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Abstract 

Over the past six decades, many companies have discovered the potential of computer-controlled systems in 

the manufacturing industry. Overall, digitization can be identified as one of the main drivers of cost reduction 

in the manufacturing industry. However, recent advances in Artificial Intelligence indicate that there is still 

untapped potential in the use and analysis of data in industry. Many reports and surveys indicate that machine 

learning solutions are slowly adapted and that the process of implementation is decelerated by inefficiencies. 

The goal of this paper is the systematic analysis of successfully implemented machine learning solutions in 

manufacturing as well as the derivation of a more efficient implementation approach. For this, three use 

cases have been identified for in-depth analysis and a framework for systematic comparisons between 

differently implemented solutions is developed. In all three use cases it is possible to derive implementation 

patterns as well as to identify key variables which determine the success of implementation. The identified 

patterns show that similar machine learning problems within the same use case can be solved with similar 

solutions. The results provide a heuristic for future implementation attempts tackling problems of similar 

nature. 
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1. Introduction

In the past six decades, many companies have discovered the potential of computerized systems in the 

manufacturing industry. In the field of machine tools, for example, computerized numerical control (CNC) 

enables higher precision machining of more complex workpiece geometry and high repeatability of the 

achieved result [1]. Looking at the overall production facility, computer control of the equipment enables a 

significantly reduced production time of new components [1, 2]. At the same time, the introduction of 

computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided quality (CAQ), 

among others, led to a reduction in time-to-market of up to 50% [1]. Hence, during the last decades 

digitization can be identified as one of the main drivers of cost reduction in the entire manufacturing industry. 

Another advantageous side effect of digitization is the increasing generation of new data. For example, many 

sensors are installed in today's production machines to allow a more precise control of the machines. The 

hereby generated process data harbors the still largely untapped potential e.g., to make predictions about 
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component quality during the process. The analysis of the recorded process and machine data can enable 

measures to improve, for example, component quality, throughput time and manufacturing costs. 

Furthermore, the complete automation of complex tasks, e.g. dynamic order planning based on the measured 

real-time data by algorithms, is conceivable. [3]  

Despite the advantages of advanced data processing, the technical realization of it is not trivial. Traditional 

approaches of developing algorithms, which are based on imperative programming methods, are not target-

oriented due to the increasingly complex challenges of the connected adaptive production (CAP) [4]. Firstly, 

the collected data is often of unstructured nature, i.e. the data sources may vary in the recorded format, in 

the accuracy of the measurement, or in the unit [5]. Secondly, the large number of sensors within a machine 

leads to a very high dimensionality of the data set [5]. This can lead to problems in the calculation of standard 

computational operations. Uncovering the insights inherent in the data thus requires a novel approach to 

programming algorithms. 

Machine Learning (ML) methods offer the potential to circumvent problems of traditional programming [6]. 

The use of ML has three main advantages over classical methods of programming and is consequently 

promising to exploit in the CAP: [7] 

1. the ability to recognize complex relationships and uncover previously hidden causalities [6, 8], 

2. to adapt to dynamic environmental conditions [3, 6], 

3. to continuously improve analysis results [6, 9]. 

Although the general potential of ML is well known and the methods of ML are very well understood and 

described scientifically, the transfer to real applications is slow. According to a survey 2019 conducted by 

CAPGEMINI, the percentage of automotive companies using ML on a large scale is only 10% [10]. Although 

there are several successful pilot projects in industry, companies do not recognize all relevant fields of action 

of this technology [10, 11]. 

A possible cause of the slow adoption of Machine Learning Systems (MLS) is the difficulty in selecting the 

best algorithm and systematic data preparation [6]. Moreover, managers’ and employees’ lack of experience 

hinders the development and efficient use of MLS [11]. Currently, this leads to high inefficiencies in several 

following dimensions in the industry. Developing new MLS without a systematic approach leads to temporal 

inefficiencies. An operational MLS created through a trial-and-error approach may not be optimal and results 

in technological inefficiencies. Failure to replicate operational MLS or to take advantage of synergies in 

developing new MLS leads to systemic inefficiencies. Finally, companies overlook relevant new fields of 

application of the technology due to a lack of knowledge of the technological potentials, which can be 

described as organizational inefficiency. [11, 12] 

Therefore, this paper seeks to overcome the inefficiencies described above and to simplify the future 

identification and design process of MLS. Furthermore, this research aims to minimize the dimensions of 

possible inefficiencies mentioned in the previous section. For this reason, the goal of this paper is to identify 

successfully implemented MLS, to analyze them with respect to their implemented data analytics 

technologies, and to derive an implementation heuristic for new implementation endeavors in the CAP. 

For this, the paper is structured in six parts. Firstly, an initial hypothesis is formulated based on underlying 

physical properties. Secondly, a literature review is conducted. Thirdly, the relevant theoretical background 

knowledge is summarized based on the literature review. The methodological approach is outlined, and the 

results are derived in the following. Lastly, the results are discussed, and an outlook is given. 
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2. Hypothesis 

As outlined in Chapter I, the manufacturing industry is only slowly adopting ML solutions, despite their 

identified potential [10, 11]. As a direct consequence, this hinders established companies with mechanical 

engineering background to stay competitive and leaves cost reduction potentials unrealized [10]. Therefore, 

the industry is in need of a more efficient implementation approach which factors in and leverages 

knowledge of successfully implemented MLS [13]. 

A working MLS can be very complex and tailored to serve a specific purpose on a specific machine [6]. The 

“no-free-lunch theorem” states that “the only way one [algorithm] can outperform another is if it is 

specialized to the structure of the specific problem” [13]. From this, it can be hypothesized that similar MLS 

consist of similar building blocks that together constitute a pattern. Following this idea, a “divide and 

conquer” approach seems promising. For example, one popular problem is to predict the workpiece quality 

from sensor data of a CNC machine [3, 14]. Similar processes have similar underlying physical 

interrelationships and therefore similar data patterns on an abstract level [15, 16]. For this reason, it should 

be possible to tackle similar problems with a similar solution approach. Formulated more specifically to the 

given context, it should be possible to take existing solutions of MLS and “copy plus adapt” them to similar 

tasks, resulting in an efficient replication and implementation of new MLS. This hypothesis will be examined 

in the following chapters. 

3. Literature Review 

Following the hypothesis of the previous chapter, building blocks of MLS must be identified. For this reason, 

existing literature is analyzed to derive these MLS building blocks – in the following also referred to as 

characteristic components. The characteristic components of MLS are then used to derive a framework, 

which allows for a systematic comparison of different working MLS solutions as well as the search for 

patterns.  

