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Abstract

Graph Neural Networks are an up-and-coming class of neural networks that operate on graphs
and can therefore deal with connected, highly complex data. As explaining neural networks be-
comes more and more important, we investigate di�erent ways to explain graph neural networks
and contrast gradient-based explanations with the interpretability by design approach KEdge.
We extend KEdge, to work with probability distributions di�erent from HardKuma. Our goal
is to test the performance of each method to judge which one works best under given circum-
stances. For this, we extend the notion of �delity from hard attribution weights to soft attribution
weights and use the resulting metric to evaluate the explanations generated by KEdge, as well
as by the gradient-based techniques. We also compare the predictive performance of models
that use KEdge with di�erent distributions. Our experiments are run on the Cora, SightSeer,
Pubmed, and MUTAG datasets. We �nd that KEdge outperforms the gradient based attribution
techniques on graph classi�cation problems and that it should be used with the HardNormal,
HardKuma, or HardLaplace distributions, depending on if the top priority is model performance
or attribution quality. To compare di�erent metrics of judging attributions in the text domain,
we visualize attribution weights generated by di�erent models, and �nd, that metrics which
compare model attributions to human explanations lead to bad attribution weights.

I



II



Contents

Notation and Abbreviations V

1 Introduction 1

2 Background 3

2.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Graph Convolutional Network . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Graph Attention Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Simple Graph Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 GraphConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Gradient-based Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 GradInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 SmoothGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 IntegratedGradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.6 GradCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 KEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 11

3.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Distributions on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Distributions on R+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Distributions on (0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Attribution from KEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Evaluating Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiments and Results 21

4.1 Performance of KEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Evaluation of Attribution Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Explaining Movie Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 36

References 37

A Movie Reviews - Metrics 40

B Example Movie Reviews 41

III



IV



Notation and Abbreviations

GNN Graph neural network.

G Graph. De�nition 2.1.1

V Set of vertices of a graph. De�nition 2.1.1

E Set of edges of a graph. De�nition 2.1.1

A Adjacency matrix of a graph or a matrix of attribution weights. De�nition 2.1.1

1Ω Indicator function on some set Ω.

In(v) Set of incident edges to the node v ∈ V . De�nition 2.1.1

N (v) Set of neighbors of the node v ∈ V . De�nition 2.1.1

X Matrix of node features with rows xv for v ∈ V .
H(k);h

(k)
v Matrix / vector of the k-th node representations. H(0) = X. Page 4

I Identity matrix.

|| Concatenation operator.

GAP Global average pooling. Section 2.1.5

GAT Global attention pooling. Section 2.1.5

NN A neural network.

‖·‖2 Euclidean norm.

〈·, ·〉 Standard scalar product.

� Pointwise multiplication operator.

Z Matrix of mask weights.

λ Maskedness parameter or a real parameter. Equation (3)

R Set of real numbers.

B(R) Borel sigma algebra on R.
δx Point measure in x; δx(A) := 1A(x).

R+ Set of positive real numbers.

fid(A) Fidelity of the hard attribution matrix A. De�nition 3.3.1

comp Comprehensiveness. De�nition 3.3.4

suff Su�ciency. De�nition 3.3.4

AOPC Area over the perturbation curve. De�nition 3.3.5

AUPRC Area under the precision-recall-curve. De�nition 3.3.8
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1 Introduction

In this bachelor thesis, we explore and evaluate di�erent methods of explaining Graph Neural
Networks (GNNs). Graph Neural Networks are an emerging class of neural networks, that
take graphs as their input data. This is especially useful since graphs are highly �exible and
powerful data structures, that can therefore express a set of di�erent datapoints with complex
relationships between them. The motivation for developing graph neural networks comes from
the overwhelming success of convolutional neural networks, which can be seen as a special case
of GNNs, operating on pictures by exploiting neighborhood information, which can also be
expressed as a graph. Today graph neural networks are used in a wide array of domains, like
the prediction of molecular properties in chemistry [SK20], drug discovery [BBS21], or even
diagnosis [BMR21] in medicine, to model the spread of disease [Kap+20], in recommendation
systems [Yin+18], or natural language processing [Pen+18].
But why would one want to explain these networks? Methods for explaining neural models are
used to perform a wide amount of tasks. The �rst one is to debug the model and increase
performance, as explanation methods can uncover model bias or spurious correlations in the
training data. These are then used, to clean up or expand the training data or to adjust the
model class, to archive better performance and generalization.

Model Prediction Explanation

A Positive
Even though the Icelandic scenery is incredibly stunning ,

the story can't keep up, and therefore the overall
experience is boring.

B Negative

Even though the Icelandic scenery is incredibly stunning,

the story can't keep up, and therefore the overall

experience is boring.

C Negative

Even though the Icelandic scenery is incredibly stunning,

the story can't keep up , and therefore the overall

experience is boring .

Table 1: Hypothetical movie review with classi�cations and explanations.

For example, if we want to categorize reviews into positive and negative ones, we are also inter-
ested in exactly why our model decides that a given review is positive or negative. Using this
information we can more accurately judge the models' performance, by checking if its predictions
are correct for the right reasons. The example explanations in Table 1 reveal that model B is
correct for the wrong reason, while model C is correct for the right reason. Therefore model C
should be deployed over model B since we can expect C to generalize better to new, unseen data.
A second application area of explanations is to assess the suitability of a model for use in the
real world. This is especially important in high-stakes environments, such as medicine or law
enforcement, where graph neural networks are used. Therefore, explainability is also part of the
approval process by a regulatory authority, like the European Union [Uni16; GF17], or in some
companies. Another way explanation techniques are useful is by hinting on what to change in
the input, to receive a di�erent model output. This is useful for example in loan approval if the
client wants to receive information on what factors to change to be approved. [LAS20]
One distinguishes two forms of explanations: global and local ones. While global explanations
are ways of explaining the model as a whole, it is often not feasible to construct such global
explanations, especially when using a model with a lot of parameters, since it's just too complex
to be understood as a whole [LAS20]. Therefore, we want to focus on local explanations. These
don't attempt to explain the whole model, but just a single decision of the model given a certain
input. The explanations in Table 1 are local ones.

1



Now it begs the question, how one can explain the decisions of a graph neural network. To
answer this question we will lay out the relevant techniques to generate attribution weights, as
well as expand on them. Attribution weights are ways of explaining neural models by associating
a weight with di�erent parts, or tokens, of the models' input. These tokens could be pixels in a
picture, words in a text, or nodes and/or edges in a graph. The parts with high weight are seen
as more important for the models' decision than those with low weights. If all generated weights
are zero or one, the technique is called a hard attribution technique. These mark relevant parts
of the input, as is the case in Table 1. When a range of real numbers is allowed as weights,
the attributions are called soft. We will focus on soft attribution techniques, as these provide a
relation of importance on the inputs' tokens.
The second question that arises is, which technique should one use to explain GNNs and how to
judge if one technique is better than another? To answer these questions, we �rst establish and
explain the notion of graph neural networks, as well as di�erent architectures (Section 2.1). Then
we introduce some gradient-based attribution techniques (Section 2.2) and the interpretability
by design approach of KEdge (Section 2.3). KEdge was introduced by Rathee et al. in 2021.
It works by sampling a mask for the edges of a graph via an approximation of the Bernoulli
distribution. This mask can then be used to generate attribution weights. In the original paper,
this approximation is based on the Kumaraswamy, or Kuma, distribution. In our third chapter,
we de�ne some probability distributions (Section 3.1) to construct di�erent approximations of
the Bernoulli distribution, that we can use with KEdge. We also talk about how to obtain
node-level attribution weights from KEdge (Section 3.2). Then we introduce some metrics to
measure the performance of the di�erent attribution techniques (Section 3.3), and in particular,
we extend the notion of �delity [FKA21] to soft attribution techniques by introducing integrated
�delity.
In the main part of this thesis, we conduct three experiments. The �rst two, to evaluate and
compare the attribution techniques, as well as to see, what e�ects KEdge has on a model's
performance. Here, we compare the accuracy of di�erent models with and without KEdge, to
see if there is a noticeable di�erence, depending on which underlying probability distribution
we used. We also compare the integrated �delity values of all the attribution techniques we
introduced before. This is done on the node classi�cation datasets Pubmed, Cora, and CiteSeer
and the graph classi�cation dataset MUTAG. In the last experiment, we use our methods on a
text dataset of movie reviews, to be able to visualize attribution weights and compare di�erent
metrics of evaluating attribution weights.

Contributions

In this thesis, we contribute the following, new ideas:

� Implementation and evaluation of KEdge with distributions other than Kuma and Hard-
Kuma,

� Extension of �delity to soft masks (integrated �delity),

� Comparison of di�erent distributions for KEdge based on model performance on multiple
datasets,

� Comparison of KEdge to gradient-based attribution techniques based on integrated �delity
on multiple datasets,

� Comparison of di�erent metrics for the evaluation of attributions, when using GNNs in the
text domain.
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2 Background

2.1 Graph Neural Networks

As a �rst step to understanding and explaining Graph Neural Networks (GNNs), one needs to
know what they are and how they work. As the name suggests, Graph Neural Networks are
a family of neural models operating on graph data. To explain this further, let us �rst de�ne
graphs and some related notions.

De�nition 2.1.1 (Graph):
A graph is a tuple G = (V,E). V is the set of vertices or nodes and E ⊂ V × V is the set of
edges.
We call two edges v and v′ neighbors, if (v, v′) ∈ E or (v′, v) ∈ E.
The graph G = (V,E) is called �nite, if n := |V | <∞. Henceforth, all graphs will be �nite. For
a �nite graph we de�ne the adjacency matrix A by letting V = {v1, ..., vn} and

Rn×n 3 A := (aij)ij := (1(vi,vj)∈E)ij .

The adjacency matrix A encodes the edges of G and aij = 1 precisely, when there is an edge
from node vi to node vj . We de�ne the degree of a node v ∈ V as the number of incoming and
outgoing edges of v

deg v := |({v} × V ) ∩ E|+ |(V × {v}) ∩ E|

and the degree matrix by

Rn×n 3 D := (δij deg vi)ij ,

where δij denotes the Kronecker delta. D is the diagonal matrix of the node degrees.
Additionally, we de�ne the set of incident edges of the node v ∈ V by

In(v) := {(u,w) ∈ E|u = v or w = v} ⊂ E,

and its neighborhood by

N (v) := {u ∈ V |(u, v) ∈ E or (v, u) ∈ E} ⊂ V.

For Graph Neural Networks we consider graphs G = (V,E), together with node features, where
each node v ∈ V is associated with a feature vector xv ∈ Rd for d ∈ N. The xv, by convention,
are row vectors. In matrix notation with V = {v1, ..., vn}, we have the feature matrix

Rn×d 3 X :=

xv1...
xvn

 .

Graphs are very general and highly complex data structures, which can be seen as a generalization
of text (1D sequences) or images (2D grids), thus one needs specialized neural models, to deal
with them. On the upside, however, because of their generality, one can express a lot of data,
and especially relationships between di�erent parts of said data, as graphs. Typical examples
of data that lends itself to representation via a graph are social networks or citation networks,
as well as complex molecules. The idea for graph neural networks stems from the popular and
highly successful CNN models for images, which gather local data, to form highly expressive
representations [Zho+21]. The power of graph neural networks stems from the unity of the
expressive power of graph data with the local convolutions of CNNs.
When studying Graph Neural Networks, one distinguishes two main tasks:
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1. Node Classi�cation:
In node classi�cation, one wants to predict a class for every node of an oftentimes large
graph. A typical example would be the classi�cation of people in a social network based
on their friends for targeted advertisement, or the classi�cation of scienti�c publications,
with the links in a graph being citations. This is also what we will do, as Cora, Pubmed
and CiteSeer are so-called citation networks. Node classi�cation is done by stacking some
GNN layers, as they are described below, with possibly a neural network on top of the last
representation, followed by a softmax.

2. Graph Classi�cation:
In graph classi�cation, one wants to predict a single class for the entire graph. Since the
GNN layers output a representation for each node of the graph, one needs an extra layer
to combine all those representations into a single representation for the whole graph. For
this, so-called pooling layers are used (see Section 2.1.5). After that, one can proceed as
above, with a neural network and softmax output. Examples for graph classi�cation are
the classi�cation of text in natural language processing, as a text can be transformed into a
graph, or to predict properties of molecules. This also is the task for the MUTAG dataset.

Now we want to review a small selection of Graph Neural Network layers. For a more complete
list, see [Zho+21]. In the following, let G = (V,E) be a graph with adjacency matrix A and
feature matrix X. Most Convolutional Graph Neural Networks work similarly. They �rst locally
aggregate the features of the graph in some way, using the graph structure, and then apply a
weight matrix and some non-linear function. In matrix notation, we can write

H(k) = σ
(
AGG

[
A,H(k−1)

]
W (k)

)
, (1)

where σ is some activation function, H(k) is the k-th feature representation, with H(0) = X,W (k)

is the k-th weight matrix and AGG is the aggregation mechanism [Rat+21, Equation (1)].

For a node v ∈ V let h
(k−1)
v be the row vector of H(k−1), that is associated with v. Also, let

Â := A + I and D̂ := D + I, where I is the identity matrix of degree |V |, A is the adjacency
matrix of G, and D is the degree matrix of G. Now, we will introduce some of the most important
aggregation mechanisms.

2.1.1 Graph Convolutional Network

First, we consider Graph Convolutional Networks (GCN) [KW17], since they are one of the most
common types of GNN layers.
The aggregation step is

h(k−1)′
v =

∑
u∈N (v)∪{v}

1√
(deg u+ 1)(deg v + 1)

h(k−1)
u .

