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Abstract 

The advent of artificial intelligence and machine learning is influencing the manufacturing industry 
profoundly, enabling unprecedented opportunities to improve manufacturing processes within the three 
dimensions time, quality and cost. With the introduction of digitization and industry 4.0, increasing amounts 
of data become available for processing and use in smart manufacturing systems. However, the various use 
cases for machine learning in manufacturing often require problem-specific datasets for training and 
evaluation of algorithms which are difficult to acquire, hindering both practitioners and academic researchers 
in this area. As the respective data frequently contains sensitive information, manufacturing companies rarely 
release datasets to the public. Further, the relevant attributes and features of available datasets are usually 
not evident, requiring time-consuming analysis to evaluate if a dataset fits a given problem. As a result, it 
can be challenging to develop and evaluate machine learning methods for manufacturing systems due to the 
lack of an overview of available datasets. This paper presents a comprehensive overview of 47 existing, 
publicly available datasets, mapped to various use cases in manufacturing with the goal of simplifying and 
stimulating research. The characteristics of the datasets are compared using a set of descriptive attributes to 
provide an outline and guidance for further research and application of machine learning in manufacturing. 
In addition, suitable performance metrics for the evaluation of classification use cases in manufacturing are 
presented. 
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1. Introduction and methodology 

Machine Learning (ML) techniques increasingly transcend from research to practical applications in various 
industries. One of the industry areas that received significant attention in this context is the manufacturing 
industry [1]. The growing interest in manufacturing-related ML applications is fueled by the digitization of 
manufacturing processes in the context of industry 4.0 and the Internet of Things (IoT) [2].  However, the 
introduction of ML in manufacturing faces several challenges, with one of the most important being the 
acquisition of datasets for the development, training and evaluation of ML algorithms in high quantity. A 
sufficient data basis is crucial for the development of ML algorithms and strongly influences the achievable 
performance of the system [1]. Not only the quantity, but also the quality of the available data is of 
importance. Issues such as missing values, class imbalance, varying sampling frequencies and data types as 
well as high dimensionality have to be handled by the developers through pre-processing the data before 
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training the algorithms [3]. Compared to other ML application fields such as autonomous driving, only few 
publicly available datasets exist for manufacturing. Companies often see process data as sensitive 
information that cannot be shared due to privacy concerns [4]. As a result, the majority of studies that show 
successful applications of ML in manufacturing use cases do not share their training and testing datasets 
publicly, preventing an effective comparison between approaches [1]. In conclusion, an overview of publicly 
available datasets for ML applications in manufacturing is required to assist researchers and practitioners in 
the development and evaluation of algorithms and to enable the comparison of ML approaches in research 
studies. Few of such reviews (e.g. [4]) exist and to the best of the authors knowledge, none exist that account 
for modalities such as images, which are increasingly used in manufacturing-related ML applications [5–7]. 
In this study, the search for datasets was conducted on open platforms that provide dataset and code hosting 
for research and public competition purposes. The platforms include in alphabetical order: GitHub [8], 
Kaggle [9], Mendeley Data [10],  NASA Prognostics Center of Excellence (PCoE) [11], OpenML [12], 
University of California Irvine (UCI) Machine Learning Repository [13]. In addition to the resulting file 
storage ressources of the datasets, a search regarding accompanying publications that first release, describe 
and/or use the datasets for research, was conducted. Using the resulting publications, snowballing was 
applied to identify additional datasets that are hosted on platforms such as the universities of the 
corresponding authors. In total, 47 datasets have been identified and analysed regarding the comparison 
parameters. In addition to the selection or creation of an appropriate dataset for model training, the 
performance evaluation is an integral part of the model development process. Especially for classification 
tasks, the selection of an appropriate evaluation metric requires a deep understanding of the pursued task and 
relevant requirements [14]. Thus, a search for studies that utilize the identified datasets was conducted using 
Scopus, yielding 127 publications. These publications were consequently analysed regarding the applied 
performance evaluation metrics. The remainder of the paper is structured as follows: Chapter 2 introduces 
the identified datasets, sorted by the respective use cases. In Chapter 3, the most widespread classification 
metrics used for the evaluation of ML applications in manufacturing-related research are explained and 
critically analysed. Lastly, the conclusion is presented in Chapter 4. 

2. Datasets and use cases in manufacturing 

With the ongoing digitization there is an increasing number of research efforts emerging that focus on 
manufacturing-related problems. The datasets listed in this paper are suitable to address a subset of these 
problems and may be used to train and test ML methods specifically designed for manufacturing.  

 
Figure 1: Process map highlighting the supporting areas that contain the use cases for all the presented datasets, 

adapted from [15]. 
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In order to facilitate and further stimulate future research in this area, we identify common use cases for ML 
applications in manufacturing and map them to relevant datasets with the aim of accelerating the search for 
a suitable dataset based on the respective use case. The use cases defined in this paper are assigned to the 
two supporting processes: maintenance and quality management, as illustrated in the process map in Figure 
1. The process map depicts the processes within the company boundaries that are necessary to meet customer 
demands. Each value adding activity requires support from indirectly value adding processes [15]. In terms 
of the core process production, the highlighted supporting processes embody two of the primary application 
areas of ML research in manufacturing nowadays and account for all the datasets listed in this paper [16].  