The analysis of existing literature is divided into two parts: the object area and the target area. The object 

area is focusing on literature which is a necessary foundation of this paper. The analysis of the target area 

focusses on topics that are helpful to achieve the overall goal of this paper. Following this differentiation, 

the characteristic components of MLS as well as key areas, challenges, and untapped potential in the CAP 

lay the foundation for this paper. Respectively, the dimensions of the target area are the definition of a 

framework for the systematic analysis of different working MLS solutions as well as the derivation of patterns 

of working MLS solutions for given use cases. Figure 1 evaluates existing approaches from literature with 

respect to the dimensions of the object- and target area. Hereby the degree of fulfillment is indicated by 

Harvey balls. 
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Figure 1: Analysis of existing literature (split into object area and target area)  

[17, 18, 6, 19–21, 7, 22, 3, 23, 24, 5, 25] 

Figure 1 shows that the fundamentals of ML, including basic approaches to implement MLS, are well 

understood and described in literature (cf. A1-A5). The functionalities of different ML algorithms are 

explained as well as optimal data model properties are presented. Especially the works of GÉRON ET AL. and 

MÜLLER ET AL. focus the implementation of individual algorithms [6, 19]. The implementation focus is 

beneficial for this paper as several characteristic components of practical projects are discussed. In summary, 

the basic approach to MLS implementation is described. Nevertheless, each problem’s individuality still is 

a challenge. Often, this leads to implementation inefficiencies in practical endeavors.  

The second object area (key areas and challenges and untapped potential in the CAP) is satisfactorily 

characterized in the analyzed literature (cf. B10-B13). While different publications focus on different aspects 

of challenges in the CAP, the overall results can be considered as sufficient for the purpose of this paper. In 

detail, this means that key challenges of the CAP are identified and areas of untapped potential are identified 

(e.g. quality prediction, wear prediction, and production planning). Furthermore, the complexity of the 

manufacturing processes and the unstructured nature of the recorded process data are highlighted as 

challenges. 

Regarding the target area’s dimension definition of a systematic framework the framework of SCHUH ET AL. 

is to be highlighted, as several dimensions of the analysis are systematically elaborated [7]. However, no 

dimension in the framework proposed by the authors relates to data properties or performance metrics. As 

stated in the works of BURKOV ET AL. and MÜLLER ET AL., data properties of MLS have a great impact on 

their solution potential [18, 19]. Therefore, the framework presented by SCHUH ET AL. is not optimal for this 
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paper. Many other publications present (often only specifically useful) characteristic components of MLS 

(cf. C2-C12). Therefore, while many approaches in the existing literature provide elements of a framework, 

this first dimension of the target area is considered as not fully covered by existing literature and a refined 

framework must be developed. 

The derivation of patterns of MLS solutions as the second category of the target area builds upon the first as 

a systematic framework has to be utilized in order to enable the search for patterns. Since no systematic 

framework is defined, consequently the derivation of patterns cannot be regarded as completely fulfilled 

either (cf. D6-D9). 

Based on the above analysis two main research deficits are derived. Firstly, existing literature lacks a 

complete and standardized framework. The framework of SCHUH ET AL. e.g., lacks characteristic data 

properties and performance metrics. Secondly, patterns of working MLS solutions have not been derived in 

existing literature. Following the hypothesis stated in Chapter II that similar problems can be tackled by 

similar solution approaches, working MLS solutions have to be analyzed for patterns which then can be 

transferred to similar problems. 

4. Theoretical Background 

As mentioned previously, the framework of SCHUH ET AL. as well as other characteristic components are 

essential to the goal of this paper. Taken together, these characteristic components can form a framework 

useful to compare differently implemented MLS. The necessity for additional framework elements arises 

from the following: Some implementation variables (not mentioned by SCHUH ET AL.), e.g. the data set size, 

can be cost drivers in real-world applications and are therefore of interest [26]. 

4.1 Framework of SCHUH ET AL. [7, 21]. 

SCHUH ET AL. derive a framework for the systematic description of MLS and use it exemplarily for an 

analysis of a MLS [7, 21]. In the following, the framework and its core elements are presented briefly. 

The upper part of the framework serves to visualize the diverse influences and backgrounds of Artificial 

Intelligence (AI). Likewise, the research area of ML is classified into that of AI. SCHUH ET AL. identify the 

following dimensions to enable a systematic comparison of MLS [7, 21]: ML strategy, ML goal, ML 

implementation procedure, ML algorithm. According to Figure 2, each of the dimensions presented can have 

one expression only. The individuality of a single MLS is abstracted by using the framework. The specific 

combination of the characteristics of all dimensions thus form a unique path and enable a systematic 

comparability of different MLS. 
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Figure 2: Framework proposed by SCHUH ET AL. [21] (Legend: Please refer to paper by SCHUH ET AL. [21]) 

4.2 Characteristic components by WUEST ET AL. [5] 

The importance of the acquired data is highlighted in literature. Challenges are both the relevance of the data 

and the most optimal representation of the ingested data within a data model. WUEST ET AL. identify several 

characteristic components of MLS that can have a significant impact on the solution potential. Those are the 

validation of the selected ML algorithm (by trying and excluding other tested ML algorithms), the data 

format, the data preprocessing, and the data set size. [5, 6] The authors present characteristic components 

for MLS which measure characteristics of the ingested data. Since this translates into the overall prediction 

quality, these characteristic components are relevant for the purpose of this paper. 

4.3 Characteristic components by BURKOV ET AL. and MÜLLER ET AL. [18, 19] 

BURKOV ET AL. as well as MÜLLER ET AL. identify the importance of quantifying the performance of a 

functioning MLS. Both, metrics for the prediction quality as well as metrics on prediction and training speed 

are derived. The authors identify the performance metrics R2 (for regressions), prediction accuracy (for 

classifications), training speed, and prediction speed. [18, 19] They state that there are different performance 

metrics that are characteristic of MLS. These metrics are of use for the goal of this paper as they give an 

indication of potential future performance of identified MLS patterns. 

From the framework of SCHUH ET AL. as well as from the characteristic components of other authors a subset 

is chosen as part of the refined framework in the next chapter. This refined framework will be the foundation 

for the analysis and the results derived in Chapter VI. 

