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Circular Fields and Predictive Multi-Agents for
Online Global Trajectory Planning
Marvin Becker1, Torsten Lilge1, Matthias A. Müller1 and Sami Haddadin2

Abstract—Safe and efficient trajectory planning for au-
tonomous robots is becoming increasingly important in both
industrial applications and everyday life. The demands on a
robot which has to react quickly and precisely to changes in
cluttered, unknown and dynamic environments are particularly
high. Towards this end, we propose the Circular Field Predictions
approach which unifies reactive collision avoidance and global
trajectory planning while providing smooth, fast and collision
free trajectories for robotic motion planning. The proposed
approach is inspired by electromagnetic fields, free of local
minima and extended with artificial multi-agents to efficiently
explore the environment. The algorithm is extensively analysed
in complex simulation environments where it is shown to be
able to generate smooth trajectories around arbitrarily shaped
obstacles. Moreover, we experimentally verified the approach
with a 7 Degree-of-Freedom (DoF) Franka Emika robot.

Index Terms—Motion and Path Planning, Collision Avoidance,
Reactive and Sensor-Based Planning.

I. INTRODUCTION

W ITH the recent shift to ever closer contact between
humans and robots, the demands on motion planning

are continuously increasing and classical motion planning
approaches are reaching their limits. Sampling based planners
received significant attraction in the field of motion planning
over the last decades due to their effectiveness, good results,
and straightforward implementation [1], [2]. Among those, the
Rapidly-exploring Random Trees (RRT) [3], [4] and the Prob-
abilistic Roadmap Method (PRM) [5] are probably the most
widely used [6], [7]. In order to overcome the well-known
disadvantages, in particular the suboptimality of the identified
paths and the considerable post-processing, extensions like the
well-known RRT* and PRM* methods were developed [6].
Furthermore, the extension to dynamic unknown environments
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was made possible with various attempts to improve the
replanning efficiency [8]–[10]. However, even these efficient
algorithms still suffer from a performance loss in environments
with narrow passages [11].

On the other hand, reactive motion planning has drawn a lot
of interest due to its simplicity and promising results. Khatib
was among the first ones to develop the popular Artificial
Potential Fields (APF) approach and apply it for multi-DoF
manipulators [12]. Even though the algorithm only needs
low computational resources, it suffers from local minima
to which the robot converges instead of being able to reach
the goal pose. Many approaches were developed to overcome
this limitation, notably the Harmonic Functions [13] and the
navigation functions [14]. Other approaches like [15]–[17]
made use of the fast computation time of APF and combined
the approach with sampling techniques. However, in addition
to further limitations and a not negligible added complexity,
those reactive approaches can mostly be used for local obstacle
avoidance only and need to be combined with additional
global planners. The authors of [18] developed another reactive
planner derived from physics. Instead of using the analogy
of electrostatic charges as in APF, they were inspired by the
laws of electromagnetism and used Circular Fields (CF), which
guide the robot around obstacles instead of simply repelling
them. The virtual force does not induce any additional energy
into the system as it acts always perpendicular to the robot’s
velocity and thus does not suffer from local minima either
[18]. In an early similar approach the work [19] already
showed the capabilities of CF by using them to evade dynamic
obstacles in a simplified environment. The original algorithm
was extended in [20] as it suffered from oscillations due to
inconsistently defined artificial currents. Therefore, a rotation
vector was introduced for each obstacle in order to define a
consistent artificial current flow for each obstacle. However,
full knowledge of the environment was needed in [20] since
the geometric center of the obstacles had to be calculated. The
approach was enhanced in [21] and the authors were able to
mathematically prove obstacle avoidance of isolated CF for
convex obstacles. Instead of a rotation vector, they used the
projection of the robot’s velocity vector on the obstacle to
define a continuous artificial current, thus making it possible to
use the algorithm in unknown environments. On the downside
this method leads to a rather random choice of the avoidance
strategy and can therefore result in trajectories that take a long
detour or possibly are not even able to reach the goal at all.
Further approaches like the Gyroscopic Force (GF) method
[22] or motion planning using Maxwell’s equations [23] are
based on very similar principles. Due to its fast computation
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time GF was often applied in multi robot setups, where
the single agents are resource-constrained like robotic sensor
networks [24], unmanned aerial vehicle formations [25] or
cooperative tasks [26]. Nevertheless, because of their limited
exploration possibilities, CF and GF approaches can only serve
as local planners and perform poorly for finding global optimal
or even suboptimal solutions. The main contributions of the
paper include a definition of a steering force by extending the
CF approach with a Predictive multi-agent (CFP) framework
which bridges the gap between global trajectory planning and
reactive collision avoidance algorithms (a first version of the
general idea was briefly mentioned in [27]). Even though CFs
are inherently free of local minima, the resulting paths are in
general globally suboptimal. Our extension with multi-agents
solves this problem by exploring multiple paths around each
obstacle. Hence, we obtain (approximately) globally optimal
paths and can additionally use the multi-agents to tune the
parameter settings depending on user-defined cost functions.
Another contribution is the modification and enhancement
of the original CF algorithm to ensure an improved inter-
action with the CFP and an additional attractive goal force
which includes an extension such that non-convex obstacles
can be handled and the CFP can be used more efficiently.
Furthermore, we extensively compare our CFP against other
global and local motion planners in 2D and 3D simulation
environments and present a preliminary application on a 7-
DoF robot.