The aggregated representation is a weighted sum of the representations of neighboring nodes,
weighted by node degrees. Then, the matrix formulation of the aggregation step is

H(k−1)′ = D̂−
1
2 ÂD̂−

1
2H(k−1)

and the whole update step (Equation (1)) becomes

H(k) = σ
(
D̂−

1
2 ÂD̂−

1
2H(k−1)W (k)

)
.
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2.1.2 Graph Attention Network

In contrast to the GCNs, the Graph Attention Network [Vel+18] uses attention weights in the
aggregation step to control the in�uence of neighboring nodes on the overall sum. For some node
v ∈ V with neighborhood N (v) the aggregation is

h(k−1)′
v =

∑
u∈N (v)∪{v}

α(k−1)
v,u h(k−1)

u ,

with

α(k−1)
v,u =

expϕ
(
aT(k−1)

[
h

(k−1)
v ||h(k−1)

u

])
∑

u∈N (v)∪{v}
expϕ

(
aT(k−1)

[
h

(k−1)
v ||h(k−1)

u

]) .
Here a(k−1) is a vector of weights, ϕ is the leaky ReLU function and || is the concatenation
operator:

Rn × Rm 3 ((a1, ..., an), (b1, ..., bm)) 7→ (a1, ..., an)||(b1, ..., bm) = (a1, ..., an, b1, ..., bm) ∈ Rn+m.

2.1.3 Simple Graph Convolution

The simple graph convolution (SGN) [Wu+19] is very similar to GCN. The only di�erence is,
that the non-linear function σ is omitted, instead, the only non-linear part is the aggregation
itself. Therefore, the update step is

H(k) = D̂−
1
2 ÂD̂−

1
2H(k−1)W (k).

This makes it very straightforward to implement deep networks made up of SGNs, since the k
level update step is

H(k) =
(
D̂−

1
2 ÂD̂−

1
2

)k
XΘ,

with Θ = W (k)W (k−1) · · ·W (1).

2.1.4 GraphConv

The aggregation method of GraphConv [Mor+20] is again a successor to GCNs, which distin-
guishes the node from its neighborhood by using di�erent weights for the neighborhood and the
node in question, where in GCN the complete aggregation is performed before multiplying by
the weights.
The update step of GraphConv is

h(k)
v = σ

h(k−1)
v W

(k)
1 +

∑
u∈N (v)

h(k−1)
u W

(k)
2


for v ∈ V , or

H(k) = σ
(
H(k−1)W

(k)
1 +AH(k−1)W

(k)
2

)
in matrix notation.
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2.1.5 Pooling

When wanting to do graph classi�cation, one needs a way of combining representations of every
node of a graph to a single representation of the graph as a whole. For this purpose, pooling
layers are used.
The most common of which are the following:

� Mean pooling or average pooling (GAP; global average pooling):
The representation of the graph is the average of the node representations:

hpool =
1

|V |
∑
v∈V

h(k)
v .

� Max pooling:
The graph representation is the component-wise maximum of the node representations:

hpool = max
v∈V

h(k)
v .

� Attention pooling (GAT; global attention pooling) [Li+17]:
The graph representation is a weighted sum of the node representations:

hpool =
∑
v∈V

αvh
(k)
v

with

(αv)v∈V = softmax
[(
NN(h(k)

v )
)
v∈V

]
,

where NN is a neural network.

2.2 Gradient-based Attribution

Attribution characterizes a class of techniques, that try to explain the decisions of a neural model
by weighting the inputs of the model based on how important they are for the model's decision.
In the following, we consider di�erent attribution techniques based on the list in [San+20]. These
have in common, that they produce node-level attribution weights. This means that, at least
in the versions of the techniques we are using, every node of the graph gets weighted by how
important it is to the decision. For some of these techniques, one could also look at how important
every single feature of every node is and also which edges and edge features are important, but for
comparability and clarity, we only consider attention weights for the nodes as a whole. The �rst
few of the following techniques only rely on derivatives of the network's output with respect to the
input and are therefore rather straightforward to implement for various types of neural networks,
while CAM (Section 2.2.5) and GradCAM (Section 2.2.6) are not model agnostic. Speci�cally,
they need certain types of pooling layers. We will use them for the graph classi�cation task.
In the following, let xv = (xv,1, ..., xv,d) ∈ Rd be the feature vector of a node v ∈ V and let y be
the networks output of the predicted class.

2.2.1 Gradients

The idea behind this technique is to look at the gradient of the output with respect to the inputs.
The more the output changes, when changing the input, the more important this speci�c input
is to the prediction, while inputs with smaller gradients do barely change the prediction, and are
therefore less important to the network.
Now, the gradients by themselves are attributions of the features. To receive attribution weights
for the node, we use the euclidean norm of the gradients with respect to the features of the node.
The attribution weight of the node v ∈ V is

wv =

∥∥∥∥( ∂y

∂xv,1
, ...,

∂y

∂xv,d

)∥∥∥∥
2

.
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2.2.2 GradInput

GradInput is the element-wise product of the inputs with the gradients from Section 2.2.1. It
was �rst proposed in [Shr+17] and corresponds to the �rst-order Taylor approximation when the
bias term is 0. Like before, we can use the norm to reduce this to the node-level attribution:

wv =

∥∥∥∥(xv,1 ∂y

∂xv,1
, ..., xv,d

∂y

∂xv,d

)∥∥∥∥
2

.

2.2.3 SmoothGrad

SmoothGrad, proposed in [Smi+17], is a method, that aims at reducing noise and artifacts in
GradInput by computing the GradInput value for multiple, slightly perturbed inputs. For GNNs,
we perturb the input values, by adding noise to the node features, while leaving the topology of
the graph constant. The noise is made up of independent samples from a normal distribution
(see De�nition 3.1.7) with µ = 0 and σ in the range of 0.1 · max(input) to 0.2 · max(input).
The �nal weights are the average weights from n iterations. Typically n = 100 is used. We �rst
compute attribution weights for each feature, which then get reduced to node-level attributions
by the norm:

wv =
1

n

∥∥∥∥∥∥
n∑
j=1

(
xv,1

∂y

∂xv,1
(G+ noisej), ..., xv,d

∂y

∂xv,d
(G+ noisej)

)∥∥∥∥∥∥
2

.

Here, G + noisej is the graph G, but noisej is added to the node features with noisej being a
matrix of independent samples of the normal distribution described above, with the same shape
as X.

2.2.4 IntegratedGradients

IntegratedGradients [STY17] not only considers the local changes, like GradInput does. Instead,
it integrates all changes from some baseline G′ to the graph G we want to evaluate. For images,
this baseline would simply be a black image of the corresponding dimensions. For graphs, the
question of a baseline is not that simple, as there is no such thing as the one baseline graph.
The most simple baseline, which would carry no information about the original graph, would be
just one node with a feature vector of zero, however then, a smooth transition from the baseline
G′ to the original graph G would be impossible, and we would end up in a situation where we
would need an intermediate graph with maybe four nodes, or half an edge. Even before trying to
interpret, what half an edge could be, there is the question of which four nodes from the original
graph one should take. That is why, in the domain of GNNs, the baseline G′ for the graph G
is the same graph, but with node features of zero. The weight of some feature xv,i of the node
v ∈ V then is

wv,i = xv,i

1∫
0

∂y

∂xv,i
(G′ + α(G−G′))dα,

with G′ + α(G−G′) being topologically the same graph as G, but with feature matrix

XG′+α(G−G′) = XG′︸︷︷︸
=0

+α(XG − XG′︸︷︷︸
=0

) = αXG,

and y(G′+α(G−G′)) being the networks output of the predicted class of G. The weight of the
node v ∈ V is again

wv = ‖wv,1, ..., wv,d‖2 .

7



2.2.5 CAM

Class Action Mapping (CAM) [Zho+15] is a way of evaluating attribution in the graph classi�-
cation task when using global average pooling. It works by weighting the nodes based on how
closely their representations are aligned with the average.

Let h
(k)
v be the node representation of the node v ∈ V after the last GNN layer and

hpool =
1

|V |
∑
v∈V

h(k)
v

the output of the average pooling layer. Then the attribution weight of a node v ∈ V is

wv = 〈h(k)
v , hpool〉,

where 〈·, ·〉 is the standard scalar product.

2.2.6 GradCAM

GradCAM [Sel+19] is an extension of CAM to other pooling layers. Instead of the outputs of
the last GNN layer, one uses the gradients with respect to those outputs.

Let again h
(k)
v be the node representation of the node v ∈ V after the last GNN layer and hpool

be the output of the pooling layer. The GradCAM attribution weight of v ∈ V is

wv = 〈 ∂y
∂h

(k)
v

, hpool〉.

2.3 KEdge

In contrast to the gradient-based methods, that produce post-hoc explanations of an already-
trained network, KEdge is an interpretable by design GNN layer. The idea is to generate a
binary mask Z for the adjacency matrix A, to mask out some edges of the input graph. This
produces the new, sparsi�ed adjacency matrix

Asprs = A� Z,

where � is the pointwise multiplication operator. Using that, we can simply parse the graph
together with this new adjacency matrix through the GNN. Now one can use the mask Z to
interpret the GNN. Edges with a mask of approximately 1 are more important to the network's
decision than edges with lower mask values, while edges with mask 0 do not a�ect the model's
results and are therefore not important to the model's decision [Rat+21]. Equivalently, nodes
which have larger mask values in most incident edges are more important to the model than
nodes that tend to have lower masks of incident edges (see Section 3.2).
KEdge works by sampling the matrix Z from some probability distribution on [0, 1] during
training. We choose a parametrized class of distributions on [0, 1] (see Section 3.1), such that
every distribution of the class is continuous inside (0, 1) and has positive point probabilities
at zero and one. These distributions are used to approximate a Bernoulli distribution, so for
every p ∈ [0, 1], there should be a choice of parameters, such that the resulting distribution
approximates the Bernoulli distribution with probability p reasonably well.
Let || again be the concatenation operator and for some node u ∈ V let xu ∈ Rd be the
feature vector of that node. To obtain some parameter α of the distribution for a given edge
e = (u, v) ∈ E we use an attention-like mechanism1:

αu,v = exp
[
−σ
(
θTα [Wαxu||Wαxv]

)]
, (2)

1We take the algorithm from the reference implementation of KEdge and not from [Rat+21] directly. See
Remark 2.3.1.
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with Wα ∈ Rd′×d, θα ∈ R2d′ .
We only use distributions, that have two parameters, and therefore do this calculation indepen-
dently for both parameters, with each one getting its own weights W and θ.
When using a sampling mechanism that is di�erentiable with respect to the distribution's pa-
rameters, we can use the backpropagation algorithm to learn the network's parameters, as well
as the additional parameters θα and Wα, at the same time.
We then train all parameters at the same time using the new loss function

LKEdge(X,A,Θorig,Θatt) = Lorig(X,Asprs,Θorig) + λE[‖Z‖0 |X,A,Θatt], (3)

where X is the feature matrix, A is the adjacency matrix, Θorig is the set of parameters of the
original model, and Θatt is the set of parameters of the attention mechanism in Equation (2).
‖Z‖0 is the so-called L0-norm of Z; that is the number of entries that are not equal to zero. The
expectation term in Equation (3) then just becomes

E[‖Z‖0 |X,A,Θatt] =
∑

e=(u,v)∈E

1− P[Zu,v = 0|X,A,Θatt]

where Zu,v is distributed by our distribution of choice with parameters according to Equation (2).
The parameter λ ∈ R in Equation (3), called the maskedness parameter, is a hyperparameter
that controls how many edges are pruned from the original graph.
At test time we stop sampling the matrix Z and instead choose its entries Zu,v deterministically
as zero, E[Zu,v], or one depending on which of P[Zu,v = 0], P[0 < Zu,v < 1], or P[Zu,v = 1] is the
largest. Alternatively, if a hard mask is required, we can also just choose zero or one, depending
on which probability is higher.

Remark 2.3.1:

We revert to the reference implementation from KEdge, and not the algorithm from the paper
[Rat+21] itself, since that would involve the distribution's parameters to be calculated via the
softmax function

αu,v =
exp

[
σ
(
θTα [Wαxu||Wαxv]

)]∑
w∈N (u)

exp [σ (θTα [Wαxu||Wαxw])]
.

This would not only limit the expressive range of the parameters to the interval (0, 1), but
it would also put all the edges incident to the node u in some kind of competition over the
parameters' values, as the parameter for one edge being large would automatically mean that
the parameters corresponding to the other edges will be smaller. Depending on the in�uence of
a given parameter on the distribution, this leads to a huge bias for or against the importance of
all edges, which only allows for a small number of exceptions. This would also make it almost
impossible to control the number of removed edges via the maskedness parameter λ.
Going one step further, one could also calculate the parameters via any neural network NN with
appropriately sized layers;

αu,v = NN [Wαxu||Wαxv] .

However, our experiments show, that this would not lead to better results, since the expressive
power of Equation (2) is enough to lead to appropriate values for the distribution's parameters,
given a suitable value for λ, since these will be condensed to one of the three options zero, one,
or E[Zu,v] at test time anyways.

Remark 2.3.2:

The attributions gained from KEdge depend only on the input graph. Therefore, they are local
attributions in the graph classi�cation task, since the attribution is unique for each graph. In

9



the case of node classi�cation, however, the attributions are global, since they do not depend on
which node we want to classify, but they are rendered for the whole dataset (a single, typically
large graph) before anything else happens.
This is in contrast to the gradient-based methods from Section 2.2, which always produce local
explanations. We therefore also expect KEdge to provide poorer explanations when compared
to the local explanations of the gradient-based methods in the node classi�cation task. The
advantage of global explanations is, however, that they are broader.
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3 Methods

In this section, we introduce all the tools, we need for our experiments. First, we de�ne a bunch
of probability distributions, which we can then use and evaluate together with KEdge. It should
be noted, that the parameter generation in KEdge only produces positive parameters. This is not
a problem for most distributions and even desirable for some, like the Beta (De�nition 3.1.12)
and Kuma (De�nition 3.1.13) distributions. For other distributions, however, this is the reason,
that we cannot mask out any edges, using the plain algorithm. The Gumbel distribution, for
example, is skewed to the right, so that even for low µ > 0 it is very unlikely to sample zero
in the HardGumbel distribution. In that case, we use an additional transformation to make the
whole range of possible parameter values attainable. Our tests showed, that the function

f(x) = log(x+ ε),

for some small ε > 0, is suitable for this and does not introduce any additional bias to the
parameters' values, as a simple, linear transformation would.
After de�ning all the di�erent probability distributions we need, we also establish three ways of
casting the edge weights, KEdge produces, to node weights, which are easier to make sense of
(Section 3.2). These we can compare to the attribution weights of the gradient-based methods
in our experiments.
As a third step in this chapter (Section 3.3), we discuss some metrics for the evaluation of
attribution weights and we will also de�ne our new metric; the integrated �delity score.