5. Methodology 

In this chapter the approach and the procedure used for the analyses of working MLS solutions in the 

following chapter is outlined. As described in the previous chapters, the goal of this paper is the 

simplification of implementing new MLS. It is hypothesized that similar problems might be efficiently 

tackled by similar solution approaches. Consequently, a search for patterns is necessary to prove or disprove 
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this hypothesis. The underlying methodology will be explained in the following paragraphs and is split into 

four steps: 

1. Determination of a suitable framework 

2. Definition of a procedure for pattern search 

3. Identification and selection of use cases 

4. Literature analysis 

The presented methodology is not considered without alternative, however, the approach to search for 

patterns had much success in the past, especially in the fields of design and action research [27]. Therefore, 

the above-mentioned steps are logically valid to produce a repeatable methodology in search of patterns in 

MLS. 

For the development of a suitable framework, which is as complex as necessary and as effective as possible, 

it is crucial to leverage the most suitable literature and adapt it to the goal of this paper. As described in the 

previous chapters, SCHUH ET AL. have outlined a framework for MLS with many relevant characteristic 

components. However, this framework must be adapted, as it lacks important components, e.g., the data set 

size. Moreover, some parts of the framework are included for illustrational purposes, e.g., the influence of 

the development of AI. These parts will be removed in this work as they do not contribute to finding patterns. 

In the framework of SCHUH ET AL., the dimension implementation procedure e.g., consists of the sub-aspects 

programming language and programming library. However, these cannot be taken as characteristic 

components as the same solution can be implemented with different programming languages for example 

[28]. Two congruent approaches would have different manifestations regarding the characteristic 

programming language and therefore would lead to different paths in the framework. This would be a direct 

contradiction to the approach of this paper of finding patterns by having similar solutions resulting in similar 

paths in the framework. Therefore, these characteristic components will also be removed in this work as they 

do not contribute to finding patterns as well. 

As explained previously, WUEST ET AL. and BURKOV ET AL. have identified additional relevant characteristic 

components of MLS (e.g. characteristic data components and performance metrics) [5, 18]. One of the main 

challenges in the CAP is the preparation of high-quality data [3, 5]. Since data quality is essential for MLS 

performance, it is useful to measure these manifestations in form of characteristic components. Of special 

interest are the two characteristic components data preprocessing and data set size, because they often 

determine a significant part of the effort/cost in real-world applications. The former describes – if any data 

preprocessing has been performed – which technique(s) have been used. The latter describes the data set 

size. Often, more data leads to better results of a MLS. However, such data generation for training purposes 

is mostly costly in industrial applications. Therefore, a good performing MLS with a smaller data set size is 

regarded as ideal. Including performance metrics to the bespoke framework is of high use because this way 

the success of a given implemented MLS can be quantified. It is not the goal of this work to derive patterns 

for average MLS, as the replication of average MLS will very likely result in another average MLS. 

Therefore, a distinction between the performance of an analyzed MLS is necessary. This is achieved by 

performance metrics. As one of the most widely used performance metrics, the coefficient of determination 

R2 is a good characteristic component to measure performance of an implemented MLS [29]. 

In conclusion, the following six characteristic components of a successfully implemented MLS will be tied 

together in a framework. This framework will be used in the following to characterize MLS solutions. It 

serves to systematically compare various implemented MLS solutions. 
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Table 1: Bespoke framework dimensions 

Dimensions & Results 

Characteristic Component Description Source 

Machine learning strategy Implementation approach [7] 

Machine learning goal Goal of MLS [7] 

ML algorithm Underlying mathematical algorithm [7] 

Dataset size Data set size [5] 

Data preprocessing Method of data pre-processing [5] 

R2 Overall performance metric [19] 

 

The framework presented above is used for the analysis of all MLS covered in this research. In this paper 

three different use cases based on promising impact to the CAP are selected and their characteristic 

components are analyzed for patterns. The first use case to be analyzed is quality prediction. It is a promising 

field of research because modern CNC turning and milling machines are already equipped with many 

sensors. Thus, the required data basis is already available. However, the potential in this data is still largely 

untapped. [24] Connected to this is the second use case wear prediction. Using the above arguments, 

generated data is usually not used to predict tool wear. However, implemented MLS solutions can help 

reduce costs and machine downtimes and at the same time improve workpiece quality. [24] Production 

planning is explored as a third use case. Especially complex systems and production chains can profit from 

a more analytical approach. [3] From the perspective of the authors the three use cases described are both of 

significant importance to the CAP and potentially to be addressed with MLS. Additionally, there are a variety 

of different other use cases which are also suitable for selection, but these three were selected for initial 

analysis. Other use cases can be addressed in future research. 

Following the definition of the three overarching use cases, a targeted search for potentially helpful literature 

is conducted in order to identify successfully implemented MLS. Firstly, the respective use case is combined 

with several keywords related to MLS. These keywords range from the simple addition ML to special 

algorithms. Thus, a list of possible publications for the respective use case is compiled. In a next step, a 

selection based on several criteria aiming to select publications of high quality is conducted. Criteria for the 

inclusion of a publication in the final selection are e.g., topic fit, extensive documentation, actual application 

of the ML methods, performance quality of the MLS used, validation of the MLS, and number of citations 

[30]. At this stage, no detailed content evaluation is performed but a rough selection of literature in a 

particular topic area is conducted in order to find as many successfully implemented MLS as possible. In a 

next step, each MLS of the respective literature foundation is examined in detail as well as characterized 

based on the framework presented. All examined and characterized publications can be found in the 

appendix. Finally, analyzing the characteristic components of all selected papers with respect to a particular 

use case, patterns can be identified. This is done by determining an “overlap percentage”, i.e., how many 

percent of other papers have the same characteristic component. 

In this regard, it must be disclaimed that there might be more patterns in the selected use cases. In the 

following chapters, three patterns from different use case scenarios are presented. However, both the number 

of all possible use case scenarios and the potential set of all patterns within these scenarios exceed the 

selection presented in this paper. 
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6. Results 

As described in the previous chapter, the search for patterns and the analysis of the underlying literature 

focusses on three use case areas: Quality prediction, tool wear prediction, and production planning. In the 

following paragraphs, the findings will be presented for each use case. 

6.1 Quality prediction in metal cutting 

Firstly, machine learning systems in the field of quality prediction of metal cutting in manufacturing are 

specifically investigated. [3] 

Most of the publications deal with turning, milling, or drilling of steel or an alloy [22, 31–36]. The underlying 

objective of an MLS in this context is to predict the quality of the resulting part or the part surface based on 

process variables or parameters [31, 37]. In this context, process parameters refer to variables that remain 

constant throughout the entire manufacturing process, for example the feed rate in turning or the peripheral 

speed in milling [37]. Process variables are variables that are recorded during the manufacturing process and 

are typically not constant over time, for example the cutting force [38]. Both process variables and process 

parameters as well as their statistically characteristic values serve as input data set for the respective MLS. 