The tables containing the identified datasets for the respective use cases are structured as follows: The Name 
column provides a short identifier to the datasets as well as a short description of the individual setting. The 
identifier is adopted from the original dataset source if available, otherwise it is newly created. Since a subset 
of the presented datasets is contained in [4], we adopted the respective names if applicable. Further, the Type 
and Count of the available non-target variable features is shown. In case of images, the resolution of the 
images is displayed as the feature count. The Target Variable column describes whether there are labels 
available for supervised learning: “C (N)” indicates that classification labels for N classes are given, while 
“R” indicates a supervised regression task. In some cases, labels for both, classification and regression, are 
available. The Instances column indicates the number of samples, e.g., rows, a given dataset contains. 
Further, Official Train/Test Split specifies, whether the dataset publishers provide a designated train / test 
data split for evaluation. This is especially important for comparability in research studies, as the same test 
split must be used to be able to compare the performance of different approaches. A consequent † indicates, 
that the target labels for the official test split are not publicly available, but rather hidden behind an evaluation 
server, which guarantees a fair benchmarking of approaches. The column Data Source highlights whether 
the dataset was collected from a real process, or rather generated synthetically using a simulation. Lastly, 
Format shows the file formatting of the raw data. In some cases, multiple formats are given, e.g., images in 
PNG-format and corresponding labels in XML-format. In the references section, the corresponding URL to 
the dataset is given together with the publication where the dataset was first introduced, if available. The use 
cases for each supporting process are presented in the following.  

2.1 Maintenance (predictive maintenance and condition monitoring)  

Predictive maintenance and condition monitoring are two terminologies that are used interchangeably by 
some researchers, while others view condition monitoring as part of the broader concept of predictive 
maintenance [17–20]. For the purpose of this paper, we follow the latter approach and thus consider 
condition monitoring as being a part of predictive maintenance. The use case predictive maintenance 
involves the data-driven assessment of the health status of machine components and sees its major objective 
in predicting the Remaining Useful Lifetime (RUL) of these components in order to reduce maintenance 
cost while simultaneously preventing unplanned downtimes. In machining applications such as milling, 
turning, or drilling, this, for instance involves the monitoring of the cutting tool to assess the current wear 
state, followed by the prediction of the RUL. Another typical scenario can be seen in the monitoring and 
RUL prediction of bearings. In this paper, we consider the data-driven health assessment as being integral 
to condition monitoring while the prediction of the RUL constitutes the broader case of predictive 
maintenance. The corresponding datasets for predictive maintenance and condition monitoring are exhibited 
in Table 1 on the following page. 
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Table 1: Datasets for predictive maintenance and condition monitoring 

Name Year 
Features 

Target 
Variable Instances 

Official 
Train/Test 

Split 

Data 
Source Format 

Type Count 

Diesel Engine Faults Features [21] 
Fault detection based on pressure curves and 
vibration. 

2020 Signal 84 C (4) 3.500  Syn. MAT 

Degradation of a Cutting Blade [22] 
Wrapping machine process data over 12 months 
with a degrading cutting tool. 

2019 Signal 9 - 1.062.912  Real CSV 

CNC Mill Tool Wear [23] 
CNC process data of wax milling with worn/unworn 
tools. 

2018 Signal 48 C (3*2) 25.286  Real CSV 

Condition Monitoring of Hydraulic Systems [24] 
Test rig process data of multiple load cycles with 
various fault types and severity levels. 

2018 Signal 17 C (5*(2-4)) 2.205  Real Other 

Production Plant Data for Condition Monitoring [22] 
Anonymized process data of component run-to-
failure experiments.  

2018 Signal 26 - 228.414  Real CSV 

Versatile Production System [25] 
Popcorn production process data with multiple 
process steps. 

2018 Signal 5-85 - 80.000  Real CSV 

Degradation Measurement of Robot Arm Position 
Accuracy [26] 
Target- and actual values of robotic arm tool 
position, velocity and current for health assessment. 

2017 Signal 73 - 155.000  Real CSV 

APS Failure at Scania Trucks [27] 
Anonymized counters and histograms for air 
pressure system fault detection. 

2016 Signal 170 C (2) 76.000  Real CSV 

Maintenance of Naval Propulsion Plants [28] 
Gas turbine process data for component decay state 
prediction. 

2016 Signal 16 R 11.934  Syn. Other 

Plant Fault Detection [29] 
Anonymized process data for plant fault detection. 

2015 Signal 10 C (6) 8.938.370  Real CSV 

Asset Failure and Replacement [30] 
Anonymized data for asset fault detection. 

2014 Signal 1 C (2) 447.341 † 
 

Real CSV 

Maintenance Action Recommendation [31] 
Anonymized process and maintenance data of an 
industrial asset for maintenance action 
recommendation. 

2013 Signal 32 C (14) 2.097.152 † Real CSV 

Anemometer Fault Detection [32] 
Anemometer measurements for fault detection 

2011 Signal 16 
16-20 - 345.700 

208.800 † Real Other  

Gearbox Fault Detection [33] 
Test rig accelerometer data for fault detection. 

2009 Signal 3 - > 10 Mio.  Real CSV 

Li-Ion Battery Aging [34] 
Battery test rig data during charge and discharge 
cycles for degradation detection. 

2008 Signal 12 - 2.167  Real MAT 

Turbofan Engine Degradation Simulation [35] 
C-MAPSS simulation sensor data of various 
conditions and fault modes. 

2008 Signal 26 - 262.256  Syn. Other 

Bearing [36] 
Bearing test rig accelerometer data of run-to-failure 
experiments. 

2007 Signal 4-8 - 61.440  Real CSV 

Milling [37] 
Milling process- and external sensor data for tool 
wear detection. 

2007 Signal 13 R 1.503.000  Real MAT 

CWRU Bearing Data [38] 
Bearing test rig accelerometer data for fault 
detection. 

n.A. Signal 5 C (2) > 10 Mio.  Real MAT 
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2.2 Quality management 

The subprocess quality management embodies the use cases process monitoring, predictive quality, quality 
inspection and process parameter optimization. The respective use cases and corresponding datasets will be 
introduced in the following subsections.  