3.1 Probability Distributions

For KEdge we want to construct approximations of the Bernoulli distribution. As a basis for
the construction, we will take some distributions, which are absolutely continuous with respect
to the Lebesgue measure, and modify them a bit, to receive distributions on [0, 1] with positive
point probabilities at zero and one.
In the following, we describe distributions as measures on the Borel sigma-algebra B(R) using
the following notation.

Notation 3.1.1:

For some measure µ on B(R) and some measurable density f , we de�ne a new measure λ on
B(R) by

λ(A) :=

∫
A

f(x)dµ(x)

for all A ∈ B(R).
Using this, we can de�ne the notation

fdµ := λ.

Remark 3.1.2:

Let (E, E) be a measurable space. From the Radon-Nikodym theorem, we know that such a
density f exists for the measures λ and µ, if and only if λ is absolutely continuous with respect
to µ, that is µ(A) = 0 implies λ(A) = 0 for all A ∈ E [Rud87, Thm. 6.10].

Now, we quickly de�ne some notions regarding random variables and distributions.

De�nition 3.1.3 (random variable, CDF, PDF):
Let (E, E) be a measurable space and (Ω,F ,P) be a probability space.
A random variable X is a measurable map X : Ω→ E.
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Let µ be the measure on E de�ned by

µ(A) := P[X ∈ A]

for all A ∈ E . Then we call µ the distribution of X and write X ∼ µ.
If E = R and B(R) ⊂ E , we call

F (x) := P[X ≤ x] = µ((−∞, x])

the cumulative density function (CDF) of X or µ respectively.
If furthermore µ is absolutely continuous with respect to the Lebesgue measure λ, we call the
Radon-Nikodym density

f :=
∂µ

∂λ
,

the probability distribution function (PDF) of X or µ respectively.
In this case, we also have

f =
∂F

∂x
λ-almost surely

For KEdge, we require the distributions and sample functions to be di�erentiable with respect
to the parameters. This is implemented through the so-called reparametrization trick:
When we consider a probability distribution DΘ with parameter Θ ∈ Rd, we reparametrize by
considering another distribution ∆ and function f , such that

f(Θ, X) ∼ DΘ for X ∼ ∆

and f is di�erentiable with respect to the parameter Θ ∆-almost surely.
Hereinafter, let δx := 1{x} be the point measure in x ∈ R.

3.1.1 Distributions on R

To transform distributions from R to [0, 1], we simply pass the resulting random variables through
the following cuto� function:

R 3 x 7→ min(1,max(x, 0)) ∈ [0, 1].

Lemma 3.1.4 (hard transformation):
Let (E, E) be a measurable space, (Ω,F ,P) a probability space and X : Ω→ R a random variable
with a distribution, that is absolutely continuous with respect to the Lebesgue measure, CDF FX ,
and PDF fX . Then the random variable

Y := min(1,max(X, 0))

possesses the distribution

νY = FX(0)dδ0 + 1(0,1)fXdx+ (1− FX(1))dδ1

and the CDF

FY (x) =


0, x < 0

FX(x), 0 ≤ x < 1

1, x ≥ 1

.
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Proof. Let A ∈ B(R). Then we have

P[Y ∈ A ∩ (0, 1)] = P[X ∈ A ∩ (0, 1)] =

∫
A∩(0,1)

fX(x)dx.

We also have

P[Y ∈ (−∞, 0) ∪ (1,∞)] = P(∅) = 0

and

P[Y = 0] = P[X ≤ 0] = FX(0),

as well as

P[Y = 1] = P[X ≥ 1] = P[X = 1]︸ ︷︷ ︸
=0

+P[X > 1]︸ ︷︷ ︸
1−FX(1)

= 1− FX(1).

All in all

P[Y ∈ A] =P[Y ∈ A ∩ (−∞, 0)]︸ ︷︷ ︸
=0

+P[Y ∈ A ∩ {0}]︸ ︷︷ ︸
=FX(0)δ0(A)

+P[Y ∈ A ∩ (0, 1)]︸ ︷︷ ︸
=P[X∈A∩(0,1)]

+ P[Y ∈ A ∩ {1}]︸ ︷︷ ︸
=(1−FX(1))δ1(A)

+P[Y ∈ A ∩ (1,∞)]︸ ︷︷ ︸
=0

=

∫
A

FX(0)dδ0 + 1(0,1)fXdx+ (1− FX(1))dδ1.

Lemma 3.1.4 is visualized in Figure 1.

−2.5 0.0 2.5 5.0 7.5

0.0

0.1

0.2

0.3

0.4

Distribution of X

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

Distribution of Y

Figure 1: Hard transformation: PDF of X and resulting PDF of Y = min(1,max(0, X)) in (0, 1)
with point probabilities at zero and one.

It is used to transform the following distributions:

De�nition 3.1.5 (Cauchy, HardCauchy):
We de�ne the Cauchy distribution with parameters t ∈ R and s > 0 to be the measure

νcauchy =
1

π

s

s2 + (x− t)2
dx.

Using the transformation from Lemma 3.1.4, we receive the HardCauchy distribution.
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De�nition 3.1.6 (Laplace, HardLaplace):
We de�ne the Laplace distribution with parameters µ ∈ R and b > 0 to be the measure

νlaplace =
1

2b
exp

(
−|x− µ|

b

)
dx.

The transformation in Lemma 3.1.4 then produces the HardLaplace distribution.

De�nition 3.1.7 (Normal, HardNormal):
We de�ne the Normal distribution with parameters µ ∈ R and σ > 0 to be the measure

νnormal =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
dx.

The transformation in Lemma 3.1.4 then yields the HardNormal distribution.

De�nition 3.1.8 (Gumbel, HardGumbel):
We de�ne the Gumbel distribution on R with parameters β > 0 and µ ∈ R to be the measure

νgumbel =
1

β
e
−x−µ

β e−e
−x−µ

β
dx.

Using Lemma 3.1.4 gives the HardGumbel distribution.

3.1.2 Distributions on R+

With distributions on R+, we can't just use Lemma 3.1.4, since the goal is to receive a random
variable with a positive point probability at zero. We can, however, just translate the variable
by a little, to receive a positive probability for X < 0, using the next lemma:

Lemma 3.1.9:

Let X be a random variable on R with CDF FX and λ ∈ R. Then the random variable X + λ
has CDF

FX+λ(x) = FX(x− λ).

In case the distribution of X is absolutely continuous with respect to the Lebesgue measure, and
if X has PDF fX , then X + λ has PDF x 7→ fX(x− λ).

Proof. This is just the simple fact, that

FX+λ(x) = P[X + λ ≤ x] = P[X ≤ x− λ] = FX(x− λ)

and

fX+λ(x) =
∂FX+λ

∂x
(x) =

∂FX
∂x

(x− λ) = fX(x− λ) a.s.
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Distribution of X
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0.0 0.5 1.0
0.00
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Figure 2: Translation: PDF of X, PDF of X − 0.5, and resulting PDF of
Y = min(1,max(0, X − 0.5)) in (0, 1) with point probabilities at zero and one.
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Figure 2 visualizes the transformation of a positive random variable X, that is absolutely con-
tinuous with respect to the Lebesgue measure, to the corresponding hard random variable using
Lemma 3.1.4 and Lemma 3.1.9. We use the same method to transform the following distribution:

De�nition 3.1.10 (Weibull, HardWeibull):
We de�ne the Weibull distribution with parameters λ, k > 0 to be the measure

νweibull = 1[x>0]
k

λ

(x
λ

)k−1
exp

(
−
(
x

λ

k
))

dx.

Translating the Weibull distribution by κ < 0, using Lemma 3.1.9, and then using Lemma 3.1.4
yields the HardWeibull distribution on [0, 1].

3.1.3 Distributions on (0, 1)

For distributions on (0, 1) we use a similar trick as in the R+ case. The di�erence is, that now
we will stretch the support, instead of only translating it, using the function

x 7→ a+ (b− a)x,

which maps (0, 1) to (a, b). We will set a < 0 and b > 1, to then apply the hard transformation
of Lemma 3.1.4.

Lemma 3.1.11:

Let X be a random variable on R with CDF FX . Then Y := a+ (b− a)X has CDF

FY (x) = FX

(
x− a
b− a

)
.

If additionally the distribution of X is absolutely continuous with respect to the Lebesgue measure
and X has PDF fX , then Y has PDF

fY =
1

b− a
fX

(
x− a
b− a

)
.

Proof. We have

FY (x) = P[Y ≤ x] = P[a+ (b− a)X ≤ x] = P
[
X ≤ x− a

b− a

]
= FX

(
x− a
b− 1

)
and

fY (x) =
∂

∂x
FY (x) =

∂

∂x
FX

(
x− a
b− a

)
=

1

b− a
fX

(
x− a
b− a

)
.

0 1

0.0
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Figure 3: Linear Transformation: PDF of X, PDF of a + (b − a)X, and resulting PDF of
Y = min(1,max(0, a+ (b− a)X)) in (0, 1) with point probabilities at zero and one for a = −1

2
and b = 3

2 .
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Figure 3 visualizes the transformation of a random variable X ∈ (0, 1), which is absolutely
continuous with respect to the Lebesgue measure, to the corresponding hard random variable.
This method uses Lemma 3.1.11 and Lemma 3.1.4. We use this to transform the following
distributions:

De�nition 3.1.12 (Beta, HardBeta):
We de�ne the Beta distribution with parameters α, β > 0 to be the measure

νbeta = 10<x<1
1

B(α, β)
xα−1(1− x)β−1dx,

where B is the beta function

B(α, β) =

1∫
0

xα−1(1− x)β−1dx.

Using the transformation from Lemma 3.1.11 for some a < 0 and b > 0, followed by the trans-
formation from Lemma 3.1.4 yields the HardBeta distribution.

De�nition 3.1.13 (Kuma, HardKuma):
We de�ne the Kumaraswamy (Kuma) distribution with parameters α, β > 0 to be the measure

νkuma = 10<x<1abx
a−1(1− xa)b−1dx.

Using the transformation from Lemma 3.1.11 for some a < 0 and b > 0, followed by the trans-
formation from Lemma 3.1.4 yields the HardKuma distribution.

3.2 Attribution from KEdge

While KEdge yields edge weights, we want to evaluate node weights, so we need a way to
transform these edge weights to node weights. For an edge e ∈ E let we be the edge weight.
For a node v ∈ V let In(v) be the set of incident edges on v (see De�nition 2.1.1). Using this
notation, we de�ne di�erent ways of transforming the edge weights to node weights.
First, we simply use the sum of the incident edge weights. The factor 1

2 is there, simply to ensure
that the sum of the edge weights equals the sum of the node weights:

wv :=
1

2

∑
e∈In(v)

we. (4)

The second way of transformation is using the mean instead of the sum. This can be useful so
that we don't discriminate based on node degree. The corresponding weight then is

wv :=
1

deg v

∑
e∈In(v)

we. (5)

Now it might be possible, that one important edge connects two important nodes, even though
other edges of that node don't represent that. We therefore might try to re�ect this in the node
weights, using the maximum:

wv := max
e∈In(v)

we.

Remark 3.2.1:

Even though Sanchez-Lengeling et al. use the sum (Equation (4)) to redistribute edge weights
to node weights, our experiments showed that using Equation (5) yields the best results most of
the time.

16



3.3 Evaluating Attribution

Rationales as explanations for model prediction

To evaluate, how faithful the attribution techniques are to the model we want to explain, we
compute the �delity [FKA21] of the attribution weights. The �delity measures how likely it is,
that the prediction of a network changes, given that some node features stay the same, while
others change. A high �delity score means, that one selected a, preferably small, set of graph
nodes, which play a large part in the decision making of the model.
We �rst de�ne �delity for binary attribution masks.

De�nition 3.3.1 (�delity [FKA21]):
Let G be an input graph with feature matrix X, NN be a neural model and A be a vector
of binary attribution weights for each node of the graph. Let c0 := argmaxNN(G,X) be the
predicted class of G, or of some node of G in case of node classi�cation. The �delity of the
attribution A given the graph G and network NN is de�ned by

fid(A) := P[NN(G,Xrand) = c0|(Xrand)i,j = Xij for all Aj = 1],

where the random feature matrix Xrand is made up of random features of X with uniform
distribution.
The �delity score is the probability, that the relevant network output stays the same, given the
features of the nodes indicated in A stay constant.

A high �delity score then means that the mask A selects the most important features of X.
Since the attribution masks of KEdge and those of the gradient-based attribution techniques are
all soft masks, we cannot use the �delity score as de�ned above. Therefore, we now extend the
idea to soft masks:

De�nition 3.3.2 ((integrated) �delity):
Let G be an input graph with feature matrix X, NN a neural model and A a vector of soft
attribution weights for each node of the graph. Let n := |V | be the number of nodes of G. The
(integrated) �delity of the attribution A given the graph G and network NN is

fidint(A) :=

1∫
0

fid(At)dt,

where At is the hard attribution mask, such that the btnc nodes with the highest attribution
weights are chosen. When there are multiple nodes with the same weight, we could choose from,
we take one at random.

