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Abstract

This Thesis is devoted to the study of particle mobility in polar lattice gases, that

is, systems of particles with a large magnetic or electric dipole moment loaded in a deep

optical lattice, which may move between sites via hopping. Our detailed analysis of dif-

ferent scenarios shows that inter-site dipole-dipole interactions largely handicap particle

motion, resulting in a lattice dynamics that differs qualitatively, and not only quanti-

tatively, to that expected both for non-dipolar gases, and for systems with exclusively

nearest-neighbor interactions. We first discuss how the formation of dynamically-bound

nearest-neighbor dimers for large enough dipolar interactions, results in an anomalously

slow dynamics and quasi-localization due to the formation of dimer clusters. Moreover,

we show that even modest inter-site interactions result in the formation of self-bound

lattice droplets. We then extend the discussion to general states, placing the discussion

in the frame of current studies on disorder-free localization, dynamical constraints and

Hilbert-space fragmentation. We are particularly concerned with the difference between

a polar lattice gas and a system with purely nearest-neighbor interactions. In the lat-

ter, strong-enough inter-site interactions lead to fragmentation, but resonant dynamics

remains possible within a fragment, precluding disorder-free spatial localization. In con-

trast, in a polar gas, the presence of the dipolar tail shatters the Hilbert space, and in

addition disrupts the resonant mechanism characteristic of the nearest-neighbor model. As

a result, we show that the particle dynamics is dramatically slowed-down, and eventually

localized in absence of any disorder, for interaction strengths within reach of experiments.

Furthermore, although most of the results of this Thesis concern one-dimensional systems,

most of the results can be extrapolated to higher dimensions. Moreover, we show that

the dynamics in two-dimensional polar lattice gases presents peculiar features, due to the

fact that dynamically-bound dimers experience a lattice different than that of individual

particles. In particular, dimers in triangular lattices move in an effective kagome lattice,

presenting an effective flat band. We show that the presence of flat-band dimers results

in a peculiar multi-scaled quantum walk dynamics, and in a long-lived memory of initial

conditions in absence of any disorder. The results in this Thesis open exciting perspectives

in what concerns particle dynamics and disorder-free localization in on-going and future
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experiments with magnetic atoms and polar molecules in optical lattices. Furthermore,

our findings may be easily extrapolated to other power-law interactions, as those realizable

using trapped ions.

The structure of this Thesis is as follows. In Chapter 1 we introduce key concepts

of the physics of quantum gases in optical lattices. Chapter 2 discusses relevant ideas

concerning ergodicity and localization in quantum systems, which are of interest for the

rest of the Thesis. Chapter 3 is devoted to the analysis of dynamically-bound dimers

in polar lattice gases, and in particular on how dimers clusterize due to the key role

played by the dipolar tail. In Chapter 3 we discuss as well the formation of self-bound

lattice droplets under conditions currently achievable experimentally. In Chapter 4 we

focus on the analysis of localization in models with interactions only to nearest neighbors,

reviewing some key ideas, and in particular the concept of Hilbert space fragmentation

due to the conservation of nearest-neighbor links, and the crucial mechanism for resonant

motion within a Hilbert space fragment. In Chapter 5 we show that the dipolar tail plays a

crucial role in polar lattice gases, since on one side it shatters the Hilbert-space, and on the

other side it disrupts the resonant motion mechanism characteristic of the nearest-neighbor

model. Finally, in Chapter 6 we analyze the peculiar dynamics of nearest-neighbors in

two-dimensional lattices. The Thesis ends in Chapter 7, where we discuss our conclusions

and future perspectives.

Keywords:

Localization, Quantun Statistics, Polar lattice gases.
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Chapter 1

Quantum gases in optical lattices

In the past two decades, spectacular experimental developments on ultra cold gases [1]

have considerably advanced the field of quantum (analog) simulation of strongly-correlated

systems [2, 3, 4], a realm previously restricted to condensed-matter and nuclear physics.

This progress has been to a very large extent based on one hand on the ability to tune

the interaction strength and its sign in atomic gases by means of Feshbach resonances

[5, 6], and on the other hand on the capability to modify the dimensionality and particle

mobility by means of optical potentials, especially optical lattices [7, 8, 9, 10, 11, 12]. As

a result, strong correlations can be created even in dilute gases [1].

Quantum gases in optical lattices provide an extraordinarily controllable scenario for

the study of many-body quantum systems under basically ideal conditions in which a

desired Hamiltonian is cleanly realized. Major developments in this very active field

include the realizations of the Bose-Hubbard model [13, 14, 15], the Fermi Hubbard model

[16, 17], the Heisenberg-Ising model [18, 19, 20], or the periodically driven Hubbard model

[21]. In this chapter we introduce the basics of optical lattices, as well as of the realization

of lattice models with them. Due to its interest for this Thesis, we will pay special attention

to polar lattice gases, and the realization of the extended Hubbard model.

1.1. Periodic optical potentials

A periodic optical potential is generated by the interference pattern created by two or

more laser beams. The resulting laser profile results, via dipole force, in a conservative

potential in which sufficiently cold quantum gases may be loaded [1, 7, 8]. The sim-

plest possible periodic optical potential is formed by overlapping two counter-propagating

beams. For a Gaussian laser profile along the z direction, this results in a trapping po-

1
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tential of the form V (r, z) ∼ −V0e
−2r2/u2(z) sin2(kz), where V0 is the maximum depth of

the lattice potential, k = 2π/λ is the wave vector, r is the distance from the center of the

beam, and u(z) = u0

√
1 + z2/zR is the 1/e2 radius with the Rayleigh length zR = πu2

0/λ.

The resulting potential at the beam center has hence a spatial period λ/2, and hence

atoms in optical lattices experience a periodic potential similar to that exerted by ions

on electrons in solid-state systems. Periodic potentials in two dimensions can be formed

by overlapping standing waves along different (e.g., orthogonal) directions, avoiding un-

desired interferences between them. Such a potential confines atoms into arrays of tightly

confining 1D tubes (see Fig. 1.1 (a)). Interestingly, for deep lattices, atoms can move only

along a given tube, allowing for the study of 1D strongly correlated gases. The simplest

3D lattice potential is provided by the overlapping of three orthogonal standing waves.

For distances much smaller than the beam waist, the potential is approximately given by

the sum of a homogeneous lattice potential V (x, y, z) ∼ V0(sin2 kx+sin2 ky+sin2 kz) and

a harmonic confinement due to the Gaussian beam profiles. Lattices of different geome-

tries have been realized, including triangular [9], kagome [10], graphene-like [11], or even

quasi-crystalline [12].

Spin-dependent lattices can be created as well, such that atoms with different magnetic

sub-levels experience different potentials [22]. Using a standing wave configuration formed

by two counter-propagating laser beams with linear polarization vectors forming an angle

θ, the resulting laser field may be decomposed into a superposition of a spin-up and spin-

down polarized standing waves, giving rise to lattice potentials V+ = V0 cos2(kx+θ/2) and

V− = V0 cos2(kx− θ/2), which may be in this way employed as spin-dependent potentials

for different sub-levels.

1.2. The Bose-Hubbard model

1.2.1. Wannier functions

We consider at this point the case of an infinite periodic potential (neglecting any

additional intensity profile of the laser beams). The single-particle eigenstates for the

energy band n are given by the Bloch functions φn,q(r), where q is the quasi-momentum.

Bloch functions are however extended over the whole lattice, and hence they are not

particularly suitable for the study of deep lattices, where particles have a very reduced

mobility. A more useful single-particle basis is provided by the Wannier functions, wn(r−

R), centered at site R. The Wannier functions are connected via Fourier transform to
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(a)

(b)

Figure 1.1: Optical lattices. (a) Two- and (b) three-dimensional optical lattices formed
by superimposing two or three orthogonal standing waves. For a 2D optical lattice, the
atoms are confined to an array of tightly confining 1D potential tubes, whereas in the
3D case the optical lattice can be approximated by a 3D cubic array of tightly-confining
harmonic-oscillator potentials at each lattice site. Figure from Ref. [1].

the Bloch functions, φn,q(r) =
∑

Rwn(r−R)eiq·R, where R is the lattice vector. For all

bands n and sites R, Wannier functions form a complete basis, and the field operator of

an atom can be expanded in the form

ψ̂(r) =
∑
n,R

wn(r−R)ân,R.

For a deep lattice, the gap between the lowest and second energy bands can be typically

considered much larger than any other energy scale in the problem, and hence we can

restrict our discussion to the lowest band.
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1.2.2. Hopping

Using the expansion of the field operator in the basis of Wannier functions of the lowest

band, the single-particle Hamiltonian

H =

∫
d3rψ̂†(r)

ï−~2∇2

2m
+ Vlatt(r)

ò
ψ̂(r), (1.1)

with Vlatt(r) the lattice potential, can be rewritten in the form

H = −
∑
R,R′

J(R−R′)â†RâR′ . (1.2)

where we do not write any longer the band index n = 0. In the previous equation,

J(R−R′) = −
∫
d3rw(r−R)∗

ï−~2∇2

2m
+ Vlatt(r)

ò
w(r−R′), (1.3)

is the hopping rates between the sites centers at R and R′. For deep lattices the Wannier

functions are strongly localized in a given site, and hence hopping reduces to only nearest-

neighbor terms, leading to the tight-binding model

Hhop = −J
∑
<i,j>

Ä
â†i âj +H.c.

ä
, (1.4)

where < i, j > denotes pairs of nearest-neighbor sites, and we have assumed a uniform

hopping rate in the lattice. By solving the corresponding Mathieu equation, it is possible

to obtain an analytical expression for the hopping amplitude [23]

J =
4√
π
Ek

Å
V0

Ek

ã3/4

e
−2
(
V0
Ek

)1/2

, (1.5)

where Ek = ~2k2

2m is the recoil energy associated to the laser photons. The associated band

dispersion may be easily evaluated from the Fourier transform of the Hamiltonian, and it

is of the form: ε(q) = −2J
∑

i=x,y,z cos qid, with d = π/k. Note that J > 0 and hence the

lowest band energy occurs for q = 0.

1.2.3. Interactions

Short-ranged s-wave interactions are well described by a pseudopotential gδ(r), where

g = 4π~2

m a is the interaction coupling constant, with a the s-wave scattering length, and

m the particle mass. The sign and magnitude of the scattering length may be modified
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by means of Feshbach resonances [24].

The interaction energy is hence given by the Hamiltonian

Hint =
g

2

∫
d3rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r), (1.6)

As above, we may expand on the basis of Wannier functions. Assuming bosonic particles,

and neglecting interactions between different sites, due to the strong localization of the

Wannier functions for deep lattices, the interaction Hamiltonian acquires the form:

Hint =
U

2

∑
j

n̂j(n̂j − 1), (1.7)

where U = g
∫
|w0(r)|4d3r, and n̂j = â†j âj is the number operator of atoms on the same

lattice site. Obviously, the on-site interaction term is only nonzero if nj ≥ 2. Note that

the interaction U is the same for all sites, since we assume that the lattice is spatially

homogeneous. To a good approximation, U may be easily computed by approximating at

the lattice minima the lattice potential by an effective harmonic oscillator, with frequency

ωeff = 2
»

V0
Ek

Ek
~ . As a side remark, note that at Feshbach resonances higher-band physics

may become relevant [16].

Equation (1.4) together with Eq. (1.7) results in the Bose-Hubbard model

H = −J
∑
<i,j>

Ä
â†i âj +H.c.

ä
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j , (1.8)

where we have added the chemical potential µ.

1.3. Ground-state phases of the Bose-Hubbard model

The relatively simple Bose-Hubbard Hamiltonian is characterized by the competition

between lattice hopping, which favors mobility, and on-site interactions, which have a

localizing effect. This competition results in an interesting ground-state physics, which

we briefly discuss in this section.

1.3.1. Ground-state phase diagram

We first consider the case without hopping, H =
∑

j hj , with hj = U
2 n̂j(n̂j − 1)−µn̂j .

The eigenstates of hj are Fock states |n〉 with a definite number of bosons n per site.

These states have an energy E(0)
n = U

2 n(n − 1) − µn. The energy is then minimized for
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n =
[ µ
U −

1
2

]
, where [. . . ] means the closest integer. Hence in absence of hopping the

ground-state is characterized by a fixed number of atoms per site n̄ for n̄− 1 < µ/U < n̄.

For a finite hopping, we may introduce the mean-field decoupling â†i âj ' −ψ2 +

ψ
Ä
â†i + âj

ä
, with ψ = 〈â†j〉 = 〈âj〉. In this approximation we neglect the terms of second

order fluctuations δâj = âj − ψ. The hopping Hamiltonian may then be re-written in the

form:

HTUN ' zJ
∑
j

Ä
ψ2 − ψ

Ä
â†j + âj

ää
, (1.9)

where z is the coordination number, that is, the number of nearest-neighbors in the par-

ticular lattice geometry considered. We may then write the overall Hamiltonian in a

decoupled form: H '
∑

j ĥj , with ĥj = ĥ
(0)
j + V̂j , ĥ

(0)
j = U

2 n̂j(n̂j − 1)− µn̂j + zJψ2 and

V̂j = −zJψ(â†j + âj).

Assuming V̂j as a perturbation, we may perform perturbation theory, to obtain the

corrected energy of the ground state |n̄〉: En̄ = En̄(J = 0) + zJr2
n̄ψ

2 +O(ψ4), with

rn̄ = 1 +
zJ(n̄+ 1)

µ− Un̄
− zJn̄

µ− U(n̄− 1)
. (1.10)

For rn̄ < 0 the system minimizes the energy by having ψ 6= 0, characterizing the so-called

superfluid phase. In contrast, for rn̄ > 0, the energy is minimized by ψ = 0, and the

system is in an insulating phase known as Mott insulator. The separatrix between both

phases is given by rn̄ = 0, which leads to the condition:

µ±
U

=
1

2

ï
2n̄− 1− zJ

U

ò
± 1

2

 
1− 2

zJ

U
(1 + n̄) +

Å
zJ

U

ã2

. (1.11)

The Mott region lies between these two curves, which in the plane (J/U, µ/U) form the

so-called Mott lobes (see Fig. 1.2(a)). Note that for J = 0 the Mott lobe for n̄ occupies

the region n̄ − 1 < µ/U < n̄, that is, the region discussed above for the case without

hopping. Hence the Mott phase is characterized by an incompressible nature, that is,

the occupation 〈n̂〉 is kept fixed within the lobe. The vertical width of the Mott lobe

in the (J/U, µ/U) diagram constitutes the energy gap necessary to create particle-hole

excitations in the Mott insulator.

The tip of the Mott lobes is given by the condition µ+ = µ− for a given n̄, which

results in the critical U/J ratio for getting a Mott insulator with n̄ particles per site:Å
U

zJ

ã
c

= 1 + 2n̄+
»

(1− 2n̄)2 + 1 (1.12)
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For n̄ = 1, one obtain the critical
(
U
zJ

)
cr
' 5.83. Although the mean-field decoupling

formalism discussed above provides a reasonably good approximation to the actual phase

diagram, it significantly deviates from the actual values, especially in the case of one-

dimensional systems (z = 2). Density-matrix renormalization group (DMRG) calculations

provide a critical value
(
U
zJ

)
c
' 3.84, much lower than the mean-field result.

In the cubic lattices and effectively unit filling, the existence of a quantum phase

transition from a homogeneous condensate to a Mott-insulator with a nonzero gap has

been proven rigorously in a model of hard-core bosons in the presence of a staggered field

[25].

1.3.2. Wedding cake structure

Up to this point we did not consider any overall harmonic confinement. The latter

is however the case in typical experiments. This external potential plays actually an

important role, since it allows for spatial regions with integer filling (note once more

that Mott insulators are characterized by a given integer filling). An overall harmonic

confinement leads to an extra term

HT =
m

2
Ω2D2

∑
j

j2n̂2
j , (1.13)

with Ω the frequency of the harmonic oscillator, D the lattice spacing, and we consider

that the site j = 0 is at the trap center (we consider here for simplicity a one-dimensional

lattice, although the ideas can be easily extrapolated to higher dimensional lattices). We

can then define the local chemical potential, µj = µ0− m
2 Ω2D2j2, where µ0 is the chemical

potential at the trap center. Employing local-density approximation, we can easily find

the spatial distribution of the different phases in the trap by looking in the (J/U, µ/U)

diagram of Mott lobes the phase that correspond to the local chemical potential and

the particular hopping considered. This provides a typical wedding cake structure of the

different phases (see Fig. 1.2(b)).

1.3.3. Experimental realization

The Bose-Hubbard model was realized in breakthrough experiments at I. Bloch’ lab in

2002 [13]. In those experiments they realized the Mott-insulator-to-superfluid transition

with cold bosons in an optical lattice. This was performed combining two key observa-

tions. First, the trapping, including the trap was abruptly switched-off. The atoms fell in
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(a) (b)

Figure 1.2: (a) Mean-field phase diagram of the Bose-Hubbard model at zero temperature
with superfluid and Mott-insulator phases. Dashed lines, which indicate constant integer
density 〈n̂〉 = n = 1, 2, 3, reach the tip of the Mott lobes. For n = 1 ± ε the line of
constant density stays outside the n = 1 Mott-insulator since a fraction ε of the particles
(or holes) remains superfluid down to the limit J → 0. (b) In an external trap with an
n = 2 Mott-insulator phase in the center, a series of Mott-insulator and superfluid regions
appear when moving toward the edge of the cloud, following a wedding-cake structure.
Figures from Ref. [1].

gravity into a detector. This so-called time-of-flight measurement provides to a good ap-

proximation a picture of the momentum distribution within the lattice. In the superfluid

phase, where coherence is large, they observed the formation of well defined interference

fringes. In contrast, for a sufficiently large lattice depth V0, and hence a sufficiently small

hopping J , they observed the blurring of the interference fringes, finally obtaining an in-

coherent Gaussian-like background, as one would expect from the Mott insulator phase

(note that in that phase the atoms are strongly localized to a single site, and hence there

is no coherence that would lead to interference fringes).

In a second experiment they probed directly the Mott gap. Within the Mott regime,

they tilted the lattice, quickly went into the superfluid regime, and then expand in time-of-

flight. If the tilting was steep enough (in other words, if the gap was overcome), excitations

were created in the Mott insulator, which were later on translated after the quench into the

superfluid regime into the broadening of the peaks of the interference pattern. Measuring

the width of the peaks hence provided key information about the energy gap in the Mott

phase.

Later experiments allowed for the direct observation of the wedding cake structure,
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first indirectly [26, 27], and later directly by means of site resolved in-situ measurement

using atomic quantum microscopes [28, 29].

1.4. Fermi-Hubbard model

1.4.1. Mott-metal transition

Using similar arguments it is possible to derive the Hamiltonian for spin-(or pseudo-

spin)-1/2 Fermi systems, the so-called Fermi-Hubbard model

H = −J
∑

<i,j>,s

Ä
â†i,sâj,s +H.c.

ä
+ U

∑
j

n̂j,↑ n̂j,↓, (1.14)

where s =↑, ↓ denotes the two possible spin states, and of course now the operators fulfill

Fermi anti-commutation rules. Note that in the Fermi-Hubbard model, in addition to

the occupation of the site, we have the additional spin degree of freedom. For a single-

component (polarized) Fermi gas, Pauli exclusion would forbid to place more than one

particle per site. A band-insulator, and not a Mott-insulator, would hence result if unit

filling is reached.

In contrast, for a two-component Fermi gas, we may have up to two particles of opposite

spin per site. Those two particles interact via short-range interactions leading to an on-site

interaction term, characterized by the coupling constant U . A band-insulator results if

the filling factor two is reached. In addition, we may have as for the bosonic case a Mott

insulator with one fermion per site if U/J is sufficiently large. Otherwise the system would

be in an itinerant metallic state. Up to this point the physics is similar to that found in

the Bose-Hubbard model. The Mott-metal transition was indeed observed in ultra cold

Fermi gases in optical lattices by the group of T. Esslinger at ETH [30] and that of I.

Bloch at Mainz [31].

1.4.2. Super-exchange and the Heisenberg model

As mentioned above, the site occupation is just one part of the problem, the other

part is given by the spin degree of freedom. In particular, within the Mott insulator

phase with one fermion per site, what is the ground-state spin configuration? In order to

answer this question, we should introduce the idea of super-exchange, and the resulting

spin model. This discussion nicely illustrates the potential of ultracold lattice gases for the

simulation of spin models of great interest in quantum magnetism and high-temperature
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superconductivity.

Let us consider U � J and only two neighboring sites, j = 1, 2. The Fermi-

Hubbard Hamiltonian acquires the form H = H0 + H1, with H0 = U
∑

j=1,2 n̂j↑n̂j↓,

and H1 = −J
∑

s=↑,↓(â
†
1sâ2s+ â†2sâ1s). For U � t, we can consider H0 as the zeroth order

Hamiltonian and H1 as a perturbation. Let us consider states with two atoms (of in princi-

ple whatever spin) in the two sites. Since doubly occupied sites will be very energetic, the

ground-state manifold is four-fold: {| ↑, ↑〉, | ↑, ↓〉, | ↓, ↑〉, | ↓, ↓〉}. Using second-order per-

turbation theory, and properly taking into account Pauli exclusion and anticommutation

rules, we obtain an effective Hamiltonian within the ground-state manifold of H0:

H(2) =
−2J2

U
(| ↑, ↓〉〈↑, ↓ |+ | ↓, ↑〉〈↓, ↑ | − | ↑, ↓〉〈↓, ↑ |+ | ↓, ↑〉〈↑, ↓ |) . (1.15)

Using Pauli matrices, we may then introduce the spin operators σ̂+
j = 1

2(σ̂xj +iσ̂yj ) = â†j↑âj↓,

σ̂−j = 1
2(σ̂xj − iσ̂

y
j ) = â†j↓âj↑, and σ̂

z
j = n̂j↑ − n̂j↓. The Hamiltonian H(2) then transforms

into the form J2

U σ1 · σ2. The effective spin-spin interaction at nearest neighbors that

occurs, despite of the on-site character of the inter-particle interactions, due to second-

order virtual excursions to the neighboring sites, receives the name of super-exchange.

This effect was first experimentally observed by I. Bloch’s group in 2007 [32]. It is easy

generalized to a multi-site system, leading to the isotropic Heisenberg Hamiltonian:

H =
J2

U

∑
<i,j>

σi · σj . (1.16)

A more general case occurs when the hopping of the different spin components (J↑, J↓)

and/or their interactions (U↑↑, U↑↓, U↓↓) are different. This is suggested by utilizing Mott

insulators of two-component bosons [33, 34], with which one obtains XXZ models of the

form:

H =
∑
<i,j>

î
±J⊥(σ̂xi σ̂

x
j + σ̂yi σ̂

y
j ) + Jzσ̂

z
i σ̂

z
j

ó
, (1.17)

with +J⊥ for fermions and −J⊥ for bosons, J⊥ = J↑J↓/U↑↓, Jz = (J2
↑ + J2

↓ )/2U↑↓ for

fermions, and Jz = (J2
↑ + J2

↓ )/2U↑↓ − J2
↑/U↑↑ − J2

↓/U↓↓ for bosons.

1.4.3. Fermi-Hubbard antiferromagnet

Note that the prefactor of Eq. (1.16) is positive, and hence the effective spin coupling

is antiferromagnetic, that is, the spins minimize their spin interaction energy by being an-

tiparallel to each other. Long-range antiferromagnetism was first observed in M. Greiner’s
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group at Harvard in 2017 [35].

Since then, the study of the 2D Fermi-Hubbard model has constituted one of the

major research focuses in the physics of cold gases. Particularly interesting is the relation

with high-temperature superconductivity. In particular, when moving away from half-

filling, that is, from one atom per site, holes may pair in d-wave, leading to the so-called

d-wave superconductivity, which is expected to play a crucial role in high-temperature

superconductivity in cuprates.

1.5. extended Hubbard model

1.5.1. Polar lattice gases

Contact-interacting particles realize lattice models with merely on-site interactions,

although for the super-exchange discussed above, effective small nearest-neighbor terms

may appear at second order in perturbation theory. Much richer models can be realized

by systems that present longer-range power-law-decaying interactions. The latter include

experiments on trapped ions where power-law interactions 1/rs=0,...,3 may be engineered

[36, 37]. It is also the case of Rydberg atoms [38, 39], which may present strong van der

Waals interactions to nearest neighbors and dipole-dipole interactions.