[3, 5, 21] 

Since the goal is quality prediction, the quality must be numerically defined and measurable. In almost all 

publications, a surface roughness parameter was taken as the target value for this purpose, usually the 

average surface finish Ra or the averaged roughness depth Rz (variables named after standard material 

properties literature) [12, 39]. From several test series, it was thus possible to create training data sets from 

which the MLS generates a quality prediction model [18]. The test data set is then used to check how good 

the prediction model is on the basis of new data [19]. In the context of the publications examined, the 

following pattern can be identified (values for the coverage can be derived from the appendix): 

 

Table 2: Pattern in quality prediction 

Framework 

Analysis 

Dimensions & Results 

Framework Dimension Specification Coverage 

(1) ML learning strategy Supervised Learning 100% 

(2) ML learning goal Regression 94% 

(3) ML algorithm Feedforward Neural Network 75% 

(4) Dataset size 
≤ 34 for training purposes 

≤ 15 for testing purposes 
83% 

(5) Data preprocessing No 75% 

(6) R2 > 98% 73% 

 

6.2 Tool wear prediction 

Similar to the basic approach of quality prediction, the goal is the prediction of a property based on the 

process data. For this purpose, MLS are trained to classify tool wear or to regress it against a metric. [40] 

The prediction of tool wear primarily serves to avoid quality declines due to excessively worn cutting edges 

or sudden tool failure [41]. Thus, tool wear prediction should not be considered as a direct value added, but 

more as an indirect value-added process. The potential of this use case is enormous, as seen in several 

publications [40, 42]. More specifically, several publications successfully attempted to make the prediction 

based on the raw data from multiple sensors alone [42–44]. This saves the time-consuming step of data 

preparation and in some cases feature engineering methods can be automated [40]. Both are crucial to 
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leverage the potential of quality declines and avoid downtimes connected to this. In the context of the 

publications studied, the following pattern can be identified. 

 

Table 3: Pattern in tool wear prediction 

Framework 

Analysis 

Dimensions & Results 

Framework Dimension Specification Coverage 

(1) ML learning strategy Supervised Learning 100% 

(2) ML learning goal Regression 60% 

(3) ML algorithm Long Short-Term Memory (LSTM) 60% 

(4) Dataset size ≤ 500 time series 83% 

(5) Data preprocessing Yes, feature extraction 67% 

(6) R2 ≥ 81,3% 100% 

 

6.3 Automated production planning 

This use case differs from the two previously described in that the focus is not on a specific manufacturing 

process, but on the organization and interaction of different manufacturing processes [5]. Production 

planning generally deals with the question of how the production of several, usually different products can 

be carried out as optimally as possible [3]. One of the challenges of production planning is job-shop 

scheduling [45, 25]. 

The goal of job-shop scheduling is to identify the optimal allocation of production steps to machines. This 

allocation is carried out under technological boundary conditions (machine capacity, fixed production 

sequence), temporal boundary conditions (production times), logistic boundary conditions (local distribution 

of machines) as well as quantitative boundary conditions (product quantity to be produced). [3, 45] The 

abstract formulation of this problem is generally known as the job-shop scheduling problem (JSP) [45]. The 

JSP is a nondeterministic polynomial time-hard problem, which is particularly difficult to solve using 

traditional programming methods [5, 45, 46]. 

In addition to the mathematically derivable difficulty of solving the JSP, another challenge of machine 

scheduling is evident in practice: Responding to unforeseen events [5]. Bottlenecks in the supply chain, 

sudden machine breakdowns, or new high-priority orders – all of these events require rapid rescheduling of 

existing machine allocation schedules to ensure optimal allocation of intermediate products to resources. 

Consequently, the inclusion of unforeseen events would be a reasonable requirement for modern adaptive 

production planning [3]. 

In order to solve the machine occupancy scheduling problem while implementing the response to unforeseen 

events, the reinforcement learning strategy was used in all the publications studied [23, 47–56]. In interaction 

with a defined environment, the basic goal of reinforcement learning is the derivation of an optimal action 

strategy [20]. The action strategy is guided by a reward function, which is defined by the environment. The 

goal is to maximize the expected reward. [6, 18, 20] For automated production planning, the following 

pattern can be identified based on all publications examined: 
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Table 4: Pattern in production planning 

Framework 

Analysis 

Dimensions & Results 

Framework Dimension Specification Coverage 

(1) ML learning strategy Reinforcement Learning 100% 

(2) ML learning goal n/a n/a 

(3) ML algorithm Q-learning algorithm 90.9% 

(4) Data set size n/a n/a 

(5) Data preprocessing Yes, by construction of the data model 100% 

(6) 
Performance assessment 

(R2 cannot be calculated) 
Significantly better than heuristic methods 80% 

 

In contrast to supervised and unsupervised ML methods, the ML learning goal for reinforcement learning is 

undefined according to SCHUH ET AL. [7] Furthermore, no data set size can be defined as this metric does 

not exist for reinforcement learning. For this particular ML learning strategy, the “data set” is inherent in the 

model which simulates the environment and the reward. For this reason, metric (4) of the table above is not 

applicable here. 

From a practical point of view, previously identified patterns should enable users to develop new MLS more 

quickly. For example, for the first use case (quality prediction), the characteristic components (1) – (5) would 

be designing guidelines for the MLS. Especially the algorithm selection and the feature engineering might 

have a beneficial impact on the implementation efficiency. Characteristic component (6) will then give an 

expectation of the quality of the resulting MLS. 

7. Discussion and Outlook 

In summary, the goal of this paper was to identify successfully implemented MLS, to analyze them with 

respect to their implemented data analytics technologies, and to derive implementation heuristics for new 

implementation endeavors in the CAP. In Chapter I, it was outlined that the rising availability of sensor data 

and connectivity of machines drive the application of MLS that harbor significant untapped potential for cost 

reductions and production efficiencies. In Chapter II, it was found that the process of successfully 

implementing new ML solutions can be further improved. It was hypothesized that similar processes have 

similar underlying physical interrelationships, therefore similar solution approaches to similar problems 

should be possible. In Chapter III, existing literature was leveraged to build a framework for the analysis of 

MLS with respect to different use cases. Important characteristic components of MLS have been identified. 

Chapter IV clarified the methodology of this paper and in Chapter V, three patterns have been identified, 

which now can be utilized by practitioners when implementing MLS. Based on these results, further 

investigations need to be carried out. The identification of more patterns in other areas of the CAP is for 

example conceivable. This would help augmenting the speed of adoption and implementation of new MLS 

in the manufacturing industry. 