II. REACTIVE MOTION PLANNING ALGORITHM

The proposed virtual steering force has the form

Fs = FCF + kgrFVLC (1)

and guides the robot to the goal pose. The definition of the
obstacle avoidance force FCF, the attractive force FVLC, and
the scaling kgr are explained in detail in the next sections.

A. Circular Field Force

In order to efficiently avoid obstacles in the robot’s envi-
ronment, we adapt the Circular Fields (CF) algorithm, which
was inspired from the physical laws in electromagnetism,
specifically the force acting on a moving charged particle in
an electromagnetic field1.

1) Current Vector: In the original approach in [18], each
obstacle surface generates a virtual electromagnetic field,
in which the robot behaves like a charged particle. Those
electromagnetic fields are generated by virtual currents on each
surface of the obstacles. The direction of the current vector c
is crucial for the obstacle avoidance, as it also defines the
direction of the CF force and thus the direction in which the
robot is guided around an obstacle, as proven in [21]. As stated
in [20], the original definition of the current vector from [18]
is not sufficient as inconsistent current vectors on an obstacle
lead to oscillations. In order to generate consistent current

1 According to the law of Biot-Savart the magnetic field at position x of
a wire of length l carrying the current I is defined by dB(x) = µ0

4π
Idl×x
||x||3

and will apply the Lorentz force F = qẋ×B on a particle charged with q
and moving with velocity ẋ

vectors we define a rotation vector jr for each obstacle j
similar to [20] which determines the direction of the current
vectors uniformly over the entire obstacle (see below). The
current vector for a surface i of an obstacle j can then be
calculated by

jci := jni × jr (2)

with jni being the normal of the obstacle surface pointing
outside of the obstacle. In contrast to previous approaches
our definition of the current vector (2) and the rotation vector
(3) does not depend on prior knowledge of the environment
as in [20], leads to a continuous current direction over the
surfaces of the obstacles (in contrast to [18]) and can be easily
used to explore multiple trajectories to evade obstacles without
depending on the current robot velocity (in contrast to [21]).

2) Rotation Vector: The rotation vector is a key element
in our multi-agent framework as it is used to calculate the
current vectors and therefore defines the direction in which the
robot will pass an obstacle. The rotation vector only defines
the orientation of the magnetic field and does not influence
the orientation of the robot. Due to our predictive multi-
agent approach multiple possibilities of evading an obstacle are
evaluated in our framework. Therefore, we prioritized a com-
putationally cheap and robust calculation of the first rotation
vector instead of opting for more sophisticated solutions. The
calculation of further rotation vectors is part of the multi-agent
framework and therefore is described in detail in Section III.
The rotation vector of an obstacle is calculated once when the
obstacle appears for the first time in the vicinity of the robot
by generating a normal nref to the current normalized velocity
vector v̄ = ẋ

||ẋ|| of the robot. In R3 a method for calculating a
normal to an arbitrary vector is to take the cross product of the
vector with a basis vector of a reference coordinate frame. By
picking the basis vector that yields in the smallest magnitude
of the scalar product with the chosen vector a higher numerical
stability is achieved.

nref :=





ex × v̄ if ex · v̄ = min {ex · v̄, ey · v̄, ez · v̄}
ey × v̄ if ey · v̄ = min {ex · v̄, ey · v̄, ez · v̄}
ez × v̄ if ez · v̄ = min {ex · v̄, ey · v̄, ez · v̄} ,

r := v̄ × nref , (3)

where ex, ey, ez are the basis vectors of the map coordinate
frame. When the robot is not moving, e.g. in the initial
pose, the rotation vector is instead calculated by replacing
the normalized velocity vector with the vector dg = xg − x
pointing from the robot position x to the goal position xg .
Please note that in a 2D environment there are only two
possible ways for the robot to bypass an obstacle, the left or
the right side. Therefore, the rotation vector simply matches
the z-Axis (or the negative z-Axis) as in 1.