2.2.1 Process monitoring  

The analysis of sensor-based process data can yield valuable information for the purpose of process control 
and quality monitoring [39]. The idea of process monitoring is to understand the variation in a process and 
to assess its current state [40]. A widely used technique in this field is control charting which involves two 
distinct monitoring phases, i.e. phase I and phase II [41]. In phase I, control charts are used to retrospectively 
test whether the process was in control after the data have been sampled from the process. The result of this 
phase is a Normal Operating Condition (NOC) dataset in which the underlying process is assumed to be in-
control. With the help of the NOC dataset, control limits are established based on which a new observation 
of process data will be evaluated. This is the objective of phase II. Process monitoring has been an active 
research field throughout the last decades [42]. Especially within the process industry, the application of 
Multivariate Statistical Process Monitoring (MSPM) methods gained popularity [43,44]. In terms of discrete 
manufacturing, recent research focusses on the initiation of a paradigm shift from the conventional post-
process Statistical Process Control (SPC), i.e. inferring the process condition based on measurements taken 
from the manufactured product to the so called in-process SPC that aims at inferring the process condition 
based on actual process data [45]. In both fields of industry, the application of ML, especially Deep Learning 
(DL) is receiving more and more attention and provides promising results for future research in this field 
[46,47]. The corresponding datasets for process monitoring are exhibited in Table 2. 

Table 2: Datasets for process monitoring 

Name Year 
Features Target 

Variable 
Instances 

Official 
Train/Test 

Split 

Data 
Source 

Format 
Type Count 

High Storage System Anomaly Detection [48] 
Storage test rig process data for anomaly detection. 

2018 Signal 20 C (2) 91.000  Syn. CSV 

Genesis Pick-and-Place Demonstrator [49] 
Material sorting test rig process data for anomaly 
detection. 

2018 Signal 23 C (3) 32.440  Real CSV 

Tennessee Eastman Process Simulation Dataset [50] 
Simulated chemical process data for anomaly 
detection with different fault types. 

2017 Signal 51 
C (21) / 

R 
> 10 
Mio. 

 Syn. RData 

Robot Execution Failures [51] 
Force and torque measurements of an industrial 
robot with different erroneous operating conditions. 

1999 Signal 89 C (13) 463  Real Other 

Mechanical Analysis [52] 
Vibration measurements of electromechanical 
devices with different erroneous operating 
conditions. 

1990 Signal 7 C (6) 209  Real MAT 

CWRU Bearing Data [38] 
Bearing test rig accelerometer data for anomaly 
detection. 

n/a Signal 5 C (2) > 10 
Mio. 

 Real MAT 

2.2.2 Predictive quality and quality inspection 

The use case predictive quality incorporates the scenario where the prediction of the product quality is of 
primary concern. The accurate prediction of the product quality can be used to better control the 
manufacturing process [53]. The costs of delayed discovery of nonconformities in the product lifecycle 
increase exponentially the further the product moves down the value-chain [54]. Therefore, it becomes useful 
to predict if a product will fail specification tests in later stages of the process if the cycle times of a process 
chain are very long [55].  
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Table 3: Datasets for predictive quality and quality inspection. 

Name Year 
Features 

Target 
Variable Instances 

Official 
Train/Test 

Split 

Data 
Source Format 

Type Count 

Casting Product Quality Inspection [6] 
Grayscale images of pump impeller castings 
with and without defects. 

2020 Image 
300×300 
512×512 C (2) 7.348  Real JPG 

GC10-DET [56] 
Grayscale images of metal surfaces with 
various defect types and corresponding 
bounding box annotations. 

2020 Image Varying C (10) 3.570  Real JPG, 
XML 

Mechanic Component Images [7] 
Grayscale images of air conditioner pistons 
with various defect types. 

2020 Image 86×90 C (3) 285  Real PNG 

Multi-Stage Continuous Flow Process [57] 
Anonymized process data of a production 
line with quality measurements of part 
dimensions. 

2020 Signal 116 - 14.088  Real CSV 

Plastic Extrusion Defects [58]  
Process data of a plastic extrusion process. 

2020 Signal 470 - 226.536  Real CSV 

AITEX [59] 
Grayscale images of textile fabrics with 
various defect types and corresponding 
segmentation masks. 

2019 Image 4096×256 C (13) 245  Real PNG, 
Mask  

Deep PCB [60] 
Grayscale images of circuit boards with 
various defect types and corresponding 
bounding box annotations. 

2019 Image 640×640 C (7) 1.500  Real JPG, 
Mask 

Severstal Steel Defect Detection [61] 
Grayscale images of steel surfaces with 
various defect types and corresponding 
segmentation polygons. 

2019 Image 1600×256 C (5) 18.074 † Real JPG, 
CSV 

Turning Dataset for Chatter Diagnosis [62] 
Sensory data of a turning test rig and 
varying strengths of chatter. 

2019 Signal 8 C (4) >10 Mio.  Real MAT 

Magnetic Tile Defect [63] 
Grayscale images of magnetic tile surfaces 
with various defect types and corresponding 
segmentation masks. 

2018 Image 248×373 C (6) 1.344  Real JPG, 
PNG 

TIG Welding [5] 
Grayscale images of a welding process with 
various defect types. 

2018 Image 800×974 C (6) 33.254  Real PNG, 
JSON 

Mining Process [64] 
Process data of a mining process for 
impurity prediction in ore concentrate. 

2017 Signal 24 R 737.454  Real CSV 

Bosch Production Line Performance [65] 
Anonymized process data of production lines 
with and without defects. 

2016 Signal 4264 C (2) 2.368.43
5 † Real CSV 

WM811K Wafer Maps [66] 
Defect matrices of semiconductor wafers 
with various defect types. 

2014 
2D 

Defect 
Matrix 

Varying C (9) 811.457  Real MAT 

NEU Surface Defect Database [67] 
Grayscale images of metal surfaces with 
various defect types and corresponding 
bounding box annotations. 

2013 Image 200×200 C (6) 1.800  Real 
BMP, 
XML 

Steel Plate Faults [68] 
Geometric measurements of steel plates with 
various defect types. 

2010 Signal 27 C (7) 1.941  Real CSV 

HCI Industrial Optical Inspection [69] 
Synthetic grayscale images of textured 
surfaces with corresponding defect ellipses. 