Remark 3.3.3:

The (integrated) �delity score does only depend on the order of attribution weights and not on the
overall magnitude. Therefore, it is independent of monotone transformations, like normalization.

We now want to introduce two metrics that are similar to the integrated �delity: The Su�ciency
AOPC and Comprehensiveness AOPC from DeYoung et al. These are used to compare our
results to the baseline models in the ERASER-benchmark paper [DeY+20]. These metrics were
�rst developed for the text domain, but can also be extended to graphs. However, in our third
experiment (Section 4.3), we use them on text, which we then convert to a graph.
We again �rst consider hard attribution weights (zero or one) to mark or highlight the important
parts of the data. Here, su�ciency measures the goal of an explanation, that just the important,
highlighted part is enough for the prediction of the class to stay constant, while comprehensive-
ness characterizes the fact that the model becomes less con�dent in the prediction of the data
without the highlighted part.
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De�nition 3.3.4 (Comprehensiveness & Su�ciency):
Let X be a random variable with values in a set X and let f : X → [0, 1]m be a classi�er for
m ∈ N di�erent classes. Let RX ∈ X be a part of X that serves as an explanation and let
j0 = argmax1≤j≤m[fj(X)] be the predicted class. Then the comprehensiveness for the instance
X is de�ned as

compX := fj0(X)− fj0(X \RX),

where X \ RX ∈ X is the instance X, but with its part RX removed. The su�ciency for the
instance X is de�ned as

suffX := fj0(X)− fj0(RX).

Now we de�ne the comprehensiveness of the model as the expected instance level comprehen-
siveness

comp := E [compX ] = E [fj(X)− fj(X \RX)]

and the same with the models su�ciency

suff := E [suffX ] = E [fj(X)− fj(RX)] .

A high score in comprehensiveness means that the rationale RX captures all or most of the
important parts of the input and is what we want. In contrast, a low score in su�ciency means
that the rationale RX captures enough information so that f still predicts the class of X.
Now we do a similar trick of moving from soft attribution weights to hard masks.

De�nition 3.3.5 (Comp. AOPC & Su�. AOPC):
After generating our soft attribution mask, we generate �ve hard masks from it by selecting the
highest 1%, 5%, 10%, 20%, and 50% of attribution scores. The comprehensiveness area over the
perturbation curve (AOPC) and su�ciency AOPC are then de�ned to be the average of the
comprehensiveness and su�ciency scores for each of those masks, respectively [DeY+20]:

compAOPC :=
1

5

(
comp(1% mask) + comp(5% mask) + comp(10% mask)

+ comp(20% mask) + comp(50% mask)
)

and

suff AOPC :=
1

5

(
suff(1% mask) + suff(5% mask) + suff(10% mask)

+ suff(20% mask) + suff(50% mask)
)
.

Rationales as markers of what parts of the input are important

Another use of attribution weights is to check, what parts of the input are generally important
and therefore should also be important to an e�ective model. Here we check whether soft
attribution weights correspond to those parts of the input, deemed important by experts or
humans in general. One such metric, that is also used by DeYoung et al. for the movie reviews
dataset among others, is the area under the precision-recall-curve (AUPRC).
To explain AUPRC, we �rst de�ne:

De�nition 3.3.6 (Precision & Recall):
Let X again be a random variable with values in X and let X be partitioned into two classes;
positive (+) and negative (−). As a convention, one chooses + to be the class where something
interesting happens and − to be the class with no e�ect (the null hypothesis). Let

f : X → {+,−}
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be an estimator of the class of X and c(X) ∈ {+,−} be the true class of X. We then de�ne the
precision of f to be

prec := P[c(X) = +|f(X) = +]

the probability that X is of the positive class, given the estimation is positive, and the recall of
f as

rec := P[f(X) = +|c(X) = +]

the probability that the estimation is positive, given X is of the positive class.

Remark 3.3.7:

Precision and recall are closely related to the notions of errors of the �rst and second kind used
in statistics. The error of the �rst kind is the mistaken rejection of the null hypothesis [Dek+05].
The probability of an error of the �rst kind is related to the precision:

P[f(X) = + and c(X) = −] = (1− prec)P[f(X) = +].

The error of the second kind is the mistake of not rejecting the null hypothesis, even though it
is false [Dek+05]. This is even more closely related to the recall, since the normalizing constant
of the recall does not depend on the estimator, but only on the dataset. The probability of an
error of the second kind is:

P[f(X) = − and c(X) = +] = (1− rec)P[c(X) = +].

Now we can use this to de�ne the precision-recall-curve:

De�nition 3.3.8 (PRC, AUPRC):
Let X be a random variable with values in X and let X be partitioned into two classes + and
−, where we choose − to be the null hypothesis. Let c(X) be the correct class of X and

f : X → R

be an indication of the classes + and −, such that a large f(X) indicates that X belongs to +,
while a small f(X) indicates that X belongs to the negative class. From this we construct a
family of estimators

fc : X → {+,−},

where c ∈ R and

fc(X) =

{
+ f(X) > c

− f(X) ≤ c
.

Let prec(c) be the precision of fc and rec(c) be the recall of fc. The precision-recall-curve (PRC)
is de�ned as

PRC := {(rec(c), prec(c))|c ∈ R} ⊂ [0, 1]2.

Now for c → ∞, we get fc ≡ − and therefore rec(c) = 0, and for c → −∞, we get fc ≡ +
and rec(c) = 1. Therefore, the precision-recall-curve always starts at a recall of zero and stops
at a recall of one, while the precision falls from one to P[c(X) = +]. Now the area under the
precision-recall-curve is

AUPRC :=

1∫
0

PRC(r)dr,

where PRC(r) := prec(cr) and cr is chosen, such that rec(cr) = r.
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For our task of evaluating whether some generated annotations match human explanations,
we work at a level of tokens. In our case (Section 4.3) these were words in a text, which we
then converted to the nodes of a graph. For each token, we considered the human annotation,
important (+) or not important (−), as the true class of a token. We then constructed the family
{fc}c ∈ R of estimators from our annotated weights and computed the AUPRC as a metric of
�t.
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4 Experiments and Results

To answer the question, which technique delivers the best explanations, we conducted three
experiments. At �rst, we evaluated the impact that including KEdge, with di�erent levels of
edge sparsity, in a GNN model has on the model's performance. In the second experiment, we
compared explanations of di�erent methods and judged which method provides good attributions
and which one doesn't. In the last experiment, we visualized the attributions on a text dataset
of movie reviews, from ERASER-benchmark [DeY+20], to judge the explanations by eye and
evaluate di�erent metrics for good attributions.
In our �rst two experiments, we used the citation networks CiteSeer, Cora and Pubmed [YCS16]
for node classi�cation and the protein dataset MUTAG [Sch+17] for graph classi�cation. For
a later experiment, we also used a modi�cation of the movie reviews dataset [DeY+20]. See
Table 2 for an overview of the datasets.
We also performed our experiments on the ogbg-molhiv dataset [Hu+21], but they weren't fruitful
since that dataset has only 3.51% positive examples (but 96.49% negative ones). Because of that,
the bias in our models became so large, that the prediction was negative, no matter the input.
Then we of course saw no e�ect of the masked out edges on the performance and the �delity of
all models with all attribution techniques was 100% since the model did not switch prediction
under any circumstance.

Dataset Task Nodes/Graphs Features Classes

CiteSeer Node 3327 1433 6
Cora Node 2708 3703 7

Pubmed Node 19717 500 3
MUTAG Graph 340 7 2
Movies Graph 2000 300 2

Table 2: Statistics of the datasets. [YCS16; Sch+17; DeY+20]

For the node classi�cation task, the model we used is made up of two GCN layers followed by
a single, linear layer as a baseline and the same model with a KEdge layer, in the beginning, to
calculate the edge weight �rst (Table 3). The intermediate size of KEdge is 32. In the graph
classi�cation task, we swapped the GCN layers for GraphConv layers and added a pooling layer.
We used both global average and global attention pooling (Table 4). For the attention pooling,
we used a simple two-layer network with an intermediate size of �ve in the calculation of the
attention weights (see Section 2.1.5).

Operation Feature size Weights

Input features
KEdge 2 · (features · 32 + 2 · 32)
GCN features · 300 + 300
ReLU 300
GCN 300 · 200 + 200
ReLU 200
Linear 200 · classes+ classes
Softmax classes

Table 3: Model architecture for node classi�cation.

For the movie reviews dataset, we used a slightly more complex model, which is explained in
Table 7.
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Operation Feature size Weights

Input features
KEdge 2 · (features · 32 + 2 · 32)

GraphConv 2 · features · 300 + 300
ReLU 300

GraphConv 2 · 300 · 200 + 200
ReLU 200
pooling GAP: 0 / GAT: 200 · 5 + 5 + 5 · 1 + 1
Linear 200 · classes+ classes
Softmax classes

Table 4: Model architecture for graph classi�cation.

We implemented the experiments using the PyTorch [Pas+19] and PyTorch Geometric [FL19]
libraries. The implementation can be found in our git repository2.

4.1 Performance of KEdge

With this �rst experiment, we want to answer the following:

Research Question 1:

How does the use of KEdge in�uence the performance of a GNN? What in�uence do di�erent
distributions and the maskedness parameter λ have on the performance?

Experiment

To answer this question, we �rst trained a model endowed with a KEdge layer. We trained
a model for each distribution from Section 3.1 and each dataset while optimizing the masked-
ness parameter λ (Equation (3)) to attain di�erent percentages of masked out edges. We then
measured the test accuracy for each percentage of removed edges and compared the di�erent
distributions.

Results

One can clearly see a decreasing trend in the data points, which seem to be scattered around
a line, as a �rst-order approximation3. We calculated the line of best �t to approximate the
expected accuracy given a set percentage of removed edges. These approximations can now be
compared to each other. The dashed line in each plot marks the accuracy of the baseline model
without KEdge.

Node classi�cation

For the node classi�cation datasets, we could reliably reach every possible percentage of removed
edges by optimizing the maskedness parameter λ in Equation (3).

2https://git.l3s.uni-hannover.de/tfunke/tobias_interpretable_gnn.git
3To check this for yourself, use Evaluation/accuracy_mask_percent_node_classi�cation.py and Evaluation/ac-

curacy_mask_percent_graph_classi�cation.py from our git repository to generate that data and use the notebook
Evaluation/mask_percent_vs_accuracy.ipynb to plot it.
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Figure 4: Linear approximation of the expected accuracy over mask out percentage for the Cora
dataset
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Figure 5: Linear approximation of the expected accuracy over mask out percentage for the
CiteSeer dataset
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Figure 6: Linear approximation of the expected accuracy over mask out percentage for the
PubMed dataset

Figures 4 to 6 compare the performance on each node classi�cation dataset. We see that for
each of those datasets masking none or only very few edges, but still weighting the edges, gives
a small boost of performance to the overall model. We can also already observe that the choice
of distribution is non-trivial and can have a big impact on the performance of the model after
training.
The HardBeta, HardKuma, and HardNormal distributions all seem to be solid choices for the
Cora (Figure 4) and CiteSeer (Figure 5) datasets, with the HardNormal distribution leading,
especially on the CiteSeer dataset, while the HardLaplace distribution seems to perform by far the
worst out of all distributions we tested. Here, the models using the top-performing distributions
reliably outperform the baseline model, when no or only very few edges are removed. This is
the consequence of a modi�ed loss surface at training time, even though the KEdge layer does
not mask out any edges at test time, generating only strictly positive weights. On the Pubmed
dataset (Figure 6), this picture is distinctly di�erent, as the HardLaplace distribution performs
best at all levels of removed edges, and the HardBeta and HardKuma distributions seem to be
two of the worst distributions to pick. The performance of all models, except the HardLaplace
models at no masked edges, is worse than that of the baseline.

Graph classi�cation

When training the models for the graph classi�cation datasets, the �rst di�erence that stands
out is, that our models seem to only attain certain levels of removed edges. During the training
of these, the maskedness parameter λ did not control the percentage of removed edges, but more
so the probability, that a model's percentage of removed edges reaches a given level. For the
MUTAG dataset, almost all of the models we trained had a percentage of removed edges of 0,
0.07, 0.15, 0.75, 0.83, or 1 plus or minus 0.02. The levels of 0% and 100% were by far the most
common ones we encountered. These set levels could be caused either by the shape of the loss
surface, making it much more likely to end up near one of those levels, or they could be caused
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by the datasets having only a relatively low number of node features, meaning that the attention
mechanism in KEdge, that is responsible for masking out edges, can only di�erentiate a few
classes of edges and either shows all of them or masks all of them at once.
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Figure 7: Linear approximation of the expected accuracy over mask out percentage for the
MUTAG dataset, using global average pooling.
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Figure 8: Linear approximation of the expected accuracy over mask out percentage for the
MUTAG dataset, using global attention pooling.
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In graph classi�cation, we observed, that while the overall values might be di�erent, the order of
the distributions stays pretty much the same, no matter what kind of pooling we use. When using
both GAP (Figure 7) and GAT (Figure 8) on the MUTAG dataset, the HardLaplace distribution
o�ers the best performance out of all the distributions. It also is the only distribution, for which
the model performs signi�cantly better than the pure baseline model. When we increased the
percentage of removed edges, the prediction of the models also dropped o� rapidly and to way
lower values than for the node classi�cation datasets. This lets us conclude that for our graph
classi�cation datasets the connections in the graphs are more important than the actual nodes,
while for the node classi�cation tasks the node features are the more crucial of the two. In the
raw data, we also observe, that when using attention pooling, some models attain a very low
accuracy of about 0.3. Those outliers are not present when we use average pooling.
For a broad answer to Research Question 1, we would suggest to only increase the maskedness
parameter λ with great caution, since the performance decreases from having more edges removed
can be drastic. In terms of distributions, we also suggest one chooses the HardKuma or HardBeta
distributions for a good baseline accuracy. For a better performing model, the HardNormal and
HardLaplace distributions should also be considered.