3) Circular Field: Our modified version of the Biot-Savart
law leads to the circular field resulting from surface i of
obstacle j

jBi :=
kCF

||jdi||
jci × jẋi, (4)

where kCF is a constant gain, jẋi is the relative velocity,
between robot and obstacle surface and ||jdi|| is the minimal
distance between robot and obstacle surface.
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Fig. 1: Generation of circular field (dark red) and CF force (green) for an
octagonal obstacle (light red) in 2D.

4) Artificial Force: In order to reduce disturbances from
obstacle points which are not relevant for the motion planning
the planner will only take those obstacle points into account
that are inside of a range limit dl around the robot and located
on surfaces which face the robot. The first requirement is easily
met by defining the CF force as follows

jFCF,i =

{
jẋi × jBi if ||jdi|| ≤ dl
0 if ||jdi|| > dl.

(5)

The second requirement is met when the absolute value of the
angle between the obstacle normal n at the obstacle point and
the robot-obstacle distance vector d is greater than 90◦, i.e.
jni · jdi < 0. The total CF force from no obstacles with mj

obstacle surfaces then results in

FCF =

no∑

j=0

mj∑

i=0

jFCF,i. (6)

In contrast to the APF approach our CF planner has multiple
advantages. The force is perpendicular to the robot’s velocity,
thus it does not dissipate any energy from the system and
consequently will not change the stability property of attractive
fields when no collision with obstacles occurs [18]. Moreover,
the planner does not suffer from local minima and when the
robot is moving perpendicular to an obstacle surface the CF
will not apply any force on the robot.

B. Attractive Goal Force

In order to guide the robot to its goal pose we extend the
definition of the attractor dynamics in the classical potential
field approach with the proposed Velocity Limiting Controller
(VLC) from [12]. For this, we first need to define an artificial
desired velocity from the current robot position x ∈ R3 and
its goal position xg ∈ R3 in the form ẋd =

kp
kv

(xg − x),
where kp is the position gain and kv the velocity gain. The
virtual force FVLC is then calculated from the difference of
the current robot velocity ẋ and the artificial desired velocity
ẋd with FVLC = −kv(ẋ − νẋd), where the factor ν leads
to the limitation of the velocity magnitude and is defined as
ν = min

(
1, Vmax

(
ẋTd ẋd

)− 1
2

)
.

The resulting control law is better suited for longer distances
between robot and goal pose since the generated virtual force
vanishes when the robot travels with the maximum velocity
in the direction of the goal pose. This leads to a constant
velocity magnitude except during acceleration, deceleration
and in the vicinity of obstacles when the robot is subject

to further virtual forces. We use the same approach for the
orientation of the robot by computing an artificial desired
angular velocity from the orientation error xg,r−xr by using
the quaternion difference of the current orientation q of the
robot and the goal orientation qg as proposed in [28] with
xg,r − xr = q0qg − qg,0q − q × qg , where q0 and qg,0
are the scalar parts of the quaternions describing the current
orientation and the goal orientation of the robot. Please note
that the orientation is not used for the collision avoidance.