2007 Image 512×512 C (2) 16.100  Syn. PNG, 
Other 
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In practice, the application of predictive quality requires the existence of sufficient quality data to find the 
dependencies between the generally more accessible process data on the basis of which the quality of the 
product shall be predicted in the future. This can be difficult especially in terms of low volume discrete 
production systems [70]. Typical applications of predictive quality can be seen in the prediction of the 
surface quality, surface roughness as well as deformations or chatter marks [71]. In this paper, quality 
inspection entails the assessment of the quality of a manufactured product at certain stages of the 
manufacturing process. In a recent review paper [72] the authors conducted a thorough investigation based 
on the last three decades of the state of the art in so called zero defect manufacturing. The authors subdivide 
quality inspection based on the respective manufacturing stage into three different phases, i.e. prior to, during 
or after the manufacturing of the product. In terms of this study, we summarize all three aforementioned 
phases under the term quality inspection. ML Methods such as Support Vector Machine (SVM), Artificial 
Neural Network (ANN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are 
used in this field for signal- and image processing with the goal of assessing the quality of the manufactured 
parts [5]. The corresponding datasets are exhibited in Table 3 on the previous page. 

2.2.3 Process parameter optimization 

Process parameters are generally chosen based on human judgement and experience in combination with the 
use of handbooks that provide recommendations, which may lead to a loss of productivity and quality [73]. 
Consequently, the selection of the optimal process parameters such as cutting speed, depth of cut, etc. plays 
an important role in today’s highly competitive manufacturing industries and provides the opportunity to 
achieve high quality products with less cost and time constraints [74]. The field of application for process 
parameter optimization with the help of ML has received a lot of interest in recent research. In [75] the 
authors provide an extensive review for the application of ML for the optimization of process parameters. 
The main areas mentioned include milling, turning, gear hobbing and boring, finishing, welding and plastic 
injection molding. Next to supervised ML methods such as ANN or SVM, evolutionary optimization 
techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) or Simulated Annealing 
(SA) have been used for process parameter optimization [76]. The corresponding datasets are exhibited in 
Table 4. 

Table 4: Datasets for process parameter optimization. 

Name Year 
Features 

Instances 
Official 

Train/Test 
Split 

Data 
Source Format 

Type Count 

Laser Welding [77] 
Process parameter recordings for correlation with weld quality 
indicators such as weld depth and geometrical dimensions. 

2020 Signal 13 361  Real XLS 

3D Printer [78] 
Process parameters of a 3D printer for correlation with print quality 
indicators such as roughness, tension and elongation. 

2018 Signal 12 50  Real CSV 

Tool Path Generation [79] 
Shape deviation measurements and corresponding simulated cutting 
conditions. 

2018 Signal 9 4.968  
Real, 
Syn. CSV 

Mercedes-Benz Greener Manufacturing [80] 
Car feature configurations to be correlated with the required test 
time of the configurations. 

2017 Signal 378 8.420 † Real CSV 

SECOM [81] 
Semiconductor process measurements and corresponding yields for 
determination of key factors to yield. 

2008 Signal 591 1.567  Real Other 
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3. Evaluation metrics 

Besides data selection, another integral part of the model development process in ML is the performance 
evaluation. The aim of the performance evaluation is to find a model that best represents the underlying data 
and also performs well on new data [1]. For this purpose, a model is evaluated on a separate held-out test set 
using appropriate performance metrics after the training process. The selection of an appropriate evaluation 
metric requires a deep understanding of the pursued task with all its characteristics [82]. Despite the many 
discussions in the field of performance metrics in science, misleading or inadequate metrics are often used 
[83]. The majority of the identified datasets in this paper are suitable for classification as well as regression 
tasks. Both types require task-specific metrics to evaluate the respective performance of the models. Due to 
the large number of available metrics and their susceptibility to changing framework conditions (e.g. 
imbalanced classes), the selection of classification metrics often turns out to be difficult. Haixiang et al. 
evaluated 517 papers concerned with imbalanced classification across multiple domains and found out that 
201 out of those (38%) were using accuracy as an evaluation metric [84]. In contrast, for regression, the 
relation and appropriateness of several evaluation metrics have been analysed thoroughly [85,86] and the 
difference between existing metrics is sufficiently clear. Moreover through the continuous character of the 
output (and measures), the selection of metrics is facilitated [14]. As a result, only classification metrics are 
further elaborated and critically discussed in the context of manufacturing in the following. Subsequently, 
the distribution of these is evaluated by analysing papers related to the datasets found.  