4.2 Evaluation of Attribution Techniques

For our second experiment, we wanted to evaluate the quality of the explanations we gathered.
The question to answer with this experiment is:

Research Question 2:

Under which circumstances is it better to �rst train a model and then equip it with one of
the gradient-based, post-hoc attribution methods, and when to use a more interpretable model,
equipped with KEdge, from the start? If one decides to use a gradient-based method, which one
is of the most use to explain the model? On the other hand if one wants to use KEdge for inter-
pretability, which distribution should one choose, and what about the maskedness parameter?
Are these the same distributions that lead to a good model performance?

Experiment

To evaluate the gradient-based methods, we �rst trained the baseline model; that is the same
model as described in Tables 3 and 4, but without the KEdge layer. After training, we used
all suitable attribution methods from Section 2.2 on the model, to generate the attribution
weights. These are Gradients, GradInput, SmoothGrad, and IntegratedGradients (IG), which
are suitable for all models, as well as CAM, which is suitable for graph classi�cation models using
global average pooling (GAP) and GradCAM, which is suited for graph classi�cation models,
that use a pooling layer that is di�erent from average pooling; in our case global attention pooling
(GAT).
For the evaluation of KEdge, we trained the appropriate models and then used the methods of
Section 3.2 to calculate the node level attention weights. We carried out this experiment using
the sum, mean and max methods, but our results showed that using the mean yields the best
results in 82% of all cases, as mentioned in Remark 3.2.1.
To evaluate the soft attribution weights, we used the integrated �delity score (De�nition 3.3.2).
Our results are summarized in Tables 5 and 6. Empty spaces in Table 6 indicate, that the
relevant level of removed edges could not be attained during training. For KEdge we only
reported the results, using the mean to convert the edge weights to node weights, because of the
aforementioned reason.
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Results

At �rst, we can see from Table 5, that out of the gradient-based methods, the Integrated Gradi-
ents seem to consistently yield one of the highest integrated �delity scores, no matter the dataset,
followed by GradInput. When considering a gradient-based technique, these two should therefore
be the go-to ones.

Method Cora CiteSeer PubMed
MUTAG
+ GAP

MUTAG
+ GAT

Grads 0.815 0.727 0.906 0.56 0.74
GradInput 0.830 0.736 0.911 0.61 0.76

SmoothGrad 0.830 0.734 0.905 0.59 0.75
IG 0.833 0.739 0.912 0.60 0.76

CAM - - - 0.55 -
GradCAM - - - - 0.72

Table 5: Fidelity of gradient based methods.

Node classi�cation

Our results show, that for the node classi�cation task, the �delity of the weights from KEdge
(Table 6) is generally lower than for the gradient-based methods (Table 5). This is expected, as
KEdge acts as a global explanation on the whole dataset, while the gradient-based methods are
all local explanations. As such, they tend to explain the in�uence of the input on the class of a
single output node better. Here, the HardKuma, HardNormal, and HardGumbel distributions
tend to produce the best explanations, with the HardLaplace distribution performing as one of
the worst, consistently. The HardNormal and the HardKuma distributions also tend to yield
good performing models, while the HardLaplace distribution tends to be either superb or awful.
The �delity scores of KEdge also decrease with the percentage of removed edges increasing. This
seems to be counterintuitive at �rst, as one might expect the �delity score to rise at �rst, since
the least important edges are removed, leaving only the edges of higher importance. Nodes with
a lot of edges of low importance should then have a lower attention weight, which should lead to a
high �delity score. So, with a rising percentage of removed edges, the attribution weights should
at �rst be more expressive. We see in the data, that this is not at all the case, as every �delity
score decreases from 0% to 15% of removed edges. One possible explanation might be, that this
e�ect mainly stems from the model performing worse when more edges are removed, as we saw
in the �rst experiment (Section 4.1), and that worse performing models are generally harder to
explain, as their outputs tend to be more random and less based on just a few important nodes.

Graph classi�cation

In the case of graph classi�cation, KEdge acts as a local explanation and yields higher �delity
scores than all the gradient-based explanations, regardless of distribution. In contrast to the
node classi�cation, here the integrated �delity scores don't strictly decrease as the percentage
of masked out edges increases, even though the model performance also decreases. Instead, we
see a trend of scores, that decrease at �rst, as the percentage of masked edges increases, but
after that starts to increase again, towards the 100% of masked out edges. Most of the time, the
models in which all edges are masked out are even more interpretable than the models in which
no edge was masked out. It could be the case that, in contrast to the node classi�cation models
that we suspected to become more random, these models actually need a lot of the edges in the
graphs to make a reliable prediction, and once those edges are not present anymore they must
retreat to more and more biased predictions. Such a biased model then gives a high �delity score,
since its prediction doesn't change much, no matter the input. This hypothesis is supported by
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Dataset
% Rem. KEdge + KEdge + KEdge + KEdge + KEdge + KEdge + KEdge + KEdge +
±2% Kuma HardKuma HardCauchy HardGumbel HardLaplace HardNormal HardBeta HardWeibull

Cora

0% 0.67 0.68 0.62 0.67 0.58 0.68 0.67 0.65
20% - 0.66 0.57 0.55 0.64 0.65 0.62
50% - 0.59 0.54 0.56 0.53 0.59 0.58 0.57
80% - 0.54 0.53 0.51 0.52 0.53 0.53 0.54
100% - 0.53 0.53 0.54 0.52 0.53 0.52 0.53

CiteSeer

0% 0.61 0.62 0.55 0.61 0.53 0.61 0.59 0.57
20% - 0.59 0.53 0.59 0.51 0.57 0.58 0.56
50% - 0.54 0.51 0.54 0.50 0.55 0.55 0.54
80% - 0.52 0.49 0.51 0.50 0.53 0.53 0.51
100% - 0.51 0.49 0.52 0.50 0.52 0.52 0.51

PubMed

0% 0.78 0.77 0.77 0.78 0.75 0.78 0.77 0.74
20% - 0.75 0.76 0.74 0.73 0.76 0.74 0.72
50% - 0.70 0.71 0.68 0.71 0.72 0.71 0.69
80% - 0.67 0.67 0.65 0.68 0.67 0.68 0.66
100% - 0.65 0.66 0.65 0.66 0.65 0.65 0.65

MUTAG
+ GAP

0%
15%
85%
100%

0.67
-
-
-

0.87
0.76
0.77
0.91

0.75
0.89
0.79
0.88

0.90
0.89

0.95

0.63
0.7

1.0

0.87
0.93

1.0

0.81
0.73
0.99
0.92

1.0

0.81
0.67
0.93

MUTAG
+ GAT

0%
15%
85%
100%

0.77
-
-
-

0.85
0.79
0.73
0.94

0.86
0.8
0.83
0.92

0.90
0.84
1.0

0.93

0.76
0.77

1.0

0.94
0.78

0.97

0.83
0.80
0.79
0.80

0.88
0.75
1.0

0.93

Table 6: Integrated Fidelity of Gradient Based Methods and KEdge.
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our �rst experiment, where we saw that for the graph classi�cation task, the edges are of crucial
importance. So, removing all edges probably leads to a highly biased, low-performing model
with only little regard for the actual input.

When comparing the di�erent distributions for KEdge in Table 6, we see that at the level of no
masked edges the HardWeibull and HardGumbel distributions perform the best, followed by the
HardNormal distribution. The HardLaplace distribution, which had the most accurate models
also has the lowest �delity scores, while the HardWeibull and HardGumbel distributions lead to
relatively poor model performances.
Now, we can derive an answer to Research Question 2. For node classi�cation, one should use
gradient-based methods, especially integrated gradients or GradInput, when there is no special
interest in global explanations, as they tend to better explain the model's decision for single nodes.
For the graph classi�cation task, this picture is inverted and the KEdge methods outperform the
gradient-based ones. It again makes the most sense to set the maskedness to λ = 0 as to not
compromise the model's performance. This does not mean, that no edges are masked, but that
only edges are masked, such that the expected model performance does not decrease, as the
regularization on Z in Equation (3) is omitted. Additionally, KEdge can introduce positive
weights by choosing the expected value when the point probabilities at zero and one become
su�ciently small. For a choice of distribution, we would suggest the HardNormal, HardKuma,
or HardBeta distributions, depending on which one o�ers the best performance on the particular
dataset.

4.3 Explaining Movie Reviews

In our third and �nal experiment, we again wanted to judge the quality of explanations of the
di�erent methods, by comparing them to human explanations. The question we want to answer
is:

Research Question 3:

Which method o�ers good, concise explanations of model predictions? And, by which metric
should one judge attribution weights?

Since explaining decisions, and their contributing factors, for graphs, is hard, even for experts, we
went to the domain of text. Here, we used the annotated movie reviews dataset from DeYoung
et al. to compare our attribution weights to human explanations.

Experiment

The �rst step to conduct this experiment is to convert the text of a movie review into a graph
so that we can apply graph neural networks, and KEdge in particular. Here, we employed two
Graph-of-Words [RV13] strategies that led to two datasets.
For both datasets, we �rst went over the text and removed a few non-informative terms like
punctuation marks and the most common words4. For an example, see the di�erences from
Figure 9 to Figure 10.

ok , i admit it � i �nd camp amusement with the spice girls . yes , the same spice girls of the
gimmicky individual " identities , " they of the cheesy unifying mantra of " girls power . "

Figure 9: Raw movie review example text.

We then treated all remaining words as nodes in a graph. It is here, where both datasets
di�er. For the so-called linear dataset, we let every occurrence of a word be a unique node (see
Figure 11), while for the complex dataset, each occurrence of a word corresponds to the same,
single node in the graph (see Figure 12).

4We removed all of those tokens: [',', '.', �s', '"', '-', '?', ' !', '/', '(', ')', '_', 'the', 'be', 'to', 'of', 'and', 'a', 'an',
'in', 'that', 'it', 'you', 'me', 'i', 'is', 'at'].
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ok admit �nd camp amusement with spice girls yes same spice girls gimmicky individual
identities they cheesy unifying mantra girls power

Figure 10: Movie review example text with non-informative tokens removed.

For the edges of the graph, we took a sliding window of size three and connected the nodes
corresponding to the words inside the window. The resulting graph is undirected and has no
edge weights. If an edge was already present in the graph, we didn't add it a second time. So,
no multi-edges are allowed. As the last step, we transformed the words that correspond to the
nodes in the graph to 300 dimensional node features using GloVe [PSM14] word embeddings5.

ok admit �nd camp amusement with spice girls yes

samespicegirlsgimmickyindividualidentitiesthey

cheesy unifying mantra girls power

Figure 11: Movie review example; linear graph.

ok admit �nd camp amusement with spice girls yes

same

gimmickyindividualidentitiesthey

cheesy unifying mantra power

Figure 12: Movie review example; complex graph.

For both datasets, the model architecture, described in Table 7, was the same. It again is made up
of two GNN layers and a pooling layer, but this time followed by a more complex network, rather
than just a single linear layer like in the �rst experiments (Table 4). We chose a maskedness
parameter of λ = 0 for training.
After training the models for all possible combinations of the baseline model (no KEdge) or
KEdge with all distributions, linear or complex dataset and average pooling or attention pooling,
we evaluated the model accuracy and the fraction of removed edges, as well as the AUPRC, the
Comprehensiveness AOPC, the Su�ciency AOPC6, and the integrated �delity from Section 3.3.

5Speci�cally the GloVe 840B 300d embeddings.
6We calculate the AUPRC, Comprehensiveness AOPC, and Su�ciency AOPC using the implementation from

DeYoung et al.
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Operation Feature size Weights

Input 300
KEdge 2 · (300 · 32 + 2 · 32)

GraphConv 2 · 300 · 300 + 300
LeakyReLU 300
GraphConv 2 · 300 · 200 + 200
LeakyReLU 200
pooling GAP: 0 / GAT: 200 · 5 + 5 + 5 · 1 + 1
Linear 200 · 100 + 100

LeakyReLU + BatchNorm 100 1 + 100
Linear 100 · 10 + 10

LeakyReLU + BatchNorm 10 1 + 10
Linear 10 · 5 + 5

LeakyReLU + BatchNorm 5 1 + 5
Linear 5 · 2 + 1
Softmax 2

Table 7: Model architecture for movies dataset.

Results

Our �rst observation was that the linear dataset overwhelmingly performs better when using
average pooling, while for the complex dataset results are more mixed, but more often than not
attention pooling performs better than average pooling. Here, we just report the results for the
linear dataset with average pooling (Table 8) and for the complex dataset with attention pooling
(Table 9). For a full list of all results, see Appendix A.

Model acc rem. AUPRC Comp. AOPC Su�. AOPC int. �d.

KEdge + HardBeta 0.869 0.768 0.368 0.280 0.199 0.900
KEdge + HardCauchy 0.864 0.019 0.353 0.206 0.154 0.897
KEdge + HardGumbel 0.879 0.421 0.417 0.167 0.279 0.904
KEdge + HardKuma 0.884 0.755 0.392 0.287 0.150 0.928
KEdge + HardLaplace 0.869 0.076 0.362 0.213 0.169 0.908
KEdge + HardWeibull 0.874 0.563 0.402 0.231 0.181 0.873
KEdge + HardNormal 0.889 0.831 0.403 0.195 0.172 0.936

KEdge + Kuma 0.869 0.000 0.547 0.068 0.250 0.888

Baseline + CAM 0.864 - 0.389 0.394 0.190 0.927
Baseline + GradInput 0.864 - 0.386 0.377 0.207 0.914
Baseline + Grads 0.864 - 0.396 0.359 0.240 0.907
Baseline + IG 0.864 - 0.397 0.394 0.120 0.938

Baseline + SmoothGrad 0.864 - 0.386 0.313 0.230 0.920

Baseline + Random 0.864 - 0.547 0.074 0.241 0.852

Table 8: Movie Reviews for linear dataset & GAP.

