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Abstract

The 0-Hecke algebra H,,(0) over a field K is a deformation of the group algebra K&,, of
the symmetric group &,,. In this thesis we study the center of H,,(0) and H,(0)-modules
that are associated to quasisymmetric Schur functions.

The quasisymmetric Schur functions S, are analogues of the Schur functions in the
algebra of quasisymmetric functions QSym. An algebra isomorphism from the Gro-
thendieck groups of the finitely generated modules of the 0-Hecke algebras H,(0) to
QSym is given by the quasisymmetric characteristic Ch. Tewari and van Willigenburg
constructed H,,(0)-modules S, that are mapped to the quasisymmetric Schur functions
Sa by Ch. Moreover, they used an equivalence relation in order to decompose S, into
submodules S, = @ Sq,r. Analogously, they defined and decomposed skew modules
S p corresponding to skew quasisymmetric Schur functions S, 3.

In Chapter 3 we consider these modules. We show that the modules S, g are inde-
composable. The skew modules S, y5  on the other hand can be decomposable. For a
certain family of skew modules S, /g, which we call pacific, we describe a decomposition
into indecomposable submodules. From this we obtain combinatorial formulas for top
and socle of the pacific modules. These formulas are then generalized to all skew modules
Sayp,e- This includes the straight modules S, g. We close the chapter by discussing
how the results on the modules S, g can be transferred to permuted versions of them
which were also introduced by Tewari and van Willigenburg.

Chapter 4 is concerned with the center Z(H,(0)) of H,(0). A K-basis of Z(H,(0))

was defined by He. This basis is given by certain equivalence classes Sy max/~, of &,.

For ¥ € (Gn)may% the basis element <y, indexed by ¥ corresponds to the order ideal in

Sn)

Bruhat order generated by . We provide two sets of representatives of ( max/~, and

obtain a parametrization of the elements of (Gn)mmg/% by certain kinds of compositions
called mazimal. These compositions have the property that their odd parts are weakly

decreasing. We give a combinatorial characterization of the ¥, € (Gn)may% in the case
where « is a hook and a recursion rule for 3, that allows us to deal with the even parts
of a. As a consequence, we obtain a description of X, for all maximal compositions «
whose odd parts form a hook.

In Chapter 5 we study the action of the elements of He’s basis 7<yx, on the simple
H,,(0)-modules. For n > 3 the 0-Hecke algebra H,(0) has three blocks: one nontrivial
block B and two blocks of dimension one. Based on computer experiments, we conjecture
that if 7<x,, # 1 then 7<y, annihilates all simple H),(0)-modules belonging to the block
B. Using the results of Chapter 4, we confirm this conjecture in the case where the odd
parts of « form a hook.
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1 Introduction

For a finite Coxeter group W with Coxeter generators S, the 0-Hecke algebra Hyy (0) over
a field K is a deformation of the group algebra KW which can be obtained by replacing
the involutions s € S by projections 7, satisfying the same homogeneous relations as
the s € S. These algebras appear in the modular representation theory of finite groups
of Lie type [Nor79, CL76]. The adjacent transpositions (7,7 + 1) for i = 1,...,n — 1
generate the symmetric group &,, as a Coxeter group. We write H,,(0) for the 0-Hecke
algebra of the symmetric group &,,.

This thesis is concerned with H,,(0)-modules that are associated to quasisymmetric
Schur functions and the center of H,,(0). Chapter 2 contains the background material
on combinatorial concepts, Coxeter groups and 0-Hecke algebras.

The representation theory of Hyy (0) was first considered by Norton [Nor79]. Further
results on Hy,(0) were obtained by Carter [Car86]. Duchamp, Hivert and Thibon showed
that H,,(0) has infinite representation type for n > 4 [DHT02]. Deng and Yang deter-
mined the representation type of Hyy (0) for irreducible finite Coxeter groups W [DY11].
They showed that in most cases Hy (0) has infinite and (if K is algebraically closed)
wild representation type. In particular, the latter is true for H,(0) with n > 5.

Let G := B,,>0%0 (H,(0)) where Gy (H,(0)) denotes the Grothendieck group of the
finitely generated H,,(0)-modules. Duchamp, Krob, Leclerc and Thibon introduced an
algebra isomorphism Ch from G to the algebra of quasisymmetric functions QSym called
quasisymmetric characteristic [DKLT96, KT97]. This mirrors the connection between
the representation theory of the symmetric groups over C and the algebra Sym of sym-
metric functions given by the characteristic map ch which sends the irreducible character
X to the Schur function sy [Sag01, Sta99]. The algebra QSym is a generalization of Sym
that was defined by Gessel [Ges84]. For an introduction to QSym refer to [Sta99, GR14].

Haglund, Luoto, Mason and van Willigenburg defined the quasisymmetric Schur func-
tions S, [HLMvW11]. The S, form a basis of QSym and share many properties with the
Schur functions sy. Bessenrodt, Luoto and van Willigenburg generalized them to skew
quasisymmetric Schur functions S, 3 [BLvW11]. For each quasisymmetric Schur func-
tion S, Tewari and van Willigenburg constructed a 0-Hecke module S, that is mapped
to Sq by Ch [TyW15]. Furthermore, they showed that the module S, admits a natural
decomposition into submodules S, = @ So,r given by an equivalence relation on its
defining K-basis. Similarly, they constructed and decomposed skew modules S, jg that
are preimages of the skew quasisymmetric Schur functions S, /3 under Ch.

In Chapter 3 we consider these modules. We first show in Theorem 3.3.11 that the
modules S, g are indecomposable. This part of the author’s PhD research has already
been published in [Kénl9]. Skew modules S, 3 however can be decomposable. In
Theorem 3.4.17 we give a decomposition of certain skew modules S, y5, which we call
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pacific, into indecomposable submodules. From this we obtain combinatorial rules for
the top and the socle of pacific modules S, g in Corollary 3.4.21. The rules are then
generalized to all skew modules S, g in Theorem 3.5.42 for the top and in Corol-
lary 3.6.41 for the socle. Via the direct sum decomposition, this also yields formulas for
the top and the socle of S, 5. These results hold in particular for the straight modules
Sq. Tewari and van Willigenburg also introduced permuted versions S7, and Sg, g of the
straight modules [TvW19]. At the end of Chapter 3 we briefly discuss how our results on
the straight modules can be transferred to the permuted ones. For the indecomposability
of S7, p this already has be done in a slightly different way by Choi, Kim, Nam and Oh
[CKNO21].

Let Z(Hw(0)) denote the center of Hyy(0). Brichard determined the dimension of
Z(Hy,(0)) [Bri08]. Yang and Li obtained a lower bound for the dimension of Z(Hy(0))
in several types other than A [YL15]. A K-basis of Z(Hy (0)) for arbitrary W depending
on certain equivalence classes Wma)V% of W was defined by He [Hel5|. For ¥ € Wmax/%
the basis element <y indexed by X corresponds to the order ideal in Bruhat order
generated by X.

In Chapter 4 we study Z(Hy (0)) and its basis given by He with focus on the case

W = &,. We give two sets of representatives of (Gn)max/% in Proposition 4.2.10 and
Proposition 4.2.14. The second set consists of elements in stair form, which were defined
by Kim [Kim98]. Both sets are indexed by certain kinds of compositions called mazimal.
The defining property of these compositions is that their odd parts are weakly decreasing
and appear after the even parts (see Definition 4.2.4). Using the elements in stair form,

we parametrize the elements of (671)map;/;U by maximal compositions. In addition, we
use results of Gill [Gil00] in order to determine the dimension of Z(Hy(0)) in types By,
and Do, in Subsection 4.2.4.

We proceed by giving a combinatorial characterization of the elements of the equiva-

lence class Y, € (6")ma>/% in the cases where the maximal composition a has only one
part (Theorem 4.3.20) or is a hook (k,1"*) with odd k (Theorem 4.3.40). Moreover,
we obtain a recursive rule for ¥, which allows us to deal with the even parts of « in
Corollary 4.3.56. This results in a description of the elements of ¥, for each maximal
composition o whose odd parts form a hook.

In Chapter 5 we consider the action of He’s basis of Z(H,(0)) on the simple H,(0)-
modules. For n > 3 the 0-Hecke algebra H,(0) has exactly three blocks: Two blocks
of dimension 1 and one nontrivial block B. Computer experiments suggest that apart
from the identity element of H,(0), the basis elements annihilate all the simple modules
belonging to the block B. Building on our results from Chapter 4, we confirm this
in Corollary 5.4.10 for the basis elements corresponding to the maximal compositions
whose odd parts form a hook.

At the beginning of each chapter, we give a more detailed introduction of its content.



2 Background

In this chapter we introduce the basic definitions relevant to all parts of the thesis.
The first topics are compositions and composition diagrams in Section 2.1. Section 2.2
deals with finite Coxeter groups and related concepts. This will mostly be applied to
the symmetric group &,. Other Coxeter groups will only appear in Section 4.1 and
Subsection 4.2.4.

In Section 2.3 we define the 0-Hecke algebras of finite Coxeter groups. Moreover,
we describe the simple and indecomposable projective modules as well as the block
decomposition of the 0-Hecke algebras. This includes the central object of this thesis:
the 0-Hecke algebra H,,(0) of the symmetric group &,,.

Throughout the thesis K denotes an arbitrary field. We set N := {1,2,...} and
always assume that n € N. For a,b € Z we define the discrete interval [a,b] :=
{c€Z|a<c<b} and use the shorthand [a] := [1,a]. For a set X, spang X is the
formal K-vector space with basis X.

Let A be a ring and M be a (left) A-module. With rad(M) we denote the radical of
M which is the intersection of all maximal submodules of M. The top of M is the factor
module top(M) := M /rad(M). The socle of M is the sum of all simple submodules of
M and denoted by soc(M). We call M projective if M is a direct summand of a free
A-module.

We recall some notions related to partially ordered sets. For an introduction to the
subject refer to [Stal2]. Let (P, <) be a poset. For x,y € P we say that y covers x and
write x < y if all z € P with < z < y are either equal to = or y. A subset O of P is
called order ideal of P if for all x € O and y € P we have that « > y implies y € O.
Dually, a subset F' of P is called filter of P if for all x € F and y € P we have that
x < y implies y € F. For two subsets X and Y of P we write X <Y (resp. X <Y) if
x <y (resp. t<y) forallz € X andy € Y.

Let x,y € P. Then z € P is called a lower bound of x and y if z < x and z < y. We
call z € P the meet (or greatest lower bound) of x and y if z is a lower bound of z and y
and w < z for all lower bounds w of x and y. If there is a meet of z and v, it is denoted
by z Ay.

2.1 Compositions and diagrams

A composition o = (aq,...,qq) is a finite sequence of positive integers. The length and
the size of a are given by £(a) := [ and |a| := Y}_; oy, respectively. The a; are called
parts of «. If « has size n, « is called composition of n and we write o E n. A weak
composition of n is a finite sequence of nonnegative integers that sum up to n. We
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write o Fg n if « is a weak composition of n. The empty composition () is the unique
composition of length and size 0. A partition is a composition whose parts are weakly
decreasing. We write A - n if A\ is a partition of size n. Partitions of n of the form
(k,1"7%) with k € [n] are called hooks. For a composition o we denote the partition
obtained by sorting the parts of a in decreasing order by a.

Example 2.1.1. For a = (1,4,3) F 8, we have a = (4,3,1) - 8.
For o = (au,..., ) E n define the set associated to o as the subset of [n — 1]
Set(«) := {d1,da,...,d—1}
where dy, := 2?21 a;. Conversely, for D = {d; < dy < --- < dp} C [n — 1] define
comp(D) := (d1,do — d1,...,dm — dm—1,n — dp)

the composition of n associated to D. Then a — Set(«) is a bijection from the composi-
tions of n to the subsets of [n — 1] with inverse map given by D +— comp(D). For a En
define the complementary composition of a as a° := comp([n — 1] \ Set(«)).

Example 2.1.2. For a = (1,4, 3) F 8 we have D(a) = {1,5} and o = (2,1,1,2,1,1).

A cell (i,7) is an element of N x N. A finite set of cells is called diagram. Dia-
grams are visualized in English notation. That is, for each cell (i,7) of a diagram we
draw a box at position (i,7) in matrix coordinates. The diagram of a E n is the set
{(1,7) e Nx N|i < /l(a),j < a;}. We display the diagram of a by putting «; boxes in
row ¢ where the top row has index 1. We often identify « with its diagram.

Example 2.1.3.

(1,4,3) = \

Let D be a diagram. We call D a horizontal strip if it has at most one cell per column.
The diagram D is a wvertical strip if it has at most one cell per row. We say that D is
connected if the interior of D viewed as a union of solid squares is a connected open set.
The components of D are the maximal connected subdiagrams of D. The two diagrams

[]

Ijj and H

are examples for a horizontal and a vertical strip, respectively. Both diagrams are not
connected. Note that a connected horizontal strip is a one-row diagram which contains

10



2.2 Coxeter groups

all cells between its leftmost and rightmost cell, i.e. it looks like

EEEE

Let D be a diagram. A tableau T of shape D is a map T: D — N. It is visualized by
filling each (4, j) € D with T'(4, j).

In Section 3.1 we will define standard composition tableaux as fillings of composition
diagrams. In Section 5.1 we will associate a tableau of size n to each element of the
symmetric group &,. These tableaux are used in Theorem 5.1.5 for a characterization
of the Bruhat order of &,, which we define in the next section.

2.2 Coxeter groups

Basic definitions

We review basic concepts of Coxeter groups. This includes Bruhat and left weak order,
descent sets, parabolic subgroups and the longest element. Our main motivation is the
application to the symmetric groups. Comprehensive treatments of the subject can be
found in [BB05, Hum90]. We mainly follow [BB05].

Let S be a set. A Cozxeter matriz is a map m: S x S — N U {oo} such that for all
s, s e S

(1) m(s,s’) =1 if and only if s’ = s,

(2) m(s,s") =m(s,s).

The corresponding Cozeter graph is the undirected graph with vertex set S containing
the edge {s, s’} if and only if m(s,s’) > 3. If m(s,s’) > 4 then the edge {s, s’} is labeled
with m(s, s’).

A group W is called Cozxeter group with Coxeter generators S if W is generated by S
subject to the relations

(ss')™) = 1 for all 5,5 € S with m(s, s') < 0o

where m is a Coxeter matrix with domain S x S and 1 denotes the identity element.
The relations can be rephrased as

(1) s2=1forall s €S,

(2) (s8's )(s,s) = (885" -+ J(s,sr) for all 5,8" € S with s # 5" and m(s, s") < oo
where (ss’s---), denotes the the alternating product of s and s’ with p factors. The
relations (2) are called braid relations or homogeneous relations. A Coxeter group W
with Coxeter generators S is called irreducible if its Coxeter graph is connected. The
irreducible finite Coxeter groups are classified and we use the notation from [BB05,
Appendix Al] in order to reference their types.

For a finite set X we define &(X) to be the group formed by all bijections from X to
itself. The symmetric group S,, is the group &([n]). Its elements are called permutations.
A permutation ¢ € &,, can be represented in cycle notation where cycles of length one

11
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S1 S9 S3 Sn—2 Spn—1
[ ] [ J o— —@ [ ]

Figure 2.1: The Coxeter graph of &,,.

may be omitted. The cycle type (or simply type) of a permutation o € &,, is the partition
of n whose parts are the sizes of all the cycles of 0. If ¢ has cycle type (k,1"7%) for
a k € [n] we also call it a k-cycle. A k-cycle is trivial if k = 1. Writing o in cycle
notation is the same as expanding ¢ into a product o7 - - - 0, of disjoint cycles where the
trivial cycles may be omitted in the expansion. On the other hand, in order to describe
the cycle notation of a permutation combinatorially, it can be useful to include them.
In Section 4.3 we will characterize the elements of certain equivalence classes of &,, by
considering them in cycle notation.

Let S be the set of adjacent transpositions s; := (i,i+ 1) € &, fori =1,...,n — 1.
The elements of S satisfy the relations

2
Si == ].,
SiSi+1Si = Si+15iSi+1,

sis; = sjs; if |i — j| > 2.

Then &,, together with the generators S is a Coxeter group [BB05, Proposition 1.5.4].
The Coxeter graph of &,, is shown in Figure 2.1. For n > 2, G,, is an irreducible Coxeter
group of type A,_1. While considering the symmetric group &,, as a Coxeter group, we
always assume that S is the corresponding set of adjacent transpositions.

Words and partial orders

For the remainder of the section let W be a finite Coxeter group with set of Coxeter
generators S. In this thesis we only encounter finite Coxeter groups.

Each w € W can be written as a product w = s1--- 8, with s; € S. Then s1--- s i
called a word for w. If k is minimal among all words for w, s1--- s is a reduced word
for w and ¢(w) := k is the length of w. One assertion of the word property of Coxeter
groups [BB05, Theorem 3.3.1] is that a reduced word for w can be transformed into any
other reduced word for w by applying a sequence of braid relations.

We now introduce two partial orders on W: the Bruhat order < and the left weak
order <j. Let s1---s; be a word over the alphabet S. A subword of s1---sj is a word
Siy s, with 1 <4y <idg < -+ <ip < k. A suffix of s7---5s, is a word of the form
8jSj+1 - Sk with 7 > 1.

Let u,w € W. The Bruhat order < is the partial order on W given by u < w if
and only if there exists a reduced word for w which contains a reduced word of u as a
subword. Equivalently, one can demand that each reduced word for w contains a reduced
word for u as a subword [BB05, Corollary 2.2.3]. The left weak order <p, is the partial
order on W given by u <y, w if and only if there are s, ..., s, € S such that

(1) w=sg--siu,

12
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(2) sy s1u) =L(u)+rforr=1,... k.

Equivalently, we have v <; w if and only if a reduced word of w contains a reduced
word of u as a suffix. As a consequence,

u<rpw = u<w.

Since 1 € W is the unique element of length 0, it is the least element in Bruhat and
in left weak order. The interval in Bruhat order between u and w is given by

[u,w):={xeW|u<z<w}.

Analogously, we define the interval in left weak order [u,w]r.

The following proposition gathers some immediate consequences of the definition of
the left weak order. It is used in Theorem 3.1.18. Recall that we use the notation <,
to indicate covering relations.

Proposition 2.2.1 ([BB05, Proposition 3.1.2]). Let u,w € W.
(1) We have u <p w if and only if {(wu~") = L(w) — £(u).
(2) If u <y w then the reduced words for wu™' are in bijection with saturated chains
in the left weak order poset (W, <p) from u to w via

Sk - S1 > U< S1U<L SS1u<p <[ SkcccS1uU = w.

(3) The poset (W, <) is graded by the length function.

Theorem 2.2.2 ([BB05, Corollary 3.2.2]). Let u,w € W. The interval in left weak
order [u,w|r, is a graded lattice with rank function x v+ £(zu™").

Each interval in Bruhat order [u,w] is also graded by the length function. However,
in general it is not a lattice. For example, consider the Bruhat order on G3. Then s;s9
and s9s1 have no meet since sq, s3 < s159 and $1, S9 < $257.

Descents and parabolic subgroups
Let w € W. The left and the right descent set of w are given by
Dr(w) :={se S |l(sw) < l(w)}
and
Dr(w):={se S| l(ws) < l(w)},

respectively. It follows that Dy (w) = Dgr(w™!). Moreover, we have for s € S that
s € Dr(w) if and only if w has a reduced word ending with s. The analogous statement

13
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is true for Dy,. Given o € G,, we have

Dy(o) = {si €S|o i) >0 i+ 1)},

(2.1)
Dr(0) = {si € S | o(i) > o(i + 1)}

by [BBO05, Proposition 1.5.3]. For I C J C S we define the (right) descent class Dj as
Df :={weW |IC Dgp(w) C J}

and set Dy := D{. We will use descent classes as index sets of bases of projective modules
of 0-Hecke algebras.

Let I C S. We write I¢ for the complement S\ I. The parabolic subgroup Wi is the
subgroup of W generated by I. It is a Coxeter group with Coxeter generators I. The
associated set of quotients is given by W' := Déc. By the following result, each element
of W has a unique factorization as a product of elements of W/’ and W7.

Proposition 2.2.3 ([BB05, Proposition 2.4.4]). Let I C S and w € W. Then there are
unique w' € W1 and wy € Wt such that w = w! - wy. Moreover, £(w) = £(w") + £(wy).

The parabolic subgroups of &,, are often called Young subgroups [Sag01, Sta99]. Com-
monly, they are indexed by compositions and defined as follows. For o = (a1,...,q;) En
let the Young subgroup &, be given by

Go :=6([1,d1]) x &([d1 + 1,d2]) x -+ x &([d;_1,n])
where dy, 1= Z?Zl aj. Then &, is isomorphic to
Gay X Ggy X -+ X G,

For o F n we have that &, = (&,,); where I = {s; € S | i & Set(a)}.

In this thesis we will usually index parabolic subgroups with subsets of S. Given
I C S, we may use the shorthand &; for the parabolic subgroup (&,,); if n is clear from
the context.

The next result describes the maximal parabolic subgroups of &,, as stabilizer of

subsets of [n]. For a group G acting on a set X and Y C X we denote the stabilizer
of Y by Stab(Y).

Lemma 2.2.4 ([BB05, Lemma 2.4.7]). Let S be the set of adjacent transpositions of
Gn, ken—1] and I = S\ {sg}. Then (&,)r = Stab([k]).

The longest element

Recall that we assumed that W is a finite Coxeter group with Coxeter generators S. Since
W is finite, there exists a greatest element in Bruhat order on W [BB05, Proposition
2.2.9]. This element is called the longest element of W and is denoted by wp. It is the
unique element of maximal length in W. Proposition 2.3.2 and Corollary 2.3.3 of [BB05]
prove the following.

14



2.2 Coxeter groups

Proposition 2.2.5. Let wq be the longest element of W. Then we have

(1) wg =1,

(2) L(wwg) = L(wow) = L(wg) — L(w) for all w e W,

(3) L(wowwy) = L(w) for allw e W.

It follows by Proposition 2.2.1 (1) that wq is also the greatest element of W in left
weak order.

In the upcoming proposition we consider the maps from W to itself given by multipli-

cation and conjugation with wg. The main ingredient of its proof is Proposition 2.2.5.
See Propositions 2.3.4 and 3.1.5 of [BB05] for details.

Proposition 2.2.6. For the Bruhat order and the left weak order on W, we have the
following:
(1) w— wwy and w — wow are antiautomorphisms,

(2) w— wowwy s an automorphism.

We continue with an application of Proposition 2.2.6 on descent classes which we
prepare for the proof of Theorem 2.3.5.

Lemma 2.2.7. For I C S we have |Di| = |Dre|.

Proof. From Proposition 2.2.6 we know that o: W — W  w +— wow is an antiautomor-
phism in Bruhat order. For all w € W we have

s € Dr(w) <= l(ws) < {(w)
< l(wows) > l(wow) <= s € S\ Dr(wow).
Now restrict ¢ to Dy. O

For I C S we denote the longest element of the parabolic subgroup W; by wg(I). The
next proposition characterizes wo(I) in Wy in terms of descent sets.

Proposition 2.2.8. Let I C S and w € Wy. The following are equivalent.

(1) w=wo(I).

(2) Dp(w) = 1.

(3) Dr(w) =1I.
Proof. In [BB05, Proposition 2.3.1] the equivalence of (1) and (2) is shown. From
Proposition 2.2.5 we obtain that wo(I)~! = wo(I). Moreover, for w € W we have
that Dg(w) = I if and only if Dy (w™!) = I because Dr(w) = Dp(w™!). Hence, the
equivalence of (1) and (2) implies the claim. O

Example 2.2.9. We determine the longest element wg of &,,. From Proposition 2.2.8
it follows that Dg(wp) = S. Thus, the description of Dg for elements of &,, from (2.1)
yields that wg(i) > wo(i + 1) for all 7 € [n — 1]. Hence,

wo(i) =n —i+1 for all i € [n].
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2 Background

The next result shows that the parabolic subgroup W; and the interval [1,wq(I)]
coincide. This will be important in Section 5.1.

Lemma 2.2.10. For I C S and w € W we have w < wo(I) if and only if w € W7.

Proof. The implication from left to right is easy to see. Since wg([) is the greatest
element of W; in Bruhat order, we also have the other direction. ]

Let I C J C 5. We now express the descent class D}’ as an interval in left weak order.
We are mostly interested in the descent class Df . It will be important in Theorem 3.4.17,
the main result of Section 3.4. Note that since W is finite, each quotient W' has a
greatest element in Bruhat order [BB05, Corollary 2.5.3].

Theorem 2.2.11 ([BWS8S, Theorem 6.2]). For I C J C S we have Df = [wo(I),w] ]

where w({c is the greatest element of W7°.

Corollary 2.2.12. Let I C S. Then D7 = [wo(I),wo] where wy is the longest element
of W.

Proof. By definition W% = W. Hence, wp is the greatest elements of W?. Now use
Theorem 2.2.11. O

2.3 0-Hecke algebras

In this section we introduce the main object of this thesis, the 0-Hecke algebra H,(0)
of the symmetric group &,. Chapter 3 deals with modules of H,(0) associated to
quasisymmetric Schur functions. In Chapter 4 we study the center of H,(0) and finally
in Chapter 5 the action of the center on the simple H,(0)-modules. Therefore, we also
consider the representation theory of H,(0) in this section.

As before let W be a finite Coxeter group with Coxeter generators S and Coxeter
matrix m. Norton introduces the 0-Hecke algebra Hyy (0) and studies its representation
theory in [Nor79]. Most of the results of the section go back to this source. The textbook
[Mat99] provides some background on the 0-Hecke algebras in its first chapter.

We now define the 0-Hecke algebra Hyy(0) of W. We use the presentation as in [Fay05].

Definition 2.3.1. The 0-Hecke algebra Hyy (0) of W is the unital associative K-algebra
generated by the elements w5 for s € S subject to the relations

(Z) 71—3 = Ts,

(2) (T Vin(s,s) = (T TsTgr ==+ Vm(s,sr) for all s,8" € S with s # 5.

Note that the s for s € S are projections satisfying the same braid relations as the
s € S themselves. Another set of generators is given by 75 := w3 — 1 for s € S. Then
72 = —75 and in [Fay05, Lemma 3.1] it is shown that the 74 satisfy the same braid
relations as the m,. Note that 77 = 7,7, =0 for all s € S.

As in [TvW15] we denote the 0-Hecke algebra of the symmetric group &, with
H,(0) := Hg,(0). For i € [n — 1] we use the shorthands m; and 7; for the genera-

tors ms, and 75, of H,(0).
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2.3 0-Hecke algebras

Let w € W. We define m,, := 7, - - - 75, where sq---sj is a reduced word for w. The
word property ensures that this is well defined. Multiplication is given by

B {wsw if ((sw) > l(w)
T = Ty if l(sw) < l(w)

for s € S. As a consequence, {m, | w € W} spans Hy (0) over K. We will see in a
moment that this set is a K-basis of Hy(0). The elements 7, for w € W can be defined
analogously. Their multiplication rule is

R it(sw) > f(w)
T T Jp i £(sw) < £(w)

for s € S. Thus, they span Hy (0) over K as well. By [Mat99, Theorem 1.13],
{Tw | w e W} is a K-basis of Hyy(0).

We now consider the expansion of the m,, in terms of the 7, and vice versa. Lascoux
proved the following result in the case W = &,,. The proof, however, works for all finite
Coxeter groups. From this we obtain bases of the projective 0-Hecke modules which are
expressed entirely by the elements 7, in Corollary 2.3.8.

Lemma 2.3.2 ([Las90, Lemma 1.13]). Let w € W. Then

Ty = Z Ty and T, = Z(—l)é(w)*e(”)ﬂu.

u<w u<w

Since {7, | w € W} is a K-basis of Hy(0), Lemma 2.3.2 implies that {m, | w € W}
is a K-basis of Hyy (0) too.

Remark 2.3.3. We give some background information on the relation between the 0-
Heck algebras and the Iwahori-Hecke algebras which were introduced by Iwahori [Iwa64].
Define the ITwahori-Hecke algebra Hy(qs,s € S) of the finite Coxeter group W as the
associative and unitary K-algebra generated by the elements 75 for s € S subject to the
same homogeneous relations as the s € S and the quadratic relations

T = (QS - 1)ﬁs + qs

where ¢, € K for s € S are parameters with gs = g whenever s,s’ € S are conjugate in
W. If we choose qs = 0 for all s € S, the generators satisfy 72 = —7 so that we obtain
the 0-Hecke algebra Hyy(0). We recover the group algebra KWW by setting g; = 1 for all
s € S. In this way, Hyy(gs, s € S) is a deformation of KW. This can be described more
formally in terms of generic algebras (see e.g. [Car86, CR87, GP00]).

The Iwahori-Hecke algebras Hyy (gs, s € S) arise as follows in the representation theory
of finite groups of Lie type (cf. [CR87, GP00]). Suppose that W is the Weyl group of a
finite group G with BN-pair and the ¢, are the corresponding index parameters. Then
by Iwahoris theorem Hyy(gs,s € S) is isomorphic to the Hecke algebra H(G, B), the
endomorphism ring of the KG-module affording the representation of G induced from
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2 Background

the trivial representation of B. If K = C then the index parameters are invertible and
Hyy(gs, s € S) is isomorphic to the group algebra KW and semi-simple. This is the case
in which the Iwahori-Hecke first appeared in [Iwa64]. If the characteristic of K divides all
the index parameters then Hyy (gs, s € S) is the 0-Hecke algebra Hyy(0) [Nor79, Example
1.2].

Modules of the 0-Hecke algebras

In the following we describe the simple and the indecomposable projective modules as
well as the block decomposition of Hyy (0). These results are due to [Nor79]. We merely
rephrase them in a way suitable for this thesis and add an expansion of a basis for
the projective modules. For algebraically closed K and irreducible W, Deng and Yang
show in [DY11] that Hyy(0) has wild representation type if and only if the type of W is
different from A;, Ag, A3, By and I3(m). Therefore, we do not consider indecomposable
Hyy (0)-modules in general.

For I C S we define F'; to be the one dimensional Hyy(0)-module generated by the
vector vy equipped with the 0-Hecke action given by

0 ifsel
TV =
vr ifs%[

for s € S. By [Nor79, Section 3], the modules F; for I C S form a complete list of
pairwise non-isomorphic representatives of the isomorphism classes of the simple modules
of H w (O)

In the case of H,(0) we also use an alternative notation for the simple modules. For
D C[n—1]set Fp:= Fj and vp := vy where [ = {s; € S| i € D}. Then

0 ifieD
T, Vp =
P \op ifigD

for all i € [n —1].

Remark 2.3.4. For a Coxeter group W and I C S, F'; corresponds to the representation
Ag\s used in [Nor79]. For D C [n — 1], the H,(0)-module F'p coincides with F omp(p)
from [TvW15].

We now decompose Hyy(0) into indecomposable submodules, i.e. we classify the fi-
nite dimensional indecomposable projective Hyy(0)-modules. The decomposition will be
applied in Section 3.4. Moreover, we use the summands in order to describe the block
structure of Hyy (0) at the end of this section.

Recall that for I C S, wp(I) denotes the longest element of the parabolic subgroup W
of W. Define 7y 1= 7y (1) and 71 := Ty for I C S. Decompositions of Hyy (0) into
indecomposable submodules were given by Norton [Nor79, Section 4]. The following
theorem rephrases some of her results. For I C S the module P; defined below is
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2.3 0-Hecke algebras

denoted by Hejo; in [Nor79]. Huang describes a more combinatorial approach to the
finite dimensional projective modules of Hyy(0) in types A, B and D [Hual6].

Let wg be the longest element of W. From Propositions 2.2.5 and 2.2.6 it follows
that v: W — W, w — wowwy l'is an automorphism of Bruhat order. In particular,
v(S) = S. Below we use this map in order to describe the socles of the Pj.

Theorem 2.3.5. (1) Let I C S. The Hw(0)-module Py := Hy (0)mimre has a K-
basis

{ﬂ'wﬁ'[c ’ w e D]} .
In particular, dim P; = |Dy|. Moreover,
top(Py) = Fre and soc(Pr) = Fy e

as Hyy(0)-modules where v: W — W, w wowwo_1 with the longest element wq
of W.

(2) The modules Py for I C S form a complete list of non-isomorphic projective
indecomposable Hyy (0)-modules. They decompose Hyy(0) as an Hy (0)-module as

Hy (0) = Dycs Pr-

Proof. Let I C S and w € W. Recall that 7w,y = 0 for all s € S. Moreover,
Dr(wo(I€)) = I¢ by Proposition 2.2.8. Hence,

Twre =0 <= Dp(w) N Dr(wo(I%)) # 0
= Dr(w)NI°#0
<~ DR(U)) Z I.

Let s € S and assume Dgr(w) = I. Then

mwrre  if £(sw) < f(w),
TsTyTre = ¢ 0 if {(sw) > ¢(w) and Dgr(sw) Z I,
Tswre if (sw) > f(w) and Dr(sw) C I.

In the third case, prefixing s to a reduced word for w yields a reduced word for sw.
Thus Di(w) C Dr(sw) and hence Dg(sw) = 1.

It follows that Pj is the K-span of B := {my@c | w € D;}. In [Nor79, Theorem
4.12] it is shown that the dimension of Pj is given by |Dre|. Since |Dje| = |Dy| by
Lemma 2.2.7, B is a basis.

The top and the socle of P are determined in Theorem 4.22 and Lemma 4.23 of
[Nor79], respectively. Since the top is simple, Py is indecomposable.

In [Nor79, Theorem 4.12] the decomposition Hy (0) = @;cg Py is shown. Because
the tops of the P; for I C S are pairwise non-isomorphic, it follows that the P form a
complete list of non-isomorphic projective indecomposable Hyy (0)-modules. O
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2 Background

Remark 2.3.6. In Section 4.1 we will see that Hy (0) is a Frobenius algebra with
Nakayama automorphism v. The correspondence between top(P;) and soc(Py) given
by v from Theorem 2.3.5 can be traced back to a general property of Frobenius alge-
bras: Given an indecomposable projective module P of a Frobenius algebra A, soc(P)
is isomorphic to top(P) twisted by the Nakayama automorphism of A. See for instance
Lemma II1.5.1 and Proposition IV.3.13 of [SY11].

In Section 3.4 we consider H,(0)-modules on which the 0-Hecke action is defined in
terms of the generators m;. Therefore, we want to expand the basis elements 7,77 of
P; in terms of the basis {m, | u € W} of Hy (0).

Lemma 2.3.7. Let I C S and w € WL. Then

o= 3 (1))
uewWy

Proof. Let w € W!. By Proposition 2.2.3 we have £(wu) = £(w) + £(u) and wu # wu'
for all u,u’ € Wy with u # u/. Thus, m,my, = Ty and TuTy # Twy for all u,u’ € Wy
with u # u/. We conclude

ruir = 3 (1))~

ueWy

= Z (=1) o)) 7
ueWr

— Z (_1)Z(w0(1))—£(w*1u)ﬂ_u’ (22)
uewWr

where the first equality uses Lemma 2.3.2 combined with Lemma 2.2.10 and the second
equality follows from the discussion above.

Given u € wW we have u = w - w™lu with w™tu € Wr and £(u) = £(w) + £(w™ u).
In particular, this is true for wwy(I) € wW;. Therefore,

Cwo(I)) — L(w ) = L(wo(I)) — (u) + L(w) = L(wwo(I)) — £(u).
Hence, (2.2) yields the claim. O

Let I C S. Then D; C WI° by definition. Thus, we can use Lemma 2.3.7 in order to
expand the elements of the basis {7, 7c | w € D;} of P from Theorem 2.3.5. Therefore
we have the following.

Corollary 2.3.8. Let I C S. The Hy (0)-module Pr has a K-basis

{ Z (_1)€(wwo(1°))—€(u)wu | w e DI} )

ucwWre
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2.3 0-Hecke algebras

Example 2.3.9. We use Corollary 2.3.8 in order to compute K-bases of the modules
P[ of Hg(O)

IcsS ‘ Ic ‘ Dy ‘ (S3)re Basis of Py
Q) 81, 89 1 63 _20663(_1)£(g)ﬂU
S1 592 51,8251 1,52 T — T, M7 — T2
S92 S1 $9,81852 1,81 QT — T, M7 — T1T2
51,52 @ 5189281 1 T1T27T,

We end this Section with the block decomposition of Hyy(0) for irreducible W. It will
be relevant in Chapter 5.

Theorem 2.3.10 ([Nor79, Theorem 5.2]). Let W be an irreducible Coxeter group with
Cozxeter generators S # (). Then the block decomposition of Hyy (0) is given by

Hw(0)=Py& Ps® B
where B is the direct sum of Hw (0)-submodules @ycrcs Pr-

Let W be irreducible. We consider the block decomposition from Theorem 2.3.10.
From Theorem 2.3.5 it follows that Py = F'g and Pg = Fy as Hy(0)-modules. Hence,
if | S| = 1 then Hyy (0) has only these two one-dimensional blocks. If |S| > 1 then Hyy(0)
has an additional nontrivial block B. Note that then all the simple modules F'; with
I # 0, S belong to the block B.
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3 0-Hecke modules associated to
quasisymmetric Schur functions

Since the 19th century mathematicians have been interested in the Schur functions sy
and their various properties. For example, the s) form an orthonormal basis of Sym,
the algebra of symmetric functions, are the images of the irreducible complex characters
of the symmetric groups under the characteristic map and play an important role in
Schubert calculus [Sta99].

As Sym is contained in the algebra of quasisymmetric functions QSym, it is interest-
ing to find bases of QSym that share properties with the Schur functions. A classical
one is given by the fundametal quasisymmetric functions of Gessel [Ges84]. More re-
cently, other Schur-like families of quasisymmetric functions that form bases of QSym
have been discovered: the quasisymmetric Schur functions of Haglund, Luoto, Mason
and van Willigenburg [HLMvW11], the dual immaculate functions of Berg, Bergeron,
Saliola, Serrano and Zabrocki [BBS'14] and the dual Shin functions of Campbell, Feld-
man, Light, and Xu [CFL*14]. The dual Shin functions are also called extended Schur
functions [AS19] since the dual Shin basis contains the Schur functions [CFL*14].

This chapter is related to the quasisymmetric Schur functions S,. The following prop-
erties of S, go back to [HLMvW11]. While the Schur functions s, are naturally indexed
by partitions, the quasisymmetric Schur functions S, are indexed by compositions (see
Section 2.1 for definitions). Haglund et al. define composition tableaux as a composition
shaped analogue of semistandard Young tableaux. In the same way as the Schur func-
tion sy is the generating function of the semistandard Young tableaux of shape A, the
quasisymmetric Schur function S, is the generating function of the composition tableaux
of shape a. The S, also refine the expansion into fundamental quasisymmetric functions
and the Pieri rule of the Schur functions. Finally, the Schur functions expand nicely in
the quasisymmetric Schur basis via

S\ = Z Soz
a=X\

where the sum runs over all compositions « that rearrange the partition .

Bessenrodt, Luoto and van Willigenburg define skew quasisymmetric Schur functions
Sayp and prove a Littlewood-Richardson rule for expressing them in the basis of qua-
sisymmetric Schur functions in [BLvW11]. Other variants of the S, such as Young qua-
sisymmetric Schur functions [LMvW13] and row-strict quasisymmetric Schur functions
[MR14] have also been considered.

Allen, Hallem and Mason show that the dual immaculate functions expand positively
into Young quasisymmetric functions and interpret the expansion coefficients as the
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3 0-Hecke modules associated to quasisymmetric Schur functions

number of certain tableaux [AHM18]. Mason and Searles obtain a similar result for
the transition from the reversed dual immaculate functions to the quasisymmetric Schur
functions in [MS21] which involves a variant of the dual immaculate functions. It relies
on lifts of quasisymmetric bases to the polynomial ring. Such lifts are also motivated
by Schubert calculus and were constructed for all Schur-like bases [AS17, AS18, AS19,
MS21].

Recall that the quasisymmetric characteristic Ch is an isomorphism from the di-
rect sum of the Grothendieck groups of the 0-Hecke algebras of the symmetric groups
G =8,>0%0 (H,(0)) to @Sym. As the Schur functions are the images of simple modules
of the complex group algebras of the symmetric groups, it is natural to ask for H,(0)-
modules that are mapped to the Schur-like bases of @QSym by Ch. From this viewpoint,
the fundamental quasisymmetric functions are the best analogue of the Schur functions
because they are the images of the simple H,(0)-modules under Ch [DKLT96]|. Never-
theless, modules that are preimages of the other Schur-like bases have also been found:
for the dual immaculate functions by Berg et al. [BBST15], for the quasisymmetric Schur
functions by Tewari and van Willigenburg [TvW15] and for the extended Schur functions
by Searles [Sea20]. In addition, Bardwell and Searles define modules that are mapped
to Young row-strict quasisymmetric Schur functions in [BS20].

We denote the module corresponding to the quasisymmetric Schur function S, by
S.. By definition it has a K-basis formed by the standard composition tableaux of
shape « (see Definition 3.1.4). These tableaux have the property that the entries in
the first column increase from top to bottom. Tewari and van Willigenburg generalize
the modules S, in two ways by altering the underlying combinatorics. First, they
use skew composition tableaux of shape a/f in order to define skew modules S, 3
with characteristic S, s [TVvW15]. Second, they define standard permuted composition
tableaux of shape a and type o by letting the relative order of the entries in the first
column be given by an arbitrary permutation o [TvW19] (see Definition 3.7.1). With
these tableaux as K-basis, they define H,(0)-modules which we denote with S¢ and call
permuted. The modules S¢, are also studied in [CKNO21].

This chapter is mainly concerned with the modules S, and S, /3. However, many of
our results also hold for the permuted modules S7,. We discuss the necessary adjustments
in the argumentation at the end of the chapter.

By the Krull-Schmidt theorem, each of the aforementioned H, (0)-modules decom-
poses as a direct sum of indecomposable submodules. For the modules of the dual
immaculate and the extended Schur functions, the decomposition is trivial since the
modules themselves are indecomposable [BBST15, Sea20]. The modules S, however
can be decomposable. Tewari and van Willigenburg give a decomposition as follows. By
using an equivalence relation, they divide the K-basis of standard composition tableaux
of S, into equivalence classes, obtain a submodule S, g of S, for each such equivalence
class E and decompose S, as So = @y Sao,p [TvW15]. In the same vein, the modules
Soyp and S7 as well as those corresponding to the Young row-strict quasisymmetric
Schur functions can be decomposed (see [TvW15], [TvW19] and [BS20], respectively).

In [TvW15] Tewari and van Willigenburg characterize the case where S, is indecom-
posable. Moreover, they show for a special canonical equivalence class E, that S, g,
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is indecomposable. Yet, the question of the indecomposability of the modules S, g in
general remained open. The first goal of the chapter is to answer this question. For
each S, g we consider the Hy(0)-endomorphisms of S, g and show in Theorem 3.3.11
that Endpy,, 0)(Sa,rz) = Kid which implies that S, g is indecomposable.

This result is a part of the author’s PhD research that has already been published
in [K6n19]. Choi, Kim, Nam and Oh show that the proof can easily be adapted to the
permuted modules S7 5 [CKNO21]. Bardwell and Searles employ similar techniques in
order to obtain the analogue result for the modules corresponding to the Young row-strict
quasisymmetric Schur functions [BS20].

The skew modules S, g  on the other hand can be decomposable. In Section 3.4 we
consider a certain class of skew modules S, y5 which we call pacific. For these modules
we give a decomposition into indecomposable submodules in Theorem 3.4.17. It turns
out that the submodules, and thus the S, /g themselves, are projective. In particular,
they are their own projective covers. Choi et al. describe projective covers of the modules
of the dual immaculate and the extended Schur functions as well as for the permuted
modules S7, p [CKNO20]. We exploit the projectivity of the pacific modules S, 3 in
order to obtain combinatorial formulas for their tops and socles in Corollary 3.4.21.

We then generalize the formulas for top and socle to all skew modules S, /3 in
Theorem 3.5.42 and Corollary 3.6.41, respectively. On the way, we construct a K-basis
of the radical (see Proposition 3.5.41) and the simple submodules (see Theorem 3.6.39)
of S, yp,E- Via the direct sum decomposition, we then obtain formulas for the top and
the socle of S, j3 in Corollary 3.5.46 and Corollary 3.6.45, respectively. The results hold
in particular for the straight modules.

Finally, we briefly discuss how the results of the chapter pertaining the modules S,
can be generalized to the permuted modules S¢,. This includes the indecomposability of
So.p and the formulas for top and socle. Our approach is slightly different to that Choi
et al. use in [CKNO21] in order to prove the indecomposability of S .

The chapter is structured as follows. Section 3.1 contains the necessary background
material on the modules S,/3. Let T1,T2 € S,)3 be two skew standard compo-
sition tableaux such that T; can be transformed into 75 via the 0-Hecke action on
Soyp- The purpose of Section 3.2 is to give a characterization of the set of elementary
H,,(0)-operators involved in this transformation by comparing the shapes of certain sub
tableaux of T7 and T3 in Proposition 3.2.9. This is a valuable tool which we apply in
all subsequent sections. In Section 3.3 we show that S, g is indecomposable. The de-
composition of the pacific skew modules S, 3 is the topic of Section 3.4. We consider
the top and the socle of arbitrary skew modules S, /g in Section 3.5 and Section 3.6,
respectively. Section 3.7 deals with the permuted modules S?.
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3 0-Hecke modules associated to quasisymmetric Schur functions

3.1 0-Hecke modules of standard composition tableaux

In this section we introduce the modules S, )3 and S, 3 g, the related combinatorics of
standard composition tableaux and further preliminary results which are used through-
out the chapter.

Standard composition tableaux

We begin with a poset of compositions which is related to standard composition tableaux
and first arose in [BLvW11].

Definition 3.1.1. The composition poset L. is the set of all compositions together with
the partial order <. given as the transitive closure of the following covering relation. For
compositions o and B = (f1,...,5)

Bepa e a=(1,p1,...,0) or
¢ a=B1,....06+1,....0) and B; # By for all i < k.

In other words, S is covered by a in L. if and only if the diagram of a can be obtained
from the diagram of § by adding a box as the new first row or appending a box to a row
which is the topmost row of its length in 5.

Example 3.1.2.

‘<C <c ‘<c <c <c \

Let a and 8 be two compositions such that 5 <. «. In this situation we always assume
that the diagram of 3 is moved to the bottom of the diagram of «, and we define the
skew composition diagram (or skew shape) a3 to consist of all cells of & which are not
contained in . Moreover, we define osh(« /) := a and ish(«//3) := (3 as the outer and
the inner shape of a /3, respectively.

The size of a skew shape is a8 := |a| — |3]. We call o)/ straight if § = (. In
this case the skew composition diagram «//f is nothing but the ordinary composition
diagram «.

Example 3.1.3. The skew composition diagram (1,4,3)/(1,2) looks as follows.

—

Note that 8 <. o implies Byg)—; < ()i for i =0,...,£(3) — 1. One could define
skew shapes for all pairs of compositions fulfilling this containment condition. Anyway,
we demand <. rather than containment since with the latter one allows skew shapes
for which standard composition tableaux (which we will define next) do not exist. For
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3.1 0-Hecke modules of standard composition tableaux

instance, the compositions 5 = (1,1) and a = (1,2) satisfy the containment condition
but 5 £, a. Even if a3 were a skew shape, there would be no standard composition
tableau of this shape (because of the triple rule stated below).

Definition 3.1.4. Let o /5 be a skew shape of size n. A standard composition tableau
(SCT) of shape ajJ B is a bijective filling T: a)JB — [n] satisfying the following condi-
tions:
(1) The entries are decreasing in each row from left to right.
(2) The entries are increasing in the first column from top to bottom.
(3) (Triple rule). Set T(i,j) := oo for all (i,7) € B. If (j,k) € af8 and (i,k — 1) € «
such that j > i and T(j, k) < T(i,k — 1) then (i, k) € a and T(j,k) < T(i, k).

The plural form of the acronym SCT is SCTx. Let a := T'(j,k), b := T(i,k — 1) be
two entries of an SCT T occurring in adjacent columns. Then the triple rule can be
visualized as follows by considering the positions of entries in T

2] [b]c]

tripl l
MEELMC Jee T and a < c.

4] [a]

Let SCT(«//3) denote the set of SCTx of shape «//3. For an SCT T we write sh(T")
for its shape. The notions of outer and inner shape are carried over from sh(7) to 7.
We call T' straight if its shape is straight.

and a < b

Example 3.1.5. An SCT is shown below.

[2]
T= |5[4]1]
3

We have osh(T') = (1,4, 3) and ish(T) = (1,2).

Standard composition tableaux encode saturated chains of L. in the following way.

Proposition 3.1.6 ([BLvW11, Proposition 2.11]). Let /3 be a skew composition of
sizen. For T € SCT(a)/B),

ﬁ:a”<can_1<c---<ca0:a
given by
=3, oFt=ofuTYE) for k=1,....n (3.1)

is a saturated chain in L.. Moreover, we obtain a bijection from SCT(a//3) to the set
of saturated chains in L. from [ to « by mapping each tableau of SCT(«//p) to its
corresponding chain given by (3.1).
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3 0-Hecke modules associated to quasisymmetric Schur functions

Example 3.1.7. The SCT from Example 3.1.5 corresponds to the chain from Exam-
ple 3.1.2.

From the perspective of Proposition 3.1.6, the triple rule reflects the fact that by
adding a cell to a row of a composition diagram, a covering relation in L. is established
if and only if the row in question is the topmost row of its length.

Some of the upcoming notions already played a role in [TvW15]. Let (4, j) and (¢, j') be
two cells. Define r(i,7) := i and ¢(4, j) := j the row and the column of (i, 7), respectively.
We say that (i,j) attacks (7', 7") and write (i,7) ~ (',7))if j=j andi #i or j =5 —1
and i < ¢/. That is, the two cells are distinct and either they appear in the same column
or they appear in adjacent columns such that (i/,5’) is located strictly below and right
of (i,7). We call (i,7) the left neighbor of (i,j") and write (i,7) ¢ (¢/,5") if i« = i’ and
j=i -1

Let T be an SCT and 4,5 € T be two entries. We refer to the row and the column of
in T by rr(i) :== r(T71(i)) and er(i) := (T (7)), respectively. We say that i attacks j
in T and write i ~p j if T71(i) ~ T71(j). Note that i ~»p j implies i # j. If T-1(4) is
the left neighbor of 771(5) then we also call i the left neighbor of j in T and write i 17 .
The index T may be omitted if it is clear from the context.

For two sets of cells C1,Cy C N? we say C; attacks Cy and write C; ~» Cy if there
are cells ¢; € C1 and ¢y € Cy such that ¢ ~ ca. If ¢(c1) < ¢(eg) for all ¢1 € C1, ¢ € Co
then C is called left of Cy. If ¢(c1) < ¢(c2) for all ¢; € Cy,eq € co, C is strictly left
of Cs. To simplify notation we may replace singletons by their respective element. For
instance, given a cell ¢; we may write ¢; ~ Cy instead of {c1} ~» Cs. In the same way
we use these notions for sets of entries of an SCT and 1.

Example 3.1.8. Consider the standard composition tableau 7" from Example 3.1.5.
We have 2 ~»p 5,3 ~»p 4,4 ~»p 3, 5 ~»p 3 and i +4 7j for all other pairs of entries.
Moreover, 3 is left of {1,4} in T, 2 ~7 {3,5} and 51 4.

Let T be an SCT of size n. An entry ¢ of T is called descent if i appears weakly left
of i4+1in T. We distinguish between attacking and non-attacking descents. The entry 7
is called ascent of T if it appears strictly right of i + 1 in T'. If 7 is an ascent of T which
has i+ 1 as a neighbor then i+ 1 must be the left neighbor of i. We distinguish between
ascents ¢ that have i 4+ 1 as left neighbor and those which have not. More formally, we
have the following.

Definition 3.1.9. Let T be an SCT of size n.
(1) D(T):={ien—1] | cr(i) <ecr(i+1)} is the descent set of T'.
(2) AD(T):={i € D(T) | i ~7 i+ 1} is the set of attacking descents of T'.
(3) nAD(T) :={ie€ D(T) |i ¢ AD(T)} is the set of non-attacking descents of T'.
(1) DY(T) :={ien—1]|er(i+1) <cr(i)} =[n— 1]\ D(T) is the ascent set of T.
(2°) ND¢(T) :={i € D(T) | i+ 1p i} is the set of neighborly ascents of T.
(3°) nND(T) :={i € D°(T) | i ¢ ND°(T')} is the set of non-neighborly ascents of T.
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Example 3.1.10. Let T be the tableau from Example 3.1.5. Then D(T) = {2,3},
AD(T) = {3}, D(T) = {1,4} and ND*(T) = {4}.
0-Hecke modules of standard composition tableaux

We now come to the 0-Hecke modules S, 5 and S, 3 g-

Theorem 3.1.11 ([TvW15, Theorem 9.8]). Let o/ be a skew composition of size n.
Then S, s = spang SCT(a /) is an H,(0)-module with respect to the following action.
For T € SCT(a)J3) andi=1,...,n—1,

T ifi¢ D(T)
mT={0  ifie AD(T)
siT  if i € nAD(T)

where s;T is the tableau obtained from T by interchanging i and i + 1.

The module S,, is called straight if « = « /8 is a composition.

(1]
Example 3.1.12. Consider the SCT T'=[6[5[4]3] Then D(T) = {1,2,6},
817]2

T  fori=3,4,57 (o] 11
mT =40 fori=6 s1T=[6]5]4]3] and sT=[6[5[4]2]
s;T fori=1,2, 81711 8173

We now decompose S, 3 as in [TvW15]. To do this we use an equivalence relation.
Let /8 be a skew composition of size n and 11,72 € SCT(a//3). The equivalence
relation ~ on SCT(«a /) is given by

Ty ~ Ty <= in each column the relative orders of entries in 7} and 75 coincide.

For example, the straight tableaux shown in Figure 3.1 form an equivalence class under
~. The same is true for the skew tableaux from Figure 3.3. We denote the set of
equivalence classes under ~ on SCT(a//B) by E(a)) ).

For E € £(a//B) define S, g i := spang E. It is easy to see that the definition of the
0-Hecke action on standard composition tableaux in Theorem 3.1.11 implies that S, y5 ¢
is an H,(0)-submodule of S, 3. Thus, we have the following.

Proposition 3.1.13 ([TvW15, Lemma 6.6]). Let o)/ 3 be a skew composition. Then we
have that Sq 53 = @pee(ayp) Sayse as Hn(0)-modules.

In this chapter we will work mostly with the modules S, /g  and transfer the results
to S,/ via the above decomposition. For example, the main result of Section 3.3 is that
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(4]
Tie=6]|5[3]1]
8712
7'['1/\ ngx
(4] (3]
6]5]3]2] 6]5[4]1]
8711 8712
7T3T 7r1/ TF2T
(3] (2]
65 2] 6]5[4]1]
871 8713

[2] (1]
6]5[4]3] 6[5[4]2]
8[7]1 873
™ m/
(1]
Tos =|6]5]4]3]
8]7]2

Figure 3.1: A poset given by an equivalence class of standard composition tableaux and
the corresponding partial order <. Each covering relation is labeled with the
0-Hecke generator m; realizing it.

the H,(0)-endomorphism ring of each straight module S, g is Kid and, therefore, we
obtain a decomposition of S, into indecomposable submodules from Proposition 3.1.13.

Let o)/ B be a skew composition of size n and E € E(« /). We continue by studying F
and its module S, 3 p more deeply. First, we consider a partial order < on E. It will
turn out that (E, <) is a graded lattice. Afterwards, we prepare two technical results,
Corollary 3.1.19 and Proposition 3.1.20, on the 0-Hecke action on standard composition
tableaux for later use.

Suppose T1,T5 € E. In [TvW15, Section 4] it is shown that a partial order < on E is
given by

Ty *Ty < do € G,, such that w17 = T5.

We refer to the poset (E, =) simply by E. Two examples are shown in Figure 3.1 and
Figure 3.3. The following theorem summarizes results of [TvW15, Section 6].
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3.1 0-Hecke modules of standard composition tableaux

Theorem 3.1.14. Let o /5 be a skew composition, E € E(a /) and T € E.
(1) The tableau T is minimal according to = if and only if D°(T) = ND(T). There
is a unique tableau Ty p € K which satisfies these conditions called source tableau
of E.
(2) The tableau T is maximal according to < if and only if D(T") = AD(T'). There is a
unique tableau Ty p € E which satisfies these conditions called sink tableau of E.

In particular, S, s, is a cyclic module generated by T .

A source and a sink tableau can be observed in Figure 3.1. We now establish a
connection between E and an interval of the left weak order. To do this we use the
notion of column words. Given T' € SCT(« /) and j > 1, let w; be the word obtained
by reading the entries in the jth column of T" from top to bottom. Then coly := wyws - - -
is the column word of T'. Clearly, colp can be regarded as an element of &,, (in one-line
notation).

Example 3.1.15. The column word of the tableau Ty g from Figure 3.1 is given by
coly, , = 16857423 € Gs.

Lemma 3.1.16 ([TvW15, Lemma 4.4]). Let Ty be an SCT, i € nAD(Ty) and Ty := m;T1.
Then colp, = s; coly, and ¢(coly,) = €(coly,) + 1. That is, colp, covers coly, in left weak
order.

The following statement is similar to [TvW15, Lemma 4.3].

Lemma 3.1.17. Let T1 and 1> be two standard composition tableaux and iy, ..., 11 €
[n — 1] such that 7;,---m;, Ty = Ta. Then there is a subsequence jg,...,j1 of ip,... 11
such that

(1) T2 = 7qu c -7Tj1T1,
(2) sj,---8j is a reduced word for colr, colil.
In particular, T =«

colr, col;l1 Tl :

Proof. Tt follows from the definition of the 0-Hecke operation that we can find a subse-
quence jg, ..., j1 of ip,... 41 of minimal length such that 75 = 7, ---7;T1. If ¢ =0
then T5 = T and the result is trivial. If ¢ = 1 set ¢ := j;. Then by the minimality of g,
Ty # Ty and thus ¢ € nAD(T1). Now Lemma 3.1.16 shows that s; is a reduced word for
colr, Colil. If ¢ > 1 use the case g = 1 iteratively. ]

Theorem 3.1.18 ([TvW15, Theorem 6.18]). Let «// be a skew composition, E €
E(a)B) and I := [coly, ,,colr, y]1 be an interval in left weak order. Then the map
col: E — I, T — colr s a poset isomorphism. In particular, E is a graded lattice with

rank function 6: T — £(colp coli}lE).

Actually, Theorem 3.1.14, Lemma 3.1.16 and Lemma 3.1.17 are everything needed to
prove Theorem 3.1.18 as in [TvW15]. They imply that col (and its inverse) map maxi-
mal chains to maximal chains. Note that it follows from Theorem 3.1.18 and Proposi-
tion 2.2.1 that for 77 < Ty saturated chains from 77 to 15 correspond to reduced words
for colr, colil.
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Corollary 3.1.19. Let T} and T be two standard composition tableauz of size n and
o € 6, such that'Ty = w,11. Then T1 and T5 belong to the same equivalence class under
~. Let § be the rank function of that class. Then

8(Ty) — 8(Th) < £(o)

and we have equality if and only if o = colr, colil.

Proof. Since Ty = 7,11, To ~ Ti. As saturated chains from T; to T correspond to
reduced words for colp, colil7 we have

§(T3) — 6(Ty) = £(colp, Colil).
Now Lemma 3.1.17 implies the claim. O

We finish this section by preparing another consequence of Lemma 3.1.16 for Sec-
tions 3.3 and 3.5.

Proposition 3.1.20. Let T be an SCT, i,5 € T be such that i < j, O := T71(i) and
C =T Y[i+1,4]). Ifi is located left of [i +1,7] and does not attack [i+1,4] in T then
(1) TV :=mj_y -+ -mipamT is an SCT,
(2) Sj—1---8it18; is a reduced word for coly Col}l,
(3) T(O) = .
(4) T'(C) = li,j — 1].
Proof. Assume that ¢ is located left of [i + 1,j] and i + [i + 1,j] and set T' :=
M1 M1 L

We first show (1) — (3) by induction on m := j —i. If m = 1 then i € nAD(T) and
T" = mT. Thus, (1) and (3) hold by the definition of the 0-Hecke action and (2) is a
consequence of Lemma 3.1.16.