Particularly relevant are as well experiments on polar lattice gases, which will play a

key role in this Thesis. These experiments are performed using either magnetic atoms,

with a large magnetic moment dm, or polar molecules, with an electric dipole moment de.

In general, the dipolar coupling is much higher in the electric case, the typical magnitude

of de for an atomic or molecular system is |de| = qea0 , where a0 = 4πε0~2/q2
eme is the

Bohr radius, while the magnetic dipole is a multiple of the Bohr magneton µB = qe~/2me.

The ratio of de/dm scales as 1/α, where α ' 1/137 is the fine structure constant. Electric

dipole moments can be created either by an external electric field, or by dressing resonantly

different rotational states. Magnetic dipole moments are small in alkali atoms, but they

may be particularly large in atoms like chromium, erbium, dysprosium and europium,

which present dipole moments of several Bohr magnetons. For more details on dipolar

atoms and molecules we refer to Ref. [40] and references therein.

Spin-exchange interactions have been observed in lattice gases of chromium atoms

[41] and of KRb polar molecules [42]. Although inelastic losses [43, 44] make it challeng-

ing to realize extended Hubbard models with strong dipole-dipole interactions with polar

molecules, the problem may be overcome by using fermionic molecules [45] and employing
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recently developed shielding methods [46]. Furthermore, recent experiments using erbium

atoms have already realized an extended Hubbard model with nearest-neighbor interac-

tions [47]. Although in those experiments the nearest-neighbor interactions (compared to

the hopping rate) were relatively modest, inter-site dipolar interactions may be signifi-

cantly enhanced in lanthanide gases when confined in UV lattices. Polar quantum lattice

gases constitute therefore a promising candidate for studying the dynamics of extended

models with strong inter-site 1/r3 interactions. In the following, we will focus on dipolar

gases, discussing some relevant issues associated to the dipole-dipole interaction.

1.5.2. Dipole-dipole interaction

Let us consider two particles with dipole moments, d1,2 at a relative distance r = r2−r1

(Fig. 1.3 (a)). The interaction energy is governed by the dipole-dipole interaction (DDI)

Vdd =
C

4πr3
[d1 · d2 − 3(d1 · r̂)(d2 · r̂)] . (1.18)

The constant C is the inverse permittivity of vacuum 1/ε0 for, d, being an electric dipole

moment, and the permeability of vacuum, µ0, for d being a magnetic dipole moment, and

r̂ is a unit vector parallel to the line joining the centers of the two magnetic moments.

Assuming a polarized sample (Fig. 1.3 (b)-(d)), where all dipole moments point in the

same direction, the interaction becomes of the form:

Vdd =
C

4πr3
|d|2(1− 3 cos2 θ). (1.19)

As θ varies between 0 and π/2, the factor 1 − 3 cos2 θ varies between −2 to 1. Thus the

interaction is repulsive for dipoles placed side-by-side, whereas it is attractive, and twice

stronger than the side-by-side case, for dipoles in a head-to-tail configuration. At the

special value, the so-called "magic angle", θm = arccos(1/
√

3) the dipole-dipole interaction

vanishes.

From general results of scattering theory, a central potential falling off at large distances

as 1/rn has scattering phase shifts at low momentum limit, δ(k) ∼ kn−2, for the partial

wave components with angular momenta l ≤ (n−3)/2, and δl(k) ∼ k2l+1 for l < (n−3)/2.

In the case of the dipolar interaction, δl ∼ k, and all partial wave components contribute

to the scattering amplitude. Moreover, due to the anisotropy of the dipolar interaction,

partial waves with different angular momenta couple with each other. This property has an

interesting consequence in the case of a polarized Fermi gas, where short-range interactions
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(b)

(c) (d)

(a)

(e)

Figure 1.3: Two particles interacting via the dipole-dipole interaction. (a) Non-polarized
case; (b) polarized case; (c) two polarized dipoles side by side repel each other;(d) two
polarized dipoles in a head-to-tail configuration attract each other; (e) a gas of polarized
dipoles in a 2D optical lattice. Figure from Ref. [40].

freeze out at low temperatures when entering the degeneracy regime. In contrast, dipolar

interactions remain relevant all the way down to zero temperature. This may be used

to perform evaporative cooling of polarized fermions, without the need of sympathetic

cooling via a bosonic species [48]. Finally, we note as well that due to its anisotropy,

the dipole-dipole interaction can induce spin flips, leading to dipolar relaxation. The cross

section for dipolar relaxation scales with the cube of the dipole moment [49], and therefore

is crucial in spin systems with strong dipolar interactions.

1.5.3. Extended Bose-Hubbard model

For a lattice gas of polarized dipoles, inter-site interactions become particularly im-

portant, and the system is well described by the extended Hubbard model:

H = −J
∑
<i,j>

Ä
â†i âj +H.c.

ä
+
U

2

∑
j

n̂j(n̂j − 1) +
1

2

∑
l

∑
i,j 6=i

Uijninj , (1.20)

where Uij = C|d|2
4π|ri−rj |3 (1 − 3 cos2 θij), with θij the angle between ri − rj and the dipole

moment. As discussed in this Thesis, the ratio between the nearest-neighbor dipolar

interaction and the hopping rate (and for soft-core systems that between the on-site in-

teractions and the nearest-neighbor interactions) plays a key role in the dynamics of the

system. The derivation of the extended Hubbard model is performed in a similar way as
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for the Hubbard model with only short-range interactions. We should mention however,

that the dipole-dipole interaction may lead to additional terms, not included in the ex-

tended Hubbard model above, and which may play a relevant role if the optical lattice

is not sufficiently deep. This is the case, in particular, of collisionally-assisted hopping,

e.g. terms of the form âjn̂j+1âj+2 [50], which may play a relevant role for large dipole

moments in shallow lattices. We will not consider these terms in this Thesis, assuming

that the lattice is deep enough.

1.5.4. Ground-state phases of polar lattice gases

Whereas, as discussed above, the standard Bose-Hubbard model presents only a super-

fluid phase and Mott-insulator phases in the ground-state, the extended Hubbard model

displays a much richer landscape of ground-state phases due to the interplay between

inter-site and on-site interactions, hopping, and (for dimensions larger than one) inter-

action anisotropy. Here we just illustrate the richness of the possible phases with two

particularly relevant examples.

If the dipole is perpendicular to the lattice plane, the inter-site dipolar interaction

is repulsive, eventually favoring crystalline configurations in which they avoid being at

neighboring sites. A more intriguing phase may occur if the system remains superfluid

while presenting a crystalline modulation, the so-called lattice supersolid phase. In this

sense, it has been shown by means of Quantum Monte Carlo calculations [51] that a

supersolid may be stabilized against phase separation in an extended Bose-Hubbard model

with just nearest neighbour interactions, as long as the filling of the lattice is larger than

1/2 and V > U/z, where z is the coordination number we have already introduced in our

discussion of the Mott insulator phase.

Other interesting phase that may occur in (one-dimensional) extended Bose-Hubbard

models is the so-called Haldane insulator phase [52]. Let us consider the case of a filling

factor n̄ = 1 per site. Let us assume that in addition to singly-occupied sites we may

have empty and doubly-occupied sites. The system may then be mapped to a spin-1

lattice model with extended interactions, realizing a so-called Haldane spin-1 chain. It

is known that such system may present a rather intriguing phase characterized by string

correlations, which for the case of the extended Hubbard model imply that a site with

zero (two) particles is followed by arbitrary number of singly-occupied sites, then by a site

with two (zero) particles, and so on.

Other interesting possibilities include, e.g., the possibility of having interlayer super-
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fluidity [53], pair superfluidity [54] and supersolidity [55], and interlayer filaments [56, 57].

For a more throughout discussion on the rich ground-state physics of dipolar lattice gases

we refer to the reviews [40] and [58]. Finally, we would like to note that none of these

intriguing ground-state phases have been as yet experimentally realized, and that experi-

ments on polar lattice gases can be considered at this moment in its very infancy. In this

Thesis, we will analyze in detail the particle dynamics in polar lattice gases. As we will

show, this dynamics may be largely handicapped for sufficiently large V/J , which may

eventually constitute a problem to take into consideration when creating ground-state

phases.

1.6. Quantum gases out of equilibrium

Since experiments on ultra cold gases may be performed under conditions of nearly

perfect isolation, cold gases constitute an excellent tool for the study and understanding

of the dynamics of isolated quantum many-body systems, and in particular under which

conditions these systems when brought out of equilibrium thermalize or not. In this brief

section we mention, without any purpose of being exhaustive, some of the key experiments

on the dynamics of many-body quantum systems, which illustrate very well the possibilities

open by cold gases experiments.

As discuss in the next chapter, thermalization may be prevented due to integrability.

This is in particular the case of one-dimensional or quasi-one-dimensional systems. An

especially interesting experiment in this sense was performed at D. Weiss’ lab at Penn

State University [59]. In that experiment, they studied the relaxation dynamics of a

one-dimensional Bose gas, showing that as long as the system remained one-dimensional

no relaxation towards a thermal state was observed. Such a lack of thermalization results

from the (nearly) integrable character of the one-dimensional contact-interacting gas [60].

Later experiments on matter-wave interference of coherently split one-dimensional Bose

gases at J. Schmiedmayer’s group in Vienna revealed the occurrence of prethermalization

[61], since after an initial rapid decoherence, the system reached a quasi-steady state,

which can be described by effective temperature several times lower than the thermal

temperature.

Cold gases in optical lattices offer as well interesting possibilities for the exploration

of the dynamics of isolated quantum many-body systems. Quench experiments may be

employed to study the relaxation dynamics towards equilibrium, as in experiments at I.

Bloch’s group in 2012 [62], in which starting with a patterned density with alternating
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empty and occupied sites in isolated Hubbard chains, they suddenly switched on the

tunnel coupling along the chains, observing a fast relaxation of the measured observables

to steady-state values. Later experiments in the same group [63] studied the propagation

of correlations via quasiparticle pairs across a quenched one-dimensional quantum gas in

an optical lattice, resulting in an effective light cone for the quantum dynamics. These

results demonstrated the existence of a Lieb-Robinson bound, which is an effective "speed

of light" that limits the propagation of correlations.

Interestingly, interactions may affect the transport of particles in an optical lattice even

for modest ratios between on-site interactions and inter-site hopping. This was clearly

revealed at I. Bloch’s group in experiments in which an initially confined Fermi gas was

allowed to expand freely in an optical lattice. They showed that even weak interactions

may lead to a severe slow down of particle transport [64], directly linked to the formation

or preformation of repulsively-bound pairs [65] (see Sec. 2.5).

Experiments in optical lattices have revealed also interesting non-equilibrium dynamics

in what concerns spin models. As an example, experiments at I. Bloch’s group have directly

observed using in-situ correlation measurement the formation of two-magnon bound states

in a one-dimensional Heisenberg spin chain formed by ultra-cold bosons in an optical lattice

[18]. Later experiments in the same group studied the decay of an imprinted spin spiral,

finding diffusive spin transport in one-dimensional systems, and superdiffusive behavior in

two dimensions [19]. Recent experiment at W. Ketterle’s group at MIT have studied spin

transport in an XXZ model, after quantum quenches from imprinted spin-helix patterns,

showing ballistic behavior for XX models, and diffusive behavior in the Heisenberg limit

[20].

Cold atoms also offer remarkable possibilities for the study of dynamics in disor-

dered many-body systems. Disorder may be induced in an optical lattice by means of

a speckle potential [66], whereas quasi-disorder may be created by means of an additional

incommesurate lattice [67]. Seminal experiments have recently explored the dynamics of

particles in the presence of disorder, in particular many-body localization [68, 69].

We should finally mention that many of the above-mentioned experiments would not

have been possible without the development of quantum gas microscopes [70, 71], a de-

tection technique that combines fluorescence imaging and laser cooling. This technique

has made possible in-situ site-resolved single-atom detection, overcoming the limitations

previously posed by time-of-flight techniques. Moreover, quantum gas microscopes not

only revolutionized the detection, but also the control, manipulation, and preparation of
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lattice gases.
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Chapter 2

Localization and ergodicity in quan-

tum systems

Recent years have witnessed a major interest on the dynamics of isolated many-body

quantum systems [72, 73, 74]. As briefly discussed in Sec.1.6, this interest has been largely

triggered by impressive experimental developments, especially in cold gases [1] and trapped

ions [36], which realize almost perfect isolation [37, 75, 76]. A fundamental question

concerning the dynamics of many-body quantum systems concerns the thermalization of

out-of-equilibrium systems, or their lack of it. In general, many-body systems are believed

to thermalize as a consequence of the eigenstate thermalization hypothesis [77, 78, 79, 80].

Two prominent exceptions to this paradigm are provided by integrable systems [81, 82, 83,

84] and disordered systems, in which many-body localization may occur [85, 86, 87, 88].

Progress on many-body localization has been recently followed by interest on localization

in absence of disorder [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,

105, 106, 107, 108].

In this Chapter, we review key ideas such as the eigenstate thermalization hypothesis,

integrability, and localization in the presence and absence of quenched disorder. The latter

discussion will particularly relevant for this Thesis, since as discussed in the following chap-

ters, polar lattice gases offer an interesting scenario for disorder-free interaction-induced

localization.

2.1. Eigenstate thermalization hypothesis

How statistical mechanics emerges from the unitary evolution of quantum systems

is a fundamentally relevant problem [109]. In this section we introduce the concept of

19
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eigenstate thermalization hypothesis that provides for rather general quantum systems

the necessary bridge between quantum evolution and statistical mechanics.

Let us suppose that an isolated system is prepared in a non-stationary state with

a well-defined mean energy, and subextensive energy fluctuations. An observable Ô is

said to thermalize if (i) after some relaxation time, the average expectation value of this

observable agrees with the microcanonical expectation value, and (ii) temporal fluctuations

of the expectation value about the microcanonical prediction are small at most later times.

This implies that the long-time average accurately describes the expectation value of Ô

at almost all times and agrees with the microcanonical prediction.

In real systems thermal expectation values of observables depend on the energy den-

sity (temperature), and relaxation times are observable dependent. In a series of ground-

breaking works in the 1990s [78, 110, 111], Srednicki introduced the concept of eigenstate

thermalization hypothesis (ETH). In the basis of the eigenstates of a Hamiltonian, ETH

can be formulated as an ansatz for the matrix elements of observables [111],

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē,∆)Rmn, (2.1)

where Ē = (Em+En)/2, ∆ = En−Em, and S(Ē) is the thermodynamic entropy at energy

Ē. Importantly, O(Ē) and fO(Ē,∆) are smooth functions of their arguments, the value of

O(Ē) is identical to the expectation value of the microcanonical ensemble at energy Ē, and

fO(Ē,∆) determines the linear response following a perturbation about equilibrium and

the fluctuation-dissipation relation of the ensemble [112]. Rmn is a random variable with

zero mean and unit variance, if the system obeys time-reversal symmetry, the Hamiltonian

can be chosen to be real and so will be the matrix of observables, then Rnm = Rmn and

fO(Ē,−∆) = fO(Ē,∆), otherwise Rnm = R∗mn and fO(Ē,−∆) = f∗O(Ē,∆).

It is generally expected that Eq. (2.1) holds for all physical observables for which

statistical mechanics applies. For a given Hamiltonian H|n〉 = En|n〉 and a time evolved

state |ψ(t)〉 =
∑

n e
−i
~ EntCn |n〉, the long-time average of Ô is

Ō = lim
T→∞

1

T

∫ T

0
〈ψ(t)|Ô|ψ(t)〉 dt =

∑
m

|Cm|2O(Em) = Tr[ρ̂DEÔ], (2.2)

where O(Em) constructs the first term of Eq. (2.1), and ρ̂DE = |ψI〉〈ψI | is the density

matrix of the diagonal ensemble. On the other hand, statistical mechanics predicts

OME = Tr[ρ̂MEÔ], (2.3)
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where ρ̂ME is the density matrix of the microcanonical ensemble. For a well-defined mean

energy, Tr[ρ̂MEH] = Tr[ρ̂DEH] = 〈E〉, and if the energy fluctuations δE2
DE = Tr[ρ̂DEH

2]−

〈E〉2 and δE2
ME = Tr[ρ̂MEH

2] − 〈E〉2 are sufficiently small, the smooth function O(Em)

can be represented by the Taylor expansion

O(Em) = O(〈E〉) + (Em − 〈E〉)O′(〈E〉) +
1

2
(Em − 〈E〉)2O′′(〈E〉) + · · · . (2.4)

Substituting the series into Eq. (2.2) and Eq. (2.3) one obtains

Ō ∼ OME +
1

2
(δE2

DE − δE2
ME)O′′(〈E〉). (2.5)

If the energy fluctuations in the time-evolving system are subextensive, which is generically

the case in systems described by a local Hamiltonian, then the second term is a small

subextensive correction to OME, which is negligible for large systems. It is remarkable

that, using ETH, one can show that Ō ∼ OME without the need of making any assumption

about the components of the wavefunction Cm. The fluctuations of Ô can be evaluated

in a similar a way, for a long-time evolution,

δO2 = lim
T→∞

1

T

∫ T

0
〈ψ(t)|(Ô − Ō)2|ψ(t)〉 dt =

∑
m

|Cm|2O2(Em)− Ō2 = Tr
î
ρ̂DEÔ

2
ó
− Ō2,

(2.6)

and for the microcanonical ensemble, δO2
ME = Tr

î
ρ̂MEÔ

2
ó
−O2

ME. Introducing the Taylor

series of O(Em), one finds

δO2 ∼ δO2
ME +

1

2
(δE2

DE − δE2
ME) O2′′(〈E〉), (2.7)

i.e., the long-time average fluctuations of Ô thus scale as the equilibrium statistical fluc-

tuations, δOME.

A straightforward generalization to mixed states can be done by the substitutions,

C∗mCn 7→ ρmn and |Cm|2 7→ ρmm, where ρmn are the matrix elements of the initial density

matrix in the basis of the eigenstates of the Hamiltonian. Moreover, due to ensemble

equivalence one can use a canonical, or other equilibrium density matrix instead of the

microcanonical ensemble.
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2.2. Integrable systems

A major exception to the ETH paradigm is provided by integrable systems, in which

the presence of extensive number of integrals of motion breaks ergodicity.

In classical mechanics, integrability demands that the N-particle Hamiltonian, H =

H(· · ·xj · · · ; · · · kj · · · ; t), can be transformed to canonical variables Qj , Pj , in which all

of the Pj ’s are mutually independent integrals of motion (constants of motion), and all Qj ’s

are cyclic. That is, there exists a canonical transformationH 7→ H̃(· · ·Qj · · · ; · · ·Pj · · · ; t) =

H̃(· · ·Pj · · · ; t) [113], such that the equations of motion are simply solved as

∂Pj
∂t

= − ∂H̃
∂Qj

= 0⇒ Pj(t) = Pj(0), (2.8)

∂Qj
∂t

=
∂H̃

∂Pj
= ωj(· · ·Pj · · · )⇒ Qj(t) = ωjt+Qj(0). (2.9)

As a result, the time evolution of a many-body state of an integrable system performs a

toroidal trajectory in phase space.

The direct translation of the concept of integrability in quantum systems is prob-

lematic. If the N independent integrals of motion Pj are directly taken by N mutually

commuting operators, once these operators share the same eigenstates with the Hamilto-

nian, then they can be represented by means of each other [81], and therefore the meaning

of "independent" is unclear. Moreover, integrals of motion alone can be trivial, since every

Hamiltonian has infinite conserved quantities given by its eigenstate projectors, but this

does not imply anything.

A different approach to translate the classical idea of integrability into quantum me-

chanic is to restrict only to systems which support scattering without diffraction [81].

Diffraction-free scattering rarely happens with generic interactions that possess a decay-

ing tail, with the special exception of the inverse-square potential V (r) ∝ 1/r2, and its

transformations. Most of the integrable systems consist of particles with short-rang inter-

actions, such as contact interactions (characterized by a δ pseudo-potential) or nearest-

neighbor interactions. A well-known representative example of integrable system is the

XXZ model, Eq. (1.17), whose integrability will be discussed below. It has also been

pointed out that the locality properties of the integrals of motion play a determinant role

in quantum integrable models [114, 115]. The quantities should be describable by either

local operators or summations of finite local operators [115], such that trivial non-local

integrals of motion, in particular the projectors of eigenstates or arbitrary powers of the
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Hamiltonian, are irrelevant.

Integrable systems do not exhibit thermalization. From the classical point of view, the

time evolution of an integrable system is constrained by integrals of motion, and the time

average and the microcanonical ensemble average do not need to agree. Nevertheless, a

many-body state might still uniformly fill the available phase space. In other words, the

long-time average could still be described by some ensemble average, but it needs to be

a generalized microcanonical ensemble that accounts for all conserved quantities in the

system [116]. In the language of quantum mechanics, the failure of integrable quantum

systems to exhibit eigenstate thermalization can be traced back to the fact that they have

an extensive number of nontrivial (local/extensive) conserved quantities Îk. However, the

presence of generic dephasing may allow observables in integrable systems to relax to

stationary values and remain close to those values at most later times. The equilibrium

of such a system may be given by the so-called generalized Gibbs ensemble (GGE) [117],

whose density matrix

ρ̂GGE =
exp(−

∑
k λkÎk)

Tr
î
exp(−

∑
k λkÎk)

ó , (2.10)

is obtained by maximizing the entropy under the time-evolution constraints imposed by

integrals of motion. For each k, the Lagrange multipliers, λk, are determined by requiring

that Tr[ρ̂GGEÎk] equals the expectation value of Îk in the initial state. So far, by studying

few-body observables after relaxation, GGE has been verified in a large number of studies

of integrable models (see e.g. Ref. [112] and references therein).

2.2.1. XXZ model

One of the most important and well-studied integrable models is the one-dimensional

XXZ model, Eq. (1.17). It may be realized using cold bosons in an optical lattices

in the hard-core regime, in which the on-site interactions are strong enough to prevent

double occupancies, and hence the on-site occupation is limited to 0 or 1. The mapping

between the XXZ model and the hard-core bosons is given by the Holstein-Primakoff

transformation: 
σ̂xj = â†j + âj

σ̂yj = −i(â†j − âj)

σ̂zj = (2n̂j − 1) .

(2.11)
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In the hard-core boson formulation the Hamiltonian of the model becomes of the form:

HXXZ =
∑
j

−J(â†j+1âj + â†j âj+1) + V n̂j+1n̂j , (2.12)

which is the clean nearest neighbor model that we consider in Chapter 4. The nearest-

neighbor interactions and the nearest-neighbor hopping guarantee diffraction-free scatter-

ing [82]. The scattering matrix satisfies the Yang-Baxter equation [83], and an analytical

form of the integrals of motion is available [84] by means of Bethe ansatz [82, 118].

2.2.2. Bethe Ansatz

The basic idea of the Bethe Ansatz is that the system present diffraction-free scattering,

such that one can use momenta k1, k2 · · · to label the many-body state Ψ(x1, x2 · · · ). For

a 1D system, the N -particle wave function can be represented as

Ψ(x)→
∑
Pr

A(Pr) exp

i N∑
j=1

xj knj


+

∫
k′1

· · ·
∫
k′N︸ ︷︷ ︸

K,E fixed
k′1<···<k

′
N

S
[
k′1 · · · k′N

]
exp

i N∑
j=1

xjk
′
j

 dk′1 · · · dk′N , (2.13)

where "Pr" denotes all the N ! permutations of (n1, n2 · · · ) with nj ∈ [1, N ], and A(Pr)

is the amplitude for each permutation. The first term of the equation is given by the

permutations of the N incoming momenta kj . It describes all possible two-body scattering

processes. The last term describes diffraction, representing many-body interactions, and

serving as the many-body scattering that will be needed to thermalize the momenta.

The label "K,E fixed" denotes the conservation of the total momentum and energy for

outgoing momenta k′j .