C. Extensions and Application

This section focuses on further improvements and exten-
sions of our algorithm. In contrast to previous CF approaches,
the proposed algorithm should be able to work directly with
point clouds to avoid the computationally intensive and error-
prone segmentation of surfaces from the obstacles. There-
fore, instead of obstacle surfaces, each of the point cloud
points generates its own magnetic field. This also yields the
advantage that the robot tends to be repelled stronger by
larger obstacles and busier areas. The computational load can
then be easily adjusted by downsampling the sensor point
cloud. We assume that the sensor data originates from laser
scanners or camera modules and make the assumption that
the point cloud points are reasonably evenly distributed. The
parameter kCF can be scaled according to the point cloud
resolution, i.e. a larger distance between the points in a cloud
should result in a higher parameter kCF to achieve similar
trajectories. Moreover, as noted by [21], the combination of
an APF and CF could lead to oscillations of the robot, or even
goal convergence problems when large obstacles need to be
avoided. We introduce similar scaling factors for avoiding this
effect by reducing the attractive goal force when the robot
is close to obstacles (factor w1), when the goal is obscured
by an obstacle (factor w2) and when the distance to the goal
grows large (factor w2); for details see the goal relaxation
term in [21]. In addition to these factors, we introduce another
extension, which leads to significantly improved trajectories, in
particular in environments with non-convex obstacles. Obsta-
cle configurations which cause opposing VLC and CF forces
can lead to a reduction of the robot’s velocity as the goal
force acts against the robot’s velocity. In such a case the
CF force should be dominating to guide the robot along the
obstacles’ boundaries until the obstacle is passed. This can be
achieved by scaling the VLC force with the scalar product of
the normalized VLC force and the current robot velocity in
the form

w4 =

{
1 + ẋ·FVLC

||ẋ||||FVLC|| if ẋ · FVLC < 0 and FCF 6= 0

1 otherwise.

The overall factor is then calculated by kgr = w1w2w3w4.

III. PREDICTIVE MULTI-AGENT FRAMEWORK

In order to overcome the limitations of traditional CF,
achieve better global exploration and therefore find a more
reasonable motion planning strategy, we extend our approach
with predictive multi-agents, which are able to efficiently
plan multiple trajectories to the goal pose. In our definition,
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a predictive agent simulates the robot in an environment
snapshot and is guided by the same steering force as the real
robot to reach the target state. The state space representation
of an agent is defined as ż = f(z,u,P ) with f , the robot
dynamics under the influence of the CF and VLC forces,
z =

[
x ẋ

]T
the agent state, x, ẋ ∈ R6 the robot pose and

velocity in the task space, u ∈ R6 the interaction between
agent and environment, and P the parameters of the agent. The
parameter vector P is crucial in our approach and differs for
each virtual agent allowing to efficiently explore the environ-
ment. It is defined as P = {R, kCF, dl, ds, kp, kv, vmax} and
comprises the following parameters, where more parameters
can easily be added:
• The Rotation vector matrix R = (r0, ..., rn−1) contains a

rotation vector rj for each obstacle j which was detected
by the real robot and is therefore of order no × 3 with
no being the number of detected obstacles.

• The CF gain kCF scales the magnitude of the CF. A
higher value leads to a more obstacle sensitive robot.

• Within the region of interest dl around the robot the
planner evaluates obstacles for force generation with CF.

• The safety margin ds limits the paths that agents can
explore. If the passage between two obstacles is more
narrow than twice this closing distance, the algorithm
avoids to guide agents between them. An agent which
violates the safety margin by coming closer to an obstacle
than this distance is considered as collided.

• The VLC parameters kp, kv, Vmax represent gain and
damping factor of the VLC and the maximum velocity at
which the agent is allowed to travel.

During a planning step, multiple predictive agents with dif-
ferent dynamical parameters are generated to explore the
environment. Each agent is evaluated at equidistant sampling
times, the agent with the lowest cost is selected and its
parameters are copied by the real robot. While the predictive
agents are being simulated, the real robot is moving under
the influence of the CF and the VLC using the parameters of
the current best agent instead of just following the trajectory
of this agent. This approach ensures that the real robot can
react quickly and robustly to events that could not be taken
into account by the predictive agents, such as sudden changes
in direction of dynamic obstacles or measurement errors. The
procedure of the predictive agent simulation and planning can
be described with the following steps:

1) Initialization: Set the start configurations of one or
multiple agents at z0, which is the initial state of the robot.
These agents are generated with different parameters P . They
share the knowledge of the current state of the environment
with the number and pose of all obstacles in the field of view
of the robot.

2) Exploration: Start the exploration of the agents. Each
agent is attracted to the goal pose by the VLC and guided
around obstacles by the CF.