3.1 Classification metrics 

A common method for evaluating the performance of classifiers is the confusion matrix. It is applicable for 
problems where the output includes two or more classes. In the confusion matrix for binary classification 
problems, the classes are called positive and negative while the labels true and false indicate whether a 
prediction matches the true value or not. Most of the classification performance metrics can be derived 
directly (e.g. sensitivity, precision) or indirectly (e.g. Receiver Operating Characteristic (ROC), Precision-
Recall Curve (PRC)) from the confusion matrix [83]. Accuracy describes the portion of correctly predicted 
data points out of all data points. While it is often used as a single metric to evaluate classification problems, 
the pure focus on maximizing accuracy is viewed critically by some researchers [83,87]. The reason for this 
is that classification accuracy considers the same misclassification costs for false positive and false negative 
errors. For most real-world problems one type of classification error (i.e. type I, type II) is more expensive 
than another. This issue is especially important when dealing with imbalanced datasets which frequently 
appear in manufacturing use cases. Suppose a model predicts NOK parts (positive class) at a quality gate 
which represents a problem with two classes: class A (OK parts) is 95% of the dataset and class B (NOK 
parts) is the remaining 5%. By simply predicting class A for every sample, the model can reach an accuracy 
of 95%, which seems to be a good score, but it is not. To overcome this, Seliya et al. point out that a classifier 
should be evaluated not only by one, but a set of performance metrics. Through this approach, several 
performance aspects can be considered and differentiated conclusions can be drawn [88,89]. In the given 
example of quality control, the correct prediction of the minority class may be of higher importance since a 
faulty delivery to the customer is to be avoided at all costs which promotes the use of recall as the primary 
evalution metric. Though, precision cannot be ignored as a low precision may lead to high quality control 
costs due to a high number of tests. This highlights, that the selection of a relevant metric is highly dependend 
on the actual use case. A metric that takes both recall and precision into account is the F-score. It uses the 
harmonic mean in place of the arithmetic mean, thus punishing the extreme values more [82]. A special case 
of this metric is the Fβ-score, that allows the user to emphasize on either recall or precision [90]. Neither of 
the above mentioned metrics take into account the number of true negatives [91]. Specificity is used to 
determine the proportion of actual negative cases which got predicted correctly.  
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All metrics mentioned so far are single-threshold metrics, which means that they are defined for an individual 
score threshold (cut-off) of a classifier and cannot give an overview of the different performance levels at 
varying thresholds [90]. Through performance curves, the changing metrics at varying thresholds can be 
captured [90]. The most widespread curves are the ROC and the PRC. The ROC plot shows the trade-off 
between recall and specificity at varying thresholds [92] and an operating point, i.e. threshold, needs to be 
chosen according to the use case requirements. A single performance metric that can be derived from the 
ROC curve is the Area Under the ROC Curve (AUROC) score. An AUROC of 0.5 results from random 
choice while an AUROC of 1.0 shows a perfect classifier [93]. As with the ROC curve, the Area Under the 
PRC (AUPRC) is also used as a single metric. Differently to AUROC though, the baseline of AUPRC 
changes with class imbalance [90].  

3.2 Use of classification metrics in publications 

After presenting and discussing the state of the art in terms of classification metrics and the associated 
difficulties, the analysis of 49 different publications dealing with classification algorithms on the identified 
datasets is explained below. The selection is based on a backward search starting from the datasets found. 
Similar to the findings of Haixiang et al., accuracy is the most widely used metric in classification tasks. 
Almost 72% (35) of all analysed publications use accuracy as a performance metric, while for 39% of the 
publications, accuracy was the only metric used (see Figure 2). Furthermore, 45% of the publications only 
use one metric to evaluate their results. Although several authors highlight the widespread use of 
performance curves as an evaluation metric, this could not be fully confirmed in the analysis conducted. 
Altogether only eleven publications either used ROC, AUROC, PRC or AUPRC to evaluate their results. It 
should be noted that none of these used both ROC (AUROC) or PRC (AUPRC) and thus could not 
encompass all performance aspects. Only about 25% (12) of the publications studied used three or more 
metrics for evaluation. 

Figure 2: Analysis of publications regarding evaluation metrics (n = 49) 

4. Conclusion 

In this paper we provide a comprehensive overview and comparison of datasets suitable for the development 
of ML applications in the manufacturing sector as well as corresponding metrics for effective performance 
evaluation of classification problems. The identified use cases include predictive maintenance, condition 
monitoring, process monitoring, predictive quality, quality inspection and process parameter optimization. 
The analysis has the aim of stimulating research in this field as well as to promote the use of public datasets 
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for evaluation. This is required to compare the performance of different approaches objectively in research, 
which is often not possible due to the use of proprietary datasets that are not shared because of data privacy 
concerns. Further, manufacturing companies can employ the public datasets in the development of 
algorithms for their specific facilities and gain practical knowledge and experience in the process [4]. 
Additionally, we showed that a large part of the analysed studies solely use accuracy for performance 
evaluation of classification problems, which may not be expressive enough in all use cases. As an 
opportunity for future work, it would be of interest to identify or create datasets, corresponding tasks and 
metrics that can serve as a standard benchmark for certain use cases in manufacturing, comparable to other 
industry areas such as autonomous driving. 
 

Acknowledgements 

The research leading to these results has received funding from the European Institute of Technology (EIT 
Manufacturing) under grant agreement number 21026 (IVE), as well as from the German Federal Minisitry 
of Education and Research under grant agreement number 02L19C150 (KompAKI). 

 

References 

 

[1]  Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D., 2016. Machine learning in manufacturing: advantages, 
challenges, and applications. Production & Manufacturing Research 4 (1), 23–45. 

[2]  Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B., 2019. Data fusion and machine learning for industrial 
prognosis: Trends and perspectives towards Industry 4.0. Information Fusion 50, 92–111. 
https://www.sciencedirect.com/science/article/pii/S1566253518304706. 

[3]  Pham, D.T., Afify, A.A., 2005. Machine-learning techniques and their applications in manufacturing. 
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (5), 395–
412. 

[4]  Krauß, J., Dorißen, J., Mende, H., Frye, M., Schmitt, R.H., 2019. Machine learning and artificial intelligence 
in production: application areas and publicly available data sets. Production at the leading edge of technology, 
493–501. 

[5]  Bacioiu, D., Melton, G., Papaelias, M., Shaw, R., 2019. Automated defect classification of Aluminium 5083 
TIG welding using HDR camera and neural networks. Journal of Manufacturing Processes 45, 603–613. 
https://www.kaggle.com/danielbacioiu/tig-aluminium-5083. Accessed 31 March 2021. 

[6]  Kantesaria, N., Vaghasia, P., Hirpara, J., Bhoraniya, R., 2020. Casting product image data for quality 
inspection. https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product. Accessed 19 
March 2021. 

[7]  Paladi, S., 2020. Mechanic Component Images. https://www.kaggle.com/satishpaladi11/mechanic-
component-images-normal-defected. Accessed 19 March 2021. 

[8]  GitHub. https://github.com/. Accessed 31 March 2021. 

[9]  Kaggle. https://www.kaggle.com/. Accessed 31 March 2021. 