For very few cases, e.g., the inverse-square interaction V (r) ∝ /r2 mentioned above,

the diffraction term vanishes, the systems become exactly solvable, and the many-body

scattering reduces into series of two-body process [81]. Consequently, for an integrable

system the Bethe ansatz takes the form

Ψ(x) =
∑
Pr

A(Pr)exp

i N∑
j=1

xj knj

 . (2.14)

To determine A(Pr), notice that the N ! terms in sum can be grouped into pairs of Pr and
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Pr, so that Pr is identical to Pr except Prj = Prj+1, Prj+1 = Prj and knj = kn̄j+1 ≡ k,

kn̄j = knj+1 ≡ k̄. Equation (2.14) then becomes

Ψ(x) =
∑
pair

î
A(Pr)ei(xjk+xj+1k̄) +A(Pr)ei(xj k̄+xj+1k)

ó
exp

i ∑
l 6=j,j+1

xl knl

 . (2.15)

The term A(Pr)ei(xjk+xj+1k̄) + A(Pr)ei(xj k̄+xj+1k) = ψ(xj , xj+1) is a two-body scattering

wave function. For a 1D system with conserved total momentum and energy, A(Pr) and

A(Pr) can differ in a phase, θ. Galilean invariance implies that θ depends only on the

relative momentum, i.e., θ = θ(k − k̄). Reversing the scattering, one sees that the phase

shift must be an odd function, so θ(k̄ − k) = −θ(k − k̄). Therefore, one has the relative

amplitude

A(Pr)/A(Pr) = −eiθ(k̄−k), (2.16)

and a general two-body wavefunction

ψ(x1, x2) = ei(x1k1+x2k2) − eiθ(k2−k1)ei(x1k2+x2k1). (2.17)

The negative sign is added for the hard-core requirement, so if there is no scattering, θ = 0

and A(Pr) = −A(Pr), the wavefunction ψ(xj , xj+1) vanishes for xj → xj+1.

Substituting the Bethe ansatz, Eq. (2.14), into the XXZ Hamiltonian, Eq. (2.12), for

xj+1 > xj + 1, gives

EΨ =
N∑
j=1

[Ψ(· · ·xj + 1 · · · ) + Ψ(· · ·xj − 1 · · · )]

⇒ E = −2J
N∑
j=1

cos(kj) ≡
N∑
j=1

ω(kj).

(2.18)

Considering that the particles cannot hop into the same site, due to the hard-core con-

straint, in order to extend the above function to the full range including xj+1 ≥ xj , one

should impose the condition

∑
NN

[Ψ(· · ·x, x · · · ) + Ψ(· · ·x+ 1, x+ 1 · · · )] = V
∑
NN

Ψ(· · ·x, x+ 1 · · · ), (2.19)

where the summation is taken over all pairs of nearest-neighbor particles. Since, as shown

by Eq. (2.15), a many-body function Ψ(· · ·x, x′ · · · ) can be grouped into pairs, so that
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each pair has the two-body state ψ(x, x′) as a factor, then the above condition reduces to

ψ(· · ·x, x · · · ) + ψ(· · ·x+ 1, x+ 1 · · · ) = V ψ(· · ·x, x+ 1 · · · ). (2.20)

Putting it into Eq. (2.17) gives the phase shift

eiθ(k
′−k) =

1 + ei(k+k′)+(V/J)eik
′

1 + ei(k+k′)+(V/J)eik
. (2.21)

And by imposing periodic boundary conditions, one has

eikL
∏
k′ 6=k
∓eiθ(k′−k) = 1, (2.22)

where the upper(lower) sign is for bosons(fermions). Taking the logarithm of this equation,

one determines the k’s by employing the equation kL = 2πIk +
∑

k′ 6=k θ(k
′− k), where Ik

are integers for fermions or odd number of bosons, and half integers for even number of

bosons.

2.2.3. Long-range hops or long-range interactions

With the knowledge of the Bethe ansatz solution of the XXZ model, it is easy to see

that a long-range hopping or interaction generally violates integrability. For example,

if the system has hopping that is next-to-nearest neighbor, the dispersion relation, Eq.

(2.18), will be quadratic in cos(k). Thus the conservation of momentum and energy of any

two-body process allows four solutions. Two of them are permutations of the incoming

momenta, but the other two are diffraction channels. And if long-range interactions exist,

the many-body ansatz will not be two-body reducible, the terms in Eq. (2.19) become

Ψ(· · ·x, x · · · ) + Ψ(· · ·x + 1, x + 1 · · · ) = VΨ(· · · , x − r, · · · , x, · · · , x + r, · · · ), and the

scattering phase shift of Eq. (2.21) fails. Such systems are believed to thermalize, in

fact, previous researches have already shown the ergodicity for quantum lattice geses with

next-to-nearest neighbor hopping/interaction [119, 120], and for dipolar lattice gases [121].

2.3. Quantum ergodicity

The idea of ergodicity is also problematic in quantum mechanics. In classical me-

chanics, ergodicity implies that the motion of a many-body state has no constant of

motion, except the conservation laws due to the overall symmetries, such as the total
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energy for time-translation invariance, ∂H/∂t = 0, the center-of-mass momentum for

space-translation invariance, ∂H/∂RCM = 0, etc. Trajectories in ergodic systems cover

all the available phase space region. This concept essentially leads to the equal a priori

probability assumption, crucial for the idea of ensemble average [122], which captures

the long-time average of observables in statistical mechanics. But in a quantum system,

there is no idea of trajectory according to the uncertainty principle. In fact, to describe

a quantum state |ψ〉 evolving into another state |φ〉, one calculates the overlapping be-

tween them 〈φ|ψ〉. And since the Schrödinger equation is a linear differential equation,

|ψ〉t = e
−i
~ Ht|ψ〉, if the two states are evolved with the same Hamiltonian, the overlapping

will be a constant in time. So if initially 〈φ|ψ〉 = 0, then |ψ〉 will never “visit” |φ〉, and the

ergodic hypothesis fails.

2.3.1. Random matrix theory and level statistics

A promising solution to this difficulty, is provided by the idea of quantum chaos and

the related random matrix theory [123, 124, 125]. This theory studies the statistical

properties of a complex quantum system, whose Hamiltonian can be described by a random

hermitian matrix. Energy levels in random matrix theory obey Wigner-Dyson statistics.

For a system with time-reversal symmetry, where the Hamiltonian is real and symmetric,

the matrix elements are drawn from the so-called Gaussian orthogonal ensemble (GOE).

The probability distribution for the corresponding level separations may be captured by

the Wigner surmise

P (δ) =
π

2
δe
−π
4
δ2
, (2.23)

where δ is the separation between two adjacent energies, and the average δ is set to one.

The GOE distributions exhibit two generic properties, (i) level repulsion, as the probability

P (δ) vanishes when δ → 0, and (ii) a Gaussian decay at large energy separation. A

simplified derivation of Eq. (2.23) can be found in Ref. [112]. Note that though here,

in order to exemplify, we consider time-reversal symmetry, it is not essential for GOE

spectra [126, 127].

The universality of random matrix theory is based on two conjectures. The first one

is due to Bohigas, Giannoni, and Schmit, and states that the level statistics of quantum

systems that have a classical chaotic counterpart are described by random matrix theory

[128]. This conjecture has been verified in many cases [112]. So far, only non-generic

counterexamples are found that violate this conjecture [129]. Indeed the emergence of
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Wigner-Dyson statistics for the level separations is often considered as a defining property

of a quantum chaotic system, even if there is no classical counterpart for such a system.

The second conjecture is due to Berry [130]. It states that in the semi-classical limit (~→

0) of a quantum system whose classical analogue is chaotic, the Wigner function [131, 132]

of eigenstates averaged over a vanishing small phase space reduces to the microcanonical

distribution, and an observable is the same as in the microcanonical ensemble average.

The level statistics for quantum integrable systems was first addressed by Berry and

Tabor [133]. Considering again a random matrix, but now with only diagonal terms

(i.e., Hij = 0 for i 6= j), this matrix represents a complex many-body system without

inter-state correlation. For example, an array of independent harmonic oscillators with

incommensurate frequencies, in which all possible total energies of the system can form

such a random diagonal matrix. If the energies are uncorrelated random numbers, the

probability of having n energy levels in a certain interval [E,E+∆E] follows a Poissonian

distribution: Ps(n;λ) = λn

n! e
−λ, where λ is the average number of energy levels in the

interval. Assuming ∆E ∝ λ, the distribution for the separations of adjacent energies

is obtained by requiring n = 0, so P (∆E) = Ps(0; ∆E) = e−∆E . Setting the average

separation to one, ∆E → δ, gives

P (δ) = e−δ. (2.24)

This distribution is very different from the expected from random matrix theory, Eq.

(2.23). It has no level repulsion at δ → 0, and decays exponentially.

Berry and Tabor conjectured that, for quantum systems whose classical counterpart is

integrable, the energy eigenvalues behave like a series of non-correlated random variables,

that implies Poissonian statistics [133]. While for integrable quantum systems with no

classical counterpart, there are exceptions [134]. In spite of that, as few-particle spectra

become denser when going to the semi-classical limit (by either E → ∞ or ~ → 0),

and their level statistics approaches either the Poissonian or the Wigner-Dyson statistics,

in many-particle systems one can achieve the same by taking the thermodynamic limit

L → ∞ and N → ∞. It suggests that the level statistics indicators can also be applied

to characterize a quantum many-body system that does not have a classical counterpart.

Previous works have already demonstrated the potential of level statistics for the study

of a quantum integrable system, for instance for spin-1
2 lattice models, quantum lattice

gases consisting of interacting spinless fermions [142], or hard-core bosons [120].

Equations (2.23) and (2.24) are now regularly used for the analysis of quantum many-

body systems. The statistics of the energy levels of a many-body Hamiltonian serves as
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one of the main indicators of quantum chaos.

2.3.2. The two-level ratio

A convenient and widely-employed way to distinguish between Wigner-Dyson and

Poisson statistics, is to calculate the two-level ratio [142]

rα =
min{δα, δα+1}
max{δα, δα+1})

, (2.25)

where α is the label of an eigenstate, and δα = Eα+1 − Eα > 0, is the difference between

two adjacent energy levels. The mean value of the rα for the two statistics is:

r̄ =
1

Ω

Ω∑
α=1

rα '


0.386 for Poisson,

0.529 for Wigner-Dyson.
(2.26)

Note that Eq. (2.26) implies infinite temperature, as each state is assumed to be equally

possible in the average. However, one may also evaluate the average r̄ in a given spectral

window.

Deviations from Poisson (or Wigner-Dyson) statistics are usually the result of symme-

tries of the Hamiltonian, which result in commensurability of the spectra and additional

degeneracies. If the Hamiltonian has an overall symmetry, e.g., translation, reflection,

particle-hole, etc., the energy levels can have extra degeneracies, and the statistics may

be neither Poissonian nor Wigner-Dyson [135]. The underlying distributions of Eq. (2.23)

and (2.24) can only be recovered when measurements are taken within the sub-space of the

same conserved values. This consideration has been implemented in researches for various

quantum lattice systems, as e.g. total momentum conservation in one-dimensional lattice

models with next-to-nearest-neighbor hopping / interaction[120], or spin conservation in

Heisenberg chains [136].

2.4. Many-body localization

In addition to integrable systems that might exhibit equilibrium characterized by the

generalized Gibbs ensemble, there is an important class of systems that fail to equilibrate

in any sense, and in which many-body eigenstates violate the eigenstate thermalization

hypothesis. These are Anderson-localized systems. The concept of localization was first

introduced by P. W. Anderson [137], and typically applies to systems with quenched
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disorder.

The essential physics of Anderson localization can be illustrated with a tight-binding

model of a single particle hopping in a lattice disturbed by a static random on-site poten-

tial. For strong enough disorder, in one- and two-dimensional systems all the eigenstates

are exponentially localized, with wave functions that have the asymptotic long distance

form ψn(r) ∝ e−|r−Rn|/ξ, where ξ is the localization length depending on the disorder

strength and the energy eigenvalue. This state a is localized near the site Rn, and a parti-

cle remains localized near this location, if initially placed there. In other words, memory of

the initial conditions is preserved in a local observable for infinite times. This manifestly

constitutes a failure of the eigenstate thermalization hypothesis.

Recently, intensive efforts are made to investigate disordered many-body systems

[85, 86, 87, 88], in which many-body localization (MBL) may occur, even though it’s

existence at thermodynamic limit is still a debate [138, 139, 140, 141]. Contrary to typ-

ical problems in many-body quantum system, the study of MBL is not focused on the

ground-state or low-energy regime, but rather on the general spectrum of excited and

even highly-excited states. In the non-interacting limit, the many-body eigenstates are

simply product states of single-particle wave functions, and the system is hence fully lo-

calized. For finite interactions, the eigenstates can be constructed perturbatively if the

on-site disorder is sufficiently larger than the interactions. Since in this regime the typ-

ical level splittings between neighboring sites are much larger than the interactions, the

states on different sites are typically only weakly hybridized. This argument leads to the

conclusion that for sufficiently strong disorder, particle or energy transport is absent, the

eigenstate thermalization hypothesis therefore does not occur at any order in perturbation

theory and MBL arises.

Although the perturbative argument is limited to the weak interaction regime, for one-

dimensional disordered lattices, numerical evidence by exact diagonalization [142, 143],

and analytical proof that follows physically reasonable assumptions [144] indicate that

while the high-energy eigenstates do obey the eigenstate thermalization hypothesis for

weak disorder, for strong-enough disorder all of the eigenstates violate it. Apparently, the

violation of the eigenstate thermalization hypothesis occurs even for interactions exceeding

the perturbative regime.

Based on the impressive experimental progress in ultracold gases in optical lattices, as

discussed in Chapter 1, particular attention has been paid in recent years on the observa-

tion in those systems of Anderson (single particle) localization and MBL in the presence
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of disorder [66, 67, 68, 145, 146, 147, 148].

2.4.1. Local integrals of motion

The level statistics (Sec. 2.3) has been applied for analysing the MBL transition

[142, 143]. The spectrum reveals Wigner-Dyson statistics (with r̄ ∼ 0.529) if the imposed

disorder is less than a certain magnitude, indicating an ergodic phase. In contrast, dis-

order that exceeds the critical value leads to the MBL phase, which is characterized by

a Poissonian spectrum (with r̄ ∼ 0.386). Notably, this implies an unconventional type of

integrals of motion that are exponentially localized, the so-called local integrals of motion

(LIOM) [149]. Though the presence of disorder prevents diffraction-free scattering and the

analytical integrability, the dynamics of particles in a strongly disordered lattice challenges

the basic assumption of thermalization. The occurrence of the MBL phase conserves the

positions of particles or the spin configurations, and permanently prevents the system

from reaching equilibrium. Recent studies [144, 150, 151, 152, 153] have shown, both ana-

lytically and numerically, that MBL in systems with increasing disorder is asymptotically

described by the emergence of LIOMs.

To be concrete, spin-1
2 lattices may be taken as a prototype model. Note that, as shown

in Eq. (2.11), the spins are equivalent to hard-core bosons. It was suggested [150, 152]

that with a strong on-site random potential, an MBL Hamiltonian can be written as a

non-linear functional of a complete set of localized operators of pseudo-spins τj , that is,

H = H(σx, σy, σz)

→ h0 +
∑
α

hατ
z
α +

∑
i,j

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

Kn
i{k}jτ

z
i τ

z
k1
· · · τ zknτ

z
j ,

(2.27)

where the Kn terms represent (n + 2)-pseudo-spin interactions, the summations are re-

stricted so that each interaction term is not repeatedly counted. The Ising spins τ zj

(so-called l-bits) commute mutually with each other and with the Hamiltonian, thus the

eigenstates of H are simultaneous eigenstates of all the τ zj . The intuition underlying Eq.

(2.27) is that, since there is no transport in the MBL phase, there should be a set of

localized conserved quantities behaving as constants of motion when the system evolves

according to this Hamiltonian. For instance, for a system of hard-core bosons that fully

localized in a disordered lattice, the τ zj are identical to the occupation numbers of the

localized single-particle orbitals.

The localization of pseudo-spins τj implies that their representation in σj operators
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is given by a summation of σj products on nearby sites. The weight of each product

term decay exponentially with the distance between the farthest σj that are involved.

These exponential tails mediate interactions between the pseudo-spins that also fall off

exponentially [152],

Jeff = Jij +
∞∑
n=1

∑
{k}

Kn
i{k}jτ

z
k1
· · · τ zkn . (2.28)

In other words, the pseudo-spins τj are dressed σj , with local dressing that makes each τ zj

conserved, and leads to the effective interactions above among τjs. The prototype model

assumes that the τ zj has binary spectrum, and that the full spin algebra can be constructed

with ladder operators τ±j . More details on the construction of τj for specific models are

reviewed in Ref. [149].

2.4.2. Logarithmic growth of entanglement entropy

The assumption of LIOMs is sufficient to understand the MBL phenomenology, and

very particularly the numerically observed logarithmic growth of entanglement in the MBL

phase [154, 155]. In thermalizing systems, the interaction of two bits, A and B, causes

them to become entangled with each other. The subsequent interaction of bits B and C

produces entanglement not just between B and C but generically also between A and C.

As a result, entanglement spreads typically ballistically. The situation is very different

for the l-bits, since two l-bits can get entangled only by their direct interaction and not

through a mutual interaction with a third l-bit. The latter is because the l-bit Hamiltonian

(2.27) has no dissipation (no spin flips). As mentioned above the interaction between l-

bits decays exponentially with the distance L between them, Jeff ∼ J0 exp(−L/ξ). If these

two l-bits are initially not entangled, the interaction entangles them after a time t such

that tJeff ∼ 1. Hence, after a time t, entanglement is created between all l-bits within a

distance L ∼ ξ ln(tJ0), explaining hence the observed logarithmic growth of entanglement

with time within the MBL phase.

2.5. Disorder-free many-body localization

In recent years, various studies have posed the interesting question of whether MBL de-

mands disorder, or whether in contrast many-body interacting systems may present MBL

or MBL-like physics in the absence of disorder. Various scenarios have been considered.

A first scenario for disorder-free MBL is provided by system with two species of par-

ticles, one light and one heavy [94, 95]. Given a random initial distribution of the heavy
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particles, one can then consider a Born-Oppenheimer approximation to the states of the

light particles. If the heavy particles produce enough constraints (effective disorder), the

light particles are localized by the heavy ones.

Another class of models is that of particles in the presence of a linear potential gra-

dient. In the noninteracting limit, these models display the well-known Wannier-Stark

localization. Beyond a critical value of the potential gradient these models exhibit noner-

godic behavior as indicated by their spectral and dynamical properties [101]. In particular,

these systems exhibits the so-called Stark-MBL [100], which is similar (but not identical)

to the conventional MBL in disordered lattices. Very recently, Stark-MBL has been re-

vealed in the context of ultracold gases, both in neutral atoms in optical lattices [105] and

in trapped ions with long-range spin-exchange [107].

A candidate arising from pure many-body effects was suggested decades ago [156, 157],

namely the system constituted by 3He impurities in solid 4He. Because of the power-law

interactions between the impurities, the hop of a single impurity to a neighboring site then

changes the energy of the system by an amount that depends on the locations of other

impurities. Once the hopping is weak enough, random initial positions of the impurities

are argued to localize by itself. In fact, due to the finite band width, many-body bound

states can generally occur in lattices for strong-enough interactions. For an attractive

interaction, U < 0, a pair of atoms at the same site will form a thermodynamically stable

bound state for sufficiently large |U |. For U > 0, the pair is expected to be unstable,

and will separate apart to minimize the repulsive interaction. This process is however

forbidden if the repulsion is sufficiently large.

Dynamically stable (though possible not thermodynamically stable) repulsively-bound

pair at the same site were observed in quantum gases in optical lattices [65, 158]. The origin

for this repulsively-bound pair is provided by momentum and energy conservation, since

there are no free scattering states available if the repulsive interaction exceeds the band

width ∼ 2zJ (where z is, again, the coordination number). The repulsively bound state

is actually the precise analog of the standard bound state below the band for attractive

interactions, and there is a perfect symmetry around the band center. The presence of

repulsively-bound pairs, even for weak interactions, leads to a strong slow-down of the

dynamics [64, 159].

In this Thesis, we will show that polar lattice gases provide an excellent candidate

for the observation of anomalously slow dynamics and MBL-like physics in disorder-free

systems.
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Chapter 3

Dimer clusters and self-bound lattice

droplets in 1D polar lattice gases

In addition to energy conservation, tight-binding dynamics in deep optical lattices

is largely determined by the finite bandwidth. This leads to the dynamical formation

of (meta)stable states. A prominent example is that of a repulsively-bound pairs dis-

cussed at the end of the previous Chapter. Interestingly, in extended Hubbard models,

strong-enough inter-site interactions, even just between nearest-neighbors, lead to non-

local repulsively-bound pairs [160, 161] and clusters at different sites, which significantly

slow down the dynamics [97]. In this Chapter, we show that the formation of dynamically-

bound nearest-neighbor dimers leads, in the absence of disorder, to quasi-localization for

surprisingly low densities and moderate dipole strengths. Moreover, superfluid self-bound

lattice droplets form even for weak dipoles. Our results are directly relevant for current

and future experiments on magnetic atoms and polar molecules.

The results of this Chapter have been published in Ref. [162].

3.1. Dynamically-bound dimers

We focus in this chapter on 1D polar lattice gases of hard core bosons described by

the extended Hubbard model

H = −J
∑
j

Ä
â†j+1âj + H. c.

ä
+
V

2

∑
i 6=j

1

|i− j|3
n̂in̂j , (3.1)

with J the hopping amplitude, V the interaction strength, âj(â
†
j) the annihilation(creation)

operator for particles at site j, and n̂j = a†jaj the occupation on the site. Note that, in

35
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Figure 3.1: (a) Dimer stability characterized using PD and P̃D (see the text), which provide
very similar results. For V/J & 8 both PD, P̃D > 0.95, indicating that an initially created
nearest-neighbor dimer remains to a good approximation stationary. (b) Critical number
of empty sites, Xc, between two dimers with (squares) and without (circles) a singlon in
between them (see the inset). For an initial inter-dimer distance X0 < Xc, the inter-
dimer distance remains dynamically fixed (see the text), characterizing the formation of
a dimer-dimer cluster. The dotted curves illustrate that in both cases, Xc ∝ (V/J)2/3.

order to focus on inter-site effects, we assume hard-core particles, i.e., (a†j)
2 = 0, and

hence n̂j = 0 or 1, such that on-site interactions (which would be given by Eq. (1.7)) can

be excluded. This assumption can be realized by considering either large on-site interac-

tions that prevent the gathering of more than one particle in a site, or by using spin-less

fermions as the constituent particles of the lattice gas.

We will be particularly interested in the particle dynamics, and more specifically in

how the formation of dynamically-bound dimers handicaps this particle motion.

3.1.1. Stability of dynamically-bound nearest-neighbor dimers

In order to assess the stability of nearest-neighbor dimers, we consider the two-body

problem of formation of dynamically-bound dimers [97, 160, 161]. For two particles at sites

j1 and j2, the center-of-mass and the relative distance are given by R = (j1+j2)/2 and |j1−

j2| respectively, thus the two-body state is denoted as |R, r〉. After applying the Fourier

transform, |K, r〉 = 1√
Ω

∑
R e

iKR|R, r〉, with K the center-of-mass quasi-momentum, the

Hamiltonian for each K becomes of the form:

HK = −2J cos(K/2)
∑
r≥1

(|K, r + 1〉〈K, r|+ H.c.) + V
∑
r≥1

1

r3
|K, r〉〈K, r| (3.2)
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After diagonalizing HK , one obtains the eigenstates |K,α〉 with eigenenergies εαK . For

a sufficiently large V the spectrum presents two different types of states (see Fig. 3.2),

continuum scattering states and discrete bound states. The latter, irrespective of the

sign of V , result in dynamically-bound pairs of particles. For V > 0, these states can

be considered the inter-site equivalent of the on-site repulsively-bound pairs [65, 158],

discussed in Sec. 2.5. For a sufficiently large V there is a bound-state, which, as discussed

below, corresponds to a very good approximation to a nearest-neighbor dimer. Other types

of pairs, e.g. next-to-nearest-neighbor dimers, may occur as well, but for the purposes

of this chapter only the stability of nearest-neighbor dimers is relevant. Since HK has

maximum hopping amplitude at K = 0, one may consider K = 0 for a conservative

estimation. For V > 0, the eigenstate that holds the two particles at the shortest average

relative distance, is the most energetic one, |K = 0, αmax〉. For a sufficiently large V ,

|K, r = 1〉 is a good approximation to a dimer, the overlapping,

P̃D = |〈αmax|r = 1〉K=0|2, (3.3)

may be hence employed as a measure of nearest-neighbor dimer stability. Figure 3.1 (a)

shows that for V/J & 8 the tightest bound-state is over 90% a nearest-neighbor dimer, and

hence an initially created nearest-neighbor dimer remains to a very good approximation

stationary, i.e., bound to nearest-neighbor.

