫
Ω
ρϕj∇uj dx = 1

2

∫
Ω
ρϕj∇u dx

= 1
2

∫ −ξj−εjT

−1
ρϕj∇u dx+ 1

2

∫ ξj+εjT

−ξj−εjT

ρϕj∇u dx+ 1
2

∫ 1

ξj+εjT

ρϕj∇u dx.
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Applying the lim supj→∞ together with Equation (A.15) yields

lim sup
j→∞

1
2

∫ ξj+εjT

−ξj−εjT

ρϕj∇u dx = 0

and since ϕj → 1 and ϕj = 1 it finally holds

lim sup
j→∞

1
2

∫
Ω
ρϕj∇uj dx = lim sup

j→∞

1
2

∫ −ξj−εjT

−1
ρϕj∇u dx+ lim sup

j→∞

1
2

∫ 1

ξj+εjT

ρϕj∇u dx

≤ 1
2

∫
Ω
ρ∇u dx.

Thus, Equation (A.12) given by

lim sup
j→∞

1
2

∫
Ω
ρϕj∇uj dx ≤

1
2

∫
Ω
ρ∇u dx,

is proven.
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The last inequality to show is Equation (A.13). The monotony of the integral and |∇ϕj |2 ≥ 0 yield

1
2GC

∫
Ω

(
1
εj

(1− ϕj)2 + εj |∇ϕj |2
)
dx ≤ 1

2GC
1
εj

∫
Ω

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

∫
Ω
εj |∇ϕj |2 dx.

(A.16)

Splitting the first integral of the right-hand side gives further

1
2GC

1
εj

∫
Ω

(
(1− ϕj)2 + |∇ϕj |2

)
dx = 1

2GC
1
εj

∫ −ξj−εjT

−1

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

1
εj

∫ −ξj

−ξj−εjT

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

1
εj

∫ ξj

−ξj

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

1
εj

∫ ξj+εjT

ξj

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

1
εj

∫ 1

ξj+εjT

(
(1− ϕj)2 + |∇ϕj |2

)
dx.

Since ϕj = 1 on [−1,−ξ − εjT ] ∪ [ξ + εjT, 1] and ϕj = 0 on [−ξ, ξ] it holds

1
2GC

1
εj

∫
Ω

(
(1− ϕj)2 + |∇ϕj |2

)
dx = 1

2GC
1
εj

∫ −ξj

−ξj−εjT

(
(1− ϕj)2 + |∇ϕj |2

)
dx

+ 1
2GC

1
εj

∫ ξj

−ξj

1 dx (A.17)

+ 1
2GC

1
εj

∫ ξj+εjT

ξj

(
(1− ϕj)2 + |∇ϕj |2

)
dx.

For clarity, the remaining integrals are estimated separately. Firstly,

1
2GC

1
εj

∫ ξj

−ξj

1 dx = 1
2GC

1
εj

2ξj = GC
ξj
εj
.

Secondly,

1
2GC

1
εj

∫ −ξj

−ξj−εjT

(
(1− ϕj)2 + |∇ϕj |2

)
dx = 1

2GC
1
εj

∫ −ξj

−ξj−εjT

(
(1− ϕj)2 + |∇ϕj |2

)
dx

= 1
2GC

1
εj

∫ −ξj

−ξj−εjT

((
1− ϕ̄

(
|x| − ξj
εj

))2

+
∣∣∣∣∇ϕ̄( |x| − ξjεj

)∣∣∣∣2
)
dx. (A.18)
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Applying the substitution defined in Equation (A.14) reduces Equation (A.18) to

1
2GC

1
εj

∫ T

0
εj (1− ϕ̃ (s))2 + |∇ϕ̃ (s)|2 dx = 1

2GC
∫ T

0
(1− ϕ̃ (s))2 + |∇ϕ̃ (s)|2 dx.