[10] Mendeley Data. https://data.mendeley.com/. Accessed 31 March 2021. 

[11] NASA Ames Prognostics Center of Excellence (PCoE);. 
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. Accessed 27 November 2020. 

[12] OpenML. https://www.openml.org/home. Accessed 31 March 2021. 

508



[13] University of California Irvine. UCI Machine Learning Repository. University of California Irvine. 
https://archive.ics.uci.edu. Accessed 3 November 2020. 

[14] Ferri, C., Hernández-Orallo, J., Modroiu, R., 2009. An experimental comparison of performance measures for 
classification. Pattern Recognition Letters 30 (1), 27–38. 

[15] Bogaschewsky, R., Rollberg, R., 1998. Prozeßorientiertes Management. Springer, Berlin, Heidelberg. 

[16] Kang, Z., Catal, C., Tekinerdogan, B., 2020. Machine learning applications in production lines: A systematic 
literature review. Computers & Industrial Engineering 149, 106773. 

[17] Goyal, D., Saini, A., Dhami, S.S., Pabla, B.S., 2016. Intelligent predictive maintenance of dynamic systems using 
condition monitoring and signal processing techniques — A review. 2016 International Conference on Advances 
in Computing, Communication, & Automation (ICACCA)(Spring), 1–6. 

[18] Wang, H., Ye, X., Yin, M., 2016. Study on predictive maintenance strategy. International Journal of u-and e-
Service, Science and Technology (9), 295–300. 

[19] Hu, J., Chen, P., 2020. Predictive maintenance of systems subject to hard failure based on proportional hazards 
model. Reliability Engineering & System Safety 196. 

[20] Mobley, R.K., 2002. An introduction to predictive maintenance, 2nd ed. Butterworth-Heinemann, Amsterdam, 
New York, 438 pp. 

[21] Pestana, D., 2020. Diesel engine faults features dataset: (3500-DEFault). 
https://data.mendeley.com/datasets/k22zxz29kr/1. Accessed 20 March 2021. 

[22] Birgelen, A.v., Buratti, D., Mager, J., Niggemann, O., 2018. Self-organizing maps for anomaly localization and 
predictive maintenance in cyber-physical production systems. Procedia CIRP 72, 480–485. 
https://www.kaggle.com/inIT-OWL/one-year-industrial-component-degradation; https://www.kaggle.com/inIT-
OWL/production-plant-data-for-condition-monitoring. Accessed 31 March 2021. 

[23] Kovalenko, I., Saez, M., Barton, K., Tilbury, D., 2017. SMART: A system-level manufacturing and automation 
research testbed. Smart Sustain. Manuf. Syst. 1 (1), 20170006. https://www.kaggle.com/shasun/tool-wear-
detection-in-cnc-mill. Accessed 31 March 2021. 

[24] Helwig, N., Pignanelli, E., Schutze, A., 2015. Condition monitoring of a complex hydraulic system using 
multivariate statistics. IEEE International Instrumentation and Measurement Technology Conference, 210–215. 
https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems. Accessed 31 March 2021. 

[25] Institut für industrielle Informationstechnik - inIT, Technische Hochschule Ostwestfalen-Lippe, 2018. Versatile 
Production System. https://www.kaggle.com/inIT-OWL/versatileproductionsystem. Accessed 20 March 2021. 

[26] Qiao, H., 2017. Degradation measurement of robot arm position accuracy. National Institute of Technology 
(NIST). https://www.nist.gov/el/intelligent-systems-division-73500/degradation-measurement-robot-arm-
position-accuracy. Accessed 19 March 2021. 

[27] Lindgren, T., Biteus, J., 2016. APS failure at Scania trucks data set. Scania CV AB. 
https://archive.ics.uci.edu/ml/datasets/APS+Failure+at+Scania+Trucks. Accessed 20 March 2021. 

[28] Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., Figari, M., 2016. Machine learning approaches for 
improving condition-based maintenance of naval propulsion plants. Proceedings of the IMechE 230 (1), 136–
153. http://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants. 
Accessed 31 March 2021. 

[29] PHM Society. 2015 PHM Society Conference Data Challenge. PHM Society. 
https://github.com/robot007/PHM15. Accessed 31 March 2021. 

[30] PHM Society, 2014. 2014 PHM Society Conference Data Challenge. PHM Society. 
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-
and-health-management-society-2014/phm-data-challenge-2/. Accessed 18 March 2021. 

509



[31] PHM Society, 2013. 2013 PHM Society Conference Data Challenge. PHM Society. 
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-
and-health-management-society-2013/phm-data-challenge/. Accessed 31 March 2021. 

[32] PHM Society, 2011. 2011 PHM Society Conference Data Challenge. PHM Society. 
https://phmsociety.org/phm_competition/2011-phm-society-conference-data-challenge/. Accessed 18 March 
2021. 

[33] Goebel, K., 2009. Gearbox Fault Detection Dataset, PHM Data Challenge 2009. 
https://c3.nasa.gov/dashlink/resources/997/. Accessed 31 March 2021. 

[34] Mcintosh, D., 2010. Li-ion battery aging datasets. NASA Ames Prognostics Center of Excellence (PCoE). 
https://c3.nasa.gov/dashlink/resources/133/. Accessed 20 March 2021. 

[35] Saxena, A., Goebel, K., 2008. Turbofan engine degradation simulation data set. NASA Ames Prognostics Center 
of Excellence (PCoE). https://c3.nasa.gov/dashlink/resources/139/. Accessed 20 March 2021. 

[36] Lee, J and Qiu, H and Yu, G and Lin, Ja and others, 2007. Bearing data set. IMS, University of Cincinnati, NASA 
Ames Prognostics Center of Excellence (PCoE), Rexnord Technical Services. 
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. Accessed 20 March 2021. 

[37] Agogino, A., Goebel, K., 2007. Milling data set. NASA Ames Prognostics Data Repository; BEST lab, UC 
Berkeley. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. Accessed 20 March 2021. 