As a final remark, we would like to mention that an alternative way to to quantify

the stability of a nearest-neighbor dimer, is to consider the survival probability within the

sub-space of all |j, j + 1〉 states, rather than just in the original one |j0, j0 + 1〉. For an

asymptotically long time:

PD =
∑
j,α

|〈α|j0, j0 + 1〉|2|〈α|j, j + 1〉|2, (3.4)

which provides a very similar information as P̃D (see Fig. 3.1(a)).

3.1.2. Dimers for purely nearest-neighbor interactions

Dynamically-bound dimers are particularly easy to evaluate for the case of purely

nearest-neighbor interactions V
∑

j n̂jn̂j+1 using the results of Sec. 2.2.2. The two-body

wavefunction, of Eq. (2.17) can be written as Ψ(x1, x2) = eiRK/2 ψ(r, k), with

ψ(r, k) = eirk − eiθ(k)e−irk (3.5)
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(b)(a)

Figure 3.2: (a) Two-particle dispersion of the nearest-neighbor model, where the scattering
continuum is given by Eq. (3.6), and the bound states by Eq. (3.10). (b) Two-particle
dispersion of polar lattice gas, Eq. (3.1). It shows bound states very similar to those of
the nearest-neighbor model.

with K = k1 + k2, k = k2 − k1, R = x1 + x2, and r = x2 − x1 ≥ 1. The energy given by

Eq. (2.18) is

E = ω(k1) + ω(k2) = −4Jcos
Å
K

2

ã
cos
Å
k

2

ã
, (3.6)

whereas the phase shift given by Eq. (2.21) is

eiθ(k) =
1 + ∆eik/2

1 + ∆e−ik/2
, (3.7)

with ∆ = V
2Jcos(K/2) .

A standard method to identify a bound state is to perform analytical continuation to

complex momenta, and then search for points where the scattering amplitude becomes

infinite. The physical motivation is that in a bound state waves are tied around a center,

that is, it exists by itself without the need of any incoming wave. This leaves the relative

proportion between the outgoing wave and the incoming wave to be infinite [163]. To

let k1 and k2 be complex, while the total momentum k1 + k2 = K remains real, one

takes z = q + iκ, then let k1 → K
2 + z and k2 → K

2 − z, so the relative momentum

k = k2 − k1 = −2q − 2iκ. Substituting these complex momenta into Eq. (3.6), and

requiring the energy to be also real, one obtains q = lπ, with l an arbitrary integer, and

E = ∓4Jcos(K/2)cosh(κ). (3.8)

The upper(lower) sign is for even(odd) l. The complex k leaves the two-body wavefunction,



3.1. DYNAMICALLY-BOUND DIMERS 39

Eq. (3.5), in the form ψ(r, k) = ±eκr∓eiθ(k)e−κr. So once eiθ(k) →∞, ψ → e−κr, and the

wavefunction is bound, as expected. From Eq. (3.7) one obtains the condition for bound

state

eiθ(k=−2lπ−2iκ) =
1 + (−1)l∆eκ

1 + (−1)l∆e−κ
→∞

⇒ V = ∓2Jeκcos(K/2).

(3.9)

This expression reveals that bound states can exist generally in the lattice irrespective

whether the interaction is repulsive or attractive. Putting Eq. (3.9) into Eq. (3.8) gives

the bound state energy

E = V +
2J2

V
+

2J2

V
cos(K). (3.10)

For |V | ≤ 2J , the bound state energy overlaps for all K with the scattering continuum,

given by Eq. (3.6). For |V | > 4J , the band of bound states splits for all K completely

from the continuum. The dispersion for various V/J is shown in Fig. 3.2 (a).

3.1.3. Dimer model

Even if dimers remain bound, they may move in the lattice by a second-order process

by two consecutive hops. When the right particle of the pair moves to the right the

potential energy changes from V to V/8. The subsequent hop of the left particle to the

right, restores the original energy. As derived in Appendix A, this results in a dimer

hopping amplitude JD = J2

V−V/8 . We consider at this point that the system consists

only of nearest-neighbor dimers (this condition is relaxed below). This can be realized by

superimposing a superlattice on top of the primary lattice [68], which dimerizes the lattice.

Once the dimer gas is created, the superlattice is removed, and the dimers are allowed to

move in the primary lattice. As shown below, this dynamics is largerly handicapped by

the formation of dimer-dimer clusters.

Dimer-dimer clusterization can be evaluated by approximating the four-body dimer-

dimer problem by a simplified two-body problem, using the Hamiltonian

HD = JD
∑
j

Ä
d̂†j+1d̂j +H.c.

ä
+ V

∑
j

∑
x≥2

G(x)D̂jD̂j+x, (3.11)

where d̂l = âlâl+1 that creates a dimer at sites l and l + 1, D̂l = d̂†l d̂l, and the function

G(x) =
2

x3
+

1

(x− 1)3
+

1

(x+ 1)3
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characterizes the interaction between two dimers separated by x− 1 sites.

Similarly to Eq. (3.2), for a center-of-mass momentum K = 0 of the dimer-dimer

complex, the Hamiltonian is

HD,K=0 = −2JD
∑
x≥2

(|x〉〈x+ 1|+ H. c.) + V
∑
x≥2

G(x)|x〉〈x|, (3.12)

where |x〉 denotes two dimers at |j, j + 1〉 and |j + x, j + x + 1〉. For an arbitrary initial

state |x0〉 (two dimers with X0 = x0 − 2 empty sites in between), time evolution govern

by HD,K=0 gives the average dimer-dimer distance 〈X〉(t), and the variance ∆X(t) =√
〈X2〉 − 〈X〉2. For different values of V , a critical Xc for the stability of the dimer-dimer

complex is defined, such that for X0 < Xc in the subsequent evolution up to JDt = 100,

∆X <
√
〈X0〉, that is, the inter-dimer distance remains well-defined and approximately

equal to the original one. As expected from a simple inspection of HD, Xc ∝ (V/J)2/3

(Fig. 3.1 (b)).

3.1.4. Dimer dynamics

Dimer clusters strongly slow down the dynamics, as illustrated (see Fig. 3.3 (a)) by

the Shannon entropy

Sshn(t) = −
∑
f

|〈f |D1, D2〉t|2ln |〈f |D1, D2〉t|2, (3.13)

with {|f〉} the Fock basis, |D1, D2〉 a selected two-dimer initial state, and |D1, D2〉t the

time evolution of |D1, D2〉. For JDt � 1, Sshn(t) remains very low, since dimers move

via second-order hopping. For JDt & 1, the dimer cluster quickly unravels for X0 > Xc,

reaching a maximal entropy Smaxshn ' 2 lnNs. For X0 < Xc, a stable dimer cluster is

formed. S(t) increases much more slowly, and only for JDt� 1 due to the center-of-mass

motion of the dimer cluster, up to Smaxshn that is determined from the dimension of the

dynamically available Hilbert space Ωsub, i.e., Smaxshn = log(Ωsub). For the case of two

un-bond dimers, Ωsub ∼ L2, whereas for bound dimers at a rigid fixed distance, Ωsub ∼ L.

The nature of the short-time plateaux of Fig. 3.3 (a) is different for V/J = 12 and

for V/J = 42. For V/J = 12, the atoms within the dimers are not fully rigidly bound at

nearest-neighbors, but rather have small probability to separate to next-nearest neighbors.

This slight spreading explains the entropy growth for t ∼ 1/J . This initial growth is

followed by a plateau, because any further entropy growth demands the dimer motion,
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(moving dimers)

(dimer-dimer cluster)

(a) (b)

Figure 3.3: (a) Shannon entropy of a two-dimer system obtained by exact evolution of
Eq. (3.1) and Eq. (3.11). The dimers are initially separated by X0 = 5, whereas the
overall lattice has 20 sites. (b) Inhomogeneity parameter (see text) evaluated using exact
evolution of Eq. (3.11) with V/J = 40, X0 = 3, and various number of dimers, ND = 2
(dashed), 3 (solid), and 4 (solid dots) in 5(ND + 1) sites, where ρ ' 0.3. We consider
periodic boundary conditions in all cases.

which occurs at t ∼ 1/JD � 1/J . This entropy growth then proceeds unhindered since

no dimer cluster forms. For V/J = 42 the dimers are rigidly formed by nearest-neighbor

particles, and the dimer model successfully recovers quantitatively the dynamics of the

full Hamiltonian (solid curve in Fig. 3.3 (a)). As a consequence, entropy growth at the

1/J time scale is prevented. The small entropy growth at t ∼ 1/JD is due to the slightly

undefined relative inter-dimer distance having a finite variance ∆X � X0. That growth

of Sshn(t) is followed by a plateau, since further entropy growth demands the motion of

the whole dimer-dimer cluster, which occurs in a much longer time scale.

The emerging polar dimer cluster strongly slows down the dynamics, since motion

may result only from the displacement of the center-of-mass of the whole dimer clus-

ter. A cluster of more than two dimers further reduces the mobility of the center-

of-mass. As more dimers are bound, the cluster hopping amplitude is in the order of

JNDD /V ND−1 ∝ J2ND/V 2ND−1, with ND, the number of dimers. This slow-down is shown

in Fig. 3.3 (b), where, for V/J = 40, the inhomogeneity η(t) =
∑

j (〈n̂j〉 −N/L)2 is

obtained using the exact evolution of the dimer model, Eq. (3.11), for ND = 2, 3, and 4.

For each time t we average over a small time interval t±dt to smoothen fluctuations. Note

that η(t)→ 0 indicates homogenization (and hence complete loss of information about the

initial conditions). The time scale for homogeneization increases by more than one order

of magnitude with every dimer added to the cluster. Dimers in polar lattice gases thus
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have a much stronger effect than on-site bound pairs [164]. The latter merely leads to a

slow-down due to the larger mass of the pair. In contrast, the hopping of nearest-neighbor

dimers is out-competed by the tail G(x) even at large distances, leading to dynamical

localization via clustering even for dilute gases and moderate dipoles. Since dimers re-

main at a fixed distance for all initial separations X < Xc, multi-dimer localization can

exist with general initial separation, an initial crystalline distribution is not essential for

clusterization-induced localization.

3.2. Brownian motion

The presence of unpaired particles (singlons) significantly modified the dynamics of the

system. Figure 3.4 (a) depicts Sshn for a singlon initially between two dimers separated

by X0 = 7. For small V/J = 12, the initial state quickly unravels at a time scales

t ∼ 1/J instead of t ∼ 1/JD as in Fig. 3.3 (a) for a pure dimers gas, and Sshn reaches

Smaxshn ' 3× lnL. At an intermediate regime of V/J , nearest-neighbor dimers are strongly

bound, but singlons induced dimer mobility due to mechanism that resembles the well-

known Brownian motion. Once a singlon approaches a dimer at one site of distance, dimer

and singlon may resonantly swap positions:

| · · · ◦ ◦ • • ◦ ◦ • ◦ · · · 〉 → | · · · ◦ ◦ • • ◦ • ◦ ◦ · · · 〉

→ | · · · ◦ ◦ • ◦ • • ◦ ◦ · · · 〉 → | · · · ◦ • ◦ ◦ • • ◦ ◦ · · · 〉,

where ◦ (•) denotes an empty (occupied) site (we will come back to this mechanism in

the next chapter when discussing delocalization in nearest-neighbor models). These swaps

result in dimer recoils, which induce a Brownian-like dimer motion for t > 1/J . Note that

in Fig. 3.4 (a) we consider periodic boundary conditions, and hence the single singlon

winds around the system mimicking the behavior of dimers in a singlon bath. The effect

of Brownian-like motion can be observed for V/J = 37 for times 1/JD & t & 1/J . That

is the time window when dimer hopping did not yet happen but siglon motion has led

already to dimer mobility. At t > 1/JD, the Sshn increases by the combination of dimer

hopping and Brownian-like motion up to a maximal Smaxshn ∼ lnL + lnX0, which may be

estimated by considering dimers bound with a fixed distance X0 and a moving singlon in

between.
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Figure 3.4: (a) Shannon entropy of two dimers with a singlon in between them. The
initial inter-dimer separation is X0 = 7. Other parameters are similar to those of Fig. 3.3
(a). (b) 〈nj(t)〉 evaluated by t-DMRG for V/J = 50, X0 = 15, and with open boundary
conditions. The singlon quickly delocalizes in the inter-dimer space, but the dimers remain
fixed for t� 1/JD, revealing the formation of a singlon-glued dimer cluster.

3.3. Singlon gluing

Brownian motion is absent for large V , as seen for V/J = 50 in Fig. 3.4 (a), for which

singlons and dimers cannot approach at one site of distance. This results in a dramatic

singlon-induced enhancement of the inter-dimer binding. Due to the DDI, the singlon be-

tween two dimers experiences a box-like trapping potential, which induces discrete energy

levels for the singlon. A change in the inter-dimer distance induced by dimer hopping re-

sults in an energy change of the singlon, which for a sufficiently small inter-dimer distance

outcompetes the dimer hopping, resulting in the blocking of the dimer motion. As a results

dimers block singlons and singlons block in turn dimers. This leads to singlon-gluing of

the inter-dimer cluster, resulting in a significant enhancements of the critical inter-dimer

distance for dimer-dimer clusterization. As a result, the presence of singlons results in a

strong reduction of the critical lattice filling for clusterization-induced localization. Figure

3.4 (b) shows that two dimers at an initial distance of X0 = 15 sites remain tightly bound

due to the singlon-gluing, despite the tiny dimer-dimer interaction V ×G(x) ∼ 0.02J . This

mechanism resembles that discussed, for non-polar gases, in Refs. [94, 95] (recall Sec. 2.5),

and also for polar gases in Ref. [97], in which the interplay between slow and fast particles

(here dimers and singlons) was shown to result in quasi many-body localization. However

the surprisingly strong role of the DDI tail, crucial here, was overlooked in Ref. [97].

A simplified model can be introduced to capture the singlon-gluing effect. Considering
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a singlon placed between two stable dimers, |Dl〉 and |Dl+x〉 . For simplicity, the Brownian-

like motion is ignored, this approximation is valid for V � J . In absence of dimer motion,

the potential experienced by the singlon within the effective box is

U(n) = V [fDS(n, l) + fDS(n, l + x)] ,

with n ∈ [l + 2, l + x− 1] denoting the box regime, and

fDS(n, l) =
1

|n− l|3
+

1

|n− (l + 1)|3

characterizing the effect of the dipolar tail. The states of the dimer-singlon-dimer (DSD)

system are of the form

|ψαl,x〉 = |Dl〉 ⊗ |φαx〉 ⊗ |Dl+x〉.

Where |Dl〉 denotes a dimer placed at sites l and l+ 1, and the states |φα=1,...,x−2
x 〉 are the

singlon eigenstates in the effective box potential, with a corresponding singlon energy εαx .

We perform the Fourier transform

|ψαK,x〉 =
1

Ω

∑
l

eiK(2l+x+1)/2|ψαl,x〉,

with K the center-of-mass quasi-momentum of the dimer-dimer pair. As above in Eq.

(3.2), the analysis is focused onK = 0, and hence the estimation is once more conservative.

Dimer hopping, JD, couples |ψαx 〉 with |ψ
β
x±1〉. The effective Hamiltonian for the system

is hence given by:

HDSD =
∑
x,α

(εαx + V ·G(x)) |ψαx 〉〈ψαx | − JD
∑
x,α,β

î
Cα,βx |ψ

j+1
n′ 〉〈ψ

j
n|+ H.c.

ó
, (3.14)

where G(x) is the dimer-dimer interaction discussed above (Eq. (3.11)), and the coupling

between states of different inter-dimer distance is characterized by the overlappings

Cα,βx =
x−1∑
s=2

φαx(s)
î
φβx(s+ 1) + φβx(s)

ó
,

with φαx(s) the amplitude of the state |φαx〉 in site l + s.

Let the two dimers be initially separated by X0 empty sites, with the singlon in the

middle of them. HDSD provides the time evolution for the dimer-singlon-dimer state.

Similar to the dimer-dimer case, the critical initial separation Xc is defined such that for
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X0 < Xc, one has ∆L <
√
L0 for JDt = 100. We obtain in this way the results of Fig. 3.1

(b), which show that that Xc, which remains proportional to (V/J)2/3, is very significantly

enhanced in the presence of an intermediate singlon.

Singlon-gluing crucially affects the dynamics of even dilute gases for moderate dipoles.

A lattice gas with filling ρ � 1 is formed mainly by singlons, with a small dimer density

ρD ∼ ρ2. Hence, for a sufficiently large V that precludes Brownian motion, singlon-gluing

leads to dimer clustering for ρ & ρc ∼ X
−1/2
c . As in the dimer gas without singlons,

larger clusters of more than two dimers prevent the center-of-mass motion that results

in the long-time entropy growth of Fig. 3.3 (b). Hence even moderate DDI results for

very low densities (for V/J = 50, ρc ∼ 0.2) into dynamical localization via massive dimer

clustering.

It is worth emphasizing that the estimation here is very conservative, since it considered

neither nearest-neighbor bound states with more than two particles nor the formation of

dimers beyond nearest neighbors, which for sufficiently large V/J may become bound and

stable as well. Their presence will result in a stronger localization of the lattice gas. Note

as well, that for lower ρ, the formation of dimer clusters, even if they do not bind all

dimers in the system, already constrains very severely the dynamics. The required |V |/J

values are achievable with current state-of-the-art technology. For 164Dy in an UV lattice

with 180nm spacing and depth of 23 recoil energies, |V |/J ∼ 30, with J/~ ∼ 93s−1.

The dimer-hopping time is 1/JD ' 280ms. Dimer clustering may then be probed in few

seconds, well within experimental lifetimes.

3.4. Self-bound polar lattice droplets

The dynamics of lattice gases may be dramatically impacted even by a much weaker

dipolar interaction than that considered in the discussion above. As shown below, for a

sufficiently dense initial polar lattice gas, ratios V/J already attainable in experiments

may result in the formation of self-bound (and self-pinned) polar lattice droplets.

Let us consider N hard-core bosons in a lattice with L sites, initially with no inter-

site interactions, V = 0. The latter can be accomplished by tuning the orientation of the

dipoles into the magic angle θ = arccos(1/
√

3). We assume that the gas is initially trapped

by a box potential within a region that occupies one half of the overall lattice, Lbox = L/2.

Note, however, that more general confinements, as e.g. harmonic traps do not significantly

modify our conclusions. At t = 0, the box trap is released, and the angle θ is tuned to zero,

such that the inter-site interaction, i.e. V , is switched on. We consider in the following
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initial particle densities 0.4 . ρ0 = N
Lbox
≤ 1. We characterized the dynamical self-bound

character of the lattice gases by means of the self-trapping parameter

M(V/J) =
ρ̄(V/J)−N/L
ρ0 −N/L

, (3.15)

where

ρ̄(V/J) =
1

LT

∫ T

0

∑
j∈box

〈n̂j(V/J, t)〉dt

is the time averaged density within the originally box regime. The time scale T is de-

termined by requiring M → 0 for V/J = 0. Note that M → 0 if the lattice gas is not

self-bound, whereas M → 1 if the original box-trapped gas coincides with the self-bound

solution. We may estimate as a function of ρ0 the critical value Vc/J such that the lattice

droplet remains self-bound, which we fix by requiring (somehow arbitrarily) M > 0.4.

The resulting "phase diagram" is depicted in Fig. 3.5 (a).
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Figure 3.5: (a) Phase diagram of a lattice droplet, where the shaded region corresponds to
the regime with self-bound droplets. The transition line is evaluated (see text) following
the criterion M = 0.4 (triangles), and X = 0 (crosses). The data at ρ0 = 0.44 and
0.4 are obtained with L = 9 and 10 respectively, and the rest is with L = 8. (b) Time
evolution of the density distribution, obtained by t-DMRG simulation [165] of the system
described by Eq. (3.1). A gas is initially confined with ρ = 1 (red triangles) and after
release it is evolved for Jt = 30. A self-bound lattice droplet reveals itself for V/J = 2.5
(blue squares), whereas for V/J = 1 (green circles) the gas expands. We consider open
boundary conditions in both cases.

An alternative analysis of the self-localization of the lattice droplet is provided by

the eigenstate properties. For a sufficiently large V/J , the dynamically available Hilbert

space is strongly reduced (see the discussion on Hilbert space fragmentation later on in

the Thesis). In other words, a given eigenstate just projects on very few Fock states when
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(a) (b)

Figure 3.6: (a) Droplet with a holon initially at the center (red triangles) after Jt = 6 (blue
circles), for V/J = 30. Partial holon evaporation results in particle ejection (left inset).
This ejection is however inefficient, as shown by the particle-hole entropy averaged over the
five central sites (right inset). (b) Initial droplet with ρ = 1 and two singlons outside (red
triangles) after Jt = 55 (blue circles). The shadowed region is that of the droplet. Note
the singlon aggregation at the droplet edge. The results are obtained by means of t-DMRG
simulations of Eq. (3.1) with open boundary conditions.

V → ∞, whereas for small V → 0 the eigenstates are delocalized, they spread over the

whole Fock space with approximately equal amplitude ∼ 1/
√

Ω, with Ω the Hilbert-space

dimension.

To determine whether a given eigenstate is "closer" to a narrow distribution of few

Fock-state components, or to a spread distribution of all Fock states, one can calculate

the deviations

∆0
α =

Ã
1

Ω

∑
f

Å
|〈f |α〉| − 1√

Ω

ã2

,

∆1
α =

√
1

Ω

∑
f

(
|〈f |α〉| − δf,fmaxα

)2
,

where |α〉 is the given eigenstate, f runs over all Fock states, and fmaxα is the Fock-state

that has the largest amplitude on |α〉, i.e., 〈α|fmaxα 〉 = max{|〈α|f1〉|, |〈α|f2〉|, |〈α|f3〉| · · · }.

For the initial ground state gas in the box |Gbox〉 =
∑

f cf |f〉 =
∑

f,α cf 〈α|f〉|α〉, one may

define

X =
∑
f,α

c2
f |〈α|f〉|2(∆0

α −∆1
α). (3.16)

The transition between self-bound and non-self-bound lattice droplets is marked byX = 0.

As shown in Fig. 3.5 (a), the result of this analysis is in very good agreement with the
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the transition obtained from the previous analysis of the self-trapping parameter M .

In contrast to non-polar experiments [64, 159], where stable or partially-stable on-

site bound pairs still allowed for an overall (slowed-down) expansion, in the polar case

there is a critical Vc(ρ) such that the cloud remains self-bound (Fig. 3.5 (a)). These self-

bound lattice droplets present a finite final average ρ′ < 1 (Fig. 3.5 (b)), in other words,

holons (empty sites) remain mobile but confined within a droplet. As a result, lattice

droplets remain superfluid. For ρ = 1, droplets occur already for V/J ' 2.5. For current
166Er experiments [47], with a lattice spacing of 266nm and a typical lattice depth of 20

recoil energies, V/J ' 2.7, with a hopping time 1/J = 6.5ms. Self-bound lattice droplets

are hence already within reach of current on-going experiments.

For large-enough V , holons remain confined in the droplet due to the potential exerted

by the droplet boundaries via the dipolar tail. For V/J . 8 (Fig. 3.6 (a)), this mechanism

is insufficient, since only nearest-neighbor terms are relevant. A holon, initially inside a

droplet with ρ = 1, expands by resonant hops up to the edges. At that point, the last

particle may escape without breaking any nearest-neighbor bond (left inset of Fig. 3.6 (a)).

This holon evaporation becomes drastically inefficient for growing droplet sizes, since the

holon quickly spreads uniformly within the droplet (right inset of Fig. 3.6(a)). Therefore,

holons remain confined within the droplet. The converse also occurs: a singlon may stick

to the droplet edge, pushing a holon inside (Fig. 3.6(b)). Mobile holons inside the droplet

may be revealed using quantum gas microscopy.

3.5. Conclusions

Polar gases in 1D lattices present a severely constrained dynamics. Dynamically-bound

dimers dramatically enhance the role of the dipolar tail, leading to dynamical localization

in absence of disorder via dimer clustering even for low densities and moderate dipole

moments. Moreover, polar gases may form, even for weak dipoles, self-bound superfluid

lattice droplets, and will leave inherent difficulties in particle-hole entropy removal in

polar lattice gases. Results in this chapter are directly relevant for current lanthanide

experiments and future experiments with polar molecules, and may be easily extrapolated

to other power-law interactions, V/|i− j|s.