Using Equation (A.10) yields

1
2GC

∫ T

0
(1− ϕ̃ (s))2 + |∇ϕ̃ (s)|2 dx ≤ 1

2GC(1 + η).

The estimation of the last integral in Equation (A.17)

1
2GC

1
εj

∫ ξj+εjT

ξj

(
(1− ϕj)2 + |∇ϕj |2

)
dx,

works equal such that it is smaller than 1
2GC(1 + η) as well. This concludes to

1
2GC

1
εj

∫
Ω

(
(1− ϕj)2 + |∇ϕj |2

)
dx ≤ GC

ξj
εj

+GC(1 + η).

Going back to Equation (A.16) and applying the lim supj→∞ yields

lim sup
j→∞

1
2GC

∫
Ω

(
1
εj

(1− ϕj)2 + εj |∇ϕj |2
)
dx ≤ lim sup

j→∞
GC

ξj
εj

+GC(1 + η)

+ lim sup
j→∞

1
2GCεj

∫
Ω
|∇ϕj |2 dx.

Due to the construction of ϕj it holds

lim sup
j→∞

εj
1
2GC

∫
Ω
|∇ϕj |2 dx = 0,

and further, since ξj

εj
→ 0 as j →∞, it follows

lim sup
j→∞

GC
ξj
εj

+GC(1 + η) = GC(1 + η).

Since this holds for arbitrary η > 0, η → 0 we get Equation (A.13), given by

lim sup
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕj)2 + εj |∇ϕj |2) dx ≤ GC#(S(u)).

To sum up, Equation (A.11), Equation (A.12) and Equation (A.13)

lim sup
j→∞

1
2

∫
Ω

[(1− κj)ϕ2
j + κj ](2µ+ λ)|∇uj |2 dx ≤

1
2

∫
Ω

(2µ+ λ)|∇u|2 dx,

lim sup
j→∞

1
2

∫
Ω
ρϕj∇uj dx ≤

1
2

∫
Ω
ρ∇u dx
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and
lim sup
j→∞

1
2GC

∫
Ω

( 1
εj

(1− ϕj)2 + εj |∇ϕj |2) dx ≤ GC#(S(u))

were shown. The combination yields the upper semi-continuity inequality

G(u, ϕ) ≥ lim sup
j→∞

Gj(uj , ϕj).

Part 3: The result follows from [58, Corollary 7.20]. Under the assumption that there exists a sequence
(uj , ϕj), which minimizes Gj , and further, that (uj , ϕj)→ (u, ϕ) in L1(Ω;R2) as j →∞,Dal Maso [58,
Corollary 7.20] states that (u, ϕ) minimizes G. �



Appendix B

Block entries of discretized system

In the following, the block entries and residuals of all used problem formulations in mixed form are
given. We use as ansatz functions (χuj , χ

p
j , χ

ϕ
j ) ∈ Vh × Uh × Kh and test functions (χui , χ

p
i , χ

ϕ
i ) ∈

Vh × Uh ×Kh for i, j = 1, . . . , N with N total nodes. The discrete spaces are defined as

Vh := {uh ∈ H1
0 (Ω;R2), uh|K ∈ (Qc2(K))2 ∀K ∈ Th},

Uh := {ph ∈ L2(Ω), ph|K ∈ Qc1(K) ∀K ∈ Th},
Wh := {ϕh ∈ H1(Ω), ϕh|K ∈ Qc1(K) ∀K ∈ Th}.

As proposed in Section 3.2.1, we define the block entries of the JacobianM and the right hand side
F consisting of the residuals of Newton’s method:

M =

Muu Mup Muϕ

Mpu Mpp Mpϕ

Mϕu Mϕp Mϕϕ

 , F =

FuF p
Fϕ

 .

In the definitions of the block entries we frequently use the following two identities for u,w,∈ Vh:

(Elin(u),∇w) = (Elin(u), Elin(w)),
((∇ · u)1,∇w) = (∇ · u,∇ · w),

which can be seen easily using the definition of the linearized elasticity

Elin(u) := 1
2(∇u+∇uT ).