For the linear dataset with average pooling, the best performing model was the one that uses
KEdge with the HardNormal distribution at 89% accuracy, followed by the HardKuma and
HardGumbel distributions at 88%, against a baseline of 86% accuracy. On this dataset, the
accuracy and percentage of removed edges have a positive correlation of 0.56. This is unlike the
datasets we looked at in the �rst experiment (Section 4.1) and signi�es that the linear graph has
some edges, that hurt the model's performance.
When looking at the metrics for the attribution weights, we saw that the baseline model with
integrated gradients is performing the best across Comprehensiveness AOPC, Su�ciency AOPC
and also integrated �delity, but not AUPRC. While the gradient-based methods all had an
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AUPRC of around 0.39, the KEdge methods ranged from about 0.35 to about 0.41, with one big
outlier: KEdge with the Kuma distribution reached an AUPRC of 0.547, while also attaining
the overall lowest Comprehensiveness AOPC of 0.068 and the second-highest Su�ciency AOPC
of all models on the linear dataset, using average pooling, at 0.250. All these, however, are the
result of constant attribution weights of 1! We also trained a baseline model and manually gave it
attribution weights of 1 and that model reached the same AUPRC of 0.547, a Comprehensiveness
AOPC of 0.074, and a Su�ciency AOPC of 0.241.
Compared to the models on the ERASER leaderboard, only our random models beat the highest
AUPRC of 0.502 and no model beat the lowest Su�ciency AOPC of 0.093, while almost all of
our models with actual, informational attention weights, so not the Random baseline and the
Kuma model, beat the top Comprehensiveness AOPC of 0.187.

Model acc rem. AUPRC Comp. AOPC Su�. AOPC int. �d.

KEdge + HardBeta 0.859 0.373 0.389 0.150 0.199 0.887
KEdge + HardCauchy 0.889 0.020 0.374 0.251 0.224 0.875
KEdge + HardGumbel 0.864 0.790 0.350 0.194 0.159 0.912
KEdge + HardKuma 0.844 0.566 0.362 0.202 0.184 0.884
KEdge + HardLaplace 0.854 0.070 0.368 0.241 0.300 0.901
KEdge + HardWeibull 0.859 0.858 0.325 0.296 0.312 0.889
KEdge + HardNormal 0.864 0.613 0.369 0.263 0.243 0.875

KEdge + Kuma 0.854 0.000 0.547 0.123 0.292 0.774

Baseline + GradCAM 0.864 - 0.362 0.163 0.293 0.857
Baseline + GradInput 0.864 - 0.358 0.179 0.226 0.924
Baseline + Grads 0.864 - 0.365 0.167 0.258 0.923
Baseline + IG 0.864 - 0.346 0.143 0.278 0.926

Baseline + SmoothGrad 0.864 - 0.358 0.162 0.229 0.927

Baseline + Random 0.864 - 0.547 0.067 0.251 0.855

Table 9: Movie Reviews for complex dataset & GAT.

On the complex dataset with attention pooling, the best performing models were the KEdge
model using the HardCauchy distribution, which reaches an accuracy of 89%, followed by the
HardNormal and HardGumbel distributions with 86%. Therefore, almost all KEdge models per-
formed worse than the 86% accuracy baseline model. Unlike on the linear dataset, the accuracy
and percentage of removed edges are almost uncorrelated (correlation of 0.11), implying that the
edges of the complex graphs are more important for a good performing model than on the linear
dataset; or at least they are not as obstructive.
Again, the KEdge model with the Kuma distribution archived the highest AUPRC score of 0.547.
The largest Comprehensiveness AOPC was obtained by the HardWeibull model at 0.296. Overall
only the model using the HardGumbel distribution and average pooling on the complex dataset,
as well as some of the baseline models on the linear dataset with GAP, beat this score. It also
had more than one and a half times the Comprehensiveness AOPC of the best model on the
ERASER leaderboard, which stands at 0.187.
The highest �delity score is attained by the baseline model using SmoothGrad, followed by the
same model using the integrated gradients method. We also see, that the gradient-based methods
generally score better at integrated �delity than the KEdge models do on this dataset.

AUPRC C. AOPC S. AOPC int. �d.

AUPRC 1.0 -0.333 -0.064 -0.209
C. AOPC -0.333 1.0 -0.344 0.564
S. AOPC -0.064 -0.344 1.0 -0.438
int. �d. -0.209 0.554 -0.438 1.0

Table 10: Correlation of di�erent metrics on movie dataset.
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When comparing the four metrics, it stands out that they are only mildly correlated (see Ta-
ble 10). While the S. AOPC and C. AOPC are mildly negatively correlated, which is expected
since we want to attain a high C. AOPC, but a low S. AOPC, the S. AOPC, and the AUPRC
are almost uncorrelated, while AUPRC and Comprehensiveness AOPC are even negatively cor-
related.
The AUPRC and integrated �delity scores are only very mildly negatively correlated, while
integrated �delity has a relatively large positive correlation with the Comprehensiveness AOPC
and a negative one with the Su�ciency AOPC. This means that when one of those scores gets
better, the �delity score tends to also get better, which is to be expected.
This suggests that the attributions, that explain the model tend to be independent of human
rationales or even that making rationales more like human explanations worsens the rationales'
abilities to explain a neural model. And this suggests, that neural models either just work
di�erently to human brains and therefore focus on di�erent parts of the text or that human
rationales are not that good at explaining human decisions.
Now, to get a better feel for the attributions and the metrics, we considered a few examples of
movie reviews with visualized attribution scores. The visualizations are all normalized, such that
the lowest weight and highest weight for each model are mapped to the same color each time
(see Figure 13). We did this for a selected range of models.

1 2 3 4 5 6 7 8 9

Figure 13: Scale of the visualization; low to high.

Out of all models on the linear dataset with average pooling, we took the HardKuma model,
because it has the highest Comprehensiveness AOPC and lowest Su�ciency AOPC out of all the
KEdge models, we chose the HardNormal model, because it has the highest accuracy, and we
chose the baseline model, using integrated gradients since it has the highest integrated �delity
score, as well as the best Su�ciency and Comprehensiveness AOPC. We also took the HardGum-
bel model, since it has the highest Su�ciency AOPC, which should mean that attributions are
bad here. For models on the complex dataset with attention pooling, we took the HardCauchy
one, again, because it performs the best, we took the HardWeibull model, because it has the
highest Comprehensiveness AOPC, and we chose the SmoothGrad one because it has the highest
�delity score. We also took some of the other models (see Appendix A). From the linear dataset
with attention pooling we took the HardWeibull model because it performs the best overall, we
took the HardKuma model, because of its AUPRC of 0.516 and good performance and we took
the HardBeta model for having the overall worst AUPRC. From the models on the complex
dataset with average pooling, we only chose the HardWeibull model, because it has the overall
lowest integrated �delity. For convenience, we have labeled the models.
We compared the attributions on small parts of three movie reviews, that are marked as impor-
tant by the human rationales, while also being important to at least some of the models. The
results can be seen in Table 11. For the full reviews and ground truth, human attributions see
Appendix B.
The �rst thing that stands out about the attributions is, how di�erent they are. They range from
no real weight on important parts of the text to the whole thing being bright red. Upon further
inspection of the full reviews for models 5, 6, 7, 10 and 11 one �nds that they disproportionally
value words, that occur often, even if they do not contribute to the interpretation of the review.
Examples of this are the word 'movie', the title of the �lm, or the name of an actor. Then there is
model 9, which weighs most of the words very highly with only a few exceptions. This case only
occurs for KEdge models, the reason being that they simply only mask out very few edges. This
is the same dilemma we found in the second experiment (Section 4.2), where more masked out
edges would, in principle, lead to more clear attributions, but also worse performance, making
the attributions worse again. This model was also chosen, because of its high AUPRC, which
turned out to be a �uke, like the Kuma models we saw before.
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No. Model Example attributions

1
KEdge + HardGumbel

linear & GAP

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

2
KEdge + HardKuma

linear & GAP

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

3
KEdge + HardNormal

linear & GAP

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

4
Baseline + IG
linear & GAP

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

5
KEdge + HardCauchy

complex & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

6
KEdge + HardWeibull

complex & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

7
Baseline + SmoothGrad

complex & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

8
KEdge + HardWeibull

linear & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

9
KEdge + HardKuma

linear & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

10
KEdge + HardBeta

linear & GAT

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

11
KEdge + HardWeibull

complex & GAP

with hokey violence , crap suspense , stupid melodrama

as well as its stunning art direction , and unforgettable scores

sophisticated , top - of - the - line visuals and quality exotic costumes

Table 11: Attribution of signi�cant parts of three reviews; selected models.
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From the examples, models number 2 to 4 and 8 look the best to the human eye. Here the more
important words are clearly di�erentiated, with the quali�ers, that really convey the authors'
opinion, weighted even more than the nouns they reference ('hokey violence', 'crap suspense',
'stunning art direction'). Model 4 stands out for the fact, that the words with the highest weights
are not overshadowed by other words in the reviews, outside of the excerpts, like it is the case
for models 2, 3, and even more so for model 8.
Models 2 and 4 were explicitly chosen for the high integrated �delity, high Comprehensiveness
AOPC and low Su�ciency AOPC, while models 3 and 8 were chosen for their good performance.
Model number 7 was also chosen because of its high integrated �delity score, but it doesn't stand
up to the eye-test as 3 and 4 do.
The contrast between models 9 and 10 is especially large, considering the fact, that both were
chosen because of their AUPRC scores. Model 9 had the highest while model 10 had the lowest
AUPRC, yet the explanations of model 10 carry at least some information on what words are
important for a decision, while this is not the case for model 10.
Aside from that, there is not a distinct best metric among integrated �delity, Comprehensiveness
AOPC, and Su�ciency AOPC. While all of them can be indicators for good-looking attributions,
there are also some outliers for all of them. That being said, multiple metrics on a high level
seem to be a sign for good explanations.
Now, to answer Research Question 3, it can be said, that while using KEdge over gradient-
based methods can lead to very low-informational attributions like it's the case for model 9,
this does not happen very often, when choosing di�erent distributions. We also saw, that when
considering Graph-of-Words techniques, the linear graphs tend to be more explainable. As for
metrics, comparison to human explanations and especially AUPRC is a bad way of judging
explanations for a GNN model, while, at least in the domain of text, the other metrics we
considered are all indicators, but not assurances of good looking explanations.
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5 Conclusion

Since graph neural networks are on the rise and used in high-stakes environments, it's more im-
portant than ever before to explain the decisions made by them. We studied a variety of di�erent
explanation techniques and investigated when to use each one, based on model performance and
our new metric of integrated �delity. We saw that for node classi�cation one probably wants
to use the integrated gradients as the most solid of the gradient-based techniques unless global
explanations are speci�cally required. In this case, KEdge should be used. We also saw that
KEdge outperforms the gradient-based techniques for graph classi�cation. When using KEdge,
we recommend using the HardKuma, HardBeta, or HardNormal distributions, as all of them of-
fer accurate models, as well as high �delity explanations. When the model's accuracy is the top
priority, one should also try the HardLaplace distribution, as it can outperform the aforemen-
tioned distributions, depending on the dataset that used. However, its explanations are lower in
�delity. We also learned, that when using a Graph-of-Words approach to tackle a problem in the
text domain, the linear type of graph lends itself to models, which can be explained better, while
not sacri�cing any model performance, and that explanations, which mimic human rationales
are bad at explaining the decisions of GNNs.
Further research into interpretable by design GNN layers could shine a light onto an algorithm
similar to KEdge, but focused on nodes. This would remove the intermediate step of converting
edge weights to node weights. One could use the node features to calculate the parameters of one
of the hard distributions we introduced to then sample some weight for each node. The node's
features could then be multiplied by the sampled weight. To completely remove a node, that is
weighted with zero, more complex changes to the resulting graph and also the GNN itself have
to be made. Another way attribution might be possible, at least for graph classi�cation, is to
simply use the weights generated by an attention pooling layer. Here further research is needed
to answer the question if that approach is any good, or if it even is better than the attribution
techniques this thesis focused on. Since our comparison of metrics for attribution weights yielded
no one, best metric, further research is needed into which metric for judging attribution weights
is best for a given task and focus.
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A Movie Reviews - Metrics

Model Pooling Dataset acc rem AUPRC Comp. AOPC Su�. AOPC int. �d.