Certain steps in the proposed methodology should be critically reflected. Firstly, the bespoke framework has 

been tailored to serve the purpose of this paper. It is also possible to derive a different, i.e., more detailed 

framework with more framework elements, and still conduct a search for patterns. Secondly, the amount of 

analyzed literature varies for each of the three analyzed use cases. In order to augment the validity of each 

pattern, the amount of analyzed literature for each use case could be further increased. 

In summary, there is a need for further research in the use of MLS in the CAP. Possible directions for this 

are the areas of resource optimization, lead time prediction, fault diagnosis, process optimization, or machine 

condition monitoring, as all of these areas have a potentially high impact and are still dominated by 
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traditional methods of optimization. Also, the identification of further patterns in the already presented 

application areas of MLS is conceivable. 

 

Appendix 

In the following three parts of the appendix, all the analyzed publications are presented. Furthermore, for 

each analyzed publication the manifestation of each framework dimension is outlined. The coverage of each 

framework dimension presented in Chapter VI is a direct derivation of the appended analysis. 

 

A – Sources and analysis of quality prediction papers 

Table 5: Literature – Quality prediction 

Analyzed 

Paper 

Dimensions & Manifestations 

(1) ML 

Learning 

Strategy 

(2) ML 

learning goal 
(3) ML algorithm (4) Dataset size 

(5) Data 

preprocessing 
(6) R2 

ACAYABA ET 

AL. [31] 

Supervised 

learning 

Regression Feedforward 

neural network 

(FNN) 

273 training, 

363 total 

Cut-off of most 

extreme outliers 

(5%) 

98,0% 

BEATRICE ET 

AL. [32] 

Supervised 

learning 

Regression FNN 24 training, 27 total No 96,0% 

CHANDRASEK

ARAN ET AL. 

[33] 

Supervised 

learning 

Regression FNN 20 training, 25 total No 94,2% 

CODJO ET AL. 

[34] 

Supervised 

learning 

Classification Support vector 

machines (SVM) 

35 training, 

14 testing 

Feature selection & 

normalization 

91,4% 

DAS ET AL. 

[22] 

Supervised 

learning 

Regression FNN 25 training, 

31 total 

Normalization Not 

calculated 

MIA ET AL. 

[35] 

Supervised 

learning 

Regression FNN 34 training, 

14 testing 

No 99,7% 

MIA ET AL. 

[36] 

Supervised 

learning 

Regression FNN 27 training, 9 testing No 97,5% 

PIMENOV ET 

AL. [57] 

Supervised 

learning 

Regression Random Forest 

(RF) 

95 training, 105 total No Not 

calculated 

QIN ET AL. 

[58] 

Supervised 

learning 

Regression FNN 30 training, 

10 testing 

No 98,4% 

SAHOO ET AL. 

[59] 

Supervised 

learning 

Regression FNN 22 training, 

5 testing 

No 99,0% 

SCHUH ET AL. 

[21] 

Supervised 

learning 

Regression Extra Tree 

Regressor (XT) 

120 training, 

40 testing 

Feature extraction & 

feature selection 

91,7% 

SENTHILKUM

AR ET AL. [60] 

Supervised 

learning 

Regression FNN 18 training No 99,0% 

TEBASSI ET 

AL. [61] 

Supervised 

learning 

Regression FNN 10 training, 5 testing No 98,9% 

VENKATA ET 

AL. [43] 

Supervised 

learning 

Regression FNN 54 training, 

15 testing 

Normalization 95,5% 

VRABEL ET 

AL. [62] 

Supervised 

learning 

Regression FNN 15 training, 

14 testing, 

14 validation 

No 99,8% 

ZHANG ET AL. 

[63] 

Supervised 

learning 

Regression LS-SVM (least 

squares SVM) 

15 training, 

19 testing 

No 94,4% 

Total       

Manifest-

ation 

Supervised 

learning 

Regression FNN ≤ 34 training, 

≤ 15 testing 

No > 98% 

Coverage 100% 94% 75% 83%a 75%a 73%b 

a. based on papers using the FNN algorithm 

b. based on papers using the FNN algorithm and calculating R2 
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B – Sources and analysis of tool wear prediction papers 

Table 6: Literature – Tool wear prediction 

Analyzed 

Paper 

Dimensions & Manifestations 

(1) ML 

Learning 

Strategy 

(2) ML 

learning goal 
(3) ML algorithm (4) Dataset size 

(5) Data 

preprocessing 
(6) R2 

AN ET AL. 

[42] 

Supervised 

learning 

Regression Convolutional 

neural network 

(CNN) + Long 

short-term 

memory (LSTM) 

500 x 0.5min 

samples 

No (raw sensor data) 90,0% 

CHEN ET AL. 

[64] 

Supervised 

learning 

Classification CNN + 

bidirectional long 

short-term 

memory 

(BiLSTM) 

network with an 

attention 

mechanism 

(=CABLSTM) 

1320 data samples 

with 3 physical 

properties 

Feature extraction 97,0% 

HASSAN ET 

AL. [65] 

Supervised 

learning 

Classification LSTM 160 data samples 

with 5 signals each 

Feature extraction 98,0% 

KLANCNIK ET 

AL. [66] 

Supervised 

learning 

Classification Artificial neural 

network (ANN) 

18 samples with 108 

features each 

Feature extraction 92,6% 

KUREK ET AL. 

[67] 

Supervised 

learning 

Classification LSTM 242 Time series of 5 

different physical 

quantities 

Discrete Fourier 

transformation 
81,3% 

PROTEAU ET 

AL. [68] 

Supervised 

learning 

Regression LSTM 16 samples with 

complete time series 

No, but dataset is 

"already filtered" 
90,0% 

VENKATA ET 

AL. [43] 

Supervised 

learning 

Regression ANN 54 training samples, 

23 testing/validation 

samples 

No 91,7% 

WU ET AL. 

[40] 

Supervised 

learning 

Regression Random Forest 

(RF) 

285 training 

samples, 

30 testing samples 

Feature extraction 99,2% 

WU ET AL. 

[69] 

Supervised 

learning 

Regression RF 315 data samples 

with 

7 signals each 

Feature extraction 99,0% 

ZHAO ET AL. 