Further, it holds for p ∈ Uh (in two dimensions x and y):

p1 : Elin(u) =
(
p 0
0 p

)
: 1

2
(
∇u+∇uT

)

=
(
p 0
0 p

)
: 1

2

 2∂xu ∂yux + ∂xuy

∂xuy + ∂yux 2∂yuy

 = p (∇ · u).



164 APPENDIX B. BLOCK ENTRIES OF DISCRETIZED SYSTEM

B.1 Mixed stabilized equal-order formulation based on AT2,
pressure driven

The block entries of the consistently stabilized equal-order Formulation 18 from Section 6.3.3 (Qc1
elements for u, p, and ϕ), based on the AT2 functional from Equation (7.3) and no splitting, are given
as follows:

Fui = (((1− κ)ϕ̃2 + κ)2µElin(u), Elin(χui )) + (((1− κ)ϕ̃2 + κ)p,∇ · χui ) + (ϕ̃2ρ,∇ · χui ),
F pi = ((1− κ)ϕ̃2 + κ)(∇ · u, χpi )− αh2(∇p,∇χpi )− αh2(2µ((1− κ)ϕ̃2 + κ)Elin(u) : Elin(u),∇χpi ),
Fϕi = (1− κ)(ϕ2µElin(u) : Elin(u), χϕi ) + (1− κ)(ϕ(p1 : Elin(u), χϕi ),

+ 2ρ(ϕ∇ · u, χϕi ) +GC

(
−1
ε

(1− ϕ, χϕi ) + ε(∇ϕ,∇χϕi )
)
,

Muu
i,j = (((1− κ)ϕ̃2 + κ)2µElin(χuj ), Elin(χui )),

Mpu
i,j = ((1− κ)ϕ̃2 + κ)(∇ · χuj , χ

p
i )

− αh2(2µ((1− κ)ϕ̃2 + κ)
(
Elin(χuj ) : Elin(u) + Elin(u) : Elin(χuj ),∇χpi

)
,

Mϕu
i,j = (1− κ)(ϕ2µ(Elin(χuj ) : Elin(u) + Elin(u) : Elin(χuj )), χϕi ) + 2ρ(ϕ∇ · χuj , χ

ϕ
i ),

Mup
i,j =

(
((1− κ)ϕ̃2 + κ)χpj ,∇ · χui

)
,

Mpp
i,j = − αh2(∇χpj ,∇χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχpj1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(χϕj 2µElin(u) : Elin(u), χϕi ) + (1− κ)(χϕj (p1 : Elin(u)), χϕi ),

+ 2ρ(χϕj∇ · u, χ
ϕ
i ) +GC

(
1
ε

(χϕj , χ
ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )
)
.
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B.2 Mixed model formulation based on AT2 with Miehe’s
split, pressure driven

The block entries of the mixed Formulation 17 from Section 5.6, based on the AT2 energy functional
from Equation (7.3) and Miehe’s split from Equation (7.6), are given as follows:

Fui = ((1− κ)ϕ̃2 + κ)(2µE+
lin(u) + p+

1, Elin(χui ))
+ (2µ(Elin(u)− E+(u)) + (p− p+)1, Elin(χui )) + (ϕ̃2ρ,∇ · χui ),

F pi = ((1− κ)ϕ̃2 + κ)(∇ · u, χpi )−
1
λ

(p, χpi ),

Fϕi = (1− κ)(ϕ(2µE+
lin(u) + p+

1) : Elin(u), χϕi ) + 2ρ(ϕ∇ · u, χϕi )

+ GC(−1
ε

(1− ϕ), χϕi ) +GCε(∇ϕ,∇χϕi ).