Generalization to higher dimensions is also directly available. Whereas singlon-gluing

just occurs in 1D, since it requires singlon confinement between dimers, clusterization

due to dimer-dimer DDI and self-bound lattice droplets occur also in higher-dimensions.

For square lattices, Xc is only slightly modified compared to 1D. The critical lattice
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filling for dimer localization via clustering scales however as ρc ∼ 1/Xc, and hence for

moderate V/J ∼ 30, ρc . 0.1. Furthermore, in contrast to 1D, when removing the

overall confinement, but keeping the lattice on, singlons evaporate leaving an immobile

dimer cluster behind despite the extremely dilute dimer density ρD ∼ ρ2
c . This must be

compared to clusters of non-polar repulsive bond pairs resulting from quantum distillation

[164] which occur at a unit filling of pairs. We should finally mention that dimer motion

in other 2D lattice geometries, or in square lattice under soft-core conditions, presents

additional intriguing properties that will be discussed separately in Chapter 6.
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Chapter 4

Hilbert-space fragmentation and lo-

calization in one-dimensional nearest-

neighbor models

As discussed in Chapter 2, ergodicity may be broken in the presence of quenched

disorder even in the presence of interactions, leading to the phenomenon of many-body

localization. In this chapter, we discuss many-body localization in the strongly-interacting

nearest-neighbor model, leaning heavily on Refs. [166] and Ref. [167]. This discussion

sets the proper frame for the study of localization in polar lattice gases discussed in the

next chapter.

An important issue of interest for this chapter, and especially for the next one, concerns

the currently very active question of whether phenomenology similar to that of many-

body localization may appear in the absence of disorder (recall Sec. 2.5). Disorder-free

localization occurs naturally due to dynamical constraints [92, 93]. These constraints,

which result in a finite number of conservation laws, induce the fragmentation of the

Hilbert space into disconnected subspaces that severely limits the dynamics [167, 168,

169, 170, 171, 172, 173]. Hilbert-space fragmentation is also closely connected to the

phenomenon of quantum scars [174].

Ultra-cold gases in optical lattices or reconfigurable tweezer arrays provide a well-

controlled scenario for the study of many-body dynamics, including many-body local-

ization [68, 69], and quantum scars [175]. Recent experiments on tilted Fermi-Hubbard

chains [105] and in a trapped-ion quantum simulator [107] have provided evidence of non-

ergodic behavior in absence of disorder, unveiling the potential of ultra-cold gases for the

51
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study of disorder-free many-body localization and Hilbert-space fragmentation. It is hence

particularly relevant to find other promising ultra-cold scenarios for the study of fragmen-

tation due to interaction-induced constraints. As shown in the next chapter, polar lattice

gases are a natural candidate.

As discussed in this chapter, models with only nearest-neighbor interactions may

present Hilbert-space fragmentation, but they do not present in general disorder-free lo-

calization, due to the possibility of resonant motion even for infinitely large interactions.

In contrast, as shown in the next chapter, such a resonant motion is not possible in polar

lattice gases.

4.1. The nearest-neighbor model

In this chapter we focus on the nearest-neighbor extended Hubbard model for hard-core

bosons, which, as already mentioned in previous chapters, is equivalent (via a Holstein-

Primakoff transformation) to the XXZ spin model (Eq. 2.12). Imposing random on-site

energies, the Hamiltonian of the model acquires the form:

H = −J
∑
j

Ä
â†j+1âj +H.c.

ä
+ V

∑
j

n̂j+1n̂j +W
∑
j

hjn̂j , (4.1)

whereW denotes the disorder strength, hj are real random numbers uniformly distributed

in the domain [−1, 1], and as in previous chapters V denotes the inter-site nearest-neighbor

interaction, and J the hopping rate. We pay particular attention below to the strongly-

interacting regime, V � J .

4.2. Interaction-induced localization

In this section we briefly review the results of Ref. [166], where the localization proper-

ties and dynamics of the nearest-neighbor model were first discussed in detail as a function

of the disorder W and the nearest-neighbor interactions V . In that work, the localiza-

tion properties were determined by considering the level-spacing statistics (Sec. 2.3) of

the whole spectrum, performing an infinite temperature analysis. The phase boundary

may be determined performing finite-size scaling, looking for a fixed point independent

of the system size. The determination of the actual phase boundary is, however, typi-

cally compromised (as discussed in Ref. [166]) due to the very limited available system

sizes, and the consequent uncertainty associated to the extrapolation procedure into the
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Figure 4.1: (Top left) Approximate dynamical phase diagram of the disordered nearest-
neighbor model obtained at infinite temperature as a function of the disorder strength W
and the intersite interaction V (here J = 1). The phase diagram was evaluated using the
level statistics (see Sec. 2.3). (Top right) Determination of the phase diagram based on
the mean two-level-ratio (Eq. (2.26)) of two system sizes, L = 12 and L = 14. The phase
boundary is determined from the crossing of the curves. (Bottom left) Contour plot of
the exponent α (see text). (Bottom right) Determination of α(t) from the density-density
correlation (given by the slope of the dashed lines). The curves are calculated for V = 2
andW = 1.2, 3, 5, 7 (from top to bottom). L is 24 for the top and 14 for the rest. Figures
from Ref. [166].

thermodynamic limit.

Figure 4.1 (upper panel) shows the resulting phase diagram obtained in Ref. [166].

Note the re-entrant character of the MBL phase. This re-entrance was overlooked in

previous studies, which were interested either in a single constant interaction cut through
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the diagram [142, 143] or in the weakly-interacting regime [176], even though a suggestion

that re-entrance could occur in MBL systems was put forward in Ref. [177]. The re-

entrant behavior indicates that sufficiently strong interactions can enhance rather than

destroy localization.

In Ref. [166] the authors also studied the dynamics across the phase diagram. For

this purpose they evaluated after exciting the system at one boundary (using open bound-

ary conditions) the time-dependent density-density correlation at infinite temperature,

Cij(t) = 1
ZTr[δn̂i(t)δn̂j(0)], where δn̂i = n̂i − 1/2, and Z is the dimension of the overall

Hilbert space. The spreading of correlations is characterized by

σ2(t) =

L−1∑
n=0

n2 [Cn0(t)− Cn0(0)] , (4.2)

which acts analogously the mean square displacement of a diffusing particle. The nature

of the transport was determined from the dynamical exponent,

α(t) =
d lnσ2(t)

d ln t
. (4.3)

Note that α(t→∞) = 2 for ballistic transport and α(t→∞) = 1 for diffusive transport.

Figure 4.1 (lower panel) shows the asymptotic value of α for different points in the

(W,V ) plane. For the many-body localization transition scenario, the ergodic phase is

advocated to be diffusive, i.e., α = 1, while the non-ergodic phase is insulating and should

correspond to α = 0 [88]. However, the dynamical phase diagram of Fig. 4.1 (lower panel)

has a vanishingly small part with α close to one. This region corresponds to the weak

localization regime, where the non-interacting localization length is larger than the size

of the simulated system. It seems that transport is sub-diffusive throughout the entire

phase diagram, and α varies continuously across the ergodic-nonergodic transition. One

should note, however, that the methodology is limited by the rather small system sizes and

the finite accessible times, and hence there is a lack of a reliable asymptotic α(t → ∞).

Interestingly, the contours of equal α exhibit a similar re-entrant behavior as that of the

phase diagram obtained from the level statistics. By studying larger systems using t-

DMRG, the re-entrant behavior is found to be not influenced by the system size, and it is

thus expected to survive to the thermodynamic limit.
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4.3. Hilbert-space fragmentation

The re-entrant shape of the dynamical phase diagram of Fig. 4.1 (top left panel) could

leave the wrong impression that for large V many-body localization extends all the way to

zero disorder, in other words, disorder-free localization is possible in the nearest-neighbor

model. This is however not the case, as we discuss in detail in this section and in the next

ones, where we build heavily on previous literature, and in particular on Ref. [167]. We

first consider the case of clean lattices, i.e., W = 0. For V/J � 1, energy conservation

demands the conservation of the number of nearest-neighbor links. The Hilbert space then

fragments into unconnected blocks of states. In the following, we study this fragmentation

in detail.

Considering open boundary conditions, the eigenstates of the Hamiltonian of Eq. (4.1)

present a defined parity due to the reflection symmetry. We obtain the eigenenergies by

exact diagonalization in the even or odd parity sector (both sectors provide equal results).

The density of states (DOS) around a given energy Eα is given by

DOS(εα) =

∑
β e
− 1

2

(
εβ−εα
σ

)2

∑
β e
− 1

2

Ä
β/Ω−εα

σ

ä2 , (4.4)

where εα = (Eα −Emin)/(Emax −Emin) is the normalized energy, with Emax (Emin) the

maximal (minimal) energy, and σ = ∆E/(Emax − Emin) is a small value running from

10/Ω to 100/Ω, with Ω the dimension of Hilbert space. Figure 4.2 (a) shows, for small

V , that the DOS is a smooth function of the energy eigenvalues. In contrast, Fig. 4.2 (b)

shows that for a sufficiently large V the DOS splits into N separate fragments.

The number of nearest-neighbor links is given by the operator

l̂ =
L−1∑
j=1

n̂jn̂j+1, (4.5)

whereas the number of singlons is provided by

N̂s =

L−1∑
j=2

(1− n̂j−1) n̂j (1− n̂j+1)︸ ︷︷ ︸
◦•◦

+

L−1∑
j=2

n̂j−1 (1− n̂j) n̂j+1︸ ︷︷ ︸
•◦•

+ n̂1 (1− n̂2) (1− n̂3)︸ ︷︷ ︸
|•◦◦

+ n̂L (1− n̂L−1) (1− n̂L−2)︸ ︷︷ ︸
◦◦•|

.

(4.6)

The first term of Eq. (4.6) describes ordinary un-bound singlons. The second term is
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(a) (b)

(d)(c)

Figure 4.2: (a) Density of states (DOS) (grey solid curves) for the eigenspectrum of
Hamiltonian Eq. (4.1) with W = 0, N/L = 7/14, and a small V/J = 0.5. The data is
obtained from the odd parity states. In the figure we depict as well 〈l̂〉 (green squares),
and 〈N̂s〉 (orange crosses). (b) Same as (a) but with a larger V/J = 16. (c) Same as (a)
but for N/L = 5/15, here the data is obtained from the even parity states. (d) Same as
(c) but with V/J = 16.

related to the fact that a singlon can freely pass through a domain of particle chain by

injecting a single hole into the it (see Fig. 4.5 (a) below in this chapter), and hence a

singlon is either an un-bound particle or an un-bound hole. Double counting among the

first and the second term should be prevented. The last two terms exist for open boundary

conditions. Figures 4.2 (a) and (c) show that when the DOS displays a smooth function,

the values of 〈l̂〉 and 〈N̂s〉 also spread continuously in the middle of the spectrum. In

contrast, as presented in Figs. 4.2 (b) and (d), when the DOS is fragmented by large-

enough interactions, 〈l̂〉 acquires only integer values 0 < l < N − 1. Moreover, within

a fragment with a given l, there are separated sub-fragments characterized by a fixed
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integer number of singlons Nmin
s ≤ 〈Ns〉 ≤ Nmax

s , with Nmax
s = N − l − ceil (l/N),

and Nmin
s = max{0, N − 2l}. Note that in order to better visualize the Hilbert space

fragmentation, we rearrange the eigenstates |α〉 according to a growing value of xα ≡

(N + 1)(N − 1− 〈l̂〉α) + 〈N̂s〉α.

(b)(a)

f

Figure 4.3: Plot of the amplitude |ψα(f)| of the eigenstates |α〉. in the Fock basis |f〉. The
results correspond to the eigenstates of Hamiltonian (4.1) withW = 0, V/J = 1/2 (a), and
V/J = 16 (b). The data refers to the even-parity states with filling factor N/L = 6/12.
Different filling and parity do not change the box-diagonal nature of the structure when
V/J is sufficiently large.

The fragmentation becomes immediately apparent in Fig. 4.3. For a given eigenstate

|ψα〉 =
∑

f ψα(f)|f〉, with |f〉 the Fock-state basis, we depict |ψα(f)|. Arranging the

eigenstates in the way mentioned above, one can immediately observe the emergence of a

box-diagonal structure for large-enough V/J , and how this fragmentation is absent when

V/J is small. This block-like structure has important consequences for the dynamics, it

means that a given initial Fock state can only connect with a limited number of other

Fock states, for V/J � 1, this is true at infinite time, since it is a property of eigenstates.

Particle motion is hence severely constrained by the conservation of both 〈l̂〉 and 〈N̂s〉. As

shown in later sections, resonant spatial delocalization remains however in general possible

in the nearest-neighbor model. As discussed in the next chapter, the situation is markedly

different in polar lattice gases.
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4.4. Eigenstate entanglement entropy

In this section we discuss the eigenstate entanglement entropy, which provides a

good quantitative characterization of the Hilbert-space fragmentation resulting from large-

enough nearest-neighbor interactions. Splitting the system into two sub-systems A and

B, we introduce the reduced density matrix ρA of sub-system A. In the Schmidt basis

|Aa〉 ⊗ |Bb〉 ≡ |a, b〉,

ρA = TrB|Ψ〉〈Ψ|

=
∑
a,a′

∑
b

〈a, b|Ψ〉〈Ψ|a′, b〉 · |a〉〈a′|.
(4.7)

We may then define the von Neumann entropy (entanglement entropy) as

SvN = −
∑
a

%aln %a (4.8)

with {%a} being the eigenvalues of ρA. Since
∑

b〈a, b|Ψ〉〈Ψ|a′, b〉 in Eq. (4.7) is only non-

zero when the sub-basis |a〉 and |a′〉 have the same number of particles, in the Fock basis

representation, ρA can be written as the sum of blocks with a defined particle number,

ρA = ρAn=0 ⊕ ρAn=1 ⊕ · · · ⊕ ρAn=N . (4.9)

Note that these blocks are inherent to any reduced density matrix of any number-conserving

model, and have nothing to do with the interaction-induced Hilbert-space fragmentation

discussed in this chapter. Equation (4.8) can then be written as

SvN = −
N∑
n=0

∑
a

%na ln %
n
a . (4.10)

Defining pn =
∑

a %
n
a , and λna = %na/pn, such that %na = pn λ

n
a and

∑
a λ

n
a = 1, Eq. (4.10)

becomes

SvN = −
N∑
n=0

pnln pn︸ ︷︷ ︸
Sn

−
N∑
n=0

pn
∑
a

λna lnλ
n
a︸ ︷︷ ︸

Sc

. (4.11)

The first term Sn is the number entropy resulting from the superposition of states with

different particle numbers in A, and is exactly correlated with B due to the conserved

total particle number. As a consequence of the conservation of the total particle number,

Sn is non-zero in the presence of any finite tunneling between sub-systems A and B. The
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(a) (b)

(c) (d)

Figure 4.4: (a) Number entropy, Sn, and configurational entropy, Sc, as a function of
V for Eq. (4.1) with W = 0 and N/L = 7/14. The data are averaged over selected
eigenstates that have 〈l̂〉 → N − 1 and 〈N̂s〉 → 0 when V → ∞. (b) Similar to (a) but
with N/L = 8/16 and the eigenstates are selected by 〈l̂〉 → 3, 〈N̂s〉 → 3. (c) Similar to
(a) but the eigenstates are selected by 〈l̂〉 → 0, 〈N̂s〉 → N . (d) Similar to (c) but with
N/L = 6/18.

second term Sc is the configurational entropy resulting from the superposition of states

with different configurations of n particles in sub-system A. This entropy results from

correlations between different configurations in sub-systems A and B.

In our numerics, we take A (B) to be the left (right) half of the lattice. The values

of Sn and Sc are calculated and averaged in a block, characterized by those eigenstates in

which 〈l̂〉 approaches to a given l, and 〈N̂s〉 to a given Ns when V/J →∞.

Figure 4.4 (a) shows the averaged Sn and Sc for states with l = N − 1 and Ns = 0.

When V/J increases, the eigenstate approaches a stable N -string distribution (a chain in

which all particles occupied consecutive sites), where the configuration becomes fixed, and

thus Sc → 0. Note that for open-boundary conditions, the reflection symmetry lets any
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eigenstate spreads at least over two symmetric Fock states. As a result, Sn approaches

ln 2 for sufficiently large V/J .

The case with l = 3 and Ns = 3 is depicted in Fig. 4.4 (b). Due to the larger number of

possible states, the configurational entropy is significantly larger, with Sc > Sn. The von

Neumann entropy (Sn+Sc) saturates at a value ∼ 2.5. An estimation obtained considering

the eigenstates of a toy model consisting of Ns well separated particles in L− 2 sites gives

a slightly lower value (dashed line).

Figure 4.4 (c) and (d) show the case of l = 0 and Ns = N . For large V/J � 1, these

eigenstates approach states where no particle has nearest neighbors, i.e., a singlon gas.

For a half-filled system (Fig. 4.4 (c)), Sc → 0 since the configuration reduces to a fixed

density wave state, i.e., | · · · • ◦ • ◦ · · · 〉. However, for open boundary conditions, dynamics

results from the motion of a holon dimer (two neighboring empty sites), which acts as an

effective particle that may move from right to left, even for V/J → ∞, following a series

of resonant hops:

| • ◦ • ◦ · · · • ◦ • ◦〉 → | • ◦ • ◦ · · · • ◦ ◦ •〉 → · · ·

· · · → | • ◦ ◦ • · · · ◦ • ◦ •〉 → | ◦ • ◦ • · · · ◦ • ◦ •〉.

Since such an effective particle is either in the left or the right half of the system, the above-

mentioned motion only contributes to the number entropy. The corresponding eigenstates

are the Bloch states |αeff〉 of the effective particle. By constructing ρAeff = TrB|αeff〉〈αeff|,

one obtains the entanglement entropy Seff, such that when V/J increases Sn approaches

Seff, as depicted in Fig. 4.4 (c). The situation changes at a lower filling, as depicted

for a 1/3 filling in Fig. 4.4 (d). The larger number of empty sites significantly increases

the allowed configurations and breaks the effective particle picture. Correlations among

the larger number of many-body states increases both Sn and Sc. Interestingly, while

the overall entanglement entropy decreases, the Sc slightly increases and exceeds Sn for

V/J →∞.

In general, Figs. 4.4 show that the eigenstate entanglement entropy saturates when

V/J increases due to the emerging conservation of both l and Ns.

4.5. Many-body localization in the strong coupling limit

As previously mentioned, in the nearest-neighbor model, Hilbert space fragmentation

does not lead to disorder-free many-body localization for general states. In order to clarify
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this crucial point, we employ the discussion of Ref. [167], which analyzed fragmentation

and localization in the nearest-neighbor model in the presence of on-site disorder.

4.5.1. Infinitely large interaction

As in Ref. [167], we focus at this point on the limit V/J → ∞. As previously

discussed, see Fig. 4.2, in the strongly-interacting regime the density of states splits into

bands composed by states with an equal number of nearest-neighbor links (Eq. (4.5)).

Projecting the Hamiltonian (4.1) into each one of these bands we obtain the following

effective Hamiltonian to first order in perturbation theory,

H∞ = −J
∑
j

Pj
Ä
â†j+1âj +H.c.

ä
Pj +W

∑
j

hjn̂j , (4.12)

with the local projector Pj = I − (n̂j+2 − n̂j−1)2, and P2
j = Pj . The number of nearest-

neighbor links, N••, is conserved, i.e., [H∞, N••] = 0, by construction.

The conservation of N•• strongly constraints the dynamics, since a particle at site j

can hop only when n̂j+2 = n̂j−1. Hence, whereas singlons are free to move, a string of

consecutive neighboring particles remains in principle stuck due to the conservation of the

number of nearest-neighbor links. However, as illustrated in Fig. 4.5 (upper left), if a

singlon approaches a string, it can assist the resonant hop of a string particle, triggering

the swap of the positions of the singlon and the string by means of a series of resonant

hops. After the swap, the string effectively shifts as a whole by two sites in the opposite

direction to the movement of the singlon. This process, which is fully resonant even for

V/J →∞, is basically identical to the Brownian-like motion discussed in Ch. 3.

4.5.2. The theory of movers

We review at this point an useful model introduced in Ref. [178], which permits some

crucial insights in the dynamics of the nearest-neighbor model with strong interactions.

Considering periodic boundary conditions, H∞ can be mapped to a spin-1/2 model on

the bonds. Two consecutive filled (empty) sites may be identified with a spin up and spin

down on the middle bond, i.e.,

| • •〉 7→ | ↑〉

| ◦ ◦〉 7→ | ↓〉,
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Figure 4.5: (Top left) Dynamical constraint and idea of mover. For large V/J , a string
of consecutive neighboring particles cannot split on its own as the number of bonds is
conserved. The motion of the string is however possible if a second particle assists the
hop, such that N•• stays constant. Particles at the edge of a domain can "pass through"
via the very same Brownian-like mechanism discussed in Ch. 3. (Top right) The mean
two-level-ratio, r, as a function ofW for several system sizes L ∈ {12, 16, 20, 24}. The inset
shows the finite size scaling, depicting r as a function of the re-scaled variable (W−Wc)L

µ

with Wc = 2 and µ = 1. Note that J = 1/2 using the convention of Ref. [167], and thus
the critical disorder isWc/J = 4 in our convention. (Lower left) Dynamical exponent α(t)
at W = 0.75, with the enlarging plateau close to the diffusion, α(t) = 1, when the system
size increases. (Lower right) α(t) for W = 1, 1.5 for a fixed system size L = 32. In these
cases α does not form a plateau at large time; instead it increases and might approach
α = 1 (dashed line) in the thermodynamic limit. Figures from Ref. [167].

and a mobile particle is mapped to a empty bond, following Ref. [167] we call it a "mover",

| ◦ •〉 7→ |0〉.



4.5. MANY-BODY LOCALIZATION IN THE STRONG COUPLING LIMIT 63

The number of movers, N0, the number of spin up and down, N↑ and N↓, and the number

of spin flips (i.e., of "domain walls"), N↑↓, are all constants of motion. Furthermore, for

half-filled lattices, i.e., N = L/2, the number of spins up is always equal to the number of

spins down, and hence N↑ +N↓ = 2N↑ = N .

The Fock state

| • • ◦ ◦ • • ◦ ◦ • • ◦ ◦〉

is mapped to the Néel state in the spin configuration

| ↑↓↑↓↑↓〉,

which is frozen and characterized by the absence of movers. Indeed, movers are the

only delocalized degrees of freedom moving around the effective spin configuration. For

example, the Fock state

| • • ◦ ◦ • • • ◦ ◦ • ◦ ◦〉

is mapped to

| ↑↓↑↑↓ 0 ↓〉.

The dynamics is given by the mover passing through the spin configuration,

| ↑↓↑↑↓ 0 ↓〉 → | ↑↓↑↑ 0 ↓↓〉.

The configuration remains fixed during the dynamics of the movers up to cyclic rotations

and thus the number of flips in the spin configuration is a constant of motion. Finally,

note that an additional rule is introduced to guarantee the conservation of the number of

movers [167]. Once a mover approaches from the left a domain wall constituted by frozen

particles, e.g.,

| · · · ◦ • ◦ ◦ • • ◦ ◦ · · · 〉 → | · · · ◦ ◦ • ◦ • • ◦ ◦ · · · 〉,

a new mover is generated by definition

| · · ·0 ↓↑ · · · 〉 → | · · · ↓ 00 ↑ · · · 〉.

This should be re-normalized as a single mover state | · · · ↓ 0 ↑ · · · 〉.

The idea of mover is crucial, since it permits to easily grasp how resonant motion

is possible in the nearest-neighbor model even if V/J tends to infinity, hence precluding

disorder-free many-body localization for general states even in the strongly interacting
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regime. Note that we insist about the idea of general states with the presence of movers,

since specific states, like

| • • ◦ ◦ • • ◦ ◦ • • ◦ ◦〉,

will localize in the nearest-neighbor model when V/J →∞.

4.5.3. Finite critical disorder for many-body localization

Reference [167] evaluated by means of the level statistics the MBL properties of H∞,

focusing for a half-filled lattice on the Hilbert-space fragment with N•• = L/4 and N0 =

N•• − 1, which is the block with the largest amount of movers in the largest band for

lattices at half-filling. By a finite-size analysis of the two-level ratio (see Sec. 2.3), they

determined for those states a finite critical disorder for MBL, Wc/J ∼ 4, see Fig. 4.5

(upper right). Note that the hopping amplitude considered in that reference as unit is

J/2, thus with our convention a factor of 2 should be multiplied to the result in the figure

of that paper.