Now, let m > 1. Since by assumption i is located left of [i+1, j] and i ~ [i+1, ], we
can apply the induction hypothesis on ¢ and j—1 and obtain that 7" := 7j_g - - - mjp1mT
is an SCT, sj_2---si118; is a reduced word for colp» col;1 and 7(0) = j — 1. Since
the operators m;_a,...,m+1,m; are unable to move j, we have T"71(j) = T71(j). By
choice of i and j, O ~ T~ 1(j) = T"71(j) and O is left of T"~!(j). Thus, j — 1 €
nAD(T") so that 7" = mj_mj—o---mT = mj—1(T") is an SCT and T"(0) = j. It
follows from Lemma 3.1.16 that coly (:01;1 = s;j_1 colpn (:01;1 = 5j_18j_2---5; and that
5j_15j_2---5; is a reduced word. This finishes the induction.

Now we show (4). In T the elements of [i,j] occupy [0 and the cells of C. As the
operators m;,...,mj—1 only move the elements of [i,j], it follows that these elements
occupy the same set of cells in 7. Moreover, T"(0) = j. Thus, T"(C) = [¢,j — 1]. O

3.2 A 0-Hecke action on chains of the composition poset

In Proposition 3.1.6 a bijection between saturated chains in the composition poset £, and
standard composition tableaux was given. In this section we study the 0-Hecke action
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on these chains induced by this bijection. The goal is to provide in Proposition 3.2.9 a
characterization of the operators 7; appearing in the saturated chains of SCTx connecting
two SCTx 17 and T5. This result is essential for the argumentation in Sections 3.3, 3.5
and 3.6.

Definition 3.2.1. Let T be an SCT of shape ajJ 3 and size n, m € [0,n] and

1 0

B=a"<.,a" <, <" =

be the chain in L. corresponding to T. The SCT of shape o' /B corresponding to the
chain o™ <. a1 <, -+ <. a™ is denoted by T>™.

we have 772 = where the cells of the inner

Example 3.2.2. For T' =

shape are shaded.
The following lemma shows how we can obtain T-" directly from T.

Lemma 3.2.3. Let T be an SCT of size n and shape o) 3, B = a"<.a" t<, <0 = a
the chain in L. corresponding to T and m € [0, n].

(1) o™ = osh(T~™).
(2) We obtain T>™ from T by removing the cells containing 1, ..., m and subtracting m

from the remaining entries.

Proof. Part (1) is a immediate consequence of Definition 3.2.1. By Proposition 3.1.6, we

obtain 77" by successively adding cells with entries n — m, ..., 1 to the inner shape 3
at exactly the same positions where we would add n,...,m+1 to 8 in order to obtain T'
from its corresponding chain. This implies Part (2). O

With the first part of Lemma 3.2.3 we can access the compositions within a chain of
a given SCT. We use the following preorder to describe how the 0-Hecke action affects
these compositions.

Definition 3.2.4. (1) For a composition a = (o, ...,o;) of n and j € N we define
lalj = Hiell]| o =}
(2) On the set of compositions of size n we define the preorder < by

k k
adf <= Z|ﬁ]j§2|a|jforallk21.

j=1 j=1
Moreover, set a <1 f <= a <8 and o # 5.

Note that |a; is the number of cells in the jth column of the diagram of o. Obviously
< is reflexive and transitive. It is not antisymmetric since for example (2,1) < (1,2)
and (1,2) < (2,1). In general, for a, 8 F n we have

adfand fda < |a|j =B8] forall j =1,2,... <= a=4.

33



3 0-Hecke modules associated to quasisymmetric Schur functions

Example 3.2.5.

I SEEn

If we restrict < to partitions, we obtain the well known dominance order appearing, for
example, in [Sta99]. However, < on partitions may seem to be reversed to the dominance
order. This is because in the definition above we are considering the number of cells in
columns rather then in rows as usual.

Lemma 3.2.6. Let o/ be a skew composition of size n and T1, Ty € SCT(a//f3) be
such that Ty = w1y for an i € nAD(T1). Then

osh(T5") <1 osh(T7),
osh(T5™) = osh(T7™) for all m € [0,n] with m # i.

Proof. We obtain Ty from T3 by swapping the entries i and i + 1 of T}. Let m € [0, n].

If m # i then either {i,i + 1} C [1,m] or {i,i + 1} N [1,m] = 0. Hence, Ty *([1,m]) =
Ty '([1,m]), i.e. from the perspective of Lemma 3.2.3 we remove the same set of cells
from T; to obtain 77 as we remove from T to obtain 75™. That is, sh(T7™) =
sh(T5™).

If m =i, set (rg,c) := Ty H (k) for k = 4,3+ 1, 1 := osh(T7?) and 72 := osh(T5).
We assume that all composition diagrams appearing here are moved to the bottom of
«. Observe that as Ty = s;T1, one obtains sh(75%) from sh(77%) by moving the cell
(7i+1,ci+1) to the position (r;,¢;). Since ish(75%) = B = ish(T7"), we obtain v, from
~1 by this movement. Moreover, ¢ € nAD(T}) implies ¢; < ¢;+1. That is, we obtain o
from v; by moving a cell strictly to the left. By the definition of <, this means that
Y2 <71 O

Example 3.2.7. The H,(0)-action on tableaux and the corresponding chains of the
composition poset is shown below.

osh(T>3) — osh(T>2?) — osh(T>') — osh(T>?)

P

L m
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3.3 The decomposition of straight modules

Definition 3.2.8. Let 0 € &,,. We define the content of o as
cont(o) := {i1,..., i}

where s;, - -+ 8;, 15 a reduced word for o.

k

Let 0 € &,,. Note that the word property ensures that cont(c) is well defined. More-
over, i € cont(o) if and only if s; < 0.

Let o/ be a skew composition, E € E(a//) and T1,T5 € E be such that T} < Tb.
From Theorem 3.1.18 it follows that for each saturated chain from 73 to T3 in E the
index set of the 0-Hecke operators establishing the covering relations within the chain is
cont(colp, colil). As a consequence of Lemma 3.2.6 we obtain a criterion for determining
whether an operator m; appears in the saturated chains from 77 to 15 or not.

Proposition 3.2.9. Let o/ be a skew composition of size n, i € [n — 1], E € E(a)))
and T1,T5 € E be such that Ty <X T5. Then

i € cont(colp, Colil) if and only if sh(T5™?) # sh(T7Y).

Proof. Lemma 3.2.6 applied to each covering relation in a saturated chain from T to 15
in E and the fact that < is a preorder imply

i € cont(colp, colil) if and only if osh(T5%) # osh(77).

From this we obtain the claim since ish(77) = 8 = ish(T5™"). O

3.3 The decomposition of straight modules

For each o F n there is an equivalence class F, € £(«) such that for all T' € E, the
entries increase in each column from top to bottom [TvW15, Section 8]. In [TvW15]
Tewari and van Willigenburg show that S, g, is indecomposable.

The objective of this section is to show for all £ € £(a) that Endg, (0)(Sa,z) = Kid
and hence S, g is indecomposable; this extends the result of Tewari and van Willigenburg
to the general case. As a consequence, Proposition 3.1.13 yields a decomposition of S,
with indecomposable summands. In contrast, skew modules S, y5  can be decomposable
(see Example 3.3.13). Section 3.4 is concerned with the decomposition of skew modules
S.)p,E of a certain type.

We fix some notation that we use in the entire section unless otherwise stated. Let
akFn, E € &) and Ty := Ty g be the source tableau of E. Moreover, let f €
Endg, 0)(Sa,e), v:= f(To) and v = 3 pcparT be the expansion of v in the K-basis E.
Since S, g is cyclically generated by Tp, f is determined by v. The support of v is given
by supp(v) := {T € E | ar # 0}. Our goal is to show that T is the only tableau that
may occur in supp(v) since then f = ag, id € Kid. We begin with a property holding
for supp(v) that also appeared in the proof of [TvW15, Theorem 7.8].

Lemma 3.3.1. If T € supp(v) then D(T) C D(Tj).
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Proof. Let T, € E be such that D(T.) € D(Tp). Then there is an ¢ € D(T,) N D¢(Tp).
Because i € D¢(Ty), miv = f(mTp) = v. Thus, ap, is the coefficient of T in mv =
> reparmT. But this coefficient is 0 since m;T" # T for all T' € E. To see this, assume
that there is a T' € E such that ;T = T,. Then we obtain a contradiction as

T, # 7T, = 12T = mT = Ts. O

Thanks to Lemma 3.3.1 it remains to show ar = 0 for all 7' € F such that T # Tj
and D(T) C D(Tp). Thus, fix such a tableau T. In order to determine ar, we will use a
0-Hecke operator m, where o := s;_1---s; and i and j are given by

i :=max {k € [n] | T (k) # T(;l(k)}’

3.2
j:=min{k € [n] | k> iand i ~7, k}. (3:2)

That is, 7 is the greatest entry whose position in 7T differs from that in Ty and j is the
smallest entry in Ty which is greater than ¢ and attacked by i in Tp. At this point it
is not clear that j is well defined since the defining set could be empty. However, the
following two lemmas will show that there always exists an element in this set.

Example 3.3.2. Consider the equivalence class E from Figure 3.1. Then Ty = Tp g and
there is exactly one other tableau T in E with D(T) C D(Tp):

Ty=[6]5]4]3] ™ T=

712

5[4]3]
71

OO@H‘
OOODN‘

Defining i and j for T" as in (3.2), we obtain ¢ = 2 and j = 4. Note that 2 € D(Ty). This
property holds in general by the following result.

Lemma 3.3.3. Let T € E be such that T # Ty and D(T) C D(Ty) and set
i:=max {k € [n] | T (k) # Ty (k).
Then i € D(Tp).

Proof. We introduce integers d; such that D(Tp) = {d1 < da < --- <dp}, dp = 0 and
dpm+1 = n. Moreover, define Iy, := [dx_1+1,di] for k =1,...,m+1. Recall that since Tj
is a source tableau, D¢(Ty) = ND(Tp) by Theorem 3.1.14. That is, a + 1 is the left
neighbor of a for each ascent a of Ty. Therefore, we have Iy \ {dx} € ND(Tp) and
conclude that 75 !(I},) is a connected horizontal strip for k = 1,...,m + 1.

Set Oy, := Ty (k) for k = 1,...,n and let = be the index such that T(00,) = i.
Since Ty and T are straight, the ordering conditions of standard composition tableaux
imply T~'(n) = (f(a),1) = Ty (n). Therefore i # n and we now show i ¢ D®(Ty).
Assume for the sake of contradiction that ¢ € D(1y). Let [ € [m+1] be such that ¢ € I;.
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3.3 The decomposition of straight modules

di—q

d il < <i

4 it1 i vdi1 +1

Figure 3.2: An example for the positions of cells and entries in the tableau T" from Case
2 of the proof of Lemma 3.3.3.

Since i € D¢(Tp), we have i < d; and i + 1 € I;. The horizontal strip To_l(Il) looks as
follows:

Og¢,04,—1 - Oi410; - - Oy, 41 (3.3)
By choice of i, we have
T(Og) =kfork=i+1,...,nand T(0;) < 1. (3.4)
Since entries decrease in rows of T, (3.3) implies
T(Og) <ifork=d_q+1,...,1. (3.5)
By combining (3.4) and (3.5), we obtain
z <d-1. (3.6)

We deal with two cases depending on ¢ (7). In both cases we will end up with a contra-
diction.

Case 1 cr(i) < e (di—1 + 1). It follows from D(T) C D(Tp) and i € D¢(Tp) that
i € D(T') and thus cr(i + 1) < ¢p(i). Using ¢7,(4) = eyt + 1) +1 = ep(i + 1) + 1,
we obtain that ¢z, (i) < cp(i) < eq,(di—1 + 1). Then there is a y € [dj—1 + 1,i] such
that O, and O, are in the same column. On the one hand, we obtain from (3.5) that
T(0y) <i=T(0;). On the other hand, the choice of y and (3.6) imply y > d;—1 >«
and hence Tp(Oy) =y > @ = Tp(0,). That is, in the column of [0, and O, the relative
order of entries in T differs from that in Ty. Hence, T ¢ Ty which contradicts the
assumption T, Ty € E.

Case 2 c¢p(i) > cp,(dj—1 + 1). This case is illustrated in Figure 3.2. Since by (3.6)
x < dj_1, thereisa 1 < p <[ —1 such that x € I,,. The leftmost cell of the connected
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horizontal strip T, *(I,) is Ug,. As entries decrease in rows of T' from left to right, we
have T'(Cg,) > T(0O;) = 4. In addition, the choice of p and (3.4) imply that T'(Cg,) < i.
Thus, d, = .

From d, = = we obtain d, # d;—; since

ey (di-1) < ery(di—1 + 1) < er(i) = ery (dp)

where we use d;_; € D(Tp) for the first inequality.

We claim that there exists an index y € [d, + 1,d;—1 — 1] such that O, and Ug, are
located in the same column. To prove the claim, assume for the sake of contradiction
that this is not the case. We show by induction that

cry(dp) < ey (2) for all z € [dy + 1,dj—1 — 1]. (3.7)

First, d,, € D(Tp) implies cr,(dp) < eny(dp + 1). Since cr,(dp) # cny(dp + 1) by assump-
tion, it follows that ¢z, (d,) < e, (dp+1). Let z € [d,+2,d;—1 — 1] and assume that (3.7)
is true for z — 1. If z — 1 € D(7p) then

CTy (dp) < cr, (Z - 1) < ¢y (Z)
If z— 1€ D¢(Tp) then z — 1 € ND¢(Tp) so that
CTo (dp) < ¢y (Z - 1) —1l=cg (Z)

and hence cr,(dy) < cp,,(2) since cr, (dp) # c1,(2) by assumption. This proves (3.7).
As a consequence,

cry (di-1) < ery(dp) < ery(di—1 — 1).

In other words, d;_1 — 1 is an ascent of Ty but d;_1 is not the left neighbor of d;_1 — 1.
This is a contradiction to the fact that Ty is a source tableau and finishes the proof of
the claim.

Now, let y be as claimed above. Then y € [d,+1,d;—1—1] and in particular y # d, = «.
Hence, (3.4) implies T'(0J,) < 4 and therefore T'(0J,) < i = T(Og,) . On the other hand,
y € [dp + 1,di—y — 1] yields To(dy) = y > dp = Tp(0g,). As in Case 1, this is a
contradiction to T,Ty € E. ]

Note that the i appearing in the following lemma is not the same as in (3.2).

Lemma 3.3.4. For alli € D(Ty) there exists k € Ty such that k > i and i ~, k.

Proof. Let i € D(Tp). Then ¢, (i) < eq, (¢ + 1) and thus r7,(¢) # 71, (i + 1). Since Tp is
straight by assumption, the cell (rr, (i +1), ¢q (i) is contained in the shape of Tj. Let k
be the entry of Tj in that cell. Then i ~»7, k and k > 7 4+ 1 because entries decrease in
TOWS. O

Let T, i and j be as in (3.2). Lemma 3.3.3 and Lemma 3.3.4 show that j is well
defined. We proceed by considering the relative positions of i and [i + 1, j] first in T}
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and then in T'. This will allow us to deduce useful properties of the operator 7, to be
defined in Lemma 3.3.9. In the following lemma, i is slightly more general than in (3.2).

Lemma 3.3.5. Let i € D(Ty) and set j := min{k € [n] | k > i and i ~1, k}. Then j is
well defined and i is located strictly left of [i+1, j—1] and does not attack [i+1, j—1]in Tp.

We illustrate Lemma 3.3.5 before we prove it.

Example 3.3.6. For the source tableau from above

To=[6]5]4]3]

7|2

OOG:}—t‘

and i = 2 € D(Tp) we have j = 4 = min{k € [n| | £ > i and i ~7, k} and {3} =
[i + 1,5 — 1]. Note 2 ~, 4 but 2 7, 3.

Proof of Lemma 3.3.5. It follows from Lemma 3.3.4 that j is well defined. We set I :=
[i +1,7 — 1] and ¢; := ¢, (1) for | € Typ. By the minimality of j, we have ¢ vp, I. It
remains to show that 7 is strictly left of I or equivalently that ¢; < ¢; for all I € 1. We
may assume I # () and use an induction argument to show this.

We begin with ¢+ 1, the minimum of 1. Since i € D(Tp), ¢; < ¢j+1. Moreover, i+1 € I
implies 7 ¥~7, © + 1 and consequently ¢; < ¢;y1.

Now, let [ € I be such that [ > i+1and ¢; < ¢;_1. If {—1 € D(T}p) then ¢; < ¢;—1 < ¢.
If I —1€ D¢(Tp) then I — 1 € ND¢(Ty) as Ty is a source tableau. Thus ¢; = ¢;_1 — 1 and
¢i < ¢. Furthermore ¢; # ¢ since ¢ /41, I 3 [. Hence, ¢; < ¢. ]

Let T,i and j be as in (3.2). By definition, i attacks j in Tp. In contrast, the next
lemma shows that ¢ does not attack j in 7. Here, i and j are defined as in (3.2).

Lemma 3.3.7. Let T € E be such that T # Ty and D(T) C D(Ty). Define

i:=max {k € [n]| T (k) # Ty 1 (k)},
jr=min{k € [n] | k> i and i ~7, k}.

Then i and j are well defined and i appears strictly left of [i + 1, 7] and does not attack
[i+1,7] inT.

We first give an example and then the proof of Lemma 3.3.7.

Example 3.3.8. Recall that in our running example ¢ = 2 and j = 4 when defined for

T=6]5]4]3]

7|1

OOCDN‘

as in Lemma 3.3.7. Then [i + 1, j] = {3,4} and 2 /4 {3,4}.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Proof of Lemma 8.3.7. Lemma 3.3.3 yields i € D(Ty). Therefore, Lemma 3.3.4 implies
that j is well defined. Set o := coly Col}ol, O = T[fl(k) for k=1,...,n and let = be
the index such that 7'(00;) = 1.

By choice of i, we have T>% = T5"". Thus, sh(T>*) = sh(T5*) for k = i,...,n. Hence,
Proposition 3.2.9 yields

cont(o) C [i — 1]. (3.8)

Let s, ---si, be a reduced word for 0. Then T' = m;, - - - 73, Tp. From (3.8) it follows
that iy # i for ¢ = 1,...,p. Moreover, at least one ;, has to move i because the position
of ¢ in T differs from its position in Ty. Hence, there is a ¢ such that i, = i — 1 since m;_;
and 7; are the only operators that are able to move i. For two standard composition
tableaux T and T, such that T, = m;_1T} = s;_1T1 we have that i — 1 € nAD(T}) and
thus T, * (i) is left of 77 (i) and Ty ' (3) +~ Ty *(i). Hence, by applying i, = iy t0 To, i
is moved (possibly multiple times) strictly to the left into a cell that does not attack OJ;.
That is,

O is located strictly left of OJ; and O, 4 ;. (3.9)

It follows from the choice of ¢ that the elements of [i + 1, j — 1] have the same position
in T and Tp. By combining (3.9) and Lemma 3.3.5 we obtain:

i is located strictly left of [i + 1,5 — 1] in T and i 7 [i + 1,7 — 1]. (3.10)

Recall that j has the same position in 7" and Tp. It follows from (3.9) and ¢ ~»7;, j that
er(i) < e, (i) < e, (j). Thus, i is strictly left of j in 7'

It remains to show i /¢ j. We have either e, (j) = cg,(7) + 1 or er, (§) = er, (4) since
1~y e

Case 1 ¢, (j) = e, (i) + 1. Then (3.9) implies cr(i) < c7, (i) < er,(4) = er(j) and
hence i A7 j.

Case 2 ¢, (j) = ey (7). If ep(i) < e, (i) — 1 then ep(i) < er(j) — 1 and thus i ~4 7.
If er(i) = e, (i) — 1 then ¢ and j appear in adjacent columns of 7" and for i ~ 7j we
have to show that r7(j) < rr (7). On the one hand, we have 1 < ¢ (i) < cg, () so that i
has a left neighbor ¢ > i in Tp. In addition, i being strictly left of [i + 1,5 — 1] in Tp by
Lemma 3.3.5 and c¢7;,(j) = cr, (7) imply that ¢ is weakly left of [i+1, j] in Tp. Thus, ¢ > j
and hence 77, (j) < rr,(7) because otherwise ¢, and j would violate the triple rule in Tj.
On the other hand, cp(i) = e, () — 1 and @ v>p O; imply rp, (i) < rp(é). Therefore,
rr(j) = r1,(7) < r1y (i) < rp(i) and thus @ %7 j. O

We now come to the useful properties of the operators 7, mentioned in (3.2).

Lemma 3.3.9. Keep the notation of Lemma 3.3.7 and set 0 := sj_1---s;415;- Then
(1) m,Tp =0,
(2) n,T € F,

(8) o = coly,col .
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3.3 The decomposition of straight modules

Proof. First observe that sj_1---s;115; is a reduced word, i.e.
Mg = Tj—1" " Ti+1T5.

Set Oy, := Ty (k) for k=1,...,n.

We consider Ty. Set T := Tj—9 -+ -mir1mLo. We can apply Proposition 3.1.20 in Tj
to i and [i + 1,7 — 1] because of Lemma 3.3.3 and Lemma 3.3.5. By doing this, we
obtain that 77 € F and T'(0;) = j — 1. In addition, T'(0;) = To(0;) = j as none of
the operators m;_s,...,m11 moves j. Recall that j is defined such that [; ~ ;. Thus
j—1e€ AD(T’) and w1y = 7Tj_1T/ =0.

Now consider T'. Because of Lemma 3.3.7, we can apply Proposition 3.1.20 in T to ¢
and [i 4+ 1, j]. This immediately gives us (2) and (3). O

Example 3.3.10. Continuing our running example, we have ¢ = 2, j = 4 and 7, = m3ma.
Moreover,

(1] (1]
To=[6]5[4][3] = [6]5[4][2] =0,

8[7]2 873

2] 3] (4]
T=6]5[4]3]=[6]5[4]2]=6]5][3]2]

8]7]1 8[7]1 8]7]1

We are ready to prove the main result of this section now.

Theorem 3.3.11. Let aFn and E € E(a). Then Endy, (0)(Sa,r) = Kid. In particu-
lar, S, is an indecomposable Hy(0)-module.

Proof. For the second part, note that if Endg, 0)(Sa,r) = Kid then S, g is indecom-
posable.

To prove the first part, let f € Endg, (0)(Sa,r), v:= f(To) and v = Y peparT as at
the beginning of Section 3.3. We show supp(v) € {7} since this and the fact that S, g
is cyclically generated by Tp imply f = ar,id € Kid.

If v = 0, this is clear. Hence, we can assume v # 0. Recall that F is a graded poset by
Theorem 3.1.18. We denote its rank function with 6. Let T, € supp(v) be of maximal
rank in supp(v). Assume for the sake of contradiction that T, # Tp. Lemma 3.3.1
yields D(T) C D(Tp). Thus, Lemma 3.3.9 provides the existence of a ¢ € &,, such that
o1y € E, ms1y = 0 and 0 = col,, T, colil.

We claim that if 7" € supp(v) and 7,1 = 7,1 then T' = T,. To see this, let T €
supp(v) be such that 7,7 = 7,T%. Then

E(U) > 6(7T0'T> - 6(T) = 5(7TO'T*) - 5(T) > 5(7T0'T*) - 5(T*) - 6(0')7

where Corollary 3.1.19 is used to establish the first and the last equality. Hence, ¢(0) =
§(m,T) — §(T) and another application of Corollary 3.1.19 yields that col,, 7, col;' = 0.
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But then
-1_ __ —1
coly, 1, colp” = o = colg,, colp,

so that coly = coly, and thus T' = T, as claimed.

The claim implies that the coefficient of 7, T in Tov = 3 pegupp(v) @771 Is ar,. Yet,
oV = f(m,1p) = 0 and hence ar, = 0 which contradicts the assumption T} € supp(v)
and therefore completes the proof of supp(v) C {7Tp}. O

Combining Theorem 3.3.11 with Proposition 3.1.13, we obtain the desired decompo-
sition of S,.

Corollary 3.3.12. Let o F n. Then Sa = @peg(a) Sa,p i a decomposition into
indecomposable submodules.

Example 3.3.13. In general, Theorem 3.3.11 does not hold for skew modules S, 3 k-
The two SCTx of shape o)/ = (1,3)/(2) and size n = 2

0 2]
To— —>T1—

form an equivalence class E. We obtain an idempotent H,(0)-endomorphism ¢ by
setting ¢(Tp) := ¢(T1) := T1. Clearly, ¢ is none of the trivial idempotents 0,id €
Endg, 0)(Says,e)- Thus, Endgy, 0)(Says,E) # Kid. Moreover, we obtain a decomposi-
tion

Says.e=¢(Saysr) ®(1d—9)(Says,r) = spang (T1) @ spang (T1 — Tp)

into two submodules of dimension 1. The module S, /5 g is an example of a type of
skew modules which we call pacific and decompose in Section 3.4. It also illustrates how
the argumentation of this section can fail when it is applied to skew modules. Note that
D(Th) C D(Tp). We may try to set

b= max k€ [n] | T (8) # T3 (8),
j:=min{k € [n] | k> iand i ~q k}.

as before. But then ¢ = 2 so that j does not exist.

3.4 The decomposition of pacific modules

In the last section we decomposed the straight H,(0)-modules S, into a direct sum
of indecomposable submodules. In this section we determine such a decomposition for
a certain class of skew H,(0)-modules S,z which we call pacific. This is done in
Theorem 3.4.17. The summands of the decomposition are isomorphic to projective
indecomposable H,,(0)-modules P;. Thus, the pacific skew modules S|, /8 are projective.
From the decomposition we also obtain combinatorial formulas for the top and the socle
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3.4 The decomposition of pacific modules

of the pacific skew module S 5 in Corollary 3.4.21. These rules for top and socle will
be generalized to all skew modules S, /g in Section 3.5 and Section 3.6, respectively.

As the pacific skew module S, /g is projective, it is its own projective cover. In
[CKNO20] Choi, Kim, Nam and Oh construct projective covers for H,(0)-modules
Sg. p formed by standard permuted composition tableaux of shape a. This includes
the straight modules S, £.

The notation related to Coxeter groups from Sections 2.2 and 2.3 used in this section
always refers to the symmetric group &,, where n is the size of the skew composition or
tableaux in question. For instance, S denotes the set of simple reflections of &,,.

Definition 3.4.1. A skew composition o/ is called pacific if for each pair of cells
01,09 € a8 we have Oy ~ Os. Likewise, a tableau T is pacific if for all pairs of
entries i,j € T we have i ~ j. The module S,z is called pacific if /3 is pacific.

Example 3.4.2. The skew composition o)/ = (5,4,3)/(4,3,1) is pacific. Its diagram
looks as follows:

—

L[]

Note that the first column is empty. The SCTx of shape o/ are shown in Figure 3.3.

Example 3.4.3. Let T and T be the tableaux of shape o)/ = (1,3)/(2) from Ex-
ample 3.3.13 and E be the equivalence class formed by them. Then Ty, T, «//3 and
S p are pacific. Moreover, o/ B has at most one cell per column, so that E is the only
equivalence class of SCT (/) under ~. Hence, £ = SCT(a /) and S, 5 = Sos,E-
From Example 3.3.13 we have the decomposition

Sy = spang (T1) @ spang (11 — Tp).

An application of Corollary 2.3.8 yields that the indecomposable projective Hs(0)-
modules Py and Pg have K-bases given by m1 —1 and 7y, respectively. As a consequence,

PyTy = spang (11 — Ty), PgsTo = spang (1)
and
Sayp = Pylo ® PsTo. (3.11)
Moreover, we have PyTy = Py and PsTy = Pg.

In this section we will generalize the decomposition from (3.11) to arbitrary pacific
modules S, 5. The method for obtaining it, however, will be different.

We proceed as follows. Let o/ be a pacific skew composition of size n. First, we
consider basic properties of a//f and SCT(«//3). In particular, we show that SCT(a//3)
is a single equivalence class under ~ so that there is only one source tableau T and one
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sink tableau 77 of shape a/3. Then we describe T and thereby the diagram of «//f.
Recall that the components of a diagram are its maximal connected subdiagrams. It
will turn out that the components of the diagram of «//3 are horizontal strips which do
not attack each other. With this we can identify coly, and coly, as maximal elements
of certain parabolic subgroups of &,. This is a central argument in the poof of the
decomposition of S, g in the main result, Theorem 3.4.17.

We will see in Proposition 3.4.23 that most of the pacific modules S, /5 are decom-
posable. Since S, /g = S, p,p for E = SCT (/) if o/ 3 is pacific, we obtain a class of
decomposable modules S, y5 . This is a difference to the case of straight modules S, g
which are always indecomposable by Theorem 3.3.11.

Let o/ 3 be a skew composition and T" be a SCT of shape «/3. Recall that for i,j € T
we have by definition that i ~»7 j if and only if T71(7) ~ T~1(j). With this in mind we
can directly deduce the next lemma from Definition 3.4.1.

Lemma 3.4.4. Let o)/ be a skew composition. Then the following are equivalent.

(1) a8 is pacific.
(2) Each T € SCT(«JB) is pacific.
(3) There is a T € SCT(cv)/B) which is pacific.

By Figure 3.3, all SCTx of pacific shape (5,4,3)/(4,3,1) are equivalent with respect
to ~. Now we show that this is true for all pacific skew compositions.

Lemma 3.4.5. Let /3 be a pacific skew composition. Then SCT(«//3) is the only
element of E(a)/).

Proof. Since two distinct cells in the same column attack each other, the pacific skew
composition «//f has at most one cell per column. Hence, each T' € SCT(«//3) has at
most one entry per column. By the definition of the equivalence relation ~, this means
that all elements of SCT(«//3) are equivalent with respect to ~. O

Let a// B be a pacific skew composition. Because of Lemma 3.4.5, we do not obtain a
decomposition of S, g from Proposition 3.1.13. It only yields that S,/ = S,/s g for
E = SCT(«a//3). Nonetheless, we can exploit the fact that SCT(«//3) is an equivalence
class under ~. For example, this means that there is only one source tableau and only
one sink of shape « /3. Thus, we can speak of the source tableau and the sink tableau
of shape o/ 3. Our next goal is to describe the source tableau of «//f.

Given an arbitrary source tableau Tg of size n, we use the following notation which
already appeared in the proof of Lemma 3.3.3. Recall that by Theorem 3.1.14, Tj
being a source tableau means that Ty is a SCT with D°(Ty) = ND¢(Tp). We introduce
integers m := |D(Tp)| and dj, € [0,n] for k = 0,...,m + 1 such that dy = 0, D(Tp) =
{di <dy <---<dp} and dy+1 = n. Define Iy, := [dp_1 + 1,di] for k =1,....,m + 1.
Then for each k € [m + 1] and i € I \ {di}, i + 1 is the left neighbor of 7. That is, Ij
forms a connected horizontal strip in T that looks as follows:

(@ 1] [ v1]
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1]
T = 2
(73]
n/ N\
1 3
[4]3 [4]2
71'2/\ 7T1/\ W’?x
3] 2] 1]
EiEip T 72
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4] 3] 2]
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™ 7T3/\ 772/\
4] 3]
E o7}
™ 1/
1]
To = 3
21

Figure 3.3: The 0-Hecke action on SCT(«/3) for the pacific skew composition a3 =
(5,4,3)/(4,3,1). The tableaux Ty and T; are the only source and sink
tableau of shape «//3, respectively.
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Example 3.4.6. Let Ty be the source tableau from Figure 3.3. Then we have D(Tp) =
{dl = 2,d2 = 3} and d3 == 4, i.e. Il = {1,2},[2 == {3} and Ig == {4}

Lemma 3.4.7. Let Ty be a source tableau of size n and k € [m]. If Iy ~ Iyy1 in Tp
then Iy, is strictly left of Iy+1 in Tp.

Proof. Assume Iy, ~» 1,1;+1. We consider the positioning of entries in Ty. Let ¢ € I},
and j € Iy41. Then ¢ and j appear in different columns since otherwise ¢ ~» j. Thus, I,
is positioned either strictly right or strictly left of Iy 1. Moreover, di € I must be left
of di, + 1 € Iy since di € D(Tp). This implies the claim. O

The next lemma characterizes pacific source tableaux.

Lemma 3.4.8. Let Ty be a source tableau. Then Ty is pacific if and only if I, v 1, Lx+1
and Iy is strictly left of Iy41 fork=1,...,m.

Proof. The implication from left to right is an application of Lemma 3.4.7.

For the converse direction assume that the intervals I of Ty satisfy the condition on
the right hand side. Let k£ € [m + 1]. Since the entries of I} form a connected horizontal
strip in Ty they do not attack each other. Hence, consider another interval I; with
l € [m+ 1] and | # k. Without loss of generality suppose k < [. Then I} is strictly left
of I;. If I > k+ 1 then Iy is located between I, and I;. Hence, I}, and I; are separated
by at least one column and thus Ij 4 71,1; in that case. If [ = k + 1 then I v 1,1} by
assumption. Hence, the entries of I do not attack the entries of I; in Ty. Therefore, T}
is pacific. O

Let a//8 be a pacific skew composition and Ty be the source tableau of shape «a//f.
From Lemma 3.4.8 it follows that there is an m € Ny and connected horizontal strips
By, ..., Bpn41 such that By ~4 Byi1, By is strictly left of By for k =1,...,m and the
By, are the components of the diagram of /3. The By are nothing but the preimages
of the intervals I associated with Ty under Tj.

That is, we obtain Ty from a /3 by setting dy := 0 and dj, = YF , |By| for k =
1,...,m + 1 and then filling By from left to right with dg,dp — 1,...,dx_1 + 1 for
k=1,...,m+ 1. One may check that we obtain Ty from Figure 3.3 in this way.

Let T7 be the sink tableau of a//5. From Theorem 3.1.18 it follows that SCT(«a /) is
isomorphic to the interval in left weak order [coly,, colr, |, via the map 1"+ colp. We
now want to determine this interval. To do this, we use the following definition.

Definition 3.4.9. Let T be a SCT of size n and S be the set simple reflections of &,.
Define the set of simple reflections associated to T as

Jp = {s; € S|ie DYT)}.

Example 3.4.10. Consider the pacific skew composition o)/ = (5,4,3)/(4,3,1) of
size 4, Ty the source and T the sink tableau of shape /3. The tableaux are shown in
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Figure 3.3. We have D¢(Ty) = {1}. Thus, Jr, = {s1}. Moreover, we read colp, = 2134
and colp, = 4321. That is

coly, = s1 = wo(J,) and  colpy = wo

where wo(Jr,) and wp are the longest elements of (&) Jr, and &y, respectively. In other
words,

[COITO, COITI]L = [wo(JTO), wo]L.

We need the following lemma in order to generalize Example 3.4.10.

Lemma 3.4.11. Let T be a SCT andi € T.
(1) Ifi € nAD(T) then s; ¢ Dr(colr).
(2) Ifi e D(T) then s; € Dp(colyp).

Proof. In both cases i and i + 1 appear in different columns of T'. If i € nAD(T) then
i is located in a column strictly left of ¢ + 1 in 7. Thus, ¢ appears left of i + 1 in colr,
i.e. col' (i) < col;'(i + 1). Hence, s; ¢ Dy (colr) by Equation (2.1). If i € D(T) then
i+ 1 is located in a column strictly left of ¢ in 7" and thus i + 1 appears left of ¢ in coly.
Hence, (2.1) implies s; € Dr/(coly). O

Now we determine [colg,, colr, |1, for the source and the sink tableau Ty and T of a
pacific shape. Note that by Corollary 2.2.12 the interval [wo(Jr,), wor, is the descent
class D§TO.

Proposition 3.4.12. Let o)/8 be a pacific skew composition of size n, Ty the source
and Ty the sink tableau of shape ajf3. Then

(1) colyy, = wo(Jmy),

(2) colp, = wy
where wo(J1,) and wo refer to elements of S,,. That is, SCT(a)/B) is isomorphic as a
poset to the interval [wo(Jr,), wolL.

Proof. Set J := Jr,.
(1) First we show that colp, is an element of the parabolic subgroup (&,);. For
1 <k <m+ 1 the entries of I} in Tj form a horizontal strip which looks as follows:

lde |[di—1] - [decr +1

Moreover, since «//f is pacific, Ty is. Thus, Lemma 3.4.8 implies that Ij is located
strictly left of Iy4q for 1 <k < m. As a consequence,

COITO:dldl—l ool dydo—1---dy+1 - nmn—1 - dn+1.
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In particular, coly, ([dg]) = [di] for kK = 1,...,m. Consider the natural action of &,, on
[n]. Then it follows that coly, € Stab([dy]) for k =1,...,m. Hence

m

colr, € m Stab([dk]) = ﬂ S\{Sdk = (Gn)ﬂ;nzl S\{sa,} = (Sn)g
k=1 k=1

where the first equality is an application of Lemma 2.2.4 and the second equality is a
consequence of [BB05, Proposition 2.4.1].

As T is pacific, Lemma 3.4.11 implies Dy, (coly,) = J. Furthermore, Proposition 2.2.8
states that the only element of (&,); which has left descent set J is wg(J). Thus
CO]TO = w()(J).

(2) We have D(T1) = nAD(T1) since «//f is pacific. But T} is a sink tableau and
hence it follows from Theorem 3.1.14 that D(T}) = (). Then Lemma 3.4.11 yields that
Dy (coly,) = S. Therefore, Proposition 2.2.8 implies coly, = wo.

(3) Because a// is pacific, we can apply Lemma 3.4.5 and obtain that SCT(«//f) is
an equivalence class under ~. Then Theorem 3.1.18 yields that SCT(«//3) is as a poset
isomorphic to the interval [coly,, colr, |1 = [wo(J), wo]L- O

It is interesting that pacific modules are in fact characterized by Proposition 3.4.12.
Although this is not important for their decomposition, we prove it in the next lemma.

Lemma 3.4.13. Let o)/ 5 be a skew composition of sizen, E € E(a)/3), To be the source
and Ty the sink tableau of E. If coly, = wo(Jr1,) and coly, = wg then a3 is pacific and
E =SCT(a/B).

Proof. Assume that coly, = wo(Jz,) and coly, = wg. We want to show that Ty is pacific.
Then «//f is pacific by Lemma 3.4.4 and therefore E = SCT(a /) by Lemma 3.4.5.

Define m, the di and the I according to Ty as before. Because of Lemma 3.4.8, we
have to show that I, v 7,Ix41 for k =1,...,m. Recall that since T is a source tableau,
the elements dy,dp. — 1,...,dp_1 + 1 of I} form a connected horizontal strip in Tj. For
the sake of contradiction assume that there exists an index k such that I ~7, Ix41. In
addition, suppose that k is the smallest index with this property. Set ag := d_1+ 1 and
by := di11. Moreover let a; and b; be the entries of 77 in the cells filled with ag and bg
in Tp, respectively. An application of Lemma 3.4.7 yields that I; is strictly left of I in
Ty for all [ < k. By assumption, we have

colp, = wo(J)
—didy—1 -1 -+ dydg—1 - dpr+1 dppr dps —1 - dg+1 -

Recall that for obtaining the column word, we read each column from top to bottom
starting with the leftmost column. Hence, it follows that Iy is weakly left of I;,1 in Tp.
Therefore, ag ~+1, by since in Ty ag is the rightmost entry of Iy, by is the leftmost entry
of Iyy1 and Iy attacks Ipi1. Then in Ty either ap and by are in the same column or
ao and by are in adjacent columns with ag strictly above and left of by. We distinguish
these two cases.
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3.4 The decomposition of pacific modules

Assume that the first one is true. Because ag precedes by in colr,, we then have that
ag is above of by in T. Moreover, colpy = wg =nn —1 --- 1. Since columns are read
from top to bottom in the column word, it follows that aq > b1. Yet, ag < by so that we
obtain the contradiction Ty ¢ T1.

Assume that the second case is true. Then a; is left of b; in coly,. Hence, coly, = wy
implies a; > b;. Since a; and by appear in 77 in adjacent columns with a; strictly above
and left of by, we can apply the triple rule which demands the existence of a ¢; € T}
which is the right neighbor of a;. Then ag has a right neighbor ¢g in Ty too. Since entries
decrease in rows of SCTx, it follows that ag > ¢g. But all entries which are smaller than
ag = dp_1 + 1 are elements of Uf;ll I, and these entries are strictly left of ag in Ty. That
is, we end up with a contradiction again. O

The next two lemmas are the last ingredients needed for the proof of our main result.

Lemma 3.4.14. Let T be a standard composition tableau of sizen, S be the set of simple
reflections of S, and J C S. If there is an i € D°(T') such that s; € J¢ then 7T = 0.

Proof. Assume that there is an ¢ € D°(T") with s; € J¢. Then Proposition 2.2.8 provides
the existence of a reduced word s;, - - - s;,5; of wo(J¢). Furthermore, 7,7 = (m; —1)T =0
as 1 GDC(T). Thus, 7_TJcT=7_TZ‘p--~7_Ti27_TZ‘T=0. ]

Lemma 3.4.15. Let o/ be a skew composition of size n, S be the simple reflections
of &, and E € E(av)/ B) with source tableau Ty. Then S,y 5 = > cacs PiTo.

Proof. From Theorem 2.3.5 we have the decomposition H,(0) = @ jcg P. Thus,

Saysp=Hn(0) Ty =Y P;T.
JCS

Let J C S such that Jr, € J. Then there is an i € D¢(Tp) such that s; € J¢ and from
Lemma 3.4.14 we obtain
P;Ty = H,(0)mym 5Ty = 0. O

We will see in the proof of Theorem 3.4.17 that the sum from Lemma 3.4.15 is direct
if a// B is pacific. The following example shows that in general this is not the case and
that summands can be zero.

Example 3.4.16. Consider the equivalence class E
= 2 7T —> Tl
1]

of SCTx of size 3 and shape /8 = (3,3,2)/(2,2,1) which are not pacific. Then Jr, = 0.
Lemma 3.4.15 yields that S, /3 g = > cg PsTo where S is the set of simple reflections

49



3 0-Hecke modules associated to quasisymmetric Schur functions

of &3 and the P are the indecomposable projective modules of H3(0). On the other
hand, from Example 2.3.9 we have that

—7T27T17T2+7TQ7T1€P{51} and 7T27T1—7T2€P{52}.
Thus,
T1 = (—7T27T17T2 +7T27T1)T0 € P{sl}TO and T1 = (7T27T1 — 7T2)T0 € P{SQ}T().

Hence, the intersection of the modules Py, 7o and Py, T is not trivial which means
that 3 ;g PTp is not a direct sum. Moreover, P, ,1To = Hy(0)mimam Ty = 0.

We now come to the main result of the section: The decomposition of pacific modules
S,/ into indecomposable submodules. Recall that Df = {o € &, | J € Dr(0)} and
that D5 = [wo(J), wo]r, by Corollary 2.2.12 for J C S.

Theorem 3.4.17. Let o)/ be a pacific skew composition of size n with source tableau
To, S be the set of simple reflections of S,, and Py = H,(0)7 7 e for J C S.
(1) Let Jp, € J C S. The H,(0)-modules Pj and P ;jTy are isomorphic via the map
a — aly. The module P jTy is generated by w1y and it has a K-basis

{ Z (_1)f(pwo(16))*f(0)WUT0 |pe D]}
o€p(6n) je

In particular, dim P ;Ty = |Dj|. Moreover,
top(PjTy) =2 Fje and soc(PjTp) = FV(JC)

where wqy is the longest element of G, and v: &,, = &,,,0 — woowal.

(2) Sayp = @JTOQJQS P T} is a decomposition into indecomposable submodules.
(3) Sayp is projective and has dimension ‘D§T0 ‘

Proof. Assume that S, 4 is pacific. Throughout this proof €p refers to the outer direct
sum, all homomorphisms are H,,(0)-homomorphisms and all (direct) sums indexed by J
run over the set {J | Jp, C J C S}.

There are natural epimorphisms

¢J:PJ—>PJT0, ar—>aT0
for Jp, CJ C S. Let

o: PP;—PPTy, (a1)s— (ds(ar))s
7 7

be the corresponding epimorphism of direct sums. Since a//f is pacific, Lemma 3.4.5
yields that SCT(«//3) is an equivalence class under ~. Thus, Lemma 3.4.15 implies that
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3.4 The decomposition of pacific modules

Table 3.1: Dimensions and generators of the modules P ;T decomposing the pacific
module S, 3 for /3 from Figure 3.3.

J dim P ;T Generator 7 7Ty of P Ty
1 1 3 3 1 1
{51} 5 3_ 4_ 1+ 4F+ 1_ 3

ER  BE AR EW . BE ED

{s1,52} 3
[3]
[4]

{81,33} 5

{s1, 52,53} 1

Sayp = ZJTOQJQS P ;Ty. Therefore, ¢: @, PjTo — Says, (v)s + >y v, is another
epimorphism. We have

dim S, g < dim @ P;Ty (v is an epimorphism)
J

< dim @ P; (¢ is an epimorphism)
J

:ZdimPJ

=>_|Dy| (Theorem 2.3.5)

= |[wo(Jz,), wo) 1| (Corollary 2.2.12)
= |SCT(a// )| (Proposition 3.4.12)
= dim Sa//ﬂ'

That is, dim S,y = dim @ ; P,y = dim P ; P ;. Consequently ¢, ¢ and all the ¢ are
isomorphisms.

Let Jr, € J C 5. We obtain the claimed basis of P ;T by applying ¢; on the basis
of Py from Corollary 2.3.8. The statements about top, socle and indecomposability are
transferred from Theorem 2.3.5 by ¢ as well. As S, /g is the direct sum of projective

modules, it is projective too. We have seen above that dim S, /3 = ‘DﬁTO ‘ ]

Remark 3.4.18. Let S, /3 be pacific. Then it is projective and by [KT97, Proposition
5.9] the quasisymmetric characteristic of S, g, Ch(S4p), is a symmetric function. That
is, the quasisymmetric Schur function S, /4 is a symmetric function if o/ is pacific.

Example 3.4.19. Counsider the pacific skew composition o)/ = (5,4,3)/(4,3,1) and
its source tableau Ty. The SCTx of shape o /5 are shown in Figure 3.3. Then Jg, = {s1}
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3 0-Hecke modules associated to quasisymmetric Schur functions

and Theorem 3.4.17 yields that
Sayp = PsiyTo ® Psy )T0 © Psy 5570 S Psy 65,653 10

is a decomposition into indecomposable Hy(0)-modules. The dimension and a generator
for each of them is shown in Table 3.1.

Let J = {s1,s2}. We determine a basis of P ;Ty. We have J¢ = {s3},
Dy = {p1 = 515251, p2 = 53515251, p3 = 5253515251} and (&y4)jec = {1,s3}.
From Corollary 2.3.8 it follows that the elements

by = ﬂplﬁjc = M MQM{Tg — M7,
by 1= Tpy M je = T3MI TN — T3WIT2T1,

b3 = ngﬁJC = TMQM3M QT Ty — QM3 T2T]

form a basis of P ;. By Theorem 3.4.17, a basis of P ;1j is given by the elements

Ty = il - 1

32 (3

by Ty = 3] - 1,

ARl [

b1y = 2 — 1

A3 [A]3]

Note that

b1 Ty =25 byTy —25 b3 T.

One may check that we obtain the decomposition of S(3 1) /() given in (3.11) also from
an application of Theorem 3.4.17.

We can reformulate the decomposition of the pacific module S, 5 from Theorem 3.4.17
in a more combinatorial fashion. We call i € [n—1] a descent of 0 € &,, if o(i) > o(i+1).

Corollary 3.4.20. Let o/ be a pacific skew composition of size n with source tableau
Ty. For D C [n— 1] we set Pp := Pj where J ={s; € S |i ¢ D}.

(1) For D C D(Ty) the H,(0)-modules PpTy is isomorphic to Pp. Its dimension is
the number of o € &,, with descent set [n — 1]\ D. Furthermore,

top(PpTy) 2 Fp and soc(PpTy) = F,_p
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3.4 The decomposition of pacific modules

as Hy(0)-modules where F,,_p is the simple H,(0)-module indezxed by the set
n—D:={n—-d|de D}.

(2) Sayp = D pcomy) Pplo is a decomposition into indecomposable submodules. The
dimension of S is the number of o € &, whose descent set contains De(Tp).

Proof. Recall that Jgp, = {s; € S'| i € D°(Tp)}. Hence,
D C D(Ty) if an only if Jp, C {s; € S| i & D}. (3.12)

Now fix an D C D(Tp) and let J := {s; € S| i € D}, wo be the longest element of &,
andv: 6, > 6,, 0 +— woawal. Then Pp = P and Theorem 3.4.17 yields that PpTy
is isomorphic to Pp, has dimension |Dy|, top isomorphic to F je and socle isomorphic
to F'(je). Recall from Section 2.2 that Dgr(c) = {s; € S| o(i) > o(i + 1)} for o € &,
Therefore,

DJ:{U€6n|J:DR(O')}
={0€6,|o(i)>o(i+1)ifand only ifi € [n — 1]\ D}.

This yields the claim on the dimension of PpTy.

By the definition of F'p in Section 2.3, we have F jc = Fp and therefore top(PpTp) =
Fp. Regarding soc(PpTp), it remains to show that F, ;) = F,_p. Recall that
wo(i) =n —i+ 1 for each i € [n]. Thus,

v(s;) = wo(iyi+Dwg' = (n—i+1,n—1i)=sn_
for all i € [n — 1]. As a consequence,
v(J) ={spn—i| si € J}={sp—i|i€ D} ={s;|ien— D}

Therefore, F,jey=Fy_p as desired.
From (3.12) and Theorem 3.4.17 we obtain the decomposition

Sus— @ Pol
DCD(Ty)

and that dim S, g = ‘D?TO ’ In addition,

D}, ={0 €6, | Jr, C Dr(o)}
={0ce6,|o(i)>0c(i+1)foralliec D(Tp)}.
Thus, we also get the statement on dim S, /3. O

From Corollary 3.4.20 we obtain combinatorial rules for top and socle of pacific mod-
ules S, g
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3 0-Hecke modules associated to quasisymmetric Schur functions

Corollary 3.4.21. Let S, g be pacific with source tableau Ty and n = |/ B|. Then

top(Sqp) = @ Fp and soc(S,)s) = @ F, p
DED(To) DED(To)

as Hy(0)-modules where n — D = {n —d | d € D}.
Proof. From Corollary 3.4.20 it follows that

top(Says) =top( € PpTo)= €P top(PpTy)= € Fo,
DCD(Ty) DCD(To) DCD(To)

where we use for the second equality that the operator top is compatible with direct
sums. In the same way we obtain the formula for the socle. O

The topic of Section 3.5 is to generalize the formula for the top from Corollary 3.4.21
to arbitrary modules S, /3. In Section 3.6 we do the same for the socle.

Example 3.4.22. Consider the pacific Hy(0)-module S, /g with source tableau

1]

Ty = 3
2|1

Then D(Tp) = {2,3} and Corollary 3.4.21 yields

top(Sa//ﬂ) SEFy® Fy ® F3 © Fo3,
s0c(Sayp) = Fo © Fray © Foy © Fy gy

We end this section with two consequences of Theorem 3.4.17. First we characterize
the indecomposable pacific modules S, g and second the modules S, /3 r which are
isomorphic to H,(0). Recall that the components of the diagram of a pacific skew
composition are connected horizontal strips that do not attack each other.

Proposition 3.4.23. Let /8 be a pacific skew composition of size n. Then the follow-
ing are equivalent.

(1) a8 is a single connected horizontal strip.

(2) Sqyp is indecomposable.

(3) Sayp is isomorphic to the simple Hy(0)-module Fy.
Proof. Let Ty be the source tableau of pacific shape o3, m = |D(Ty)| and I} for
k=1,...,m+ 1 be the intervals associated to Ty. Then

S is indecomposable <= D(Tp) = 0) (Corollary 3.4.20)
<= m=0and [} = [n]

<= «a//B is a single (o)) B = sh(Typ))
connected horizontal strip.
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3.5 The top of skew modules

That is, (1) is equivalent to (2). Moreover, if D(Tp) = 0 then Ty = Ty for i =
1,...,n—1. Hence, S, g is isomorphic to Fy in this case. Thus (2) implies (3). Clearly,
(3) also implies (2). O

Let /8 be a pacific skew composition and E := SCT(«/f). By Lemma 3.4.5,
Sy = Sayp,p- From Proposition 3.4.23 we know that apart from the case where a /3
is a single connected horizontal strip, S,/ £ is decomposable. In contrast, the straight
modules S, g for a FEn and E € £(a) are always indecomposable by Theorem 3.3.11.

From Theorem 3.4.17 we obtain a characterization of the modules S, /3 g which are
isomorphic to Hy(0).

Proposition 3.4.24. Let )/ be a skew composition of size n and E € E(a)B) with
source tableau Ty. Then S,y p = Hp(0) as Hy,(0)-modules if and only if nAD(Ty) =
[n—1].

Proof. Let Ty be the sink tableau of E.

Assume first that H,(0) = S, 5. Since E is a basis of S, 3 p and H,(0) has
a K-basis indexed by &,, it follows that |E| = |&,|. Thus, Theorem 3.1.18 implies
[colpy, colp, |, = &, and that the map &,, — E, 0 — 7,1} is well defined and injective.
In particular, Ty € E \ {Tp} for all i € [n — 1], i.e. nAD(Tp) = [n — 1].

Assume now that nAD(Ty) = [n—1]. Then we have that I = {d} for the interval Ij,
of Ty and k = 1,...,n. Thus, nAD(Ty) = [n — 1] implies I v [p4q for k=1,...,n—1.
Hence, it follows from Lemma 3.4.7 and Lemma 3.4.8 that T} is pacific. As a consequence,
a//B is pacific and S,y p = Sqys. In addition, nAD(Tp) = [n — 1] implies Jg, = 0.
Thus, Theorem 3.4.17 yields

JCS

Lastly, @ jcs Py = Hy(0) by Theorem 2.3.5. O

Example 3.4.25. Let o)/ be the shape of size 3 of the source tableau

3

To= [2
1]

Then nAD(Ty) = {1,2} and the H3(0)-modules S, /3 and H3(0) are isomorphic.

3.5 The top of skew modules
Let «//8 be a skew composition of size n. In this section we seek a combinatorial

formula for top(S,g). This formula is stated in Corollary 3.5.46. It generalizes the one
for pacific modules from Corollary 3.4.21.
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3 0-Hecke modules associated to quasisymmetric Schur functions

From Proposition 3.1.13 we have that S, = @peg(ayp) Saypp- It follows that
top(Says) = DPreceiays) top(Says,r). Therefore, our main objective is to determine
top(Sayp,r) for E € E(a//B). This is done in Theorem 3.5.42.

The section can be divided in two parts. In the first part we develop the combinatorics
that we use in the second part in order to determine the radical and the top of S, 3 g-

Note that a fraction of the new terms of this section is sufficient for only formulating
Theorem 3.5.42: the horizontal strips By which we will introduce below and Defini-
tion 3.5.10.

Let E € E(a//B). As in Section 3.4, we will use the descents of the source tableau
Ty of E in order to decompose [n] into intervals I1,..., I;,+1. The preimages under Tj
of these intervals By, ..., B;,+1 then form a set partition of the diagram of «//3. The
relative positions of the By play an crucial role in the determination of top(S, s,z). In
particular, for k € [m] it is important whether By ~» Bj11 or not. We fix some notation
for the entire section.

Notation 3.5.1. Let o/ be a skew composition of size n, E € E(a)/B), Ty be the
source tableau of F and dy =0 < d; < --+ < dp+1 = n be integers such that

D(Ty) = {d1,da,....dn}.
For k,l € [m + 1] with k <[ define integer intervals

Ing = dg1 + 1,d)), Thyo=IDy \{d} and Ij:= Iy

Then Iy = Ué:k I; and I = [di_1 + 1, dg]. Set By = T(;l(fk’l) and By := T(;l(fk).
Note that m, the d; and the I are defined as in Section 3.4. Recall that because Tj is
a source tableau, we have D¢(Ty) = ND¢(Tp) and therefore By is a connected horizontal
strip. As By is the union of the connected horizontal strips By, Byy1 ..., B, we call
it (horizontal) strip sequence. Note that By can be realized as the diagram of a skew
composition. Accordingly, we call By pacific if no cell of By ; attacks another cell of
Bk,l-

Example 3.5.2. Consider

Ty =[6]5]4[3]
| 2

where the descents of Tj are printed boldface. This is the source tableau from Figure 3.1.
Then do = 0, d4 = 8 and D(TQ) = {dl = 1,d2 = 2,d3 :6}. Moreover, Il = {1},
I, = {2}, Iy = {3,4,5,6} and Iy = {7,8}. The cells of the same connected horizontal
strip By are filled with the same shade of gray for K = 1,...,4. Observe By ~ B,
By ~ B3 and B3 ~~ By. Hence, By is the only pacific strip sequence By, ; with k < [.
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3.5 The top of skew modules

Horizontal strip sequences

We begin with some basic lemmas on pacific strip sequences By, ;. The first is an imme-
diate consequence of the definitions.

Lemma 3.5.3. Let By be a pacific strip sequence and T € E with T'(By;) = I;. Then
each descent of T' contained in I is non-attacking.

In Example 3.5.2 we have that B o is pacific, To(B12) = 12, 1 € D(Tp) and 1 € .70172.
Indeed, 1 is non-attacking. Moreover, B is strictly left of By which is a consequence of
the next result.

Lemma 3.5.4. Let By be a pacific strip sequence. For j = k,...,l —1 we have that
Bj + Bjy1 and B; is strictly left of Bjy1.

Proof. Let j € [k,l —1]. As By, is pacific, we have B; 4 Bji;. Now, Lemma 3.4.7
yields that Bj is strictly left of Bj . O

Definition 3.5.5. ForT' € E and a strip sequence By, define colp, , T to be the column
word of the tableau obtained by restricting T to By ;. We say that T' is By ;-sorted if

COIBM,T =d;d;—1 - dp_1+1.

Example 3.5.6. (1) We show that T is By-sorted for each k € [m + 1]. Let k €
[m + 1]. By definition, By is a single connected horizontal strip. In Tj this strip is filled
from left to right with dj, d —1,...,dx—1 + 1. Thus, colp, 1, = dpdr, — 1...dj—1 + 1,
i.e. Ty is By-sorted.

(2) In the situation of Example 3.5.2, we have

COlBl,TO = 1, CO]BQ,TO =92 and CO]BLQ,TO =12.

That is, Ty is B1- and Ba-sorted but not B s-sorted.
(3) Let E be the equivalence class from Figure 3.3. Its source and sink tableau are

4 1
TO = 3 and T1 = 2 s

211} 473}

respectively. We have I} = {1,2}, I = {3} and I3 = {4}. The cells of By have the same
shade for k£ =1,2,3. Then

colp, 51, = 2134,
colp, 5 7y = 4321.

Thus, T7 is Bj 3-sorted but Tj is not.

If By, is pacific then it has at most one cell per column. Therefore, Lemma 3.5.4
implies the following.
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Lemma 3.5.7. Let By be a pacific strip sequence and T' € E. The column word
COlBkyl,T is the concatenation of the words colp, r,colp,,, T,...,colg, . That is, we
obtain colp, , T by reading the entries of T' in By from left to right.

We characterize the property of being By sorted for a pacific strip sequence By .
Recall that for two sets of integers A and B we write A < B if a < b for all a € A and
be B.

Lemma 3.5.8. Let T € E and By be a pacific strip sequence such that T(By;) = Ij.
Then the following are equivalent.

(1) T is By, -sorted.
(2) D(T)N Iy = 0.
(3) T(Bk) > T(Bk+1) > > T(Bl).

Proof. We show (1) = (3) = (2) = (1).

The first implication is a consequence of Lemma 3.5.7.

In order to show the implication from (3) to (2), suppose that (3) holds and let i € I k-
Then ¢+ 1 € Ij;. Thus, both ¢ and i + 1 are entries of 7" in By ;. If ¢ and i+ 1 appear in
the same connected horizontal strip then i 4+ 1 is strictly left of ¢ since entries decrease
in rows of SCTx from left to right. Thus, ¢ is an ascent of T

If 4 and 7 4+ 1 appear in different connected horizontal strips B, and By, respectively
then we have t < r by assumption. An application of Lemma 3.5.4 now yields that B
is strictly left of B,. Hence, ¢ is an ascent again.