Muu
i,j = (((1− κ)ϕ̃2 + κ)2µE+

lin
′(u, χuj ), Elin(χui )) + (2µ(Elin(χuj )− E+

lin(χuj )), Elin(χui )),
Mpu
i,j = ((1− κ)ϕ̃2 + κ)(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(2µϕE+

lin(χuj ) : Elin(u), χϕi ) + (1− κ)(2µϕE+
lin(u) : Elin(χuj ), χϕi ),

+ (1− κ)(ϕp+
1 : Elin(χui ), χϕi ) + 2ρ(ϕ∇ · χuj , χ

ϕ
i ),

Mup
i,j = (((1− κ)ϕ̃2 + κ)χp,+j 1, Elin(χui )) + ((χpj − χ

p,+
j )1, Elin(χui )),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(2µχϕj (E+

lin(u) : Elin(u)), χϕi ) + (1− κ)(χϕj (p+
1, Elin(u)), χϕi )

+ 2ρ(χϕj∇ · u, χ
ϕ
i ) +GC

(
1
ε

(χϕj , χ
ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )
)
.
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B.3 Mixed model formulation based on AT1 with Miehe’s
split, pressure driven

The block entries of the mixed Formulation 17 from Section 5.6, based on the AT1 energy functional
from Equation (7.4) and Miehe’s split from Equation (7.6), are given as follows:

Fui = ((1− κ)ϕ̃2 + κ)(2µE+
lin(u) + p+

1, Elin(χui ))
+ (2µ(Elin(u)− E+(u)) + (p− p+)1, Elin(χui )) + (ϕ̃2ρ,∇ · χui ),

F pi = ((1− κ)ϕ̃2 + κ)(∇ · u, χpi )−
1
λ

(p, χpi ),

Fϕi = (1− κ)(ϕ(2µE+
lin(u) + p+

1) : Elin(u), χϕi ) + 2ρ(ϕ∇ · u, χϕi )

+ GC

(
− 3

8ε (1− ϕ), χϕi
)

+ 3
4GCε(∇ϕ,∇χ

ϕ
i ).

Muu
i,j = (((1− κ)ϕ̃2 + κ)2µE+

lin
′(u, χuj ), Elin(χui )) + (2µ(Elin(χuj )− E+

lin(χuj )), Elin(χui )),
Mpu
i,j = (((1− κ)ϕ̃2 + κ)(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(2µϕE+

lin(χuj ) : Elin(u), χϕi ) + (1− κ)(2µϕE+
lin(u) : Elin(χuj ), χϕi )

+ (1− κ)(ϕp+
1 : Elin(χuj ), χϕi ) + 2ρ(ϕ∇ · χuj , χ

ϕ
i ),

Mup
i,j = (((1− κ)ϕ̃2 + κ)χp,+j 1, Elin(χui ))) + ((χpj − χ

p,+
j )1, Elin(χui )),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(2µχϕj (E+

lin(u);Elin(u)), χϕi ) + (1− κ)
(
χϕj (p+

1, Elin(u)), χϕi
)

+ 2ρ(χϕj∇ · u, χ
ϕ
i ) + 6

8GCε(∇χ
ϕ
j ,∇χ

ϕ
i ).



APPENDIX B. BLOCK ENTRIES OF DISCRETIZED SYSTEM 167

B.4 Mixed model formulation based on Wu’s approach with
Miehe’s split, pressure driven

The block entries of the mixed Formulation 17 from Section 5.6, based on Wu’s energy functional from
Equation (7.5) and Miehe’s split from Equation (7.6), are given as follows:

Fui = ((1− κ)ϕ̃2 + κ)(2µE+
lin(u) + p+

1, Elin(χui ))
+ (2µ(Elin(u)− E+(u)) + (p− p+)1, Elin(χui )) + (ϕ̃2ρ,∇ · χui ),

F pi = ((1− κ)ϕ̃2 + κ)(∇ · u, χpi )−
1
λ

(p, χpi ),

Fϕi = (1− κ)(ϕ(2µE+
lin(u) + p+

1) : Elin(u), χϕi ) + 2ρ(ϕ∇ · u, χϕi )

+ −GC
2
πε

(1− ϕ, χϕi ) +GC
2
π
ε(∇ϕ,∇χϕi ).