3) New Agent Generation: In case an agent enters the limit
distance of a new obstacle, na new agents with different
parameter vectors are created if the maximum number of
agents na,max has not yet been reached. These agents inherit
state and parameter vector of the parent agent. Now, specific

components of the child agents’ parameter vectors, in partic-
ular the rotation vector of the new obstacle, are modified in
order to explore other paths around the new obstacle. Please
note that the rotation vectors for other known (possibly already
passed) obstacles are not changed. Due to the importance
of the rotation vector matrix R for the obstacle avoidance
strategy, we focus on modifying the rotation vector and set
P = {R} for the rest of the paper. The generation of new
agents in 2D environments is depicted in Fig. 2. In this
case, only one new agent with an opposing rotation vector
is generated, while the rotation vectors for new agents in
3D environments are created by rotating the original rotation
vector around the normal vector of the surface closest to the
robot. In the unlikely case of a rotation vector exactly matching
the normal vector, a new vector is created by adding a small
positive constant to the normal, then the rotation vector is
rotated around this new vector. The amount of the rotation
angle θp = p 2π

na+1 for a new agent p ∈ [1, 2, . . . , na] is defined
by the number of all new agents na. The rotation vector of a
new agent p for an angle θp around the obstacles’ normal n
can be obtained by

rp = r0 cos θp + (n̄× r0) sin θp + n̄ (n̄ · r0) (1− cos θp)

where n̄ = n
||n|| is the normalized normal vector and r0

the original rotation vector [29]. Once all parameters of the
new agents are defined, they are immediately used for further
environment exploration. Other parameters of the robot can be
modified and sampled accordingly to further refine the motion
planning strategy.

4) Evaluation: The trajectories of all agents are evaluated
after a defined time te or if all agents either reached the
goal pose or are considered as collided. The cost function by
which each agent p is evaluated includes the following criteria,
weighted by the factors kcl, kcd, kc > 0.

1) With the position xa,p(t) of agent p, the path length of
the trajectory the agent travelled is

clength,p(te) = kcl

∫ te

t=0

||ẋa,p(t)||dt.

2) When the computation time is not sufficient for an agent
to reach the goal, a simple heuristic for the distance to
the goal is included in the form

cdist,p(te) = kcd (xg(te)− xa,p(te))

3) In order to improve the safety and robustness of the
motion planner the minimal distance

cobst,p(te) = kco min
∀t∈[0,te],i∈[0,no]

(||xa,p(t)− xo,i(t)||) .

between an agent and all obstacles is included in the
cost function. Thus, agents which pass obstacles with a
greater distance are preferred.

The overall cost ct can then be calculated by

ct(te) = clength(te) + cdist(te) + cobst(te) (7)

The agent with the lowest cost is selected and its parameter
vector is copied to the real robot. Obviously, the cost function
and the parameter vector can be easily extended to further
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(a) (b) (c) (d) (e)
Fig. 2: Procedure of the agent creation in 2D environments. The first agent (orange) starts planning in Fig. 2a. When it reaches the limit distances of the first
sphere in Fig. 2b, a new agent (light blue) is created. When the two agents meet the following obstacles in Fig. 2c two more agents (blue and red) are created.
Meanwhile, the real robot depicted in black starts moving. When it reaches the first obstacle and chooses the trajectories of the red and orange agents, the
other obsolete agents are deleted (Fig. 2d). The robot will use the last agent’s parameters (orange) until it reaches the goal (Fig. 2e).

evaluation criteria, like, e.g., complexity of motion on joint
level, energy consumption, level of occlusions (and therefore
unknown environment) on the trajectory of the agent, etc.

5) Removing Obsolete Agents: In order to save compu-
tational resources, agents which are considered as collided
are deleted after the evaluation step. Additionally, when the
real robot enters the limit distance of an obstacle, all agents
which took a different path around this new obstacle than the
current best agent are deleted, too. This also prevents the real
robot from oscillating movements when the best predictive
agent changes after the real robot has already started following
a different path around an obstacle. The procedure of the
algorithm is depicted in Fig. 2.

IV. RESULTS AND ANALYSES

In this section we compare our CFP algorithm with other
motion planning approaches in challenging environments in
order to evaluate the offline planning capabilities and the
performance during online execution. The simulations im-
plemented with C++ in the Robot Operating System (ROS)
framework [30] on a computer with an Intel Core i9-9880H
CPU, 2.30 GHz and 16 GB of memory. All results including
the exploration of our CFP are shown in a video attachment.