Lastly, we show that (2) implies (1). Assume that (2) holds. Then Ij,; € D¢(T). Thus
i+ 1€ T(By;) and i + 1 is strictly left of i for each i € Ikl Since By, is pacific, it has
at most one cell per column. Therefore, it follows that the entries of T"in By, ; read from
left to right are

dydi—q -+ dp—1 + 1
By Lemma 3.5.7 this is colBk’l,T. Thus, T' is By, j-sorted. ]

Example 3.5.9. Let

Ty = and T = 2
[2]1 43

be the skew tableaux from Example 3.5.6. The cells of By have the same shade for
k =1,2,3. Note that I; 3 = {1,2,3}. We have already checked that T} is Bj 3-sorted.
Moreover,

D(Ty)Nh3=0 and Ty(B1) > T\(By) > T1(Bs)

in accordance with Lemma 3.5.8.
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Offensive descents and D-sortable tableaux

We generalize the concept of attacking descents of Tj.

Definition 3.5.10. The set of offensive descents of Ty is given by
OD(Ty) := {dy € D(Ty) | Bx ~ Bi41} -
We write
OD:={D C[n—-1]| OD(Ty) € D C D(Ty)}
for the subsets of D(Tp) containing OD(Tp).

If we have dy € AD(Tp) then di ~»1, di + 1 so that By ~» Bjii1. That is, each
attacking descent of Ty indeed is an offensive descent of Ty. The set OD is the main
datum in the formula for top(S, 3 ) in Theorem 3.5.42. We emphasize that the set
OD has nothing to do with the right descent classes DIJ of a Coxeter group W defined
in Section 2.2.

Example 3.5.11. Let Ty be the straight source tableau from Example 3.5.2. There we
have already noted that D(Ty) = {1,2,6}, By ~ B2, By ~» Bg and B3 ~» By. Therefore
OD(Tp) = {2,6} and OD = {{2,6},{1,2,6}}.

Recall that for the set partitions Iy,...I,+1 of [n] and By, ..., By,41 of the diagram
of o/ we have that Ty(B,) = I, for each r € [m + 1]. This set partitions are associated
to D(Tp) as we divided [n] according to the elements of D(Tp). We now consider pairs
of coarser set partitions Iy, ;. and By, ;. for r € [p] with p € [m + 1] and pacific strip
sequences By, ;, each given by a D € OD. For each such pair, we are interested in the
T € E satistying T'(By,. ;,) = Iy, 1, for all r € [p].

Notation 3.5.12. Let D € OD. We associate the following notation to D. Let p €
[m + 1] and indices [y < {1 < --- < I, be such that

dy, =0, D:{dll,dlz,...,dlp_l} and  d;, =n.

In addition, set k, :=l,_1 + 1 for r € [p].

Then for r € [p] we have Iy, ;. = [d;,_, +1,d;,]. Thus, the I}, _; for r € [p] form a set
partition of [n]. That is, the strip sequences By, ;, for r € [p] form a set partition of the
diagram of «//3. Moreover, the By, ;, are pacific since OD(Tp) C D.

Example 3.5.13. Let Ty be the source tableau from Example 3.5.11 and E be its
equivalence class. Recall dy = 0, d1 = 1, dy = 2, d3 = 6, dy = 8, D(Tp) = {1,2,6},
OD(Ty) = {2,6} and OD = {0OD(Tp), D(Ty)}-

We illustrate Notation 3.5.12 regarding D = OD(Tp). Then p = 3. The other param-
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eters are shown in the table below.

T 0 1 2 3
I, 0 2 3 4
ki — 1 3 4
d, | — 2 6 8
Ikr,lr - {1’2} {3’47576} {77 8}
By,1. | — B2 B3 By

Note that we obtain the set partition {Ij, ;. | € [3]} of [8] by splitting the list 1,2,...,8
behind the elements of D, d;, = 2 and d;, = 6. The strip sequences By, ;. are depicted
in Example 3.5.16.

Definition 3.5.14. For D € OD define
Ep = {T ek ‘ T<Bkr,lr) = Ikr,lr fOT all r € [p]}

the set of D-sortable tableaux of F.

Let D, D’ € OD. We may consider Ep as a poset with the partial order < inherited
from E. Note that Tp is always and element of Ep because Ty(By;) = Iy, for all
k < l. From the definition it also follows that if D C D’ then Ep C Ep. In particular,
Epry) € Ep € Eop(ry)-

The purpose of the next lemma merely is to illustrate the new notation.

Lemma 3.5.15. The only element of Ep,) is To.

Proof. Let D = D(Tp). Thenp =m+1and [, = k. = r for r = 1,...,p. That is
By, 1, = Brand I, ;, = I, forr=1,...,p. Let T € Ep. Then T'(B,) = I, = To(B,) for
r=20,...,m+ 1. Moreover, B, is a connected horizontal strip. Thus, there is only one
way to fill I, into B, in a SCT. Hence T' = Tj. O

Example 3.5.16. Let T be the source tableau from Example 3.5.11 and E be its equiv-
alence class. Recall D(Tp) = {1,2,6}, OD(Tp) = {2,6} and OD = {OD(Ty), D(Ty)}.
We determine Ep for each D € OD.

Regarding D(7p), Lemma 3.5.15 implies that Ep(p) = {710}

For OD(Ty) the Iy, ;, and By, 5, are given in the table from Example 3.5.13. It follows
that Eop(r,) consists of the elements 7' € E with T'(By2) = {1,2}, T(B3) = {3,4,5,6}
and T'(By) = {7,8}. Thus, Eop(r) consists of the following two tableaux

T0:4E| and 7['1T0:4E|
2 1

where we draw the cells of By, B3 and B, with the same shade, respectively.

Example 3.5.17. For the equivalence class F of skew tableaux from Figure 3.3 the sets
Ep and elements T are given in the table in Example 3.5.28.
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Let D € OD. We will see in Lemma 3.5.26 that there is a unique tableau Tp € E
such that Tp is By, ;,-sorted for each r € [p]. Moreover, it will turn out that T is the
greatest element of Fp. Thus, for each T' € Ep there are operators 7;,...,m;, such
that Tp = m;; - --m;, T. The operators can be thought of sorting the entries in By, ;, of
T for each r € [p] in order to obtain Tp. Therefore, the naming of the set Ep.

We now come to a characterization of the elements of Ep in terms of the content of
column words. Recall that for T € E, cont(colp col}ol) is the index set of operators m;
establishing the covering relations in each saturated chain from T to 7" in E.

For D € OD, define D¢ := [n — 1]\ D. Then D¢ = J_, I}, ;..

Lemma 3.5.18. Let T € E and D € OD. Then the following are equivalent.

(Z) T(Bkr,lr) = Ik’l’)l?" fOT a’ll r 6 [p]
—1 c
(2) cont(colr coly) C D
That is,

Ep = {T € E | cont(colr col}ol) C DC} .
Proof. Let o := colr col;ol. Since
DC = [n— 1} \ {dll,... ,dlp_l} y
we have that cont(o) C D€ if and only if
cont(e) € [n =1\ {di,, ... dy, , }.
From Proposition 3.2.9 it follows that this is equivalent to
>d >d;
sh(T7%) =sh(T; ') for all r € [p — 1]. (3.13)
Let r € [p — 1]. By definition I, = ky41 — 1. Therefore,
[dl'r + 1, TL] - [dkr-&-l*l +1, TL] = Ikr+1,m+1-
Hence,
(T ) = TV (I, ).

Moreover, I, m+1 = I1,m+1 = [n] so that T=(Ix, m+1) = o/ B. Since this also holds for
Tp, it follows that (3.13) is equivalent to

T (T mi1) = Ty (T, ms1) for all r € [p]. (3.14)

For r € [p — 1] we have

oot = Tiomtt \ Lt 1mt1 = Lt 1 \ Loy mett
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so that

Tﬁl(‘[kr,l'r) = Tﬁl(‘[krym‘i’l) \Tﬁl(‘[kr+lym+1)’

In addition,

p—1
Tepty =11y 10, = M)\ U T,
r=1

Therefore, (3.14) is equivalent to
T Ik, 1.) = Ty *(Ix, 1) for all v € [p]. (3.15)
As By.j, =Ty (11, ,), it follows that (3.15) is equivalent to
T(Bk, 1,) = Iy, , for all r € [p].

By combining all the equivalences, we get the equivalence from the claim. The set
equality is a reformulation of this equivalence. O

Example 3.5.19. In Example 3.5.16 we have OD = {OD(1y), D(1p)} with OD(Tp) =
{2,6} and D(Tp) = {1,2,6}.

Consider D = D(Tp). Then D¢ = D¢(Tp). The only tableau T' € E which satisfies
cont(colp 001}01) C D¢ is Ty. This is also the only element of Ep.

Now consider D = OD(Tp). Then D¢ = {1,3,4,5,7}. We can see in Figure 3.1 that
the elements of T' € E with cont(colp col;ol) C{1,3,4,5,7} are Ty and mTy. These are
the elements of Ep.

We obtain the following properties of the subposet Ep of E from Lemma 3.5.18. Order
ideals and filters were defined at the beginning of Chapter 2.

Lemma 3.5.20. Let D € OD.
(1) Ep is an order ideal of E,
(2) E\ Ep is a filter of E.

Proof. For T' € E set or := colp col;ol. We show Part (1). Part (2) is a direct conse-
quence of Part (1).
Let T € Ep and T" € E such that 7" < T. Then by Theorem 3.1.18 we have

colr, <pr, colyr <y, colr.
Therefore, we have o <;, or. Hence,
cont(ops) C cont(or) C D¢

where the left inclusion is a consequence of the definition of the left weak order and
the second inclusion an application of Lemma 3.5.18. Hence 7" € Ep by Lemma 3.5.18
again. O
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Let D € OD and T € Ep. We want to show that AD(T) C D C D(T). It its easy to
see that these inclusions hold if T'= Ty. In order to prove them in general, we compare
the positions of certain entries in Ty with their positions in 7. The main idea is that for
© € D the operators m; used to go up from Ty to 7" in Ep are only able of moving i to
the left and ¢ + 1 to the right.

Lemma 3.5.21. Let D € OD and T € Ep.
(1) The cell T~1(i) is weakly left of the cell Ty (i) for all i € DU {n}.
(2) The cell Ty (i + 1) is weakly left of the cell T~ (i 4+ 1) for all i € D.

Proof. Set o := colp col;ol. For Part (1) let i € DU {n}. If T7'(i) = T, '(i) the
statement is clear. Thus, assume T~ (i) # Ty ' (7). Let s;, - -- s;, be a reduced word for
o. Then T' = m;, - - m;; Tp. By Lemma 3.5.18, cont(c) C D¢ Thus, i # i; for all j € [k].
On the other hand, T~ (i) # Ty (i) so that at least one of the 7;; has to move 4. Since
mi—1 and m; are the only operators among the m, with r» € [n — 1] that are capable of
moving 4, it follows that at least one of the i; equals ¢ — 1 (of course m;_1 and 7; are
only defined for 1 < i and i < n, respectively). That is, in order to obtain 7" from Ty
by applying 7., i is moved strictly to the left. In other words, T—!(i) is strictly left of
Ty (i),

Part (2) is proven similarly. O

‘We now consider the descents of the elements of Ep for D € OD.
Lemma 3.5.22. Let D € OD and T € Ep. Then

AD(T) C D C D(T).

Proof. Let o := colr 001;01. Recall that we denote the index of the column of the entry
iin T by cr(i). Thus, we have ¢ € D(T') if and only if c7 (i) < ep(i +1).

First we show D C D(T). Let i € D. Since D € OD, we have i € D(Tp). Therefore
ety (1) < eqy (i + 1). Furthermore, Lemma 3.5.21 yields

er(i) <eq (i) and eq, (i + 1) < ep(i + 1)
for all ¢ € D. Hence,
cr(i) < ey (i) < eqy (i + 1) < ep(i+1),

ie.ie D(T).
We now show AD(T) C D. Because D C D(T'), this is equivalent to

D(T)\ D C nAD(T).
We prove the latter. Let i € D(T)\ D. Then i € D¢ = |J/_, ikr,lr- Thus, there is an

r € [p] such that ¢,i+1 € Ij; where k := k, and [-[,. Since OD(Ty) C D, By, is pacific.
Moreover, I, = T(By,) as T € Ep. Therefore i v 7i + 1, i.e. i € nAD(T). O
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Example 3.5.23. We consider D := OD(Tp)

= {2,6} and T := mTp from Exam-
ple 3.5.16. Then T' € Ep, AD(T) = {6} and D(T) =

{2,6}. Hence,
AD(T) C D C D(T).

Let D € OD. We now show that Ep has a greatest element which we call the D-sorted
tableau Tp. We begin with defining Tp in terms of sorted horizontal strip sequences.

Definition 3.5.24. Let D € OD. Define the D-sorted tableau Tp to be the av/f 5-tableau
such that Tp is By, ;,-sorted for all v € [p].

We show in Lemma 3.5.26 that Tp € Ep. Clearly, Tp(By,1,) = I, 1, for each r € [p].
However, Tp € E or even Tp € SCT(«//3) is less obvious.

From OD(Tp) C D it follows that each By, ;, is pacific. Hence, Lemma 3.5.7 implies
that we obtain Tp by filling By, ;. from left to right with

dlwdlr — 1,...,le71 +1

for all r € [p].
Note that if D = D(Tp) then p = m + 1 and By, ;, = B, for all r € [p]. Therefore

Tp(1y) = To-

Example 3.5.25. We continue Example 3.5.16. Recall that we have D(Ty) = {1, 2,6},
OD(1Ip) = {2,6}, OD = {OD(1p), D(1p)}, Epmyy = {Tv} and Eopryy = {To, mTo}
Then, by definition,

Toay) = To =|6]5T4[8] and Toper,) =mTo = [6[5[4]3],
2

1

where for D € OD and r € [p] the cells of By, ;. in Tp are equally shaded. For both
D € OD we have that D(Tp) = D and that Tp is the greatest element of Ep. The
following result proves this in general.

Lemma 3.5.26. Let D € OD. Then Tp is the greatest element of Ep. Moreover, Tp
is the unique element of Ep with descent set D.

Proof. Let T' € Ep. We consider the following statements.
(1) T is maximal in Ep.
(2) D(T) = D.
(3) T =Tp.
We show (1) = (2) = (3). In addition, because Ty € Ep, there exists a maximal
element in Ep. Thus, it follows that Tp is the greatest element of Ep and D(Tp) = D.
We begin by proving that (1) implies (2). Assume that 7' is maximal. Lemma 3.5.22
yields that

AD(T) C D € D(T).
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Therefore, in order to show that D(T) = D it suffices to show that nAD(T) C D.
Assume instead that there is an i € nAD(T) N D¢. Then mT € Ep by Lemma 3.5.18.
This contradicts the maximality of T since T' < m;T.

For the proof of the implication from (2) to (3) assume that D(7) = D. We have
to show that 7" is By, . sorted for each r € [p]. Let r € [p], k := k, and | := [,. As
ICM C D¢, we have that

D(T)N I, = 0.

Now, we can apply Lemma 3.5.8 and obtain that 1" is By, ;-sorted. 0

Note that from Lemma 3.5.26, Lemma 3.5.20 and the fact that Tg is the least element
of E it follows that Ep is the <-interval [Ty, Tp]| for all D € OD.

Let D € OD. Because the D-sorted tableau Tp is the greatest element of Ep, there
is an operator 7, with 0 € &,, so that n,7 = Tp for each D-sortable tableau T'. One
can think of 7, as sorting the entries in 7.

Definition 3.5.27. The set of horizontally sorted tableaux of E is given by
Eysort :={Tp | D € OD}.

Note that Fygort C EOD(TO). For the equivalence class of straight tableaux E from
Example 3.5.25 we even have Eygort = Eop(t,)- But this is merely a coincidence as can
be seen in the next example.

Example 3.5.28. Let E be the equivalence class of skew tableaux from Figure 3.3 and
Example 3.5.9 with source tableau
Ty = 3 .

2]1

We have OD(Ty) = 0 and D(Tp) = {2,3}. For D € OD we write Ep and Tp in the
table below. For each D € OD and each r € [p] the cells of the strip sequence By, ;.
associated to D are equally shaded in Tp.

As Top(ry) is the sink tableau of F, we have that £ = Eop,). We can see in
Figure 3.3 that |E| = 12. Hence Ensort & Fop(my)-

D 0 {2} {3} {2,3}
Ep E To, 3Ty To,moTo, mimeTo Ty
Tp Ty w310 mmo o To
(1] 3 4 4
T 2 4 1 3
413 211 312 211

Observe that for each D € OD we have D(Tp) = D and D(Tp)Ncont(colr,, col;ol) = 0.
By the next result, these properties characterize Eygort in F.
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Corollary 3.5.29. Let T € E. Then T € Eywgort if and only if

D(T) e OD and D(T)N cont(colr col}ol) =.

Proof. Let op := colp colr_;ol.

For the implication from left to right assume that T' = Tp for some D € OD. Then
T € Ep and D(T) = D by Lemma 3.5.26. AsT € Ep, Lemma 3.5.18 implies cont(or) C
D¢. Hence D(T) N cont(or) = 0.

For the converse direction assume that D := D(T) € OD and D(T) N cont(or) = 0.
Then cont(or) C D€ so that T € Ep. But by Lemma 3.5.26, T is the only element of
Ep with descent set D. Thus T'=Tp, i.e. T € Fygsort- O

Example 3.5.30. We continue Example 3.5.28. The element of F

3]

T .= 7T37T17T2T0: 1
412

has descent set {2} so that D(T) € OD. Moreover, T" € Epgot by Example 3.5.28.
Therefore, Corollary 3.5.29 demands that D(T') N cont(coly col}ol) # () which is true
since 2 is an element of this intersection.

Radical and top

So far, we focused on combinatorics related to D-sortable tableaux. Now we use our
previous results in order to describe the radical and the top of S,/ r. We begin with
defining an H,,(0)-epimorphism from S, y3 g to the simple module F'p for each D € OD.

Proposition 3.5.31. Let D € OD. The K-linear map given by

op: Sayse — Fp

T o vp if T € Ep
0 ifT¢Ep

for T € E is an Hy(0)-epimorphism.

Proof. Let ¢ := ¢pp. For each T € F set op := colp col;ol. Since Ty € Ep, ¢ is a
surjective map. It remains to show that ¢ is a homomorphism of H,(0)-modules. Let
TeFEandiecn—1].

We consider the case where T' ¢ Ep first. Then mp(T) = m0 = 0. Thus, we have
to show that ¢(m;T) = 0. Since E \ Ep is a filter of E by Lemma 3.5.20, m;T ¢ Ep if
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i € nAD(T). It follows that

o(mT) =0 ifienAD(T)
o(mT) = p(0)=0  ifie AD(T)
o(T)=0 ifie DYT)

as desired.

We now suppose that T' € Ep. Then ¢(T) = vp and by Lemma 3.5.22 we have that
D C D(T).

Assume first that ¢ € D°(T). Then D C D(T) implies i ¢ D so that mvp = vp.
Hence,

p(miT) = (T) = vp = mp(T).

Assume now that ¢ € D(T"). We distinguish two cases.

Case 1. Suppose i € D. Then mvp = 0 and we have to show that ¢(mT) = 0.
If i € AD(T) then p(mT) = ¢(0) = 0. Hence, assume i € nAD(T). Then m7T € E
and ¢ € cont(oy,7). Thus, Lemma 3.5.18 yields mT ¢ Ep. Therefore, we also have
o(mT) = 0.

Case 2. Suppose i € D. Then mvp = vp and we have to show that o(m;T) = vp.
Asie D(T)\ D, Lemma 3.5.22 yields that i € nAD(T). Thus, ;T € E and

cont(coly,7) = {i} U cont(colr) C D¢

where the inclusion is a consequence of ¢ € D¢, T' € Ep and the description of Ep from
Lemma 3.5.18. That is, m;T' € Ep by the same result. Hence o(m;T) = vp. O

Example 3.5.32. We continue Example 3.5.25. Recall that the elements of OD are
OD(Tp) = {2,6} and D(Tp) = {1,2,6}. Moreover, we have seen that Ey; 56 = {70}
and Ey 6y = {To,mTo}. From Proposition 3.5.31 we obtain that the K-linear maps
given by

v if T =T v if T € {Ty, mT|
er1.26) (1) Z{ {126} % and ei2,61(T) :{ {26} {To, mTo}

0 otherwise 0 otherwise

for T'€ E are Hy(0)-epimorphisms from S, 3 g to Fy; 26 and F ¢, respectively.

The radical of a module M over a ring A is given by the intersection ;). kere
where U runs over all simple A-modules and e runs over all A-epimorphisms from M to
U [AF92, Proposition 9.13].

Let ¢: Soype — @peop Fp,;z — (pp(*))peop be the direct sum of the Hy(0)-
epimorphisms ¢p from Proposition 3.5.31. Then (pcpp ker ¢p = ker . In addition,
from the above description of the radical, we obtain that rad(S, /8, £) € Npeop ker pp.
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Hence,
rad(S,,E) C ker p. (3.16)

We will show that rad(S,/s,r) = ker with a dimension argument. It then follows
that top(Sa/s,5) = @peop Fp by factoring ¢ through rad(S, s ). This is our main
result on the top of S, g g, Theorem 3.5.42. As ¢ is a K-linear map, we have

dimker p = dim S, )5 p — dim & Fp=|E|—|OD]. (3.17)
DeOD

Therefore, dimrad (S, 3,r) < [E| — | OD | and our aim is to show that we actually have
equality. We do this by constructing a K-linear independent subset of rad(S, g ) of
size |[E| — |OD|.

This is based on a description of the radical of H,(0) due to Schocker [Sch08]. To
state it, we define cont on the basis {7, | 0 € &,} of H,(0). For iy,...,ix € [n — 1]
define

COIlt(7TZ'17Ti2 s 771'19) = {il,ig, c. Zk} .
Since applying the braid relations or the relation 72 = 7; on an element m;, ;, - - T,
does not change the set of indices, this map is well defined. Recall that for each prod-
uct m;, m, -+ - m;, there exists a unique o € &,, such that m; 7, - -m, = m,. Then
cont(m;, - --m;, ) = cont(m,) . It is not hard to see that

(1) cont(my) = cont(o) for all o € &,,
(2) cont(mym,) = cont(m,) U cont(n,) for all o, 7 € &,,.

Note that [Sch08] considers a map from H,(0) to the K-vector space spanned by the
subsets of [n — 1] that linearly extends cont. This extension is not necessary for our
purposes.

Theorem 3.5.33 ([Sch08, Theorem 3.2]). The radical of H,(0) is given by
rad(H,(0)) = spang {7y, — 7o, | 01,02 € &,, and cont(n,,) = cont(my,)} .

For example, mom —mymom is an element of rad(H3(0)) by Theorem 3.5.33. We exploit
the theorem in the following way.

Lemma 3.5.34. Let o/ 3 be a skew composition of size n and E € E(« )/ B) with source
tableau Ty. Then

rad(S,p,5) = rad(H,(0))To.
As a consequence,

rad(S,p,5) = spang { (7o, — 7o,)T0 | 01,02 € &y, and cont(m,,) = cont(my,)} -
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Proof. As H,(0) is artinian, we have that rad(S, s g) = rad(H,(0))S, /s 5. Moreover,
Sy, = Hn(0)Tp. Hence,

rad(S,8,1) = rad(Hn(0))H,(0)To = rad(H,(0))7o,

where we use that rad(H,(0)) is a two sided ideal of H,(0). Theorem 3.5.33 now implies
the second statement. O

Since E is a K-basis of S, /5 £, E\EOD(TO) is a K-linear independent subset of S, /5 &
We now show that E'\ Eopr,) is contained in rad(S, 3 ). To do this, we write certain
T € E\ Eopiry) as T = (7o, — Toy)To with 01,02 € &, and cont(7s,) = cont(7,,). In
order to obtain the elements 7,, and 7., we use the following result, which is illustrated
in Example 3.5.36.

Lemma 3.5.35. Let k € [m] be such that d, € OD(Ty). Then there is a 0 € &, such
that

(1) dj € cont(o),
(2) cont(o) C IDMH,
(3) m,(Tp) = 0.

Proof. Set [0; := To_l(i) for i = 1,...,n and d := dj. By assumption, I ~>1, Ii1.
Define

a:=max{i € I | i~ Ixy1},
b:=min{i € Ijy1 | a~>i}

and B := Ty *([d + 1,b]). Moreover for j = 0,1,...,d —a — 1 we set

Oj = Sb—j—15b—j—2 """ Sd—j,
Tj1 = 7o, Tj.

We claim that for j = 0,...,d — a we have that

(i) Tj € E,

(ZZ) CO]TJ. 001;01 =0j-105j-2"'"00.
(i) Tj(0;) =i for all i < d — j,
() Tj(B) = [d—j+1,b—j].

We prove the claim by induction on j. For j = 0 we are dealing with the source
tableau Tj which satisfies (7) — (7). Thus, assume that the claim holds for a j such that
0<j<d—a. Thena<d—j<dsothat d—j € I;. First, as the entries of I in Ty
form a connected horizontal strip, d — j is strictly left of a in T. Second, from the choice
of a and b it follows that a is weakly left of B in Ty. Third, d — j > a and the choice
of a imply that d — j does not attack B in Tp. Therefore, [;_; is strictly left of B and
does not attack B. Moreover, from (ii) we obtain that 7;(0s—;) = d — j so that (iv)
implies d — j + 1;[d — j + 1,b — j]. Hence, we can apply Proposition 3.1.20 and obtain
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that Tjy1 € E, Tj11(B) = [d— (j +1) + 1,0 — (j + 1)] and colg,_, col}j1 = 0. From

the latter it follows that we obtain 7}, from 7} without moving any of the elements of

[1,d— (j +1)]. That is, T} (i) = T; '(i) = O; for all i <d — (j +1). We have that
colT]. +1 col}o1 = colTj 1 col}j1 COlTj col;o1 = 005100

since (%) holds for T};. This finishes the proof of the claim.
Now consider T,;_, and set ¢ := a + b — d. The claim yields that

Tiw€E, Ty o0y)=a and Ty ,(B)=[a+1,¢].

As B C Byy1, B is an connected horizontal strip. Since the entries decrease in the
rows of Ty, B looks like

Op0p—1 - - a1

Hence, Ty, (0p) = ¢ since Ty_(B) = [a + 1,¢| and the entries decrease in the rows of
Ty_q too. Moreover, by choice of b, [, is the only element of B that is attacked by
Os. From Ty (0,) = a, Ty—o(0p) = ¢ and Ty—o(B) = [a + 1,¢] it now follows that
a1, ,la+1,¢c—1]. In addition, recall that O, is weakly left of B. Thus, from
Proposition 3.1.20 we obtain a ¢’ := s._25._3---s, and a T' € E such that

(i) T = 7yTy_q and o’ = colp col}d{a,
(7’7’) T(Da) =Cc— 17
(#7) T(Op) = c.
From O, ~~ O, it follows that ¢ — 1 € AD(T') and thus .17 = 0. Set

/
0 = 8¢-10 0d—aq—10d—a—2 """ 00-

Note that from 7,17 = 0 it follows that ¢(o) > ¢(0'04_q_1---00). By construction
we have cont(c) C [a,b— 1] C Iak7k+1 and m,Tp = 0. Hence, o satisfies Properties (2)
and (3). In order to show that o has Property (1), assume for the sake of contradiction
that d ¢ cont(c). Then cont(o) C _ik’k_i_l \ {dr} € D(Tp). Hence, m,Ty = Tp. But this
contradicts 7,7y = 0 which we have by Property (3). O

Example 3.5.36. We illustrate Lemma 3.5.35 including the notation used in its proof.

(1) For the source tableau from our running example

To=[6]5]4]3]

712

oocn»—l‘

and its offensive descent d = dy = 2 we have a = 2, b = 4, 0/ = s9 and 0 = s355.
Hence, d € cont(o) and cont(o) C I3 = {2,3,4,5}. In Example 3.3.10 we applied
7, on Ty with the result 7,1 = 0.
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3.5 The top of skew modules

(2) Consider the source tableau

3]2]1

TO:‘ 54

and its offensive descent d = 3.
Then a = 2 and b = 5. We have o¢ = s483, 0/ = s9 and 0 = s30’'0(g = 53525453.
That is, d € cont(o) and cont(o) C I 2 = {1,2, 3,4} . Moreover,

[B[2[1] = [4]2]1

[5]2]1] = . [5]3]1
5 4] 53] — 1=

T4 .
—h= 1[3] 1[2]

T) =

and w31 = 0 so that 7,1y = 0 as well.
Lemma 3.5.37. The set '\ Eop(r,) is contained in rad(S, p.E)-

Proof. Let T € E\ Eopr,)- If T € rad(Sy 8 ) then 7,1 € rad(S, 5, ) for all o € &,
since rad(S,3,g) is an Hy(0)-module. Hence, we can assume that 7' is minimal in

\EOD(TO) according to <. Since To € Eop(1,) and therefore T' # Tj, there exists a
T" € E and an i € nAD(T") such that ;7" = T By the minimality of T', T € Eop(r).-
As mT" & Eop(ry), Lemma 3.5.18 implies that i € OD(Tp).

Let k € [m] be such that i = di. Then Lemma 3.5.35 provides a o € &,, such that
i € cont(o) C fk7k+1 and m,1p = 0. Set op := colr COLEO1 and o’ := s;,5j, -5, where
J1 < j2 < --- < j, are the elements of cont(c) unequal to i. Since the j, are distinct,
54,84, -+ 854, is a reduced word. Hence,

cont(o’) = cont(c) \ {i} C IQkJH_l \ {dr} € D(Tp). (3.18)
We show that T = (75,7y — Topme)To and cont(me, my) cont(m,, 7). Then

Lemma 3.5.34 implies that T' € rad(S,s,). By (3.18), cont(o’) € D*(Tp) and hence
7TJ/T(] = TO. ThU.S,

Tor T Lo = TepTo =T
Furthermore, 75,751y = 75,0 = 0. That is,
T = (Tgp T — TopTe)10-

We have cont(c’) = cont(c) \ {i} from (3.18). Moreover, i € cont(or) because m; T =
T. Therefore,

cont(or) U cont(c’) = cont(or) U cont(a).
In addition,

cont(my, 7, ) = cont(or) Ucont(c’) and cont(my,.my) = cont(or) U cont(o).
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Hence,
cont(7my, Tyr) = cont(me, my)
as desired. ]

Example 3.5.38. Let T be the straight source tableau from Example 3.5.36, E its
equivalence class and « its shape. We consider the element of E '\ Eop(ty)

T:=mTy=|6]5]4]2]

713

oocn>—~‘

and show T' € rad(S,,g) by using the argumentation and notation of the the proof
of Lemma 3.5.37. We have o = s9. For the offensive descent 2 of T, we obtain the
permutation o = s3s9 from Example 3.5.36 and thus ¢’ = s3. Then

(TopTor — TopTo)To = momsTy — momgmeTy =T — momsT =T
where we use that 3 € D¢(Tp) and 3 € AD(T'). Moreover,
cont(mams) = cont(mamsms).
Therefore, T' € rad(Sy,r) by Lemma 3.5.34.

Lemma 3.5.37 provides us with a K-linear independent subset of rad(S,/s ) with
cardinality |E| — [Eop(r,)|- We will use the following lemma to extend this set by
additional [Epp(qy)| —| OD | elements of rad(S,, 3 ) preserving the linear independence.

Lemma 3.5.39. Let T' € Eop(ry) \ Ensort- Then there exists i € nAD(T) such that
w1 e EOD(TO) and T — m;T € I‘ad(sa//[g,E).

Proof. For T € E set o := colr col;ol. Let D := OD(Tp) and fix a T € Ep \ Epsort- We
distinguish two cases.

Case 1. D(T) € D(Tp). Then there exists an i € D(T) such that i € D(Tp). As
D C D(Tp), it follows that ¢ ¢ D. Moreover, from 7' € Ep and Lemma 3.5.22 we
obtain that AD(T) C D. Hence, i € nAD(T). Thus, mT € E and cont(or,1) =
{i} Ucont(or). As T € Ep, Lemma 3.5.18 yields that cont(or) C D°. Further i € D¢
so that cont(or,7) € D¢ and thus ;7' € Ep by the same lemma.

We have

(Top i — Moy ) To = Topmilo — TiTey 1o = Top Lo — e, To =T — mT

where the second equality holds since i € D(Tp). Moreover, cont(my,m;) = cont(m;myy)-
Thus, Lemma 3.5.34 implies 7' — m;T € rad(S,3,g)-

Case 2. D(T') C D(Tp). Since T € Ep we have D C D(T) by Lemma 3.5.22. Thus,
D(T) € OD. As T ¢ Epsort, Corollary 3.5.29 yields that there is i € D(T') N cont(or).
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On the one hand, from T' € Ep and Lemma 3.5.18 it follows that cont(o7) C D¢ On
the other hand, AD(T") € D by Lemma 3.5.22. Hence, i € nAD(T), mT € E and
cont(or,7) = {i} Ucont(or) = cont(or).
Thus, m;T € Ep by Lemma 3.5.18. Further
(Tgp — TiTop ) To =T — mT
is an element of rad(S, 3 ) by Lemma 3.5.34. O

Example 3.5.40. We illustrate Lemma 3.5.39. Let E be the equivalence class from
Example 3.5.28, Ty be its source tableau and « /3 = sh(7p). Recall D(Tp) = {2, 3}.
(1) Consider the elements of E

0 ]

T:T(QTQ: 2 and 7T1T: 1
3|1 3|2

Then T' € Eop(y) \ Ehsort; 1 € nAD(T) and 1 ¢ D(Tp). This is the situation in Case 1
of the proof of Lemma 3.5.39. Then

T — 7T1T = 7'[‘27T1T0 — 7T17T2T0.

Hence, Lemma 3.5.34 yields T'— mT € rad(S,s,g)-
(2) Consider the elements of E

3] El

TIT['37T17T2T0: 1 and TI'QT: 1
412 413

In Example 3.5.30 we have seen that ' € Eopr) \ Ehsore and D(T) = {2} € D(Tp).
Hence, we are in the situation of Case 2 of the proof of Lemma 3.5.39 and

T — 7T2T = (71’371’17'(‘2 — 7I‘27T37T17[‘2)T0.

Thus, T' — m2T € rad(S,s,£) by Lemma 3.5.34. We have taken advantage of the fact
that 2 € D(T) N cont(colp col;ol). Corollary 3.5.29 ensures that such an element exists.

We now determine the dimension of rad(S, g ). We do this by constructing a basis
from Lemma 3.5.37 and Lemma 3.5.39.

Proposition 3.5.41. A K-basis of rad(S, s ) is given by

(E\ Eop(ry)) Y {T —mi T | T € Eopery) \Ehsort}

where it is the integer provided by Lemma 3.5.39 for each T € Eop(ry) \ Ehsort- In
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particular, we have

dimrad(S, s,r) = |E| —[OD|.
Proof. Let F = {T = m,T| T € Eop(r,) \ Eusont | and B := (E\ Eop(ry)) U F. Then

|B| = |E| = [Eopery) | + [Eopery) | — | Ehsort| = |E| — | OD].

We have to show that B is a K-basis of rad(S,s,g). From (3.16) and (3.17) it follows
that

dimrad(S,s.r) < |E| —|0D].

Hence, it remains to check that B is a K-linear independent subset of rad(S, 3 x)-

That £\ Eopr,) and F are subsets of rad(S,s ) was shown in Lemmas 3.5.37
and 3.5.39, respectively. In order to prove the linear independence of B, consider the
K-endomorphism ¢ of S, jg g given by

T — 7TiTT if T e EOD(To) \ Ehsort

T otherwise

-

for T € E. Let M be the transition matrix of 1 associated to the basis E ordered
by a total order extending <. Then M is an unitriangular matrix and therefore v a
K-automorphism. As B is a subset of the image of v, it follows that B is K-linear
independent. ]

We now combine Propositions 3.5.31 and 3.5.41 to obtain the main result of this
section. Recall that given an equivalence class E with source tableau Ty we have

OD ={D C [n—1]| OD(Tp) € D C D(Tp)}

with the set of offensive descents OD(Tp) from Definition 3.5.10.

Theorem 3.5.42. Let o /5 be a skew composition of size n and E € E(a)/B). Then

top(Saysp) = P Fo
DeOD

as Hy(0)-modules.

Proof. Let Ty be the source tableau of E. For D € OD let yp: Soy3r — Fp be the
H,,(0)-epimorphism from Proposition 3.5.31. Define the H,,(0)-epimorphism

0: Saysr = @ Fp, =~ (¢p(2))peon.
DeOD
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as in the discussion after the proposition. On the one hand, we have
rad(Sq,)p,r) Ckerp and dimkery = |E|—|OD|

by (3.16) and (3.17), respectively. On the other hand, dimrad(S, s ) = |E| — | OD|
by Proposition 3.5.41. Therefore, rad(S, /s r) = kerp. This means that by factor-
ing ¢ through rad(S,)3 ) we get an Hy,(0)-isomorphism between top(S, s r) and
®peop Fo. [

Example 3.5.43. Let a = (1,4,3) and E € £(a) be the equivalence class from our
running example with source tableau

Ty =

OOCTB)—“
ot
B
w

We have OD = {{2,6},{1,2,6}} so that
top(Sa,e) = Fia6 © Fi26)
by Theorem 3.5.42.

We directly obtain the following from Corollary 3.5.46. Note that for the last part we
use that a module with simple top is always indecomposable.

Corollary 3.5.44. Let /8 be a skew composition of size n and E € E(a))B) and Ty
be the source tableau of E. Then we have the following.

(1) dimtop(S.ys,k) = |OD|.
(2) top(Says,r) is simple if and only if OD(Ty) = D(Tp).
(3) If OD(Ty) = D(Tp) then S, 3,k is indecomposable.

The sufficient condition for the indecomposability of S, /3 g from Corollary 3.5.44 is
not a necessary condition: Let E be the equivalence class of tableaux of straight shape
a from our running example. Then we have OD(Ty) € D(Tp). Nevertheless, Sy g is
indecomposable by Theorem 3.3.11 as it is a straight module.

Remark 3.5.45. Let o F n and E, be the equivalence class of SCT(«) in which the
entries of each column of each tableau increase from top to bottom. As mentioned
before, in [TvW15] Tewari and van Willigenburg show that S, g, is indecomposable.
From Part (3) of Corollary 3.5.44 we get an alternative proof for this result as follows.

Let eg < --- < ¢ be such that ey = 0, {e1,e2,...,¢,_1} = Set(a) and ¢, = n. We
obtain the source tableau Ty of E, by filling row ¢ of the diagram of « from left to right
with

ei,e;—1,...,e,1+ 1.
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This tableau is called the canonical tableau of shape «. For example,

4]3]2]
7[6

OOC)T)—“

is the canonical tableau of shape (1,4, 3). It follows that ej,...,e;_1 are the descents of
Ty and they all appear in the first column of Ty. Thus, each descent of Tj is an offensive
descent and therefore S, g, is indecomposable by Corollary 3.5.44.

Putting together the tops of the S, 3 for E € &(a/f) yields the formula for
top(S,p). Obtaining this formula was the initial motivation of the section.

Corollary 3.5.46. Let o)/ be a skew composition of size n. Then

O D o

Ee€(a)f) DEODE

I

top(sa//ﬁ)

as Hy(0)-modules where ODg ={D C [n—1] | OD(To.g) € D C D(To.r)}-

Proof. Proposition 3.1.13 yields that top(S,s) = top (@EGS(a//ﬁ) Sa//@E). As the top
is compatible with direct sums we additionally have that

( D Soe//ﬁE)g D tor(Says.).

Ee&(a)p) Ee&(a)p)
Now apply Theorem 3.5.42. O

We conclude the section by showing how the formula for the top of pacific modules
from Corollary 3.4.21 can be derived from Corollary 3.5.46.

Let a// 8 be a pacific skew composition. Then Lemma 3.4.5 yields that SCT(a /) is
the only element of £(a /). Let Tp be the source tableau of SCT(a/3). Since o/ is
pacific OD(Ty) = 0. Hence, Corollary 3.5.46 yields

top(Sa//ﬂ) = @ Fp.
DCD(Tp)

Indeed, this is the formula from Corollary 3.4.21. The top of our running example of
skew modules was determined by this formula in Example 3.4.22.

3.6 The socle of skew modules
Let a/8 be a skew composition of size n. In Corollary 3.5.46 of Section 3.5 we gave a

combinatorial formula for the top of S, jg. The aim of this section is to provide a similar
formula for the socle of S /g in Corollary 3.6.45. Moreover, we show that this formula
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generalizes the one for the socle of pacific modules from Corollary 3.4.21. Again we con-
centrate on the modules S, 3 i for E € £(a//8) since from the decomposition of S, /3 in
Proposition 3.1.13 it follows that soc(S4)5) = @ peg(ayp) 50¢(Says,£)- Theorem 3.6.39
determines soc(S,3,k)-

Let E € E(a/pB). The socle of S,z p is the direct sum of the simple submodules
of Soyp,r- One of them is easy to identify. Let 77 be the sink tableau of E. From
Theorem 3.1.14 it follows that each descent of T} is attacking. Therefore,

0 if 1 € D(T
mil = 1 Z.e (1)
T1 if 4 QD(Tl)

for each i € [n —1]. That is, KT} is a simple H,,(0)-submodule of S, 3 g isomorphic to
F p(r,). From Example 3.4.22 we know that there can be other simple submodules as
well. We will construct them explicitly using an approach similar to that of Section 3.5.
There we divided the diagram of «// into horizontal strips using the descents of the
source tableau of E. Here we divide the diagram of «///3 into vertical strips according
to the the ascents of the sink tableau 77 of FE. The relative positions of these vertical
strips will again be crucial. As before, the section can be roughly divided in two parts.
First we develop the necessary combinatorics and then consider the simple modules and
the socle of S, 3 g. We begin with fixing notation for the entire section.

Notation 3.6.1. Let «//3 be a skew composition of size n, E € E(a/f), T1 be the
corresponding sink tableau and ag =0 < a1 < - -+ < @41 = n be integers such that the
ascent set of T7 is given by

Dc(Tl) = {al, as, ... ,am} .
For k,l € [m + 1] with k <[ define the integer intervals
JkJ = [ak_l + 1, al], ij = Jk,l \ {al} and Jj := Jk,k'

Then J; = Ué»:k J;j and Ji = [ar—1 + 1,a;]. Note that since T} is a sink tableau, we
have D(Ty1) = AD(Ty) by Theorem 3.1.14. Hence, each element of Ji is an attacking
descent.

Define C},; := To_l(JkJ) and C}, := To_l(Jk). From Lemma 3.6.3 below it follows that
each Cj has at most one cell per row, i.e. it is a vertical strip. The C}; are therefore
called wvertical strip sequences.

We often use the notation introduced in Section 3.1 before Definition 3.1.9. In par-
ticular, recall that for two sets of cells A and B we write A B if there are a € A and

b € B such that ab, i.e. a is the left neighbor of b. We call the vertical strip sequence
Cr, separated if Cj1q Y Cj forall j =k,..., 1 —1.
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Ty

\1»&[\’)‘
w

(1] (2]
413 413
=178 65
8[6]2] 8[7]1]
7T2T k mT
(1] (1]
4]2 413
L= 65
8[6]3] 8]7]2]
773T % 7T2T
(1] (1]
3]2 4]2
7[5 6]5
8]6]4] 8]7[3]
7T4T :TX WST
1] (1]
3]2 3]2
7]4 6[5
8[6]5] 8[7]4]
W™ m/
(1]
3]2
64
8]7]5]

ws|

Cﬂw}—“
\V)

B

8]7]6]

Figure 3.4: An equivalence class of SCTx with sink tableau T7.
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Example 3.6.2. (1) For the sink tableau

of the equivalence class from Figure 3.4 we have
DC(Tl) = {a1 = 1,a2 = 3,&3 = 6},

Ji1 = {1}, Jo = {2,3}, J3 = {4,5,6} and J4 = {7,8}. The cells of the vertical strip Cj,
are filled with the same shade of gray for k = 1,...,4. Observe Cs Y C1 and Cy 111 Cy,
for k = 2,3. Hence, C 2 is the only separated strip sequence among the strip sequences
Ch, with £ < [ associated to T1.

(2) The vertical strips Cj can be more complicated as those of Part (1). For instance,
all the cells occupied by entries of the sink tableau

B

T = 5

7]

6]

3]

belong to the one vertical strip C'; associated to 1.

Vertical strip sequences

We consider the vertical strip sequences C}; associated to the sink tableau 77. Our main
goal is to show in Lemma 3.6.5 that if C}; is a separated vertical strip sequence then C}
is strictly left of C; and C; Y C; for all k <7 < 5 <.

We begin describing the geometry of a vertical strip Ck. In the case of the horizontal
strips By assoiciated to source tableaux from Section 3.6 this was easy: Each By is
a connected horizontal strip, that is, a horizontal line of cells. As we have seen in
Example 3.6.2, the C; are more complicated and in general not connected.

In the lemma below we describe the vertical strip C}, in terms of the entries of Jj in
T1. Given two entries ¢, j € Ji of T1 with ¢ < j we show that ¢ and j appear in different
rows of 17 and that ¢ is weakly left of j. This implies that C} indeed is a vertical strip.
Moreover, we show that ¢(C}), the set of indices of the columns containing a cell of Cy,
is an integer interval.

Lemma 3.6.3. Let k € [m+ 1]. Fori € [n| we write c(i) := ¢, (i) and r(i) := rp,(4)
for the column and row of i in Ty, respectively.
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(1) Leti,j € Jy withi < j. Then

c(i) <e(g) and r(i) #r(j).

In particular, Cy, is a vertical strip.

(2) We have
co(Ji) = [e(ar—1 + 1), c(ap)] -

Proof. Let i € Jy. Then i € D(T}) = AD(T}), i.e. i ~» i + 1. Thus, ¢(i + 1) = ¢(i) or
c(i+1) = c(i) + 1. Using this argument iteratively yields that

clag—1+1) <clag—1+2) < <c(ag)

and c(Jg) = [c(ag—1 + 1), c(ar)] .

Now let 4,5 € Ji with ¢ < j. We have already shown that then i is weakly left of j
in T, i.e. ¢(i) < ¢(j). Since the entries of SCTx decrease in rows from left to right, it
follows that j cannot appear in the same row as i. In other words, r(i) # r(j). O

One may check the statements of Lemma 3.6.3 in Example 3.6.2.

We now want to show that for two vertical strips C; and C; with ¢ < j of a separated
vertical strip sequence C,;, we have C; 7 C;. That is, there are no two cells [J; € C; and
0; € C; such that [; is the left neighbor of [;. As a first step, we consider consecutive
vertical strips and show that Cj,1 attacking Cy is sufficient for Cj,1 neighboring Cj.

Lemma 3.6.4. Let k € [m]. If Cxy1 ~ Cy then Cri1Cy.

Proof. We prove the corresponding statement for entries of 77. That is, we assume
Jr+1 ~ Ji and have to show that Ji1 0 Jk (in T1). By assumption there are i € J;, and
j € Jka1 such that j ~» 4. Then ¢ and j are located either in the same column or in two
adjacent columns. We distinguish three cases.

Case 1. Assume that ¢ and j occupy different columns. Then j ~» ¢ implies that
i is located in the column to the immediate right of j and in a row strictly below j,
Therefore, the triple rule applied on ¢ and j yields that j has a right neighbor ¢ such
that 7 > ¢t > 4. That is, t € Jy U Jpy1. By Lemma 3.6.3, 77 has at most one entry of
Ji+1 per row. Therefore, ¢ € J. Since jlt, it follows that Jxiq 0 Jg.

Case 2. Assume that i and j occupy the same but not the first column. Since by
Lemma 3.6.3 ¢(i) < ¢(i') for all i’ € Ji with ¢ < ¢/, we can assume without loss of
generality that ¢ is the greatest element of Jj sharing a column with an element of Jx1
and j is the minimal element of Ji1 in the column of i.

First assume that i is above of j. Let [ be the left neighbor of i in 77 (setting [ := oo
if the cell left of ¢ is part of the inner shape of T7). Then | < j since otherwise the
triple rule applied to 4,j and [ would yield the contradiction ¢ > j. Thus, i <l < 7,
ie.l € Jy UJgy1. In addition, I € J by Lemma 3.6.3. Hence, | € Ji11 and therefore
Jir1 g

Assume now that ¢ is below of j, i.e. r(i) > r(j).

80



3.6 The socle of skew modules

o Suppose i = ag. Then a; € D¢(Ty) implies c(ax + 1) < c(ax). By definition
Ji+1 = [ag + 1,ax41]. Since c(ar + 1) # c(j), it follows that j — 1 € Ji41 and
thus j — 1 ~» j. As j is by assumption the smallest element on Ji1 in its column,
it follows that ¢(j — 1) = ¢(j) — 1 and r(j — 1) < r(j). Moreover, we supposed
r(j) < r(i). Therefore, r(j — 1) < r(i) and ¢(i) = ¢(j — 1) + 1. That is, j — 1 ~ ¢
and j — 1 and ¢ occupy different columns. Case 1 now implies that Jx1q ! Jg.

o Suppose i < ag. Then i+1 € J; and by the maximality of ¢ we have c(i+1) # c(q).
Moreover, i ~» i+ 1 so that ¢(i+ 1) = ¢(i) + 1 and r(i) < r(i+1). Now c(j) = c(i)
and 7(j) < r(i) imply c¢(i + 1) = ¢(j) + 1 and r(j) < r( + 1). In other words
j~i+1andjandi+1 are located in different columns. By Case 1, we then have
Je+1 LIk

Case 3. Assume that ¢ and j appear in the first column. Let both ¢ and j be maximal

with this property in Jy and Ji,1, respectively. As ay and ay,q are ascents of T7, they
cannot appear in the first column. Hence 7 € Jk and j € jk+1. Consequently, 1 + 1 € J
and i ~» i+ 1 as well as j + 1 € Jiyq1 and j ~» j + 1. Now the maximality of ¢ and
7 implies that ¢ + 1 and j + 1 are located in the second column. Then we also have
j+ 1~ i+ 1. Thatis, j + 1 and ¢ + 1 meet the prerequisites of Case 2 which in turn
yields Jgi1 0 Jg. U

The next lemma shows that in a separated strip sequence Cj; no two cells are hori-
zontal neighbors.

Lemma 3.6.5. Let Cy; be a separated strip sequence. For i,j € [k,l] with i < j we
have that Cj; is strictly left of C;, C; ¥ C; and C; + C.

Proof. Let C; be a separated strip sequence and 7, j with £ <7 < j <1 be as above.

First, we consider the case where j = i+ 1. As C}; is separated, we have C;11 ¥ C;
and therefore can apply Lemma 3.6.4 in order to obtain C; 1 ~4 C;. Because two cells in
the same column attack each other, it follows that ¢(Ci;1) and ¢(C;) are disjoint. Since
cry (a;i + 1) < eqy(a;) as a; € D¢(T) and

c(Cy) = [ery (ar—1) + 1, e, (ay)] forr=i,i+1

by Lemma 3.6.3, we then have that max ¢(Cjt1) < mine(Cy), i.e. Cyiyy is strictly left of
C;. This settles the case where j =i + 1.

Suppose now j > i+ 1. Recall that for two sets of integers we write A < B if a < b
for all a € A and b € B. Using the first case iteratively yields

c(Cj) < ¢(Cit1) < c(Cy).

Thus, Cj is strictly left of C;. Moreover, ¢(Cj) < ¢(C;) — 1 ensures that C; ¥ C; and
Cj + C;. O

Flanking ascents and A-sortable tableaux

We introduce the set of flanking ascents of 1.
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Definition 3.6.6. The set of flanking ascents of T} is given by
FD¢(Ty) :={ar, € D°(T1) | Cr1 2 Ck}
We write
FD:={AC [n—1] | FD(T1) CAC D(T)}

for the subsets of D(11) containing FD(T}).

We proceed as follows. Let A € FD°. To A we associate set partitions {Ji, 5, | 7 € [p]}
of [n] and {CY, ;. | r € [p]} of a//B. With them we define the set of A-sortable tableaux
FE 4. Then we consider two properties of F4. We first give in Lemma 3.6.13 a character-
ization of the elements of F/4 in terms of contents of column words . We then show that
ND(T) C AC DT) for all T € E4 in Lemma 3.6.19. These results will then be used
in order to construct a simple submodule of S, )3 g from E4. Moreover, it will turn out
that up to isomorphism soc(S,, 3 ) is determined by FD°.

Note that the concept of flanking ascents of T generalizes that of neighborly ascents of
T since ND¢(T1) C FD(T1). To see this let ay, € ND¢(T1). Then ay + 11, a,. Because
ar, € Th(Cy) and ap + 1 € T1(Cky1), it follows that Cyiq 1 Cy so that ap € FD(11) as
desired.

Example 3.6.7. Let T7 be the sink tableau from Example 3.6.2. Recall
DC(Tl) :{a1 :1,a2:3,a3:6} and 04203202101.
Thus, FD¢(Ty) = {3,6} and FD° = {{3,6},{1,3,6}}.

We now relate each A € FD° to a partition of [n] and a corresponding partition of
o/ B into separated vertical strip sequences. The idea is that we separate [n] according
to the elements of A. We fix some more notation for the remainder of the section.

Notation 3.6.8. Let A € FD°. We associate the following objects to A. Since A C
D*(T4) there are p € [m + 1] and indices lp < 1 < Iz < --- < I, such that

a;, =0, A:{all,ab,...,alp_l} and  a;, = n.

In addition, set k, :=l,_1+1 for r € [p]. Then Jy,_;. = [a;,_, +1, ;] for r € [p]. That is,
the sets Jy, 5, for 7 € [p] form a set partition of [n]. Since Cy,;. = Ty (Jy,.1,), the Ck, 1.
form a set partition of the diagram of a/ 5. As FD*(T}) C A, each Cj, 4, is a separated
vertical strip sequence. Lastly we define A°:=[n — 1]\ A. Then J_; jk'r,l'r = A°.

Example 3.6.9. We continue Example 3.6.7 considering the sink tableau
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Recall that
Dc(Tl) = {a1 = 1,a2 = 3,&3 = 6}, FDC(Tl) = {3,6} and FD¢ = {DC(Tl), FDC(Tl)}

We illustrate Notation 3.6.8 by regarding A = FD(Ty). Then p = 3. The other
parameters are shown below.

T 1 2 3
Iy 2 3 4
k. 1 3 4
aj 3 6 8

Jkr,lr {17273} {47576} {7’ 8}
Crotr | Ci2 C3 Cy

Note that we obtain the partition {Ji, ;. | 7 € [3]} of [8] by splitting the list 1,2,...,8
behind the elements of A. In the picture above, the cells of C}, ;. have the same shade
of gray for r = 1,2, 3.

Definition 3.6.10. For A € FD° define
FE4q:= {T ek | T(Ckr,lr) = Jkr,lr fOT allr € [p]}

the set of A-sortable tableaux of F.

The definition implies that E4 C E4 for all A, A’ € FD¢ with A C A’. In particular,
Epeiryy € Ea C Eppery) for each A € FD°.

We have T € E4 for all A € FD¢ since T1(Cy,) = Jy, for all k <. In Corollary 3.6.16
we will show that the only element of Epep,y is T1.

Remark 3.6.11. Let A € FD°. The definition of the set of A-sortable tableaux E4 is
dual to that of the set of D-sortable tableaux Ep for D € OD from Definition 3.5.14.
They are therefore called A-sortable. In fact, one can show that F4 has a least element
T4 which also can be regarded as being dual to the D-sorted tableau Tp for D € OD.
The idea of the proof the same as the one for Tp from Lemma 3.5.26. However, it relies
on the combinatorics of separated vertical strip sequences instead of pacific horizontal
strip sequences which is more tedious. In order to construct the socle of S, /3 g this is
not necessary and therefore not carried out in this thesis.

Example 3.6.12. We consider the tableaux

from Figure 3.4 and denote their equivalence class with . We emphasize that T} is the
sink tableau of E. Recall from Example 3.6.9 that D¢(Ty) = {1, 3,6}, FD*(T1) = {3,6}
and FD¢ = {D¢(T1), FD¢(T1)}. We determine F 4 for A € FD°.
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For A = D¢(T1) we have E4 = {T1} by Corollary 3.6.16.

Now consider A = FD¢(Ty). In this case the corresponding sets I, ;. and Cy, ;. for
r € [3] have been determined in Example 3.6.9. From this it follows that E4 consists of
the elements 7' € F with

T(CLQ) = {1, 2, 3} s T(Cg) = {4, 5, 6} and T(C4) = {7, 8} .

The cells of 17, T» and T3 above are shaded accordingly to the partition of the diagram
of a// § given by the Cy, ;.. One can check in Figure 3.4 that T7,T> and T3 are the only
elements of E that satisfy the above conditions. Hence, E4 = {T}, T, T5}.

Recall from Notation 3.6.8 that given A € FD we use the shorthand A = [n—1]\ A.
In the following result we characterize the elements T' € E 4 in terms of cont(colp col}l).
Recall that this is the index set of the operators m; establishing the covering relations
in the saturated chains from T to 77 in E. The result will play an important role in
the identification of the simple submodules of S, y5 g. It is dual to Lemma 3.5.18. The
proof is completely analogous and therefore omitted. It is mainly an application of
Proposition 3.2.9.

Lemma 3.6.13. Let T € E and A € FD°. Then the following are equivalent.
(1) T(Ck,1.) = Jg,1, for all r € [p].
(2) cont(coly, colt) C A°.

In other words,
Ey = {T € E | cont(coly, col.!) C AC} .

Example 3.6.14. Let 77, T3 and T35 be the tableaux with corresponding equivalence
class F from Figure 3.4 and Example 3.6.12. Recall

De(Ty) = {1,3,6}, FD(Ty)={3,6} and JFD°={D(T}), FD(T})}.
By Lemma 3.6.13, we have
Epery) = {T € E | cont(colp, col;l) C {2,4,5, 7}} ,
Erper,) = {T € E | cont(colr, colz") C {1,2,4,5,7}} .

Using the fact that cont(colp colr}l) is the index set of the operators m; in the satu-
rated chains from 7' to 71 in E, we can read from Figure 3.4 that Epeir) = {T1} and
Eppe(ryy = {11, T2, T3} in accordance with Example 3.6.12.

The following result on the poset structure of £, is dual to Lemma 3.5.20. It is a
consequence of Lemma 3.6.13. The proof is left out as it is almost literally the one of
Lemma 3.5.20.

Lemma 3.6.15. For each A € FD, E4 is a filter of E
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As a consequence of Lemma 3.6.13 and Lemma 3.6.15, we can determine Epe(r,).
Corollary 3.6.16. The sink tableau Ty is the only element of Epe(r,)-

Proof. Clearly D¢(T1) € FD°. Then from Lemma 3.6.13 it follows that
Eperyy = {T € E | cont(coly, coly.!) C D(Tl)} .

Thus, colr, coli1 = 1 implies T1 € Epe(ry)-

Suppose that T' € E is an element covered by Tj. Then there is an i € nAD(T) such
that m;7 = Ty and thus cont(colp, coly) = {i}. Since i € nAD(T), i is strictly left of i41
in T. Because we obtain 77 from T' by swapping ¢ and i + 1, it follows that i € D°(T7).
That is, cont(colr, colz')  D(T}) and hence T & Epe(r;). Now we can use that Epe(p)
is a filter by Lemma 3.6.15 and obtain that Eper) = {11} O

Let A € FD® and T € E4. Our next goal is to show that ND¢(T) C A C D¢(T'). In
order to prove this, we consider the position of the elements of A in T3 relative to their
positions in T in the following lemma. This result is dual to Lemma 3.5.21 and again
the proof can easily be adapted. The main idea is the same: for i € A the operators m;
corresponding to an arbitrary saturated chain in E4 from T to T} are only capable of
moving ¢ to the left and 7 + 1 to the right.

Lemma 3.6.17. Let A€ FD° and T € E4.
(1) The cell T (i) is weakly left of the cell T(i) for alli € AU {n}.
(2) The cell T=1(i + 1) is weakly left of the cell T, (i 4 1) for all i € A.

Example 3.6.18. Let again

From Example 3.6.12 we have that these tableaux form E4 for A = FD(T1) = {3,6}.
(1) Observe that 3 € A and T; !(3) is located weakly left of T—1(3) for each T € Ey4
as predicted by Lemma 3.6.17.
(2) We consider the ascents and neighborly ascents of the tableaux.