Muu
i,j = (((1− κ)ϕ̃2 + κ)2µE+

lin
′(u, χuj ), Elin(χui )) + (2µ(Elin(χuj )− E+

lin(χuj )), Elin(χui )),
Mpu
i,j = ((1− κ)ϕ̃2 + κ)(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(ϕ2µ(Elin(χuj ) : Elin(u) + Elin(u) : Elin(χuj )), χϕi ) + 2ρ(ϕ∇ · χuj , χ

ϕ
i ),

Mup
i,j = (((1− κ)ϕ̃2 + κ)χp,+j 1, Elin(χui ))) + ((χpj − χ

p,+
j )1, Elin(χui )),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(2µχϕj (E+

lin(u) : Elin(u)), χϕi ) + (1− κ)(χϕj (p+
1, Elin(u)), χϕi )

+ 2ρ(χϕj∇ · u, χ
ϕ
i )−GC

2
πε

(χϕj , χ
ϕ
i ) +GC

2
π
ε(∇χϕj ,∇χ

ϕ
i ).
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B.5 Mixed model formulation based on AT2 with Amor’s split,
pressure driven

The block entries of the mixed Formulation 17 from Section 5.6, based on the AT2 energy functional
from Equation (7.3) and Amor’s split from Equation (7.7), are given as follows:

Fui =
(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1, Elin(χui )
)

+
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1, Elin(χui )
)

+ (ϕ̃2ρ,∇ · χui ),

F pi =
(
(1− κ)ϕ̃2 + κ

)
(∇ · u, χpi )−

1
λ

(p, χpi ),

Fϕi = (1− κ)
(
ϕ

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1

)
: Elin(u), χϕi

)
+2ρ(ϕ∇ · u, χϕi ) +GC

(
−1
ε

(1− ϕ), χϕi
)

+GCε(∇ϕ,∇χϕi ).

Muu
i,j =

(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
, Elin(χui )

)
+
(
µ
(
tr
(
E+

lin(χuj )
)
−max

{
0, tr

(
E+

lin(χuj )
)})

1, Elin(χui )
)
,

Mpu
i,j =

(
(1− κ)ϕ̃2 + κ

)
(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(ϕµmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
: Elin(u), χϕi )

+ (1− κ)(ϕ
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1
)

: Elin(χuj ), χϕi ),
+ (1− κ)(ϕp+

1 : Elin(χuj ), χϕi ) + 2ρ(ϕ∇ · χuj , χ
ϕ
i ),

Mup
i,j = ((1− κ)ϕ̃2 + κ)

(
χp,+j 1, Elin(χui )

)
+
(

(χpj − χ
p,+
j )1, Elin(χui )

)
,

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)

(
χϕj

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

))
: Elin(u), χϕi

)
+ (1− κ)

(
χϕj (p+

1 : Elin(u)), χϕi
)

+ 2ρ(χϕj∇ · u, χ
ϕ
i )

+ GC

(
1
ε

(χϕj , χ
ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )
)
.
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B.6 Mixed model formulation based on AT1
with Amor’s split, pressure driven

The block entries of the mixed Formulation 17 from Section 5.6, based on the AT1 energy functional
from Equation (7.4) and Amor’s split from Equation (7.7), are given as follows:

Fui =
(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1, Elin(χui )
)

+
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1, Elin(χui )
)

+ (ϕ̃2ρ,∇ · χui ),

F pi =
(
(1− κ)ϕ̃2 + κ

)
(∇ · u, χpi )−

1
λ

(p, χpi ),

Fϕi = (1− κ)
(
ϕ

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1

)
: Elin(u), χϕi

)
+ 2ρ(ϕ∇ · u, χϕi ) +GC

(
− 3

8ε (1− ϕ), χϕi
)

+ 3
4GCε(∇ϕ,∇χ

ϕ
i ).