A. Problem Statement

Given a holonomic robot with initial pose xr0 ∈ R6 in a
6D environment with cluttered static obstacle objects O, and
a goal location xg = const, the motion planner has to find a
viable trajectory in the task space along with command inputs
(i.e. acceleration ẍd) for allowing the robot to navigate and
avoid obstacles in the environment while obeying its physically
based dynamics (i.e. ||ẋr||, ||ẍr|| ≤ vmax,amax). An obstacle
object j is described by a finite set Oj ⊆ R3 of i obstacle
points xoji ∈ Oj . We assume perfect knowledge of the com-
pletely static environment in the simulations, i.e., the position
of each obstacle point is known and the robot can immediately
see the entirety of an obstacle. Please note that complete
knowledge of the position, shape and size of each obstacle
is not necessary for our approach but naturally enhances the
resulting final trajectories and is used to demonstrate the full

capabilities of the predictive agent approach. The point-like
robot has the simple dynamic model

mẍd = Fs (8)

with m, the mass of the robot, and Fs, the steering force from
CFP and VLC exerted on the robot as defined in 1.

B. Simulations

1) Planning Evaluation: In order to evaluate the planning
capabilities of the CFP planner, we compare the predicted
trajectories with the popular sampling based RRT* approach
from [6] and the extended Timed-Elastic-Bands (TEB) algo-
rithm from [31]. Although the TEB is only available in 2D, it
takes a similar approach to avoiding locally optimal solutions
as the CFP by also generating candidate trajectories and is
thus very well suited for comparison. The evaluation criteria
include the average planning time and path length of the best
trajectory and the first trajectory that was found to the goal
pose. Moreover, we include the average amount of collision
free trajectories to the goal per simulation. All approaches
were able to find at least one collision free trajectory in each
try. We used the ROS integration of the TEB planner [32]
with the default temporal resolution of the trajectory 0.3 s. In
order to get comparable planning times, we stopped the TEB
when the path length started to decrease by less than 0.1 m in
1 s. Similarly, the RRT* was terminated after 10000 iterations
and its discretization distance, i.e. the distance between two
nodes of the tree, was set to 0.15 m. The simulation of the
predictive agents in our CFP planner was conducted with
a temporal resolution of 0.2 s and na = 3 new agents per
obstacle with a maximum of 40 agents in 3D (na = 1
with no limit on the agents in 2D). All simulations were
executed 100 times. As can be seen in Table I the CFP
outperforms the RRT* in all environments and the TEB in
all but the trap environment in terms of planning time. Even
in the cluttered environment, where the algorithm generated
211 agents, the best trajectory was found on average in 52 ms,
which is faster than the average human reaction time (150 ms
to 300 ms [33]). Although the TEB and the RRT* were able
to find shorter best trajectories, the chosen paths are all very
similar as can be seen in Fig. 3 and the CFP was always
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(a) Cluttered 2D environment
(b) 2D Narrow Passage Environment

(c) 2D Trap Envi-
ronment

Fig. 3: Simulation environments with the final paths from the RRT* planner (green), the TEB planner during planning (yellow) and during execution (red)
and the proposed CFP planner with an obstacle range of 0.8m in dark blue and with 2.0m in light blue.

able find the globally optimal direction around an obstacle.
Please note that the TEB is designed as a local planner
and has problems with big obstacles as, e.g., in the narrow
passage environment. Therefore, we restricted the amount of
distinctive trajectories for this environment to a maximum of
two. Even with this constraint, the TEB takes a comparatively
long time to find the direct route to the goal. In order to
get a comparable path length for the trap environment, we
performed the CFP simulations with a short range (where the
robot is temporarily guided inside the obstacle) and a long
range (which leads to an evasion of the trap), i.e. dl = 0.8 m
and dl = 2.0 m. In summary, the experiments show that
our algorithm outperforms the RRT* in almost all aspects,
while achieving comparable results to the TEB despite slightly
longer path lengths.

2) Execution Evaluation: Next, we evaluate the online
planning and execution performance of the CFP compared to
the TEB in 2D and against reactive algorithms in additional
3D environments. In particular, we evaluate the classic APF
method, the most recent Magnetic-Field-Inspired (MFI) ap-
proach [21], our CF without multi-agents (CF) and the GF
from [26]. We modified the reactive approaches by combining
them with the same VLC as in our approach to achieve a
constant velocity profile and add a method for reaching the
desired orientation. The 2D online simulations show that both
approaches are able to find collision free trajectories to the
goal pose but as depicted in Fig. 3 the TEB generates less
optimal trajectories when no offline planning time is provided.
This is particularly apparent in Fig. 3b where the TEB first
follows the path around the outside of the obstacles before
switching to the shorter path through the narrow passages.
Additionally, the computation times for one execution step for
the TEB are about two orders of magnitude higher compared
to the reactive algorithms, see Table II. As expected, the
APF has in general the fastest computation time whereas
the other reactive algorithms are comparable. The CFP is
actually faster on average than the CF without multi-agents,
presumably since the force on the real robot is calculated in
parallel to the predictive agents and does not need to perform
the rather expensive calculations for generating the current