T | ND¢(T) D“(T)
T 3 1,3,6
Ty 3 2,3,6
T3 3,6

Hence, ND¢(T') C A C D¢(T) for each T' € E4. This property is generalized in the next
lemma.
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We now come to the second important result on the A-sortable tableaux. It is dual
to Lemma 3.5.22.

Lemma 3.6.19. Let A€ FD and T € E4. Then
ND¢(T) C A C DY(T).

Proof. Let o := colp Col;l. Recall that c¢p(i) denotes the column of the entry i in T
and that ¢ € D(T) if and only if er(i + 1) < e (4).

We begin with showing A C D¢(T). Let i € A. Since A € FD°, we have i € D(T)
and thus ¢, (1 + 1) < ey (7). In addition, since i € A, we can apply Lemma 3.6.17 and
obtain

er, (i) <ep(i) and cp(i+1) <ep(i+1).
Therefore,
CT(i + 1) <ecp (Z + 1) <cn (Z) < CT(i),

that is, ¢ € D(T"). This proves A C D¢(T).
Now we show ND¢(T) C A. As A C D(T'), we have ND¢(T') C A if and only if

D¢(T)\ A C nND*(T).

That is, we have to show that each ascent of T" that is not contained in A is not neighborly.

Let i € D(T)\ A. We have [n—1]\ A = J’_, Jy ;.. Hence, there is r € [p] such that
i,1+1¢€ Jy; for k:=k, and | := ;.

Since T' € E4, we have Ji; = T(Cj;). Thus, we can define v(j) € [k, ] such that
J € T(Cyyy) for j = i,i+ 1, the index of the vertical strip containing j in 7. If
v(i) = v(i + 1) then i + 1 Y i because Cy; is a vertical strip by Lemma 3.6.3. Hence,
i € nND(T) in this case.

Assume v(i) # v(i+1). Asi e D(T), i+1 is strictly left of 7 in T". In addition, Cy; is
a separated vertical strip sequence because A € FD¢. Thus, we can apply Lemma 3.6.5
on C}; and obtain that v(i + 1) > v(i). But then the same lemma yields Cy;41) X Cy(s)-
Hence, i + 17 7i. O

Simple submodules

The socle of S, gk is the direct sum of the simple submodules of S, /3 . For each
A € FD° we now define a K-subspace Ux of S, g. It will turn out that each Uga is a
simple submodule of S, /5 . We will also see that we obtain all simple submodules of
Soyp,E in this way.

Definition 3.6.20. (1) LetU denote the set of simple Hy(0)-submodules of Sy 3 k-

(2) For A € FD° define ug := ZTGEA(—1)5(T)T where & is the rank function of E
and Ug :=Kugy.
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We proceed as follows. First, we show that Uy is a simple H,,(0)-submodule of S|, /B,E
for each A € FD¢. The proof is based on the combinatorics of A-sorted tableaux we
developed so far. Second, we show that for each U € U there is a A € FD° such
that U = Uyx. This will require most of the remaining work. Third, we conclude that
soc(Sa)8,E) = @acrpe Ua in Theorem 3.6.39. From this we obtain in Corollary 3.6.41
a combinatorial formula that determines soc(S, g ) up to isomorphism. This formula
only depends on FD°. Lastly, we derive such a rule for soc(S,3) in Corollary 3.6.45.

Example 3.6.21. (1) Consider D°(Ty) € FD Then Epery = {T1} by Corol-
lary 3.6.16. Thus, Upe(ry) is the simple submodule K73 of S, 3 g isomorphic to Fpr)
mentioned in the introduction of the section.

(2) Let
(1] (1] (2]
12 R E E
=775 — =75 — =575
863 86]2] 516]1]

be the tableaux and E be the equivalence class from the running example. In Exam-
ple 3.6.7 we have seen that the set D¢ associated to the sink tableau T} of E is formed
by the two elements D(Th) = {1,3,6} and FD(T1) = {3,6}. From Example 3.6.12 we
have Epeiryy = {T1} and Eppecryy = {11, T2, T3}. Moreover, we obtain from Figure 3.4
that (—1)°M) = 1. Hence,

UDpe(Ty) = T and UFDe(Ty) = Ty — 15+ T3.
Observe that for i € [7]

0 if i ¢ D°(T)
UDe(Ty) ifi € DC(Tl)

0 if i ¢ FD°(TY)

and muppe =
FDA(Ty) {uFDc(Tl) if i € FD(TY).

ﬂ-’ich(Tl) = {

Thus for each A € FD¢, the K-vector space Uy = Kuy is in fact an H,,(0)-submodule of
S ,E isomorphic to F 4c. Showing this in general is the purpose of Proposition 3.6.24.

In order to show that Uja is a simple H,,(0)-submodule of S, /g we need two basic
results on the H,(0)-operation on S, 3 g-

Lemma 3.6.22 ([TvW15, Lemma 3.7]). Let T' be an SCT. If i € nND(T') then there
exists an SCT T' such that T #T" and m;T' =T.

Lemma 3.6.23. Let T € E and i € D(T). Then mT' # T for allT' € E.

Proof. As i € D(T), we have m;T € {0,s,T}. In any case m;T # T. Assume that there
isan T" € E with m;T7' = T. Then we obtain the contradiction

T 75 ﬂ'iT = 7TZ'7TZ'T/ = 7TZ'T/ =T

using 72 = m;. O
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We now show that Uy € U for all A € FD.

Proposition 3.6.24. Let A € FD. Then Uy is a simple Hy(0)-submodule of S, 5.k
isomorphic to F 4c.

Proof. Let U := Uy and u := uy. We show for i € [n — 1] that mu = 0 if i ¢ A and
miu = u if i € A. Then it follows that U is a simple submodule of S, g £ isomorphic to
FA(;.

Fix an i € [n — 1]. We deal with two cases. If i € A then Lemma 3.6.19 implies that
i € D¢(T) for each T' € E4 and thus

ru= Y (-1)’Drr= Y (-1)°DT =y

TeE,4 TeE

as desired.

Now suppose i ¢ A. We have to show mu = 0. As A° = JP_, Jckmlr there exists an
r € [p] such that i,i4+1 € Jy; for k := k, and [ := [,. Let T' € E4. We show that [T]m;u,
the coefficient of T in m;u, is zero. Again we have two cases.

Assume first that ¢ € D(T). Then Lemma 3.6.23 yields that 77 # T for all T € E.
Hence, [T]mu = 0.

Now assume that ¢ € D¢(T). Since i € A° and ND¢(T) C A by Lemma 3.6.19, we
then have that i € nND®(T"). Therefore, from Lemma 3.6.22 it follows that there is a
T" € E\ {T} such that m;T" = T. Then

cont(coly, col,}) = {i} U cont(coly, col;') C AS,

where we use i € A¢, T € E4 and the characterization of F4 from Lemma 3.6.13 for
the inclusion. That is, T € E4 by the same lemma. If T € E\ {T} with =T = T
then s;7 = T = ;7" and thus T = T". Hence T" is the only element of E \ {T'} that is
mapped to T by ;. As a consequence,

Tru =111 Y (-1 D md = (170 4 (-1 =0
TeEa

where we use that §(T") = 6(T") + 1 since T covers T" in E. O

We emphasize that Proposition 3.6.24 implies that the modules Uy for A € FD¢ are
pairwise non-isomorphic and thus distinct.

The next step is to show that the simple submodules Uy for A € FD¢ are in fact
all the simple sumbmodules of S, g . We therefore now consider the elements of U in
general.

Let v € S,y Then we can expand v K-linearly in the basis £ of S, 5 . Recall
that the support of v, supp(v), is the set of T € FE appearing in this expansion with
nonzero coefficient.

Consider U € U. Then U # 0 and hence there isan u € U\{0}. Recall from Section 2.3
that the simple H,(0)-modules are one dimensional. Thus U = Ku. Moreover, if
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v € U\ {0} then v = au with a € K and a # 0. Hence supp(u) = supp(«’). Therefore,
the following is well defined.

Definition 3.6.25. Let U € U.
(1) The support of U is denoted by Ey and given by supp(u) for any u € U \ {0}.
(2) The descent set of U is given by D(U) := Upcg, D(T).
(3) The ascent set of U is given by D¢(U) :=[n — 1]\ D(T).

Example 3.6.26. (1) Let A € FD°. As Uy = Kuy with uy = ZTGEA(—1)5(T)T, it
follows that the support Ey, of Uy is the set of A-sortable tableaux E4.

(2) The modules Upe(r;y and Uppe(qyy from Example 3.6.21 have support {71} and
{T1,T», T3}, respectively. Moreover, one can check in Example 3.6.21 that

D*(Upe(ry)) = DS(T1) and  D*(Ugperyy) = FD(Ty).

Let U € U. We proceed with the study of U. In Lemma 3.6.28 we will show that U is
isomorphic to F pr). We will further see in Lemma 3.6.31 that U is already determined
by its support Ey. The next lemma is a simple but useful property of the action of the
m; on U.

Lemma 3.6.27. Let U €¢ U and u € U. Then miu € {0,u} for all i € [n —1].

Proof. Let i € [n — 1]. Because m;0 = 0, we can assume u # 0. Then U = Ku as all
simple H,(0)-modules are one-dimensional. Thus, there is an a € K such that mu = au.
Since 72 = 7, it follows that

a2u = T;T; U = T;U = au.

Hence a € {0,1}, i.e. mu € {0, u}. O

We now show that the descent set D(U) determines the simple submodule U € U up
to isomorphism.

Lemma 3.6.28. Let U € U and u € U\ {0}. Then fori € [n—1]

[0 ifieDw)
" \w i g D).

That is, U and F pqyy are isomorphic as Hy(0)-modules.

Proof. Let i € [n — 1]. Suppose first that ¢ € D(U). Then there is a T' € Eyy such that
i € D(T) and Lemma 3.6.23 implies m; 7" # T for each T" € E. Therefore, [T]mu = 0
which means m;u # u. In addition, m;u € {0,u} by Lemma 3.6.27. Hence m;u = 0.
Suppose now that i € D(U). Let u = > pcp, arT be the expansion of u into the
K-basis E of S, g g Since by definition D*(U) = Nrep, D(T), we have i € D(T') for
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all T € Ey. As a consequence,

iU = Z CLTTQ‘T: Z CLTT:U
TeEy TeEy

as desired. O

Example 3.6.29. Let Uy with A € FD¢ = {D¢(T1), FD¢(T1)} be a simple module from
Example 3.6.21. There we have seen that Upe(4) = F ac as H,(0)-modules. Further from
Example 3.6.26 we have D(Ua) = A°. Thus Us = Fpy,)-

Our next objective is to show that the support Ey completely determines U. To do
this we need the following result.

Lemma 3.6.30. Let U € U, u € U\ {0} and T',T" € E be arbitrary. For T € E let
ar € K be such that u =Y pcgarT. If apr # 0 and T" covers T' in E then apr = —ayr.

Proof. Let T" € Ey and T” € FE be such that T covers T" in E. Then there is an
i € nAD(T') such that 7;(T") = T” and mT" = T". 1t is easy to see that m;T # T" for
all T € E\{T",7"}. In addition, from Lemma 3.6.28 it follows that m;u = 0 because
i € D(U). Therefore,

arr +ap = [T"|mu = [T"]0 =0
as desired. ]

Let A € FD. By Lemma 3.6.15, /4 is a filter. The simple submodule U 4 is generated
by an element w4 which is an alternating sum of the elements of F4. We now show for
each simple submodule U of S, /3 g that the support Fy is a filter as well and that
U is generated by a similar element. As a consequence, we obtain that U is uniquely
determined in U by Ey.

Lemma 3.6.31. Let U € U.
(1) Ey is a filter in E. In particular, Ty € Ey.
(2) We have U = Ku for u := ZTGEU(—l)‘;(T)T where § is the rank function of E.
(3) U is the only simple submodule of S, s g with support Ey.

Proof. Let U € U. Then U # 0 and hence Ey # (). Moreover, Lemma 3.6.30 implies
that Fy is a filter. As the sink tableau 77 is the greatest element of F, it follows that
T) € Ey. This shows (1).

Let u := ZTGEU(—I)‘S(T)T € Soypp and v € U \ {0}. Then we can write v as a
K-linear combination v = 3 pcp, arT. Fix a T € Ey and consider a saturated chain
from T to 17 is E. Applying Lemma 3.6.30 to each covering relation in such a chain
yields ap = (—=1)T)=9TD) gy . Therefore, v = (—=1)°™apu and we have (2). Lastly
note that (3) is a direct consequence of (2). O
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Recall that we want show that & = {Us | A € FD} where only the inclusion C
remains by Proposition 3.6.24. From Lemma 3.6.31 we know that U € U is already
determined by its support Ey. In addition, we have seen in Example 3.6.26 that the
support of Uy is E4 for A € FDC. Therefore, our task is to find an A € FD° such that
Ey = E4 for each U € Y. This will be A = D¢(U).

We do this as follows. Let U € Y. We first show in Lemma 3.6.35 that for T' € FE
we have T € Ey if and only if cont (colz, col!) € D(U). This result is similar to the
characterization of the A-sortable tableaux E4 from Lemma 3.6.13. Second, we show
in Lemma 3.6.37 that D¢(U) € FD. The two results then imply that Eyy = E4 for
A= D).

We continue with the study of Ey;. The next result is analogous to Lemma 3.6.19

Lemma 3.6.32. Let U € U4 and T € Ey. Then
ND¢(T) C D¢(U) C DY(T)

Proof. By definition D¢(U) = Nrepg, D°(T). Therefore we have the right inclusion.

For the left one, let w € U\ {0}, T' € Ey and i € ND*(T). Then m1T = T. Moreover
mT" # T for all T" € E\ {T'}. Since if there were a T’ € E\ {T'} with m;7" = T then we
would obtain T” from T by interchanging i and 7+ 1 in 7. But i + 1 is the left neighbor
of 7 in T so that in T” the entries would not decrease from left to right in the row of 4
and ¢ + 1. Thus, 7" would not be an SCT and this would contradict 7" € E.

From m;T =T and m;T" # T for T' € E\{T} it follows that [T|mu = [T]u # 0. Hence,
Lemma 3.6.27 implies that m;u = u and thus Lemma 3.6.28 yields ¢ € D¢(U). O

Example 3.6.33. Let Uy = K(T7 — T + T3) with A = FD(T1) = {3,6} be one of
the two simple submodules from Example 3.6.21. In Example 3.6.26 we have seen that
Ey, = Ex = {T1,T5,T3} and D¢(Uy) = A. Moreover, from Example 3.6.18 we have
that ND¢(T) C A C D¢(T) for each T' € E4. Thus, ND(T) C D¢(Ua) C D(T) for all
T € F4 as well.

Let U € Y and T € Ey. In Lemma 3.6.30 we have seen that if i € nAD(T') then
m T € Ey. We now show that we have the dual statement for i € nND¢(T) N D(U).

Lemma 3.6.34. Let U € U and T € Ey such that there is an i € nND(T) N D(U).
Then there exists a unique T" € Ey such that mT' =T and T' # T.

Proof. Let u € U with w # 0 and > pcp, arT be the K-expansion of u in F. Fix a
T € Ey and assume that there is an ¢ € nND(T') N D(U). Because i € nND¢(T),
Lemma 3.6.22 yields that there is a 7" € E \ {T'} such that m7/ = T. Then T" = s;T,
which means that 7" is unique in E. Hence,

[T)miu = ap + agr.
In addition, Lemma 3.6.27 implies that mu = 0 since ¢ € D(U). Therefore,

ar + ap = [T|mu = [T]0 =0,
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i.e. apr = —ap. Moreover, we have T' € Ey by assumption which means that ar # 0.
Hence, ar # 0 and T" € Ey as desired. O

Let U € U. We now come to the characterization of the elements of EFy which
is similar to Lemma 3.6.13. This is one of the two major arguments in the proof of
UC{Uy | Ae FDY.

Lemma 3.6.35. Let U € U. For each T € E the following are equivalent.
(1) T e Ey.
(2) cont(coly, col') € D(U).

In other words,
Ey = {T € E | cont(coly, col.!) C D(U)} .
Proof. Let T € E and
T'=Ts =Tg—1 =2

be a saturated chain from T to the sink tableau 77 in E. Then for each j € [2, k] there
is a i; € nAD(T}) such that 7;, T; = T;_1. That is, cont(colp, col; ') = {ia, ... ik}

In order to show (1) = (2) assume that 7' € Ey. From Lemma 3.6.31 we have
that Ey is a filter. Therefore, T' € Ey implies that T; € Ey for each j € [k] and hence
D(T;) € D(U) for each j € [k]. As ij € D(T}) for all j > 2, it follows that

cont(coly, col') = {ia, ... i} € D(U)

as desired.

For (2) = (1) assume that cont(colr, col;') € D(U). Then we also have that
cont(colp, Colrfjl) C D(U) for all j € [k].

We show T € Ey for each j € [k] by induction on j. From Lemma 3.6.31 we know
that 771 € Ey. Thus, we can assume that T;_; € Ey for a j > 1. Set i := i;. Then
i € nAD(T;) and m;T; = T;_1. Moreover, i € cont(colz, col.!) so that i € D(U).

We show that ¢ € nND*(T;_1). Because i € nAD(Tj), i is strictly left of i + 1 in 7}.
In addition, i +1 cannot be the right neighbor of 4 in T} since entries decrease in rows of
SCTx from left to right. As we obtain 7;_; from 7T} by swapping ¢ and ¢ + 1, it follows
that ¢ € nND(Tj_1).

Because Tj_1 € Ey, i € nND(Tj—1) and i € D(U), Lemma 3.6.34 implies that
Tj € Ey. L]

Example 3.6.36. We consider the simple submodule Uy = K(77 — Ty + T3) with
A = FD(T) from Example 3.6.21. By Example 3.6.26, Eyy, = E4 and D(U) = A°. In
Example 3.6.14 we have seen for T € F that T € E if and only if cont(colz, col') C A°.
As D(U,) = A°, the latter is equivalent to cont(colr, col;') € D(Ua).
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For A € FD° and U € U we have
Ey = {T € E | cont(coly, coly.!) C AC},
Ey = {T € E | cont(coly, col.!) C D(U)} .

by Lemma 3.6.13 and Lemma 3.6.35, respectively. Thus, in order to show that for U € U
there is an A € FD¢ with Ey = E 4, it remains to show that D¢(U) € FD¢. This is the
purpose of the next lemma. Example 3.6.38 serves as an illustration for the result and
its rather technical proof.

Lemma 3.6.37. If U € U then D°(U) € FD°.
Proof. Let U € U and T} be the sink tableau of . We use the definitions associated to
the ascents of 77 in Notation 3.6.1. By definition, D(U) € FD¢ if and only if

FD¢(Ty) C D°(U) C D(T1).

By Lemma 3.6.31, we have that 77 € Ey. Therefore the second inclusion holds by
definition of D¢(U). We will now prove the first inclusion.

From Lemma 3.6.32 we have that
ND¢(T) C D(U) (3.19)
for each T' € Ey. Since T1 € Ey and ND¢(Ty) C FD¢(T}), it thus remains to show that
FD¢(Ty) N nND*(Ty) C D¢(U).
We prove this by contradiction and thus assume that there exists a k such that
ar € FD(Th) N nND(T1) n D(U).

Our strategy is to infer the existence of a Ty € Ey and an i € ND¢(Ty) N D(U) contra-
dicting (3.19).

In order to obtain T} we need some notation. Since ay € FD(T), we have Jx 1, Jk.
Hence the maximal element of J having a left neighbor from Ji11 in T}

a:=max{j € Jy | Jpr1ln, j}
is well defined. Let b € Ji11 be this left neighbor of a. Moreover, we define
Jpo=la,ar),  Jhq o= lap + 1,0, Jigq = la,b] and Jl = [a,b—1].

Note that J; C J; for j = k,k+ 1 and J; ;. C Jg k1. The corresponding sets of cells
are denoted by C7 := Tfl(J]’-) for j =k, k+1and Cp g = Tfl(J,’cvk_H). We further
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3 0-Hecke modules associated to quasisymmetric Schur functions

set O; := Ty '(4) for j € [n]. Similar to the filters E4 associated to A € FD¢, we define
F = {T € E | cont(colz, colt) C j,’§7k+1} .

Clearly Ty € F which means F' # (). Therefore, there exists a T, € F which is minimal
in F. Lastly set i := T, ().

Our goal is to show that T, € Ey and i € ND¢(Ty) N D(U). This yields the desired
contradiction. The remainder of the proof is divided into seven parts.

(1) We show T} € Ey.
Recall that by definition, aj; and a4 are the only ascents of 71 in Jj j41. Therefore,

Jf e \ar} € Jpgesr \ {ag, ag1} € D(T1) € D(U)

where we use T} € Ey for the rightmost inclusion. Moreover, we have a € D(U)
by assumption. Hence, Jllc,kJrl C D(U) and Lemma 3.6.35 implies that ' C Ey. In
particular T, € Ey.

The next three parts are preparations for proving i € D(U) and i € ND¢(T7).
(2) We consider the geometry of C} ;.. For x € J; and y € Ji,; we show the
following.
(a) O, is located strictly left of OJ,.
(b) 0,00, = z=aandy=0».

The chain of inequalities
c(by) < e(0h) < e(Ua) < e(0y)

implies (a). The outer inequalities are consequences of Lemma 3.6.3. In addition, by
choice of a and b we have [, ¢ [0, so that ¢(d) = ¢(d,) — 1. Hence, ¢([0p) < ¢([,) as
well.

From the definitions of a and Cj, it follows that [, is the only element of C}, that has
an element of Cyy1 as left neighbor. As the left neighbor of O, is Oy, we obtain (b).

(3) We show T(Cy, 14 1) = Jp s

Recall that for an SCT T of size n and j € [0,n] we have sh(T>7) = T~Y([j + 1,n]).
From T, € F and jl/c,k+1 = [a,b—1] it follows that a—1,b ¢ cont(colz, col'). Therefore,
Proposition 3.2.9 implies that

sh(T7971) = sh(T7* ) and  sh(T2?) = sh(T70).
Consequently,

T (isr) = Tt ([, B]) = sh(T7271) \ sh(T77)
= sh(T7*) \ sh(T7") = T7 '([a,b]) = C pyr-

That is, T*(Cé7k+1) = Jllc,k+1‘
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3.6 The socle of skew modules

(4) We show that nND*(T}) N Jo,’%k+1 = 0.
For the sake of contradiction, assume that there is a j € nND¢(Ty) N j,’€7k+1. Set

or := colg, col! for T € E. Then T, € F implies cont(or,) C Jol’tkﬂ. Lemma 3.6.22
provides the existence of a T' € E such that 7;T = T. It follows that

cont(or) = {j} Ucont(or,) C jI::,k+1

where we use j € j,’MH and cont(or,) C j,’v,kﬂ for the inclusion. Thus, T' € F. But
this contradicts the minimality of T, in F. Therefore, we have nND¢(T}) N Jl/c,k = 1]
as claimed.

(5) We show that i € J; , ., and i € D(U).

Define b, := T, (0p). From Part (3) we have that T*(C,'@Hl) = J,;kﬂ. Thus, 4,b, €
Jllc,k+1' Moreover, T being an SCT implies b, > i so that i € Jo,gﬁk_H. In Part (1) we have
seen that JO/{CJC+1 C D(U). Hence, i € D(U) as well.

(6) We show that i € ND¢(T%).

Let b, = T.(p) still be the left neighbor of ¢ in T,. We will show that b, = ¢ + 1.
Define

t:=max {j € T.(C}) | < b} .

As i € T,(C}) and i < b, the set is not empty and thus ¢ is well defined. Since
T(Ch jy1) = Jy 41, We have that t +1 € Ti(Cy ;) and from the maximality of ¢ it
follows that t + 1 € T4 (C},,) (if t = b, — 1 then this also holds since b, = T.(Op) €
T.(Ci11))- Because t € T,(C}) and t + 1 € Ti(C} ), we obtain from (a) that ¢ +1 is
strictly left of ¢ in T\ and thus t € D¢(T}). Since nND¢(Ty) N jli:,k+1 = () by Part (4), it
follows that ¢t € ND¢(Ty). Then (b) implies

t+1=T.0,) and t="T.(O,).

Consequently, t =i and b, =i+ 1, i.e. i € ND°(T%).
(7) We summarize our results. On the one hand, we have T, € Ey from Part (1) so
that (3.19) implies

ND®(T.) C D*(U).

On the other hand, Parts (5) and (6) provide the existence of an ¢ € ND(T,) N D(U)
contradicting the formula above. Recall that we deduced this contradiction from the
assumption FD¢(Ty)NnND(T1)ND(U) # (. Therefore, this intersection must be empty
which means by the discussion from the beginning of the proof that D¢(U) € FD¢. O
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Example 3.6.38. Consider the tableaux

2 2 3

T. = Ty = T =

w
BEE

W
‘c:»—\oo

6

Let E be their equivalence class and S, j5 g be the corresponding module. We illustrate
the proof of Lemma 3.6.37 by directly showing that D¢(U) € FD® for each simple
submodule U of S, 3 . We also use its notation. In addition, it may be instructive to
check that Statements (1) — (6) from the proof hold in this example.

Let U € U. We have D°(Ty) = FD(T1) = {a1 = 2}. Thus {2} is the only element
of FD°. Moreover, note that 2 is an non-neighborly ascent of T7. We show 2 € D¢(U).
From this it follows that D¢(U) € FD° as described in the beginning of the proof of
Lemma 3.6.37. We proceed accordingly.

Assume for the sake of contradiction that a; = 2 € D(U). We have J; = [1,2],
Ja = [3,6] and Jo 7y J1. In the tableaux above, the cells of C; and C5 respectively have
the same shade of gray. The maximal element of J; with a left neighbor from J3 is a = 2.
Its left neighbor is b = 5. Then

J{ = {2}7 Jé = [375]a J{,Q = [275]7 j{,Q = [2a4]
and
F = {T € E | cont(colz, coly!) C {2,3,4}} .

In the picture the elements of {1,6} = J1 2\ Jj 5 are printed in gray. Let i = T\.(0,) = 4
where [, = Ty '(a) is the cell containing a = 2 in T;. We show that T, € Ey and
4 € ND*(T.) N D(U). Note that we obtain 71 from T, by shuffling elements of Jj ,
around using operators m; with j € J{Q The other elements 1 and 6 are not affected.

From the picture we obtain that T1,73,T, € F. Besides, we remark that 7} is minimal
in F since nND(T,) = {1} which is disjoint to j{72 (cf. Lemma 3.6.22). Since 3,4 €
D(T1), the definition of D(U) yields 3,4 € D(U). Furthermore 2 € D(U) by assumption.
Hence, Lemma 3.6.35 implies that F' C Ey. In particular T, € Ey.

We can directly check that 4 € ND¢(T,). Moreover, we have already seen that 4 €
D(U). Hence, 4 € ND¢(T,)ND(U). Yet, T, € Ey and thus Lemma 3.6.32 demands that
ND¢(T,) C D¢(U). We therefore have a contradiction which tells us that 2 € D¢(U) as
desired.

We are now in the position to determine the socle of S, 5 . Recall that for A € FD°
we have uy = ZTGEA(—I)‘;(T)T where ¢ is the rank function of E and Ugq = Kuy.

Theorem 3.6.39. Let o//5 be a skew composition of size n and E € E(a /).
(1) For A€ FD°, Uga is a simple H,(0)-submodule of S g g is isomorphic to F sc.
(2) We have soc(Sq)8,5) = Dacrpe Ua-
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3.6 The socle of skew modules

Proof. Part (1) is a repetition of Proposition 3.6.24 which we have included for conve-
nience. For Part (2) we first show that

U={Us| Aec FD}. (3.20)

Let U € U and A := D(U). From Lemma 3.6.37 we have that A € FD. Then
Part (1) yields that Uy is a simple submodule of S, /. As Us = Kug, it follows
that the support Ey, of Uy is the set of A-sortable tableaux F4. On the other hand,
Lemma 3.6.35 implies that the support of U is given by

Ey = {T € E | cont(coly, coly.!) C AC}.

Thus, Lemma 3.6.13 yields that the support Ey is the set of A-sorted tableaux F 4 as
well. That is, By = Ey,. But by Lemma 3.6.31 there is only one simple submodule of
S )p,e with support Ey. Therefore, U = Ua. This proves (3.20).

Part (1) ensures that the H,,(0)-submodules Ua of S, 3 g for A € FD are all pair-
wise non-isomorphic. Moreover, we have that soc(S,/sr) = >yey U by definition.
Therefore, (3.20) implies (2). O

Example 3.6.40. Let 17, T5 and T3 be as in Figure 3.4, E be their equivalence class
and S, /3 g the corresponding H,(0)-module. Then FD¢ = {D¢(T1), FD*(T1)} where
FD¢(Ty) = {3,6} and D¢(T1) = {1,3,6}. by Example 3.6.7. Therefore, Theorem 3.6.39
implies
SOC(Sa//ﬁ’E) = UDC(Tl) & UFDC(Tl)-
In addition, we have seen in Example 3.6.21 that
UDC(Tl) = K717 and UFDC(Tl) = K(Tl —Th + Tg).
Thus,
SOC(SO‘//@E) =K1 & K(Tl — Ty + Tg)

From Theorem 3.6.39 we have that, up to isomorphism, the socle of S, g g only
depends on the ascents and the flanking ascents of the sink tableau of E. We thus
obtain the following formula for the socle dual to that for the top from Theorem 3.5.42.

Recall that in this section we always assumed that «// is a skew composition of size
n, B € E(a//B) and T} is the sink tableau of E. Under this assumptions we associated
the set

FD° = {AC[n—1]| FD(T}) C A C D*(T1)}.

to T1 where FD¢(T}) is the set of flanking ascents of 77 from Definition 3.6.6. This is
the main ingredient in the following formula.
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Corollary 3.6.41. Let o/ be a skew composition of size n and E € E(a /). Then

soc(Sayp,E) = @ F 4
AeFD¢

as Hy,(0)-modules.

Example 3.6.42. Let S, /3 be the H,(0)-modules of the equivalence class E from
Figure 3.4. By Example 3.6.7 we then have FD° = {{3,6},{1,3,6}}. Thus, Corol-
lary 3.6.41 yields that

soc(Sayp,E) = Flaasn © Foasm

as Hg(0)-modules.

We gather some direct consequences of Corollary 3.6.41. For Part (3) we use that a
module with simple socle is always indecomposable.

Corollary 3.6.43. Let /3 be a skew composition of size n and E € E(a ) B) with sink
tableau T1. Then we have the following.

(1) dimsoc(Sqys,r) = |[FD|.
(2) soc(Sqyp,r) is simple if and only if FD(T1) = D(T1).
(3) If FD¢(T1) = D*(T1) then S, s E is indecomposable.

In Corollary 3.5.44 we have seen that a module S, /5 is indecomposable if each
descent of the source tableau Tp g is offensive. By Part (3) of Corollary 3.6.41 we now
have a similar condition depending on the flanking ascents of the sink tableau 71 g.
Yet, even combining Corollary 3.5.44 and Corollary 3.6.43 does not result in a necessary
condition for S, g g to be indecomposable. In other words, there are modules S, 5
which are indecomposable despite having nonsimple top and socle. An example is given
below.

Example 3.6.44. We consider a = (2,2,4,4) and the module S, r whose equivalence
class F has source and sink tableau

Ty =

respectively. The cells of Ty and T3 are shaded according to the associated decomposition
of the diagram of « in horizontal strips and vertical strips, respectively. Then

D(TO) = {2,4,5,9} DC(Tl) = {2,3, 6,9, 11}
a.
OD(Ty) = {2.5,9) " FD(T1) = {3,6,9,11},
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that is, OD(Ty) € D(Tp) and FD¢(Ty) € D¢(T1). Thus, top and socle of S, g are

not simple by Corollary 3.5.44 and Corollary 3.6.43, respectively. However, the straight
module S, g certainly is indecomposable by Theorem 3.3.11.

Using the decomposition S, /5 = @preg(ays) Says,e from Proposition 3.1.13 and the
compatibility of soc with direct sums, we infer from Corollary 3.6.41 the following formula
for soc(S,). Recall that for E € E(af ), T1,r denotes the sink tableau of E.

Corollary 3.6.45. Let o//3 be a skew composition of size n. Then

D D Fa

Beé(a)B) ACFD5,

1%

soc(Sq/8)

as H, (0)-modules where FDg :={AC[n—1] | FD(T1,g) CAC D(Tv,g)}.

We end the section by showing that the formula for the socle of pacific modules from
Corollary 3.4.21 is a special case of Corollary 3.6.45 above. Let o)/ be a pacific skew
composition of size n. Recall from Lemma 3.4.5 that then all SCTx of shape «// form
a single equivalence class. Thus, let Ty be the source and 17 be the sink tableau of
shape a//f. We use the shorthand n — D = {n—d|d e D} for D C [n —1]. From
Corollary 3.4.21 we have that

soc(Says) 2 @B Fu-p (3.21)
DCD(Tp)

as H,(0)-modules. On the other hand, Corollary 3.6.45 yields that

soc(Sqy)8) & @ F 4
AeFDC

with FD¢ associated to T1. Hence, in order to infer (3.21) from Corollary 3.6.45, it
remains to show that FD¢ = {n — D°| D C D(Tp)} in the pacific case. This is done in
Lemma 3.6.47 which we state after giving an example.

Example 3.6.46. Let S,/ be the pacific module formed by the tableaux from Fig-
ure 3.3. The source and the sink tableau of shape « /3 are

1] 1]

T(): 3 and le 2 y
2]1 413

respectively. We have D(Tp) = {2,3}, D¢(T1) = {1,2,3}, FD*(T1) = {3} and

FD° = {{3},{1,3},{2,3},{1,2,3}}.

By applying Corollary 3.6.45 we get

soc(Sa//B) &~ @ Fype=Fy® F(y @ Fg) @ Fy 9.
AeFD¢
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As in Example 3.4.22, we obtain from (3.21) that

SOC(SQ//ﬁ)g @ Fo p=FyOF;)®F ©Fo.
DCD(Ty)

Thus, we can directly see that both sums run over the same index set.
We now state the result that allows to derive Corollary 3.4.21 from Corollary 3.6.45.

Lemma 3.6.47. Let o)/ 3 be a pacific skew composition of size n and Ty be the source
tableau of shape o /3. Then

FD®={n—D°| D C D(Ty)}.

Proof. Let T} be the sink tableau of the pacific shape /8. On the one hand, T}
is a sink tableau so that D(T1) = AD(T1) by Theorem 3.1.14. On the other hand,
Ty is pacific and therefore AD(Th) = (. Hence, D¢(T}) = [n — 1] and thus FD¢ =
{AC [n—1]| FD(T1) C A}. We show

FDC(Tl) =n — DC(T(])
since then it follows for all D C [n — 1] that
DQD(T()) <~ n—DC(TO) Cn—D° < FDC(Tl) Cn—D° <= n—D°e FD°

which yields the claim.

Let let mg := |D(Tp)| and m; := |D¢(T1)|. We also use the definitions associated to
To and T} in Notations 3.5.1 and 3.6.1, respectively. Because D¢(T1) = [n — 1], we have
ar, = k and J = {k} for all k € [m; +1]. Thus for each k € [m;] we have that Cj111C},
if and only if £ + 1, k. That is, FD¢(11) = ND(T1). By Proposition 3.4.12,

col,, =nn—-1--- 1

Moreover, Lemma 3.4.8 yields that the horizontal strip By is strictly left of B, for
each k € [mg]. In addition, |By ;| = |[1x] = dj for all & € [mg + 1]. Therefore, the
definition of the column word implies

Ty(Big) = [n—di + 1,7
for all k& € [mo + 1]. As a consequence,

T1(By) = T1(B1x) \ T1(B1 k1)
=[n—dp+1,n]\[n—dk1+1,n]
= [n—dk—i-l,n—dk_ﬂ.

for all k € [mo + 1].
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Fix a k € [mo]. Because
T1(Big1) = [0 — dip1 + 1,n — dy],

the connected horizontal strip By is filled as follows in T7.

’n—dk‘n—dk—l""‘n—dk+1+1‘

Thus, we have [n — dg41 + 1,n — di — 1] C ND¢(T7). We claim that n — di ¢ ND¢(11).
This can be seen as follows. First, note that To(By) = I < Ix4+1 = To(Bg+1). Second,
we have seen above that By, is strictly left of Byy;. As entries decrease from left to right
in the rows of the SCT Tj, we therefore have that By and By11 cannot occupy the same
row of the diagram «//3. Because n —dy € T1(Bg4+1) and n—d + 1 € T1(By), it follows
that n — di + 11y, n — di is impossible. That is, n — dy, & ND°(T1).

Since k € [mp] was chosen arbitrarily, it finally follows that

FD(T1) = ND(T1) = [n — 1]\ {n — dy. | k € [mo]} = n — D*(Ty)

as desired. ]

3.7 Modules of permuted composition tableaux

Tewari and van Willigenburg generalize in [TvW19] standard straight compositions
tableaux to standard permuted compositions tableaux. Let o F n and 0 € Gy,). A
standard permuted composition tableau (SPCT) of shape v and type o is defined as an
SCT of shape « in Definition 3.1.4 except that the relative order of the entries in the
first column when read from top to bottom is now demanded to be that of 0. We write
SPCT?(«) for the SPCTx (plural form of SPCT) of shape « and type o. Tewari and
van Willigenburg show that the K-span of SPCT?(a) can be endowed with a 0-Hecke
action which yields an H,,(0)-module which we denote with S7. The modules S?, and
S share many properties. In particular S7, can be decomposed as S, = @pego(a) Sa,E
where £7(a) is the set of equivalence classes of SPCT? («) with respect to the equivalence
relation ~.

The purpose of this section is to transfer the main results of this chapter on the
modules S, g to the modules S7, p. In particular, we will describe how the arguments of
the chapter can be adapted for ' € £7(«) in order to show that S7 g is indecomposable
and to obtain formulas for the top and the socle of S, . As for S,, one can then obtain
the corresponding results on S?, by using the decomposition from above.

The proof of the indecomposability of S, g has already been published as the article
[K6n19] by the author. The contents of [Kén19] correspond to Sections 3.1 to 3.3 of this
chapter. Choi, Kim, Nam and Oh show in [CKNO21] how the arguments from [K6n19]
can be adapted to obtain the indecomposability of Sg, . Mainly, they substitute [K6n19,
Proposition 3.8] (corresponding to Proposition 3.2.9 of this thesis) by [CKNO21, Lemma
A.3]. In this section however, we will generalize Proposition 3.2.9 to SPCTx instead. This
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is also necessary for the generalization of the formulas for top and socle. We begin with
introducing the permuted modules.

0-Hecke modules of standard permuted composition tableaux

Let w = w1y ---w, be a word with letters in N. The standardization of w is the unique
element o € &,, such that (i) > o(j) if and only if w; > wj.

Definition 3.7.1. Let a F n and 0 € §y,). A standard permuted composition tableau
(SPCT) of shape o and type o is a bijective filling T: o — [n] satisfying the following
conditions:

(1) The entries are decreasing in each row from left to right.

(2) The standardization of the word obtained by reading the first column from top to
bottom is o.

(3) (Triple rule). If (i,k —1),(j,k) € a such that j > i and T(j, k) < T(i,k —1) then
(i,k) €« and T(j, k) < T(i,k).

For a Fnand o € &y, we denote the set of standard permuted composition tableaux
of shape a and type o with SPCT?(«). Note that we have only defined straight SPCTx.
This is the reason why the triple rule above is simpler than the one of Definition 3.1.4.
We also remark that for a F n and id € &y,) we have SCT(a) = SPCT(a). We do
not associate SPCTx with chains of a composition poset as we have done with SCTx in
Proposition 3.1.6. But all other notation introduced for SCTx in Section 3.1 up to and
including Definition 3.1.9 can be used for SPCTx as well.

Example 3.7.2. The SPCT

65

o =I8T413]

’woo»a\]

has shape a = (3,1,3,1) and type o = 3142. Moreover, D(Ty) = {1,2,4,7} and
AD(Ty) = {1,7}.

We can define H,,(0)-modules S¢ formed by SPCTx as we have defined the modules
S, in Theorem 3.1.11.

Theorem 3.7.3 ([TvW19, Theorem 3.1]). Let @ F n and 0 € &yy). Then S7 :=
spang SPCT? («) is an Hy(0)-module with respect to the following action. For T €
SPCT?(«) and i € [n — 1],

T ifi¢ D(T)
mT={0  ifie AD(T)
siT if i € nAD(T)

where s;T is the tableau obtained from T by interchanging i and i + 1.
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3.7 Modules of permuted composition tableaux

Example 3.7.4. Let Ty be the SPCT from Example 3.7.2. Then

T for i =3,5,6
7TZ'T0: 0 forizl,?
SZ'TO for ¢ = 2, 4.

Let a Fnand o € &y(,). All the results on the modules S, from Section 3.1 succeeding
Theorem 3.1.11 generalize to SPCTx. The most important ones are the following.

(1) We can use the equivalence relation ~ on SPCT?(«) and define £7(«) as the set
of equivalence classes of SPCT? («) with respect to ~.

(2) For each £ € £%(a), 87, g := spang E is an H,(0)-module. The H,,(0)-module S,
decomposes as

Si= P Sie
Ecéo(a)

(3) Each E € £7(«) can be endowed with the partial order <. The resulting poset
E = (E,=) has a smallest element Tj) p and a greatest element 77 p which are
characterized in E by D(Ty r) = ND(Tp,r) and D(T1 r) = AD(T ) and called
source and sink tableau of E, respectively.

(4) To each SPCT T of size n we can associate the column word colp which can be
regarded as an element of &,,. For E € £7(«) the poset E is isomorphic to the left
weak order interval [colz, 5> colry »]z via the map T+ coly.

Most of the proofs for the results of Section 3.1 (including those cited from [TvW15])
can directly be applied on SPCTx. There are two exceptions also mentioned in [TvW19].
First, a basic result on the operation of the m; on SCTx [TvW15, Lemma 3.7] has to be
substituted by [TvW19, Lemma 3.2]. Second, the proof of the uniqueness of the source
and the sink tableau has to be altered as described in [TvW19, Remark 3.8].

A 0-Hecke action on subdiagrams

In Section 3.2 we considered a 0-Hecke action on chains of the composition poset L,
that lead to a characterization of cont(colp, colil) for two SCTx T1 < T3 in Proposi-
tion 3.2.9. This result was essential for our results on the indecomposability, the top
and the socle of the modules S, g from Theorem 3.3.11, Corollary 3.5.46 and Corol-
lary 3.6.41, respectively. As said before, for the SPCTx we do not have a correspondence
to chains of a poset of compositions and we do not intend to give one. Nevertheless,
Proposition 3.2.9 was proven by considering osh(7~""), the outer shape of the tableau
corresponding to the enties > m of the SCT T. The connection to chains in £,, was
provided by Lemma 3.2.3. Since we do not have such chains for SPCTx, we simply use
Lemma 3.2.3 as a definition.

Recall that a diagram is a finite set of cells and that a tableau is a filling of a diagram
with elements of N.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Definition 3.7.5 (cf. Lemma 2.2.3). Let a F n, 0 € Gy, T € SPCT?(a) and m €
[0,n].

(1) Define T>™ to be the tableau obtained from T by removing the cells containing
1,...,m and subtracting m from the remaining entries.

(2) Let sh(T>™) be the diagram formed by the cells occupied by entries of T-™.

As for ordinary compositions, we define the diagram of a weak composition a =
(@15, ) Fo nas {(i,7) € NxN|i<{l(a),j<a;} and may identify a with its
diagram.

Let o E n, m € [0,n] and T be a SPCT of shape . Because the entries in the rows
of T decrease from left to right, the cells of T=™ are left aligned. That is, sh(7T>™) is
the diagram of a weak composition o™ of n —m. However, in general sh(T~™) is not
a composition and therefore sh(7>™) is not an SPCT as can be seen in the following
example.

Example 3.7.6. Consider the SPCT

7]16]5]
1
To=rg1a73]
2]
from Example 3.7.2. Then
T5° =

is a tableau of shape (3,0,2) and therefore not an SPCT. The sequence of diagrams
sh(Ty™) for m = 8,7,...,0 associated to Tp is shown below.

O [ [T [ [T [0 n
"o 00 o OO O o

In Definition 3.2.4 we introduced |a|; = [{i € [I] | oy > j}| for « E n and j > 1 and
the preorder < on the set compositions of size n. These definitions directly generalize to
weak compositions. Moreover, |a|; still is the number of cells in column j of the diagram
of the weak composition c.

With these generalized notions, the proof of Proposition 3.2.9 goes trough for SPCTx
as well.
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3.7 Modules of permuted composition tableaux

Proposition 3.7.7 (cf. Proposition 3.2.9). Let a En, 0 € &y, i € [n—1], E € £9(a)
and T1,T5 € E be such that Ty <X T5. Then

i € cont(colp, colil) if and only if sh(T5™?) # sh(T7Y).

The decomposition of permuted modules

Let aF n and 0 € Gy(,). In Theorem 3.3.11 of Section 3.3 we proved that the module
S,E is indecomposable for all E € £(a). Choi, Kim, Nam and Oh show in [CKNO21]
how the argumentation can be adapted in order to make it work for S7, 5 with ' € £ ()
as well.

Here we present a slightly different approach using the generalized version of Propo-
sition 3.2.9, Proposition 3.7.7. Choi et al. do not generalize Proposition 3.2.9 in their
approach.

The argumentation of Section 3.3 leading to Theorem 3.3.11 has to be adapted on
two occasions in order to make it work for S7 p with E € £7(a) as well. First, the
proof of Lemma 3.3.3 exploits the fact that all elements of SCT(«) have the entry n
at position (¢(«),1). This however can be generalized to the result that all elements
of SPCTY(a) have the entry n at position (6~1(¢(a)),1) which can then be applied
instead. The result is a direct consequence of the ordering conditions of SPCTx. This
slight alteration is not mentioned in [CKNO21]. Second, Proposition 3.7.7 has to be
used instead of Proposition 3.2.9 in Lemma 3.3.7.

Therefore, we have the following.

Theorem 3.7.8 ([CKNO21, Theorem 4.11]). Let a F n, 0 € &y, and E € E7(a).
Then Endy, (0)(Sq,g) = Kid. In particular, S7, g is an indecomposable H,(0)-module.

Corollary 3.7.9 (cf. Corollary 3.3.12). Let a Fn and o € &y). Then

St= @D Sie
Ee&?(a)

1s a decomposition into indecomposable submodules.

Top and socle

In Theorem 3.5.42 of Section 3.5 we gave a combinatorial formula for the top of S, s £
for each skew composition o)/ and E € £(«///3). From this we obtained a formula for
top(S4p) in Corollary 3.5.46. All results of the section hold for the modules S7, 5 as
well. There is one minor exception. In the preface of Example 3.5.2 it is noted that
the horizontal strip sequence By ; can be realized as skew composition. In the case of
standard permuted composition tableaux, this can be wrong. However, this note is not
important for the further argumentation. The only necessary adjustment in the proofs
from Section 3.5 is to replace Proposition 3.2.9 by Proposition 3.7.7 again. This has to
be done in Lemma 3.5.18. In particular, Theorem 3.5.42 generalizes to SPCTx.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Theorem 3.7.10 (cf. Theorem 3.5.42). Let a Fn, 0 € &y and E € £7(a). Then

top(Sg g) = @ Fp
DeOD

as Hy(0)-modules.

Example 3.7.11. Let

be the SPCT from Example 3.7.2 and «,0 and E be its shape, type and equivalence
class, respectively. Recall D(Tp) = {1,2,4,7}. Since D¢(Tp) = ND(Tp), Tp is the source
tableau of E. The cells are shaded according to the set partition of the diagram of «
given by the descents of Ty (cf. Notation 3.5.1). We have OD(Ty) = {1,4,7}. Therefore,
Theorem 3.7.10 yields

top(Sa.g) = Fria7 ® Flioan-
as Hg(0)-modules.

The formula for the socle of S, g g from Corollary 3.6.41 also generalizes to S7 p. In
fact, we have again that all results of Section 3.6 hold to the permuted case as well. The
necessary alterations are the following. First, in order to obtain Lemma 3.6.13 on has to
use Proposition 3.2.9 instead of Proposition 3.7.7. The same is true for Lemma 3.6.37.

Second, one has to cite [TvW19, Lemma 3.2] instead of [TvW15, Lemma 3.7] in order
to justify Lemma 3.6.22. Therefore we have the following.

Theorem 3.7.12 (cf. Corollary 3.6.41). Let a En, 0 € Sy and E € £7(a). Then

soc(Sg ) = @ F 4
AeFD¢

as Hy(0)-modules.

Example 3.7.13. Consider the SPCT of shape a = (3,2,2) and type o = 213

[5]1]

5
T =[3]2
4

It is the sink tableau of its equivalence class E. We have D¢(T1) = {1,2,5}. The cells
above are shaded according to the set partition of the diagram of « given by the ascents
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3.7 Modules of permuted composition tableaux

of Ty (cf. Notation 3.6.1). Observe FD¢(T1) = {2,5}. Hence, Theorem 3.7.12 yields

soc(So ) = Fzaey © F1346)

as Hr7(0)-modules.
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4 Centers and cocenters of 0-Hecke
algebras

Let W be a finite Coxeter group with Coxeter generators S. Fayers asks in [Fay05] for
the center Z(Hyy(0)) of the 0-Hecke algebra Hyy(0) of W. Brichard gives a formula for
the dimension of the center in type A [Bri08]. In [Hel5] He describes a basis of Z(Hyy (0))
in arbitrary type indexed by certain equivalence classes of W. These classes are rather
subtle. In fact, [Hel5] contains no result on the number of these classes which is the
dimension of the center. Yang and Li give a lower bound for the dimension of Z(Hyy (0))
for irreducible W in several types other than A [YL15]. Moreover, they specify the
dimension in type Is(n) for n > 5. This thesis is mainly concerned with the center of
the 0-Hecke algebra H,,(0) of the symmetric group &,, and deals with the approaches of
Brichard and He.

Let £ be the length function of W and define Wi, and Wi« to be the set of elements
of W whose length is minimal and maximal in their conjugacy class, respectively. Geck
and Pfeiffer introduce in [GP93] a relation — on W known as cyclic shift relation. It is
the reflexive and transitive closure of the relations = for s € S where we have w = w’
if w' = sws and (w') < (w).

In the case where W is a Weyl group, Geck and Pfeiffer show that Wiy, in conjunction
with — has remarkable properties and how these properties can be used in order to
define a character table for Hecke algebras of W with invertible parameters [GP93].
Since then their results have been generalized to finite [GHL196], affine [HN14] and
finally to all Coxeter groups [Mar2l]. The relation — can also be used to describe
the conjugacy classes of Coxeter groups [GP00, Mar20] in particular for computational
purposes [GHL196, GP00]. Geck, Kim and Pfeiffer introduce a twisted version —5 of
the relation belonging to twisted conjugacy classes of W in [GKP0O].

By setting w ~ w’ if and only if w — w’ and w’ — w one obtains an equivalence
relation = on W. The =-equivalence classes of W are known as cyclic shift classes.
For an element X of the quotient set Wma}V%, He defines the element 7<y = > 7,
where x runs over all the elements of the order ideal in Bruhat order of W generated
by ¥ [Hel5]. Then he shows that the elements 7<y for ¥ € Winax /. form a basis of
Z(Hw (0)). Moreover, he defines a basis of the cocenter of Hyy(0) indexed by Winin, /.
We review the approach of He together with further preliminary results in Section 4.1.

Motivated by the above connection to Z(H,(0)), the main subject of this chapter is
the study of Wman in the case where W is the symmetric group &,,. To be precise,
we determine its cardinality, obtain sets of representatives for (Gn)may% and develop a

combinatorial description for certain elements of (GH)maV%.
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4 Centers and cocenters of 0-Hecke algebras

Cardinalities, parametrizations and sets of representatives are the subject of Sec-
tion 4.2. Brichard provides the dimension of Z(H,(0)) and thus the cardinality of

(6n)ma)§/% [Bri08]. Her argumentation is based on a calculus on altered braid diagrams
on the Maobius strip which we call crossing diagrams. Brichard shows that there is a
basis of Z(H,(0)) indexed by certain crossing diagrams. By counting the diagrams, she
obtains the dimension of Z(H,(0)). In contrast to that of He, the expansion of Brichards
basis elements into a basis of H,(0) is involved and no explicit description is given in
[Bri08]. As in [Kim98] we call a composition of n a F n mazimal and write a F. n if
there is a £ > 0 such that the first k parts of a are even and the remaining parts are
odd and weakly decreasing. In Proposition 4.2.10 we give a system of representatives
for (Gn)ma)yz which corresponds to Brichards diagrams and is indexed by the maximal
compositions of n.

We obtain another set of representatives for Wma)y% from the work of Geck, Kim and
Pfeiffer [GKPO00]. For each composition a F n, Kim defines the element in stair form
0a € 6, in [Kim98|. Geck, Kim and Pfeiffer show that o, € (&;,)max if and only if «
is a maximal composition [GKP00]. We show in that the elements in stair form o, for
a Fe n form a system of representatives of (6")ma);/% in Proposition 4.2.14.

Besides (6”)ma)/% we briefly consider other quotient sets. On W/% the relation —
gives rise to a partial order. Gill considers the corresponding subposets O/% where O is
a conjugacy class of W and determines the cardinality of Omin/;g in types A, B and D
[Gil00]. We infer a parametrization of Wmifyz based on compositions, the cardinality
of Wmifyz and the dimension of the cocenter of Hyy(0) in these types. In types B,
and Do,, we transfer the results to WmaV%. This allows to determine the dimension of
Z(Hw(0)) in types B, and Da,. Moreover, we describe a system of representatives of

GN)mir/% given by Coxeter elements. This is the content of Subsections 4.2.3 and 4.2.4.

In Section 4.3 we strife for a description of the elements in ¥ for ¥ € (Gn)ma);/%.
Via the elements in stair form, these equivalence classes can be indexed by maximal
compositions. For a F, n let ¥, € (Gn)mmg/% denote the equivalence class of the
element in stair form o, under ~. Then the elements 7<x,, for a F. n form a basis of
Z(Hp(0)). Since 7<y,, is the sum over all 7, where x is an element of the order ideal
generated by X, a description of the elements of 3, is desirable.

The main results of Section 4.3 are combinatorial characterizations of the equivalence
classes X(,,) (Theorem 4.3.20) and ¥, yn—#y with k odd (Theorem 4.3.40) and a decom-
position rule Xy, o)) = X(a1) © L(ay,...q,) if @1 is even given by an injective operator
® which we call the inductive product (Corollary 4.3.56). This allows us to describe X,
for all o F. n whose odd parts form a hook. Moreover, we will see how these ¥, can
be computed recursively. The results of Section 4.3 will be applied in Chapter 5 whose
topic is the action of the elements 7<y,, on the simple H,(0)-modules.

110



4.1 Centers and cocenters with a twist

4.1 Centers and cocenters with a twist

Throughout the section let W be a finite Coxeter group with Coxeter generators S and
0 be a W-automorphism that fixes S. We also use the shorthand H := Hy (0) for the
0-Hecke algebra of W. The purpose of this section is to introduce the center and the
cocenter of H twisted by ¢ and K-bases of them which are due to He [Hel5]. These
bases are indexed by certain equivalence classes of W under an equivalence relation ~;
depending on §. At the end of the section we consider a way of parametrizing these
index sets which also goes back to [Hel5]. We are particularly interested in the center
of H,(0) which results from setting W = &,, and § = id. In Section 4.2 we will discuss
further and more explicit parametrizations in types A, B and D.

The following exposition is mainly based on [Hel5]. We begin with clarifying which
choices for § are possible. Of course, § = id is a valid choice. Another example is given
by the conjugation with wy. Recall that wy denotes the longest element of W. For
u,w € W we use the shorthand w" = wwu~'. Define v: W — W, w + w™. Then
v is a group automorphism and by Proposition 2.2.6 it is also an automorphism of the
Bruhat order. Consequently, ¢(v(w)) = ¢(w) for all w € W so that v(S) = S. Hence, v
is another possibility for 4. In general, each graph automorphism of the Coxeter graph
of W gives rise to a W-automorphism that fixes S. By the next lemma, the converse
direction is also true. The result is not new. For instance, it was already used implicitly
in [GKP00, Section 2.10].

Lemma 4.1.1. Let 6 be a group automorphism of W with §(S) = S.
(1) 0 is an automorphism of the Coxeter graph of W.
(2) ¢ is an automorphism of the Bruhat order of W.

Proof. For w € W denote the order of w with ord(w). Let m be the Coxeter matrix and
' be the Coxeter graph of W. Then m(s,s’) = ord(ss’) for all s,s' € S. Since ¢ is a
group automorphism, we have ord(d(w)) = ord(w) for all w € W. Hence for all 5,8’ € S

m(6(s),6(s")) = ord(6(s)d(s")) = ord(ss’) = m(s,s'). (4.1)

Consequently, {s,s'} is an edge of ' (labeled with m(s, ")) if and only if {d(s),d(s")} is
an edge of ' (labeled with m(s, s’)). That is, § is an automorphism of T'.

By a comment following [BB05, Proposition 2.3.4], from each graph automorphism ¢
of I' we obtain a automorphism in Bruhat order by extending multiplicatively to W. The
reason for this is that ¢ only relabels the generators of W leaving the Coxeter relations
intact. Thus, § is also an automorphism of the Bruhat order of W. O

Remark 4.1.2. We determine all automorphism § of &,, with §(S) = S. The Coxeter
graph of &,, is shown below.

S1 S9 S3 Sn—2 Sp—1
[ ] [ J o— —@ [ ]

111



4 Centers and cocenters of 0-Hecke algebras

This graph has at most two automorphisms: the identity and the mapping given by
Si — Sp—i. For n > 3 these maps are distinct. Let wgy be the longest element of G,,.
Then wo(j) = n—j+ 1 for all j € [n] and therefore s;° = (n — i+ 1,n — i) = sp_;.
Hence the second map is v. Now Lemma 4.1.1 and the fact that v(S) = S imply that
de{id, v} it W = G,.

Since J is an automorphism of the Bruhat order by Lemma 4.1.1, it follows that we
obtain an algebra automorphism of H by setting ms — s for all s € S and extending
multiplicatively and linearly. This algebra automorphism is also denoted by 4. Note
that we have §(75) = 75, for all s € S as well.

For a,b € H define [a, b]s := ab—bd(a) the §-commutator of a and b. The §-commutator
of H is the K-linear subspace [H, H|s spanned by all d-commutators of elements of H.
We define the §-cocenter of H as the quotient of K-vector spaces H := H/[ H, Hly The

d-center of H is given by
Z(H)s:={2€ H|az=20(a) forallac H}.

In the case § = id we may omit the index 9.

Let 0’ :== v od. Our next goal is to prove a correspondence between Z(H)s and the
dual of F((;/)_l which is quite natural in terms of Frobenius algebras. Afterwards, we
continue with He’s construction of bases of Hs and Z(H)s. Note that the correspondence
is not necessary for the construction of the bases.

We first review some basics of Frobenius algebras and then identify H as an algebra
of this kind. Details on Frobenius algebras can be found in textbooks such as [CR62,
Lam99]. In [DHT02] Duchamp, Hivert and Thibon use the Frobenius algebra structure
of H,(0) in order to define a comultiplication on H,(0).

Let A be a finite dimensional K-algebra. We write A* := Homg (A, K) for its dual
space. Then A* becomes a left A-module by setting (af)(b) = f(ba) for all f € A* and
a,b € A. We call A Frobenius algebra if there is a K-linear map x: A — K such that
X(J) # 0 for each left or right ideal J # 0 of A. If A is a Frobenius algebra then the
map A — A*, a — ax is an isomorphism of A-modules. In other words, x is an A-basis
of A*.

Let’s get back to H. In [Fay05, Proposition 4.1] it is shown that the map x: H — K
given by

1 if w=wy
Tw —
0 if w# wy

for w € W and linear extension makes H a Frobenius algebra. We remark that from
Lemma 2.3.2 it follows that x(7,) = Xx(myw) for all w € W. Proposition 4.2 of [Fay05]
yields that

x(ab) = x(v(b)a)

for all a,b € H. In general, if A together with x is a Frobenius algebra then there exists
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a unique algebra automorphism of A satisfying the above equation called the Nakayama
automorphism of A. In the case of H, we additionally have 2 = id so that

x(bv(a)) = x(v*(a)b) = x(ab)

as well.