[38] Case Western Reserve University. CWRU Bearing Data Center. Case Western Reserve University. 
https://csegroups.case.edu/bearingdatacenter. Accessed 19 March 2021. 

[39] D. E. Lee, Inkil Hwang, C. M. O. Valente, J. F. G. Oliveira, David A. Dornfeld, 2006. Precision manufacturing 
process monitoring with acoustic emission. Condition monitoring and control for intelligent manufacturing, 33–
54. 

[40] William H. Woodall, Douglas C. Montgomery, 2014. Some current directions in the theory and application of 
statistical process monitoring. Journal of Quality Technology 46 (1), 78–94. 

[41] Bersimis, S., Panaretos, J., Psarakis, S., 2005. Multivariate statistical process control charts and the problem of 
interpretation: a short overview and some applications in industry, in: Proceedings of the 7th Hellenic European 
Conference on Computer Mathematics and its Applications, Athens Greece. 

[42] Tang, P., Peng, K., Dong, J., Zhang, K., Zhao, S., 2020. Monitoring of nonlinear processes with multiple operating 
modes through a novel gaussian mixture variational autoencoder model. IEEE Access 8, 114487–114500. 

[43] Qin, S.J., 2003. Statistical process monitoring: basics and beyond. J. Chemometrics 17 (8-9), 480–502. 

[44] Yu, J., Liu, X., Ye, L., 2021. Convolutional long short-term memory autoencoder-based feature learning for fault 
detection in industrial processes. IEEE Trans. Instrum. Meas. 70, 1–15. 

[45] Maggioni, M., Marzorati, E., Grasso, M., Colosimo, B.M., Parenti, P., 2014. In-process quality characterization 
of grinding processes: A sensor-fusion based approach. ASME 2014 12th Biennial Conference. 

[46] Lv, F., Fan, X., Wen, C., Bao, Z., 2018. Stacked sparse auto encoder network based multimode process 
monitoring. 2018 International Conference on Control, Automation and Information Sciences (Iccais), 227–232. 

[47] Yan, S., Yan, X., 2020. Quality-driven autoencoder for nonlinear quality-related and process-related fault 
detection based on least-squares regularization and enhanced statistics. Ind. Eng. Chem. Res. 59 (26), 12136–
12143. 

[48] Hranisavljevic, N., Niggemann, O., Maier, A. A novel anomaly detection algorithm for hybrid production systems 
based on deep learning and timed automata. arXiv preprint arXiv:2010.15415 2020. 
https://www.kaggle.com/inIT-OWL/high-storage-system-data-for-energy-optimization. Accessed 31 March 
2021. 

[49] Birgelen, A.v., Niggemann, O., 2018. Anomaly detection and localization for cyber-physical production systems 
with self-organizing maps. IMPROVE-Innovative Modelling Approaches for Production Systems to Raise 

510



Validatable Efficiency, 55–71. https://www.kaggle.com/inIT-OWL/genesis-demonstrator-data-for-machine-
learning/home. Accessed 31 March 2021. 

[50] Rieth, C.A., Amsel, B.D., Tran, R., Cook, M.B., 2017. Additional tennessee eastman process simulation data for 
anomaly detection evaluation. 
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1. Accessed 20 March 2021. 

[51] Camarinha-Matos, L.M., Lopes, L.S., Barata, J., 1996. Integration and learning in supervision of flexible 
assembly systems. IEEE Trans. Robot. Automat. 12 (2), 202–219. 
http://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures. Accessed 31 March 2021. 

[52] Bergadano, F., Giordana, A., Saitta, L., Marchi, D. de, Brancadori, F., 1990. Integrated learning in a real domain. 
Machine Learning Proceedings, 322–329. http://archive.ics.uci.edu/ml/datasets/Mechanical+Analysis. Accessed 
31 March 2021. 

[53] Xu, P., Ren, Z., Shen, Y., Yu, W., He, L., 2021. Quality prediction of discrete manufacturing process based on 
CGAN&Catboost hybrid model. J. Phys.: Conf. Ser. 1757 (1), 12072. 

[54] Jimmy Chhor, Stefan Gerdhenrichs, Felix Mohrschladt, Robert H. Schmitt, 2019. Development of a machine 
learning model for a multi-correlative sample-based prediction of product quality for complex machining 
processes, in: , Production at the leading edge of technology. Springer Vieweg, Berlin, Heidelberg, pp. 523–532. 

[55] Krauß, J., Pacheco, B.M., Zang, H.M., Schmitt, R.H., 2020. Automated machine learning for predictive quality 
in production. Procedia CIRP 93, 443–448. 
https://www.sciencedirect.com/science/article/pii/s2212827120306016. 

[56] Lv, X., Duan, F., Fu, X., Gan, L., 2020. Deep metallic surface defect detection: The new benchmark and detection 
network. Sensors. https://www.kaggle.com/zhangyunsheng/defects-class-and-location. 

[57] Liveline Technologies, 2020. Multi-stage continuous-flow manufacturing process. Liveline Technologies. 
https://www.kaggle.com/supergus/multistage-continuousflow-manufacturing-process/metadata. Accessed 19 
March 2021. 

[58] Kaggle, 2020. Find a defect in the production extrusion line. https://www.kaggle.com/podsyp/find-a-defect-in-
the-production-extrusion-line/metadata. Accessed 20 March 2021. 

[59] Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J., 2019. A public fabric database 
for defect detection methods and results. Autex Research Journal (4), 363–374. https://www.aitex.es/afid/. 
Accessed 31 March 2021. 

[60] Tang, S., He, F., Huang, X., Yang, J. Online PCB defect detector on a new PCB defect dataset. 
https://github.com/Charmve/Surface-Defect-Detection/tree/master/DeepPCB. Accessed 31 March 2021. 