[44] 

Supervised 

learning 

Regression CNN + 

CABLSTM 

6 signals, 

315 data samples in 

total 

No Not 

calculated 

Total       

Manifest-

ation 

Supervised 

learning 

Regression adapted LSTM ≤ 500 time series 

samples 

Yes, feature 

extraction 
≥ 81,3% 

Coverage 100% 60% 60% 83%c 67%c 100%d 

c. based on papers using the LSTM algorithm 

d. based on papers using the LSTM algorithm and calculating R2 
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C – Sources and analysis of production planning papers 

Table 7: Literature – Production planning 

Analyzed 

Paper 

Dimensions & Manifestations 

(1) ML 

Learning 

Strategy 

(2) ML 

learning 

goal 

(3) ML algorithm 
(4) Dataset 

size 

(5) Data 

preprocessing 
(6) Performance assessment 

KUHNLE ET 

AL. [47] 

Reinforcement 

learning (RL) 

not appli-

cable (n/a) 

Trust Region 

Policy 

Optimization 

(TRPO)-based 

RL-algorithm 

not appli-

cable (n/a) 

Yes, through 

construction of data 

model 

"promising results" 

OU ET AL. 

[48] 

Reinforcement 

learning 

n/a Q-learning 

algorithm (QLA) 

n/a Yes, through 

construction of data 

model 

"significantly outperforms 

other policies" 

PARK ET AL. 

[49] 

Reinforcement 

learning 

n/a QLA n/a Yes, through 

construction of data 

model 

"the proposed method 

outperformed the other 

baseline methods" 

QU ET AL. 

[50] 

Reinforcement 

learning 

n/a approximate QLA n/a Yes, through 

construction of data 

model 

"we compare the result of 

this algorithm with heuristic 

methods and a multi-agent 

approach. It is verified that 

this method in general 

provides better results […] in 

complex settings" 

QU ET AL. 

[51] 

Reinforcement 

learning 

n/a multi-agent 

approximate QLA 

n/a Yes, through 

construction of data 

model 

"successfully applied 

approach which can help to 

optimally assign workers and 

make up for a deficiency" 

QU ET AL. 

[52] 

Reinforcement 

learning 

n/a approximate QLA n/a Yes, through 

construction of data 

model 

"The experimental results 

show that the learned 

dispatching rules are more 

cost efficient than most 

heuristic rules" 

SHAHRABI ET 

AL. [53] 

Reinforcement 

learning 

n/a Deep Q-learning 

algorithm (DQL) 

+ variable neigh-

bourhood search 

(VNS) 

n/a Yes, through 

construction of data 

model 

"performance of the 

proposed method is 

significantly better than those 

of the common dispatching 

rules and GVNS" 

SHIUE ET AL. 

[23] 

Reinforcement 

learning 

n/a QLA n/a Yes, through 

construction of data 

model 

"the proposed RL-based 

MDRs approach was 

significantly better than the 

SOM-based MDRs, SDR 

approaches, and other 

dispatching strategies." 

WANG ET AL. 

[54] 

Reinforcement 

learning 

n/a DQL + multi-

agent 

reinforcement 

learning adaption 

(MARL) 

n/a Yes, through 

construction of data 

model 

"outperforms traditional 

scheduling algorithms in 

terms of optimality of 

scheduling plans generated" 

WASCHNECK 

ET AL. [55] 

Reinforcement 

learning 

n/a DQL n/a Yes, through 

construction of data 

model 

"Comparable to human with 

expert knowledge" 

WASCHNECK 

ET AL. [56] 

Reinforcement 

learning 

n/a DQL n/a Yes, through 

construction of data 

model 

"The system automatically 

develops global optimal 

scheduling solutions without 

human intervention or any 

prior expert knowledge" 

Total       

Manifest-

ation 

Reinforcement 

Learning 

n/a Variant of Q-

learning algorithm 

n/a Yes, through 

construction of data 

model 

Significantly better than 

heuristic methods 

Coverage 100% n/a 90,9% n/a 100% 80%e 

e. based on papers using the Q-learning algorithm 

 



 15 

 

References 

[1] Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., Georgoulias, K., 2009. Digital 

manufacturing: History, perspectives, and outlook. Proceedings of the Institution of Mechanical Engineers, Part 

B: Journal of Engineering Manufacture 223 (5), 451–462. 

[2] Heisel, U., Krug, R., 1989. Meßtastereinsatz in CNC-Maschinen reduziert Rüstzeitaufwand. 

[3] Mayr, A., Kißkalt, D., Meiners, M., Lutz, B., Schäfer, F., Seidel, R., Selmaier, A., Fuchs, J., Metzner, M., 

Blank, A., Franke, J., 2019. Machine Learning in Production – Potentials, Challenges and Exemplary 

Applications. Procedia CIRP 86, 49–54. 

[4] Parthasarathy, S., 2019. Difference between Traditional programming versus Machine Learning from a PM 

perspective. Product Coalition, April 22. 

[5] Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D., 2016. Machine learning in manufacturing: advantages, 

challenges, and applications. Production & Manufacturing Research 4 (1), 23–45. 

[6] Géron, A., 2017. Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools, and 

techniques to build intelligent systems, First edition ed. O'Reilly Media, Beijing, Boston. 

[7] Schuh, G., Scholz, P., 2019 - 2019. Development of a Framework for the Systematic Identification of AI 

Application Patterns in the Manufacturing Industry, in: 2019 Portland International Conference on Management 

of Engineering and Technology (PICMET). 2019 Portland International Conference on Management of 

Engineering and Technology (PICMET), Portland, OR, USA. 25.08.2019 - 29.08.2019. IEEE, pp. 1–8. 

[8] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E., 2015. Deep 

learning applications and challenges in big data analytics. Journal of Big Data 2 (1). 

[9] McKinsey Global Institute, 2017. Artificial Intelligence - The next digital frontier? McKinsey Global Institute, 

1–80. 

[10] Capgemini Research Institute, 2019. Scaling AI in Automotive Industry, 1–36. 

[11] Rohrback, T., 2017. Führungskräfte bremsen digitale Transformation aus. https://www.scope-online.de/smart-

industry/industrie-4-0--fuehrungskraefte-bremsen-digitale-transformation-aus.htm. Accessed 17 June 2020. 

[12] Schlageter, L., Rateitschak-Plüss, E.M., Schwarz, J.P., 1996. Root surface smoothness or roughness following 

open debridement. An in vivo study. Journal of Clinical Periodontology 23 (5), 460–464. 

[13] Ho, Y.C., Pepyne, D.L., 2002. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. Journal 

of Optimization Theory and Applications 115 (3), 549–570. 

[14] McKinsey Global Institute, 2018. Visualizing the uses and potential impact of AI and other analytics | 

McKinsey. https://www.mckinsey.com/featured-insights/artificial-intelligence/visualizing-the-uses-and-

potential-impact-of-ai-and-other-analytics. Accessed 16 June 2020. 