vectors as those are only passed by the best agent. On the
other hand, the CFP computation time has a relatively high
standard deviation and a higher worst-case computation time,
which probably originates from the longer time steps when
agents are generated or removed and when the calculation of
the predictive agents is blocking. The higher computation time
of the 3D cluttered environment compared to the 2D equivalent
stems from the different amount of generated agents. We
limited the agents in the 3D case to 40 and did not set
a maximum for the 2D simulation, where over 200 agents
were generated. The first 3D simulation setting is a cluttered
environment with 18 obstacles of different sizes and forms,
see Fig. 4a. All approaches were able to find a collision free
trajectory and converge to the goal pose. The APF approach
suffers only marginally from its typical oscillations, e.g.,
before the last obstacle in Fig. 4a, has the fastest computation
time, but leads to a long execution time and to the least smooth
trajectory. The MFI performs well both in terms of path
length and execution time and is only slightly outperformed
by our CFP approach, see Table II. The CF generates the
longest and slowest trajectory as obstacles are bypassed in
rather random directions. For the second simulation, depicted
in Fig. 4b, our CFP and the MFI approach achieve the best
results with similar path lengths. The MFI trajectory leads to
higher execution times as the approach significantly decreases
the robot’s velocity when moving away from the goal due to
the missing w4 factor. Additionally, it has to be noted that
the goal was chosen deliberately in the same direction as the
passage between the obstacles to achieve a fair comparison
against the MFI approach. If the goal is chosen such that the
robot would start moving to the right, the MFI approach would
guide the robot the long way around the obstacle. The APF
approach was not able to reach the goal as it gets stuck in a
local minimum. The GF approach uses a random perturbation
when the goal and the obstacle distance vector are aligned,
but this is not sufficient to overcome such large obstacles.
In the last simulation environment we included a non-convex
3D-trap between the initial and the goal pose. The sensing
range of the reactive approaches, i.e. the region of interest dl
was set such that the simulated robots were not able to detect
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TABLE I: PLANNING SIMULATION RESULTS

Environment Dim Approach Best Trajectory Average First Trajectory Average
NR

3
L1 [m] Tc

2 [ms] L1 [m] Tc
2 [ms]

Cluttered
2D

CFP 8.28± 0.00 52± 12 12.78± 1.13 37± 14 211
TEB 7.62± 0.00 246± 12 8.67± 0.00 44± 15 11
RRT* 7.81± 0.11 417± 74 9.45± 1.30 67± 52 16.8

3D CFP 12.59± 0.00 125± 18 14.29± 0.86 67± 7 40
RRT* 14.07± 0.97 1321± 939 15.08± 1.16 74± 51 4.3

Narrow
Passage

2D
CFP 17.03± 0.00 144± 3 27.7± 0.0 64± 1 9
TEB 15.10± 0.01 1731± 51 22.38± 0.00 60± 2 2
RRT* 16.42± 0.49 851± 174 17.97± 0.64 137± 21 12.8

3D CFP 18.20± 0.00 189± 8 21.89± 5.05 188± 8 25
RRT* 21.66± 3.25 1267± 1118 23.72± 3.24 974± 160 2.5

Trap
2D

CFP LR4 11.82± 0.00 44± 16 11.82± 0.00 44± 16 2
TEB 10.04± 0.00 16± 10 10.04± 0.00 16± 10 2
RRT* 10.67± 0.08 298± 47 12.99± 0.64 61± 21 31.1

3D CFP LR4 11.83± 0.00 86± 2 11.83± 0.00 86± 2 4
RRT* 12.02± 0.63 1335± 385 15.69± 1.17 94± 29 10.7

1 L = Path length 2 Tc = Computation time 3 NR = Average trajectories per run 4 LR = Long Range

(a) Cluttered 3D environment from two perspectives
(b) 3D Narrow Passage Environment

(c) 3D Trap Environment

Fig. 4: Simulation environments with the final paths from the APF planner (yellow), the MFI approach (green), the GF planner (purple), the CF without
multi-agents (black), the RRT* (light blue) and the proposed CFP planner (blue).