For the nearest-neighbor model, and due to the mover idea mentioned above, the finite

critical disorder becomes eventually independent of V for a sufficiently large V/J . As V →

∞ the spin configuration (many-particle domains) is strictly maintained, while movers may

pass through the configuration. Therefore for an arbitrary initial state, once the density of

movers is finite, mover motion leads to resonant delocalization for an arbitrarily large V .

Precisely, a mover shifts clusters of any length by two sites every time a singlon passes by

(see Fig. 4.5 (upper left)). Since the selected fragment mentioned above is the most mobile

one in the largest band, a finite critical disorder can be consider to be a typical property

for general cases with finite density of movers. However, there are special states, which are

particularly prone to localization. Initial states with no movers are of course intrinsically

frozen, with or without disorder, when V/J → ∞. Moreover, those with a single mover

are characterized by Anderson localization (in spite of the somewhat correlated effective

disorder), and hence the critical W goes to zero for those states [167].

4.5.4. Dynamical exponent

The dynamical exponent, Eq. (4.3), was also calculated in Ref. [167] within the same

fragment. To examine the diffusion nature of the ergodic phase, small disorders (W < Wc)

were considered. Figure 4.5 (lower left) shows α(t) for a disorder W = 0.75 and various

system sizes L. At short times, α reaches 2, meaning that the dynamics is ballistic due
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to universal quantum fluctuations. At intermediate times, α develops a plateau close to

the diffusive value 1. The plateau enlarges with increasing system size. This may indicate

that in the thermodynamic limit the system is probably diffusive. Figure 4.5 (lower right)

shows α(t) for L = 32 and variousW , again, after the ballistic propagation at short times,

α(t) is always bounded by the diffusive value 1, but as time increases, it tends to converge

to diffusion. The authors further concluded that the sub-diffusive dynamics found in Ref.

[166] might be only a transient behavior.

4.6. Many-body localization in the nearest neighbor model

To study many-body localization for a wide range of V , the full Hamiltonian, Eq.

(4.1), should be considered instead of the effective one of Eq. (4.12). Although level

statistics is commonly employed, the results are Poissonian (integrable) in both fully

delocalized (W → 0) and fully localized (W � J) regimes. Moreover, the statistics is

largely handicapped due to the Hilbert space fragmentation. Note that in the presence

of disorder, W > 0, localization results in a disorder-induced fragmentation on top of

the Hilbert-space blocks of the clean (W = 0) nearest-neighbor model. Therefore, we

employ in the following the inverse participation ratio to characterize this disorder-induced

fragmentation, and hence localization. This analysis will permit us a better comparison

with the interaction-induced shattering discussed in the next chapter for the case of a

polar lattice gas.

From exact diagonalization we obtain the many-body eigenstates |α〉 =
∑

f 〈f |α〉|f〉.

However, in order to relate more directly with experiments, in which specific Fock states

can be realized using quantum microscope techniques, we rather express the Fock states

in the basis of eigenstates |f〉 =
∑

α〈α|f〉|α〉, and calculate the survival probability at a

given time

Pf (t) =
∑
α,β

|〈α|f〉|2|〈β|f〉|2 × ei(ωα−ωβ)t, (4.13)

where |α〉 and |β〉 are eigenstates. For asymptotically long times, the survival probability

approaches Pf (t→∞) = IPRf , with

IPRf ≡
∑
α

|〈f |α〉|4, (4.14)

the inverse participation ratio of the Fock state |f〉 in the eigenstate basis. We will employ

below IPRf as our observable for the study of fragmentation and localization.
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Figure 4.6: (a)
√

IPRf obtained from Eq. (4.1), with N/L = 7/14, and W/J = 0.25.
The Fock states |f〉 are ordered according to l and Ns. For large V/J , the fragments with
Ns = 0 and with the lowest-IPRf are depicted using gray and green shades, respectively.
(b) Same as (a) but with N/L = 4/16. Open boundary conditions are taken in all cases.

In Fig. 4.6 we depict IPRf for all Fock states for N/L = 7/14 and N/L = 4/16 for a

weak disorder W/J = 0.25. We see clearly that the different fragments are characterized

by a relatively narrow window of values of IPRf . In the absence of singlons, Ns = 0, a

large-enough V significantly increases the IPRf due to the very poor mobility of strings

of consecutive neighboring particles. In contrast, the dynamics in fragments with Ns 6= 0

results for sufficiently large V/J from the mover idea discussed in Sec. 4.5.2. The mobility,

and eventual delocalization-to-localization transition, in those fragments only depends on

the singlon density and the disorder strength.

In order to analyze the disorder-induced localization, we compare for a given Fock state

|f〉 the inverse participation ratio IPRf with the effective Hilbert space dimension, Λf ,

relevant for |f〉 in the clean nearest-neighbor model. Strong localization is characterized

by IPRf ∼ O(1), while a delocalized state presents IPRf ∼ O(Λ−1
f ). For large-enough

V/J > 10, the clean nearest-neighbor model fragments into separate Hilbert-space blocks

with fixed l and Ns, and Λf is then given by the fragment size. For 4 . V/J . 10,

fragments with fixed number of nearest-neighbor links, l, start to develop, but the sub-

structures of Ns are not yet fully formed, we hence choose Λf as the size of the blocks

with a given l. For V/J . 4, no fragmentation occurs in the clean model, and hence we

choose Λf as the dimension of the whole Hilbert space. We analyze the disorder-induced

(and in the next chapter interaction-induced) fragmentation of the blocks of the clean
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(a) (b)
J

Figure 4.7: Localization in the nearest-neighbor model. D̄max
f as a function of V/J and

W/J for N/L = 8/16 (a), and N/L = 5/20 (b). Blue regions are parameter regimes where
MBL is expected. Note both the re-entrant shape at low V/J , and the presence of a finite
critical Wc for MBL even for V →∞. The results are obtained after averaging over 1000
disorder samples. Open boundary conditions are taken in all cases.

nearest-neighbor model by introducing the fractal dimension [179, 180],

Df = − ln(IPRf )/ ln(Λf ), (4.15)

such that Df → 0 implies localization and Df → O(1) delocalization.

Localization as a function of disorder vary from block to block (and even within the

same block [167]). For a given V one determines for each fragment the average D̄f , and

finds the fragment with the largest fractal dimension D̄max
f (green areas in Fig 4.6). For

low filling (ρ < 1/2), D̄max
f naturally corresponds to the fragment with l = 0. Note that

when D̄max
f ∼ 0 the whole spectrum localizes. Figure 4.7 shows D̄max

f for a half-filled

and a quarter-filled nearest-neighbor model. Note that the abrupt change at V/J ' 10

for ρ = 1/2 is due to the reduction of the size Λf of the fragment with maximal D̄f .

For ρ = 1/4 this does not happen because the fragment of maximal D̄f is always the

l = 0 fragment that does not change its size. For V → 0, the system undergoes Anderson

localization at vanishingly small disorder [137, 181].

For growing V/J , the region of delocalized states grows up to a maximum and then
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decreases due to the reduced cluster mobility, resulting in a re-entrant shape, in good

agreement with the results of Ref. [166], discussed in Sec. 4.2. However, disorder-induced

fragmentation of the nearesr-neighbor blocks does require a finite disorder strength even

at V = ∞, due to the in-block resonant motion discussed in Sec. 4.5.2. Our results

are in good agreement with the study based on level statistics [167], more details on the

localization transition are provided in Appendix B.

4.7. Conclusions

In this chapter we have discussed the case of disordered hard-core extended Hubbard

models with only nearest-neighbor interactions. In the nearest-neighbor model, for large-

enough interactions the conservation of the number of nearest-neighbor links and singlons

(movers) results in Hilbert-space fragmentation, which we have studied by monitoring

the amplitudes of the eigenstates in the basis of Fock states. However, Hilbert-space

fragmentation does not lead to disorder-free localization or even quasi-localization for

general eigenstates. General eigenstates with a finite density of singlons are characterized

by resonant delocalization even for infinitely large interactions.

We have presented results based on the analysis of the inverse participation ratio of

Fock states, which allow us to study the localization-induced fragmentation of the Hilbert-

space blocks of the clean nearest-neighbor model. The results are in good agreement with

previous results based on spectral properties. In particular, these results confirm that

for the nearest-neighbor model there is always a critical disorder for localization, even for

infinitely large V/J . The situation is radically different in polar lattice gases, as discussed

in the next chapter.



Chapter 5

Hilbert-space shattering and disorder-

free localization in polar lattice gases

This Chapter is devoted to the study of Hilbert-space fragmentation and localization

in polar lattice gases. We discuss in detail the particularly relevant role played by the

1/r3 tail of the dipole-dipole interactions, which for growing dipole strengths induces not

only the conservation of the number of nearest-neighbor links (as shown in the previous

chapter) but also additional dynamical constraints.

Our study of the inverse participation ratio of Fock states as a function of disorder and

dipole strength, shows that for half-filled lattices it suffices one further emerging conser-

vation law, that of the occupied next-to-nearest neighbor bonds, to induce the shattering

of the Hilbert-space blocks of the nearest-neighbor model. Crucially, in contrast to the

nearest-neighbor model, this strong fragmentation leads to a significant slow-down of the

lattice dynamics, and eventually to disorder-free quasi-localization. The latter occurs

because in contrast to the nearest-neighbor model, where motion within a typical Hilbert-

space fragment (with a finite density of movers, see Sec. 4.5.2) is resonant, in polar lattice

gases the in-block motion is typically non-resonant. This leads to a dramatically slower,

quasi-localized, dynamics, since eventual delocalization in a given Hilbert-space block can

just occur in high-order in perturbation theory, as a result of virtual excursions between

different Hilbert-space blocks.

We discuss at the end of this chapter the quasi-localization and the eventual delo-

calization, showing that the latter occurs in a time scale that grows exponentially with

the ratio V/J and with the system size. Furthermore, we show that an vanishingly small

disorder is able to annihilate the high-order processes, and the eventual delocalization as

69
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well. The results discussed in this chapter show that disorder-free localization results for

a critical dipole strength within reach of future experiments in polar lattice gases.

The results of this Chapter (together with a part of the results of the previous chapter)

have been reported in Ref. [182].

5.1. Polar lattice gases

We consider in the following hard-core dipolar bosons in one-dimensional optical lat-

tices, whose physics is governed by the disordered extended Bose-Hubbard model model:

H = −J
∑
j

Ä
â†j+1âj +H.c.

ä
+
V

2

∑
i 6=j

1

|i− j|3
n̂in̂j +W

∑
j

hjn̂j , (5.1)

where we follow the same notation as in previous chapters. Whereas for small V/J this

model may be approximated by the nearest-neighbor model discussed in Ch. 4, the 1/r3

tail of the dipolar interaction cannot be neglected when V/J grows, and indeed, as shown

below, the dipolar tail radically changes qualitatively, and not only quantitatively, the dy-

namical properties of polar lattice gases. We have seen already in Ch. 3 that the dipolar

tail may have surprisingly strong effects even for dilute gases due to the clusterization of

nearest-neighbor dimers and the formation of self-bound lattice droplets. Here we go be-

yond that analysis and discuss more general states in the frame based on the Hilbert-space

fragmentation, we study in detail the interplay between disorder and dipolar interactions,

and show that fragmentation in polar lattice gases is linked to a strong slow-down of the

dynamics and eventually to disorder-free localization.

5.2. Hilbert-space shattering

In this section we study the further fragmentation of the blocks of the clean nearest-

neighbor model. In contrast to the previous chapter, where further fragmentation of those

blocks resulted only from disorder, in a polar gas the tail 1/r3 induces an additional frag-

mentation, and indeed the shattering, of the nearest-neighbor blocks even in the absence

of disorder.

5.2.1. Clean polar lattice gases

We start with the interaction-induced Hilbert-space fragmentation in absence of dis-

order when V/J increases, the analysis here is similar as that introduced in Sec. 4.3.
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(a) (b)
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Figure 5.1: (a) Hilbert-space fragmentation in the nearest-neighbor model. Plot of the
amplitude |ψfα| of the eigenstates |ψα〉 in the Fock basis |f〉. The results correspond to the
eigenstates of the nearest-neighbor Hamiltonian, Eq. (4.1), with W = 0, V/J = 50, and
N/L = 6/12. The data correspond to the even-parity states. (b) Hilbert-space shattering
for the polar-lattice Hamiltonian, Eq. (5.1), with the same parameters.

Figure 5.1 shows the amplitudes |ψf (α)| of the Fock states |f〉 in the basis of many-body

eigenstates |α〉 for N = 6, L = 12, W = 0, and V/J = 50 for the nearest-neighbor model

(a) and the polar lattice gas (b). The eigenstates spread over a very small number of Fock

states, or alternatively, the number of Fock states connected (even at infinite time) with

a given Fock state is much smaller than that in the nearest-neighbor model. In the figure

we have arranged the eigenstates following first a growing order in xα (see Sec. 4.3). Then

within each fragment the states are further ordered following the interaction terms,

QDDI =
∑
i 6=j

〈n̂in̂j〉
|i− j|3

. (5.2)

The comparison between Figs. 5.1(a) and (b) clearly reveals that the tail of the dipole-

dipole interaction shatters the block structure of the nearest-neighbor model, leading to

a quasi-diagonal structure. Figure 5.1 was obtained using even-parity eigenstates, but

similar results are obtained for odd-parity states (and different filling factors as well).

Hilbert-space shattering results directly from additional emergent conservation laws

induced by the dipolar tail. Whereas in the nearest-neighbor model a growing V/J just

reenforces the conservation of nearest-neighbor links, l =
∑

j〈njnj+1〉 (see Eq. (4.5)), in

polar gases it leads to additional constraints, starting with the conservation of the number

of next-to-nearest-neighbor links, l2 =
∑

j〈njnj+2〉. For V → ∞ it is intuitive that the
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conservation of the number of bonds at any distance leads to frozen dynamics even forW =

0 for any initial condition (there are however exceptions, as discussed in Sec. 5.4.4). More

interesting, however, is that the dipolar interactions induce disorder-free quasi-localization

for values of V/J well within experimental reach. As shown in Figs. 5.1(b) the blocks of the

clean nearest-neighbor model are clearly shattered for a half-filled polar gas with V/J = 50.

Note that for V/J = 50, interactions beyond next-to-nearest neighbor are smaller than

the bandwidth, 4t, and hence, for half-filling the shattering of the nearest-neighbor blocks

results from the mere additional emerging conservation of l2.

Similar to the case of disordered nearest-neighbor model, we may quantify the shatter-

ing of the nearest-neighbor blocks by means of the evaluation of the fractal dimension Df

for the different Fock states, obtained again by comparing IPRf with the size of the block

evaluated for the clean nearest-neighbor model. In Fig. 5.2, we depict for a clean polar

lattice gas, for different system sizes, the average ¯̄Df evaluated over all Fock basis, which

provides a good quantitative estimation of the overall shattering of the nearest-neighbor

blocks. The results show that clean polar lattice gases with V/J & 20 are characterized

by a strong shattering of the blocks of the clean nearest-neighbor model.

Figure 5.2: Averaged fractal dimension ¯̄Df (see text) as a function of V/J for a half-filled
clean polar lattice gas of different system sizes. For V/J > 20, ¯̄Df decreases with growing
L indicating a more pronounced shattering.
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5.2.2. Disordered polar lattice gases

In the presence of disorder, fragmentation of the blocks of the clean nearest-neighbor

model results from the combination of the effects of disorder and of the 1/r3 tail. As

in the previous chapter, we study the Hilbert-space shattering by means of the averaged

fractal dimension, obtaining also in this case the maximal averaged D̄max
f , which we plot

in Fig. 5.3 for a half-filled and a quarter-filled lattice. The results are markedly different

compared to the nearest-neighbor model (Fig. 4.7). For large interactions, e.g.,V/J > 20

at half-filling, shattering (and, as discussed below, localization) penetrates all the way to

vanishingly small disorder.

(a) (b)

J

Figure 5.3: Localization in the polar lattice gas. The figures depict, as a function of the
disorderW and the dipole strength V , D̄max

f for a polar lattice gas with filling N/L = 8/16
(a), and N/L = 5/20 (b). Blue regions indicate where strong shattering of the blocks of
the clean nearest-neighbor model occurs, and also where localization is expected (see text).
Open boundary conditions are taken for all cases.

The crucial difference between the nearest-neighbor model and the polar lattice gas at

weak disorder is well illustrated by Fig. 5.4, where we analyze for a very small disorder,

W/J = 0.025, and different values of V/J the proportion of Fock states with a fractal

dimension Df < 0.3. From the results of Fig. 5.2, we see that ¯̄Df ' 0.5 at the crossing

of the curves (for V/J ' 25), and hence states with Df < 0.3 can be safely considered as
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Figure 5.4: Proportion of states with Df < 0.3 for W/J = 0.025 (averaged over 1000
realizations) and half-filling, for the nearest-neighbor model with N = 8, L = 16 and a
polar gas with different system sizes.

belonging to strongly fragmented nearest-neighbor blocks. For the nearest-neighbor model,

such a small disorder does not lead to any significant further fragmentation, showing that

weak disorder does not result in localization even when V/J →∞. In contrast the dipole-

induced shattering of the blocks of the clean nearest-neighbor model is already very strong

for V/J > 20. As discussed below, shattering is directly linked for general states to a

strong slow-down of the dynamics and an eventual localization for a vanishingly small

disorder. Therefore, the results of the figure can be also understood as an estimation of

the proportion of localized states in the Hilbert space.

Note as well, that the dipole-induced shattering (and hence disorder-free localization)

is displaced for quarter-filling to larger V/J compared to the half-filled case. This is not

surprising, since in a more dilute lattice interactions between further distant neighbors are

needed to induced localization. We should however recall from Ch. 3 that for low densities

motion is handicapped by distant particles, since the dipolar tail involving clusters may

outcompete the higher-order hopping rate Jm/V m−1 of a m-particle cluster. Although,

due to the small systems we consider, we cannot provide a detailed analysis of the fractal

dimension of low ρ, the results of Ch. 3 on the dynamics of nearest-neighbor dimers

suggest that disorder-free localization may be attainable for V/J ∼ 50 even for ρ ∼ 0.2.
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Figure 5.5: Entanglement entropies obtained using the polar lattice gas, Eq. (5.1) (color),
and the nearest-neighbor model, Eq. (4.1) (gray). (a) Number entropy Sn and configura-
tional entropy Sc as a function of V for W = 0 and N/L = 7/14. The data are averaged
over selected eigenstates that have 〈l̂〉 → N − 1 and 〈N̂s〉 → 0 when V/J → ∞ (see the
main text). (b) Similar to (a) but with N/L = 8/16 and the eigenstates are selected
by 〈l̂〉 → 3, 〈N̂s〉 → 3. (c) Similar to (a) but the eigenstates are selected by 〈l̂〉 → 0,
〈N̂s〉 → N . (d) Similar to (c) but with N/L = 6/18.

5.3. Eigenstate entanglement entropy

The eigenstate entanglement entropy (recall Sec. 4.4) provides also in this case a good

quantitative proof of the decrease of particle mobility induced by the additional constraints

provided by the dipolar tail. In Figs. 5.5 we compare the entanglement entropies of the

nearest-neighbor model, Eq. (4.1), and of the polar lattice gas, Eq. (5.1), for W = 0.

For weak dipolar interactions, not unexpectedly, the results for the polar gas are basically

identical to those of the nearest-neighbor model for every state. This remains so even for

large V/J for blocks without singlons (Fig. 5.5 (a)).

The situation changes radically in the presence of singlons. Figure 5.5 (b) shows
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the case of states with l = 3, and Ns = 4. For a sufficiently large V/J & 16, interactions

beyond nearest-neighbors suppress particle configurations available in the nearest-neighbor

model, and as a result the configurational entropy Sc decays rapidly, whereas the number

entropy Sn reduces correspondingly, and the total entanglement entropy SvN = Sn + Sc

reaches ln 2 due to the reflection symmetry of lattices with open boundary conditions

(recall Sec. 4.4).

Figure 5.5 (c) shows for half-filling the case of a singlon gas, that is, the case without

nearest-neighbor links, whereas the case at third-filling is shown in Fig. 5.5 (d). At half-

filling the singlon-gas can be described for sufficiently large V/J by an effective model

with a moving holon-dimer, as discussed in Sec. 4.4. The motion of the holon-dimer

is resonant and independent of the dipolar tail in the bulk (although it is affected at

the boundaries, as discussed in Sec. 5.4.4). As a result the number and configurational

entropies are basically the same as in the nearest-neighbor model even for large V/J . For a

lower filling, the moving holon-dimer picture breaks down, and the entanglement entropy

SvN varies similarly as in Fig. 5.5 (b).

5.4. The dynamics

5.4.1. Non-resonant processes

Whereas nearest-neighbor models are characterized by resonant motion within a Hilbert-

space fragment, the emerging conservation of l2 (and further links) in a polar gas largely

prevents resonant dynamics.

As sketched in Fig. 5.6, in the nearest-neighbor model, states in the same block have

same conserved values and they can evolve to each other resonantly via the mover motion,

but inter-block transitions are forbidden due to the dynamical constraints. In a polar

lattice gas, when the Hilbert space shatters, the resonant motions of movers are precluded

efficiently by the shattering effects. The typical transition between two states that have

same conserved values is not resonant anymore. It will be non-resonant processes that

involves intermediate states from different blocks.

In the perturbation point of view:

H = −J
∑
j

Ä
â†j+1âj + H.c.

ä
︸ ︷︷ ︸

Hhop

+
V

2

∑
i 6=j
|i− j|−3n̂in̂j︸ ︷︷ ︸
H0

.
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(a) (b)

Figure 5.6: Sketch of the difference in the dynamics of the nearest-neighbor model and
in the polar lattice gas. (a) In the nearest-neighbor model, the breaking of the Hilbert-
space into fragments (boxes) is characterized by the general possibility of resonant motion
within a fragment. (b) In a polar lattice gas, the nearest-neighbor blocks shatter into
small fragments (dark boxes). In addition, there is no general mechanism for resonant
motion within the small fragments, which occurs in general via virtual excursions to other
blocks in high-order in perturbation theory in J/V � 1.

When in V � J , a responsible non-resonant processes contacting two Fock states that

have the same conserved values (number of links at any length, number of movers, domain

walls, etc.) will typically involve an amount of single-hopping steps in the order of O(N).

Such a process is in higher-order, and the corresponding transition rates are eventually

exponentially small ∼ J/V O(N).

As a result, compared to the nearest-neighbor model, particle dynamics in the polar

gas is typically and significantly slowed down for sufficiently large V/J . In the following

we discuss the dynamics in the presence of these non-resonant processes.

5.4.2. Long-lived memory of initial conditions

The slow-down dynamics is well illustrated by the evolution of the initial state

|ψ(t = 0)〉 = | ◦ ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦ • ◦〉

(other initial states provide in general similar results). We employ exact time evolution of

Eq. (5.1) and periodic boundary conditions to remove boundary effects. This initial half-

filled state delocalizes in the nearest-neighbor model due to resonant hops, which break

the central trimer into two dimers:

| ◦ ◦ • ◦ • ◦ • • ◦ • • ◦ • ◦ • ◦〉



78 CHAPTER 5. POLAR LATTICE GAS

Figure 5.7: Time evolution of the homogeneity η(t) for V/J = 50 and periodic boundary
conditions, for the nearest-neighbor model (with N/L = 8/16) and a polar lattice gas
(with different system sizes) The initial half-filled state is discussed in the text. In order
to compare different system sizes we add or remove pairs at the right of the state.

and then delocalize each dimer , e.g.,

| ◦ ◦ • ◦ • • ◦ • ◦ • • ◦ • ◦ • ◦〉.

All these processes remain resonant in the nearest-neighbor model even for V = ∞. In

contrast, a sufficiently large dipolar interaction, renders the breaking of the initial trimer

non-resonant, since it does not preserve l2. Moreover, the formation of beyond-nearest-

neighbor clusters further hinders the particle dynamics.