In [Bri08, Claim 1.2] Brichard relates Z(H)s with (F(51)71> by a K-isomorphism in
the case W = &,,. Since there are some flaws in the proof we give a proof of an even
more general result.

Theorem 4.1.3. The K-vector spaces Z(H)s and (F((;/)—l)* are isomorphic via the
map

W:Z(H)g—) (F(él)—l)*, Z—=ZX

where m: H — F(&/)—l is the canonical projection and Zx: ﬁ(y)q — K is the unique
K-linear map satisfying zx = Zx o 7.
Proof. Let §° = (§')~!. Then for z € Z(H)s, ZX is given by setting

Zx(a+ [H, H]se) = zx(a)

for all a € H. We have to show that ¥ is well defined, K-linear and bijective. The
linearity should be clear. For all a,b,c € H we have

x(bla, cls) = —ex([0'(a), blse) (4.2)

because

—cx ([6'(a), blse) = —ex(¢'(a)b — b6°('(a)))
= —x(&'(a)bc — bac)

= x(bac) — x(¢'(a)be)

= x(bac) — x(bev(d'(a)))
= x(b(ac — ¢d(a))

= x(bla, c5)

where we use that x(zy) = x(yv(x)) for the forth and §' = v o § for the fifth equality.
For all c € H we have

ceZ(H)s; < la,cJs=0 Yaec H
<= x(bla,cls) =0 Va,be H
< cx([a,blse) =0 Va,be H
<= [H, H]s C ker(cy)

(4.3)

where the second equivalence holds because x(J) # 0 for each left ideal J # 0 of H
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and the third equivalence is a consequence of (4.2) and the fact that —§’ is an H-
automorphism.

Given z € Z(H)s, Equation (4.3) implies that zx factors through [H, H|se. Thus,
there exists a unique Zx as claimed and V¥ is well defined.

Now we show that W is surjective. Let n*: (Hgo)* — H*, f — f o7 be the dual map
of the canonical projection. Consider f € (Hgo)*. Since x is an H-basis of H*, there is
a ¢ € H such that ¢y = 7*(f) = f om. Then

[H, H|so = ker(m) C ker(cy)

and from (4.3) it follows that ¢ € Z(H)s. Moreover ¢y om = ¢x = f om. Hence, ¢y = f
by the uniqueness of ¢y. Consequently, ¥ is surjective.

Lastly, we show that ¥ is injective. Let z € Z(H)s such that Zy = 0. Then zxy = 0
since zy = Zx o w. Moreover, x is an H-basis of H*. Therefore z = 0. 0

If § € {id,v} then 5! = § and we obtain the following result from Theorem 4.1.3.
For W = &,, this is [Bri08, Claim 1.2].

Corollary 4.1.4. If§ € {id,v} then

*

Z(H)g(ﬁ,,)* and  Z(H), = (H)

as K-vector spaces.

If W = &,, then by Remark 4.1.2 we have § € {id,v}. Hence, Corollary 4.1.4 covers
all possibilities for § in this case.

We need some more notions from [Hel5] in order to introduce bases for Hs and
Z(H)s. Two elements w,w’ € W are called d-conjugate if there is an x € W such that
w' = zwd(z)~L. The set of 5-conjugacy classes of W is denoted by cl(W);.

Example 4.1.5. The v-conjugacy classes of &3 are

{1,(1,2,3),(1,3,2)}, {(1,2),(2,3)} and {(1,3)}.

For O € cl(W); the set of elements of minimal length in O and the set of elements of
maximal length in O is denoted by O, and Oy, respectively. We want to decompose
these sets using an equivalence relation.

Let w,w’ € W. For s € S we write w 25 w' if w' = swd(s) and £(w') < £(w). We
write w —5 w’ if there is a sequence w = wy,ws, ..., wrr1 = w’ of elements of W such
that for each i € [k] there exists an s € S such that w; 25 w;ir1. If w —5 w' and
w' —s w we write w x5 w'.

Clearly, a5 is an equivalence relation. For w € W let [w]s denote its equivalence class
in W with respect to ~z5. If w &5 w’ then ¢(w) = ¢(w'). Thus, for all O € cl(W)s, Omin
and Opax decompose in equivalence classes of ~5. Define Ws iy = UOed(W) s Omin

and W&miryzd to be the quotient set of Wsmin by ~s. Analogously, define the sets
W5 max = UOecl(W)5 Omax and W&mayzd. As before, we may omit the index § if § = id.
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Example 4.1.6. We consider G3.
(1) We have (1,2) (1—’%)1, (2,3) (g)y (1,2) so that (1,2) ~, (2,3). Thus, from Exam-
ple 4.1.5 it follows that the elements of (63)v,miry% are

{1}, {(1,2),(2,3)} and {(1,3)}.

(2) We have (1,2,3) 2 (1,3,2) %2 (1,2,3) so that (1,2,3) ~ (1,3,2). Hence, the

elements of (63)1113”‘/% are

{1} ’ {(L 27 3)7 (173, 2)} and {(1, 3)} .
We now come to the bases of Hs and Z(H)s found by He.

Theorem 4.1.7 ([Hel5, Theorem 6.5]). Let wi,...,wy € Wsmin be a system of repre-
sentatives of W&mifygé. The elements T, + [H,H]s for i = 1,...,k form a basis of
Hs.

We remark that by [Hel5, Proposition 3.1] for all ¥ € W&miryz s the element 7, +
[H, H]s of Hs does not depend on the choice of the representative w € .

For ¥ € W&mayx 5 set
Wes:={z e W |z <w for some w € ¥}

and

Theorem 4.1.8 ([Hel5, Theorem 5.4]). The elements w<y, for ¥ € Wé,ma)y% form a
basis of Z(H)s.

Example 4.1.9. We consider H3(0).
(1) From Example 4.1.6 and Theorem 4.1.7 it follows that

{ﬁw + [H3(0)7H3(0)L/ | w=1, (172)> (1a3)}

is a basis of H3(0),.
(2) We use Theorem 4.1.8 in order to determine a basis of Z(Hs3(0)). In Example 4.1.6
the index set (63)111%/% is given. In addition,

(1,2,3) = s1892, (1,3,2) = s9s1 and (1,3) = wy.
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Thus, Theorem 4.1.8 yields that the elements

1, 147 + @+ T + Mo and Y Ty
weS3

form a basis of Z(Hs3(0)).

Remark 4.1.10. Regarding the roles played by W&miryz s and W&mavzé in Theo-
rems 4.1.7 and 4.1.8 it is natural to ask for the description of a system of representatives
or at least the cardinalities of these sets. This is the subject of Section 4.2. There the
question is answered for W = &,,. Also the cardinalities of the quotient sets are given
in type B and in some cases in type D. In [Hel5] He does not discuss these matters.

We have seen in Proposition 2.2.6 that w — wwg is an antiautomorphism of the
Bruhat order of W. This map gives rise to a bijection from W&miry;\v, s to W5’,ma>7;\v, 5 as
follows. This bijection will often be used in Section 4.2.

Lemma 4.1.11. Let w,w’' € W and ¥ C W.
(1) w—sw if and only if wW'wy —5 wwg.
(2) w € Wsmin if and only if wwy € Wy max-
(3) X e W@miryzd if and only if Ywg € Wts',may%,.

Proof. The proofs of (1) and (2) are slight generalizations of the argumentation at the
beginning of [GKP00, Section 2.9]. For Part (3) let X € W&min/zé and w € X. Then

w € Wsmin and by Part (2), wwy € W max. Hence, there is a T € Wé',may%, such
that wwy € T. From Part (1) and the definition of ~5 we infer that for all w’ € W

w Ny W — w'wo g wWwg.

In addition, the map from W to W given by right multiplication with wq is bijective.
Therefore it follows that Ywg = T. Thus, Xwy € W5’7ma>y;g s+ Analogously, we obtain

Twg € W&mir/% 5 if we start with an arbitrary T € WJ’,may% 5 O

Combining Theorem 4.1.7, Theorem 4.1.8 and Lemma 4.1.11 we get a result similar
to Theorem 4.1.3. Note that this result depends on the K-bases given in the theorems
whereas the proof of Theorem 4.1.3 is K-basis-free.

Corollary 4.1.12. The K-vector spaces Z(H)s and Hg are isomorphic.

Elliptic conjugacy classes

We now come to a parametrization of the sets W&miryz s and W5 max ~s Which is due
to He. This parametrization is valid for all choices of W and §. We first state the
parametrization in Proposition 4.1.14 and then infer some results that are of use in
Section 4.3 and Chapter 5. In Section 4.2 we consider more explicit parametrizations in
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the cases where W is the symmetric group and make some remarks about the situation
in types B and D.
A §-conjugacy class O € cl(W)s is called elliptic if O N Wy = () for all I C S such

that §(1) = I. Elliptic conjugacy classes are also called cuspidal in the literature (e.g. in
[GP00)).

Define
Is:={(I,C)|ICS,I=46()and C € cl(Wy)s is elliptic} .

Note I's has a recursive structure. If all elliptic d-conjugacy classes of all parabolic
subgroups Wy of W with 6(I) = I are known then the problem of determining I's
reduces to the elliptic d-conjugacy classes of W itself.

Example 4.1.13. We determine the set I'), associated to ©3. The simple reflections
of &3 are S = {s1,s2}. Since v(s1) = s2, the subsets of S that are stable under v are
() and S. The sole v-equivalence class of (S3)g is {1}. Trivially, this class is elliptic.
The v-equivalence classes of (63)s = G35 are given in Example 4.1.5. Observe that
{1,(1,2,3),(1,3,2)} is the only element of cl(&3), that is not elliptic. Hence,

Ly ={(0,{1}), (5, {(1,2),(2,3)}), (S, {(1,3)})} .
Proposition 4.1.14 ([Hel5, Corollaries 4.2 and 4.3]). The maps

Ty — Womin Ty — Woamax
S and 8
(I, C) — Cmin (I, C) — Cminw()

are bijections.

One may check that by applying Proposition 4.1.14 on Example 4.1.13, we obtain the

63)V»mifyzy and (63 max 7 from Example 4.1.6. We continue with consequences
of Proposition 4.1.14 which we prepare for later use.

sets (

Lemma 4.1.15.
(1) Forall ¥ € W&miryzd we have §(X) = X.
(2) Forall ¥ € W&mayzé we have §'(X) = X.
Proof. (1) Let X € W5vmﬁV;\¢5 and w € ¥. By Proposition 4.1.14 there exists a tuple

(I,C) € T's such that C' € cl(Wy)s and ¥ = Cyin. Hence w € W and therefore
w™t € Wy. Tt follows that

§(w) = w twi(w™H " e C.

Moreover, £(§(w)) = ¢(w) because J is a Bruhat order automorphism. Therefore, é(w) €
Cmin = 2. Hence, §(X) = X.
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(2) Let X € W(imay%a. From Lemma 4.1.11 it follows that Ywy € W5’,min/%5,.
Hence,

5/(2)11)0 = 5,(211)0) = E’wo

where we use that §’ is a group homomorphism with &’ (wg) = wy for the first and Part (1)
for the second equality. Now multiply from the right with wy. O

The following result will be used repeatedly in Section 4.3 and Chapter 5 for W = &,,.
We obtain it by setting § = id in the second part of Lemma 4.1.15.

Corollary 4.1.16. For all ¥ € Wmax/ we have v(X) =X.
A similar result on parabolic subgroups will also be handy in Chapter 5.
Lemma 4.1.17. For all I C S we have v(W) = W, .

Proof. Let I C S and w € W. Recall that v is an Bruhat order automorphism. In partic-
ular, v(I) C S. Let uy - - - up with u; € S be a reduced word for w. Then v(uq)--- v(uy)
is a reduced word for v(w). Thus,

weWr <= ujelforalll1 <j<k
< v(uj) ev(I) forall 1 <j<k <= v(w) € W,. O

4.2 Parametrizations in classical types

Let W be a finite Coxeter group with Coxeter generators S, H := Hy (0) its 0-Hecke
algebra and § be an W-automorphism with 6(S) = S. Theorems 4.1.7 and 4.1.8 intro-
duced bases of the d-cocenter Hs and the d-center Z(H )s that are indexed by W5 min /7 p

and W&ma)yg 5 respectively. In this section we consider parametrizations of these quo-

tient sets in types A, B and D. We focus on ((‘Bn)mmyz since this set indexes the basis
of the center of the 0-Hecke algebra of G,,.

We often use the following correspondence. Recall that 6’ = v o § where v is the
W-automorphism given by conjugating with wg. From Lemma 4.1.11 it follows that
> — Ywyg is a bijection from W&miryg s to W5/7ma>7% 5 - Hence, a parametrization of the
one set entails a parametrization of the other.

The section is structured as follows. In Subsection 4.2.1 and Subsection 4.2.2 we
consider parametrizations of (6”)may@ In both cases we obtain a parametrization by
certain compositions of n and a set of representatives for (6”>ma>5/%. Subsection 4.2.1 is
based on the calculus on crossing diagrams done by Brichard [Bri08]. It allows to deter-
mine the dimension of Z(H,(0)). In Subsection 4.2.2 we consider certain permutations
called elements in stair form which were introduced by Kim [Kim98].

In Subsection 4.2.3 we introduce a parametrization of (6n)mir/% given by Coxeter
elements which is based on the results of Gill from [Gil00]. Recall from Remark 4.1.2
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4.2 Parametrizations in classical types

1| -

Figure 4.1: Two crossing diagrams on four strands

that we have 0 € {id,v} if W = &,,. Hence the findings of Subsections 4.2.1 to 4.2.3
cover all possibilities for (Gn)thnil}/% s and (6n>5,ma)§/z 5

Finally, in Subsection 4.2.4 we briefly discuss results concerning Wmin/m and Wma}V%
in types B and D which are also consequences of [Gil00]. We obtain dimension formulas
for the cocenter of H in type B, and D,, and the center of H in type B, and Da,.

Subsection 4.2.2 is the only part of this section which is significant for the subsequent
argumentation in Section 4.3 and Chapter 5. It can be read independently from the
other subsections.

4.2.1 Crossing diagrams

In this and the following two subsections we consider the symmetric group &,, with
its set of simple reflections S and 0-Hecke algebra H,(0). Our goal is to obtain a

parametrization of <6”)ma>5/% and we use a calculus on topological diagrams due to
Brichard [Bri08] to achieve it. We call these diagrams crossing diagrams. Each 7, for
w € G, can be represented by a crossing diagram. Brichard uses them in order to obtain
a basis of H,(0), and determine the dimensions of H,,(0), and Z(H,(0)).

Crossing diagrams are similar to the braid diagrams associated with the Artin braid
groups. For a textbook treatment of the braid groups and braid diagrams we refer to
[KTO08]. In the present subsection we first review the findings related to H,(0) of [Bri08]
and then use them to obtain new parametrizations of (Gn)u,mn}/%/ and (Gn)max/z.

The following definition of crossing diagrams is based on the definition of braid dia-
grams from [KTO08, Section 1.2.2]. Let J be the real interval [0, 1]. A topological interval
is a topological space homeomorphic to J.

Definition 4.2.1. A crossing diagram on n strands D C R x J is the union of n
topological intervals called strands of D such that the following holds.

(1) The projection R x J — J maps each strand homeomorphically onto J.

(2) Every point of {1,2,...,n} x {0,1} is the endpoint of a unique strand of D.

(3) Every point of R x J belongs to at most two strands of D. At each intersection
point of two strands, the strands meet transversely.

The intersection points are also called crossings. The difference to the definition of
usual braid diagrams in [KT08, Section 1.2.2] is that at a crossing we do not care which
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4 Centers and cocenters of 0-Hecke algebras

U

Figure 4.2: Isotopic diagrams

strand is overgoing and which is undergoing. Two diagrams on four strands are shown
in Figure 4.1.

Two crossing diagrams D and D’ are called isotopic if there is a continuous map
F: D x J — R x J such that F(D x {s}) is a crossing diagram for each s € J (see
Figure 4.2). It follows that the number of crossings is invariant under isotopy. Note
that Brichard uses another notion of isotopy in [Bri08]. Equality of crossing diagrams is
considered up to isotopy.

For two diagrams D; and Ds the product D;Ds is the diagram obtained by writing
Dy under D; and resizing the result to R x J. For ¢ = 1,...,n — 1 we identify the
generator m; of H,(0) with the diagram on n strands where exactly strand 7 and i + 1
cross. The diagrams on four strands 71 and 779 are shown in Figure 4.1. The diagram
on n strands without crossings is denoted by 1.

Let D be a crossing diagram on n strands. Then we can use an isotopy to slightly
move the crossings of D so that the second coordinates of all crossings are distinct.
Then there are 41, ..., € [n — 1] such that we can expand D as a product of diagrams
m;, -+ - i, . Note that isotopies that preserve the relative order of the second coordinates
of the crossings do not change this expansion. Conversely, if a isotopy does changes this
order then m;7; is substituted by m;m; for some 7, j € [n — 1] such that |i — j| > 2 within
the expansion. Therefore, the expansion of D is unique up to this braid relation.

In order to obtain the other defining relations of H,(0), we introduce the following
two manipulations of sub diagrams of D, which we call moves.

(1) Replace two consecutive crossings of the same strands with one crossing or vice

N

(2) Move a strand completely over or under a crossing.

versa.
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4.2 Parametrizations in classical types

=[]

Figure 4.3: Two diagrams on the Mo&bius strip which are the same. We pushed the first
crossing of the left diagram upward in order to move it around the Mébius
strip.

Moves 1 and 2 correspond to the relations 7ri2 = m; and mmi41T; = Wi1TTir1 Of
H,,(0), respectively. The second move is known as the third Reidemeister move.

We say that two diagrams are equivalent if we can transform one diagram into the
other by a series of moves (and of course isotopies). That is, the equivalence classes of
the crossing diagrams corresponding to m; satisfy the same relations as the 7; themselves.

Therefore, mapping each m; € Hy,(0) to the equivalence class of its crossing diagram
yields a surjective algebra homomorphism from H,(0) to the K-algebra generated by
the equivalence classes of crossing diagrams. This map is also injective: Assume that
mi, - -+ My, and mj, - - - 75, correspond to equivalent diagrams D and D', respectively. Then
we can transform D into D’ by a series of isotopies and moves. But since 7;, - - - m;, and
mj, - - j, are the expansions of D and D" we can transform m;, - - - m;, into mj, - - m;, by
applying the defining relations of H,,(0) corresponding to the isotopies and moves. Hence
Ty« -+ Ty, = Ty, -7, as elements in Hy(0). Therefore, H,(0) and the the K-algebra
generated by the equivalence classes of crossing diagrams are isomorphic K-algebras.

For each w € &, we can represent m, by the crossing diagram m;, ---m;, where
Siy -+ 84, is a reduced word of w. Since two reduced words of w can be transformed
into each other by a series of braid moves, the diagram m,, is unique up to the applica-
tion of the third Reidemeister move.

From using the isomorphism from above and the fact that the m,, for w € &,, form a
basis of H,(0), it follows that the diagrams m,, for w € &,, form a system of representa-
tives of the equivalence classes of crossing diagrams.

A diagram is called reduced if its number of crossings is minimal in its equivalence
class. Let s;, ---s; be a word in &, and D := m;, ---m;, the corresponding diagram.
Then s;, - - - s;, is a reduced word if and only if D is reduced. The reason for this is that
both statements are equivalent to

k=min{l|sj,,...,s; € &, such that 7;, ---7j, = m, ---m, in H,(0)}.

l
It follows that for all w € &,, the reduced diagrams of the equivalence class of 7, are
those whose expansions are given by reduced words of w.
So far, we related H,(0) to crossing diagrams on n strands in the plane. In order
to obtain diagrams that correspond to H,(0) , we consider diagrams on the Mobius

v
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o el | | ]

Figure 4.4: Some prime diagrams

strip. That is, we still draw diagrams in the plane but we identify the top position (i, 1)
with the bottom position (n —i + 1,0) for ¢ = 1,...,n. Let mm, with w € &, be a
diagram with topmost crossing between strand ¢ and strand ¢ + 1. Then we can use an
isotopy to push this crossing upward and move it around the Mobius strip so that we
obtain a crossing between strand n — i + 1 and n — i below 7, (see Figure 4.3). Hence,
TiTw = TwTn—i, 1.€. [T, Tyl = 0.

From this it follows that the equivalence classes of the diagrams on the Mobius
strip corresponding to m, for w € &,, satisfy the same relations as the elements m,, +
[H,(0), H,(0)], of H,(0),. Thus, the K-vector space formed by these equivalence classes
is isomorphic to H,,(0),. As a consequence, maximal sets of pairwise nonequivalent re-
duced diagrams on the Md&bius strip correspond to bases of H,(0),,.

From now on we understand all diagrams as diagrams on the Mobius strip. Since we
have identified top and bottom positions the strands of of an n-strand diagram now form
circles around the Mdbius strip. Let ¢ be the number of these circles. Then ¢ < n. A
single circle is called component of the diagram. The thickness of a component is the
number of top positions contained in the component. In other words, the thickness is
the number of times the circle goes around the Mdébius strip. A diagram is called prime
if it has only one component.

Brichard shows in [Bri08, Section 3.1] for each n that P, := mymy - - - WESTRE the only

reduced prime diagram of thickness n. Some prime diagrams are shown in Figure 4.4.
We now add a prime component to a diagram. The following is a reformulation of results
from [Bri08, Section 3.2].

Definition 4.2.2. Let m € N, k := [1| and D := m;, ---m;, be a diagram with n

strands. Then we define the composite diagram of P, and D to be the crossing diagram
with m + n strands

PpoD :i=mmy Mg« Ty 4 k1 Mgkt 1" Ti+k+1 -7

where

1 if m is even
n= . .
Tt 1Th+2 " ** Than 4 M 1S odd.

See Figure 4.5 for examples. Geometrically, we obtain P,,0D by splitting P,, vertically
(almost if m is odd) in the middle and attach the two parts right and left to D. If m > 2
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Diaiy=PsoPy=m 1-m=

Dugsy = Pao Dy =m-mm - 1=

(

Figure 4.5: The crossing diagrams of some compositions. In each composite diagram
P, o D the dashed strands belong to P,,.

then P,, occupies the outer top and bottom positions and D the inner positions in Py,0D.
If m is odd, then P,, has the top positions

([k+1]Un+m-—k+1,n+m]) x {1}
and the bottom positions
(K] Uln -+ m — k,n+ml) x {0}

Therefore, the strand of P, ending in (k + 1,0) corresponds to the strand of P, o D
ending in (m + n — k,0). That is, the latter strand has to cross each strand of D in
P,, o D which results in the factor n. If m is even then this does not occur since P, can
symmetrically be split in the middle and has no crossing Tm.

Definition 4.2.3. Let a = (a1, ..., q;) E n. Inductively, we define
P, oP,,0---0P, =Py o(Py0---0PF,).

This crossing diagram on the Mdbius strip is called the crossing diagram of « and denoted
by Dy,.

Some crossing diagrams of compositions are shown in Figure 4.5. Note that the
diagram D, is not necessarily reduced. For example, D oy = mi72 is equivalent to m
and therefore not reduced (see Figure 4.6). We want to characterize the compositions «
for which D,, is reduced.

Definition 4.2.4 ([Kim98]). Let a = (aq,...,0q) E n. We call & maximal and write
a Ee n if there exists a k with 0 < k <[ such that o; is even for i < k, oy is odd for
1>k and ape1 > Qpgo >0 > oy
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D(Lg) = Tymy = ( = ( > ( =m

Figure 4.6: These diagrams on the Mobius strip are equivalent. We obtain the second
from the first diagram by pushing the lower crossing around the Moébius strip.
Thus, the diagram D(j 9) is not reduced.

We write a F, n if « is a maximal composition of n to indicate, that only the order
of the even parts matters. We emphasize that if « is a composition with only odd parts
that are weakly decreasing then it is maximal. In other words, each partition A with
only odd parts is a maximal composition. Regarding the compositions from Figure 4.5,
we get that (3,1) and (4, 3,1) are maximal whereas (1,2) is not.

Section 3.2 of [Bri08] deals with the composition of prime diagrams. Brichard does not
use the notions of maximal compositions or crossing diagrams of compositions. However,
her results can be rephrased as follows.

Lemma 4.2.5 ([Bri08, Section 3.2]).
(1) Let o n. The diagram D,, is reduced if and only if « is maximal.
(2) Let o, B Fe n with Dy, equivalent to Dg. Then a = 3.

(3) Each diagram on n strands is equivalent to D, for some a F¢ n.

Let o Fe nand Dy = m;, - - ;. Define do, := s;, - - - 54, € 6. Since D, is reduced by
Lemma 4.2.5, s;, - - - s, is a reduced word for d, and therefore mg, = D, as diagrams.
Note that by using Definitions 4.2.2 and 4.2.3, we can recursively compute d,.

Lemma 4.2.5 implies that {D, | a Fe n} is a system of representatives of the equiv-
alence classes of diagrams with n strands on the Mobius strip. Therefore, we have the
following,.

Theorem 4.2.6 ([Bri08, Section 5.1]). The elements w4, + [Hn(0), H,(0)], for a Fe n
form a basis of Hp(0)

Example 4.2.7. Let n = 3. The maximal compositions of 3 are (3), (2,1) and (1,1, 1).
The corresponding diagrams are
D(g) = P3 =T,
D1y =Po P =1,
D(13) = P1 o} (Pl @) Pl) = P1 O T = T T2.

Hence, {m, + [H3(0), H3(0)], | w =1,(1,2),(1,3)} is a basis of H3(0),,.
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Since the basis of H,,(0), of Theorem 4.2.6 is indexed by maximal compositions, it is

easy to determine the dimension of H,(0),. Recall that by Corollary 4.1.4 this is also
the dimension of Z(H,(0)).

Corollary 4.2.8 ([Bri08, Section 5.1]). The dimensions of Z(Hy(0)) and Hy(0), both
equal

ny!

Men A

where for X\ = (171,282 ) n, my = [Li>1 k2i! and ny := 37,54 ko; is the number of
even parts of A.

Proof. Each summand is the number of maximal compositions that rearrange the par-
tition A F n. Hence, the sum is the number of maximal compositions of n. By Theo-

rem 4.2.6 this is the dimension of Hy(0),,. O
From Theorem 4.1.7 we already know a basis of my. It yields that
{Ttw; + [Hn(0), H,(0)], |1 =1,...,k}
is a basis of my where w1, ..., w; is a system of representatives of <6n)v,mir/zu.

Alternatively, by Proposition 4.1.14 one can use a system of representatives of
{Cuin | (I,C) €T}

with the I'), corresponding to &,,.

In Remark 4.1.10 we raised the question for the cardinality and the description of a sys-
tem of representatives of (GN)u,mir;/%V. Our next aim is to show that with {d, | « Fc n}
we have found such a system. Its cardinality is given by Corollary 4.2.8. This leads to
our desired parametrization and extends the findings of Brichard [Bri08] and He [Hel5].

Lemma 4.2.9. Let a F. n. Then dy € (Sy,)y min-

Proof. Let O € cl(&,,), such that d, € O. We have to show that d, € Onin, i.e. that
¢(dy) is minimal in O. Assume that ¢(d,) is not minimal. Then by [Hel5, Theorem 2.2]
there are w € O and s; € S such that dy —%, w and l(w) < £(dy). Thus, dy = S;wWSH—;
and {(w) = €(d) — 2. Let sj, - s, be a reduced word for w. Then in H,(0), we have

Tdy = TGy * M5, Tn—i = TG TGy * - Tj,..

That is, the diagram of D, contains two consecutive crossings of the same strands. Thus
we can apply Move 1 and obtain a diagram equivalent to D, with one crossing less then
D,. But this is a contradiction since D,, is reduced by Lemma 4.2.5. O

We now come to the parametrization of (GH)maV%.
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Proposition 4.2.10. The maps

{akE.n} — (6n)y7mir}/%l/ o {aFen}— (S )max

o — [da]y a [dawO}

are bijections.

Proof. Let a Fe n, f be the first and g be the second map. From Lemma 4.2.9 we
have that do € (65)ymin. Hence, [dy], € (Sn)u,miyzy as claimed. Since {a F, n} and
(671)1/,11111/%’/ both parametrize bases of H,,(0), by Theorem 4.2.6 and Theorem 4.1.7,
respectively, the two sets have the same cardinality. Therefore, in order to show that f
is a bijection, it suffices to prove its injectivity.

Let  Ec n be such that [d,], = [dg],. Then dy ~, dg and from [Hel5, Proposition
3.1] it follows that mg, + [Hn(0), Hn(0)]y, = 74, + [Hn(0), Hp(0)],. Now Theorem 4.2.6
implies o = 8. Hence, f is a bijection.

Now consider g. Lemma 4.1.11 provides the bijection

h: (6n>u,mir/%V — (Gn)ma)%%, Y= Ywy.

Then g = ho f and hence g is a bijection too. O

By Proposition 4.2.10 we have that the d, and d,wgy for a E., n form a system of

representatives for (Gn)u,mirygy and <6n)ma>;/%7 respectively. Moreover, with Proposi-
tion 4.1.14 it follows that the d, form such a system for {Cyn | (I,C) € T, }.

Example 4.2.11. Consider n = 3. From Example 4.2.7 we obtain that

ake3| (3 (2,1) (1%
do | (1,2) 1 (1,3)
dowo | (1,3,2) (1,3) 1

where wy = (1,3). One may check with Example 4.1.6 that the d, and the d,wg form
systems of representatives of (63)%1111“/%” and (63)ma>7x, respectively.

From Proposition 4.2.10 and Theorem 4.1.8 we deduce the following.
Corollary 4.2.12. The elements T<(q,w,] for @ Fe n form a basis of Z(Hp(0)).

Let a Fe n. Recall that T<(g,w, = Zaze(Gn)<[ T, where

dawg]
(&n)<[dawo] = {2 € &y | z < w for some w € [dawo]} -

That is, we have an explicit description of the expansion of elements of the basis of
Z(Hy,(0)) into a basis of Hy,(0). In Section 5.1 of [Bri08] Brichard describes how one
can use the inverse of the isomorphism from Theorem 4.1.3 in order to obtain a basis
of Z(Hy,(0)) from the basis {mq, + [H,(0), H,(0)], | « Fe n} of H,(0),. In comparison
with the description above, her procedure is less explicit. Indeed, [Bri08] contains no
formula for the expansion of the basis elements of the center in terms of a basis of H,,(0).
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4.2.2 Elements in stair form

Recall from Definition 4.2.4 that a composition « is called maximal if there is a k > 0
such that the first k& parts of a are even and the remaining parts are odd and weakly
decreasing. We mentioned in the introduction of the chapter that Kim defined the
elements in stair form o, € &, for a F n [Kim98]. Geck, Kim and Pfeiffer showed that
these elements have maximal length in their respective conjugacy class if and only if «
is a maximal composition in [GKPO00]. In this subsection we show that the o, for a F. n

form a system of representatives of (Gn)may% and by that give another parametrization
of (Gn)may%. This is the foundation of Section 4.3 and Chapter 5.

Definition 4.2.13. Let o = (aq,...,q;) F n. Define the list (x1,z2,...,x,) by selting
To;—1 :=1 and xo; :=n — i+ 1. The element in stair form o, € &,, corresponding to «
s given by

Oq = 0a,0ay """ Oq
where o, is the a;-cycle
Oa; = (:L‘Oé1+---+01i71+17 Tag+-ta;_1425 - $a1+---+ai71+ai) .

For instance, 049y = (1,6,2,5)(3,4). We obtain o, for a = (a1, ..., o) F n as follows.
Let d; := Z;Zl a; for i = 1,...,1 and consider the list (x1,x2,...,2,) given as above.
Then split the list between x4, and z4,41 for i = 1,...,1 — 1. The resulting sublists are
the cycles of 0. In particular, if o and 3 are compositions with o, = 0 then o = 3.

This following parametrization of (6n)ma)§/% is the main result of this subsection.

Proposition 4.2.14. The map

{aEen} — (Gn)may%

a— [04]
s a bijection.

Before we begin with the proof of Proposition 4.2.14 we discuss some immediate
consequences. First of all, using Lemma 4.1.11 as in Proposition 4.2.10 we obtain the

corresponding parametrization of (GH)u,miryp\jU.
Corollary 4.2.15. The map

{CY ':e n} — (Gn)y,mir/zy

a — [oawoly

s a bijection.
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4 Centers and cocenters of 0-Hecke algebras

Example 4.2.16. Consider n = 3. Then we have

ake3| (3)  (2,1) (1%
oo | (1,3,2) (1,3) 1
oawo | (1,2) 1 (1,3)

One may check against Example 4.1.6 that the o, and the o,wy form a system of
representatives of (63)ma>7z and (63)V7miﬂ/%l/, respectively.

By comparing with Example 4.2.11, we obtain that o, = dywq for all a F, 3. Hence,
one might be tempted to conjecture that this is always the case. However, a = (3,3)
provides the smallest counter example:

o(3,3) = (1,6,2)(3,4,5) whereas d(3,3)wo = (1,6,2)(3,5,4).

Let a Fc n. In comparison with the permutation d, corresponding to the crossing
diagram D,, the element in stair form o, is defined in cycle notation, whereas d, is
given by a reduced word defined by a recursion. In Section 4.3 and Chapter 5 we
will only work with elements in stair form exploiting the fact that we know their cycle
notation. Therefore, we introduce the following notation.

Definition 4.2.17. For a F. n define X, € (6”)ma}yz to be the equivalence class of
the element in stair form o, with respect to ~.

From Proposition 4.2.14 and Theorem 4.1.8 we obtain the following.
Corollary 4.2.18. The elements w<x,, for o Ee n form a basis of Z(Hy(0)).

Now we come to the proof of Proposition 4.2.14. The first result in this direction goes
back to [Kim98]. See [GKP00, Theorem 3.3| for a proof.

Lemma 4.2.19. Let a F n. Then o4 € (Sp)max if and only if a is a mazimal compo-
sition.

Because of the Lemma 4.2.19, it remains to show the following in order to prove
Proposition 4.2.14.

(a) For each X € (GR)ma)g/% there is an o Fe n such that o, € 3.

(b) If o, B Fc n and 04 =~ 0 then o = f5.

From Proposition 4.2.10 we know that [{a Fe n}| = ’(Gn)ma)g/%‘ and therefore it suffices

to prove either (a) or (b). However, we show both statements here as both proofs involve
intermediate results that will be useful in later sections. By doing so, we also get an
alternative proof of the dimension formula given in Corollary 4.2.8.

In order to prove Statement (a) we need the following result.

Lemma 4.2.20. Let W be a finite Coxeter group and w,w' € W be such that w — w'
and {(w) = L(w'). Then w =~ w'.
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4.2 Parametrizations in classical types

Proof. Let S be the set of Coxeter generators of W. It suffices to consider the case
where w 2 w’ for some s € S because by definition — is the transitive closure of all the

relations - with ¢ € S. Then w’ = sws. Thus, w = sw's and since £(w) = £(w'), we
have w’ = w. Hence w ~ w'. O

Proof of Statement (a). Let ¥ € (6n)ma)5/% and o € 3. In [Kim98, Section 3| it is
shown that there is a § F n such that og — 0. Moreover, Statement (a”) of Section 3.1
in [GKPO0O] provides the existence of an a . n such that o, — og. Therefore, o, — o.
Hence, 0, and o are conjugate and ¢(o,) > ¢(o). But the length of o is maximal in its
conjugacy class. Hence, ¢(0,) = ¢(0) and Lemma 4.2.20 yields o, ~ 0. O

We begin working towards Statement (b). As before, we will trace the relation ~ back
to the elementary steps 2 with 7 € [n — 1]. Consider o € &,, and 7 = s;0s;. Then we
have 7 2% ¢ or 0 2% 7 depending on /(s;os;) — £(c). Moreover ¢ ~ 7 if and only if the
difference vanishes. Thus our first goal is to determine ¢(s;os;) — ¢(c) depending on o
and s;.

Recall that for all o0 € &,, and i € [n — 1]

si € Dp(o) < o(i) >o(i + 1),
si € Dp(0) <= o 1(i) > o7 (i +1).

Lemma 4.2.21. Let o € &, andi,j € [n—1]. Then {o(i),o(i+ 1)} # {j,j+ 1} if and
only if (s; € Dp(0) <= sj € Dr(0s;)).

Proof. We consider all permutations in one-line notation. Note that for all ¢ € &,, we
have that j € D (o) if and only if j + 1 is left of j in o.

Now fix a 0 € &,,. Observe that we obtain os; from o by swapping o (i) and o(i +1).
Since these are two consecutive characters in the the one-line notation of o, the relative
positioning of j and j + 1 is affected by this interchange if and only if {o(i),0(i + 1)} =
{j,j + 1}. Now use the note on left descents from the beginning to deduce the claim. [

Lemma 4.2.22. Let 0 € G,, and i € [n — 1].
(1) If {o(i),0(i+ 1)} # {i,i + 1} then

o) —2 ifo(i)>o(i+1) and o7 (i) > o~ (i + 1),
U(siosi) = L(o)+2 ifo(i)<o(i+1) and o 1(i) <o~ 1(i+1),
l(o) else.

(2) If{o(i),o(i+ 1)} = {i,i + 1} then either i andi+1 are fizpoints or form a 2-cycle
in o. In particular, s;0s8; = 0.

Proof. Part (2) should be clear. For Part (1) assume that {o(i),0(i + 1)} # {i,i+ 1}.
We have

U(sios;) — L(0) = L(sjos;) —l(os;) + l(os;) — (o)
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4 Centers and cocenters of 0-Hecke algebras

where each of the two differences on the right hand side is —1 or 1 depending the truth
value of the statements s; € D (os;) and s; € Dg(0), respectively. From Lemma 4.2.21
we have that s; € Dp(os;) if and only if s; € Dp (o). That is, the first difference depends
on whether s; € Dr (o) or not. Thus, the description of D (c) and Dg(o) preceding
Lemma 4.2.21 implies the claim. O

We now show that for a F. n all elements of Y, have the same orbits of even length
on [n].

Lemma 4.2.23. Let aF. n and 0 € &,, such that o, =~ 0. Then we have the following.
(1) The orbits of even length of o and o, on [n] coincide.

(2) Let O be an o-orbit on [n] of even length. Then the orbits of o and o2 on O
coincide.

Proof. Since 0, ~ o, we have 0, — ¢ and ¢(0,) = ¢(0). Using induction on the minimal
number of elementary steps w —» w’ (with some w, w’ € &, and s € S) necessary to relate
0q to 0, we may assume that there is a 7 € 6,, and an s; € S such that o, — 7 Ao
and 7 satisfies properties (1) and (2) (o, certainly does). Then ¢(o,) > 4(1) > {(0) so
that in fact £(on) = (1) = 4(0) and 04 = T = 0.

It remains to show that 2% transfers properties (1) and (2) from 7 to 0. Because
o = §;TS;, we obtain ¢ from 7 by interchanging ¢ and 7 4+ 1 in the cycle notation of 7.
If 4 and 7 + 1 both appear in orbits of uneven length of 7 then properties (1) and (2) are
not affected by this interchange. Thus, we are left with two cases.

Case 1. Assume that ¢ and 7 + 1 appear in different orbits of 7, say 01 and O3 such
that at least one of them, say 01, has even length. We show that this case does not
occur. To do this, let mq and ms be the minimal elements of @1 and Os, respectively.
If Oy also has even length, we assume mj < ms.

For w € &,, and j € [n] let (w) denote the subgroup of &,, generated by w and (w)j
be the orbit of j under the natural action of (w) on [n]. Since T satisfies property (2)
and O; has even length, there is a p; > m; such that

Ol< = <7'2>’I7’L1 = <O-34>m1 = {mlaml + 1a cee 7p1}a

07 = <7'2>7'(m1) = <o§>aa(m1) ={n—m+1,n—my,...,n—p; +1}.
Claim. Let a € O7,b€ Og and c € O7. Thena < b < c.

To prove the claim consider the positions of elements of [n] in the cycle notation
Oq = Oq, ** Oq, given by the definition. The elements on odd positions 1,2, 3,... form an
strictly increasing sequence. The elements on even positions n,n—1,... form an strictly
decreasing sequence but they are always greater than the entries on odd positions.

We want to show that the elements of 02 all appear right of the cycle consisting of
the elements of O;. If O has even length this is clear. If O has odd length, we can use
that by property (1), the unions of odd orbits of 7 and o, coincide and that in o, the
elements of odd orbits are all located right of the elements of the even orbits.
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4.2 Parametrizations in classical types

Let a € O5. Then a is on an odd position and thus it is smaller than any entry right
of it. On the other hand, ¢ € O7 implies that ¢ is on an even position and thus is greater
then any entry right of it. Finally, in the last paragraph we have shown that each b € O,
is located right of a and c¢. This establishes the claim.

Now, we have to deal with two cases.

Ifi € Oy and i+1 € Oy then the claim implies i € O5. Then 771(i), 7(i) € O7. Since
77Yi+1),7(i + 1) € O, our claim yields 77(i) > 77%(i + 1) and 7(i) > 7(i + 1). In
addition, since O; has even length and ¢ + 1 & O1, 7(i) # i,7 + 1. Thus, we obtain from
Lemma 4.2.22 that ¢(0) < ¢(7), a contradiction to ¢(1) = (o).

If i+1 € O and i € Oy then the claim implies i + 1 € O7 and similarly as before we
obtain 771(i) > 771(i + 1) and 7(i) > 7(i + 1) and thus the same contradiction using
Lemma 4.2.22. That is, we have shown that ¢ and ¢ + 1 cannot appear in two different
orbits if one of the latter has even length.

Case 2. Assume that ¢ and i + 1 appear in the same orbit with even length O; of 7.
Then (1) also holds for o.

To show (2), assume i + 1 € (72)3 first. Then both elements appear in the same cycle
of 72. As we obtain ¢ from 72 by swapping i and i + 1 in cycle notation, (2) also holds
for o.

Lastly, we show that i+ 1 € (72)i is always true. For the sake of contradiction, assume
i+1¢(r2)i.

Suppose in addition that |O;] = 2. Then {7(i),7(i+ 1)} = {i,i+ 1} and from
Lemma 4.2.22 we obtain ¢ = s;7s; = 7. This contradicts the minimality of the se-
quence of arrow relations from o, to o.

Now suppose |O1| > 2. Then {7(i), 7(i + 1)} # {i,i + 1}. Since i+1 ¢ (723, it follows
from (4.4) that i = max O and i + 1 = min O7. Consequently, 771(i),7(i) € O7 and
77 1i+1),7(i + 1) € OF. But this means that

7716) > 77+ 1) and 7(i) > 7(i + 1).

Because {7(i),7(i+ 1)} # {4, + 1}, we can now apply Lemma 4.2.22 and obtain that
¢(c) < U(1). Again, we end up with a contradiction. O

Let 0 € &,,. Then the set of orbits of o on [n] is a set partition of [n]. We denote this
partition by P(c). The set of even orbits of o is given by

P.(0) :={0 € P(0) | |O] is even}

If P(o) = P(¢') for 0,0/ € &,, then o and ¢’ have the same type, i.e. they are
conjugate.

Lemma 4.2.24. Let o, f Fc n such that 0, and og are conjugate. If P.(0,) = Pe(0g)
then o = 3.

Proof. Let a = (a1,...,q), = (P1,...,0r) Ee n and (21,29, ...,2,) be the sequence
with x9;_1 = ¢ and x9; = n — i + 1. Since « is maximal, there is a k € [0,[] such that
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4 Centers and cocenters of 0-Hecke algebras

«; is even for i« < k and odd for i > k. Assume that o, and o are conjugate and
P.(0a) = Pe(0p).

Because 0, and og are conjugate, a and [ have the same multiset of parts. In
particular, [ = I’. Since o and 8 are maximal, the odd parts of a and 3 form an weakly
decreasing sequence at the end of o and 3, respectively. As both compositions have the
same length and multiset of parts, it follows that o; = 8; fori =k +1,...,L.

We show that a; = f; fori = 1,..., k with induction. Assume that i € [k] and a; = ;
for all 1 < j <. Define d := ;;11 ;. Then by assumption d = 23;11 B;. Moreover, let
Oq,; and Og, be the orbits of 2441 under o, and o, respectively. From the definition of
elements in stair form it follows that

Oai = {xd—Flu LTd+4+2y - - )xd-‘rai} )

Op, = {Td41, Ty, - Tdsp,; } -

In particular |O,,| = a; and |Og,| = B;. Since i < k, a; and f; are even. Consequently,
Oq,; and Og, both have even length. Moreover, they have the element 2441 in common.
Hence, P.(0n) = Pe(og) implies O,, = Og,. Thus, o; = |Oy,| = |Og,| = B;. O

We are now in the position to prove Statement (b). This finishes the proof of Propo-
sition 4.2.14.

Proof of Statement (b). Let «, B F. n such that o, = 0. Then o, and og are conjugate.
Moreover, Lemma 4.2.23 implies P.(0q) = P.(0g). Hence o = § by Lemma 4.2.24. [

We use some of the intermediary results that lead to Proposition 4.2.14 in order to
prepare a result for later use in Subsection 4.3.3.

Proposition 4.2.25. Let a E. n and 0 € &,,. Then o € Xy if and only if
(1) o and o4 are conjugate in S,
(2) o) = ow),
(3) Pe(a) = Pe(Ua)'

Proof. First, assume o € ¥,. Because o, € ¥, and 3, € (6n>ma)g/%, o satisfies (1) and
(2). By Lemma 4.2.23, (3) holds as well.

Second, assume that o satisfies (1) — (3). By (1), o is in the same conjugacy class as
0q. From (2) it follows, that o is maximal in its conjugacy class. Then Proposition 4.2.14
provides the existence of a 3 =, n such that o € ¥ 3. Using the already proven implication
from left to right, we obtain that o and o are conjugate and P.(c) = P.(0g). But as
o satisfies (1) and (3), it follows that o3 and o, are conjugate and P.(0g) = Pe(0a).
Thus, Lemma 4.2.24 yields 8 = « as desired. ]

We end this subsection with a remark on conjugacy classes.

Remark 4.2.26. The conjugacy classes of &,, are parametrized by the partitions of
n via the cycle type. Let A F n and O be the conjugacy class whose elements have
cycle type A. From Definition 4.2.13 it follows that for o F. n the element in stair
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form o, is contained in O if and only if & = . Hence, Proposition 4.2.14 implies that
{0a | @ Fe nya = A} is a system of representatives for Oma’V%. In particular, we have
that

’Oma)V%’ =1 if and only if the even parts of A\ are all equal.

4.2.3 Coxeter elements

We introduce a set of representatives of (Gn)mig/% which is due to Gill [Gil00]. From
this we obtain parametrizations of the bases of the cocenter H,(0) and the twisted center
Z(Hp(0)), of Hy(0) from Section 4.1 by the compositions of n.

Definition 4.2.27. Let W be a finite Cozeter group with generators S. A Coxeter
element of W is a product of all s € S in arbitrary order.

For each o F n we now fix a Coxeter element ¢, of the parabolic subgroup &, of &,,.
Gill showed in [Gil00] that the elements ¢, are transversal for (6”)mir/%. This leads

to the following parametrization of (Gn)mixyx. Recall that for w € G,, its equivalence
class in &,, with respect to ~; is denoted by [w]s.

Proposition 4.2.28 ([Gil00, Theorem 5]). The map {a E n} — <6n)mig/%, a [l is
a bijection.

With Lemma 4.1.11 we obtain the corresponding parametrization of (Gn)v,mayzy.

Corollary 4.2.29. The map {a F n} — (6”)v,ma)%%y, a — [cqwoly s a bijection where
wq 1s the longest element of &,,.

Example 4.2.30. For n = 3 we obtain the following representatives for (Gn)mir/z and

(Sn)v,mayzy which we represent via a reduced word and in cycle notation.

aF3[(1,1,1) (1,2) (2,1 (3)

Ca 1 S2 $1 5182
1 (23 (L2) (1,23
CaqWo 518281 5152 S$981 59

(1,3) (1,2,3) (1,3,2) (2,3)

Remark 4.2.31. Let a = (a1, ..., ;) F n. In [Gil00, Lemma 4] Gill showed that the ~-
equivalence class [¢,] is exactly the set of Coxeter elements of &, and that the cardinality
of this set is [[; 2% =2 where the product runs over all i € [I] such that o;; > 2. The reason
for the latter is that the Coxeter elements of &, are in one to one correspondence with
the orientations of the Coxeter graph of &, (see [Shi97, Theorem 1.5]).

We obtain the following bases of H,,(0) and Z(H,(0)), parametrized by the composi-
tions of n.
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° D, \O

/

Figure 4.7: The Coxeter graphs of type B, and D,, each with n vertices.

Theorem 4.2.32. For each o E n let ¢, be a Coxeter element of the parabolic subgroup
S, of &,.

(1) The elements T, + [H,(0), H,(0)] for a En form a basis of Hy(0).

(2) The elements TT<|c, ], for o Fn form a basis of Z(Hp(0)),.

In particular, H,(0) and Z(H,(0)), both have dimension 2" 1.

Proof. For Part (1) combine Theorem 4.2.6 and proposition 4.2.28. For Part (2) do the
same with Theorem 4.1.8 and Corollary 4.2.29. The number of compositions of n is 27!
since via a — Set(a) we have a bijection between the compositions of n and the subsets
of [n — 1]. This yields the dimensions. O

4.2.4 Remarks on types B and D

In [Gil00] Gill determines the the cardinality of Omin/_ for O € cl(W) in types A, B
and D. We translated his results in type A to Proposition 4.2.28. We now briefly discuss
the types B and D and infer dimension formulas for the cocenter and (in types B, and
Dy,,) for the center of the related 0-Hecke algebras. The Coxeter graphs of types B,
and D,, are shown in Figure 4.7. For background information on these Coxeter groups
we refer to [BB05, GP00].

Let n > 2 and 28,, be an irreducible Coxeter group of type B,, with Coxeter generators
S (that is |S| = n). From [Gil00, Theorem 10] it follows that (%")mir/% is parametrized
by the pairs (o, ) such that o and 8 are compositions, § is (weakly) increasing and
o] + 18] = n.

Let wp be the longest element of %B,,. By [Fay05, Proposition 2.4] wy is central and
thus v is the identity on 8,,. Hence, Lemma 4.1.11 implies that > — Xwyq is a bijection
from <%”)mir/g to <%n)may%. Using Theorem 4.1.8 and Theorem 4.2.6, we now obtain
that

dim Z(Hsy, (0)) = dim Hyg, (0) = Z c¢(m)p(n —m)

m=0
where ¢(m) and p(m) are the numbers of compositions of m and partitions of m, respec-
tively. Of course, c(0) = 1 and ¢(m) = 2™~ for m > 1.
Regarding Figure 4.7 it is clear that id is the only graph automorphism of the Cox-
eter graph of %6, if n > 3. Hence, it follows from Lemma 4.1.1 that the only 2B,,-

automorphism ¢ with 6(S) = S is the identity. That is, we treated <%”)&mh}/z s and
(%n)a,may% s for n > 3 and all possibilities of 9.
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Let n > 4 and ©,, be an irreducible Coxeter group of type D,, (with n Coxeter gen-

erators). Then one can infer from [Gil00, Theorem 10] that (Qn)mir/;\g is parametrized

by the pairs of compositions (a, ) such that [ is increasing and has even length and

|a] + || = n together with the pairs (o, —) such that a E n and a3 > 1. However, note

that in [Gil00, Theorem 10] there is an error in type D (see Remark 4.2.33 below).
Using Theorem 4.2.6, it follows that

dim Hp, (0) = z”: c(m)pe(n —m) + 272

m=0

where p.(n — m) is the number of partitions of even length of m. The number of o E n
with a1 > 1 is the number of compositions of n — 1 and therefore 272, If n is even,
then by [Fay05, Proposition 2.4] the longest element of ®,, is central and it follows as in
type B that also dim Z(Hp, (0)) is given by the above formula.

Remark 4.2.33. In [Gil00, Theorem 10] there is a flaw in type D. It occurs in the case
where O is a conjugacy class of ©,, which is labeled by the pair (), A) (in the notation
of [Gil00]) where A F n has an odd part. In this case it can be deduced from the proof
that the cardinality of Omir/,@ is the number of o F n with @ = X plus the number of
aFnwitha=Xand ag > 1.

Let [ := £(\) and consider A\ = (11,2"2 ... nl®) in exponential notation, i.e. I; is the
number of parts of A that are equal to . Then

Fnla= Ul=1-7
{oEn|a=\a > 1} ( l)<ll,z2,...,zn>

where the second factor is a multinomial coefficient. However, in [Gil00, Theorem 10] it
is claimed that this cardinality is ls + - - - + [, which is wrong in general (for instance,
consider A = (2,2,1,1)).

4.3 Equivalence classes of (G,).x under ~

Recall that by Definition 4.2.4 we call o F n maximal and write « E, n if thereisa k > 0
such that the first k£ parts of o are even and the remaining parts are odd and weakly
decreasing. For o F. n we defined ¥, € (Gn)may% to be the equivalence class of the
element in stair form o, under ~. From Proposition 4.2.14 we have that the elements
of (6n)ma)g/% are precisely the ¥, with o F. n. In Corollary 4.2.18 we concluded that
the elements 7<y, for o F. n form a basis of Z(H,(0)). The subject of this section is
the description of the sets X, and bijections between them.

In Subsection 4.3.1 we consider the case where a has only one part. The first result is
the characterization of the elements of 3, by properties of their cycle notation. From
this we obtain bijections relating ¥(,_qy with X,y for n > 4 and a closed formula for
the cardinality of X,).
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Table 4.1: The elements of X, for small n. The respective topmost element is the
element in stair form o).

a |1 (2) () (4) (5) (6)
(1) (1,2) (1,3,2) (1,4,2,3) (1,5,2,4,3) (1,6,2,5,3,4)
(1,2,3) (1,3,2,4) (1,5,2,3,4) (1,6,2,4,3,5)
5 (1,5.3.2,4) (1,6,3,4,2.5)
o (14235) (1,5,2,4,3,6)
(1,4,3,2,5) (1,5,3,4,2,6)
(1,3,4,2,5) (1,4,3,5,2,6)

In Subsection 4.3.2 we generalize the characterization of ¥,y to odd hooks, where a
hook a := (k,1"7¥) is called odd if k is odd and even otherwise. Moreover, we define a
bijection ¥y x [m + 1,n —m] — Y(k,1n-ky Where m := % From this we obtain the
cardinality of X, jn—k).

In Subsection 4.3.3 we consider the inductive product ® that allows the decomposition
Ylar,mar) = Z(a1) ©(ag,....ap) if a1 is even. Using the results of the previous subsections,
we infer a description of X, for all a F. n whose odd parts form a hook

In Subsection 4.3.4 we use the inductive product in order to obtain necessary condi-
tions and sufficient conditions for o € &,, to be an element of ¥, for arbitrary o F. n.
A maximal compositions with at most one odd part or all odd parts equal to 1 is called
mild. We show that the conditions from above are both necessary and sufficient for
o € ¥, if and only if « is mild. Even hooks are mild and therefore treated in this
subsection.

In Chapter 5 we use results of Subsections 4.3.1 to 4.3.3 in order to study the operation
of T<yx,, on the simple modules of H,(0) for certain a.

4.3.1 Equivalence classes of n-cycles

In this subsection we seek a combinatorial description of the elements of ¥,). Examples
are given in Table 4.1. The description is given by two properties: being oscillating and
having connected intervals. We begin with the property of being oscillating.

Definition 4.3.1. We call the n-cycle o € &,, oscillating if there exists a positive integer
m € {”T_l, 7 ”TH} such that o([m]) = [n —m + 1,n].

In Corollary 4.3.7 we will obtain a more descriptive characterization of oscillating n-
cycles. It turns out that the n-cycle o of &,, (represented in cycle notation) is oscillating
if n is even and the entries of o alternate between the sets [1, 5] and [§ + 1,n] or n is
odd and after deleting the entry ”H from o the remaining entries alternate between the

sets [252] and [£2, n].
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4.3 Equivalence classes of (&, )max under ~

Example 4.3.2. (1) Recall that for n € N the element in stair form o, is an n-cycle
of &,. For

O(5) = (17572>47 3)’ 0-(75; = (1a3747275) and 0(6) = (1a672757374)
we have

o ((2) = (45, oG8 =[3,5] and o) = [4,6].
Hence, they are oscillating and the integer m used in Definition 4.3.1 is given by

5—1 5+1 6
mz?zT, m:3:% and m:3:§,

respectively. Note that the entries in the cycles alternate as described after Defi-

nition 4.3.1.

(2) All the elements shown in Table 4.1 are oscillating.
We explicitly write down the three cases for m in Definition 4.3.1.

Remark 4.3.3. Let o be an oscillating n-cycle o € &,, with parameter m from Defini-
tion 4.3.1. Then we have

(1) nis even and o([%])
(2) nis odd and a(["T*l] : >
(3) nis odd and o([2%L]) = [%HL n] if m = "TH

Our next aim is to give a characterization of the term oscillating in Lemma 4.3.6. By
considering complements in [n] we obtain the following.

Lemma 4.3.4. Let 0 € G,, be an n-cycle and m € [n]. Then o([m]) = [n —m+ 1,n] if
and only if o(fm + 1,n]) = [n —m)].

Lemma 4.3.4 implies that an n-cycle ¢ € &,, is oscillating with parameter m if and
only if o([m + 1,n]) = [n — m)].

Lemma 4.3.5. Let 0 € &,, be an n-cycle. Then o is oscillating if and only if o~ is
oscillating.

Proof. Let M :=NnN {"T_l, 5 "T'H} If n = 1 then 0 = id = o~! (which is oscillating).
Thus assume n > 2. It suffices to show the implication from left to right. Suppose that
o is oscillating. Then there is an m € M such that o([m]) = [n—m+1,n]. Consequently,
o([m + 1,n]) = [n — m] by Lemma 4.3.4 and hence

o Y [n—=m)]) =[m+1,n].

Moreover, m+1 =n — (n —m) + 1 and we have n —m € M since m € M and n > 2.
Therefore, 0! is oscillating. O
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In the following we rephrase Definition 4.3.1 from a more local point of view.

Lemma 4.3.6. Let 0 € &,, be an n-cycle. We consider the four implications for all
i€ [n]

() i < = o(i) > 2,

(i) i < 2t = o71(i) > M,

(itd) i > = o(i) < 2,
n+1

(i) i> " = o71(d)
and if n is odd the statement
(A) either o= (%) > L op g(24L) > 2l

Then the following are equivalent.

IA
d

7

(1) o is oscillating.
(2) One of (i) — (iv) is true and if n is odd and n > 3 then also (A) is true.
(3) Each one of (i) — (i) is true and if n is odd and n > 3 then also (A) is true.

Proof. First suppose that nis odd. If n = 1 then ¢ = id is oscillating and the implications
(i) — (iv) are trivially satisfied.

Assume n > 3. We show for each of the implications (x) that (A) and (x) is true if
and only if o is oscillating. As n is odd and n > 3, Statement (A) can be expanded as

either o~ 1(2H) > 2t and o(242) < 22

2 2
or o }(™) <2l and o(2E) > 2

Moreover, (i) can be rephrased as o([%51]) C [%51, n]. Hence, we have (A) and (i) if and
only if
either U([%D = [”Tf,n] (if o 1(%) > %ri and a(%) < ’%1)
or  o([ZE) = [ZELn] (it o} () < 2E and o(251) > 21)
In other words, o([m]) = [n — m + 1,n] for either m = 251 or m = 2 ie. o is
oscillating.

Similarly, we have (A) and (iii) if and only if

either o([2, n]) = [2] or o([22,n]) = [%51).

That is, o([m + 1,n]) = [n — m] for either m = 251 or m = L. This is equivalent to
o being oscillating by Lemma 4.3.4.
So far we have shown that
(A) and (i) <= o is oscillating <= (A) and (iii). (4.5)
By Lemma 4.3.5 we therefore also have
(A) and (ii) <= o is oscillating <= (A) and (iv). (4.6)

This finishes the proof for odd n.
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Suppose now that n is even. Note that "TH ¢ [n] as it is not an integer. It is not hard
to see that the equivalences from (4.5) and therefore those from (4.6) hold if we drop
Statement (A). O

We continue with two consequences of Lemma 4.3.6. First, we infer the description of
oscillating n-cycles mentioned at the beginning of the subsection.