KEdge + HardBeta GAP complex 0.879 0.739 0.349 0.252 0.163 0.881
KEdge + HardBeta GAT complex 0.859 0.373 0.389 0.150 0.199 0.887
KEdge + HardBeta GAP linear 0.869 0.768 0.368 0.280 0.199 0.900
KEdge + HardBeta GAT linear 0.879 0.897 0.300 0.158 0.222 0.845

KEdge + HardCauchy GAP complex 0.844 0.045 0.363 0.233 0.208 0.863
KEdge + HardCauchy GAT complex 0.889 0.020 0.374 0.251 0.224 0.875
KEdge + HardCauchy GAP linear 0.864 0.019 0.353 0.206 0.154 0.897
KEdge + HardCauchy GAT linear 0.879 0.084 0.359 0.172 0.373 0.782

KEdge + HardGumbel GAP complex 0.874 0.746 0.371 0.331 0.274 0.862
KEdge + HardGumbel GAT complex 0.864 0.790 0.350 0.194 0.159 0.912
KEdge + HardGumbel GAP linear 0.879 0.421 0.417 0.167 0.279 0.904
KEdge + HardGumbel GAT linear 0.894 0.739 0.343 0.175 0.159 0.904

KEdge + HardKuma GAP complex 0.864 0.804 0.380 0.232 0.188 0.912
KEdge + HardKuma GAT complex 0.844 0.566 0.362 0.202 0.184 0.884
KEdge + HardKuma GAP linear 0.884 0.755 0.392 0.287 0.150 0.928
KEdge + HardKuma GAT linear 0.889 0.058 0.516 0.113 0.223 0.870

KEdge + HardLaplace GAP complex 0.874 0.032 0.371 0.266 0.183 0.907
KEdge + HardLaplace GAT complex 0.854 0.070 0.368 0.241 0.300 0.901
KEdge + HardLaplace GAP linear 0.869 0.076 0.362 0.213 0.169 0.908
KEdge + HardLaplace GAT linear 0.859 0.173 0.366 0.332 0.208 0.926

KEdge + HardWeibull GAP complex 0.889 0.884 0.346 0.145 0.287 0.764
KEdge + HardWeibull GAT complex 0.859 0.858 0.325 0.296 0.312 0.889
KEdge + HardWeibull GAP linear 0.874 0.563 0.402 0.231 0.181 0.873
KEdge + HardWeibull GAT linear 0.899 0.588 0.378 0.217 0.178 0.923

KEdge + HardNormal GAP complex 0.874 0.956 0.337 0.183 0.191 0.855
KEdge + HardNormal GAT complex 0.864 0.613 0.369 0.263 0.243 0.875
KEdge + HardNormal GAP linear 0.889 0.831 0.403 0.195 0.172 0.936
KEdge + HardNormal GAT linear 0.874 0.597 0.389 0.207 0.205 0.888

KEdge + Kuma GAP complex 0.799 0.000 0.547 0.080 0.235 0.856
KEdge + Kuma GAT complex 0.854 0.000 0.547 0.123 0.292 0.774
KEdge + Kuma GAP linear 0.869 0.000 0.547 0.068 0.250 0.888
KEdge + Kuma GAT linear 0.829 0.000 0.547 0.070 0.259 0.849

Baseline + CAM GAP complex 0.859 - 0.365 0.276 0.218 0.909
Baseline + CAM GAP linear 0.864 - 0.389 0.394 0.190 0.927

Baseline + GradCAM GAT complex 0.864 - 0.362 0.163 0.293 0.857
Baseline + GradCAM GAT linear 0.874 - 0.419 0.249 0.214 0.839

Baseline + GradInput GAP complex 0.859 - 0.346 0.213 0.319 0.870
Baseline + GradInput GAT complex 0.864 - 0.358 0.179 0.226 0.924
Baseline + GradInput GAP linear 0.864 - 0.386 0.377 0.207 0.914
Baseline + GradInput GAT linear 0.874 - 0.417 0.216 0.165 0.873

Baseline + Grads GAP complex 0.859 - 0.350 0.198 0.349 0.859
Baseline + Grads GAT complex 0.864 - 0.365 0.167 0.258 0.923
Baseline + Grads GAP linear 0.864 - 0.396 0.359 0.240 0.907
Baseline + Grads GAT linear 0.874 - 0.425 0.212 0.182 0.876

Baseline + IG GAP complex 0.859 - 0.341 0.145 0.301 0.911
Baseline + IG GAT complex 0.864 - 0.346 0.143 0.278 0.926
Baseline + IG GAP linear 0.864 - 0.397 0.394 0.120 0.938
Baseline + IG GAT linear 0.874 - 0.414 0.211 0.177 0.873

Baseline + SmoothGrad GAP complex 0.859 - 0.344 0.159 0.342 0.880
Baseline + SmoothGrad GAT complex 0.864 - 0.358 0.162 0.229 0.927
Baseline + SmoothGrad GAP linear 0.864 - 0.386 0.313 0.230 0.920
Baseline + SmoothGrad GAT linear 0.874 - 0.418 0.204 0.173 0.866

Table 12: Eraser stats for di�erent models.
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B Example Movie Reviews

Model 2 Model 4 Model 8
KEdge + HardKuma Baseline + IG KEdge + HardWeibull

linear & GAP linear & GAP linear & GAT
Review 1
martial arts master steven seagal ( not to mention director ! ) has built a career out of playing
an allegedly �ctitious martial arts superman who never gets hurt in �ghts , talks in a hushed
tone , and squints at any sign of danger . he 's also the most consistent individual in hollywood
today , since all his movies suck . they basically represent his egotisitical tendencies about his
art ( that is , martial art ) . i 'm sure the guy 's good , and he seems like a nice guy on talk
shows , although a tad haughty , but these movies he makes are all the same : a guy who is
basically indestructable , is maybe wounded supposedly mortally , then comes back with a
vengeance and goes buddha on all the baddies asses ( although i kinda liked " under siege " ) .
of course , this one , as a change , has a " message " that is drilled into our mind . .. of course
, after he blows up a lot of stu� and kills a bunch of people . so why do i watch his crap ? i
usually do n't . i will never , and you can hold me to this , i will never pay to see this man 's
movies , unless , and only unless , he 's in a supporting role ( i. e. " executive decision " ) and i
'd de�nitely pay if he dies ( i. e. " executive decision " ) . but this one has a special place in my
heart . this does n't mean it 's good or that i even liked it . this was the last movie i watched
with my deceased uncle , and we had one hell of a time ripping it apart a la " mystery science
theatre 3000 , " and this was a couple years before i had heard of " mystery science theatre 3000
. " in this one , seagal plays a worker for a mining factory set in alaska and run by the greased
- up typical shallow villain , this time played by an oscar - winner to give the movie some more
clout - michael caine . it seems that caine wants to do something with his oil factory that
includes him dumping oil all over inuit land . around the 20 - 30 minute point , seagal speaks
up to him in what seems to be the typical speech to all the vain entrepeneurs ( what with his
new " �re down below , " another " message �lm " ) , and caine has him bumped o� . .. or does
he ? seagal is rescued by some inuits , and falls in love with one of them , played by joan chen ,
who can act , hypothetically , but , for some reason , not here . one of caine 's cliched henchmen
( played here with a lot of overacting by john c. mcginley ) shoots the cheif of the inuit clan ,
and chen and seagal go on a voyage to take down the oil factory . .. literally , of course . at one
point , seagal gives a wonderfully hysterical speech about how he does n't have any options but
blow stu� up . he even goes as far as to say , " i do n't want to kill someone , " and in the same
breath , he asks some guy where the arsenal is . i have no problem with violence . i 'm a huge
john woo fan , but he paints his �lms with suspense , skill , style , depth , characterization ,
and just plain cool violence . in the �lms of seagal , the suspense mainly consists of the baddie
attacking him stupidly , and him either wounding or killing them . at some points , they use
the cliche of the talking villain , where the villain has the advantage , can shoot seagal , but
begins talking by either telling him his big secret plan , or saying a corny line , to which seagal
says something hokey back , and has had enough time to devise of a way to do away with them
, and does . this would be okay if there were any suspense or if it did n't take itself seriously at
all , like in the case of this summer 's " con air . " but seagal is serious about his skill , and of
course , his message . i would n't mind if this was a message �lm in the way that they present
it to you with evidence . but seagal has no idea how to present a �lm where the message is
subtle , not pounded into the viewer 's mind . the villain is totally shallow and cartoonish ,
thus we ca n't take him and his motives seriously , and while seagal talks about being kind to
the environment , he also goes ahead and blows up a square mile of rig , and kills some workers
who were just doing his job . then at the end , he spends a good 10 minutes giving a speech ,
just in case you did n't get the message from the trailers . what seagal does n't realize is that
no one takes his �lms seriously ( although maybe a couple do ) and any message he has is no
only redundant , but does n't comfortably �t in his �lm , which is �lled to the brim with hokey
violence , crap suspense , stupid melodrama , and characters who have about as much emotional
depth as a petri dish . as far as seagal and his acting , he 's rather boring . he squints , he kills .
period . nothing else . oh , yeah , there 's corny one - liners ( " i 'm gon na reach out and touch
someone ! " ) . of course , he 's the star , and we 're supposed to root for him and all , so he
makes all the villains unbelievably stupid and a bunch of jerks . michael caine , who 's a great
actor , is just supposed to yell and look cold . he does it well , i guess , but this is no " al�e . "
of coure , no one was expecting that caliber of performance from him . his big henchman , john
c. mcginley is kinda boring as well , but is not horrible . and we even get a small performance
from that god of drill sergeants on celluloid , r. lee ermey ( from " full metal jacket " ) as a
hired assasin squad leader who gets to say the obligatory speech about how dangerous seagal is
, just for the movie trailers and for seagal 's ego . and also , look for billy bob thornton as one
of ermey 's assasins . anyway , to conclude this all , to judge one of seagal 's movies is to judge
all of them ( except for " under siege " and " executive decision , " though the latter is not
really a " seagal movie " ) . they all have this same formula , they all have the same action ,
same villain , same plot , but this one has that message , which makes it more excrucitating to
watch . i mean , if you do rent it , and i do n't reccomend you do , make sure you just skip the
last 10 minutes . but i have to put it to seagal for creating a �lm so bad , that the last �lm i
viewed with my uncle was a pleasurable one . my ( extra star for the fun it is to watch and mock )

martial arts master steven seagal ( not to mention director ! ) has built a career out of playing
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Review 2
like the great musical pieces of mozart himself , amadeus is a true work of art . it is one of those
few movies of the 80 's that will be known for its class , its style , and its intelligence . why is this
such a good �lm ? there are almost too many reasons to explain . the story : court composer
salieri ( f. murray abraham ) feels waves of di�erent emotions going through his head as wolfgang
amadeus mozart ( tom hulce ) comes into his life as the young genius composer . salieri feels
envy , and jealousy , but at the same time is fascinated with mozart 's brilliance and ingenious
. we travel through mozart 's life as a composer , through his struggles , his triumphs , and
ultimately , his demise . the acting : abraham is magni�cient as salieri ; his acting range enables
him to focus on each individual emotion and express it through his speech and body language .
this performance earned him a well deserved oscar . tom hulce is interesting as well as mozart , a
quirky , annoying bratty kid with an annoying laugh . he 's strong , but weak at the same time ,
and must be aided by his wife ( elizabeth berridge ) , who is good in her role , but lacks dramatic
depth . je�rey jones , in a smaller , more digni�ed role than such roles in stay tuned and mom
and dad save the world , is cast perfectly because of his noble charm . the movie : every element
of this movie works . the costumes and makeup are very memorable , as well as its stunning art
direction , and unforgettable scores ( adapted from mozart 's original music ) . while wolfgang
amadeus mozart was a genius at music , milos forman proves with his �lm that he is a genius
of �lmmaking . this movie is a classic that will be remembered for years to come . ad2am
" i almost lost my nose . .. and i like it . i like breathing through it . " -jack nicholson , chinatown
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Review 3
synopsis : in phantom menace the galaxy is divided into power groups whose interests will
inevitably collide in later sequels . there is an overarching galactic united nations - type
organization called the senate presided by a weak chancellor . within the senate two camps
are at odds : a bickering , isolationist alliance called the republic and their aggressive rival the
trade federation . preserving law and order are a council of jedi knights who are meanwhile
searching for a prophesied chosen one of virgin birth . manipulating events behind the scenes
is a dangerous , reemerging clan called the dark lords of sith , so shadowy and secretive that
they comprise a " phantom " menace . jedi knight qui - gon jinn ( liam neeson ) and his
apprentice obi - wan kenobi ( ewan mcgregor ) witness an invasion of teenage queen amidala
's home planet naboo and befriend a gungan named jar jar ( ahmed best ) . on the desert
planet of tatooine the two jedi , jar jar , and amidala ( natalie portman ) attend a lengthy
drag race involving the young boy anakin skywalker ( jake lloyd ) . the �ve protagonists try
to solicit help for freeing naboo by visiting the city planet of coruscant where a lot of debate
and political maneuvering takes place . can they free amidala 's helpless planet ? opinion :
on tv last night i watched young , wannabe celebs pay $ 400 a ticket and come running out of
theaters to bask in front of news cameras , gushing with testimonials of the phantom menace
's greatness in exchange for a few seconds of being on national television . given this kind
of media mania i wondered if phantom menace , the most anticipated movie of 1999 , could
possibly live up to the extraordinary hype that preceded it . does phantom menace match the
exaggerated hype ? director george lucas answers , " it 's only a movie . " to me , any movie
with russian - sounding accents for bad guys , jamaican accents for good guys , and middle
eastern - sounding accents for seedy gamblers accents can be expected to be more tongue in
cheek than profound . visually , star wars : episode i �the phantom menace ( 1999 ) is a kid
show where parents can take their young ones to marvel at child - friendly cgi characters and
wondrous backdrops even if the character dialogue ( mostly geopolitics ) is beyond the level
of children . it is left to parents to patiently explain the conversation : droid origins , family
lineage , the de�nitions of terms like blockade , appeasement , federation , alliance , symbiosis ,
satellite - controlled robots et cetera . at least this much is clear : there 's plenty of eye candy
, and in the last few minutes it 's good guys and joe camel lookalikes versus a caped , horned
red devil character and his mechanical hordes . weaknesses : weaknesses lie in the writing and
in the performance . at �rst it seems like the �lm is to be an invasion story , but then phantom
takes an hour - long detour to cover one chariot race before returning to the invasion theme .
this dilutes the central story . additionally , smaller scenes seem written self consciously , as
if they were added more to �ll us in on extraneous background information for other movies
rather than form an integral part of the present movie . veteran actors liam neeson and ewan
mcgregor noticeably outperform the other acting leads . better ensemble chemistry between
the �ve leads and background information that is central to a tight story line could have made
have given phantom stronger performances and storytelling punch . strengths : on the bright
side phantom menace as a big - budget production is far ahead of the competition in terms of
making whimsical creatures , worlds and vehicles appear real . the �lm boasts sophisticated ,
top - of - the - line visuals and quality exotic costumes , a musical score entertaining enough
to stand alone , and three worthwhile sequences in the second half . bottom line ? seeing the
�lm is entertaining and informative , like a visual theme park with star wars �ller information
serving as dialogue between impressive money shots . we are bound to be completely inundated
by star wars publicity , music and tie - ins for the next few months .
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top - of - the - line visuals and quality exotic costumes , a musical score entertaining enough
to stand alone , and three worthwhile sequences in the second half . bottom line ? seeing the
�lm is entertaining and informative , like a visual theme park with star wars �ller information
serving as dialogue between impressive money shots . we are bound to be completely inundated
by star wars publicity , music and tie - ins for the next few months .