Muu
i,j =

(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
, Elin(χui )

)
+
(
µ
(
tr
(
E+

lin(χuj )
)
−max

{
0, tr

(
E+

lin(χuj )
)})

1, Elin(χui )
)
,

Mpu
i,j =

(
(1− κ)ϕ̃2 + κ

)
(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(ϕµmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
: Elin(u), χϕi )

+ (1− κ)(ϕ
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1
)

: Elin(χuj ), χϕi ),
+ (1− κ)(ϕp+

1 : Elin(χuj ), χϕi ) + 2ρ(ϕ∇ · χuj , χ
ϕ
i ),

Mup
i,j = ((1− κ)ϕ̃2 + κ)

(
χp,+j 1, Elin(χui )

)
+ ((χpj − χ

p,+
j )1, Elin(χui )),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)

(
χϕj

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

))
: Elin(u), χϕi

)
+ (1− κ)

(
χϕj (p+

1 : Elin(u)), χϕi
)

+ 2ρ(χϕj∇ · u, χ
ϕ
i ) + 6

8GCε(∇χ
ϕ
j ,∇χ

ϕ
i ).
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B.7 Mixed model formulation based on Wu’s approach with
Amor’s split, pressure driven

This is the model, mainly used in Chapter 7. The block entries of the mixed Formulation 17 from
Section 5.6, based onWu’s energy functional from Equation (7.5) and Amor’s split from Equation (7.7),
are given as follows:

Fui =
(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1, Elin(χui )
)

+
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1 + (p− p+)1, Elin(χui )
)

+ (ϕ̃2ρ,∇ · χui ),

F pi =
(
(1− κ)ϕ̃2 + κ

)
(∇ · u, χpi )−

1
λ

(p, χpi ),

Fϕi = (1− κ)
(
ϕ

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

)
+ p+

1

)
: Elin(u), χϕi

)
+ 2ρ (ϕ∇ · u, χϕi )

− GC
2
πε

(1− ϕ, χϕi ) +GC
2
π
ε(∇ϕ,∇χϕi ).

Muu
i,j =

(
(1− κ)ϕ̃2 + κ

)(
µmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
, Elin(χui )

)
+
(
µ
(
tr
(
E+

lin(χuj )
)
−max

{
0, tr

(
E+

lin(χuj )
)})

1, Elin(χui )
)
,

Mpu
i,j =

(
(1− κ)ϕ̃2 + κ

)
(∇ · χuj , χ

p
i ),

Mϕu
i,j = (1− κ)(ϕµmax

{
0, tr

(
E+

lin(χuj )
)}

1 + 2µ
(
E+

lin(χuj )− 1
3tr
(
E+

lin(χuj )
)
1

)
: Elin(u), χϕi )

+ (1− κ)(ϕ
(
µ
(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

1
)

: Elin(χuj ), χϕi ),
+ (1− κ)(ϕp+

1 : Elin(χuj ), χϕi ) + 2ρ(ϕ∇ · χuj , χ
ϕ
i ),

Mup
i,j = ((1− κ)ϕ̃2 + κ)

(
χp,+j 1, Elin(χui )

)
+ ((χpj − χ

p,+
j )1, Elin(χui )),

Mpp
i,j = − 1

λ
(χpj , χ

p
i ),

Mϕp
i,j = (1− κ)(ϕχp,+j 1 : Elin(u), χϕi ),

Muϕ
i,j = 0,

Mpϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)

(
χϕj

(
µmax

{
0, tr

(
E+

lin(u)
)}

1 + 2µ
(
E+

lin(u)− 1
3tr
(
E+

lin(u)
)
1

))
: Elin(u), χϕi

)
+ (1− κ)

(
χϕj (p+

1, Elin(u)), χϕi
)
−GC

2
πε

(χϕj , χ
ϕ
i ) +GC

2
π
ε(∇χϕj ,∇χ

ϕ
i ).
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