[15] Klocke, F., König, W., 2008. Fertigungsverfahren 1: Drehen, Fräsen, Bohren, 8 Aufl. ed. Springer-Verlag, 

Berlin, Heidelberg. 

[16] Surmann, T., 2006. Geometrisch-physikalische Simulation der Prozessdynamik für das fünfachsige Fräsen von 

Freiformflächen. Zugl.: Dortmund, Univ., Diss., 2005. Vulkan-Verl., Essen. 

[17] Hurwitz, J., Kirsch, D., 2018. Machine Learning for Dummies, IBM Limited Edition ed. John Wiley & Sons, 

Hoboken, NJ. 

[18] Burkov, A., 2019. The hundred-page machine learning book. 

[19] Müller, A.C., Guido, S., 2017. Introduction to machine learning with Python: A guide for data scientists, First 

edition ed. O'Reilly Media, Sebastopol, CA. 

[20] Raschka, S., Mirjalili, V., 2018. Python machine learning: Machine learning and deep learning with Python, 

scikit-learn, and TensorFlow, Second edition ed. Packt Publishing, Birmingham, Mumbai. 

[21] Schuh, G., Scholz, P., Schorr, S., Harman, D., Möller, M., Heib, J., Bähre, D., 11232019. Prediction of 

Workpiece Quality: An Application of Machine Learning in Manufacturing Industry, in: 6th International 

Conference on Computer Science, Engineering and Information Technology (CSEIT-2019). 6th International 

Conference on Computer Science, Engineering and Information Technology. 23/11/2019. Aircc Publishing 

Corporation, pp. 189–202. 

[22] Das, B., Roy, S., Rai, R.N., Saha, S.C., 2015. Studies on Effect of Cutting Parameters on Surface Roughness of 

Al-Cu-TiC MMCs: An Artificial Neural Network Approach. Procedia Computer Science 45, 745–752. 

[23] Shiue, Y.-R., Lee, K.-C., Su, C.-T., 2018. Real-time scheduling for a smart factory using a reinforcement 

learning approach. Computers & Industrial Engineering 125, 604–614. 



 16 

 

[24] McKinsey Digital, 2017. Smartening up with artificial intelligence, 1–52. 

[25] Khan, A., Turowski, K., 2016. A Survey of Current Challenges in Manufacturing Industry and Preparation for 

Industry 4.0, in: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (Eds.), Proceedings of the First 

International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), vol. 450. 

Springer International Publishing, Cham, pp. 15–26. 

[26] Gaur, M., 2014. Performance Evaluation of Machine Learning Techniques using Software Cost Drivers. IJCA 

89 (16), 10–18. 

[27] Dixon, D., 2012. Analysis Tool or Research Methodology: Is There an Epistemology for Patterns?, in: Berry, 

D.M. (Ed.), Understanding digital humanities. Palgrave Macmillan, Houndmills, New York, NY, pp. 191–209. 

[28] Geek, 2017. Top 5 best Programming Languages for Artificial Intelligence field - GeeksforGeeks. 

https://www.geeksforgeeks.org/top-5-best-programming-languages-for-artificial-intelligence-field/. Accessed 

25 June 2020. 

[29] Seif, G., 2018. The 5 Basic Statistics Concepts Data Scientists Need to Know. Towards Data Science, October 

22. 

[30] V. Knight, L., A. Steinbach, T., 2008. Selecting an Appropriate Publication Outlet: A Comprehensive Model of 

Journal Selection Criteria for Researchers in a Broad Range of Academic Disciplines. IJDS 3, 59–79. 

[31] Acayaba, G.M.A., Escalona, P.M.d., 2015. Prediction of surface roughness in low speed turning of AISI316 

austenitic stainless steel. CIRP Journal of Manufacturing Science and Technology 11, 62–67. 

[32] Beatrice, B.A., Kirubakaran, E., Thangaiah, P.R.J., Wins, K.L.D., 2014. Surface Roughness Prediction using 

Artificial Neural Network in Hard Turning of AISI H13 Steel with Minimal Cutting Fluid Application. Procedia 

Engineering 97, 205–211. 

[33] Chandrasekaran, M., Devarasiddappa, D., 2014. Artificial neural network modeling for surface roughness 

prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis. Adv produc 

engineer manag 9 (2), 59–70. 

[34] Codjo, L., Jaafar, M., 2018. Milling diagnosis using machine learning techniques toward Industry 4.0. 

DX@Safeprocess 2018. 

[35] Mia, M., Dhar, N.R., 2016. Prediction of surface roughness in hard turning under high pressure coolant using 

Artificial Neural Network. Measurement 92, 464–474. 

[36] Mia, M., Razi, M.H., Ahmad, I., Mostafa, R., Rahman, S.M.S., Ahmed, D.H., Dey, P.R., Dhar, N.R., 2017. 

Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial 

neural network. Int J Adv Manuf Technol 91 (9-12), 3211–3223. 

[37] Campanelli, S.L., Ludovico, A.D., Bonserio, C., Cavalluzzi, P., Cinquepalmi, M., 2007. Experimental analysis 

of the laser milling process parameters. Journal of Materials Processing Technology 191 (1-3), 220–223. 

[38] Diei, E.N., Dornfeld, D.A., 1987. Acoustic Emission from the Face Milling Process—the Effects of Process 

Variables. J. Eng. Ind 109 (2), 92–99. 

[39] Goodhand, M.N., Walton, K., Blunt, L., Lung, H.W., Miller, R.J., Marsden, R., 2016. The Limitations of Using 

“Ra” to Describe Surface Roughness. J. Turbomach 138 (10). 

[40] Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S., 2017. A Comparative Study on Machine Learning 

Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. Journal of Manufacturing 

Science and Engineering 139 (7). 

[41] Scheffer, C., Kratz, H., Heyns, P.S., Klocke, F., 2003. Development of a tool wear-monitoring system for hard 

turning. International Journal of Machine Tools and Manufacture 43 (10), 973–985. 

[42] An, Q., Tao, Z., Xu, X., El Mansori, M., Chen, M., 2020. A data-driven model for milling tool remaining useful 

life prediction with convolutional and stacked LSTM network. Measurement 154, 107461. 

[43] Venkata Rao, K., Murthy, B., Mohan Rao, N., 2014. Prediction of cutting tool wear, surface roughness and 

vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 51, 63–70. 