synopsis : in phantom menace the galaxy is divided into power groups whose interests will
inevitably collide in later sequels . there is an overarching galactic united nations - type
organization called the senate presided by a weak chancellor . within the senate two camps
are at odds : a bickering , isolationist alliance called the republic and their aggressive rival the
trade federation . preserving law and order are a council of jedi knights who are meanwhile
searching for a prophesied chosen one of virgin birth . manipulating events behind the scenes
is a dangerous , reemerging clan called the dark lords of sith , so shadowy and secretive that
they comprise a " phantom " menace . jedi knight qui - gon jinn ( liam neeson ) and his
apprentice obi - wan kenobi ( ewan mcgregor ) witness an invasion of teenage queen amidala
's home planet naboo and befriend a gungan named jar jar ( ahmed best ) . on the desert
planet of tatooine the two jedi , jar jar , and amidala ( natalie portman ) attend a lengthy
drag race involving the young boy anakin skywalker ( jake lloyd ) . the �ve protagonists try
to solicit help for freeing naboo by visiting the city planet of coruscant where a lot of debate
and political maneuvering takes place . can they free amidala 's helpless planet ? opinion :
on tv last night i watched young , wannabe celebs pay $ 400 a ticket and come running out of
theaters to bask in front of news cameras , gushing with testimonials of the phantom menace
's greatness in exchange for a few seconds of being on national television . given this kind
of media mania i wondered if phantom menace , the most anticipated movie of 1999 , could
possibly live up to the extraordinary hype that preceded it . does phantom menace match the
exaggerated hype ? director george lucas answers , " it 's only a movie . " to me , any movie
with russian - sounding accents for bad guys , jamaican accents for good guys , and middle
eastern - sounding accents for seedy gamblers accents can be expected to be more tongue in
cheek than profound . visually , star wars : episode i �the phantom menace ( 1999 ) is a kid
show where parents can take their young ones to marvel at child - friendly cgi characters and
wondrous backdrops even if the character dialogue ( mostly geopolitics ) is beyond the level
of children . it is left to parents to patiently explain the conversation : droid origins , family
lineage , the de�nitions of terms like blockade , appeasement , federation , alliance , symbiosis ,
satellite - controlled robots et cetera . at least this much is clear : there 's plenty of eye candy
, and in the last few minutes it 's good guys and joe camel lookalikes versus a caped , horned
red devil character and his mechanical hordes . weaknesses : weaknesses lie in the writing and
in the performance . at �rst it seems like the �lm is to be an invasion story , but then phantom
takes an hour - long detour to cover one chariot race before returning to the invasion theme .
this dilutes the central story . additionally , smaller scenes seem written self consciously , as
if they were added more to �ll us in on extraneous background information for other movies
rather than form an integral part of the present movie . veteran actors liam neeson and ewan
mcgregor noticeably outperform the other acting leads . better ensemble chemistry between
the �ve leads and background information that is central to a tight story line could have made
have given phantom stronger performances and storytelling punch . strengths : on the bright
side phantom menace as a big - budget production is far ahead of the competition in terms of
making whimsical creatures , worlds and vehicles appear real . the �lm boasts sophisticated ,
top - of - the - line visuals and quality exotic costumes , a musical score entertaining enough
to stand alone , and three worthwhile sequences in the second half . bottom line ? seeing the
�lm is entertaining and informative , like a visual theme park with star wars �ller information
serving as dialogue between impressive money shots . we are bound to be completely inundated
by star wars publicity , music and tie - ins for the next few months .

Table 13: Attribution weighted movie reviews. Model numbers are from Table 11.

41



Ground truth

Review 1
martial arts master steven seagal ( not to mention director ! ) has built a career out of playing an allegedly �ctitious martial arts superman
who never gets hurt in �ghts , talks in a hushed tone , and squints at any sign of danger . he 's also the most consistent individual in hollywood
today , since all his movies suck . they basically represent his egotisitical tendencies about his art ( that is , martial art ) . i 'm sure the guy
's good , and he seems like a nice guy on talk shows , although a tad haughty , but these movies he makes are all the same : a guy who is
basically indestructable , is maybe wounded supposedly mortally , then comes back with a vengeance and goes buddha on all the baddies asses
( although i kinda liked " under siege " ) . of course , this one , as a change , has a " message " that is drilled into our mind . .. of course ,
after he blows up a lot of stu� and kills a bunch of people . so why do i watch his crap ? i usually do n't . i will never , and you can hold me
to this , i will never pay to see this man 's movies , unless , and only unless , he 's in a supporting role ( i. e. " executive decision " ) and i 'd
de�nitely pay if he dies ( i. e. " executive decision " ) . but this one has a special place in my heart . this does n't mean it 's good or that i
even liked it . this was the last movie i watched with my deceased uncle , and we had one hell of a time ripping it apart a la " mystery science
theatre 3000 , " and this was a couple years before i had heard of " mystery science theatre 3000 . " in this one , seagal plays a worker for a
mining factory set in alaska and run by the greased - up typical shallow villain , this time played by an oscar - winner to give the movie some
more clout - michael caine . it seems that caine wants to do something with his oil factory that includes him dumping oil all over inuit land .
around the 20 - 30 minute point , seagal speaks up to him in what seems to be the typical speech to all the vain entrepeneurs ( what with his
new " �re down below , " another " message �lm " ) , and caine has him bumped o� . .. or does he ? seagal is rescued by some inuits , and
falls in love with one of them , played by joan chen , who can act , hypothetically , but , for some reason , not here . one of caine 's cliched
henchmen ( played here with a lot of overacting by john c. mcginley ) shoots the cheif of the inuit clan , and chen and seagal go on a voyage
to take down the oil factory . .. literally , of course . at one point , seagal gives a wonderfully hysterical speech about how he does n't have
any options but blow stu� up . he even goes as far as to say , " i do n't want to kill someone , " and in the same breath , he asks some guy
where the arsenal is . i have no problem with violence . i 'm a huge john woo fan , but he paints his �lms with suspense , skill , style , depth
, characterization , and just plain cool violence . in the �lms of seagal , the suspense mainly consists of the baddie attacking him stupidly ,
and him either wounding or killing them . at some points , they use the cliche of the talking villain , where the villain has the advantage , can
shoot seagal , but begins talking by either telling him his big secret plan , or saying a corny line , to which seagal says something hokey back
, and has had enough time to devise of a way to do away with them , and does . this would be okay if there were any suspense or if it did n't
take itself seriously at all , like in the case of this summer 's " con air . " but seagal is serious about his skill , and of course , his message . i
would n't mind if this was a message �lm in the way that they present it to you with evidence . but seagal has no idea how to present a �lm
where the message is subtle , not pounded into the viewer 's mind . the villain is totally shallow and cartoonish , thus we ca n't take him and
his motives seriously , and while seagal talks about being kind to the environment , he also goes ahead and blows up a square mile of rig ,
and kills some workers who were just doing his job . then at the end , he spends a good 10 minutes giving a speech , just in case you did n't
get the message from the trailers . what seagal does n't realize is that no one takes his �lms seriously ( although maybe a couple do ) and any
message he has is no only redundant , but does n't comfortably �t in his �lm , which is �lled to the brim with hokey violence , crap suspense
, stupid melodrama , and characters who have about as much emotional depth as a petri dish . as far as seagal and his acting , he 's rather
boring . he squints , he kills . period . nothing else . oh , yeah , there 's corny one - liners ( " i 'm gon na reach out and touch someone ! " )
. of course , he 's the star , and we 're supposed to root for him and all , so he makes all the villains unbelievably stupid and a bunch of jerks
. michael caine , who 's a great actor , is just supposed to yell and look cold . he does it well , i guess , but this is no " al�e . " of coure , no
one was expecting that caliber of performance from him . his big henchman , john c. mcginley is kinda boring as well , but is not horrible .
and we even get a small performance from that god of drill sergeants on celluloid , r. lee ermey ( from " full metal jacket " ) as a hired assasin
squad leader who gets to say the obligatory speech about how dangerous seagal is , just for the movie trailers and for seagal 's ego . and also ,
look for billy bob thornton as one of ermey 's assasins . anyway , to conclude this all , to judge one of seagal 's movies is to judge all of them
( except for " under siege " and " executive decision , " though the latter is not really a " seagal movie " ) . they all have this same formula ,
they all have the same action , same villain , same plot , but this one has that message , which makes it more excrucitating to watch . i mean
, if you do rent it , and i do n't reccomend you do , make sure you just skip the last 10 minutes . but i have to put it to seagal for creating a
�lm so bad , that the last �lm i viewed with my uncle was a pleasurable one . my ( extra star for the fun it is to watch and mock )

Review 2
like the great musical pieces of mozart himself , amadeus is a true work of art . it is one of those few movies of the 80 's that will be known
for its class , its style , and its intelligence . why is this such a good �lm ? there are almost too many reasons to explain . the story : court
composer salieri ( f. murray abraham ) feels waves of di�erent emotions going through his head as wolfgang amadeus mozart ( tom hulce )
comes into his life as the young genius composer . salieri feels envy , and jealousy , but at the same time is fascinated with mozart 's brilliance
and ingenious . we travel through mozart 's life as a composer , through his struggles , his triumphs , and ultimately , his demise . the acting
: abraham is magni�cient as salieri ; his acting range enables him to focus on each individual emotion and express it through his speech and
body language . this performance earned him a well deserved oscar . tom hulce is interesting as well as mozart , a quirky , annoying bratty
kid with an annoying laugh . he 's strong , but weak at the same time , and must be aided by his wife ( elizabeth berridge ) , who is good
in her role , but lacks dramatic depth . je�rey jones , in a smaller , more digni�ed role than such roles in stay tuned and mom and dad save
the world , is cast perfectly because of his noble charm . the movie : every element of this movie works . the costumes and makeup are
very memorable , as well as its stunning art direction , and unforgettable scores ( adapted from mozart 's original music ) . while wolfgang
amadeus mozart was a genius at music , milos forman proves with his �lm that he is a genius of �lmmaking . this movie is a classic that will
be remembered for years to come . ad2am " i almost lost my nose . .. and i like it . i like breathing through it . " -jack nicholson , chinatown

Review 3
synopsis : in phantom menace the galaxy is divided into power groups whose interests will inevitably collide in later sequels . there is an
overarching galactic united nations - type organization called the senate presided by a weak chancellor . within the senate two camps are
at odds : a bickering , isolationist alliance called the republic and their aggressive rival the trade federation . preserving law and order are
a council of jedi knights who are meanwhile searching for a prophesied chosen one of virgin birth . manipulating events behind the scenes
is a dangerous , reemerging clan called the dark lords of sith , so shadowy and secretive that they comprise a " phantom " menace . jedi
knight qui - gon jinn ( liam neeson ) and his apprentice obi - wan kenobi ( ewan mcgregor ) witness an invasion of teenage queen amidala
's home planet naboo and befriend a gungan named jar jar ( ahmed best ) . on the desert planet of tatooine the two jedi , jar jar , and
amidala ( natalie portman ) attend a lengthy drag race involving the young boy anakin skywalker ( jake lloyd ) . the �ve protagonists try
to solicit help for freeing naboo by visiting the city planet of coruscant where a lot of debate and political maneuvering takes place . can
they free amidala 's helpless planet ? opinion : on tv last night i watched young , wannabe celebs pay $ 400 a ticket and come running out
of theaters to bask in front of news cameras , gushing with testimonials of the phantom menace 's greatness in exchange for a few seconds
of being on national television . given this kind of media mania i wondered if phantom menace , the most anticipated movie of 1999 , could
possibly live up to the extraordinary hype that preceded it . does phantom menace match the exaggerated hype ? director george lucas
answers , " it 's only a movie . " to me , any movie with russian - sounding accents for bad guys , jamaican accents for good guys , and
middle eastern - sounding accents for seedy gamblers accents can be expected to be more tongue in cheek than profound . visually , star
wars : episode i �the phantom menace ( 1999 ) is a kid show where parents can take their young ones to marvel at child - friendly cgi
characters and wondrous backdrops even if the character dialogue ( mostly geopolitics ) is beyond the level of children . it is left to parents to
patiently explain the conversation : droid origins , family lineage , the de�nitions of terms like blockade , appeasement , federation , alliance
, symbiosis , satellite - controlled robots et cetera . at least this much is clear : there 's plenty of eye candy , and in the last few minutes
it 's good guys and joe camel lookalikes versus a caped , horned red devil character and his mechanical hordes . weaknesses : weaknesses
lie in the writing and in the performance . at �rst it seems like the �lm is to be an invasion story , but then phantom takes an hour - long
detour to cover one chariot race before returning to the invasion theme . this dilutes the central story . additionally , smaller scenes seem
written self consciously , as if they were added more to �ll us in on extraneous background information for other movies rather than form
an integral part of the present movie . veteran actors liam neeson and ewan mcgregor noticeably outperform the other acting leads . better
ensemble chemistry between the �ve leads and background information that is central to a tight story line could have made have given phantom
stronger performances and storytelling punch . strengths : on the bright side phantom menace as a big - budget production is far ahead of
the competition in terms of making whimsical creatures , worlds and vehicles appear real . the �lm boasts sophisticated , top - of - the - line
visuals and quality exotic costumes , a musical score entertaining enough to stand alone , and three worthwhile sequences in the second half
. bottom line ? seeing the �lm is entertaining and informative , like a visual theme park with star wars �ller information serving as dialogue
between impressive money shots . we are bound to be completely inundated by star wars publicity , music and tie - ins for the next few months .
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