Corollary 4.3.7. Let 0 € G,, be an n-cycle. We consider o in cycle notation. Then o
1s oscillating if and only if one of the following is true.

(1) n is even and the entries of o alternate between the sets [3] and [§ 4 1,n].

(2) n is odd and after deleting the entry ’%1 from o, the remaining entries alternate
between the sets [”T_l} and [”7‘*'3,71}

Proof. With (A), (i) and (iii) we refer to the statements of Lemma 4.3.6.

Suppose that n is even. By Lemma 4.3.6, ¢ is oscillating if and only if the implications
(i) and (iii) are satisfied which is the case if and only if the entries of o alternate between
(5] and [§ 4+ 1,7n].

Suppose that n is odd. If n > 3 then property (A) states that one of the neighbors
o1 (%) and o) of L in o is an element of [251] and the other one is an element
of [243,n]. Therefore, o satisfies (A), (i) and (iii) if and only if after deleting 2$*
from the cycle notation of o, the remaining entries alternate between the sets [%‘1] and
["TJF?’, n]. Thus, Lemma 4.3.6 yields that the latter property is satisfied if and only if o
is oscillating. 0

By considering ¢ in cycle notation beginning with 1, we can rephrase Corollary 4.3.7
in a more formal way.

Corollary 4.3.8. Let 0 € &,, be an n-cycle. If n is odd, let 0 <1 < n —1 be such
that o'(1) = "TH If n is even, set | := co. Then o is oscillating if and only if for all
0<k<n-—1 we have

1

oF(1) < ZEL itk <1 and k is even or k> 1 and k is odd,
1

Uk(1)>n;_ if k <l and k is odd or k > 1 and k is even.

We now consider the second property in the characterization of ¥,): the property of
having connected intervals. Roughly speaking, an n-cycle of &,, has connected intervals
if in its cycle notation for each 1 < k < % the elements of the interval [k,n — k + 1] are
grouped together.

Definition 4.3.9. (1) Let o € &,, and M C [n]. We call M connected in o if there
is an m € M such that

M = {ﬂ”L,U(m),U2(m)7 e ,JlMl_l(m)} .
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(2) Let 0 € &, be an n-cycle. We say that o has connected intervals if the interval
[k,n — k + 1] is connected in o for all integers k with 1 <k < 3.

Example 4.3.10. All elements shown in Table 4.1 have connected intervals. In particu-
lar, the element in stair form o) = (1,6,2,5,3,4) has connected intervals. In contrast,
in (1,5,2,6,3,4) the set [2,5] is not connected.

The main result of this subsection is that an n-cycle o € &,, is an element of 3, if
and only if ¢ is oscillating and has connected intervals. We now begin working towards
this result.

Lemma 4.3.11. The element in stair form o(,) € &, is oscillating and has connected
intervals.

Proof. By Definition 4.2.13,

Jn,2n—1,...,5,n—5+1) if n is even

7m = (I,n,2,n — 1,...,"7_1,71— ”T_l—i—l,”Tl) if n is odd.

Thus, 0, ([5]) = [5 + 1,n] if n is even and o, (["57]) = [2£3 n] if n is odd. That is,
O(n) 18 oscillating.

For all £ € N with 1 < k < % the rightmost [[k,n — k + 1]| elements in the cycle of

0(n) from above form [k,n — k + 1]. Thus, 0(,) has connected intervals. O

=

Let 0 € &,,. Sometimes it will be convenient to consider o"° instead of o. We will
now show that conjugation with the longest element wg of &,, preserves the properties
of being oscillating and having connected intervals.

Lemma 4.3.12. Let 0 € &,, be an n-cycle.
(1) If o is oscillating then o™ is oscillating.

(2) If o has connected intervals then c™° has connected intervals.

Proof. If n =1 the result is trivial. Thus suppose n > 2.

(1) Set M = NN {an’ 5 "T“} and assume that o is oscillating. Then there is

an m € M such that o(m]) = [n — m + 1,n] and from Lemma 4.3.4 it follows that
o([m+1,n]) = [n —m]. Using wo(i) =n — i+ 1 for i € [n], we obtain

o ([n — m]) = woowp([n —m])
= woo([m + 1,n])
= wo([n —m])
=[n—(n—m)+1,n].
Asn—m e M, it follows that o' is oscillating.

(2) Let I := [k,n — k + 1] be given by an integer k with 1 <k < 5. Then wo(I) = 1.
Hence, if I is connected in o then it is also connected in o™0°. O
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In the following result we study the interplay between the conjugation with wy and
the relation ~. The generalization to all finite Coxeter groups is straight forward.

Lemma 4.3.13. Let w,w’ € &, and v be the automorphism of &,, given by x — x"0.
(1) If w5 w' then v(w) ™3 v(w').
(2) If w = w' then v(w) = v(w').

Proof. Assume w % w’. Then w' = s;ws; and £(w') < £(w). Since v(s;) = s,_;, We
have v(w') = sp—iv(w)sy—;. Moreover, £(v(w')) < £(v(w)) because £(x) = £(v(x)) for all
z € &,. Thus, v(w) 5" v(w'). Now, use the definition of &~ to obtain (2) from (1). O

Consider n = 5, the oscillating n-cycle o = (1,4,2,3,5) and its connected interval
I = {2,3,4}. In the cycle notation of o, this interval is enclosed by the two elements
a =1 and b = 5. Note that ”T‘H =3, a < 3 and b > 3. This illustrates a property of
oscillating n-cycles addressed by the next lemma.

Lemma 4.3.14. Assume that o € &, is an oscillating n-cycle with a connected interval
I:=T[i,n—i+1] such thati € N and 2 < i < " Let r := |I| and m € I be such

that I = {Jk(m) |k=0,...,r— 1}. Moreover, set a := o~1(m) and b := o"(m). Then
a,b # ”TH and

n+1 n+1

a < <~ b> 5

Proof. Let p € [n — 1] be such that o?(1) = a. Then o?*" (1) = b. Since i > 1,1 &I
and thus p+7r+1 <n—1. We have r = n — 2i + 2. Hence, r has the same parity as n.
We want to apply Corollary 4.3.8. If n is odd, let [ € [0,n—1] be such that o'(1) = 2.
Then "T‘H € I so that p <l < p+r+ 1. In particular, a,b # "T‘H Clearly, if n is even
then a,b # "TH
Therefore,

n+1

a=o0P(1) < 5

<= p is even

p+r+1isodd if neven
p+r+1iseven if nodd
n+1

= b=oP"t1) > 5

where we use Corollary 4.3.8 (and p <! < p+r + 1 if n is odd) for the first and third
equivalence. O

Since the — relation is the transitive closure of the 2% relations, we are interested in

the circumstances under which the conjugation with s; preserves the property of being
oscillating with connected intervals.

141



4 Centers and cocenters of 0-Hecke algebras

Lemma 4.3.15. Let 0 € &,, be an oscillating n-cycle with connected intervals, i € [n—1]
with 1 < ”T'H and o' := s;os;. Then o' is oscillating and has connected intervals if and
only if

(1) ifi= 75 thenn =2,

(2) ifi="252 ori="E theno(i)=i+1 oro (i) =i+]1,

(8) ifi < "5 then

o(iyeTando(i+1) €I oro (@) el ando t(i+1) &1

where I :==[i+1,n —i].

Proof. We will use Lemma 4.3.6 without further reference. Note that ¢/ = s;0s; means
that we obtain ¢’ from o by interchanging ¢ and ¢ + 1 in cycle notation. We show the
equivalence case by case, depending on 3.
Case 1. Suppose i = 5. In this case n is even. If n = 2 then (1,2) is the only 2-cycle
in &,,. Thus, 0 = ¢’ = (1,2). This element is oscillating and has connected intervals.
Assume now that n > 2. Since o is oscillating,

. n 1. n
o(i) > 5 and o~ (i) > 5"

Moreover as n > 2, at most one of o(i) and o~ 1(i) equals i + 1. Since we obtain ¢’ from
o by swapping ¢ and 7 4+ 1 in cycle notation we infer

o(i+1)> g or o’ i+ 1) >

|3

As i+ 1> 4, this means that ¢’ is not oscillating

Case 2. Suppose i = ”Tfl or i = ”TH In this case n is odd and n > 3. Moreover,
iyi+lelkn—k+1jfork=1,..., ”7_1 Hence, each of the intervals remains connected
if we interchange i and ¢ + 1. Therefore, o’ has connected intervals. It remains to
determine in which cases ¢’ oscillates. We do this for i = ”T_l The proof for i = "T‘H is

similar.

For i = ”T_l we have i + 1 = ”TH Since o is oscillating,
1 1
o(i) > "L and o 1(0) > ”‘2“ .

Because n > 3, there is at most one equality among these two inequalities. Assume that
there is no equality at all. Then

,<n+1>>n+1and ,_1<n+1>>n+1
7\ 2 7 2 2

since o/ = s;0s;. Hence, o’ is not oscillating.

Conversely, assume that o (i) =i+ 1 or 0~ (i) = i + 1. In other words, there exists an
e € {—1,1} such that 0°(i) = i+ 1. Since i + 1 = “t! and o is oscillating, we then have
a = o0°(i) > 2. Moreover, c¢(i + 1) = i < 2. Thus o being oscillating implies
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that b:= 0°(i + 1) > 21, By definition of a and b,

o = (a,i,i+1,b,...).
As a consequence,

o =(a,i+1,i,b,...)

and o° and ¢'° coincide on the part represented by the dots because ¢’ = s;0s;. From

a > ”%rl, i+1= ”T‘H, 1< "TH and b > "TH it now follows that o’ is oscillating.

Case 3. Suppose i < 251, Note that then n > 4. Define I := [i + 1,n — 4] as in the
theorem and set 7 := |I|. Since i +1 < 2! we have r > 1. We show the implication

from left to right first. Assume that o’ is oscillating and has connected intervals. Note
that

°(j) #4,i+1forall 7 € {o,0'},e € {~1,1} and j € {i,i+ 1}

since o and o’ are oscillating and i,7 + 1 < "TH Because [ is connected in o/, i +1 € I

and r > 1, we have that

Je € {~1,1} such that ¢'°(i +1) € I.
Therefore,

Jde € {—1,1} such that o°(i) € I
as 0/ = s;os; and 0’°(i + 1) # i, + 1. In fact, the statement
Je € {—1,1} such that 0°(i) €  and 0 () & I (4.7)

is true since otherwise we would have

o=m+i—1,...,0 i),i,00),...)

with 071(i),0(i) € I and i,n +i — 1 &€ I in which case I would not be connected in o.
By interchanging the roles played by ¢ and ¢’ in the argumentation leading to (4.7),
we get that

Je € {—1,1} such that ¢/°(i) € I and o' (i) & I.
From this we obtain that
Jde € {—1,1} such that o°(i+1) € T and o (i + 1) ¢ I (4.8)

by swapping i and i + 1 in cycle notation and using that o’(i), o’ ' (i) # i,i + 1.

143



4 Centers and cocenters of 0-Hecke algebras

Now, let € € {—1,1} be such that 0°(i) € I and 0~ %(i) € I. Then
1={o*G) [ k=1,...,r} (4.9)

since [ is connected in o and ¢ € I. From (4.8) it follows that i+ 1 appears at the border
of I in the cycle notation of o. Hence, (4.9) implies that

o°(i)=i+1or o (i) =i+ 1.

As 0°(i) # i+ 1, it follows that i + 1 = 0" (7). Thus, (4.9) yields that o7 °(i + 1) € I
and o°(i + 1) € I. Therefore, we have 0°(i) € [ and 0°(i + 1) € I for an € € {—1,1} as
desired.

Lastly, we prove the direction from right to left of the equivalence. We are still in
the case i < “51. Thus, assume that there is an ¢ € {—1,1} such that 0°(i) € I and
o°(i+1) € I. Since o is oscillating and we interchange two elements 7,7 + 1 < "7“ in o
in order to obtain ¢’ from o, ¢’ is also oscillating.

It remains to show that ¢’ has connected intervals. Since i & I, 0¢(i) € I and I is
connected in o, we have (4.9). Moreover, from i +1 € I, 0°(i + 1) € I and I being
connected in o, it follows that 0" (i) = i + 1. Thus,

[={o™i+1)|k=0,..,r-1}

because o’ = s;os;. That is, I is connected in o’. Let J := [k,n — k + 1] for k € N with
1 <k <5 andk # i+ 1 be an interval different from I. Then either i, + 1 € J or
1,1+ 1¢ J. As J is connected in o and ¢’ = s;0s;, it follows that J is connected in o”.
Therefore, o’ has connected intervals. O

Example 4.3.16. Consider 0 = o) = (1,6,2,5,3,4) and 0; := s;0s; for i = 1,2. Then
o is oscillating with connected intervals.

Since 0~1(1) € [2,5] and 071(2) € [2, 5], Lemma 4.3.15 yields that o is oscillating with
connected intervals. In contrast, oo is not oscillating with connected intervals because
of (2),071(2) & [3,4] and Lemma 4.3.15. This can also be checked directly. We have

o1 =(1,5,3,4,2,6) and o9 =(1,6,3,5,2,4).
For instance, [3,4] is not connected in os.

In the next result we show that the relation = is compatible with the concept of
oscillating n-cycles with connected intervals.

Lemma 4.3.17. Let 0 € &,, be an oscillating n-cycle with connected intervals, i € [n—1]
and o' := s;os;. If o ~ o' then o’ is oscillating and has connected intervals.

Proof. We do a case analysis depending on 3.
Case 1. Suppose i = 5. Then n is even. By Lemma 4.3.15, ¢’ is oscillating with

connected intervals if and only if n = 2. Thus, we have to show that o % ¢’ if n > 4. In
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this case we have o(i),07 (i) > 2 and o(i +1),0 ' (i + 1) < 2 because o is oscillating.
But then Lemma 4.2.22 yields ¢(0”) < £(o) so that ¢’ % o.

Case 2. Suppose ¢ = ”Tfl or i = "TH We only do the case i = Tl The other one
is similar. Let I := [i,n —i+ 1] = {i,i+ 1,7+ 2}. We show the contraposition and
assume that o’ is not oscillating or that it does not have connected intervals. Then from
Lemma 4.3.15 it follows that o(i) # i + 1 and o~'(i) # i + 1. Furthermore, there is an

m € I such that

n—

I= {Uﬁl(m)jm, U(m)}

since I is connected in o. Thus, m = i + 2. Assume o0 1(i +2) =i and o(i +2) = i
(the proof of the other case with o(i + 2) = i is analogous). Then ¢~ !(i) > i+ 2 as ¢
is oscillating and o~1(7) # i 4+ 1,7 + 2. Moreover, Lemma 4.3.14 applied to I in o and
o~ 1(i) > 2 yields o(i + 1) < % =i + 1. Therefore,

o(i)=i+2>0(i+1) and o '(i)>i+2=01(i+1)

so that £(¢’) < ¢(0) by Lemma 4.2.22 and hence ¢’ % o.

Case 3. Suppose i < ”T_l Then for all j € {i,i + 1} we have o(5), o 1(j) > "T'H since
j< ”TH and o is oscillating. We assume o ~ ¢’ and show that ¢’ is oscillating and has
connected intervals. Define Ij, := [k,n—k+1] for all k < %L and I := I;1; = [i+1,n—1].
Thanks to Lemma 4.3.15 it suffices to show

oiy)eTando(i+1)gToro '(i)cTand o *(i+1)&1.

Since ¢ ~ o', {(0) = {(c’). Hence, Lemma 4.2.22 implies that either o(i) < o(i + 1) or
o~ 1(i) < o7 (i +1). We assume o(i) < o(i + 1) and 0=1(i) > o71(i + 1). The other
case is similar.

First we show o(i) € I. Assume o(i) € I instead. Then o(i) > 2 implies o(i) >

max I. Now we use that o(i) < o(i+ 1) to obtain o(i+1) ¢ I. From this it follows that
[={o i+1)|k=0,...,r—1}

where 7 := |I| since I is connected in o and i +1 € I. Now we consider the interval

I; = [i,n —i+ 1] in 0. Because o is oscillating, o(i + 1) > "T‘H An application of

Lemma 4.3.14 to I in o yields 7" (i 4+ 1) < 2. In particular, 0" (i +1) # n — i+ 1.

But we also have i # o7 "(i + 1) because o(i) ¢ I. That is o™ "(i + 1) € I;. As a
consequence,

L={o*i+1) [k=0,....r=1}U{o(i+1),0%( + 1)}
since I C I; and I; is connected in o. Hence

{oi+1),0%G+ 1)} = {in—i+1},
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As o(i+1) > 2 it follows that o(i + 1) = n — i+ 1 and (i + 1) = i. Consequently,
o(i)>maxl; =n—i+1=0(i+1).

This is a contradiction to (i) < o(i + 1) and shows that o(i) € I.
It remains to show that o(i + 1) € I. Because i € I, o(i) € I and I is connected,

1={o*G) [ k=1,...,r}.

We can apply Lemma 4.3.14 to I in o and i < ”TH to obtain o"*1(i) > ”7“ Thus
o” (i) < L. In particular, o (i) # n — i.

If i =% —1then I = {i+1,n— i} and it follows that o(i) = n — i and 02(i) =i + 1.
That is, o(i + 1) ¢ I as desired.

Now suppose i < % — 1. Then i+ 2 < %! and we consider I;1o = [i +2,n — i — 1].
Assume for the sake of contradiction that o(i + 1) € I. This means that ¢" (i) # ¢ + 1.
In addition, we have already seen that o” (i) # n —i. Therefore, 0" (i) € I;42. Since I; 1o
is connected in ¢ and I;12 C I, we have

Lips = {o"(i) [ k=3,....r}.

and hence {o(i),02(i)} = {i +1,n—i}. Asi < 2 it follows that o(i) = n — i and
02(i) = i + 1. But then

oi)=n—i>n—i—1=maxliys >0o(i+1)

which again contradicts the assumption o (i) < o(i+1) and thus shows that o(i+1) & I.

Case 4. Suppose i > ”TH Assume 0 ~ ¢’ and let v: &,, = &,z +— 20, 7 := v(0)
and 7/ := v(o’). Since o is oscillating and has connected intervals, Lemma 4.3.12 implies
that 7 is oscillating and has connected intervals. In addition, from Lemma 4.3.13 we
have 7 ~ 7/. Because ™ = s,,_;Ts,_; With n —i < "T‘H, we now obtain from the already
proven cases that 7’ is oscillating and has connected intervals. Hence, ¢/ = v(7') and

Lemma 4.3.12 yield that ¢’ is oscillating with connected intervals. O

In order to show that each oscillating n-cycle with connected intervals is ~-equivalent
to o(,), we use an algorithm that takes an oscillating n-cycle o € &, with connected
intervals as input and successively conjugates ¢ with simple reflections until we obtain
O(n)- This algorithm has the property that all permutations appearing as interim results
are oscillating with connected intervals and ~-equivalent to o. Eventually, it follows
that o = O(n)-

The mechanism of the algorithm is due to Kim [Kim98|. She used it in order to show
that for each a F, n the element in stair form o, has maximal length in its conjugacy
class. The next lemma corresponds to one step of the algorithm.

Lemma 4.3.18. Let a = (n) and 0 € &, be an oscillating n-cycle with connected
intervals which is different from the element in stair form o,. Then there exists a
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4.3 Equivalence classes of (&, )max under ~

minimal integer p such that 1 < p <n—1 and oP(1) # oB(1). Set a := oP(1), b:= o (1)
and

g =

, {salasal ifa>b

S40Sq if a < b.

Then o' ~ o and o’ is oscillating and has connected intervals.

Proof. Set Iy, := [k,n — k + 1] for all k € N with k& < ”T‘H Because o # 0, and both
permutations are n-cycles, we have p < n — 2. Recall that by Definition 4.2.13,
o = (1L,n,2,n—1,...,5,5+1) if n is even
(1,n,2,n —1,..., 051 nd3 ntly if g s odd.
If n is odd then "TH = 0™71(1) and hence p < n—2 implies b # "L, If n is even then
b # "TH anyway.
n+1

We assume b < *5=. The proof in the case b > "5~ is similar and therefore omitted.
By the choice of p, we have b £ 1 so that 1 < b < ’"%1 The definition of o, implies

n+1

{ob@ k=0, .p—1} =[n]\ L,

{02(1) |k‘=p,...,n—1}:[b, (4.10)

Again by the choice of p, the same equalities hold for ¢. Hence, b < a as a € I
and b = min I;,. Therefore, we consider ¢/ = s,_1054,—1 and show that ¢ ~ ¢’. Then
Lemma 4.3.17 implies that ¢’ also is oscillating and has connected intervals.

It follows from the definition of o, and b < ”TH that

n+1
2

o Ya)=0'(D)=n—-b+2> (4.11)

As o is oscillating, we obtain that a < %’Ll from Lemma 4.3.6. Since (4.10) holds for o
and p > 0,

J_l(a) € Ib 2141 2 1.
Let r := |I,|. Because I, is connected in o, a € I, and 0~ 1(a) & I,, we have
{oMa) [ k=0,....,r =1} = I

Now we can use that I,—1 = I,U{a — 1,n — a + 2} is connected in o and that c~!(a) ¢
I,_1 to obtain

{o*@) [k=0,...,r+1} =Ly
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The descriptions of I, and I, imply that

{o"(a),0" (@)} ={a—1,n—a+2}.

Lemma 4.3.14 applied to I, in o and 0~ (a) > "TH now imply that 0" (a) < "%‘1 Thus,
o"(a) =a—1and 0" (a) =n — a + 2. That is,

ola—1)=n—a+2 (4.12)
Moreover, 0~ 1(a — 1) € I, implies
o Ma-1)<n—a+1. (4.13)
We now show
ola) <n—a+1. (4.14)

and deal with two cases. If a = ”TH then n — a +1 = a. Furthermore, we then have
r =1 and therefore o0(a) =a—1<n—a+1. If a < % then r > 1 so that o(a) € I,
and thus o(a) <n —a+ 1 as desired.

From (4.11) and (4.13) it follows that

cla-1)<n—-a+l<n-b+2=o0 '(a).
Moreover, (4.12) and (4.14) imply
ola—1)=n—-a+2>n—a+1>o0c(a).

Since ¢/ = $,-1084—1, Lemma 4.2.22 now yields ¢(¢’) = (o). Hence, ¢/ = o by
Lemma 4.2.20. O

Example 4.3.19. Let n = 5 and a@ = (n). The n-cycle 0 = (1,3,4,2,5) € &, is
oscillating and has connected intervals. We can successively use Lemma 4.3.18 in order
to obtain the sequence

=(1,3,4,2,5),

=(1,4,3,2 5)—330 83,

= (1,5,3,2,4) = sqo0WM sy,

= (1,5,2,3,4) = s90Psy,
0o =0 =(1,5,2,4,3) = 530

Moreover, Lemma 4.3.18 ensures that each o) is oscillating with connected intervals
and all ¢() are ~-equivalent. Therefore, o € ¥, by Proposition 4.2.14.

We now come to the characterization of X,).
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(1,3,4,2,5) (1,4,3,2,5) (1,4,2,3,5)

dels ins3 3
insg 2 | |dels
insg 1

(1,3,2,4)

insg 1 | |dels

(1,2,3)

Figure 4.8: Examples for the operators del; and insy, ), appearing in Theorem 4.3.21 and
its proof. The lower part of the picture serves as an example for the operators
used in the case when n is even. The upper part is an example for those used
in the case when n is odd. Note that for the integer m from the theorem we
havem:g+1:3ifn:4andm:"TH:3ifn:5.

Theorem 4.3.20. Let o € &,, be an n-cycle. Then o € Y, if and only if o is oscillating
and has connected intervals.

Proof. Let 0 € &, be an n-cycle. Recall that o € X, if and only if o ~ o(,) by
Proposition 4.2.14. Assume that o € X,. Then o =~ o, which by definition of
~ implies that there are sequences oo = 0@, 6@, ... o™ =6 € &, and i1,...,im €
[n—1] such that U~ ~ ¢\0) and ¢U) = sijo*(j_l)sij for j € [m]. From Lemma 4.3.11 we
have that o, is oscillating and has connected intervals. Moreover, Lemma 4.3.17 yields
that 0@ is oscillating with connected intervals if 0~ is oscillating with connected
intervals. Hence, o is oscillating and has connected intervals by induction.

Conversely, assume that o is oscillating and has connected intervals. Then we can use
Lemma 4.3.18 iteratively to obtain a sequence of ~-equivalent n-cycles starting with o
and eventually ending with o,. Thus o = 0. O

The goal of the remainder of this subsection is to find bijections that relate X, )
to (). From this we will obtain a recursive description of X,y and a formula for the
cardinality of ¥(,,). To achieve our goal, we define two operators ins and del.

Assume that the n-cycle 0 € &, is given in cycle notation starting with 1. Then for
k€ [2,n+1] insg p(0) € Gy is the (n + 1)-cycle obtained from o by adding 1 to each
element greater or equal to k£ in ¢ and then inserting k behind the pth element in the
resulting cycle. Likewise, for k € [2,n], delx(0) € &, is the (n — 1)-cycle obtained
by first deleting k from ¢ and then decreasing each element greater than k by 1. See
Figure 4.8 for examples.

We now define ins and del more formally. Let 0 € &, be an n-cycle and k € N. Set

0 ifo"(1) <k
g 1=
1 ifo"(1) >k

149



4 Centers and cocenters of 0-Hecke algebras

for r =0,...,n — 1. In the following we will assume k > 1. The operators could also
be defined for k = 1 but this is not necessary for our purposes and would only make the
exposition less transparent.

For k € [2,n+1] and p € [n], define insy , (o) to be the (n+ 1)-cycle of &,,41 given by

o"(1) + &, ifr<p
insg »(0)"(1) :== < k ifr=p
" Y1) +eqy ifr>p

for r =0,...,n. For k € [2,n], define delx (o) to be the (n — 1)-cycle of &,,_1 given by

i B O.T’(l)_gr 1fT<p
del(0)"(1) := {0.7"+1(1) —&pq1 ifr>p

for r =0,...,n — 2 where p is the element of [0,n — 1] with ¢P(1) = k.
The next results relates X,y with ¥, _1) via a bijection for n > 4.

Theorem 4.3.21. Suppose n > 4. If n is even then set m := 5 + 1 and
P E(n—l) — E(n)a o — insm,p(a)

where p is the element of [n — 1] with o?~1(1) = min {o~ (%), 2}. If n is odd then set

m = ”TH and

Y N1y X {0,1,2} — Y (0,q) — insp, piq(0)

where p is the element of [n — 3] with o?~1(1) & {m — 1,m} and o?(1) € {m — 1,m}.
Then Y s a bijection.

Corollary 4.3.22. Suppose n > 4. Then

DIV if n is even
‘Z(n)’ - {‘3 ‘(2(:)1’)‘ if n is odd.

Proof of Theorem 4.3.21. Theorem 4.3.20 states that for all n € N, X, is the set of
oscillating n-cycles of &,, with connected intervals. In this proof we repeatedly use this
result without further notice.

Let n > 4. We consider all permutations in the cycle notation where 1 is the leftmost
entry in its cycle. In particular, deleting an entry from a permutation or inserting
an entry into a permutation means that we do this in the chosen cycle notation. We
distinguish two cases depending on the parity of n.

Case 1. Assume that n is even. Then m = 5 + 1. For 7 € X(,_y) let p be given as
in the definition of ¢. Then min {77!(%), 2} is the pth element in the cycle notation of
7. Hence, we obtain ¢ (7) by increasing each element in 7 greater or equal to m by one
and then inserting m behind the element at position p.
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4.3 Equivalence classes of (&, )max under ~

Set ¢: Xy = X(n—1),0 +> dely (o). That is, for o € X(,) we obtain (o) by first
deleting m from o and then decreasing each entry greater than m by 1.

We show that ¢ and v are well defined and inverse to each other.

(1) We prove that ¢ is well defined. Let o € X,y and 7 := p(0). We have to show
that 7 € X, ;). That is, we have to prove that 7 is oscillating and has connected
intervals.

To show the latter, let 1 <i < 21 < 2. As [i,n — i + 1] is connected in o there is a
0 < g <n —1 such that

{071 (1), o™ (1)} = [in — i+ 1]
where r := |[i,n — i + 1]|. Moreover, m € [i,n — i+ 1]. Thus, 7 = del,;,(c) implies
{r ), 7 ()} = [ - ).

Hence, [i, (n — 1) — i + 1] is connected in 7. It follows that 7 has connected intervals.
(n— 1)+1 n

We now show that 7 is oscillating. Note that n — 1 is odd and “—~— = 3. By
Lemma 4.3.6, it suffices to show that 7(i) > § for all i € [§ — 1] and that either
T1(2)> 2orr(2) > 5.

Let i € [§ —1]. Since i < § and o is oscillating, we infer o (i) > § from Lemma 4.3.6.

If o(i) # m then 7(i) = o(i) — 1 > 7. Ifa()—mthena(z):ﬂsmcem—§+1,
{2,2+1} 1sconnected1naandz€{2,2—i—l} Thus, 7(i) = 3.

We now show that either 77! (%) > 2 or 7 (%) > 2. Since {%,% + 1} is connected in
o thereis a 0 < g <n — 1 such that

{o9(1), 071 (1)} = {Z g + 1} .

Hence, 7 = delz 4 (o) implies 79(1) = . Because n > 4, we can apply Lemma 4.3.14 to
{27 3+ 1} in o and obtain that there are a < 5 and b > 5 + 1 such that

{0971(1),09(1), 071 (1), 072 (1)} = {a,b, 35+ 1}.

Therefore, 79(1) = § and 7 = delx (o) yield {77! (3),7 (3)} = {a,b—1}. That is,
either 771 (%) > 2 or 7 (%) > %. Thus, 7 is oscillating.
(2) We check that 1 is well defined. Let 7 € ¥(,,_;) and o := ¢(7). We have to show

o€ E(n)
The definition of ¢ implies that § + 1 is a neighbor of % in . In addition, [i,n — ]
is connected in 7 for i € [§ — 1]. Therefore, [i,n — i+ 1] is connected in o for i € [F].

That is, ¢ has connected intervals.

We now show that o is oscillating. By Lemma 4.3.6, it suffices to show that (i) > §
for all i € [§]. For i < § this can be done as before. Thus, we only consider i = §. As T
is oscillating, Lemma 4.3.6 implies that one of the neighbors of 5 is smaller than 5 and

the other one is greater than 5. Let a be the smaller and b be the bigger neighbor of
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5. In the definition of v, p is chosen such that 5 + 1 is inserted in 7 between a and 3.
Thus, § has neighbors § + 1 and b+ 1 in 0. Consequently, o (§) > .

(3) We now show that ¢) o p = id. Let o € ¥(,). Since {§, % + 1} is connected in o,
these two elements are neighbors in 0. As o is oscillating, there is an a < § such that
5 + 1 has neighbors a and 5. We obtain ¢(o) from o by deleting § + 1 so that a and
% are neighbors in (o). On the other hand, we obtain (¢ (o)) from (o) by inserting
5 + 1 between a and 5. Thus ¥(p(0)) = 0.

(4) Finally, we show that ¢ o1 =id. Let 7 € ¥(,_1). Then we obtain (7) from 7 by
inserting § 4 1 at some position and get ¢ (1 (7)) from (1) by deleting it again. Hence,
p(r) = 7.

Case 2. Assume that n is odd. Then m = %!, For 7 € Y(n-1) the set {m —1,m}
is connected. Thus, there is a unique integer p with 1 < p < n — 3 such that 77=1(1) ¢
{m —1,m} and 7P(1) € {m — 1,m}. That is, the integer p from the definition of ¢ in
the theorem is well defined. Note that p is the position of the left neighbor of the set
{m—1,m} in 7.

Conversely, for o € X, [ := {m —1,m,m + 1} is connected in o. Hence, there is a
unique 0 < p < n — 1 such that I = {ap+k(1) | k=0, 1,2} and a unique ¢ € {0,1,2}
such that oP*9(1) = m. We define the map ¢: X,y — X(,_1) x {0,1,2} by setting
p(o) := (del,y(0), q). Again, we show that ¢ and 1 are well defined and inverse to each
other.

(1) First we show that the two maps are inverse to each other. Let o € X(,) and
v(o) = (7,q). Then we have

0 if m is the left neighbor of {m —1,m + 1} in o,
qg=1<1 if mislocated between m — 1 and m + 1 in o,

2 if m is the right neighbor of {m —1,m + 1} in o.

Conversely, let 7 € ¥(,,_1), ¢ € {0,1,2} and o = ¥(7, q) then

the left neighbor of {m —1,m+ 1} ino if ¢ =0,
m is < located between m — 1 and m + 1 in o if g =1, (4.15)
the right neighbor of {m —1,m +1} ino if ¢ =2.

From this it follows that ¢ and ¢ are inverse to each other.

(2) In order to prove that ¢ is well defined one has to show that del,,(0) € X, _1).
This can be done similarly as in Case 1.

(3) To see that 1 is well defined, let 7 € X(,_1), ¢ € {0,1,2} and o := ¢(7,q). We
first show that o has connected intervals. Recall that m = "TH Let 7 < %‘1 =m — 1.
Then [i,n — 7] is connected in 7 since 7 has connected intervals. By the definition of v,
we obtain the entries [i,n — i + 1] in o by adding 1 to each entry > m of [i,n —i] in T
and then inserting m such that by (4.15) at least one of the neighbors of m is m — 1 or
m+ 1. Since m — 1,m,m+ 1 € [i,n — i+ 1] it follows that [i,n — i + 1] is connected in
o. Therefore, o has connected intervals.
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4.3 Equivalence classes of (&, )max under ~

In order to show that o is oscillating, let 7/ be the (n — 1)-cycle of &,, obtained by
adding 1 to each entry of 7 which is greater or equal than m. Since 7 is oscillating,
the entries in 7/ alternate between the sets [m — 1] and [m + 1,n]. Furthermore, we
obtain o from 7’ by inserting m somewhere in 7/. Thus, Corollary 4.3.7 implies that o
is oscillating. O

From Table 4.1 we know ¥,y for n = 1,2,3. That is, Theorem 4.3.21 allows us to
compute Y, recursively for each n € N. This is illustrated in the following.

Example 4.3.23. We want to compute X, for n = 4,5. To do this we use the bijections
1 and the related notation introduced in Theorem 4.3.21.
(1) Consider n = 4. We have

Sy = {¥(0) | 0 € S5}

by Theorem 4.3.21. From Table 4.1 we obtain %3y = {(1,3,2),(1,2,3)}.
For o = (1,3,2) we have p = 3 since

037 1(1) = 2 = min {2, 3} = min {01 (2> , 2} .
Thus,
Y(o) =1ins33((1,3,2)) = (1,3 +1,2,3) = (1,4,2,3).
For o = (1,2,3) we have p =1 and
Y(o) =1ins31((1,2,3)) = (1,3,2,3+ 1) = (1,3,2,4).

Therefore, ¥4 = {(1,4,2,3),(1,3,2,4)}.
(2) Consider n = 5. Theorem 4.3.21 yields

S5) = {¢(a, q) | o € Sy q € {0, 1,2}} : (4.16)

Let m = 2 =3 and I = {m — 1,m} = {2,3}.
For o = (1,4,2,3) we have p = 2 since 0>~ (1) =4 ¢ I and 0(1) = 2 € I. Thus, for
instance we have

P(o,1) =1insz3((1,4,2,3)) = (1,4 +1,2,3,34+ 1) = (1,5,2,3,4).

For o = (1,3,2,4) we have p = 1. Computing (0, q) for all 0 € X4y and ¢ € {0, 1,2},
we obtain the following table. By (4.16), it lists all elements of X5).

P(oq) | 0 1 2
(1,4,2,3) | (1,5,3,2,4) (1,5,2,3,4) (1,5,2,4,3)
(17372’4) (17374’2’5) (17473?275) (]‘747273’5)
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Corollary 4.3.24. Let n € N. Then

1 ifn<2
Zol =152
2.3 ifn>3.

Proof. Let m, := |S,| forn > 1, y1 := yo := 1 and y,, := 2 312" for n > 3. We
show that both sequences have the same initial values and recurrence relations. First
note that

(1'1, Z2, x3) = (17 1, 2) = (yb Y2, y3)'

where we obtain the x; from Table 4.1. Now let n > 4. By Corollary 4.3.22 we have to
show that y, = y,—1 if n is even and y,, = 3y,,—1 if n is odd. If n is even, we have

R i el

and thus y, = yn—1. If n is odd, we have

{n—3J_n—3_n—5+1_{n—5+1J+1_{n—4J+1
2 | 2 2 L2 2 N

and hence y, = 3yn—1. O

4.3.2 Equivalence classes of odd hook type

Let a = (k,1"%) E n be a hook. Then « is a maximal composition. Recall that a
hook « is called odd if k is odd and called even otherwise. The main result of this
subsection is a combinatorial characterization of ¥, provided that « is an odd hook in
Theorem 4.3.40.

Subsection 4.3.4 deals with a characterization of 3, for a certain family of maximal
compositions called mild (see Definition 4.3.68). Since even hooks belong to this fam-
ily, the characterization of ¥, in the case where « is an even hook is postponed until
Theorem 4.3.72 of Subsection 4.3.4.

We want to generalize the concept of being oscillating and having connected intervals
from n-cycles to arbitrary permutations. In order to do this, we standardize cycles in
the following way. Let o := (c1,...,c;) € &, be a k-cycle. Replace the smallest element
among ci,...,c; by 1, the second smallest by 2 and so on. The result is a k-cycle with
entries 1,2, ...,k which can be regarded as an element &;. This permutation is called
the cycle standardization cst(o) of o.

Example 4.3.25. Consider o = (3,11,4,10,5) € &11. Then cst(o) = (1,5,2,4,3) € &5
which is oscillating with connected intervals.

We formally define the cycle standardization as follows.
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Definition 4.3.26. (1) Given 0 € &, and i € [n], there is a cycle (c1,...,c;) of o
containing i. Then we define

po(i) == [{j € [k] | ¢; < i}
(2) Let 0 = (¢1,...,¢k) € 6, be a k-cycle. The cycle standardization of o is the k-

cycle of &y given by

est(0) = (po(e1), po(c2)s - poler)).

Note that the permutation cst(o) is independent from the choice of the cycle notation
o= (c1,c9,...,cx) in Definition 4.3.26.
Remark 4.3.27. Let 0 = (¢1,c¢9,...,c,) € &, be a k-cycle.

(1) The anti-rank of ¢ € [n] among the elements in its cycle in o is py(i).

(2) For all 4,5 € [k] we have ¢; < ¢; if and only if p,(¢;) < po(c;).

(3) Let ¢ be an element appearing in the cycle (¢, ¢, ..., cx). Then we have

cst(0)(po (1)) = po(a(i))-

We now generalize the notions of being oscillating and having connected intervals
to arbitrary permutations via the cycle decomposition and the cycle standardization.
Recall that trivial cycles are those of length 1.

Definition 4.3.28. Let 0 € G, and write o as a product ¢ = o1 --- 07 of disjoint cycles
including the trivial ones.

(1) We say that o is oscillating if cst(o;) is oscillating for each cycle o;.

(2) We say that o has connected intervals if cst(o;) has connected intervals for each
cycle o;

Let (¢) € &, be a trivial cycle. Then cst((c)) = (1) € &1 which is oscillating and has
connected intervals. Therefore, in order to show that a permutation o is oscillating (has
connected intervals) it suffices to consider the nontrivial cycles.

Example 4.3.29. Let a = (4,5,3,1) E. 13 and
oo = (1,13,2,12)(3, 11,4, 10, 5)(9, 6,8)(7).
The cycle standardizations of the nontrivial cycles of o, are
(1,4,2,3),(1,5,2,4,3) and (1,2,3).

Each of these three permutations is oscillating and has connected intervals (cf. Table 4.1).
Thus, o, is oscillating and has connected intervals.

Assume that ¢ € &,, is an n-cycle. Then ¢ has only one cycle ¢ in cycle notation and
cst(o) = 0. Thus, for n-cycles our new notion of being oscillating (having connected
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intervals) from Definition 4.3.28 is equivalent to the old concept from Definition 4.3.1
(Definition 4.3.9).

We now prove some general results on oscillating permutations with connected inter-
vals. As in the last subsection, we are interested in the effect of swapping entries ¢ and
i+ 1 in cycle notation (that is, conjugating with s;). This will in particular be useful to
prove our results on odd hooks. We consider the case where ¢ and ¢ + 1 appear in the
same cycle first.

Lemma 4.3.30. Let 0 € &, and write o as a product o = o1 --- 07 of disjoint cycles.
Assume that there is an i € [n — 1] and a k € [l] such that i and i+ 1 both appear in the
cycle . Set i’ := p,(i) and T := cst(og). Then we have

(1) cst(siorsi) = syTSir,

(2) sios; = o if and only if spTsy = T.

Proof. By the definition of p,, we have that p,(j) = ps, (j) for all entries j in the cycle
k.

(1) We obtain s;oxs; from oy by interchanging i and ¢ 4+ 1 in cycle notation. Since i
and ¢ + 1 appear in oy, we have p,, (i +1) =i’ + 1. Thus, we obtain cst(s;oxs;) from
T = cst(oy) by interchanging i’ and i’ 4+ 1 in cycle notation. That is, cst(s;08;) = sy7sr.

(2) We have s;os; ~ o if and only if (s;0s;) = ¢(0). By Lemma 4.2.22, this is the
case if and only if either (i) < o(i + 1) or 07 1(i) < 071(i + 1). From the definition
of the cycle standardization we obtain that 7(p,(j)) = ps(c(j)) for each entry j in oy
(cf. Remark 4.3.27). Moreover, by the definition of p, and the fact that ¢ and i + 1
appear in the same cycle of o,

o(i)<o(i+1) <= ps(c(i)) < po(o(i+1)).
Hence,

oi)<o(i+1) < (") <7 +1).

Similarly, one shows that this equivalence is also true for o~! and 7=!. Therefore, we

have s;0s; ~ o if and only if either 7(i/) < 7(i + 1) or 771(3') < 771(i’ + 1). As for o,
the latter is equivalent to s;7s; ~ 7. ]

We now infer from Lemma 4.3.30 that swaps of ¢ and ¢+ 1 within a cycle that preserve
~ also preserve the properties of being oscillating with connected intervals.

Corollary 4.3.31. Let 0 € &,, be oscillating with connected intervals, i € [n — 1] such
that i and © + 1 appear in the same cycle of o and o' := s;0s;. If o ~ o' then o' is
oscillating with connected intervals.

Proof. We write o as a product o = o1 - - - g; of disjoint cycles and choose k such that i
and i + 1 appear in the cycle 0. Moreover, we set T := cst(oy), 7/ := cst(s;018;) and m
to be the length of the cycle oy.
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Asiand i4+1 only appear in oy, 0’ = 01 -+ - 0, _1(8;0,8;)0k+1 - - - 07 is the decomposition
of ¢’ in disjoint cycles. Since o is oscillating with connected intervals, cst(o;) is oscillating
with connected intervals for all j € [I]. Therefore, it remains to show that 7/ has these
properties. Since ¢ ~ o', Lemma 4.3.30 yields that 7 ~ 7/. In addition, 7 is an
oscillating m-cycle with connected intervals and thus 7 € X,,) by Theorem 4.3.20.
Hence, also 7’ € Y(m), 1-e. 7/ is oscillating with connected intervals. O

The next result is concerned with the interchange of ¢ and i + 1 between two cycles.

Lemma 4.3.32. Let 0 € &,, be oscillating with connected intervals, i € [n — 1] such
that i and © + 1 appear in different cycles of o and o’ := s;0s;. Then o’ is oscillating
and has connected intervals.

Proof. We obtain ¢’ from o by interchanging i and 7 + 1 between two cycles in cycle
notation. It is easy to see that this does not affect the cycle standardization of the
cycles in question. In addition, all other cycles of o’ appear as cycles of o. Since o
is oscillating with connected intervals, it follows that the standardization of each cycle
of ¢’ is oscillating with connected intervals. That is, ¢’ is oscillating with connected
intervals. O

We now come to the hooks.

Example 4.3.33. Let a = (3,1,1) F¢ 5. The elements of 3, are
(1,5,2), (1,2,5), (1,5,3), (1,3,5), (1,5,4), (1,4, 5).
Note that 1 and 5 always appear in the cycle of length 3.

Recall that we use type as a short form for cycle type.

Definition 4.3.34. Let a = (k,1"%) k. n be a hook, o € &,, of type a, m := % if k
is odd and m := % if k is even. We say that o satisfies the hook properties if

(1) o is oscillating,

(2) o has connected intervals,

(3) if k> 1 theni and n —i+ 1 appear in the cycle of length k of o for all i € [m].

The permutations from Example 4.3.33 satisfy the hook properties. The main result
of this subsection is to show that for an odd hook «, the elements of 3, are characterized
by the hook properties. In Theorem 4.3.72 of Subsection 4.3.4 we will see that the same
is true for even hooks.

Example 4.3.35. (1) Let 0 € &,, be of type (1"). Then o = id and o satisfies the
hook properties. Moreover, %ny = {o}.

(2) Let 0 € &, be of type (n). That is, o is an n-cycle. Then the third hook
property is satisfied by o since all elements of [n| appear in the only cycle of o. Thus,
o has the hook properties if and only if o is oscillating with connected intervals. By
Theorem 4.3.20, this is equivalent to o € X,).
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(3) Let a = (3,1,1) F n. We want to determine all permutations in &,, of type « that
satisfy the hook properties. Let o € &,, be of type a, o1 be the cycle of length 3 of o
and O be the set of elements in .

Since o7 is the only nontrivial cycle of o, o is oscillating and has connected intervals if
and only if 7 := cst(o7) has these properties. The type of 7 is (3). By Theorem 4.3.20, the
oscillating permutations of type (3) with connected intervals form X(3). From Table 4.1
we read Y3 = {(1,3,2),(1,2,3)}.

Let

M = {{1’5} U {.7} | JE€ [274]} = {{17275}7{17375}7{1’4’5}}

The third hook property is satisfied by o if and only if O; € M.

Therefore, o fulfills the hook properties if and only if there is a 7 € ¥(3) and an
01 € M such that we obtain o; by writing O; in a cycle such that the relative order
of entries matches that one in 7. For instance, from 7 = (1,3,2) and O; = {1,4,5} we
obtain o = (1,5,4). Going through all possibilities for 7 and O; we obtain the desired
set of permutations. These are the ones shown in Example 4.3.33.

For the proof of the characterization of ¥, when « is an odd hook, we follow the
same strategy as in in the case of compositions with one part from Subsection 4.3.1: For
any odd hook o we show that o, satisfies the hook properties, =~ is compatible with
the hook properties and there is an algorithm that computes a sequence of ~-equivalent
permutations starting with ¢ and ending up with o, for each permutation o of type «
satisfying the hook properties.

Lemma 4.3.36. Let a F. n be an odd hook. Then the element in stair form o, € &,
satisfies the hook properties.

Proof. Let a = (aq,...,q;) = (k,1"%) E, n be an odd hook. If k = 1 then o, is
the identity which satisfies the hook properties. Assume k > 1 and set m := k-1 By
definition, the cycle of length k of o, is given by

5 -

0oy = (L,n,2,n—1,....mmn—m+1m+1).

Hence, o, satisfies the third hook property. In order to show that o, is oscillating and
has connected intervals, it suffices to consider o,, because the other cycles of o, are
trivial. From the description of o,, we obtain its cycle standardization

cst(oq,) = (1, k,2,k—1,....mk—m+1,m+1).

That is, cst(oq,) is the element in stair form o (k) which is oscillating and has connected
intervals by Lemma 4.3.11. O

Let a Fc n be an odd hook and o € &,, be of type « satisfying the hook properties. In
order to show o, ~ o we will successively interchange elements ¢ and 7 + 1 in the cycle
notation of o. The next lemma considers the case where at least one of i and i + 1 is a
fixpoint of o.
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Lemma 4.3.37. Let a = (k, 1"*’“) Ee n be an odd hook, m := % and o € &, of type «
satisfying the hook properties. Furthermore, assume that there arei,i+1 € [m+1,n—m]
such that i or i + 1 is a fizpoint of 0. Then s;os; =~ o and s;08; satisfies the hook
properties.

Proof. If both ¢ and i+ 1 are fixpoints of ¢ then s;0s; = ¢ and there is nothing to show.
Therefore, we assume that either ¢ or ¢ 4+ 1 is not a fixpoint and call this element j. By
choice of i and i+ 1, m < j <n—m+ 1. Since o satisfies the hook properties, the cycle
of length k of o consists of the elements 1,...,m,j,n—m+1,...,n.

First we show that s;os; satisfies the hook properties. As o is oscillating with con-
nected intervals and i and i+ 1 appear in different cycles of o, Lemma 4.3.32 yields that
s;08; is oscillating with connected intervals too. As we obtain s;os; by interchanging ¢
and 7 + 1 in cycle notation of ¢ and

hwi+1leg{l,...omn—m+1,...,n},

s;0s; satisfies the third hook property.

In order to show s;os; =~ o, we assume that ¢ + 1 is a fixpoint of o and i is not. The
other case is proven analogously. Let 7 := cst(c) and ¢’ := py(i). Then i’ =m+1 = &L
by the description of the cycle of length k& from above. Since o is oscillating, 7 is
oscillating. Thus, Lemma 4.3.6 implies that there is an ¢ € {—1,1} such that

(') >m+1and 77°(7') < m + 1.
Now we use that 70(i') = p,(c%(i)) for § = —1,1 and obtain that
o°(i)>n—m+1and o~ (i) < m.
Aso(i+1)=i+1¢€[m+2,n—mj, it follows that
o°(i) >o(i+1)and o (i) <o (i + 1).
Hence, Lemma 4.2.22 implies {(s;0s;) = ¢(c). Therefore, s;os; ~ 0. O

The following lemma shows that ~ preserves the hook properties. It is an analogue
to Lemma 4.3.17.

Lemma 4.3.38. Given an odd hook o = (k,1"%) E, n, 0 € &, of type a satisfying
the hook properties and o' := s;os; with o ~ o', we have that also o' satisfies the hook
properties.

"= id so that
:= cst(o) and

Proof. We show that ¢’ has the hook properties. If & = 1 then o
o’ satisfies the hook properties. Hence, assume k& > 1. Set m :=
7' = cst(o’). We deal with three cases.

First, assume that neither ¢ nor ¢+ 1 is a fixpoint of . Then ¢ and 7+ 1 both appear in
the cycle of length k of o. Since o satisfies the hook properties, it is oscillating and has
connected intervals. Therefore, Corollary 4.3.31 yields that also o’ has these properties.

S|
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The elements 1,...,m,n —m + 1,...m all appear in the cycle of length k of o because
o satisfies the hook properties. Since we interchange two entries in this cycle to obtain
o’ from o, all the elements also appear in the cycle of length k of o’.

Second, assume that ¢ + 1 is a fixpoint of o but 4 is not. Since o ~ ¢/, we have
¢(c) = {(0’) and by Lemma 4.2.22

either o(i) >4+ 1 and o 1(3) <i+1

N s (4.17)

oro(i)<i+lando (i) >i+1
where we used o(i + 1) = i+ 1. The elements of the cycle of length k of o are
1,...,m,j,n—m+1,....,n where j € [m + 1,n — m]. We now show that i,i + 1 €
[m+1,n—m)].

As i+ 1 is a fixpoint, we have i + 1 < n — m and it remains to show that ¢ > m + 1.
Assume that i < m instead and set i := p,(i). Then ¢ < £l Since 7 € &), is an
oscillating k-cycle, Lemma 4.3.6 yields that 7=1(i'), 7(i') > L. Because p,(j) = &L,
it follows that o~1(i), (i) > j. Moreover, i + 1 being a fixpoint and i < m imply that
i+ 1< j. Hence, 0~1(i),o(i) > i + 1 which contradicts (4.17).

Since 4,741 € [m+1,n—m] and ¢+ 1 is a fixpoint of o, we can apply Lemma 4.3.37
which implies that o’ satisfies the hook properties.

In the same vein, one proves the remaining case where 7 is a fixpoint but ¢ + 1 is
not. O

We now extend Lemma 4.3.18 to the case of odd hooks. That is, we consider one step
of the algorithm mentioned earlier.

Lemma 4.3.39. Let a = (k,1"7%) E, n be an odd hook and o € &,, such that o is of
type o, o satisfies the hook properties and o # o,. Then there exists a minimal integer
p such that 1 <p <k —1 and oP(1) # ol (1). Set a := oP(1), b:= k(1) and

, Sa—10Sa—1 ifa>b
o =
84084 if a <b.

Then o' ~ o and o’ satisfies the hook properties.

Proof. Set m := % If & = (1™) then the only permutation of type « is the identity

and there is nothing to show. If & = (n) then this is Lemma 4.3.18. Therefore, assume
1 < k < n. Since o satisfies the hook properties, 1 appears in the cycle of length k of o.
By definition, o, has the form

(%) if n s odd

" :{(1,n,2,n—1,...,m—|—1)(n—m)(m+ 2) - ( 5 )
“ )(5 +1) if nis even.

(Ln,2,n—1,....m+1)(n—m)(m+2)---(

03

In particular, [m+2,n —m] is the set of fixpoints of o, and 1 also appears in the cycle of
length k of 0. Thus, from o # o, it follows that there exists p as claimed. In particular,
we can define a, b and ¢’ as in the theorem.

160



4.3 Equivalence classes of (&, )max under ~

If n is odd, k& < n implies that %’Ll is a fixpoint of o, and hence b # "TH If n is even,
we have b # "t anyway. Let 7 := cst(0) and note that cst(o,) is just the element in
stair form o). Moreover set a = py(a).

Assume b < "TH The proof for b > ”T‘H is similar and hence omitted. If b < "T'H then
b < m+1 by the description of ¢, from above. The choice of pand 1 < b < m—+1 imply

o Na)=0'D)=n—-b+2>m+1
and

(1,2,....6—1}C{o"(1) |r=0,....p—1} ={o"(Q) | r=0,...,p— 1}.

The last equality and a # b imply b < a. Thus, we consider ¢’ := s,_108,_1. From
the hook properties, we obtain that the elements in the cycle of length k£ of o are
1,...,m,j,n—m+1,...n where j € [m + 1,n —m]. Thus, 0~ 1(a) > m + 1 implies
77Ya’) > m + 1. But since o is oscillating, 7 is oscillating and therefore Lemma 4.3.6
implies @’ < m + 1. From the description of the elements in the k-cycle of o, it now
follows that a < n —m.

To sum up, we have b < a < n —m and o’ = s,_105,_1. Now we have two cases
depending on ¢ — 1. If ¢ — 1 is a fixpoint of o then because of a < n — m, we can apply
Lemma 4.3.37 and obtain that ¢/ &~ o and ¢’ satisfies the hook properties.

If a — 1 is not a fixpoint of o then p,(a — 1) = a’ — 1. Moreover, interchanging a — 1
and a in o does not affect the third part of the hook property. Therefore, we obtain from
Lemma 4.3.30 that ¢’ ~ ¢ and ¢’ satisfies the hook properties if 7/ := sy 1781 =~ T
and 7’ is oscillating with connected intervals. By Lemma 4.3.18, 7/ has these properties
if 77(1) = o}y (1) for 0 < r < p—1,77(1) > U?k)(l) and 7P(1) = «/. This is what remains
be shown.

As 0"(1) = ol (1) for 0 < r < p — 1, we have the following equality of tuples

(7—0(1)77—1(1)7 ce 77_p—1(1)) = (pG(l)apo(n)HOU(?)va(n - 1)7 s 7:00(n —b+ 2))
=(1,k2,k—1,....,k—b+2)
(U?k)(1)70(1k)(1)7 s 70&_1(1))'

Since the cycle of length k of o contains exactly one element of [m 4+ 1,n —m|, a — 1
and a appear in this cycle and a < n — m, we have that a < m + 1. Moreover, 1,...,m
appear in the cycle of length k of o and o4. Since b < a < m + 1, this implies

0y (1) = po, (b) = b and 77(1) = ps(a) = a.
In particular, a’ = 7P(1). Moreover, we have b < a so that afk)(l) < 7P(1) as desired. [

We now come to the main result of this subsection.

Theorem 4.3.40. Let o E. n be an odd hook and o € &, of type a«. Then o € X, if
and only if o satisfies the hook properties.
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Proof. Let a = (k,1"%) E, n be an odd hook and o,, be the element in stair form. The
proof is analogous to the one of Theorem 4.3.20. First, o, satisfies the hook properties
by Lemma 4.3.36. Let 0 € &,,.

For the direction from left to right assume that ¢ € ¥,. Then ¢ =~ o,. From the
definition of ~ and Lemma 4.3.38 it follows that ~ transfers the hook properties from
o, 1o o.

For the converse direction, assume that o satisfies the hook properties. By using
Lemma 4.3.39 iteratively, we obtain a sequence of ~-equivalent permutations starting
with ¢ and ending in o,. Hence o € ¥,. ]

We continue with a rule for the construction of ¥, jn-k from ;) in the case where k
is odd and k£ > 3. The rule can be sketched as follows. Given a 7 € X(;) we can choose
a subset of [n] of size k in accordance with the third hook property. Arranging the
elements of this subset in a cycle of length k such that its cycle standardization is 7 (and
letting the other elements of [n] be fixpoints) then results in an element of ¥, 1n-x). See
Part (3) of Example 4.3.35 for an illustration.

Corollary 4.3.41. Let a = (k,1"7%) . n be an odd hook with k > 3. Setm := % For
T € Ny and j € [m+1,n—m] define p(1,j) to be the element o € &,, of type o such that
cst(o) = 7 and the entries in the cycle of length k of o are 1,...,m,j,n—m+1,...,n.
Then

¢:E(k)x[m+1an_m]_>2a7 <T7j)’_>()0(7-7j)
s a bijection.

Proof. Given a 7 € ¥y and a j € [m + 1,n — m] there is only one way (up to cyclic
shift) to write the elements 1,2,...,m,j,n —m+ 1,...,n in a cycle of length k£ such
that the standardization of the corresponding k-cycle in &,, is 7. This k-cycle is (7, j).
By construction, ¢(7,j) satisfies the hook properties. Hence, Theorem 4.3.40 yields
o(7,7) € 4. That is, ¢ is well defined.

Let 0 € ¥,. Then by Theorem 4.3.40, o satisfies the hook properties. The third
hook property yields that there is a unique j € [m + 1,n — m| such that the elements
in the cycle of length k of o are 1,2,...,m,j,n—m—+1,...,n. From the first two hook
properties it follows that 7 := cst(o) is oscillating and has connected intervals. Thus,
T € YNy by Theorem 4.3.20. By definition of ¢, the cycles of length k of ¢(7,j) and
o contain the same elements. Moreover, they have the same cycle standardization 7.
Consequently, ¢(7,j) = o. That is, ¢ is surjective. Since 7 and j uniquely depend on
o, @ is also injective. O

In the last result of the subsection we determine the cardinality of ¥, for each odd
hook a.
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Corollary 4.3.42. If a = (k,1""%) k. n is an odd hook then

1 ifk=1
|EOC|: k=3 .
2(n—k+1)32 ifk>3.

Proof. Let o € ¥,. If k =1 then X, = {1}. Now suppose that k£ > 3 and set m := %
The cardinality of [m + 1,n — m| is n — k + 1. Hence, Corollary 4.3.41 yields that

|¥a| = (n—k+1)[X4|. In addition, we have [¥)| = 2- 37" from Corollary 4.3.24. [

4.3.3 The inductive product

In this subsection we define the inductive product ©® and use it to obtain in Corol-
lary 4.3.56 a recursion the rule for ¥, . o) in the case where a; is even. This leads
to a description of X, for all maximal compositions o whose odd parts form a hook
(see Remark 4.3.59). Results of this subsection will be applied in Subsection 4.3.4 and
Section 5.4.

Recall that we write v Fg n if v is a weak composition of n, that is, a finite sequence
of nonnegative integers that sum up to n.

Definition 4.3.43. Let (n1,n2) Eg n. The inductive product on &,, X S, is the binary
operator

©: 6y, X6y, =+ 6,

(01,02) = 01 ® 02

where o1 ® 09 is the element of G, whose cycles are the cycles of o1 and o9 altered as
follows:

(1) in the cycles of o1, add ny to each entry > k,
(2) in the cycles of o2, add k to each entry

where k := [5].
For two sets X; C &,,, and Xy C 6,,, we define
X10Xe:={01002|01 €6,,,00€ 6p,}.
It will follow from Lemma 4.3.47 below that the inductive product is well-defined.
Example 4.3.44. (1) Let ) € & be the empty function and o € &,,. Then

looc=0c00=o0.