Analogous to MBL experiments based on the evolution of density waves [68, 105], and

similar to recent trap ion experiments [107], we define the homogeneity parameter as

η(t) =
N0(t)/L0 −N/L

1−N/L
,

where N0(t) =
∑

j∈{j0}〈nj(t)〉 is the number of particles in the set {j0} of L0 initially

occupied sites, and L0 is nothing but the total particle number N . Homogenization of

the on-site populations results in η(t) → 0. We depict in Fig. 5.7 η(t) for V/J = 50.

Homogenization is quickly reached for the nearest-neighbor model at t ∼ 1/J (tiny residual

values are due to finite size), whereas for a polar gas, η plateaus at a large value, indicating

a long-lived memory of initial conditions. We have checked that the plateau is already

evident for V/J > 20.
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5.4.3. Long-time evolution and disorder-free localization

A longer-time evolution reveals eventual delocalization due to weak couplings between

Fock states belonging to the same small block of the shattered Hilbert space. This coupling

results from the non-resonant processes involving intermediate states in other blocks (Sec.

5.4.1). For large-enough V/J , many such virtual excursions are necessary, and hence the

coupling between Fock states becomes exponentially small in J/V . This quasi-localization

within the shattered block B (of size Ωf ), to which |ψ(t = 0)〉 belongs is well visualized

by monitoring

|ψ(t)〉 =
∑
f∈B
〈f |ψ(t)〉| f〉,

and determining the participation ratio

PR(t) =

Ñ∑
f∈B
|〈f |ψ(t)〉|4

é−1

.

In Fig. 5.8 we depict κ(t) = PR(t)/PR(∞) showing that the long-lived memory of ini-

tial conditions observed in η(t) results from the fact that only a limited fraction of the

Hilbert-space block is effectively reached during the plateau time. Note that the Fock

states belonging to B are those which are eventually connected to the initial states, we

numerically determine them by ordering the Fock states |f〉 with a decreasing value of

|〈f |ψ(τ → ∞)〉|2, where |ψ(τ → ∞)〉 is the asymptotic time-evolved state, and then

summing them until reaching
∑

f∈B |〈f |ψ(τ →∞)〉|2 = 0.95.

The two-stage dynamics is evident in the evolution of the entanglement entropy, SvN ,

calculated from a partition of the system to one half (Fig. 5.9). In contrast to standard

MBL, the lack of local integrals of motion results in the absence of logarithmic growth

of SvN , which plateaus during the localization, and only grows due to the eventual delo-

calization at finite V/J . The time of the on-set of the second stage scales exponentially

with V/J , being observable for N = 8 and L = 16 for V/J ' 30 but prohibitively long for

typical experiments for V/J > 50.

Moreover, our analysis of different system sizes (see Fig. 5.7) shows that the delo-

calization time also scales exponentially with the system size, since even more intricate

virtual excursions are needed to connect different Fock states in the block. Note also that

the high-order excursions responsible for the eventual delocalization are cancelled even

by an infinitesimal small disorder (of the order of the inverse size of the whole Hilbert

space), as shown in Fig. 5.10, whereas the same tiny disorder has a negligible effect for
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Figure 5.8: κ(t) (see text) for the nearest-neighbor model (dotted-dashed grey) and the
polar gas (solid green), with N/L = 8/16.

Figure 5.9: Entanglement entropy SvN evaluated for a partition of half of a clean polar
lattice system, for N/L = 8/16 and different ratios V/J .

the nearest-neighbor model.

5.4.4. Peculiar initial states and boundary effects

Finally, similar to other systems with kinetic constraints, particle dynamics strongly

depends on the particular initial condition. Although the lack of a general resonant motion

mechanism will slow down and (quasi-)localize typical states, some particular states may

remain delocalized even for very large V/J . This is the case of a density wave with a single
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Figure 5.10: Same as Fig. 5.7 for N/L = 8/16, comparing the clean case with that with a
very small disorder W/J = 1/Ω ∼ 2× 10−4 (averaged over 1000 realizations), with Ω the
size of the Hilbert space.

domain wall,

| . . . . . . 〉.

With periodic boundary conditions, the wall moves resonantly while preserving the inter-

action energy to all neighbors, delocalization thus occurs for arbitrary V .

The situation in the presence of boundaries (open boundary conditions) is significantly

different. Let us consider the specific case of the state

|ψ0〉 = | 〉.

Note that a single particle hop can displace the domain wall by two sites.

In the nearest-neighbor model, for sufficiently large V/J , the state |ψ0〉 belongs to a

Hilbert space fragment, which in this case is formed by 7 degenerate Fock states that

differ only by the position of the domain wall. In the polar lattice gas, for simplicity of the

argument we consider at the moment just the interactions up to next-to-nearest-neighbors.

All 7 states of the nearest-neighbor block have the same overall next-to-nearest-neighbor

energy V/2, except the two states with the domain wall at the boundaries, e.g.,

| 〉,

which have an energy V/2+V/8. As a result, if V/J is sufficiently large, those states cannot
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(a) (b)

(c)

Figure 5.11: (a) Effective potential Qeff experienced by the domain wall (holon dimer)
in a density wave (see text) for different system sizes. (b) Comparison of η(t) for a
nearest-neighbor model and a polar lattice gas for an initial density-wave state (inset), for
V/J = 40, W = 0, and N/L = 8/16. Note that in the nearest-neighbor model, the system
delocalizes, whereas the polar gas is characterized by a strong localization. (c) Same as
(b) but for an initial domain wall at the middle (inset).

be reached starting from |ψ0〉. A similar reasoning shows that further sites approaching

the boundaries are blocked in the polar gas when V/J grows due to interactions beyond

next-to-nearest-neighbor.

Indeed the boundary induces an effective confinement for the domain wall, preventing

it to reach a distance ∼ (V/J)1/3 from the lattice edges. Figure 5.11 (a) shows the

effective potential Qeff induced by the boundaries on the domain wall for different system

sizes. The energy at the edges increases rapidly. As a result, if we consider as the initial

condition the density-wave state (Fig. 5.11 (b)), then the dynamics remains basically

frozen in the polar lattice gas, whereas in the nearest-neighbor model the system gets

quickly homogeneous. In contrast, if the domain wall is initiated at the middle of the

lattice (Fig. 5.11 (c)), it moves until approaching the edges, where it is repelled by the

effective potential. In the nearest-neighbor model, the homogenenization η(t) approaches

0.5 rather than 0, this is because if the domain wall moves to the right (left), the left (right)



5.5. CONCLUSIONS 83

singlons are blocked.

The boundary effects induced by the dipolar tail hence result in yet another mechanism

for interaction-induced localization in experiments, which may be especially relevant for

small lattices.

5.5. Conclusions

Emerging dynamical constraints induced by the dipolar 1/r3 tail lead to Hilbert-space

shattering, which at half-filling occurs for V/J & 20. These constraints disrupt the res-

onant transport characteristic of nearest-neighbor models, resulting in a dramatic slow-

down of the particle dynamics and eventual disorder-free localization. Although we have

focused on the dynamics once shattering develops, a significant slow-down is expected for

smaller V/J that not yet shattered nearest-neighbor blocks. Thefefore, in general, our

results indicate that the tail effects can be utilized for studying many-body localization

with suppressed disorder (Appendix C). It brings to light new information on the inten-

sive debate [138, 139, 140, 141]: whether the many-body localization can exists, with finite

critical disorder, at the thermodynamic limit.

Our results also show that the study of the interplay between disorder- and interaction-

induced localization is well within reach of future experiments on polar lattice gases. For

magnetic atoms, recent experiments have achieved V/J ' 3 [47], but the use of Feshbach

molecules of lanthanide atoms [183] and/or subwavelength [184, 185] or UV lattices may

significantly boost the V/J ratio. As already mentioned in Sec. 3.3, ratios of |V |/t ' 30 or

even larger should be readily attainable in experiments in the next future. Polar molecules

offer exciting possibilities for large V/J even without the need of a special lattice, due to

their much stronger dipolar interaction, orders of magnitude larger than that of mag-

netic atoms [186]. Note that, although the focus in this chapter was on one-dimensional

systems, emerging kinetic constraints should also lead to strong disorder-free localization

in two dimensions. Indeed, as we discuss in the next chapter, two-dimensional lattices

present further additional localization mechanisms absent in one dimension. Moreover,

the results have a more general applicability, being potentially relevant for other disorder-

free systems with more general long-range interactions, in particular trapped ions [107],

where intriguing localization properties may result from the interplay between power-law

exchange and Ising terms.
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Chapter 6

Dynamics in two-dimensional

polar lattice gases

Up to this point in the Thesis, we have focused on the dynamics in one-dimensional

lattices. In this chapter, we discuss the motion of polar particles in two-dimensional

lattices, concentrating in particular on the motion of inter-site dimers and clusters. The

physics of inter-site dimers and generally clusters in two-dimensional lattices is strikingly

different than that of on-site clusters in the absence of inter-site interactions. In one-

dimensional systems, both on-site repulsively-bound pairs and hard-core nearest-neighbor

dimers move in second order in the same lattice as that of singlons [18, 65, 97, 158, 160,

161, 162]. For on-site repulsively-bound pairs this remains true in any dimension. In

stark contrast, tightly-bound nearest-neighbor dimers in two-dimensional lattices move in

an effective lattice, whose geometry is generally different than that of the original one.

Interestingly, dimers may acquire in this way topological properties [187].

In this Chapter, we discuss in detail the two-dimensional dynamics of polar lattice

gases, showing that the realization of effective dimer lattices results in a peculiar quantum

dynamics, characterized by multiple time scales. Although the effect is general to all two-

dimensional geometries, it is particularly interesting in triangular and diamond lattices

with hard-core bosons, or square lattices for soft-core bosons. In those lattices, although

nearest-neighbor dimers move resonantly, dimer quasi-localization occurs due to the effec-

tive dimer lattices, which has either a kagome or a Lieb geometry, and hence presents a flat

band [189]. Furthermore we discuss the motion of trimer clusters, showing that in polar

gases, remarkably, trimers in triangular lattices move resonantly, and indeed faster than

quasi-flat-band dimers. Our analysis is completed by a discussion of the decay of larger

85
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clusters, as well as of dimer-singlon and dimer-dimer collisions, showing that sufficiently

dilute two-dimensional polar lattice gases are expected to present partial quasi-localization

in absence of disorder due to the formation of pinned clusters. Although we focus on polar

gases, a similar intriguing quantum walk dynamics of dimers and clusters may be observed

in other extended Hubbard models, as well as in magnon bound states in 2D XXZ chains.

The results of this Chapter have been published in Ref. [188].

6.1. Two-dimensional model

We consider a polar gas of hard-core bosons in a two-dimensional optical lattice, with

the dipoles orthogonal to the lattice plane. The system is well described by the Hamilto-

nian

H = −
∑
j,v

Jv
Ä
â†j+vâj + H.c.

ä
+
V

2

∑
i6=j

n̂in̂j
|i− j|3

, (6.1)

where, as in previous chapters, V characterizes the dipole-dipole interaction to nearest

neighbors, âj is the bosonic operator at site j, and we impose the hard-core constraint

(â†j )
2 = 0. The hopping rate from a site j to the nearest neighbors j+v is denoted by Jv.

Although the ground-state landscape of polar lattice gases in two-dimensional geometries

is very rich [58], in this chapter we will concentrate on the surprising dynamics given by

the interplay between lattice geometry and long-range interactions.

6.2. Dimers in triangular lattices

The specific case of a triangular lattice (Fig. 6.1 (a)), discussed throughly in the next

sections, is characterized by the primitive vectors a0 = ex and a1 = 1
2ex+

√
3

2 ey. Hence the

site j = (j0, j1) is placed at the position rj = j0a0 + j1a1. The possible nearest-neighbors

are placed at j + v with v ∈ {v0 = a0 = (1, 0),v1 = a1 = (0, 1),v2 = a0 − a1 = (1,−1)}.

The reciprocal lattice is determined by the vectors b0 = 2πex− 2π√
3
ey and b1 = 4π√

3
ey. The

first Brillouin zone is depicted in Fig. 6.1 (a), with the high symmetry points Γ = (0, 0),

K = ( 2π√
3
, 2π), and M = (0, 2π√

3
). We assume Jv = J for all nearest-neighbors v, and defer

the discussion on different Jv to Sec. 6.3.

6.2.1. Dynamically-bound dimers

Despite not being thermodynamically stable for V > 0, nearest-neighbor dimers, with

energy ' V , remain dynamically stable, for strong-enough V/J . The analysis of the
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(a) (b)

Figure 6.1: (a) Triangular lattice and its first Brillouin zone (inset). (b) Survival prob-
ability (6.4) of a dimer in a triangular lattice. The results were obtained by exact time
evolution of HD for two particles initially placed at nearest neighbors. In the inset we
depict the two-particle eigenstates for V/J = 7. Note that the three bound dimer states
are already fully separated from the continuum of scattering states. The dispersion is
depicted following the path connecting the symmetry points in the Brillouin zone.

formation of 2D dynamically-bound dimers follows a similar theory as that in 1D, discussed

in Chapter 3. Two-particle states are parameterized by the center of mass position, R =

(rA + rB)/2 and relative coordinate, r = rA − rB. The Hamiltonian acquires the form

H = − Jv
∑
R,r,v

[(
|R +

v

2
, r + v〉+ |R +

v

2
, r− v〉

)
〈R, r|

+
(
|R− v

2
, r + v〉+ |R− v

2
, r− v〉

)
〈R, r|

]
+

∑
R,r

V

r3
|R, r〉〈R, r|, (6.2)

where r =
»
r2

0 + r2
1 + r0r1 is the distance between particles placed with a relative vec-

tor r = r0a0 + r1a1. Applying the Fourier transform to the center of mass, |R, r〉 =

1√
Ω

∑
R e

iK·R|r〉K, then for a given quasi-momentum K, we obtain the Hamiltonian

HK = −JK,v
∑
r,v

(|r + v〉〈r|+ |r− v〉〈r|)K +
∑
r

V

r3
(|r〉〈r|)K , (6.3)

with JK,v = 2Jv cos
(
K·v

2

)
.

When evaluating Eq. (6.3), we should avoid double counting r and −r. We hence

impose r = (r0, r1), such that r0 ≤ 0, and for r0 = 0, r1 > 0. This requires particular care

at r0 = 0. In particular, we impose that the hop in the −v0 direction couples (1, r1 ≤ 0)

with (0,−r1), and the hop in the −v2 direction couples (1, r1 < −1) with (0,−(1 + r1)).
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For the square lattice, discussed below in this chapter, the procedure is identical, except

for the absence of the Jv2 hop, and that for the relative vector r = (jx, jy), r =
»
j2
x + j2

y .

We diagonalize (6.3) for each K, which provides the two-particle eigenstates Eα(K),

which we depict in figures below following the trajectory Γ-K-M in the Brillouin zone

(inset of Fig. 6.1 (a)). Bound dimers are characterized by sharp lines in the plot of energy

eigenvalues Eα(K), whereas scattering states of two unbound particles lead to an energy

continuum. In a triangular lattice, for V/J = 7 (see the inset of Fig. 6.1 (b)) the bound

dimer states are already clearly separated from the scattering states. Note the formation

of three different bound states, which we will discuss in detail in the next section. We

calculate the survival probability of dimer in 2D by means of

PD =
1

ΩK

∑
K,r,α

|〈α|r = 1〉K|2|〈α|r = a0〉K|2, (6.4)

where ΩK is the number of quasi-momenta in the first Brillouin zone. Figure 6.1 (b) shows

that for V/J & 10, nearest-neighbor dimers remain tightly bound.

6.2.2. Dynamics of dimers in triangular lattices

Whereas in 1D lattices, or in any other 2D lattice, a dimer moves in second order with

a hopping ∝ J2/V , dimer motion in triangular lattices is resonant, with hopping J , since

a particle in the dimer can move to a neighboring site while keeping a constant distance

from its partner. One could hence expect that dimers move fast, in a V -independent time

scale when V/J is sufficiently large. This expectation turns out to be incorrect.

Figure 6.2 (a) depicts, for various V/J , the time-evolved probability P34 of finding

a particle between a distance of 3 and 4 lattice units from the initial center-of-mass of

the dimer (shaded region in the inset). Figure 6.2 (b) shows for V/J = 20 the time

dependence of the distance between the center-of-mass of the two-particle system and

its initial position. Whereas for V = 0 the particles expand ballistically with a velocity

∝ J , when V/J grows, two markedly different expansion velocities become apparent, a

fast one proportional to J , and a slow one proportional to J2/V . These two time scales

are apparent even down to V/J = 5 (see Fig. 6.2 (a)), at which dimers are still largely

unbound (see Fig. 6.1 (b)).

Our results are obtained by exact evolution of Eq. (6.1), we consider a 13 × 13 site,

along a0 and a1, imposing absorbing boundary conditions. The latter is necessary for

observing expansion in long time scales, without the distorting effect due to the reflection
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Figure 6.2: (a) Two-particle evolution in a triangular lattice for various V/J . Probability
P34 to find the center of mass of the two particles at a distance between 3 and 4 lattice
units from the initial center-of-mass position. The existence of two marked wavefronts
result in two separated peaks in P34 when the wavefront crosses the region 3 < r < 4.
The peak at Jt = 1 observable for V/J = 0 and V/J = 5 corresponds to the individual
singlon expansion. (b) Probability for V/J = 20 of finding the center-of-mass at a given
distance in lattice units from its initial position. Dotted lines are a guide to the eye.

of matter waves at the lattice boundaries.

The peculiar dimer dynamics stems from the actual dimer dispersion shown in Fig.

6.3 (a), for V/J = 10, where for a given center of mass quasi-momentum K, we depict

the spectrum associated to the relative coordinate between the particles. Similar to 1D

dimers (see Fig. 3.2), above the continuum of scattering states, we observe bound states

characterized by a localized relative coordinate, and hence by sharp lines as a function of

K. These bound states, with energy ' V , correspond to dynamically stable dimers, which

for large V/J are tightly bound at nearest neighbor. Whereas 1D dimers present a single

band, dimers in triangular lattices appear in three different bands.

To understand this, we may associate to each dimer an effective lattice site placed

at the center of mass of the two particles lies. The motion of one of the particles to

neighboring sites results in dimer hopping, with rate J , into one of four neighboring links

(Fig. 6.3 (b)). Crucially, this resonant dimer motion does not take place in a triangular

lattice, but in a kagome lattice with halved inter-site distance (Fig. 6.3 (c)). As it is

well known [189], kagome lattices present three bands, including an upper flat band. The

emerging kagome geometry hence results in the three dimer bands observed in Fig. 6.3

(a).

The presence of the upper flat band in the dimer spectrum results in the anomalously

slow dynamics observed in Fig. 6.2 (a). An initially localized dimer, projects into all three

dimer bands with approximately equal probability. The dimer projection into the flat band

(which we denote as flat-band dimer) does not move in first order at large V/J . However,
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(a) (b) (c)

Figure 6.3: (a) Two-particle eigenenergies in a triangular lattice for V/J = 10 as a
function of the center-of-mass quasimomentum within the Brillouin zone (see Fig. 6.1
(a)), the inset shows the bandwidth of the dimer bands as a function of V/J . (b) A
particle in a tightly-bound dimer can hop resonantly to a neighboring site while keeping
a fixed distance to its partner, resulting in the motion of the center of mass. (c) In a
triangular lattice (thin, gray) the center of mass of a dimer moves in a kagome lattice
(thick, red) for large V/J . The center of mass moves resonantly, with J , into its nearest-
neighbors, and in second order to its next-nearest neighbors, with hopings J ′ and J ′′ (see
text)

second-order processes involving the virtual breaking of the dimer result in hoppings into

next-to-nearest-neighbor sites in the effective dimer kagome lattice, with hopping rates

J ′ = 8
7
J2

V and J ′′ = 3
√

3
3
√

3−1
J2

V (Fig. 6.3 (c)). These processes induce a non-zero curvature

of the flat band, resulting in the slow propagation of flat-band dimers.

For intermediate V/J values, although the dimers are already tightly bound, second

and higher-order processes significantly distort also the other two bands compared to

the exact kagome case. The inset of Fig. 6.3 (a) depicts the bandwidth for the lower,

middle, and upper dimer bands. Note that, as mentioned above, the upper band is very

narrow even at low V/J , and whereas in the kagome lattice the two lower bands have

equal width, for lower V/J , the lowest band is significantly narrower. Convergence to the

kagome dispersion is only reached at very large V/J & 100. This may lead to a third

expansion velocity for 15 . V/J . 30, which is observable in Fig. 6.2 (a) and in Fig.

6.2 (b). Interestingly, this also means that increasing V/J the average velocity of non-

flat-band dimers increases up to a V -independent value for large V/J (with an effective

hopping rate ' J/5).

6.3. Modified triangular lattices

The important role played by the effective flat band becomes evident when considering

unequal hopping rates, Jv0 = Jv1 = J , but Jv2 = JH < J (see Fig. 6.4 (a)). For
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(b)

(c)

(a)

(d) (e)

Figure 6.4: (a) Modified triangular lattices with reduced hopping JH < J along the a0−a1

direction. The effective dimer lattice is a kagome lattice for JH = ±J and a Lieb lattice
for JH = 0. (b) Two-particle dispersion for V/J = 15 and JH = 0.5J . (c) Similar to (b)
but with JH = 0; note the quasi flat middle band as expected for a Lieb lattice. (d) P34

for various V/J and JH = 0.5J . (e) Similar to (d) but with JH = 0

JH → 0.5J , there is no flat band and all three bands have similar bandwidth (Fig. 6.4

(b)). As a result, though the single particle hopping is reduced, the dimer dynamics

presents a single timescale t ∼ 1/J (see Fig. 6.4 (d)). In contrast, for JH = 0, the lattice

acquires a diamond geometry, and the dimer experiences an effective Lieb lattice, which is

also well-known to be characterized by a flat middle band [189] (see Fig. 6.4 (c)). Thence,

similar to JH = J , a fast and a slow dimer dynamics are again clearly resolved (see Fig. 6.4

(e)). Results are again obtained by exact evolution of Eq. (6.1) with absorbing boundary

condition, and initially two particles at nearest neighbor.

6.4. Trimers and strings in triangular lattices

In stark contrast to gases without inter-site interactions, or hard-core gases with inter-

site interactions in any other lattice, inter-site-interacting gases in triangular lattices allow
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for the resonant motion of a linear string of more than two particles, in which at most

two sites are occupied in the same elementary triangle of the lattice. The simplest case

is the dynamics of a trimer (a three-particle string), which captures general dynamical

properties of a longer string. A closed trimer, that is, with its three particles forming an

elementary triangle, can in contrast only move at most in second order.

Tightly-bound linear trimer states can be represented by |rm, nc〉 with rm denoting the

position of the central particle, and nc ∈ [0, 8] denoting the configuration of the other two

particles. The possible nine configurations of linear trimers are depicted in Fig. 6.5 (a).

The effective Hamiltonian for a linear trimer is then of the formHT = HT,0+HT,rm+HT,int,

where

HT,0 = −J
∑
rm


(|rm, 3〉+ |rm, 4〉+ |rm, 5〉+ |rm, 6〉) 〈rm, 0|

(|rm, 4〉+ |rm, 6〉+ |rm, 7〉+ |rm, 8〉) 〈rm, 1|+ H.c.

(|rm, 3〉+ |rm, 5〉+ |rm, 7〉+ |rm, 8〉) 〈rm, 2|

 (6.5)

is the hoping of the side particles without changing the position of the central one,

HT,rm = −J
∑
rm

(|rm + v0, 7〉〈rm, 8|+ |rm + v1, 5〉〈rm, 3|+ |rm + v2, 4〉〈rm, 6|+ H.c.)

(6.6)

is the hoping of the central particle in the triangular lattice, and

HT,int = V

Å
1

8
− 1

3
√

3

ã∑
rm

(|rm, 0〉〈rm, 0|+ |rm, 1〉〈rm, 1|+ |rm, 2〉〈rm, 2|) (6.7)

is the interaction energy difference, given by next-to-nearest neighbor dipole-dipole in-

teractions, between states |rm, 0〉, |rm, 1〉, and |rm, 2〉, and the rest. Applying Fourier

transform, |rm, nc〉 = 1√
Ω

∑
rm
eiKm·rm |Km, nc〉, then for a given quasi-momentum Km:

HT,Km =− J


(|3〉+ |4〉+ |5〉+ |6〉) 〈0|

(|4〉+ |6〉+ |7〉+ |8〉) 〈1|+ H.c.