[44] Zhao, R., Yan, R., Wang, J., Mao, K., 2017. Learning to Monitor Machine Health with Convolutional Bi-

Directional LSTM Networks. Sensors (Basel, Switzerland) 17 (2). 

[45] Applegate, D., Cook, W., 1991. A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal 

on Computing 3 (2), 149–156. 

[46] Gaspers, S., 2010. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Müller, 

Saarbrücken. 



 17 

 

[47] Kuhnle, A., Schäfer, L., Stricker, N., Lanza, G., 2019. Design, Implementation and Evaluation of 

Reinforcement Learning for an Adaptive Order Dispatching in Job Shop Manufacturing Systems. Procedia 

CIRP 81, 234–239. 

[48] Ou, X., Chang, Q., Chakraborty, N., 2019. Simulation study on reward function of reinforcement learning in 

gantry work cell scheduling. Journal of Manufacturing Systems 50, 1–8. 

[49] Park, I.-B., Huh, J., Kim, J., Park, J., 2020. A Reinforcement Learning Approach to Robust Scheduling of 

Semiconductor Manufacturing Facilities. IEEE Trans. Automat. Sci. Eng., 1–12. 

[50] Qu, S., 2016. 21th IEEE Conference on Emerging Technologies and Factory Automation (ETFA): September 6 

- 9, 2016, Berlin. IEEE, Piscataway, NJ. 

[51] Qu, S., Chu, T., 2015. A Centralized Reinforcement Learning Approach for Proactive Scheduling in 

Manufacturing. IEEE Trans. Automat. Sci. Eng. 2015. 

[52] Qu, S., Wang, J., Govil, S., Leckie, J.O., 2016. Optimized Adaptive Scheduling of a Manufacturing Process 

System with Multi-skill Workforce and Multiple Machine Types: An Ontology-based, Multi-agent 

Reinforcement Learning Approach. Procedia CIRP 57, 55–60. 

[53] Shahrabi, J., Adibi, M.A., Mahootchi, M., 2017. A reinforcement learning approach to parameter estimation in 

dynamic job shop scheduling. Computers & Industrial Engineering 110, 75–82. 

[54] Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., Guo, K., Xie, H., 2019. Multi-Objective Workflow 

Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning. IEEE Access 7, 39974–39982. 

[55] Waschneck, B., Reichstaller, A., 2018. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing 

Conference (ASMC): April 30, 2018-May 3, 2018. IEEE, Piscataway, NJ. 

[56] Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., Kyek, A., 2018. 

Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP 72, 1264–1269. 

[57] Pimenov, D.Y., Bustillo, A., Mikolajczyk, T., 2018. Artificial intelligence for automatic prediction of required 

surface roughness by monitoring wear on face mill teeth. J Intell Manuf 29 (5), 1045–1061. 

[58] Qin, X., Wang, B., Wang, G., Li, H., Jiang, Y., Zhang, X., 2014. Delamination analysis of the helical milling of 

carbon fiber-reinforced plastics by using the artificial neural network model. J Mech Sci Technol 28 (2), 713–

719. 

[59] Sahoo, A.K., Rout, A.K., Das, D.K., 2015. Response surface and artificial neural network prediction model and 

optimization for surface roughness in machining. 10.5267/j.ijiec 6 (2), 229–240. 

[60] Senthilkumar, N., Tamizharasan, T., 2015. Flank wear and surface roughness prediction in hard turning via 

artificial neural network and multiple regressions. Australian Journal of Mechanical Engineering 13 (1), 31–45. 

[61] Tebassi, H., Yallese, M.A., Meddour, I., Girardin, F., Mabrouki, T., 2017. On the Modeling of Surface 

Roughness and Cutting Force when Turning of Inconel 718 Using Artificial Neural Network and Response 

Surface Methodology: Accuracy and Benefit. Period. Polytech. Mech. Eng. 61 (1), 1–11. 

[62] Vrabel, M., Maňková, I., Beňo, J., 2016. Monitoring and Control of Manufacturing Process to Assist the 

Surface Workpiece Quality When Drilling. Procedia CIRP 41, 735–739. 

[63] Zhang, N., Shetty, D., 2016. An effective LS-SVM-based approach for surface roughness prediction in 

machined surfaces. Neurocomputing 198, 35–39. 

[64] Chen, Xie, Yuan, Huang, Li, 2019. Research on a Real-Time Monitoring Method for the Wear State of a Tool 

Based on a Convolutional Bidirectional LSTM Model. Symmetry 11 (10), 1233. 

[65] Hassan, M., Sadek, A., Attia, M.H., 2019. A Generalized Multisensor Real-Time Tool Condition–Monitoring 

Approach Using Deep Recurrent Neural Network. Smart Sustain. Manuf. Syst. 3 (2), 20190020. 

[66] Klancnik, S., Ficko, M., Balic, J., Pahole, I., 2015. Computer Vision-Based Approach to End Mill Tool 

Monitoring. Int. j. simul. model. 14 (4), 571–583. 

[67] Kurek, J., Swiderski, B., Jegorowa, A., Kruk, M., Osowski, S., 2017. Deep learning in assessment of drill 

condition on the basis of images of drilled holes, in: Eighth International Conference on Graphic and Image 

Processing (ICGIP 2016). Eighth International Conference on Graphic and Image Processing, Tokyo, Japan. 

Saturday 29 October 2016. SPIE, 102251V. 

[68] Proteau, A., Tahan, A., Thomas, M., 2019. Specific cutting energy: a physical measurement for representing 

tool wear. Int J Adv Manuf Technol 103 (1-4), 101–110. 

[69] Wu, D., Jennings, C., Terpenny, J., Kumara, S., 2016 - 2016. Cloud-based machine learning for predictive 

analytics: Tool wear prediction in milling, in: 2016 IEEE International Conference on Big Data (Big Data). 



18 

2016 IEEE International Conference on Big Data (Big Data), Washington DC,USA. 05.12.2016 - 08.12.2016. 

IEEE, pp. 2062–2069. 

Biography 

Prof. Dr.-Ing. Dipl.-Wirt. Ing. Günther Schuh holds the chair for Production 

Systematics at RWTH Aachen University. Furthermore, he is director of the FIR e. 

V., member of the board of directors of the WZL of the RWTH Aachen University 

and the Fraunhofer Institute for Production Technology (IPT). 

Paul Scholz works as a research assistant and project leader at the Fraunhofer-Institute 

for Production Technology. He completed Master’s degrees both at RWTH Aachen 

University and Tsinghua University Beijing. 

Johannes Portik is a student currently enrolled at RWTH Aachen University as well 

as Harvard University. 