(2) Consider ny = 6, ng = 4, n = 10 and the elements in stair form o € &,, and

163



4 Centers and cocenters of 0-Hecke algebras

03,1) € Gn,. Then k =3 and

J(6) © 0(3,1) = (17 6,2,5, 374) © (1747 2)(3>
— (1,6 4+4,2,5+4,3,4+4)(1+3,4+3,2+3)(3+3)
= (17 107279,378)(4’ 7, 5)(6)

(3) Consider ny = 5, ng = 4 and the elements in stair form o5y = (1,5,2,4,3) € Gy,

and o3 1) = (1,4,2)(3) € &p,. Then J(“éol) = (1,3,4)(2) where wo = (1,4)(2,3) is

the longest element of &4. We have k£ = 3 and
a(5) @ag‘?l) =(1,5+4,2,444,3)(1+3,3+3,44+3)(2+3)
=(1,9,2,8,3)(7,4,6)(5).

Note that in Parts (2) and (3) we obtain the elements in stair form o 3 1) and o5 3 1),
respectively.

In order to work with the inductive product, it is convenient to describe it more
formally. To this end we introduce the following notation which we will use throughout
the subsection.

Notation 4.3.45. Let n >0, (n1,n2) Fo n, k= [5],
Ny :=[kJU[k+n2+1,n] and Na:=[k+1,k+ nol.

We have that |N1| = n1, |Na| = ne, N1 and Ny are disjoint and Ny U No = [n]. Note
that [0] = [1,0] = (). Define the bijections ¢;: [n1] — Ny and ¢a: [no] — Na by

1 if1 <k
1) = - and 1) =1+ k.
e1(0) {i+n2 iti >k (1)

The bijections ¢ and @9 formalize the alteration of the cycles of o1 and o9 in Defini-
tion 4.3.43, respectively. Their inverses are given by

_1,. 1 ifi <k 1, .
= d =17 — k.
e1 () {z oy ifi>k and ¢y (i) v

For i = 1,2 and 0; € &,,, write 0’ := @; 0 0; 0 p; '. Then of' € G(N;) and of"
can naturally be identified with the element of &,, that acts on N; as of “ and fixes all
elements of [n] \ N;.

We will see in Lemma 4.3.47 that we obtain o by applying ¢; on each entry in of o;
in cycle notation.

Example 4.3.46. Let n1 = 6 and no = 4 and consider the elements in stair form

01 :=0(@) = (1,6,2,5,3,4) €6g and o9y:= 0(3,1) = (1,4, 2)(3) € Gy4.
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Then k£ = 3 and

Ufl = (176+47275+47374+4) = (171072’9’378)7
082 = (143,4+3,2+3)(34+3) = (4,7,5)(6).

Thus, from Example 4.3.44 it follows that o1 ® o2 = o}'05?. The next lemma states
that this is true in general.

We now come to the more formal description of the inductive product.
Lemma 4.3.47. Let 0, € &, with decomposition in disjoint cycles o, = 0, 10,2 O p,

forr=1,2.
(1) We have

o1 ® oy =00y

(2) Letr e {1,2} and o, = (c1,...,¢) be a cycle of 0. Then

o = (pr(cr),- .- prler)).
(3) The decomposition of o1 ® oo in disjoint cycles is given by

PP P2 P2
01002 =011 Olp 031" " Tgp,

Proof. Set 0 := 01 ® 02 and 0’ := 0{" 0%?. It will turn out that o = ¢’.

We first show Part (2). Let r € {1,2}, £ be a cycle of o, and i € [n,]. Then

£ (or (1)) = (pr o €0 rt 0 ) (i) = pr(£(3)).

Hence, if £ = (c1,...,ct) € G, then €97 = (pr(c1), ..., pr(c)) € S(Ny).
We continue with showing Part (3) for o’. For r = 1,2 we have

or __ —1
of" =¢@roor o,

—1
=@ro0pr1-0rp. 9P,

_ —1 —1
= (prooriow, ) (proorp 0w, )
— 5P . 5P
=0p1° " Orp,-

Thus,

o' =0fy---0f), 08702 . (4.18)

The cycles in this decomposition are given by Part (1). As ¢; and 2 are bijections with
disjoint images, the cycles are disjoint.

Lastly, we show o = ¢’. From (4.18), Part (2) and the definition of ¢1 and ¢y it

follows that we obtain the cycles of ¢’ by altering the cycles of o1 and o9 as described

in Definition 4.3.43. Hence, o = o¢’. O
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Corollary 4.3.48. Let 01 € G,,,,02 € G, and 0 := 01 ©® 02. Then
P(o) = ¢1(P(01)) U p2(P(02)).
We continue with basic properties of the inductive product.

Lemma 4.3.49. Let 01 € G,,,,02 € &, and 0 := 01 ® 09. Then for all i € [n]

(i) = of'(i) ifie N
T\ o) ific N

Proof. By Lemma 4.3.47, 0 = 0{'0%*. If ny = 0 or nz = 0 the claim is trivially true.
Thus, suppose n1,n2 > 1 and let i € [n]. Consider of"' and 0§? as elements of &,,. Since
{N1, N2} is a partition of [n] there is exactly one r € {1,2} such that i € N,. We have
that of"(N,) = N, and that 03,7 fixes each element of N,.. Hence,

o(i) =o' o5? (i) = a¥r (7). O
We now determine the image of the inductive product and show that it is injective.

Lemma 4.3.50. Let (ny,n2) Fg n.
(1) The image of Sy, X &,, under ® is given by

Gp, ©6,, ={c €6, |a(N;) =N, fori=1,2}.
(2) The inductive product on Sy, X S, is injective.

Proof. (1) SetY :={0 € &, |o(N;) =N, fori=1,2}.

We first show &, ©® &,, C Y. Let 0 € 6,,, ® &,,. Then there are 0; € &, for
i = 1,2 such that 0 = 01 ® 03. By Lemma 4.3.49 we have o(NN;) = o%(N;) = N; for
i =1,2. Hence, 0 €Y.

Now we show Y C &,,, ©® S,,. Let 0 € Y. For i = 1,2 set 6; = o|n, (the restriction
to NV;). Consider 7 € {1,2}. Since o € Y, 5;(N;) = N; and thus &; € S(N;). Therefore,

#i considered as an element of &,

0; = @, ©0;0; is an element of &,,,. Moreover, o;

leaves each element of No_; ;1 fixed. Hence, we have

(01 © 02)|n, = of"0f*|N, = of'|n, = Gily, = ol
Consequently, o = g1 ® 09.
(2) Since |N;| = n; for i = 1,2, the cardinality of Y is mjlng!. This is also the
cardinality of &,,, X &,,. As the image of &,,, X G, under ® is Y, it follows that © is
injective. U

Recall that for o E. n, each element of ¥, has the property that its length is maximal
in its conjugacy class. We want to use this property to prove our main result.
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Consider 0 = 01 ® 02 such that o1 has type (n1). We seek a formula for /(o) depend-
ing on o1 and o2. We are particularly interested in the case where the ni-cycle o1 is
oscillating.

Given 0 € &, let Inv(o) := {(i,5) | 1 <i < j<n,o(i) >0c(j)} be the set of inver-
sions of 0. Then £(0) = [Inv(o)| by [BB05, Proposition 1.5.2].

Lemma 4.3.51. Let 01 € &, be an ni-cycle, 02 € &y, 0 := 01 © 02,

Pi={ie k]| o) >k},
Q:=lick+1lm]| o) <k},

p:=|P| and q := |Q|. Then we have
(o) = L(or) + L(o2) + (p + q)n2.

Moreover,

(1) pyg < [%],
(2) if o1 is oscillating, then p = q = L%J

Proof. Let i,j € [n] and m := |%|. We distinguish three types of pairs (i, j) and count
the number of inversions of o type by type.

Type 1. There is an r € {1,2} such that i, € N,. In this case let ¢ € {i,;} and set
t':= ¢, 1(t). Then ' € [n,]. From Lemma 4.3.49 we obtain

o(t) = pr(or(t')).
In addition, we have
@r(ar(i/)) > @r(ar(j/)) — Ur(i,) > Ur(j/)

since ¢, is a stricly increasing function. As ¢, ! is stricly increasing as well, we also have
that

i<j = i <j.
Hence,

(1,7) € Inv(o) <= i< jand o(i) > o(j)
= i <j and ¢, (0,(i") > @r(0r(5))
<~ i <j and 0,(i") > o,.(j)
— (V,5") € Inv(o,).

Thus, the number of inversions of Type 1 is

|[Inv(o1)| + [Inv(og)| = €(o1) + £(02).
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Type 2. We have i € Ni, j € Ny and i < j. Assume that (i,7) is of this type
and recall that Ny = [k] U [k + n2 + 1,n] and Ny = [k + 1,k + na] where k = [F].
Since i < j, we have i < k which in particular means that ¢;'(i) = i. As o(j) € Ny,
k+1<o(j) <k+ny Moreover, (i) = o' (i) by Lemma 4.3.49. Consequently,

o1(i) < o(j) if 01(7) <k

o(i) = oy (i) = p1(o1(2)) =
Q i (0) = @1 i) {a1(i)+n2>0(j) if 01(i) > k.

Therefore,
(1,7) € Inv(o) <= o1() > k.

Hence, the number of inversions of Type 2 is the cardinality of the set P x Ns. Thus,
we have pno inversions of Type 2.

Type 3. We have i € Ny, j € Ny and i < j. Let (i,5) be of Type 3. Then from
1 < j we obtain j > k 4+ no 4+ 1. In particular this type can only occur if n; > 1 because
otherwise n =1+ ny < j.

Since i € Na, also o(i) € No. That is, k + 1 < o(i) < k + ny. Moreover, from i < j
and ¢ € N it follows that 5 > k + no + 1. Thus,

-/

i =t (G) =4 —no

and j' € [k + 1,n1]. Hence,

®1

o(j)=07"(j) = 901(0'1(]',)) _ {Ul<j/) < o(i) if 01(5') < k

Jl(j/) + ng > O’(’L) if Ul(jl) > k.
That is,
(i,j) € Inv(0) <= 01(j) <k <= j €Q < jew(Q)

where we use that j' € [k + 1,n4] for the second equivalence. Consequently, the set of
inversion of Type 3 is the set Na x ¢1(Q). Since ¢ is a bijection, it follows that there
are exactly gno inversions of this type.

Summing up the number of inversions of each type, we obtain the formula for the
length of o.

We now prove (1) and (2).

(1) By definition, o1(P) C [k+1,n1] and @ C [k+1,n1]. The cardinality of [k+1,n;]
is | % |. Therefore, p,q < |%-].

(2) Assume that o is oscillating. Suppose first that n is even. Then k = %. Because
o1 is oscillating, we obtain that

o1([k]) =[k+1,n1] and o1([k+ 1,n1]) = [K]

from Definition 4.3.1 and Lemma 4.3.4. Hence, p =q =k = [ % ].
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Suppose now that n is odd. Then k = "1T+1 Since oy is oscillating, Definition 4.3.1

and Lemma 4.3.4 yield that there is an m € {k — 1, k} such that
o1([m]) =[n1 —m+1,n1] and o1([m+1,n1]) = [n1 —m].
It is not hard to see that this implies p =g =k —1 = [ ]. O

We have seen in Example 4.3.44 that the elements in stair form o(;53) and o5 3) can
be decomposed as

0'(5,3) = 0'(5) © Uzgg and 0(6,3) = 0(6) © 0'(3)

where wy is the longest element of &3. We want to show that these are special cases of
a general rule for decomposing the element in stair form o,. Before we state the rule,
we compare the sequences used to define the element in stair form in Definition 4.2.13
for compositions of n, n; and no.

Lemma 4.3.52. Form € Ny let (™) be the sequence (xgm), . ,L(:Zn)) given by $g@1 =1

and acgzn) =m—i+1. Setx:=z y:=2) and 2 := 22,

(1) We have ¢i1(y;) = x; for all i € [nq].
(2) If ny is even then wo(z;) = Tjyn, for alli € [na].

(3) Ifny is odd then pa(wo(2i)) = Titn, for alli € [n2] where wy is the longest element
of Gp,.

Proof. Recall that k = [%+] and (n1,n2) Fo n by Notation 4.3.45. Let i € N. We mainly
do straight forward calculations.

(1) Assume 2i — 1 € [n1]. Then i < k and thus ¢; (i) = i. Consequently,
P1(y2i-1) = ¢1(i) =i = z2i-1.
Now, assume 2i € [n;1]. Then
n—t1+1= (nl—i—i—ﬂ > ’7711—7;1—1—1“

ni ni
=|—=4+1| =|—= 1=k+1
[2+l {2% T

ie. p1(n1 —i+1) =n; +ng — i+ 1. Therefore,
gol(ygi) :cpl(nlfiqtl) =nmi+ne—i+1l=n—14+1=x9.
(2) Assume that n; is even. Then n; = 2k. If 2i — 1 € [ng] then we have

2k+1)—1=n1+2i—1<n;+ns=n.
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Thus,
pa(22i-1) = p2(i) = k +1 = Toghpiy—1 = T2i-14n,-
Suppose 2i € [ng]. Then 2(k +14) =n; +2i < n and
pa(z2)) =k+mne—i+1=Mn—-2k—ny)+k+ny—i+1

=n—k—i+1
= Lo(k+i) = L2i+ny-
(3) Assume that n; is odd. In this case n; = 2k — 1. Let wg be the longest element of

Sh,. We have wo(j) =ng —j+ 1 for all j € [ng]. If 20 — 1 € [ng] then 2i — 1 4+ ny € [n]
and

p2(wo(22i-1)) = P2(wo(i))
=pa(ng —i+1)
=no+k—1+1
:(n—2k+1—n2)+n2+k—i+1
=n—(k+i—-1)+1
= T2(i+k—1)
= T2i—142k—1 = T2i—14n, -
If 2i € [ng] then 2i 4+ ny € [n] and
pa(wo(22i)) = pa(wo(ne —i+ 1)) = @a(i) =i+ k = To(i1p)—1 = T2i4n, - O
Example 4.3.53. Consider n =9, ny = 6 and ny = 3. Then k = 3. Using the notation
from Lemma 4.3.52 we obtain
x=(1,9,2,8,3,7,4,6,5),
y = (]—7 67 27 57 3) 4)5
z=(1,3,2).

Then = (o1(y1),---,91(¥6), v2(21), p2(22), p2(23)) as predicted by Lemma 4.3.52.
Moreover, z,y and z are the sequences used to define the elements in stair form o 3),
o) and o(3), respectively. Therefore,

0(6,3) = (P1(y1), - -, P1(Y6)) (02(21), P2(22), p2(23)) = 0505 = 0(6) © 0 (3)-

This also illustrates the idea of the proof of the next lemma.

Lemma 4.3.54. Let o = (a1,...,q;) Ec n with | > 1. Then we have the following.

(1) If aq is even then oo = 0(4,) © T(as,... ar)-
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(2) If a1 is odd then o4 = 0(q,) © (U(azwyal))wo where wq s the longest element of
6a2+~-~+al'

Proof. Set n1 := a1 and no := as + --- + ;. As in Lemma 4.3.52, let 2™ be the
sequence (xgm), . ,xq(ﬁn)) given by xgn_)l =4 and a:g;n) =m —i+ 1 for m € Ny and set
z =z, y:=2™) and 2 := z("2). We have that

(1) o4 has the cycles

Oa; = (Tar+tai 1+l Tagttaio142s - - Tagtotair+oi)

fori=1,...,1,

(2) O(a1) = (yl’ Y2, .. ’ynl) and
(3) T(a,....a;) has the cycles

Oa; = (Za2+---+01i71+17 Roag+-Fa;—1+2: -+ Za2+---+a¢71+04i)

fori=2,...,L

Assume that ay is even and set 0 := 0(4,)©0(q,,....a;)- From Lemma 4.3.47 we obtain that
o has the cycles (0(4,))?" and (G(q,))¥? for i = 2,...,1. By Lemma 4.3.52, ¢1(y;) = ;
for j € [n1] and p2(2j) = za, 4 for j € [ng]. As a consequence,

(U(al))sal = (901(111), .- -a‘Pl(ym)) = (xla ce 7x011) =0

and
(5%‘)902 = (@2(zaz+m+ai_1+1)a R 902(Za2+~-'+ai—1+ai))

= (x&1+---+ai71+17 ce ?xal+"'+ai—1+ai)

= O‘ai
for i =2,...,1. Hence, 0 = g,.

w,
Now let ag be odd. Set 0 :=0(4,) ® (U(a%m’al) * where wg is the longest element of

Gayt-+aoy- Then o has the cycles (0(4,))¥t and ((6(q,))")*?? for i = 2,...,l. Moreover,

from Lemma 4.3.52 we have that p2(wo(zj)) = a,+i for j € [ng]. Thus,

(G(a))")?? = (@2(wo(Zast-+ai 1+1))s - - - » P2(W0(Zas -+ _1+0:)))
= (Tay+tai1+1s - > Tag+otai_1+ai)
= Uai
for i = 2,...,1. As we have already shown that (0(4,))¥* = 0q,, it follows that o =
Oq- ]

The upcoming Theorem 4.3.55 is the main result of this subsection. It enables us to
decompose X, if a; is even. Before we can state the result, we need to introduce some
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more notation. For o F, n we define
XX :={oce€X,|P(oc)=P(on)}.

In Theorem 4.3.55 the set (XX)"° appears where wy the longest element of &,,. Let
o € ¥y. Then by Corollary 4.1.16, o™° € X,. Since P(c"°?) = wo(P(0)), we have
o€ (X)) <= P(0"°) = P(0,) <= P(o) = P(c™). (4.19)

« «

Theorem 4.3.55. Let o = (aq,...,q;) Fe n with 1 > 1.
(1) If a1 is even then Yo = Y(a,) © X(ay,...ar)-

(2) If ay is odd then X} = Z(Xal) ©) (EX

(... al))wo where wy is the longest element of

6a2+~~~+al .

Proof. Let oV := (aq), a® = (ag,...,o), n1 = |aW|, ng := |aP| and wy be the
longest element of &,,. We use the inductive product on &,, x &,, and the related
notation. The proofs of (1) and (2) have a lot in common. Hence, we do them simul-
taneously as much as possible and separate the cases a1 even and a; odd only when
necessary.

If | =1 then a = oM, o? = @ and thus

L) O e = Xa © 6o = X,.

Moreover, E(Xal) = Y(qa,) and (Z@X)wo = ¥y. Thus we have (1) and (2) in this case.

Now suppose | > 2. Let 0 := 04, 01 1= 0,0) and 02 = 0, if o is even and
o9 = UZ(OQ) if a; is odd. From Lemma 4.3.54 we have 0 = 01 ® 3. By Proposition 4.2.14,
Ont) € By for i = 1,2. In addition, Corollary 4.1.16 then yields that o) € ).
Consequently, o; € £ ) for i =1,2.

We begin with the inclusions “C”. Let 7 € ¥, with P(7) = P(0) if o is odd. First we
show 7 € 6,,, ©® &,,. By Lemma 4.3.50, we have to show 7(V;) = N; for i = 1,2. Since
{N1, N2} is a set partition of [n], it suffices to show 7(N1) = Ni. As 01 € &, is an n;-
cycle, P(o1) = {[n1]}. Moreover, Corollary 4.3.48 yields P(c) = ¢1(P(01)) Upa(P(02)).
Thus,

N1 = @i([m]) € g1(P(01)) € P(o).

If oy is even then Ny € P.(0). Moreover, Proposition 4.2.25 yields P.(7) = P.(o). Thus,
N; € P(7) which means that 7(N1) = Ni. If o is odd then P(7) = P(o) by assumption.
Hence, Ny € P(0) = P(7) and thus 7(N7) = Nj.

Because 7 € 6, © &,,, there are 1 € &,, and » € G, such that 7 = 71 © 7.
Let ¢ € {1,2}. We want to show 7 € ¥ ). Recall that o; € £_ ). Thus, from
Proposition 4.2.25 it follows that 7; € ¥ ) if and only if

(i) o; and 7; are conjugate in &,,,

(ii) ¢(o;) = £(7;) and
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(iii) Pe(Ui) = Pe(Ti)~
Therefore, we show that 7; satisfies (i) — (iii). Let i be arbitrary again.

(i) For a permutation &, let C(§) be the multiset of cycle lengths of £. Assume
E=&6 0& for & € 6, and i = 1,2. From Lemma 4.3.47 it follows that

C(§) = C(&) U C(&). (4.20)

Since 7 = 71 ® 79, Corollary 4.3.48 implies P(7) = ¢1(P(11)) U w2(P(72)). Therefore,
from Ny € P(7) it follows that P(71) = {[n1]}. That is, 7 is an nj-cycle of &,,,. By
definition, o7 is an nj-cycle of &, too. Thus, C(11) = C(071). Since 7 € ¥y, 7 and o
are conjugate so that C(r) = C(o). Because of (4.20) and C(71) = C(01), it follows
that also C(12) = C(02). In other words, 7; and o; are conjugate for i =1, 2.

(ii) Let m := |%|. By Lemma 4.3.51, there are p, ¢ < m such that

U(r) = L(1) + £(12) + (P + @)na.

Moreover, we have ¢(7;) < {(0;) for i = 1,2 because 7; and o; are conjugate and o; €
Y- On the other hand, oy is oscillating by Theorem 4.3.20 and hence Lemma 4.3.51
yields

U(o) =L(o1) + €(0o2) + 2mny.

Since 7 € X, we have ¢(1) = {(0). Therefore, we obtain from the equalities for ¢(7) and
¢(o) and the inequalities for ¢(11), £(72), p and ¢ that ¢(71) = ¢(o1) and £(12) = {(03).
(iii) Corollary 4.3.48 states that

P(&) = ¢1(P(&1)) U (P(&2)) (4.21)

for £ = o,7. This equality remains valid if we replace P by P.. From 7 € ¥, and
Proposition 4.2.25 it follows that P.(7) = P.(o). Hence,

P1(Pe(1)) U pa(Pe(12)) = p1(Fe(01)) U ¢2(Fe(02))-

Since @1 and 9 are bijections and the images of ¢ and 9 are disjoint, it follows that
P.(1;) = Pe(o;) for i = 1,2. This finishes the proof of 7 € ¥ 1) ® X 2).

It remains to show that 7 € E:(l) and ™ € (2;@))% if a7 is odd. Thus, assume
that oy is odd. We have already seen that P(r;) = P(o1). Hence, 7 € E:(l). Since ay
is odd, P(7) = P(0) by assumption and therefore we deduce from (4.21) as above that
P(r2) = P(02). Now we can use that o2 = 0" () and obtain 7 € (E:@))wo from (4.19).

We continue with the inclusions “27. Let 7, € X ¢
If oy is odd, assume that in addition 71 € ¥, and 72 € (E;@))wo which by (4.19) is
equivalent to P(r;) = P(0;) for i = 1,2.

We want to show 7 € ¥, and again use Proposition 4.2.25 to do this. That is, we
show the properties (i) — (iii) for 7 and o.

y for i = 1,2 and 7 := 71 ® 7.
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(i) For i € {1,2} we have C(r;) = C(0;) since 7; € ¥ ;). Hence, from (4.20) it follows
that C'(7) = C(0), i.e. 7 and o are conjugate.

(ii) Since 71,01 € X1, they are oscillating ni-cycles by Theorem 4.3.20. Therefore,
Lemma 4.3.51 yields

0(&) = £(&1) + £(&) + 2mng

for £ = 0,7 and m = |%-]. Moreover, as 0, 7; € X4, {(7;) = £(0;) for i = 1,2. Hence,
1) =4L(0).

(iii) Since £ = & © & for € = 0,7, Equation (4.21) holds. This equation remains
true if we substitute P by P,. In addition, from Proposition 4.2.25 we obtain that
P.(1;) = P.(0;) for i = 1,2. Thus, P.(1) = P.(0).

Because of (i) — (iii) we can now apply Proposition 4.2.25 and obtain that 7 € X. In the
case where o is odd, it remains to show P(7) = P(o). But this is merely a consequence
of P(1;) = P(0;) for i = 1,2 and (4.21). O

We now infer from Theorem 4.3.55 that the inductive product provides a bijection
from ¥ (4,) X X(ay,....a) t0 Xg for all a Fe n with even ;.

Corollary 4.3.56. Let o = (o, ..., ) Fe n with [ > 1.