(|3〉+ |5〉+ |7〉+ |8〉) 〈2|


− J
Ä
eiKm·a0 |7〉〈8|+ eiKm·a1 |5〉〈3|+ eiKm·(a0−a1)|4〉〈6|

ä
+ V

Å
1

8
− 1

3
√

3

ã
(|0〉〈0|+ |1〉〈1|+ |2〉〈2|) .

(6.8)

Diagonalizing HT,Km for Km along the symmetry points in the first Brillouin zone pro-

vides the dispersion shown in Fig. 6.5 (b), characterized by nine energy bands associated
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0 1 2

3 4 5

6 7 8

(a) (c)(b)

Figure 6.5: (a) All configurations for an open trimer in a triangular lattice. (b) Energy
bands for tightly bound open trimers for V/J = 40. (c) P34 for V/J = 40, for an initial
dimer and two different initial trimers (see the insets).

to the tight-binding trimer dynamics. None of the bands is flat, implying that an open

trimer expands resonantly with a broad velocity distribution but without the bimodal ex-

pansion characteristic of dimers, see Fig. 6.5 (c), where we depict the result of the trimer

evolution evaluated using the effective Hamiltonian HT . Note that, remarkably, trimers

move in first order faster that flat-band dimers for large-enough V/J .

6.5. Longer strings

A larger open string can resonantly decay into highly mobile singlons and clusters with

closed trimers (see Fig. 6.6 for an example). Hence, dilute random distributions spon-

taneously decay into (i) resonant movers, including singlons, non-flat-band dimers, and

open trimers, and (ii) non-resonant clusters that move at most in second order, including

flat-band dimers and strings that contain at least one closed trimer. We would like to

note at this point that vacancies in lattice gases close to unit filling (i.e., a dilute holon

gas) should behave similarly. Note however that Eq. (6.1) does not fulfill particle-hole

symmetry. In particular, holons are reflected at the lattice boundaries, since the differ-

ent coordination number of edge sites imposes an energy penalty V to bulk holons when

approaching the edges.

6.6. Many-body dynamics

The presence of more than one cluster may alter the dynamics. Similar to 1D lattices,

singlons and dimers at one site of distance may swap positions, inducing a Brownian-like

dimer motion (Fig. 6.7 (a)) that may affect flat-band dimers. Additionally, two dimers
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Figure 6.6: Spontaneous decay of an open 4-string (left column) and an open 5-string
(right column). Singlon emission creates a cluster with a closed trimer (a triangle) that
can only move, at most, in second order.

(a) (b) (c)

Figure 6.7: (a) Singlon-dimer swaping at nearest neighbors. (b) Dimer-dimer interactions
may resonantly form a singlon and an open trimer. (c) Inhomogeneity η for V/J = 30
and various initial states (insets). The light-blue dashed line indicates the expected value
η = 1/3 for immobile flat-band dimers.

may resonantly exchange a particle, leaving an open trimer and a singlon (Fig. 6.7 (b)). In

polar gases, these processes are prevented for large enough V due to the blockade induced

by the 1/r3 tail beyond nearest neighbors. If the clusters are not initially at one site of

distance, the expansion of resonant movers is significantly restricted when encountering

non-resonant clusters, rendering an inefficient many-body propagation. For sparse fillings

and large V , the main mechanism of eventual flat-band dimer propagation remains the

second-order broadening of the flat band (∝ J2/V ).

Figure 6.7 (c) shows our results. We evaluate for a single dimer, one dimer and three

singlons, and four dimers (insets of Fig. 6.7(c)) the homogeneity η = (Ps(t)−Ph)/(Ps(0)−

Ph), where Ps(t) is the average particle number at the initial dimer positions and their

nearest-neighboring sites (green regions in the insets of Fig. 6.7 (c)), and Ph is the expected

value of Ps if the dimers and singlons were homogeneously distributed. Considering the

hard-core constraint and blockade effects, Ph is evaluated excluding the occupied sites,

and half of the number of nearest-neighbors of each singlon/dimer. This results in the

estimation Ph = A N
L2−4Ns−6ND

, with Ns, the number of singlons, ND, the number of
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dimers, N = Ns + 2ND, the total number of particles, and A = 10ND is the number

of sites in a green region in the insets in Fig. 6.7 (c). Since each dimer projects ∼ 1/3

to the flat band, for localized flat-band dimers, Ps(t) is expected to be 2
3Ph + 1

32ND

with corresponding η = 1/3, whereas in case of homogenization, η → 0. The results are

evaluated in a 13×13 triangular lattice with open boundary conditions, for the single dimer

the time evolution is obtained exactly by Eq. (6.1), for the other cases it is evaluated by

means of TDVP calculations [190], with a bond dimension up to 250.

Due to the resonant movers, η decays within t . 4/J to η ' 1/3 in all cases, as

expected for flat-band-dimer quasi-localization. For a single dimer, η plateaus, and only

decays towards homogeneity (η → 0) in a much longer time scale t & V/J2. The presence

of other dimers enhances the localization of flat-band dimers due to the 1/r3 tail of the

dipole-dipole interaction (we are prevented to see this effect since our TDVP calculations

are limited to t . 20/J). Since flat-band dimers move with a second-order hopping rate

∝ J2/V . Similar to the case of 1D dimers discussed in Chapter 3, long-range dimer-dimer

interactions are expected to lead to the clustering of flat-band dimers, and hence to their

localization, if the mean distance between them is smaller than a critical value ∝ (V/J)2/3.

6.7. Dimer dynamics in square lattices

The peculiar dimer dynamics resulting from an effective dimer lattice constitutes a

general feature for any 2D lattices. This may be illustrated by a second relevant example,

a square lattice, in which the lattice primitive vectors are identical to the nearest-neighbor

vectors, i.e., a0 = v0 = ex and a1 = v1 = ey. The hopping in Eq. (6.1) becomes:

−J
∑

j,v

Ä
â†j+vâj +H.c.

ä
, with v = ex or ey.

6.7.1. Hard-core bosons

For hard-core bosons, dimers cannot move resonantly in a square lattice, but hopping

may happen in second order, and result in two different hopping rates: J ′ = 4
√

2
2
√

2−1
J2

V and

J ′′ = 8J2

7V . The effective decorated square lattice experienced by the center of mass of a

dimer in square lattices is shown in Fig 6.8 (a). The effective lattice presents a four-site

unit cell (see the inset of Fig 6.8 (a)), and is therefore characterized by four dimer bands.

Exact solutions of the four bands are given in App. D. In Fig 6.8 (c) we depict the two-

particle spectrum as a function of the center of mass momentum K. The two upper bands

correspond to the dimer states. Note that contrary to the triangular lattice, the Brillouin
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(a)

1

2

3

0

(b)

(c)

Figure 6.8: (a) For the case of hard-core bosons in a square lattice dimers move in an
effective decorated square lattices with four-state unit cells. The second-order hoppings
(see text) are denoted by J ′ (green solid), and J ′′ (gray dashed). (b) P34 for various V .
The dimer expansion shows two distinct time-scales, both increasing linearly with V/J .
(c) Two particle spectrum for hard-core bosons in a square lattice. Note the appearance
of two bound states.

zone of the square lattice and that of the dimer lattice are not the same; as a result the

four dimer bands map into the two bands observed in the two-particle spectrum. Note

that one of the bands is much narrower than the other, resulting in two markedly different

time scales (Fig. 6.8 (b)), although, in contrast to the triangular lattice case, both of them

are proportional to V/J2.

6.7.2. Soft-core bosons

Interestingly, dimers may move resonantly in a square lattice in the soft-core case, i.e.,

allowing double occupancies, if the on-site interactions U
2

∑
j n̂j(n̂j−1), fulfill U = V (this

condition may be achieved by means of Feshbach resonances). In that case, a a soft-core

dimer moves resonantly with Bose-enhanced hopping
√

2 J in an effective Lieb lattice (Fig.

6.9 (a)) formed by doubly-occupied sites (green squares) and the links joining nearest-

neighboring sites (red crosses). For U = V the dimer may resonantly hop between these

effective sites. The effective Lieb geometry results again in flat-band dimers, and hence

in two markedly different time scales (Fig. 6.9 (b)), one fast and V independent for a
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(a) (b)

Figure 6.9: (a) For a soft-core Bose-Hubbard model with U = V , the dimers experience an
effective Lieb lattice formed by doubly occupied sites and nearest-neighbor dimers. The
bound state can resonantly move in an effective Lieb lattice by Bose-enhanced hopping,√

2 J . (b) P34 for soft-core case with various V . The dimer expansion shows two time
scales, a fast V -independent one, and a slow one that increases linearly with V .

large-enough V , and one slow proportional to J2/V given by second- and higher-order

processes.

Finally, note that an anomalous dimer dynamics is expected in other 2D lattices. For

instance, in honeycomb lattices a dimer also experience kagome structure. But in contrast

to the case in triangular lattices, a dimer in honeycomb lattices move only in second order,

thus flat-band dimers remain strongly localized, being able to move only in fourth order.

6.8. Conclusions

Two-dimensional polar lattice gases present an intriguing dynamics due to the inter-

play between energy conservation and inter-site interactions. Dynamically-bound dimers

perform a quantum walk in an effective lattice different than that of individual particles,

resulting in an expansion characterized by more than one timescale. This intriguing dy-

namics is particularly remarkable in triangular and diamond lattices, or square lattices for

soft-core bosons (or spinless fermions) due to the resonant dimer motion and the emerg-

ing quasi-flat band localization. Hence whereas individual particles and trimers expand

resonantly, dimer dynamics is largely handicapped by quantum interference. As for other

scenarios discussed in this Thesis, we would like to stress that the requires values of V/J

to observe this dynamics are well within reach of experiments. Finally, we should mention

that although the dipolar tail is relevant in polar gases as throughly discussed in this The-

sis, the anomalous dimer dynamics in two-dimensional lattices discussed in this Chapter

just requires strong nearest-neighbor interactions. The results are thus valid for any 2D

extended Hubbard model, as well as for magnon bound states in 2D XXZ spin models.
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Chapter 7

Conclusions and perspectives

In this Thesis, we have explored the intriguing dynamics of polar particles in optical

lattices. We have shown that the combination of energy conservation, finite band-width,

and dipole-dipole interactions results in novel qualitative features that are absent in the

case of non-polar systems. In particular, the formation of dynamically-bound dimers and

clusters, which occurs for a sufficiently large dipolar interaction (V/J & 10) results in a

significantly handicapped dynamics due to the role played by the dipolar 1/r3 tail, that re-

sults in the formation of dimer clusters, which may eventually lead to the cluttering of the

whole polar lattice gas, as we discussed in Chapter 3 for the case of one-dimensional lat-

tices. Furthermore, as shown in Chapter 6, dynamically-bound dimers in two-dimensional

lattices experience a different lattice than individual particles. As a result, polar lattice

gases in two-dimensional lattices present, especially in some particular geometries, an ad-

ditional interaction-induced localization mechanism. The latter results because the dimer

lattice is characterized by the appearance of a flat band, resulting in a very long-lived

memory of initial conditions.

Indeed polar lattice gases open exciting perspectives for the study of interaction-

induced localization and Hilbert-space fragmentation. In this sense, the role of the dipolar

tail is crucial in polar gases. For nearest-neighbor models (Chapter 4) large-enough in-

teractions result in the conservation of the number of occupied nearest-neighbor links,

resulting in Hilbert-space fragmentation. However, resonant particle motion remains gen-

erally possible within each fragment, hence precluding disorder-free spatial localization. In

contrast, for polar lattice gases (Chapter 5) the tail of the dipolar tail induces for growing

interactions additional emerging conservation laws. We have shown that the mere addi-

tional conservation of the number of occupied next-to-nearest-neighbor links is enough

to shatter the Hilbert space. Moreover, the dipolar tail precludes a general mechanism
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for resonant motion within a given Hilbert-space fragment. The involved motion hence

occurs typically in high-order in perturbation theory, due to virtual excursions to other

Hilbert-space blocks. As a result, the dynamics of polar lattice gases is dramatically

slowed-down compared to the case of nearest-neighbor interactions, leading eventually to

the disorder-free localization.

We stress that the physics discussed in this Thesis is well within reach of experiments.

The formation of lattice droplets discussed in Chapter 3 just demands V/J > 2.5, which

has been already achieved in erbium experiments in Innsbruck [47]. As discussed in Chap-

ters 3 and 6 dynamically-bound dimers demands both in 1D and 2D lattices V/J & 10,

whereas the observation of Hilbert-space shattering (Chapter 5) demands V/J & 20. As

discussed in the Thesis, these values can be readily attainable in lanthanide experiments

in UV lattices, and in experiments with polar molecules. Our results should hence be

directly relevant for polar lattice gas experiments in the very next future.

We should, however, mention that we expect a significant slow-down of the particle

dynamics even for rather low values of V/J , well below the values demanded for Hilbert-

space shattering. This is because even if the nearest-neighbor fragments are not shattered,

motion within a fragment may be already handicapped (although not completely blocked)

by the dipolar tail. An open question for future research hence involves the study of

that interaction-induced slow-down as a function of V/J , which should provide crucial

information for experiments.

Finally, we should also emphasize that our results may be extrapolated to other power-

law interactions, or to more general long-range interactions, particularly in what concerns

experiments with trapped ions [107]. An additional future research direction hence con-

cerns the study of slow dynamics, disorder-free localization and Hilbert-space fragmenta-

tion for more general power-laws.
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Appendix A

Dimers in one-dimensional polar lat-

tice gases

In this Appendix we derive the effective Hamiltonian for the motion of a tightly-

bound dimer in a one-dimensional polar lattice gas. Let us introduce the projection

operator to the nearest-neighbor-dimer subspace P =
∑

l |l, l+1〉〈l, l+1|, and the operator

Q =
∑

j,k≥2 |j, j + k〉〈j, j + k| to the orthogonal subspace.

Usiing the Hamiltonian H of Eq. (3.1), we write the Schrödinger equation for the

two-particle eigenstates, H|ψ〉 = E|ψ〉. Projecting with P and Q, and using P + Q = I,

we have

PHP |ψ〉+ PHQ|ψ〉 = EP |ψ〉, (A.1)

QHP |ψ〉+QHQ|ψ〉 = EQ|ψ〉. (A.2)

We are interested in deriving an effective Hamiltonian for states within the subspace of

nearest-neighbor particles, i.e., for |φ〉 = P |ψ〉. From the second equation we obtain

Q|ψ〉 = (E −QH)−1QHP |ψ〉, (A.3)

and hence from the first equation:Å
PHP + PHQ

1

E −QHQ
QHP

ã
︸ ︷︷ ︸

Hdimer

|φ〉 = E|φ〉. (A.4)

Note the fact that P 2 = P and Q2 = Q, we hence obtain an effective Hamiltonian

Hdimer for the description of tightly-bound nearest-neighbor dimers. The states within
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the manifold of nearest neighbors are of the form |j, j + 1〉, then:

PHP |j, j + 1〉 = V |j, j + 1〉,

QHP |j, j + 1〉 = −J(|j − 1, j + 1〉+ |j, j + 2〉).

Hence

Hdimer|j, j + 1〉 =

Å
V +

2J2

E − V/8

ã
|j, j + 1〉+

J2

E − V/8
(|j − 1, j〉+ |j, j + 2〉) .

For V/J � 1, we can approximated E ' V in the denominator (E −QHQ)−1, moreover,

we may neglect the self-energy term
Ä
V + 2J2

E−V/8

ä
, and obtain the effctive Hamiltonian

for single-dimer motion:

HD = JD
∑
j

Ä
d̂†j+1d̂j +H.c.

ä
, (A.5)

with d̂j = âj âj+1 and JD ≡ J2

V−V/8 .



Appendix B

Critical disorder for the nearest-neighbor

model

In this Appendix we apply the analysis of fractal dimensions to evaluate the critical

disorder of MBL in the nearest-neighbor model. However, a standard finite-size scaling

method for a critical value Wc based on the D̄max
f results is problematic for a fragmented

Hilbert space. Selected fragments of different size may be not comparable due to the

different density of singlons, nearest-neighbor links, or other conserved quantities. This is

shown in Fig. B.1, where curves of different half-filled lattices do not intersect when W

increases. The major reason is that when varying the size of half-filled lattices, especially

when changing from even to odd values of L, the fragment that has the D̄max
f does not

possess a fixed singlon density. This problem is not present a lower filling, since the

fragment of D̄max
f is simply the l = 0 one, where the density of singlons is by definition

identical to the lattice filling. Another disadvantage of a half-filling lattice is that the

fragment with the largest fractal dimension is very small compared to the overall Hilbert

space. In contrast, the l = 0 fragment remains comparable to the whole Hilbert space as

the filling decreases.

Although for quarter-filling we can just evaluate systems with N/L = 4/16 and 5/20,

the results show an intersection of the curves, that permits an estimation of the critical

disorder Wc (see Fig. B.2). Figure B.2 (top left) shows Wc, for lattices with quarter filling

as a function of V/J . For V →∞, Wc/J ' 4, which is in good agreement with the results

in Ref. [167] (recall Sec. 4.5). Note that although Ref. [167] considered half-filling, the

density of movers in their selected block was N0/L = 1/4 − 1/L that approaches to 1/4

when L→∞.
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(a)

(d)(c)

(b)

Figure B.1: Curves of D̄max
f of different half-filled lattices, for V/J = 1 (a), V/J = 10

(b), V/J = 60 (c), and V/J = 100 (d). The unfixed density of siglons of the block that
determines D̄max

f leave the curves with no intersection (see text).
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(d)(c)

(b)(a)

Figure B.2: (a) Critical disorderWc as a function of V . The value ofWc is determined from
the intersection of the D̄max

f curves for different quarter-filled lattices. These intersections
are depicted in Figs. (c)-(d), for V/J = 1 (b), V/J = 60 (c), V/J = 100 (d). Contrary
to the half-filled cases, for a quarter filling the density of singlons is fixed in the block
that determines D̄max

f , allowing a finite-size analysis that matches well with the results
obtained in Ref. [167].
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Appendix C

Suppressed critical disorder in polar

lattice gases

In this Appendix we perform the analysis of fractal dimensions for 1D polar lattice

gases, and show that the critical disorder of nearest-neighbor model (Appendix B) can

be suppressed. Figure C.1 shows IPRf for two polar lattice gases with low disorder and

various V/J . The comparison with Fig. 4.6 shows clearly that the polar lattice gas is

much more localized due to the shattering effects. Furthermore, the shattering-increased

IPRf make the most delocalized fragment of the nearest-neighbor model (green shades)

not necessarily still the most delocalized one for a polar larrtce gas. To compare with the

critical disorder in Appendix B, we consider the ρ = 1/4 lattices and focus on the most

delocalized states, that is, the flat part where IPRf remains close to zero (circled area).

(a) (b)
V/J=��
V/J=��

V/J=�.�

remaining flat

Figure C.1: (a)
√

IPRf obtained from Eq. (5.1) with N/L = 7/14 and W/J = 0.25 for
large V /J. The states are arranged following the same order as in Fig. 4.6.
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Figure C.2 (a) and (b) shows the curves of averageed Df in these flats, as V/J in-

creases intersections that indicating Wc reduce to suppressed values. Though reliable

phase boundary is not available because of small system sizes, we still provide a phase

diagram here for a qualitative illustration. Figure C.2 (c) shows that the critical points sig-

nificantly decrease after the Hilbert-space start to shatter severely (V/J ∼ 50), indicating

localization with suppressed critical disorder.

(c)

(b)(a)

Figure C.2: (a), (b) Curves of D̄f for different ρ = 1/4 lattices, the average is obtain the
flat part of IPRf in the l = 0 fragment (see the main text). (c) The critical disorder,Wc,
as a function of V , for the nearest-neoghbor model, and for polar lattice gases.

Note that the flat part of IPRf shrink as V/J increases, estimations are made within

the regimes where the averaged Df are stable. For V/J . 4, the full fragment is flat since

there is no shattering effect, the average is taken over allDf in the fragment. For V/J = 10

and 20, the shattering effect is weak, the flat accounts for ∼ 80% of the fragment, and for

V/J = 30 and 40, the shattering becomes obvious, the rate reduces to ∼ 45% and ∼ 40%

respectively, and for V/J & 50, where the shattering is severe, the rate is ∼ 30%. For each

V/J , the intersections are stable when changing the corresponding percentage by ∼ ±2%.



Appendix D

Dimer bands for hard-core bosons in

square lattices

In this Appendix we evaluate the band structure of the peculiar decorated square

lattice (Fig. 6.8 (a)) that characterizes the dimer motion in hard-core systems of polar

particles in a square lattice. The decorated lattice possess four-site unit cells, with inter-

cell primitive vectors a0 = ex and a1 = ey. This implies that the first Brillouin zone and

the symmetry points are similar to those of an ordinary square lattice, i.e., Γ = (0, 0),

M = (π, 0), and K = (π, π) (see Fig. D.1 (a)).

Let d̂ nj denote the dimer operator whose center of mass locates at the nth site of the

unit cell j. The four internal states can be presented by the vector operator

~dj =


d̂ 0
j

d̂ 1
j

d̂ 2
j

d̂ 3
j

 . (D.1)

The effective Hamiltonian describing the decorated square lattice is HDS = Hcell+
∑

vHv,

where

Hcell = −J ′
∑
j

~d †j


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 ~dj, (D.2)

is given by the in-cell couplings, and Hv is the inter-cell hopping along the vector v. There
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are four cases, v0 = ex, v1 = ey, v2 = ex + ey, and v3 = ex − ey:

Hv0 = −
∑
j

î
J ′(d̂ 1†

j+ex
d̂ 0
j + d̂ 2†

j+ex
d̂ 3
j + H.c.) + J ′′(d̂ 2†

j+ex
d̂ 0
j + d̂ 1†

j+ex
d̂ 3
j + H.c.)

ó
,(D.3)

Hv1 = −
∑
j

î
J ′(d̂ 3†

j+ey
d̂ 0
j + d̂ 2†

j+ey
d̂ 1
j + H.c.) + J ′′(d̂ 2†

j+ey
d̂ 0
j + d̂ 3†

j+ey
d̂ 1
j + H.c.)

ó
,(D.4)

Hv2 = −J ′
∑
j

(d̂ 2†
j+ex+ey

d̂ 0
j + H.c.), (D.5)

Hv3 = −J ′
∑
j

(d̂ 1†
j+ex−ey d̂

3
j + H.c.). (D.6)

We may represent each cell using the basis of local eigenstates (i.e., the eigenstates of

Hcell): ~dj = U · ~aj, where

U =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 . (D.7)

This leads to the Hamiltonian for the decorated lattice

HDS = −J ′λ− J ′

2

∑
v

Ä
~a †j+vMv~aj + ~a †j M

T
v ~aj+v

ä
, (D.8)

where

λ =


3 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (D.9)

Mv0 =


1 + γ 0 0 −(1 + γ)

0 1− γ −(1− γ) 0

0 1− γ −(1− γ) 0

1 + γ 0 0 −(1 + γ)

 , (D.10)

Mv1 =


1 + γ −(1 + γ) 0 0

1 + γ −(1 + γ) 0 0

0 0 −(1− γ) 1− γ

0 0 −(1− γ) 1− γ

 , (D.11)
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(a) (b)

Figure D.1: (a) The first Brillouin zone of the decorated square lattice. (b) The four bands
given by Eq. (D.14). The two relatively flat bands have width ∼ 2J ′, while the others
have width ∼ 10J ′, thus two timescales are expected for a dimer of hard-core particles
expanding in square lattices.

Mv1 =
1

2


1 −1 1 −1

1 −1 1 −1

1 −1 1 −1

1 −1 1 −1

 , (D.12)

Mv3 =
1

2


1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

1 1 −1 −1

 . (D.13)

and γ = J ′′/J ′ ∼ 0.369.

For a given quasi-momentum, K, the Fourier transform ~aj = 1√
Ω
eiK·j~aK gives HDS(K)

as a 4× 4 matrix,

HDS(K) = −Jλ− J ′

2

3∑
n=0

e−iK·vnMvn + eiK·vnMT
vn . (D.14)

Along the high symmetry points the matrix decouples into two 2 × 2 matrices, where

the diagonalization becomes simple. For K along Γ → M dispersion is E(K)/J ′ =

−2 ± 2γcos(K2 ) and 2 ± (4 + 2γ)cos(K2 ), whereas for K along M → K the dispersion is

±2
»

1− (2γ − γ2)sin2(K2 ) (see Fig. D.1 (b)).
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