the obstacle walls when entering the trap. The APF and the
GF approach were again not able to reach the goal and we
were also not able to find suitable parameters for achieving
a goal convergence with the MFI approach as it was either
trapped inside the obstacle or suffered from the caching effect
of the magnetic fields which was also described in [20], see
Fig. 4c. On the contrary, the non-convexity of the obstacle does
not pose problems to the CF and CFP approaches, which are
able to guide the simulated robot to the goal pose. We also
briefly tested our planner in dynamic environments. As can
be seen in the video, the CFP is sufficiently fast to handle
such environments even without any method for predicting
the obstacle movements. A more detailed study of dynamic
obstacles is subject of ongoing work.

C. Experiments

We also validated our algorithm by controlling the endef-
fector of the Franka Emika robot. The robot’s endeffector had
to move from start (red) to end pose (green) while evading two
known obstacles (a desktop PC and a hanging electrical outlet)
as shown in Fig. 5. The controlled endeffector frame was
moved upwards along the endeffector’s z-Axis into the Franka
Emika’s flange and a collision sphere of 0.12 m was added to
evade the obstacle (depicted by the spheres in Fig. 5). Using
point mass dynamics (8), the steering forces from the CFP
algorithm were transformed into velocity control signals which

TABLE II: EXECUTION SIMULATION RESULTS

Environment Dim Approach L1 [m] Tg
2 [s] Tc

3 [ms]

Cluttered

2D CFP 8.31 24.81 0.45± 0.37
TEB 7.53 18.84 59.17± 46.01

3D

CFP 12.31 31.99 0.19± 0.45
CF 20.82 52.51 0.30± 0.26
APF 15.05 50.53 0.16± 0.07
GF 13.84 46.85 0.27± 0.05
MFI 13.61 37.31 0.19± 0.06

Narrow
Passage

2D CFP 17.04 44.73 0.31± 0.32
TEB 18.55 42.60 35.84± 15.94

3D

CFP 18.12 45.08 0.18± 0.49
CF 35.37 99.39 0.43± 0.21
APF - - 0.15± 0.06
GF - - 0.44± 0.16
MFI 18.15 51.77 0.11± 0.05

Trap

2D CFP LR5 11.82 25.65 0.21± 0.31
TEB 10.03 18.49 20.50± 14.61

3D

CFP SR4 16.01 39.50 0.18± 0.52
CF 15.97 37.90 0.33± 0.31
APF - - 0.16± 0.08
GF - - 0.41± 0.27
MFI - - 0.50± 0.26

1 L = Path length 2 Tg = Time to goal 3 Tc = Step computation time
4 SR = Short Range 5 LR = Long Range

were passed to a Cartesian velocity motion generator and
then applied by Franka Emika’s internal Cartesian impedance
controller. As can be seen in the video attachment, the CFP
was able to guide the robot’s endeffector safely and smoothly

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/LRA.2021.3061997

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

http://dx.doi.org/10.1109/LRA.2021.3061997


8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Goal

Start

Fig. 5: Experiment on the collaborative Franka Emika robot.

to the target pose while obeying the maximum velocity of
0.1 m/s.

V. LIMITATIONS AND CONCLUSION

In this paper we proposed a motion planning approach
which unifies local reactive collision avoidance and global
trajectory planning for generating smooth trajectories around
arbitrarily shaped obstacles in known and unknown envi-
ronments. We significantly enhanced previous magnetic-field-
inspired approaches and extended them with predictive multi-
agents to efficiently explore the environment. Although the
evaluation could show a fast computation time and demon-
strated the general applicability in dynamic environments,
the algorithm should still be extended for this use case,
e.g, prediction models for the dynamic obstacles and more
sophisticated methods for switching the best agent could sig-
nificantly improve the planning quality. Furthermore, we only
implemented simple point mass dynamics without considering
more complex robot dynamics or full body obstacle avoidance
for a robot. Another drawback of the planner is the missing
optimality regarding the path length. Depending on the number
of agents per obstacle and the obstacle form, none of the
generated agents could lead to a satisfying trajectory. The
planner could also be too slow to fully converge to the goal
before reaching the first obstacle and then choose a suboptimal
path. In this case, the planner is currently not able to detect
that it chose a suboptimal path and therefore cannot switch to
a more suitable agent to change the direction. Current research
addresses these limitations and also aims for a theoretical proof
of obstacle avoidance and goal convergence.
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