(1) If ay is even then the map Xq,) X X(q, — Yo, (01,02) = 01@02 is a bijection.

~~~~~ ap)
(2) If a1 is odd then the map E(Xal) X (E(XM’_“?QZ))WO — XX, (01,02) — 01 ® oy where

wo is the longest element of Gqyvt...qq, 5 a bijection.

Proof. By Lemma 4.3.50 the two maps in question are injective. Theorem 4.3.55 shows

that they are also surjective. O
Recall that, given a maximal composition a = (a1, ..., qq) Fe n, there exists 0 < j <1
such that o, ..., a; are even and a1, ..., oy are odd. Using Part (1) of Corollary 4.3.56

iteratively, we obtain the following decomposition of the elements of X,.

Corollary 4.3.57. Let a = (aq,...,0q) Ec n, 0 € &, of type o and 0 < j <[ be such
that o := (ajt1,...,0) are the odd parts of a. Then o € X, if and only if there are
0i € Yo,y fori=1,...,j and 7 € Xy such that

0=01000 -00;OT

where the product is evaluated from right to left.

Example 4.3.58. Consider o = (2,4,3,1,1) F. 11. From Table 4.1 and Example 4.3.33
we obtain

S =1{(1,2)},
S = {(1,4,2,3),(1,3,2,4)}
S = {(1,5,2),(1,2,5), (1,5,3), (1,3,5), (1,5,4), (1,4,5)} .
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By Corollary 4.3.57, ¥, consists of all elements (1,2) ® (¢ ©7) with 0 € %4 and
T E X31,1)- Thus, |X,| = 12. For instance,

(1,2) ® ((1,3,2,4) ® (1,3,5)) = (1,2) ® (1,8,2,9)(3,5,7)
= (1,11)(2,9,3,10)(4,6,8)

is an element of X,.

Remark 4.3.59. For compositions with one part & = (n), Theorem 4.3.20 provides a
combinatorial characterization of ¥,). Therefore, Corollary 4.3.57 reduces the problem
of describing 3, for each maximal composition « to the case where « has only odd parts.
These « are the partitions consisting of odds parts.

If « is an odd hook, then Theorem 4.3.40 yields that the hook properties characterize
the elements of X,. That is, we have a description of X, for all  whose odd parts form a
hook. Generalizing this result would be interesting but is out of the scope of this thesis.
Remark 4.3.76 gathers some observations on partitions with two odd parts.

Let a E. n and o' be the composition formed by the odd parts of a. We conclude the
subsection with a formula that expresses [2,| as a product of |X,/| and a factor that only
depends on the even parts of «. In the case where o is an odd hook, we can determine
|Yo| explicitly and thus obtain a closed formula for |X,|.

Corollary 4.3.60. Let o = (o, ...,qq) Fen, 0 < j <1 be such that (v, ..., o) are the
even and o/ == (aj41,...,0q) are the odd parts of o, n' :=|d/|, P:= {i € [j] | oy > 4},
p:=|P| and q:= —2p+ 3 S ;cpai. Then

|Xa| = 27392

Moreover, if o is a hook (r,1"' ") then

5. = 234 ifr<1
“ (n' —r+1)2¢37 ifr>3

where p' :==p+1 and ¢ == ¢+ 5>.

Proof. Since a1, ..., a; are the even parts of o, Corollary 4.3.57 implies that

j
Zal = 2o TT 1 an- (4.22)
=1

For the same reason, Corollary 4.3.24 yields

s 1 ifn <2
@17 9. 3% ifp >4
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fori=1,...,7. Therefore,

j o —
H |E(az)| = H 2.3 5 4 _ 2p3—2p+% Eiep @i _ op3q.
i=1 icP

and with (4.22) we get the first statement.

For the second part, assume that o/ is a hook. Then, by the choice of 7, o/ is an
odd hook. It remains to compute |Sq/|. If o/ = 0 or o/ = (1"') we have || = 1. If
o = (r,1"'~7) with r > 3 then Corollary 4.3.42 provides the formula

r—3

S| =2(n"—r+1)372 . O

Example 4.3.61. Consider o = (2,8,4,5,1,1,1) F, 22. Then o = (5,1,1,1) F, 8 is a
hook, P = {2,3},p' =2+ 1 and ¢ = —2-2+ (8 +4) + 252 = 3. Thus, Corollary 4.3.60
yields | Yo | = (8 — 5+ 1)233% = 864.

4.3.4 Mild equivalence classes

In this subsection we use the inductive product to study oscillating permutations with
connected intervals. The first goal is to show that for all @« Fc n and ¢ € &, we
have 0 € X, if o is oscillating with connected intervals and P(c) = P(o,). This
leads to a characterization of ¥, for a certain type of compositions which we call mild.
In this subsection we use the notions related to the inductive product introduced in
Notation 4.3.45.

In Lemma 4.3.12 we showed that conjugating n-cycles of &,, with wg preserves the
properties of being oscillating and having connected intervals. We now generalize this
result.

Lemma 4.3.62. Let 0 € &,,.

(1) If o is oscillating then o™ is oscillating.

(2) If o has connected intervals then c"° has connected intervals.

Proof. Let T be a cycle of o, t be the length of 7, wy be the longest element of &,, and
ug be the longest element of G;. We consider the cycle 70 of ¢"0.

We show cst(7%°) = cst(7)"0 first. Fix a presentation of 7 in cycle notation 7 =
(a1,...,a¢). Then

cst(7°) = (by,...,b;) and cst(7)C = (c1,...,¢)
where
bi == prwo(wo(a;)) and ¢; = uo(pr(a;))
for i = 1,...,t. The t-cycles cst(7"?) and cst(7)“ are elements of &;. Hence,

(b1, b} = {er, e =[]
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Moreover, for all 4, j € [t] we have

bi < b; prwo(wo(as)) < preo(wo(ay))
wo(ai) < wo(ay)

a; > aj

pr(ai) > p-(a;)

ug(pr(ai)) < uo(pr(ay))

¢ < ¢j.

rreeey

Therefore, b; = ¢; for all i € [t]. That is, cst(7"°) = cst(7)"0.

We focus on Part (1). For Part (2) simply substitute all occurrences of the phrase
is oscillating by has connected intervals. Assume that o is oscillating. Then cst(7) is
oscillating by definition. As cst(7) is a t-cycle in &; we can can apply Lemma 4.3.12
and obtain that cst(7)"0 is oscillating too. Because cst(7%°) = cst(7)"0, it follows that
7% is oscillating as well. Since each cycle of " is given by 7° for a cycle 7 of o, we
are done. O

We now show that o = 01 ® o9 is oscillating with connected intervals if and only if o1
and o9 have these properties.

Lemma 4.3.63. Let 01 € &,,,, 02 € S,, and 0 := 01 ® 09. Then o is oscillating (has
connected intervals) if and only if o1 and oo are oscillating (have connected intervals).

Proof. Let o, = 0,10,2---0rp, be a decomposition in disjoint cycles for r = 1,2. Fix
an r € {1,2} and a cycle (c1,...¢;) = 0, of o,. Then by Lemma 4.3.47 we have that

O'Tf; = (Sor(cl)a oo 7907‘(015))‘

As @, is strictly increasing, it preserves the relative order of the cycle elements so that

cst(oyj) = cst(af;).
In addition, Lemma 4.3.47 provides the cycle decomposition

PP P2 P2
0 =011 O1p; "021" " T2py-

of 0. Hence, o is oscillating if and only o1 and o9 are oscillating. For the same reason,
o has connected intervals if and only if o1 and o9 have connected intervals. O

We have already seen in Lemma 4.3.11 and Lemma 4.3.36 that the element in stair
form o, is oscillating and has connected intervals if a F. n has only one part or is an
odd hook. The lemma below generalizes this to all maximal compositions.

Lemma 4.3.64. Let a E. n. Then the element in stair form o, is oscillating and has
connected intervals.

177



4 Centers and cocenters of 0-Hecke algebras

Proof. Let a = (o, ...,01) Fe n. We do an induction on [. If I = 1 then o = (n) and
Lemma 4.3.11 states that o, is oscillating with connected intervals. Now suppose [ > 1
and let wg be the longest element of Gqy4...4,- Then from Lemma 4.3.54 we obtain

o {a(al) O O(ag,...a1) if oy is even
o =

J(al) © O—(az,...,al))wo if (05} is odd.

By induction hypothesis, o(,,) and o(q,,... o) are oscillating with connected intervals.
Using Lemma 4.3.62, it follows that 0%“0?27”.@[) is oscillating with connected intervals as
well. Therefore we can apply Lemma 4.3.63 and obtain that in both cases o is oscillating
with connected intervals. O

Let a F. n. We now show that each o € X, is necessarily oscillating and has connected
intervals. Moreover, we give a sufficient condition for ¢ € &,, to be an element of X,.

Theorem 4.3.65. Let aE. n and o € &,,.
(1) If o € ¥, then o is oscillating and has connected intervals.

(2) Let o, be the element in stair form. If o is oscillating with connected intervals and
P(o) = P(oy) then o € ¥,

Proof. Let 7 € G,

(1) By Lemma 4.3.64 the element in stair form o, is oscillating and has connected
intervals. In addition, if 7 is oscillating with connected intervals and 7/ := s;7s; ~ 7 for
some i € [n — 1] then also 7’ is oscillating with connected intervals by Corollary 4.3.31
and Lemma 4.3.32. Hence, we can use an induction argument as in the proof of Theo-
rem 4.3.20 in order to show that 7 is oscillating and has connected intervals if 7 € 3.

(2) Suppose that a = (a1,...,qq), 0 := 04, T is oscillating with connected intervals
and P(7) = P(o). We do an induction on [. If [ =1 then 7 is an n-cycle and the claim
is implied by Theorem 4.3.20.

Suppose I > 1. Let a(V) := (o), a® := (ag,...,q;), n1 == |aW], ng := [a?| and wy
be the longest element of &,,,. From Definition 4.2.13 we have the cycle decomposition
O = 0a,0ay " O, Set o = o, and ASURES o, if ai is even and ASURES 03& if
a1 1s odd. We use the definitions from Notation 4.3.45.

By Lemma 4.3.54, 0 = ¢ © 0(® . As P(r) = P(0), we can write 7 as a product of
disjoint cycles 7 = 7179 - - - 7; such that the cycles 7; and o, contain the same elements
for i =1,...,l. Using Corollary 4.3.48, we obtain

N1 = g1([n1]) € p1(P(0(ay))) € P(o) = P(7).

Thus, 7 € &, ® &,,, by Lemma 4.3.50. It follows that 7 = 7()) ® 72 where 7(V) :=
-1 —

(1l3)?r and 7@ = (13- 7|N,)¥2 ' (cf. the proof of Lemma 4.3.50). Since each

of the two ni-cycles 71 and o7 consist of the elements of N7, each of the ni-cycles @)

and ¢(1) consist of the elements p~!(N7) = [n1]. Hence, P(r()) = P(¢(")). Combining

P(rM) = P(cM), P(r) = P(c0) and Corollary 4.3.48, we obtain that also P(7(?)) =

P(c®).
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4.3 Equivalence classes of (&, )max under ~

Since 7 is oscillating with connected intervals by assumption, Lemma 4.3.63 implies
that 7(9 is oscillating and has connected intervals for i = 1, 2.

Assume that o is even. Then o(®) = o_) and hence P(7%)) = P(o ) for i = 1,2.
In addition, we have seen that 7() is oscillating and has connected intervals for i = 1, 2.
Therefore, () € Y@ for i = 1,2 by induction hypothesis. Since 7 = Mo 7@ an
application of Theorem 4.3.55 yields T € ¥, as desired.

Now let a; be odd. Then P(rY)) = P(o,)) and P(r®)) = P(c¥3)). Applying the
induction hypothesis as above, we obtain ) Y,a). Moreover, M e Z:u) since
P(rM) = P(o,m)).

From P(7(?)) = P(o)) it follows that P((r®)w0) = P(0,_2). Since 7(?) is oscillating
with connected intervals, Lemma 4.3.62 implies that (7(2))%0 is oscillating with connected
intervals. Consequently, we can apply the induction hypothesis and obtain (7'(2))“’0 €
¥,». Thus, Corollary 4.1.16 implies 7 € ¥_(2). Hence, (4.19) and P(r(?)) = P(o’)

yield 72 ¢ (E;m)wo. To sum up, we have 71 ¢ E:(l) and 72 € (EX )wo. Therefore,

a2

we can apply Theorem 4.3.55 and obtain that 7 € ¥%. O

Let a F¢ n and 0 € &,, be conjugate to o,. Then in general, o being oscillating with
connected intervals is not sufficient for o € 3. This is shown by the following example.

Example 4.3.66. Consider the maximal composition o = (2,1). The element in stair
form is given by o, = (1,3)(2). Let 0 = (1,2)(3). Then o is oscillating with connected
intervals and has type a. But (o) =1 < {(0,) = 3. Hence, o & 3,.

In general, the sufficient condition for ¢ € ¥, stated in the second part of Theo-
rem 4.3.65 is not a necessary condition: By Example 4.3.33, it is not satisfied by some
elements of (31 1). Another example is given below.

Example 4.3.67. Let a = (3,3). The corresponding element in stair form is given
by 00 = (1,6,2)(5,3,4). Let 0 = sa0452. On the one hand, ¢ = (1,6,3)(5,2,4),
i.e. P(0) # P(0,). On the other hand, 0,(2) = 1 < 04(3) = 4 and 0,!(2) = 6 >
0, 1(3) = 5. Consequently, £(c) = £(c4) by Lemma 4.2.22. Now Lemma 4.2.20 implies
0 /& 0, 50 that o € X, by Proposition 4.2.14.

One may ask for which compositions a Part (2) of Theorem 4.3.65 is an equivalence.
In the following we answer this question.

Definition 4.3.68. We call a maxzimal composition o Fe n mild if o has at most one
odd part or each odd part of a is 1. In this case, we also call ¥, mild.

Proposition 4.3.69. Let o . n and o, be the element in stair form. Then « is mild
if and only if P(0) = P(0qy) for all o € 3.

Proof. First assume that « is mild and let o € ¥,. From Lemma 4.2.23 follows that o
and o, have the same orbits of even length on [n|. Thus, if a has no odd part then the
implication is clear. If « has exactly one odd part then ¢ and o, each have exactly one
odd orbit which contains all the elements not contained in the even orbits. Therefore,
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4 Centers and cocenters of 0-Hecke algebras

also the two odd orbits coincide. If all odd parts of v are 1, then each element i € [n]
which is not contained in an even orbit is a fixed by ¢ and o,. Hence, 0 and o, have
the same orbits on [n].

Assume now that « is not mild. An illustration of the following is given by Exam-
ple 4.3.67. Let a = (a1,...,044)). Then a has at least two odd parts and at least
one of them is strictly greater than 1. Let r be minimal such that «, is odd. By
the definition of maximal compositions, «; is even for ¢ < r, «; is odd for ¢ > r and
Qr > Qpy1 > -+ 2 Q). Hence, a; > 1 and oy is odd. Let k := %Z:;ll o; + 1 and
l'=k+ %1 Thenl=3(1+>/_;0;) <2

We set 0 := 50,5, and show that o € ¥, and that the orbits of ¢ and o, on [n] are
not the same. We deal with two cases depending on a4 1.

If a1 > 1, then the cycles of o, corresponding to o, and «,41 look as follows

(k,n—k+1L,k+1,n—Fk,....n—1+2,)(n—1+1,l+1,n—1...). (4.23)
Hence,

oal)=k<n—Il=o0,(+1)
ol =n—1+2>n—-1+1=0'(1+1)

where we use k < [ and [ < § for the first inequality. Thus, by Lemma 4.2.22 we have
l(0) = {(0a). Hence, 0 = 0, by Lemma 4.2.20 and Proposition 4.2.14 implies o € 3,.
On the other hand, we obtain ¢ from o, by interchanging two elements between two
nontrivial cycles. Hence, the corresponding orbits on [n] also change.

Assume now that «,11 = 1. Since « is a maximal composition, it follows that then
o; = 1 for all ¢ > r. Then the definition of o, implies that [ + 1 is a fixpoint of o, and
that the cycle corresponding to . is the same as in (4.23). Therefore,

go(l) =k <l+1=0,(+1)
ot =n—1+2>1+1=0,'(1+1)

where we use that n —1+2 > §+2 > § +1 > [+ 1 for the second inequality. As before
this means that ¢ € X,. On the other hand, [ is a fixpoint of o but not of o,. That is,
the sets of orbits on [n] of o and o, are different. O

Let a Fe n. We now show that Part (2) of Theorem 4.3.65 characterizes the elements
of ¥, if a is mild. Note that by Proposition 4.3.69, the mild compositions are exactly
the maximal compositions for which we can characterize ¥, in this way.

Theorem 4.3.70. Let a E. n be mild, o, the element in stair form and o € &,,. Then
o € Xy if and only if o is oscillating with connected intervals and P(c) = P(04).

Proof. The implication from right to left is given by Theorem 4.3.65.

For the other direction assume that ¢ € ¥,. Then o is oscillating with connected
intervals by Theorem 4.3.65. Moreover, Proposition 4.3.69 yields P(c) = P(0,) since o
is mild. O
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Corollary 4.3.71. Let « = (ay,...,q;) Ee n. Then

I
Zal =TT 1B
i=1

and we have equality if and only if o is mild.

Proof. Since a is maximal, there is a j such that «; is even for all ¢ < j and «; is odd
for all ¢ > j. Set o/ := (ajq1,..., ).

We can use Equation (4.22) which states that [Yo| = [So| [T, ¥(a,)|- In addition,
we have [X,/| > [X7|. Note that [(X7)*°| = [£7| where wp is the longest elements of
Sy, for all m € N and 8 F, m. Thus we obtain from using Part (2) of Corollary 4.3.56
inductively that [X,| = Hézj 41 |E(Xai) |. As () is a mild composition for all i, we obtain

that |Z(Xai)] = | (q,)| from Proposition 4.3.69. Therefore, we have

J J l
|EOC‘ - ‘Ea’| H ’E(az)’ > ’22/‘ H |E(az)| - H ’E(az)’ (4'24)
i=1 i=1 i=1
Moreover,
aismild <= o ismild < |Zy|=|Z)|

where we use Proposition 4.3.69 for the last equivalence. Therefore, we have equality in
(4.24) if and only if « is mild. O

We continue with the even hooks. Let « be such a hook. Then « is mild, since each odd
part of a equals 1. Thus, we can use Theorem 4.3.70 in order to extend Theorem 4.3.40
to even hooks.

Theorem 4.3.72. Let a F, n be a hook and 0 € &, of type a. Then o € %, if and
only if o satisfies the hook properties.

Proof. Let o = (k,1"%) . n and o, be the element in stair form. The case where k
is odd was done in Theorem 4.3.40. Therefore, let k& be even and o € &,, of type «a.
Then « is mild and Theorem 4.3.70 implies that o € %, if and only if ¢ is oscillating,
has connected intervals and P(o0) = P(0,). On the other hand, recall that o satis-
fies the hook properties if and only if ¢ is oscillating, ¢ has connected intervals and
1,2,...,m,n—m+1,n—m+2,...,n appear in the cycle of length k of o where m = g
That is, it remains to show that P(c) = P(o4) is equivalent to the third hook property.

Two k-cycles have the same orbits on [n] if and only if the same elements occur in their
respective cycle of length & since all other elements of [n] are fixpoints. By definition, the

cycle of length k of o, consists of the elements 1,2,...,m,n—m+1,n—m+2,...,n. O

Let o = (k,1"%) E. n be a hook. From Corollary 4.3.41 we know how to construct
Yo from ¥, if £ is odd. If k is even, we obtain X, in the following way.
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4 Centers and cocenters of 0-Hecke algebras

Table 4.2: The cardinalities of ¥, and P(X,) for some partitions a with two odd parts.

a Zal  [P(3a)
(3,3) 22 6
(5,3) 80 10
(7,3) 240 10
(9,3) 720 10

(11,3) 2160 10
(5,5) 664 36
(7,5) 2156 52
(9,5) 6468 52

(11,5) 19404 52
(7,7) 18596 210
(9,7) 57700 274

(11,7) 173100 274

Corollary 4.3.73. Let a = (k,1"%) k. n be an even hook and id € &,_j. Then the
map ) = Ya, 0 = 0 ©id is a bijection.

Proof. Recall ¥n—ky = {id}. Then Corollary 4.3.56 yields that the map from the claim
is a bijection. O

Example 4.3.74. Consider a = (4,1,1) and id € G9. From Table 4.1 we read
Yy =1{(1,4,2,3),(1,3,2,4)}
Hence, Corollary 4.3.73 yields
(M:{U®M|J€Ew}:KL&ZQAL&ZQ}

The cardinality of ¥, in the case where « is a hook is given as follows.

Corollary 4.3.75. Let a = (k, 1" %) £, n be a hook. Then

1 if k<2
|Xal = 2.3 if k>3 and k is even
2n—k+1)3"  ifk >3 and k is odd.
Proof. Use the second part of Corollary 4.3.60. O

We end this chapter with a remark on the open cases in the description of the elements
of (Gn)ma)/z,

Remark 4.3.76. In Remark 4.3.59 we reduced the problem of describing ¥, for all
maximal compositions « to the partitions with only odd parts. Therefore, it would be
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interesting to find a combinatorial description of ¥, if « is a partition of odd parts which
is not a hook. Unfortunately, the situation is a lot more complex. One reason for this is
the following. For any subset ¥ of &,, define

P(X):={P(o)|oceX}.

By Proposition 4.3.69, P(o4) is not the only element of P(X,) and there seems to be no
simple way to describe P(X,). Moreover, the number of o € ¥, whose orbits yield the
same set partition of [n] depends on this very set partition. For example, Y (3,3) consists
of the following elements where elements with the same orbit partition occur in the same
TOwW.

)(3,4
)(2,4
)(2,6,
)(2,3
)(2,3
)(2,4

However, for partitions with two odd parts, the data shown in Table 4.2 suggests that
there are the following recurrence relations. Let k > [ > 3 be two odd integers. Then

‘E(k—&—Q,l)‘ =3 ‘E(k,l)‘
‘P(E(k—i-ll))‘ = ‘P(Z(k,l))"

The first relation also holds for odd n-cycles by Corollary 4.3.22.

Regarding the description of P(X,), there is the following property similar to the
third hook property satisfied by the compositions a = (k,l) with k£ > [ from Table 4.2.
Let 0 € ¥, and m := % Then 1,...,m,n—m+1,...,n are elements of the orbit of
length k of o on [n].
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5 The center acting on simple modules

In this chapter we study the action of the center of H,,(0) on the simple H,(0)-modules.
Unless stated otherwise all notation related to Coxeter groups (such as S and wy) refers
to the symmetric group &,,. By Corollary 4.2.18, a basis of Z(H,(0)) is given by the
elements m<y,_, for a F, n. We are interested in determining 7<y_ vr for o F. n and
I C S where vy is the generator of the simple H,(0)-module F';. For instance, consider
the maximal composition (1"). The element in stair form associated to (1") is o(;n) = 1.
Thus, ﬁgg(ln) = 1 and consequently ﬁSE(ln)UI =wvrforall I CS.

If n > 3 then from Theorem 2.3.10 it follows that H,(0) has exactly three blocks:
one isomorphic to F'g, one isomorphic to F'y and a nontrivial block to which all other
simple modules F'; with I # (), S belong to. Calculations for n < 9 lead to the following
conjecture.

Conjecture 5.0.1. Let n > 3, a F. n with a # (1) and F1 be a simple Hy,(0)-module
belonging to the nontrivial block of Hy(0). Then <y vr = 0.

The main result of the chapter is the verification of Conjecture 5.0.1 for all maximal
compositions whose odd parts form a hook in Corollary 5.4.10. The proof is based on
the combinatorial description of ¥, for this family of maximal compositions developed
in Section 4.3 (cf. Remark 4.3.59). The conjecture is complemented by Lemma 5.1.1
which deals with the remaining simple modules Fy and F'g. It states that

T<x,Up =vp and T<y, Vs = Z (—1)““’%5
web<x,
for all a E, n.

The structure of the chapter is as follows. After some preparations in Section 5.1 we
consider the elements <y, for three classes of compositions. We start with compositions
with one part in Section 5.2, continue with odd hooks in Section 5.3 and finally use the
inductive product in order to extend our results to maximal compositions whose odd
parts form a hook in Section 5.4.

5.1 The action of central elements associated to maximal
compositions

For I C S we make use of the shorthand &; for the parabolic subgroup (&,,);. Likewise,
for a E. n we may write S<y, instead of (&,)<x,, .
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5 The center acting on simple modules

For I C S consider the simple H,(0)-module F; generated by v;. For i € [n — 1] we
have

—vy ifs; €1

vy = (s, — Doy =
1= (s = Lor {o if 5; ¢ I.

Let a Fo nand I € S. Recall from Section 4.1 that
S<s, ={we &, |w <o for some o € X,}

and T<s, = X yee.y, Tw- Therefore,

T<p 1=, TulI= Y (1) oy = > (=1 vy, (5.1)

wEGSEa wEGSZa, wEGIQGSZa
weSy

That is, T<x, acts as > c6,n6x (=1)“®) on F;. We directly obtain three border
cases.

Lemma 5.1.1. LetaF.n and I C S.
(1) If I =0 then T<x, vr = vr.
(2) If I =S then T<s,vi = Yyes.y, (—1) Wy,
(8) If a = (1") then T<x vr = vr. )

Conjecture 5.0.1 can be rephrased as
<y vy =0foralln >3, 0 CIC Sand (1") # a k. n.

That is, if Conjecture 5.0.1 is true and Zw€6<ga (—1)™) is known for each a k. n then
we have a complete description of the action of Z(H,(0)) on the simple H,, (0)-modules.
Therefore, determining Zwee;@a (—1)“®) for each o, n would be interesting. But this
is beyond the scope of this thesis.

The strategy for proving Conjecture 5.0.1 for all « E. n whose odd parts form a hook is
as follows. For the compositions in question we already have a combinatorial description
of ¥, (cf. Remark 4.3.59) from which we can infer properties of &5 N &<y, that imply
> we6NG s, (=1)“®) = 0. To be precise, we will show that G; N G<y, is an interval in
Bruhat order. From (5.1) it then follows that 7<x_v; = 0.

Let a Fe n and I C S be arbitrary. By Lemma 2.2.10, & consists of all w € &,, with
w < wo(I) and therefore is an order ideal of &,, with respect to the Bruhat order. In
addition, G<y,, is an order ideal in Bruhat order by definition. Consequently,

SrN6Gcy, ={we 6, |w<wy(l)and do € L,: w < o}.

is an order ideal as well.
We are interested in the elements of &7 N &<y, that are maximal in Bruhat order.
Therefore, we first consider wo(/) and then a characterization of < called the tableau
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criterion. We will see that for all y € &,, there exists the meet wo(I) A y in Bruhat
order (although for n > 3, (&,, <) is not a lattice). Then it follows that each maximal
element of 67N S<y, is of the form wy(I) Ao where o € ¥,. Moreover, we will see how
one can compute wo(I) A o from wo(I) and o. We begin with a description of wg([).

Lemma 5.1.2. Let I C S, w:=wo(I) and 1 < a3 < ag < -+ < ay = n be indices such
that S\ I = {sa,,...,San_1}- Then w(l) = a1 and for i € [n — 1] we have

(i+1) Gt1 if i = ax for some k
w(t =
w(i) —1 otherwise.

Proof. Let w € &, be defined by the recursion above. We show w = wy(I). First note
that w maps [ag] to itself for &k = 1,...,m. Thus, w € 65\{8%} for k =1,...,m by
Lemma 2.2.4. Consequently,

m
w e m 65\{5%} =&j.
k=1

Moreover, we obtain from the recursion that Dg(w) = I. Hence Proposition 2.2.8 yields

w:wo(I). ]

Example 5.1.3. For n =11 and I = S'\ {s2, $5, S9} we have
w([)—1234567891011
0 15439876 11 10 /°

Definition 5.1.4. Givenx € &,, and k € [n], let z; ;, be the i-th element in the increasing
rearrangement of (1), x(2),...,z(k).

The Tableau Criterion is a well-known characterization of the Bruhat order of the
symmetric group [BB05, p. 63]. We use the following version and include a proof based
on [BB05].

Theorem 5.1.5 (Tableau Criterion). For z,y € &, the following are equivalent.

(1) z <wy.

(2) xip <yig for allk € [n—1] and i € [k].
Proof. Recall from Proposition 2.2.3 that for I C S we can uniquely factorize each
r €6, asz=a - x; where 2! € (6,)! and z; € (&,);. Let 2,y € &,. From [BBO05,
Theorem 2.6.1] it follows that = < y if and only if 25\{sx} < ¢S\{sk} for all k € [n — 1].
Moreover, by [BB05, Proposition 2.4.8] we have for k € [n — 1] that z5\{ss} < ¢S\se} if
and only if x; ;, <y, for all i € [k]. This yields the claim. O

The Bruhat tableau B(z) of v € &, is the tableau of shape (n —1,n —2,...,1) for
which the kth row counted from bottom to top is

T1ks L2)ky - s Lk k-
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Thanks to the tableau criterion, checking for x,y € &,, whether z < y can be done by
comparing the Bruhat tableaux B(z) and B(y) cellwise.

Example 5.1.6. Let n =5, I = {s1, 53,84}, w = wo(I) = 21543 and o be the element
in stair form o5 = (1,5,2,4,3) = 54132. Then

1]2]4]5] 1]13]4]5]
1]2][5 1[4]5

B(w):12 and B(U):45
2] 2]

By comparing the Bruhat tableaux, we see that w; ; < ;) for all 4, k. Thus, the tableau
criterion yields w < o.

We continue with some properties of Bruhat tableaux.

Lemma 5.1.7. Let x € G,,.
(1) For allk € [n] and i € [k] we have i < z; ), <n —k+i.
(2) For allk € [n— 1] we have {x1k, ..., Thr} € {T1 k15 Thtl ht1 )
(8) For allk € [n—1] and i € [k] we have z; 11 < ik < Tit1 ft1-

Proof. Statements (1) and (2) are direct consequences of the definition of z; ;. For (3)
consider z(k + 1) and recall z; 11 < iy p+1- If 2(k+1) > a; ) then x; ) = @ p41. If
z(k+1) < x; ) then x; 1 = i1 g1 (]

Now we come to a sufficient condition for a tableau of shape (n —1,n —2,...,1) to
be a Bruhat tableau of an x € &,,. In fact, by the definition of Bruhat tableaux and
Lemma 5.1.7 it is also a necessary condition.

Lemma 5.1.8. Let b;;, € [n]| for k € [n — 1] and i € [k] be integers such that
(1) bigp <bgp <--- <bpy forallk € [n—1] and
(2) {bigs-- - bkg} S {b1gr1, s bhri g} for all k€ [n—2].

Then there is a unique x € &, such that x;; = b;, for all1 <i <k <mn—1.

Proof. From the definition of the b; j, it follows that there exists a unique x € &,, such
that

(i) 2(1) = bu,
(ii) {I(k)} = {bl,ka ey bk,k} \ {bl,k—h . 7bk—1,k—1} for k = 2, e, — 1,
(iit) {z(n)} = [n]\{z(1),...,z(n - 1)}.
We show ; , = b; , for all k € [n — 1] and i € [k] by induction on k. For k =1 we have

x1,1 = (1) = by 1. Assume now that 1 < k < n and that the hypothesis is true for k£ —1.
From the choice of z(k) and the induction hypothesis we obtain

w1, reet ={z(k)} U{r1 -1, Th—16-1}
={z(k)} U{b1 -1, bp—1h-1} = {b1k,--- bk}
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Because
Trp < - < Tk and bl,k <0 < bk,k7
it follows that z; ;, = b;;, for all i € [k] a

Let n > 3 and w,y € &,. We have seen in Section 2.2 that w and y may do not have
a meet in Bruhat order. However, it turns out that if w = wg(I) for some I C S then
they have.

Proposition 5.1.9. Let I C S andy € S,,. Then wo(I) and y have a meet z in Bruhat
order. Moreover, we have z; j, = min {wo(I); k, yir} for 1 <i <k <n—1.

Example 5.1.10. Let n = 6, I = {s1,59,83,84} and y = (1,6,5)(2,4,3) = 642315.
Then the Bruhat tableaux of wg(I) and y are given by

112]3]4]5] 112]3]4]6]
2[3]4][5 2[3[4]6

3[4][5 and [2[4[6 ,
415 4[6

2] 0]

respectively. The tableau containing the cellwise minima of the two tableaux is given by

3[4]5]

W
ot

’OT»-B[\J[\’)H
QY =] | DN
ot

so that the meet of wo(/) and y is z = 542316 = (1,5)(2,4, 3).

Proof. Let 0 = ag < a1 < -+ < am = n be integers such that S\ I = {sq,,..., a1}
z = wo(I) and b; := min{z;,y;x} for £ € [n — 1] and ¢ € [k]. Theorem 5.1.5
implies that for each v € &, we have u < z and v < y if and only if u;; < b;; for all
1 <i <k <n—1. Therefore, if we show that there is a z € &,, such that z; ; = b; ;. for
all i € [k] and k € [n — 1], this permutation z is the meet of x and y.

By Lemma 5.1.8, we have to show that b; ;, < b;41;, for all k € [n — 1] and ¢ € [k — 1]
and that {b1 4, ..., bk} € {b1k+1,---sbpt1ks1} forall k € [n—2].

The first part is an easy consequence of the definition of the b; and the fact that
T < Tip1k and Y < Y1k for i € [k —1].

For the second part let k € [n — 2]. We deal with two cases

Case 1. There is a j € [m] such that k = a; (i.e. k ¢ Dgr(x)). Then x stabilizes [k
since x € &1. Moreover, Lemma 5.1.2 implies 2(k 4+ 1) = aj41. Hence, ;) = x; 41 =1
for all ¢ € [k]. But by Lemma 5.1.7 this means that x;; < y;r and z; y41 < Yi k41 SO
that b; 1, = 25 1 = T k41 = bj k41 for all @ € [k].
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5 The center acting on simple modules

Case 2. Thereisa j € [m]such that aj_1 < k < a; (i.e. k € Dr(x)). Then z stabilizes
[aj—1] as x € &7. In addition, we obtain from Lemma 5.1.2 that (i) = aj +aj_1 —i+1
for aj_1 <i < k+1. Thus, for i € [k] we have

T; =1 ifi <a,;_
= {700 oS 652)
Tigpe1 +1=2ip1 641 ifi>a;-1.

Now, fix an i € [k]. If i < a;_1, we have b; , = i = b; 41 as before. If i > a; then again
we have two cases.
Assume first that x; , < y; 1 and recall y; 1. < Y41 k41 from Lemma 5.1.7. Combining
this with (5.2) we obtain Tit1kt1 = Tik < Yig1,k41 SO that b@k =Tk = bi+1,k+1-
Assume now that z;; > y; . Note that either y; 1 = Yir+1 or ¥ir = Vigrps1- If
Yik = Yik+1 then

. . (5.2) .
bip = min{x;k, Yirr1} =min{z;p — Ly g1} = min {2 g1, Yik+1} = biks1-

Otherwise y; . = ¥i+1,k+1 so that

) (5.2) .
big = min{@; k, Vit 1} = MIN{Tip1 o1, Yit1 k1) = Dit1 kg1 ]

Let a Fenand I C S. If w € 67N S<yy, then there is a 0 € X, such that w < w(I)
and w < 0. Since wo(I) A o exists by Proposition 5.1.9, it follows that w < wo(I) A o.
In particular, if w is maximal in &; N G<y, with respect to the Bruhat order then
w = wo(I) A o. Hence, there is a subset T of ¥, such that the maximal elements of
S;rN6Gcy, are {wo(I) AT | 7€ TH.

Recall that for v: &,, — S,,w — w" we have v(s;) = s,—;. As a consequence,
v(I) = {sn—i | 8; € I'}. Sometimes it will be convenient to consider &, NS<y,, instead
of 65 N G<yx,. The next result shows how the maximal elements of the two sets are
related.

Lemma 5.1.11. LetaE.n, I C S, v: 6, - &, w+— w* and o € X, be such that
wo(l) A o is mazimal in &1 N S<x,, with respect to the Bruhat order. Then v(o) € X,
and wo(v(I)) Av(o) is mazimal in &,y N S<x, -

Proof. Set U := 67 N G<x,. From Lemma 4.1.17 and Corollary 4.1.16 it follows that
v(6r) = &,y and v(E,) = Xa. Hence, v(U) = &,y N G<sx,. Moreover, we obtain
that v(wo(I)) = wo(r(I)) and v(o) € X,,.

From the fact that v is an automorphism in Bruhat order, it follows that

v(wo(I) A o) = v(wo(I)) Av(o) = wo(v(I)) Av(o).

Using the automorphism property again yields that wg () Ao being maximal in U implies
that its image under v is maximal in v(U). As this image is wo(v(I)) A v(o), we are
done. O]
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We end the preliminaries with a sufficient condition for 7y vy = 0 which will be used
later.

Lemma 5.1.12. Let a Fc n and I C S. If there is a v € &, with u # 1 such that
S; N G<y, is the interval in Bruhat order [1,u] then m<x, vr = 0.

Proof. Assume that there is a 1 # u € &, such that &; N &<y, is the Bruhat order
interval [1,u]. Since u # 1, the number of elements of even length equals the number
of elements of odd length in [1,u] [BB05, Corollary 2.7.11]. Hence, &; N &<y, = [1, 1]
implies Ew€6106<2a(—1)£(w)v1 = 0. Thus, (5.1) yields <y vr = 0. O

5.2 Compositions with one part

In this section we prove Conjecture 5.0.1 in the case where o has only one part. That
is, we show 7<x; oy =0forall 0 C1CS.

Let & = (n). The proof has three major steps. First, we determine the Bruhat tableau
of 04. Second, we show that wo () < g4 or wo(I) < o0 for all I C S using the first result
and the tableau criterion. Third, we infer from the second step that &; N &<y, = &7
forall I C S.

Let z € &,,. By Lemma 5.1.7, z; ; <n —j+i for all j € [n — 1] and i € [j]. We call
x;; maximal if x; ; = n — j+ 4. In this case we also call the entry in the Bruhat tableau
of x corresponding to x;; maximal. It follows that v, < x; for all y € &, if x;, is
maximal.

Example 5.2.1. The Bruhat tableau of
o=o0@) =(1,5,2,4,3) = 54132

is shown below.

w
B

5]

e
ot

’cn»hv—lht
o

Observe that 013 = 014 =1 and ;) = n — k + ¢ otherwise. That is, 0; is maximal in
the second case.

Lemma 5.2.2. Let 0 := o(,) be the element in stair form and m := [”T‘Hl
(1) Fori € [n],
n—i+1 ifi<m
o(i) =<1 ifi=m

n—i+2 ifi>m.
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5 The center acting on simple modules

(2) Fork e [n—1] andi € [k],

1 ifk>mandi=1

Ok —
o n—k+i otherwise.

Proof. (1) From the definition of the element in stair form, it follows that

o= (x1,22,...,2)

in cycle notation where x9;_1 =i and x9; = n — i + 1. Hence for j € [n],

zip1 ifj<n
0(%‘):{ ’

1 if j =n.
If n is even then z, = @z = n—5+1=3+1=m. Ifnisodd then we have
Ty = Ton41_; = ”TH = m. Therefore, o(m) = 1.
2

Let i € [n]. If i < m then x9;—1 = ¢ and thus o(i) = z9; = n —i+ 1. If i > m then
Ton—it1) =N — (n—i+ 1) +1 =1 and hence o(i) = Ty_ip2)—1 =1 — i + 2.
(2) Let k € [n — 1]. We have that

o([k]) = o([k] N [m = 1)) Uo([k] N {m}) Ua([k] N [m+1,n]).

o([klnm—=1])={n—i+1|1<i<m-—1and i<k},
o(kflnm+1,n])={n—i+2|m+1<i<k}
—fn—it1l|m<i<k-—1}.
Hence, if & < m then o([k]) = {n—k+1,n—k+2,...,n}, ie. 0, = n—k+i for

i € [k]. Moreover, if k > m then o([k]) = {1} U{n—k+2,n—k+3,...,n} and thus
op=1land oy =n—k+iforl <i<k. O

In Example 5.1.6 it is shown that wo(/) < o(5) for n =5 and I = {s1, 53,84} via the
tableau criterion. This is a special case of the next result.

Lemma 5.2.3. Assumen > 2, a = (n) andI C S. Let a € [n—1] be such that s, € S\ I
and

|
1.

IS I3

O‘(n) zfag {
o= w .
O'(no) ifa>|

Then o € g and wo(I) < o.

Proof. As I C S and n > 2, there exists an a € [n — 1] such that I C S\ {s,}. Because
wo(I) < wo(S \ {sq}), we can assume I = S\ {s,} without loss of generality. Let o
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5.3 Odd hooks

be given as in the theorem. By definition we have o, € ¥,. From Corollary 4.1.16 it
follows that also o3° € ¥,. Thus, o € X,.
It remains to show wo(I) < o. First, suppose that a < [%]. Let w := wo(I), k € [n—1]

and i € [k]. By Theorem 5.1.5, we have to show w; < o;5. If k < VTHW or i > 1 then
Lemma 5.2.2 implies that o;j is maximal which means that w;; < o; . Thus, consider

the case where k£ > [%‘ﬂ and ¢ = 1. From Lemma 5.1.2 we obtain w(a) = 1. Because

k> ["TH-‘ > a, it follows that wy j = 1. Thus, wy < o1 .

Second, let a > [%]. Consider the automorphism v: &, — &y, w — w"°. Then
v(I) = S\{sn—a} and since n —a < [§], we obtain that wo(v(I)) < 04 from the already
proven case. As v is order preserving, it follows that v(wo(v(I))) < o¥°. Moreover,

v(wo(v(I))) = wo(I) by Lemma 4.1.17. Hence wy(I) < o. O

It turns out that &7 C G<x, (n) if I € S. This is the major step towards the verification
of Conjecture 5.0.1 in the case o = (n).

Theorem 5.2.4. Let o = (n) and I C S with I # S if n > 1. Then we have that
&Srn 6§Ea =6;.

Proof. First suppose n = 1. Then a = (1) and I = (). Thus, &; = {1} = 6<x,,.

Now assume n > 2. Then I C S. We set w := wo(I). From Lemma 5.2.3 we have
that 0,,0,° € X¥o and w < 0,4 or w < 04°. Consequently, &7 C G<x, because by
Lemma 2.2.10 &7 is the Bruhat order interval [1,w] and G<x, is an order ideal with

maximal elements Y. ]
Corollary 5.2.5. Conjecture 5.0.1 is true for a = (n).

Proof. Let n > 3, a = (n) and 0 C I C S. We have to show that 7<x_ vr = 0.
From Theorem 5.2.4 it follows that &; N &<y, = &;. Furthermore, &; = [1,wy(I)] by
Lemma 2.2.10 and wo(I) # 1 since I # (). Now Lemma 5.1.12 implies 1<y, vr = 0. O

5.3 Odd hooks

Let a Fe n be an odd hook such that a # (1), (n). Then n > 4. In this section we
verify Conjecture 5.0.1 for this kind of composition. The case a = (1™) is a border case
and the case @ = (n) has been treated in the last section. Indeed, the proof presented
in this section fails if a = (n).

In order to motivate the reasoning, we reformulate some results from the o = (n) case.

Let n > 2and I C S. Lemma 5.2.3 implies that there is a ¢ € {a(n), 07(“':10)} such that
wo(I)No =we(I). As &;N 6S2(n) = &1 by Theorem 5.2.4, it follows that &; N 6§2(n)
is the interval in Bruhat order [1,wo(I) A o).

In this section we define 7 € X, depending on I such that §;NS<x, = [1,wo(I) AT].
However, the construction of 7 and the proof that wq(I) A7 is the only maximal element
of &1 N S<yx, requires more work as in the o = (n) case. One reason for the latter is

that in general wo(I) A 7 # wo(I).
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5 The center acting on simple modules

We begin with a property of the Bruhat tableaux of all o € ¥, that will be useful for
showing that wg(I) AT is the greatest element of §; N S<y,,. Before stating the general
result, we illustrate the property.

Example 5.3.1. Let a« = (3,1,1). Then X, consists of the elements
(1,5,2),(1,5,3), (1,5,4), (1,2,5), (1,3,5), (1,4, 5).

The respective Bruhat tableaux are shown below.

1]13]4]5] [1]2]4]5] [1][2]3]5] [2][3]4]5] [2][3]4]5] [2]3]4]5]
1|35 1[2]5 2[3][5 2135 2[3][5 2[3]4
1|5 2|5 2[5 2]5 2(3 2[4
2] 2] 2] 2] 3] 4]

The entries in the gray subtableaux are cellwise bounded from above by the tableau

2[3]
ST -

Lemma 5.3.2. Let a = (a1,1""%) F. n with 1 < aq < n be an odd hook, m := -1

and o € Xo. Then o, <m+iifm<k<n-—-mandl <i<k-—m,.

Proof. Since o € X, it satisfies the hook properties by Theorem 4.3.40. In particular,
there exists a j € [m + 1,n —m] such that [m + 1,n —m]\ {j} is the set of fixpoints of
0. We do an induction on k.

For the base case suppose k = m + 1. We have to show o1 41 <m+1. If j #m+1
then o(m + 1) = m+ 1 so that m + 1 € o([m + 1]) and consequently

O1,m+1 = mino(fm+1]) <m+ 1.

Assume j = m + 1. Then [m + 2,n — m] is the set of fixpoints of o. Hence, o([m + 1])
and [m + 2,n — m] are disjoint. In addition, Lemma 5.1.7 yields

Olmi1 <n—(m+1)+1=n—m.

Therefore, o1 m+1 < m+ 1.
Assume now that k > m + 1 and the claim holds for £ — 1. We distinguish two cases
depending on j.
First, suppose j # k. Then o(k) = k. Let ¢ € [k — m — 1]. By induction hypothesis
Oik—1 <m-+i. Asi<k—m—1,it follows that
gik1<m+k—m—-1=k—-1<k=o(k).

Thus, 05 = 0; k-1 and therefore o; ), < m + i. Now consider o, . We have

e = min(a([K]) \ {01ks- - s Okt }).
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5.3 Odd hooks

Since o(k) = k, we have k € o([k]). Moreover, from the reasoning above we obtain
oix = 0ik—1 < k for i € [k —m — 1]. Therefore, k is an element of the set above.
Consequently, oy < k =m+ (k —m) as desired.

Second, assume j = k. Then all the elements of [k + 1,n — m] are fixpoints of o.
Hence, o([k]) and [k 4+ 1,n — m] are disjoint. Moreover by using Lemma 5.1.7 again, we
obtain

or<n—k+i<n—k+k—-m<n-—m.

fori=1,...,k—m. Thus, o;} € [k] for i =1,...,k —m. The k — m greatest elements
of [k] are m +1,m +2,..., k. Therefore, o;, <m+ifori=1,...,k—m. O

Let a Fe n be an odd hook with o # (1), (n) and I C S. In order to obtain 7 € 3,
such that wo(I) A 7 is the greatest element of &7 N S<y,,, we will use the elements o)
that are the subject of the next lemma. Again we are interested in the Bruhat tableau
of o9,

Lemma 5.3.3. Let o = (a1,1" ) Ee n be an odd hook with 1 < a; < n, m := O‘lT_l

and j € [m+ 1,n —m]. Define the element of &,,

0—(.7) = (]’ xa1—17$a1—27 e 71'1)
where © = (x1,x9,...,Zy) 15 the sequence with xo;—1 =i and xe; =n — i+ 1.
(1) We have cU) € %,
(2) For alli € [n],
j ifi=1
n—i+2 if2<i<m
o)y =44 ifm+1<i<n—mandi#}j

n—m+1 ifi=j
n—i+1 ifn—m+1<i<n.

(3) Forallk € [n—1] and i € [k],

J fk<mandi=1lorm<k<jandi=k—m+1
ik = ym+i fm<k<n—mandl<i<k—m

n—k+1i otherwise.

Example 5.3.4. Let a be an odd hook and m = 0‘12_1. We give examples for the

elements o) from Lemma 5.3.3 in cycle and one-line notation.
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5 The center acting on simple modules

(1) For a = (3,1,1) we have m = 1 and

c®=(1,2,5)=25341,
c® =(1,3,5)=32541,
o™ =(1,4,5)=42351.

The related Bruhat tableaux are shown in Example 5.3.1. They are the three
tableaux on the right hand side.

(2) For a =(7,1,1,1) we have m = 3 and

oW =(1,4,8,3,9,2,10) =4109856 73 21,
o® =(1,5,8,3,9,2,10) =5109486 73 21,
o =(1,6,8,3,9,2,10) =6109458 73 21,
o =(1,7,8,3,9,2,10)=7109456 832 1.

Proof of Lemma 5.53.3. We begin with the proof of Part (2). Note that z; = 1, 29 = n,
ZTay—2 =m and To,—1 =n —m+ 1. In particular, 0(1) = j and o(j) = n —m+ 1. From
the definition of x it follows that

{z | 1<r<ar—1} = [m]Uln—m+ 1,1,

{2 |an <r <n}=[m+1,n—-m]. (5-3)

Let i € [n] with ¢ # 1 and @ # j. If i € [m+ 1,n — m] then i is a fixpoint of o,
i.e. 0(i) = i as desired. Hence assume i € [m] U [n —m + 1,n]. Let r € [n] be such
that x, = i. By the definition of o, o(i) = z,—;. If i < m then 91 = i and
therefore o(i) = wy_1y =n —i+2. Ifi > n—m+ 1 then x54,_;;1) = i and thus
0(i) = Ta(n—i+1)—1 = n — i + 1. This finishes the proof of Part (2).

We proceed with the proof of Part (1). In order to show that o € X, we use Theo-
rem 4.3.40, i.e. we have to show that o satisfies the hook properties. By (5.3), the third
property is satisfied. It remains to show that o is oscillating with connected intervals.
Let 7 be the cycle standartization of the cycle of length ay of 0. We have to show that
7 is oscillating with connected intervals. We have

T=(m+1l,ag—m+1m,...,a;1 —1,2,a1,1).

Hence, 7([m + 1]) = [m + 1,aq]. Since m + 1 = 2"t follows that 7 is oscillating.
Moreover, for each k € [m] and ¢ := |[k,a1 — k + 1]],

{T"(m+1)|r=0,...,q—1} =[k,a1 — k+1].

Thus, 7 has connected intervals.

Lastly, we prove Part (3). Let k € [n — 1] and i € [k]. We deal with four cases
depending on k. In each case we use Part (2) in order to determine the set o([k]).
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5.3 Odd hooks

Case 1. Suppose k < m. Part (2) implies
o(lk]) ={j,n—k+2,n—k+3,...,n}.

Hence, o1y =jand ojp, =n—k+iif ¢ > 1.
Case 2. Suppose m < k < j. Then

o) ={m+1,m+2,...k,jyn—m+2,n—m+3,...,n}.
Thus,

m+ 1 fi<k-m
Oik=141J fi=k—m+1
n—k+i ifi>k—-—m-+1

Case 3. Suppose j < k <n —m. Then
o(k)={m+1m+2,....k,n—m+1n—m-+2,...,n}.

Consequently, o5, =m+iifi <k—-mand o, =n—k+iifi >k —m.
Case 4. Suppose k > n — m. Then

o([k]) ={n—k+1,n—k+2,...,n}.

Thus, 0, =n —k + 1. O

Definition 5.3.5. Let o = (a1, 1" ) E. n be an odd hook with 1 < a1 < n, m := 0‘12_1
and a € [n — 1]. Define

]

{a@ ifa<]
Ta,a '= ]

(om=i+D)yw i g s |

S N3

with

. Jmax{a,m+1} ifa <[4
7= min{a +1,n—m} ifa> [%]

and o9 the element from Lemma 5.8.3.

Example 5.3.6. Consider « = (3,1,1) F, 5. Then m = O‘lT_l = 1. Let ¢U) be defined

as in Lemma 5.3.3 for j = 2, 3,4. The elements 7., for a =1,...,4 are
Ta,l = Ta,2 = 0(2) = (17 27 5)7
Taz = 0® =(1,3,5),
w

Tod = (0(2)> "= (1,5,4).
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5 The center acting on simple modules

Let a F. n be an odd hook unequal to (1™) and (n) and I C S. Then there is an
a € [n—1] such that s, ¢ I. We want to show that 7, , is our desired element of ¥, with
SrN6<yx, = [L,wo(L) ATa,q]. We first check that 7,4 is well defined and an element of
Yo

Lemma 5.3.7. Let o = (a1, 1" ) Ee n be an odd hook with 1 < a; < n, m := O‘lel

and a € [n —1].
(1) The element 7o 4 is well defined and 7o q € Lo
(2) Ifa > [5] then T4 = Torh—a-

Proof. Let j be as in the definition of 7, , and o®) be the element from Lemma 5.3.3
for k € [m+1,n —m).

(1) Since ¢(®) is only defined for k € [m+1,n—m] and k € [m+1,n —m] if and only
if n—k+1¢€[m+1,n—m], we have to show that j € [m + 1,n —m].

Assume first that a < [§]. Then j = max {a,m+1}. If a < m+ 1 then j = m +1
and we are done. If @ > m + 1 then j = a and

j:ag[n"snﬁ-l_ n—1< a;—1

2 e
ie.j € [m+ 1,n —m]. Therefore, 74, = o) is well defined. From Lemma 5.3.3 it
follows that 74,4 € Xq.

Assume now that @ > [§]. Then j = min{a+1,n—m}. If a+1 > n —m then
j=n—-m.Ifa+1<n—mthen j=a+1 and

m+1:a1+1<n<[n

That is, j € [m + 1,n — m] and 74, is well defined in this case too. Lemma 5.3.3
yields that ¢™=7*1) e 2. In addition, we have £, = Y0 by Corollary 4.1.16. Hence,
Toa = (a(”_j+1))w° €Y.

(2) Assume that a > [§] and set @’ :=n —a and j’ := max {a’,m + 1}. Then

j=min{a+1,n—m}, 74q= (0(”_j+1))w0, o <[%] and Ta4 = o,

As a consequence, we have 7,4 = 7, o, if and only if ;' = n — j + 1. We show the latter.
Clearly,

a+1<n-m <= d=n—a>m+1
Thus, if j =a+ 1 then a + 1 < n — m so that a’ > m + 1 and consequently
j=d=n—a=n—-j+1

as desired. Moreover, if j =n —m then a +1 > n — m so that ' < m + 1 and hence

jJ=m+l=n—(n-m)+1l=n—-j+1 O
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Example 5.3.8. This example illustrates the reasoning in this section. Consider n = 5,
a=(3,1,1)F.5and I = S\ {s1}. Let m = 0‘12_1, a=1,j7=max{a,m+ 1}, w=wy(l)
and T = 7,,4. We show that &7 N S<y, is the interval in Bruhat order [1,w A 7].

We have m = 1, j = 2, w = (2,5)(3,4) and 7 = ¢®® = (1,2,5) and consider the
Bruhat tableaux

1]13]4]5] 2[3]4]5]
1[4]5 2[3]5

B(w):15 and B(T):25
L] 2]

Proposition 5.1.9 states that (w A o);r = wir Aoy for all o € &, k € [4] and i € [k].
Thus,

w
W

5]

w
Ut

BwAT) =

’}—‘H}—‘}—‘
(@)

It follows that w A 7 = (2,5). Moreover, we see that for all k € [4] and i € [k],

Tik=23 ifk=3andi=2

Wi L otherwise.
k)

(w/\T)M—{

Let 0 € ¥,. From Example 5.3.1 or applying Lemma 5.3.2 we obtain that
72,3 =3=m+2 > 023.
Thus,

(WA T)ip = Tik >0, ifk=3andi=2
" Wi k otherwise

> Wik N0k
=(wAo)ik

for all k € [4] and i € [k]. Therefore, the tableau criterion, Theorem 5.1.5, implies that
wAo < wAT.

For each x € &1 N G<y, there exists a o € X, such that x < w and z < o and hence
r<wAo<wA7. Thus, 5; NGy, =[1,wAT].

Let I C S such that there is an a < [§] with s, ¢ I. We want to compare the Bruhat
tableaux of wo(/) and 74,4. The one of 7,4 is given by Lemma 5.3.3. We now determine
the Bruhat tableau of wy(I) in the case where I is a maximal subset of S.
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5 The center acting on simple modules

Lemma 5.3.9. Letn > 2, a € [n—1], I :== 5\ {sqa} and w := wo(I). Then for all
keln—1] andi € [k],

a—k+i ifk<a

Wik =1 ifi<aanda <k

n—k+i ifa<ianda<k.

Proof. This is not hard to see considering the one line notation of w
w=aa—1---1nn—-1n—-2 --- a+1

which we obtain from Lemma 5.1.2. O

We now consider I C S such there is an a < [§] with s, € I and compare the Bruhat
tableaux of wy(I) and 74 4.

Lemma 5.3.10. Let o = (a1, 1" ) E. n be an odd hook with 1 < ay <mn, I C S be
such that there is an a € [n — 1] with s, € I and a < [§], k € [n—1] and i € [k]. Set

m = "‘12_1, w:=wo(l) and 7 :=Taq. Ifwip > Tk thenm <k <n—mandi<k—m.

Proof. Let j := max {a,m + 1} and ¢\ be defined as in Lemma 5.3.3. By the definition
of 7, we have that 7 = o). Since wo(I) < wo(S \ {s4}), we obtain from Theorem 5.1.5
that wo(1)ir < wo(S\{Sa})ik- Therefore, we can assume without loss of generality that

I'=5\{sq}
We show the contraposition. That is, we assume that the statement m < k <n —m
and i < k —m is not true and show that then w;; < 7; . Lemma 5.3.3 implies that

{j ifk<mandi=lorm<k<jandi=k—m+1
Tik =

n—k+1 otherwise.

In the second case, 7; j, is maximal and thus w; ; < 7; ;. It remains show that w;, < 7; 1
in the first case.

Suppose k < m and i = 1. Lemma 5.1.2 yields w(1) = a, i.e. a € w([k]). By the choice
of j, we have that j > a. Therefore,

T g =Jj > a>minw([k]) = wy .

Now, suppose m < k < j and i = k — m + 1. This case can only occur if j > m + 1.
Then j = a. By assumption, a; > 3 and therefore m > 1. Since k < j = a, we obtain
from Lemma 5.3.9 that

Whemtik =a—k+k—m+1l=a-m+1<a.
Thus, Th—mi1k = J = @ > Wk—mi1,k- O

Now we come to the main result on &; N G<y,, in the case where o is an odd hook.
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5.3 Odd hooks

Theorem 5.3.11. Let a = (a1,1""*) E. n be an odd hook with 1 < a; < n, I C S
and a € [n — 1] be such that s, & I. Then &1 N S<x, is the interval [1,wo(l) A Ta,q] in
Bruhat order.

Proof. Let 7 := 74,4 and w := wp(I). Recall from Proposition 5.1.9 that for each 0 € &,
the meet w A o exists and we have that (w A o); = w;r Aoy for all k € [n — 1] and
i € [k]. We distinguish two cases depending on a.

Case 1. Suppose a < [§]. Let € 67N S<x,. We want to show that z < w A 7.
Since x € 61 N SG<y,, there is a 0 € ¥, such that x <w and x < 0. Thus, z <w Ao
and we can assume that z = w A ¢ without loss of generality.

Let k € [n — 1] and i € [k]. By the tableau criterion, Theorem 5.1.5, we have to show
that (wA o)k < (wAT); . We deal with two cases. If w; , < 7; 1 then

(WAT)igp=wik > (WAO)k-

Suppose now that w; ; > 7;; and let m = ‘”Tfl Then Lemma 5.3.10 implies m < k <
n—m and i < k—m. On the one hand, Part (3) of Lemma 5.3.3 yields that 7; , = m+i.
On the other hand, we obtain from Lemma 5.3.2 that o;; < m + 4. Therefore,

(WAT)ik=Tig > 0ik > (WAOT) k-

Case 2. Suppose that a > [5]. Set [=1" a=n—a,w=wy(l)and 7 = 7, 5. Then
a < [%] and by Case 1, 6; N S<x, = [1,w A 7]. Hence, an application of Lemma 5.1.11
yields

S; QGSEQ = [1,’wa0 /\7~'w0].

~wo

Furthermore, w = @w"° and by Lemma 5.3.7, 7 = 7% _, = As a consequence,

GIQGSEQZ[LU}/\T]. O]
Lemma 5.3.12. Let . n with o # (1™). Then s; < 04 for all i € [n —1].

Proof. Let i € [n —1] and I = S\ {s;}. Then for each w € &7, w([i]) = [i]. Consider
a Fe n with a # (1™). Then oy > 2. Thus by definition, 0,(1) = n ¢ [i] which implies
0o & S1. As & is the subgroup of &,, generated by S\ {s;}, we conclude s; < 0,. O

Remark. In the proof of Lemma 5.3.12 we showed that o,([i]) # [i] for all i € [n — 1]
and all elements in stair form o, with a F. n and « # (1™). Duchamp, Hivert and
Thibon call permutations with this property connected in [DHT02]. In the paper they
show that the connected permutations index a basis of the algebra of free quasisymmetric
functions.

Corollary 5.3.13. Conjecture 5.0.1 is true for all odd hooks o E. n with o # (n).

Proof. Let n > 3, a be an odd hook with @ # (n) and § C I € S. As Conjecture 5.0.1
only pertains compositions different from (1"), we also assume that a # (1"). We have
to show that 7<yx v; = 0.

201



5 The center acting on simple modules

Since I # S we can apply Theorem 5.3.11 and obtain that there is a u € &, such
that 67 N S<y, is the interval in Bruhat order [1,u]. Since () # I there is an i € [n — 1]
such that s; € &;. On the other hand, we obtain s; < o, from Lemma 5.3.12 since
a # (1™). Thus, s; € S<yx,. Consequently, s; € &y N S<y,, i.e. s; < u. Hence, u # 1
and Lemma 5.1.12 implies 7<x vr = 0. O

5.4 An application of the inductive product

The goal of this section is to show that Conjecture 5.0.1 is true for all maximal composi-
tions whose odd parts form a hook. This is the largest family of compositions for which
we validate the conjecture in this thesis. We always assume n > 1 and use the notions
related to the inductive product introduced in Notation 4.3.45.

Let 0 C I C Sand a= (ai,...,q) Ec n be such that o # (1) and the odd parts of «
form a hook. We are going show that (&,);N (&, )<y, is an interval so that 7<x, vr = 0.
For a = (n) or o an odd hook, we obtained these results in Section 5.2 and Section 5.3.
Therefore, we can assume that ¢(a) > 2 and «; is even.

The strategy is the same as before: We construct 7 € ¥, with the property that
wo(l) A T is the greatest element of (&,)r N (&,)<y,. To do this we use the inductive
product exploiting the fact that «; is even. More precisely, we set o := (ag,...,qp),
n' = || and 7 := £ ® 7/ for certain £ € {O’(al),O'zlgl)} and 77 € ¥, depending on I
and o where w; is the longest element of G,,. We will choose 7" such that w' A 7’ is
the greatest element of (&) N (&,/)<x_, where S’ are the simple reflections of &,,,
I' C S’ also depends on I and «, (&,,) is a parabolic subgroup of &,/ and v’ € &,/ is
the longest element of (&,,). The existence of 7/ will be provided by induction.

We start with a lemma which determines the Bruhat tableau of the inductive product
of two permutations o1 ® o2 where o1 € G,,, is an oscillating ni-cycle with n; even.

We will use the lemma in situations where o1 € X, since then o is oscillating by
Theorem 4.3.20. For instance, it can be applied to the element 7 = £ ® 7/ mentioned
above.

Lemma 5.4.1. Let (n1,n2) F n with ny even and 0 = o1 © o2 where o; € &y, for
i =1,2 and o1 is oscillating. Then for all j € [n — 1] and i € [j],

(01)ij + 72 if j <™ andi<3j,
o)y g R <j<HAnzandi<j-,
by = (01 )i,j—no if 5 +ng<jandi<j—"4 —no,
n—j+i otherwise.

Proof. Recall from Definition 4.3.1 that o1(["%]) = [ 4+ 1,n1] as o1 is oscillating and
ny is even. The proof is divided into seven parts. Table 5.1 gives an overview of what
we show in which part.
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5.4 An application of the inductive product

Table 5.1: An overview of the results shown in the seven parts of the proof of

Lemma 5.4.1.
(1) Ui’j:(al)m‘—i-ng if j < % and 7 < j,
2) oii=n—j+1 if j =% and ¢ < j,
(3) oij=n—j+i if B8 < jandj— " <i,
4) o;ji=(09); ., m +2 AU <j<Ainyandi<yj—=2t
( J ij—" 2 2 SJ=73 J— 9
5 oij=n—j+1 if j =% 4+ ng and ¢ < 7,

J 2
6) oj=n—j+i if 5t +np <jand j— B —ng <4,
(7) 0',‘7]‘:(0'1)1‘7]'_712 if%—i-ng <jJ andigj—%—ng.

Let j € [n — 1]. From Lemma 4.3.49 we obtain that

o([j]) = of* (G NV N1) U o ([5] N Na).

(1) Suppose j < % Then @7 ([j]) = [j] and

o([j]) = of*([41]) = er(or(l5]) = {e1((o1)ig) | L < i < j}.

Since the sequence (01)1j,(01)2,...,(01);; is strictly increasing and ¢y is order pre-
serving, it follows that

oij = ¢1((01)i)

for all i € [j]. Using the definition of ¢; and o1([%]) = [% + 1,n1], we obtain that
¢1((01)i) = (01)i,5 + na for all i € [f].

ni

(2) Suppose j = % and let ¢ € [j]. Then we have o1([j]) = [n1 — j + 1,n1] so that
(01)1‘73' =Ny — ] + 1. Thus,

Um-:(al)i,j—kng:n1+n2—j+z’:n—j+i

where we use Part (1) for the first equality.

(3) Suppose 5+ < j and let i € [j] with j — % <. Set r:=j — . Then j —r = 5,
i—re %] and

n—j+i=n—(j—r)+i—r=0ij,r<0ij<n—j+i

where the second equality is valid by Part (2) and the first and the second inequality
are consequences of Lemma 5.1.7 Part (3) and (1), respectively. Thus, o;; =n — i+ j.
Moreover, it follows that

O-Zy] = O’i—?”,j—’f‘ = 0’7;—7‘,%'
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5 The center acting on simple modules

As a consequence,

(D))
:{Ui,j|j_7;1<i§j}-
(4) Suppose %L < j < L 4 ny. Then ¢, ([ +1,5]) = [j — %] and
e (3] (22
- ([3]) v (= ((-3]))
—{ousli- 5 <i<ipu{e (@ y)1<izi- 2]

. ni . . n
:{0-7;7]' j_2<2§]}u{(02)7,]—+’1</L<]_2}

Because the sequences o1 ,...,0;; and (Ug)lj_m, el (UQ)j_ﬂj_ﬂ are both strictly
7 2 2 7 2
increasing, it follows that o; ; = (02), ;_m + 4 for all i € [j — %].
JT 3

(5) Suppose j = - 4 na. Then o3([j — %]) = [n2] and thus for all i € [j — &,

Oij = (02)1',]'_"71"‘?1 :Z'i‘?l =n—Jj+1
Where we use that n — j = %L, From Part (3) we have that o;; = n — j 4 i for all
elj—%+1, ]] as well. Therefore, 0; j =n — j+1 for all i € [j].

( ) Suppose - + ng < j. We can argue as in Part (3) and obtain that o;; =n—j+1
for all 7 such that Jj— % —ng < i< j. Moreover analogous to Part (3), we obtain that

n1 . ni . .
U(|:2+n2:|):{0'i7j|j—2—n2<Z§]}.

(7) Suppose ‘5 4+ ng < j. Then

o([4]) :a<[”21+n2D Uoft ([T;l—l—ng—kl,jb.

Hence, the last equation of Part (6) implies

{%'HSZSJ—;—nz}—af1<{;+n2+1,yb.

Using the definition of gol_l, we obtain
n n
o1 ([21+n2+1,j]> = [;—Fl,j—ng} :
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5.4 An application of the inductive product

By assumption, o1([5]) = [% + 1,m1] and o1 ([ +1,m1]) = [5]. Thus, we have that
o1 ([B + 1,7 —n2]) € [%]. As a consequence,

o (37w =0 (3 20-2)

and this set contains the j — %t — ng smallest elements of o1 ([j — n2]). To sum up,

{0i7j|1§i§j—7;—nz}—0f1<[7;1+n2+1,j]>
o[ ons-e]
2
. .n
= {(Jl)i,jng |1<i<j— ?1 —ng}.
That is, 05 j = (01)i,j—n, for all 4 such that 1 <i < j — &t — no. ]
Example 5.4.2. Let ny = 6,n2 = 5, n = 11, £ = oy (1,6,2,5,3,4) € &,,,

= (1,2,5) € &, and 7 = £ ©® 7/. Then 7 = (1,11,2,10,3,9)(4,5,8). The Bruhat
tableaux of £, 7/ and 7 are shown below.

1]374]5]6][7]8]9]10[11]
114]5]6(7]8]9]10[11
4156 7]8]9]10[11
12?2“ 2[3]4]5] 506|7]8[9]10[11
B ~n [2]3]5 _ |5]6[8]9]10[11
B(¢) = :26 B(T) = 513 B(r) = r=r5Toliolin
2 5(9]10[11
6] o 9]10[11
10[11
11]

Since § € X(,,), it is oscillating by Theorem 4.3.20. Hence, we can apply Lemma 5.4.1
on 7 and it follows that the lower, upper and middle white part of B(7) are determined
by the lower white part of B(§), the upper white part of B(£) and B(7'), respectively.
Moreover, the gray cells of B(§) and B(7) contain maximal entries. For the former this
is a consequence of £([%']) = [% + 1,7n1] and for the latter this is the case otherwise of
Lemma 5.4.1.

In the last sections conjugating with wq turned out to be a useful tool. We now consider
the interplay between the inductive product on &,, and &,,, and the conjugation with
the longest elements of &,,,, &,, and &, 4n,-

Lemma 5.4.3. Let (n1,n2) E n with ny even. Set ng := n and let w; be the longest
element of G, fori1=0,1,2.
(1) For i = 1,2 and p; the bijection from Notation 4.3.45 regarded as a function
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5 The center acting on simple modules

@it [ni] = [n], we have

Wo © Yi = P4 © Wi

(2) Given o =01 ® 03 € S, with o; € &y, for i =1,2, we have

o =o' ©oy?

Proof. (1) Let j € [n1]. Using the definition of ¢;, we obtain

wo (p1(4)) = {wo(j) =n—j+1

wo(j—i-m):n—ng—j—i-l:nl—j—i—l

On the other hand,

n+n—j3+l=n—j5+1

o1 (w1(f)) = p1(n1 —j+1) = {m i

Now use

]<—1 = nl—]+1>n—3—|—1 <:>n1—]—|—1>—

2

to obtain the claim for ¢;.
Consider y2. Let j € [na]. Then

wo (p2(3) = wolj+5) =n—3

as desired.

(2) Let i € {1, 2} and j € N;. Note that wo(N;) = N; and wy*

o(wy 1(7)) = 0¥ (wy ' (§)) by Lemma 4.3.49. Thus,

“0 () = (wo o of 0wy ()
woosoloo-loso’l, Owal)(j)
(wo 0 ¢;) 0 35 0 (wo © i) ~")(j)
iow;) o aio (p;ow;) ") (j)
ow; 0 0; 0w; ogoi_l)(j)

AL

where we use Part (1) for the forth equality.

(
= (
(
(v
= (¢
(o}

Let o = (o, ..., ) Fe n with [ > 2 and oy even, o := (g, ...

=n———j+tl=panz—j+1)

i<
if j > 4.
ifng—j+1>4
ifng —j+1< 4
2
= @2 (w2(j))
= wg. Hence,
O
= ||, wy be

the longest element of G,,, 7 := £ © 7’ with £ € {0(4,), 02121)} and 7' € X, I C S and
w := wo([). We want to compare the Bruhat tableaux of 7 and w. From Lemma 5.4.1 we
have a nice description of the Bruhat tableau of 7 in terms of £ and 7. Since w lacks the
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inductive structure of 7, we have no such description for its Bruhat tableau. Therefore
we consider an element v := £ ® w’ with w’ € &, and the property that w < v. Then
Lemma 5.4.1 implies that the Bruhat tableaux of 7 and v are the same, except for the
parts determined by 7’ and w’, respectively. That is, comparing the Bruhat tableaux
of 7 and v reduces to the comparison of the Bruhat tableaux of 7/ and w’. We now
introduce the element v.

Lemma 5.4.4. Let (n1,n2) E n with ny even, I C S and a € [n — 1] with sq & I. Set
w = wo(l),

|
]

where wy is the longest element of &,,, S’ to be the set of simple reflections of Gy,

f:: {U(nl) ’LfaS [

02”1 ifa>]

ni)

I3 |3

r {S’:(Z) ifng =1

_ , {min{a,ng—l} ifa < [%]
S\ {sar} ifng>1

n
where a := 2
max {l,a —ni} ifa>[%],

w' € &y, to be the longest element of (Spy)p and v:=E& O w'. Then w < v.

Proof. Since I C S\ {s,}, it follows that w < wo(S \ {sa}). Therefore we can assume
without loss of generality that I =S\ {s,}.

(1) Assume a < [§]. Then = 0(,). Let j € [n — 1] and i € [j]. We show w; j < v; ;.
Then we can apply the tableau criterion, Theorem 5.1.5, to obtain w < wv. Since the
element in stair form oy, ) is oscillating by Lemma 4.3.11 we can apply Lemma 5.4.1
on v. We distinguish the four cases that occur in Lemma 5.4.1.

Case 1. Assume j < . Then Lemma 5.4.1 yields v;; = (U(nl))iﬂj + ng. From
Lemma 5.2.2 we have that (0(,,))pq = 71 — ¢+ p unless p = 1 and ¢ > 5. Thus,
(U(nl))m =n1 —j+1,ie v j =n—j+i That is, v;; is maximal and hence v; j > w; ;.

Case 2. Assume 5 +ng < jand i < j— 5 —mng. Then v;j = (0(n,))ij—ny DY
Lemma 5.4.1.

First assume ¢ > 1. Then it follows from above that

(U(nl))i,j—nQ =Ny — (j - HQ) +i1=n —j + 3.
Hence, again v; ; is maximal and therefore v; ; > w; ;.
We now assume 7 = 1. We have
<n<n1+n2+1<n1+ <
a — — 4+ =+ -<-—=+4+n .
S22 Ty Ty TN

Consequently, wi ; = 1 by Lemma 5.3.9 and thus certainly w; ; < vy ;.
Case 3. Suppose § < j < B +ngand i < j— 5. This case can only occur if ng > 2.

Hence, I’ = 5"\ {sq }. Moreover, in this case v; j = w;j,u + % by Lemma 5.4.1.
’ 2
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Assume first that @ > ny — 1. Then o’ = ny — 1 and hence j — &+ < ny —1 = a’. Thus,

: nlza'—(j——l)+2:—1+n2—1—j+z

Wij—nt 2 9

by Lemma 5.3.9. Hence, v;; = n—1—j+1i If j < a then Lemma 5.3.9 yields
w;; = a— j+ 1 and since a < n — 1, it follows that w; ; < v; ;. We have

. . n
zgj—égng—lga.

Therefore, if j > a then w;; = ¢ by Lemma 5.3.9 and hence Lemma 5.1.7 implies
Wi j < Vij-
Assume now that a < no — 1. Then a’ = a.
(i) Suppose @ < a. If j > a then w;; = i < v;;. Thus, assume j < a. Then
Lemma 5.3.9 yields w; ; = a — j + ¢ and w;j_ﬂ =% +a—j+i Hencev;; =
JT3
nyta—j 412> wg.
(ii) Suppose i > a. Then also j— '8 > a. Because a = a’, we obtain from Lemma 5.3.9
that w;j_%l =% +ng —j+i. Thus, v;j =n —j+i. Hence, v;j > w;; as v;j is
maximal.

Case 4. Assume that ¢ and j do not fall in one of the previous cases. Then we obtain
from Lemma 5.4.1 that v;; = n — j + 4. Thus, v;; > w; ;. This finishes the proof of
w < v in the case a < [F].

(2) Assume a > [%]. Let wy be the longest element of &,, and w; be the longest
element of &,,, for i = 1,2. We use the Bruhat order automorphism v with v(z) = z*°
to trace this case back to Part (1). Set @ :=n—aand I := S\ {sz}. Define v, @, &, I, @'
and © depending on I and @ in the same way as their counterparts without tilde from
the theorem are defined depending on I and a.

Since a > %], we have @ =n—a < [4§]. From Lemma 4.1.17 it follows that w = w"°.

We claim that v’ = (@)"2. If ng = 1 then v’ = @' =1 € &, and therefore w’ =
(w")*2. Now suppose that ng > 2. Then w' = wo(S"\ {s},}) and @' = wo(S"\ {sz}) in
Sp,. We show a’ = ny—a’. By definition, ' = max{1,a — n1} and @’ = min {a, ny — 1}.
Moreover,

d=1<+=a-m<l<<=n—a-m<1 <= ny—-1<a <= ad =ny—1.

Hence, ' = ny — @' if @ = 1. Furthermore it follows from the equivalence that if
o' =a—nj then @ =& and

ngo—a =no+n—a=n—a=a=a.
Therefore, we have o’ = ny — @’ as desired. This implies s, = s3? in &,, and thus

w’ = (@')*? by Lemma 4.1.17. This finishes the proof of the claim w’ = (w')®2.
We have seen in Part (1) that o, ([%]) = [% + 1,n1]. Therefore we can apply
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Lemma 5.4.3 to © and obtain

,ﬁwo — owl

omy © (8) =0y O’ =v.

From Part (1) we have w < 9. Since v is a Bruhat order automorphism, it follows
that w = @"° < g% = . O

Example 5.4.5. Let n = 11, a = (a,...,4) = (6,3,1,1) Fe n,a =1, I = S\ {sa}
and w = wo(I). Moreover, set o' = (3,1,1), ny = a1 = 6 and ng = |&/| = 5.

(1) We define v as in Lemma 5.4.4. That is, we set { = o(g), S’ to be the simple
reflection of S5, @’ = min{1,4} = 1, I’ = 5"\ {s1}, @' to be the longest element of
(&5)r and v = 05y © w'. Then

w = (2,11)(3,10)(4,9)(5,8)(6,7),
o) = (1,6,2,5,3,4),
w' = (2,5)(3,4),
v=(1,11,2,10,3,9)(5,8)(6,7)

and Lemma 5.4.4 yields w < v. One can check the latter by comparing the Bruhat
tableau of w and v shown below.

1[3[4[5]6][7[8]9]10[1]] 1[3]4]5[6][7[8]9]10[1]]
1[4[5]6|7[8]9]101 1[4]5[6]7]8[9]10[i1
1[5(6]7|8[910[11 4]5]6[7]8]910[i1
116[7]8]9[10[i1 4167891011
NHEBEIN NEBEIE

B(w) =T8To o1 B(v) = sTofiont
1[9]10[11 I
1[10[11 9 [10[11
1[11 10[11
1 11

By Lemma 5.4.1 the entries in the gray cells of B(v) are maximal and the other entries
only depend on either £ or w'.

(2) Consider 7 = £ ® 7/ with 7/ = (1,2,5) € &5. This is the element 7 from Ex-
ample 5.4.2. Then § = o) € X(,,) and by Example 5.3.1, 7' € Y4. Therefore,
Theorem 4.3.55 implies 7 € 3.

We compare the Bruhat tableaux of w, v and 7. The latter is shown in Example 5.4.2.
Since 7 and v are elements of G1; given as inductive products with the same left factor
¢, Lemma 5.4.1 implies that B(7) and B(v) coincide outside the white subtableau of
shape (4,3,2,1). Therefore, w < v implies that w;; > 7;; is possible only for entries
within this subtableau, i.e. for 3 < j < 8 and ¢ < j — 3. From Lemma 5.4.1 we obtain
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5 The center acting on simple modules

that
Vi = w;j/ +3 and 7 ;= TZ-IJ/ +3

for these ¢ and j where j/ = j — 3. Thus, if w;; > 7,; then v;; > 7;; and hence
w;jl > 7‘1-’7]-,. That is, we have established a connection to the smaller Bruhat tableaux
of w', 7" € &5. This is a crucial step in the proof of the following result.

The next lemma gives rise to a recursive definition of the element 7 form the intro-
duction of the section. The objects &, I’, a’ and w’ occurring in it are defined exactly as
in Lemma 5.4.4 for n; = oy and ng =n'.

Lemma 5.4.6. Assume that o = (aq,...,q;) Fe n with aq even and 1 > 2, I C S and
a € [n— 1] with s, € I are given. Let w :=wo(I), o/ := (ag,..., ),

5:(%nUGSH
o, ifa> 2

where wy is the longest element of Sy, 7' € Loy and 7 :=E O 7. Then T € X,
Moreover, let n' := |d/|, S" be the set of simple reflections of Sy,

L s=0 gw=1
TS\ {sw} ifn>1

IS N3

min {a,n’ —1} ifa < [%]
max {l,a — a1} ifa> [%]

and w' € &, be the longest element of (&,)y. Then w A T is the greatest element of
(6n)1 N (Gn)<x, if w' AT is the greatest element of (&) N (Spr)<s, -

where a' = {

Proof. First, we show 7 € X,. We know that o(,,) € X(,,) and by Corollary 4.1.16 also
that UE‘(’;I) € Y(ay)- Thus, £ € X(,,). Moreover, 7/ € Xy by assumption. Since a; is
even, Theorem 4.3.55 now yields 1 = £ © 7/ € X,.

In the following we repeatedly use that for all m € N and u,z € &,, such that u is
the longest element of a parabolic subgroup of &,,, the meet u A x exists and we have
(uAx)i; =u;j ANwx;;forall j € [m—1]and i € [j] by Proposition 5.1.9.

Assume that (&,/) N (S, )<yx,, has a greatest element and that w’ A7’ is this element.
Let x € 6/NG<y,. Then thereisa o € ¥, such that z < w and x < 0. Hence x < wAo
and without loss of generality we can assume that x = w A 0. By Theorem 4.3.55, there
are 11 € X(,,) and o' € ¥4 such that ¢ = n ® ¢/. An overview of the permutations
appearing in this proof and their relations in Bruhat order is given by Figure 5.1.

We have to show that w Ao < w A 7. By the tableau criterion, Theorem 5.1.5, this is
equivalent to (w A 0);; < (wAT);; forall j € [n—1] and i € [j].

Let j € [n—1] and i € [j]. If w;; < 7 ; then

(WAT)ij=wi; > (WA0);

as desired.
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5.4 An application of the inductive product

v=E60uw
T=(0T c=nodo ' o
/
w w
wAT w' AT
‘?
wAo w Ao’

Figure 5.1: The two diagrams show how the elements appearing in the proof of
Lemma 5.4.6 are related to each other by the Bruhat order. On the left
hand side, we have the elements of &,, and on the right hand side the ele-
ments of &,,/. If x and y are joined by an edge and z is below y then x < y.

Assume w; ; > 7; ;. In this case (WAT);; = 7;5. Set ny := a1, ng :=n’ and v ;= {OW'.
Then v is defined as in Lemma 5.4.4 and the same lemma yields v > w. Therefore, the
tableau criterion implies v; ; > 7; ;.

The elements 7 = O 7/, v = {Ow’ and 0 = n© ¢ are all contained in X(,,,) © &y, In
addition, n; is even and each element of ¥, ) is oscillating by Theorem 4.3.20. Therefore,
we can use Lemma 5.4.1 in order to compute the Bruhat tableaux of 7, v and ¢ from
their respective factors in the inductive product.

Since 7 and v have the same left factor in the inductive product and v;; # 7 ;,
Lemma 5.4.1 implies that 5t < j < % +ng and i < j — . For this kinds of indices the
same lemma yields

ni
2

ng
2

ni

: (5.4)

Ui’j — wiJ’/ + 7_17‘7 — Ti,j/ + and 0—74’] — O-’i7j/ +

where j := j — . Thus, from v;; > 7;; we obtain that w; ;, > 7, . Consequently,

(W' AT")ijr = 7] ;. Since w' A7’ is the greatest element of (&) N (én/)gza,, it follows
that

Tz{,j’ =5 (w’ A T,),L'J/ Z (w' A 0”)1"]'/.

" . because otherwise we would obtain the contradiction

. / / o
In particular, (w’' A o’); ;v = o} ;

7 = (W A ')y = wj . Therefore, we have 7/, > o} . Using (5.4) again, we get
7;,; > 0i;. Consequently,
(w A\ T)i,j =Tij > 04,5 > (w A U)i,j- ]

Example 5.4.7. Asin Example 5.4.5,let n =11, a = (6,3,1,1) Fe n, I = S\ {s1}, w =
wo(I), o/ =(3,1,1), ' = |/|, S’ be the simple reflections of &5, a’ =1 1' = 5"\ {sa},
w’ be the longest element of (&5)r, & = o), 7' = (1,2,5) € Gsand 7 = O 7'
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5 The center acting on simple modules

Using Definition 5.3.5, we have 7/ = 7,/ . Therefore, Lemma 5.3.7 yields 7" € ¥, and
from Theorem 5.3.11 it follows that w' A7’ is the greatest element of (&) N (Sp)<s .
That is, we can apply Lemma 5.4.6 and obtain that 7 € ¥, and that w A7 is the greatest
element of (&,); N (&y)<s,, .

By generalizing the construction from Example 5.4.7, we obtain the main result on
61N G<yx, . It implies that for all I C S and a F. n such that the odd parts of a form
a hook, 61 N G<yx, is an interval in Bruhat order.

Theorem 5.4.8. Let (ay,...,0q) Ec n be such that the odd entries of o form a hook
and I C S be such that I # S if n > 1. Then there exists a T € X such that 61N G<yx,
is the interval [1,wo(I) A 7] in Bruhat order.

Proof. Let m be the number of even parts among «y,...,q;—1 and w := wo(I). We do
an induction on m.

For the base case assume m = 0. We claim that then o = (n), « = (1") or a =
(a1, 1" 1) with 1 < a3 < n and o3 odd. If I = 1 then @ = (n). If [ > 1 then
a1, ...,op_1 are odd. It follows that «; is odd as well, since « is a maximal composition.
Hence « is an odd hook. That is, either a = (1) or @ = (1, 1) with 1 < a3 <n
and o« odd. This finishes the proof of the claim.

Suppose a = (1"). Then ¥, = {1} and therefore 6; N S<yx, = {1} =[1,w A 1].

From now on we can assume n > 2. Then I C S and there exists an a € [n — 1] such
that s, & I.

Suppose o = (n) and set 7 := o, if a < [§] and 7 := UE”nO) if @ > [4]. Then
Lemma 5.2.3 yields that 7 € ¥, and w A 7 = w. Together with Theorem 5.2.4 it follows
that & N 6§2a =6 = [1,w AN 7'].

Suppose o = (a1,1"7) with 1 < oy < n and a7 odd. Set T := 74, With 7,4 as
in Definition 5.3.5. Then 7 € ¥, by Lemma 5.3.7. Moreover, Theorem 5.3.11 yields
S N6y, =[LwATl

We continue with the induction step. Assume m > 1. Then [ > 2, n > 2 and there

exists an a € [n — 1] such that s, ¢ I. As in Lemma 5.4.6, we set o’ := (a2, ..., ),
n':=|d/|, S’ to be the set of simple reflections of &,,,
"= {S: =0 Tf n: =1 where o := {min ta.n’ =13 Tf .= %1
S\ {sa} ifn >1 max {l,a —oq} if a> [5]

and w’ to be the longest element of (&,);. The first (o) — 1 =1 — 2 parts of o/ are
o, ...,a;_1 and hence exactly m — 1 of these parts are even. Furthermore, I’ C S’ with
I' # 8" if n’ > 1. Thus, we can apply the induction hypotheses and obtain that there is
a 7’ € Xy such that (&,/)p N (Gy)<s,, = [1,w' AT]. Let

f:: {Usjll) ifag[ W

I3 I3

T (an) if a > [ ]
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5.4 An application of the inductive product

where wy is the longest element of G, and 7 := £ ®7'. Then we can apply Lemma 5.4.6
and obtain that 7 € 3, and (&,)r N (S,)<x, = [1,w A T]. O

From Theorem 5.4.8 it follows that &; N S<x,, is an interval if I # (), S and the odd
parts of a E. n form a hook. By the following example, this is not true for all maximal
compositions.

Example 5.4.9. Let o = (3,3) and I = {s1,89,83,54}. Then wo(I) = (1,5)(2,4).
In Remark 4.3.76 the 22 elements of ¥, are given. In particular, o1 = (1,6,5)(2,4, 3)
and o9 = (1,5,6)(2,3,4) are elements of ¥,. Set 7; = wo(I) A o; for i = 1,2. Then
71,72 € 61 N G<y,. Computing 7 and 7 with Proposition 5.1.9 yields

1 =(1,5)(2,4,3) and 7 =(1,5)(2,3,4).

We show that both 71 and 72 are maximal in &; N G<yx,. Then &; N G<x, cannot
be an interval. One can check that ¢(o;) = 10. Because ~ preserves the length, we have
¢(0) = 10 for each o € ¥,. On the other hand, ¢(w(I)) = 10 but wy(I) is obviously not
an element of ¥,. Thus, each element of &1 N S<x, has at most length 9. As ¢(7;) =9
for i = 1,2, both elements must be maximal in &; N &<y, .

Thanks to Theorem 5.4.8, we can now prove the main result of this chapter. The
proof is similar to that one of Corollary 5.3.13.

Corollary 5.4.10. Conjecture 5.0.1 is true for all o E. n whose odd parts form a hook.

Proof. Let n > 3, a E. n with a # (1™) be such that the odd parts of a form a hook
and 0 C I C S. We have to show that T<y, vr = 0 where vy is the element generating
the simple H,(0)-module F';.

Since I # S we can apply Theorem 5.4.8 which provides a v € &,, such that §;NG<yx,,
is the interval [1,u| in Bruhat order. Because () # I, there is an ¢ € [n — 1] such that
s; € 67. Moreover, as a # (1), we can use Lemma 5.3.12 and obtain that s; < o,
which implies that s; € &<y, . Consequently, s; € 67N G<x, and thus s; < u. That is,
u # 1 and Lemma 5.1.12 implies that 7<x, vr = 0. O
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Index of notation

Index of notation

arbitrary field

{1,2,...}
{ceZ|a<c<b}fora,beZ
[1,a] fora € Z

covering relation

meet of x and y

radical of M

socle of M

top of M

the K-vector space with basis X

composition of n

partition of n

weak composition of n

complementary composition of «

partition obtained by sorting the parts of «
size of composition «

composition associated to set D

length of composition «

set associated to composition «

Bruhat order for u, w elements of Coxeter group

left weak order for u, w elements of Coxeter group

interval in Bruhat order for u,w elements of Coxeter group
interval in left weak order for u,w elements of Coxeter group
left descent set

right descent set

right descent class Df

right descent class

simple Hyy (0)-module for I C S

simple H,(0)-module for D C [n — 1]

0-Hecke algebra of Coxeter group W

0-Hecke algebra of symmtric group &,

S\IforICS

length of element of Coxeter group W

indecomposable projective Hyy(0)-module

element of K-basis {m, | u € W} of Hy(0)
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O O © © © © © v v

10
10
10
10

10

10

12
13
13
13
13
13
14
14
18
18
16
16
14
12
19
17



AD(T)
o8
By, By,
(i, )
CT(’i>
Ck, Cky
colp
COlBk,l,T
cont (o)
D(T)
D(T)
D(U)
De(U)
E(a)B)
Ea

Ep
Ehsort
Ey
FD¢(Tp)
FD°

Index of notation

element of K-basis {7, | u € W} of Hy (0)
elements 75, and 7, of H,(0) for i € [n — 1]
elements 7,y and T, () for I C S

set of Coxeter generators of the Coxeter group W
symmetric group of the set X

symmetric group on n elements

parabolic subgroup (S,);

stabilizer

Coxeter group

parabolic subgroup

set of quotients

longest element of W

longest element of the parabolic subgroup Wy

number of cells of « in column j

size of )/ B

attacks in T’

attacks

dominance preorder on compositions

a partial order on compositions

left neighbor in T

left neighbor

a partial order on F for E € E(a)/f)

an equivalence relation on SCT(a /)

set of attacking descents of SCT T

skew shape

sets of cells associated to descents of a source tableau
column of cell (4, 7)

column of entry ¢ in T’

sets of cells associated to ascents of a sink tableau
column word

column word of T restricted to By

content

descent set of SCT T

ascent set of SCT T’

descent set of the simple submodule U of S, 3
ascent set of the simple submodule U of S, 5 £
set of equivalence classes of SCT(a//3) under ~
set of A-sortable tableaux of I for A € FD°

set of D-sortable tableaux of E for D € OD

set of horizontally sorted tableaux

support of the simple submodule U of S, j5 g
flanking ascents of the sink tableau T}

set of subsets of D¢(T}) containing FD¢(1}) for a sink tableau T
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17
16
18
11
11
11
14
14
11
14
14
14
15

33
26
28
28
33
26
28
28
30
29
28
26
56
28
28
7
31
o7
35
28
28
89
89
29
83
60
65
89
82
82



Iy, Iy, Iy
ish .
Ty Jrgs Jry
Jr

L.
nAD(T)
ND*(T)
nND¢(T)
OD(Ty)
OD

osh

r(i,7)
ro(i)
Says
Sayp.E
s

SCT
SCT(a/5)
sh
SPCT(«)
SPCT
supp(v)
T>m

To.e

Tk

Tp

Uu

Ua

Index of notation

integer intervals associated to descents of a source tableau
inner shape

integer intervals associated to the ascents of a sink tableau
set of simple reflections associated to T’

composition poset with partial order <.

set of non-attacking descents of SCT T

set of neighborly ascents of SCT T

set of non-neighborly ascents of SCT T'

offensive descents of the source tableau Tj

set of subsets of D(Tp) containing OD(1y) for a source tableau Tp
outer shape

row of cell (i, 7)

row of entry ¢ in T’

H,,(0)-module with K-basis SCT(«//3)

H,,(0)-module with K-basis E for E € £(a//f)
H,,(0)-module with K-basis SPCT («)

standard composition tableau

set of standard composition tableaux of shape a3

shape

set of standard permuted composition tableaux of shape «
standard permuted composition tableau

support

tableau given by the entries > m of T

sorce tablau of F

sink tablau of £

the D-sorted tableau for D € OD

set of simple submodules of S, /3

simple submodule of S, 3 i associated to A € FD¢

a generator of the simple submodule Uy

composite diagram

product of crossing diagrams

inductive product of permutations o1 and oy
element of anti-rank 4 in o([k]) for permutation o
d-commutator of a,b € Hyy (0)

d-commutator

equivalence class of w € W with respect to =5
equivalence relation on W

relations on W

maximal composition of n

HOmK(A, K)

Bruhat tableau of permutation o

K-linear map making Hy(0) a Frobenius algebra
set of §-conjugacy classes of W
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56

26, 27
7
46
26
28
28
28
59
99
27
28
28
29
29
102
27
27
27
102
102
35
33
31
31
64
86
86
86

26,

122
120
163
187
112
112
114
114
114
124
112
187
112
114



Omin
P(o)
P.(0)

Ty
po (i)
S<s,

Index of notation

cycle standardization of o

crossing diagram of «

the permutation associated to the crossing diagram D,
automorphism of W with §(S) = S

automorphism of Hyy(0) given by the W-automorphism §
vod

a set associated to d

0-Hecke algebra Hyy (0)

d-cocenter

set of inversions

automorphism of W given by w — w™°

automorphism of Hyy(0) given by the W-automorphism v
elements of minimal length in O

set of orbits of o

set of even orbits of o

prime diagram of thickness n

ZZEWSZ Ty

anti-rank of ¢ among the elements of its cycle in o
(Gn)<s, foraken

equivalence class of o, with respect to ~

set of 0 € ¥, with P(0) = P(0,)

element in stair form corresponding to «

an element of 3, depending on odd hook « and integer a
UOECI(W)5 Omin

quotient set of W5 min by ~5

order ideal in Bruhat order generated by X

d-center
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155
123
124
111
112
112
117
111
112
167
111
112
114
131
131
122
115
155
185
128
172
127
197
114

114
115
112
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