[61] Severstal, 2019. Steel defect detection. Severstal. https://www.kaggle.com/c/severstal-steel-defect-
detection/overview. Accessed 19 March 2021. 

[62] Yesilli, M., 2019. Turning dataset for chatter diagnosis using machine learning. Mendeley Data. 
http://dx.doi.org/10.17632/hvm4wh3jzx.1. 

[63] Huang, Y., Qiu, C., Guo, Y., Wang, X., Yuan, K., 2020. Surface defect saliency of magnetic tile. The Visual 
Computer (36), 85--96. https://github.com/abin24/Magnetic-tile-defect-datasets. Accessed 31 March 2021. 

[64] Magalhães Oliveira, E., 2017. Quality prediction in a mining process. 
https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process. Accessed 19 March 2021. 

[65] Robert Bosch GmbH, 2016. Bosch production line performance. Robert Bosch GmbH. 
https://www.kaggle.com/c/bosch-production-line-performance/overview. Accessed 19 March 2021. 

[66] National Taiwan University, CS Dept. WM811K: Wafer Map. National Taiwan University, CS Dept. 
http://mirlab.org/dataSet/public/. Accessed 19 March 2021. 

511



[67] Song, K., Yan, Y., 2013. A noise robust method based on completed local binary patterns for hot-rolled steel strip 
surface defects. Applied Surface Science 285, 858–864. 
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html. Accessed 31 March 2021. 

[68] Semeion, Research Center of Sciences of Communication, Via Sersale 117, 00128, Rome, Italy. Steel Plate Faults 
Dataset. https://archive.ics.uci.edu/ml/datasets/steel+plates+faults. Accessed 11 May 2021. 

[69] Wieler, M., Hahn, T., 2007. Weakly supervised learning for industrial optical inspection. DAGM. 
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection. Accessed 19 
March 2021. 

[70] Gittler, T., Relea, E., Corti, D., Corani, G., Weiss, L., Cannizzaro, D., Wegener, K., 2019. Towards predictive 
quality management in assembly systems with low quality low quantity data – a methodological approach. 
Procedia CIRP 79, 125–130. 

[71] Kim, D.-H., Kim, T.J.Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J.W., Min, S.-H., Kim, H., Bhandari, B., Yang, I., 
Ahn, S.-H., 2018. Smart machining process using machine learning: A review and perspective on machining 
industry. Int. J. of Precis. Eng. and Manuf.-Green Tech. 5 (4), 555–568. 

[72] Psarommatis, F., May, G., Dreyfus, P.-A., Kiritsis, D., 2020. Zero defect manufacturing: state-of-the-art review, 
shortcomings and future directions in research. International journal of production research 58 (1), 1–17. 

[73] Kant, G., Sangwan, K.S., 2015. Predictive modelling and optimization of machining parameters to minimize 
surface roughness using artificial neural network coupled with genetic algorithm. Procedia CIRP 31, 453–458. 

[74] Bouacha, K., Terrab, A., 2016. Hard turning behavior improvement using NSGA-II and PSO-NN hybrid model. 
Int J Adv Manuf Technol 86 (9-12), 3527–3546. 

[75] Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., Wrobel, S., 2019. A review of machine learning for 
the optimization of production processes. Int J Adv Manuf Technol 104 (5), 1889–1902. 

[76] Yusup, N., Zain, A.M., Hashim, S.Z.M., 2012. Evolutionary techniques in optimizing machining parameters: 
Review and recent applications (2007–2011). Expert Systems with Applications 39 (10), 9909–9927. 

[77] Rinne, J., 2020. Screening datasets for laser welded steel-copper lap joints. Mendeley Data. 
http://dx.doi.org/10.17632/2s5m3crbkd.2. 

[78] Okudan, A., 2018. 3D printer dataset for mechanical engineers. TR/Selcuk University. 
https://www.kaggle.com/afumetto/3dprinter. Accessed 19 March 2021. 

[79] Dittrich, M.-A., Uhlich, F., Denkena, B., 2019. Self-optimizing tool path generation for 5-axis machining 
processes. CIRP journal of manufacturing science and technology 24, 49–54. 
https://data.mendeley.com/datasets/smyg6cfwpk/1. Accessed 31 March 2021. 

[80] Daimler AG, 2017. Mercedes-Benz greener manufacturing. https://www.kaggle.com/c/mercedes-benz-greener-
manufacturing/data. Accessed 19 March 2021. 

[81] McCann, M., Li, Y., Maguire, L., Johnston, A., 2008. Causality challenge: Benchmarking relevant signal 
components for effective monitoring and process control. JMLR: Workshop and Conference Proceedings 6c, 
277–288. http://archive.ics.uci.edu/ml/datasets/SECOM. Accessed 19 March 2021. 

[82] Brabec, J., Machlica, L., 2018. Bad practices in evaluation methodology relevant to class-imbalanced problems, 
4 pp. http://arxiv.org/pdf/1812.01388v1. 

[83] Sokolova, M., Japkowicz, N., Szpakowicz, S., 2006. Beyond Accuracy, F-Score and ROC: A family of 
discriminant measures for performance evaluation. Advances in Artificial Intelligence, 1015–1021. 

[84] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G., 2017. Learning from class-imbalanced 
data: Review of methods and applications. Expert Systems with Applications 73, 220–239. 

[85] Harrell, F.E., 2015. Regression modeling strategies: With applications to linear models, logistic and ordinal 
regression, and survival analysis, Second edition ed. Springer, Cham, Heidelberg, New York, 582 pp. 

512



[86] Bishop, C.M., 1995. Neural networks for pattern recognition. Oxford University Press; Clarendon Press, Oxford, 
482 pp. 

[87] Provost, F., Fawcett, T., Kohavi, R., 1998. The case against Accuracy estimation for comparing induction 
algorithms. Proceedings of the 15th international conference on machine learning ICML. 

[88] Seliya, N., Khoshgoftaar, T.M., van Hulse, J., 2009. A study on the relationships of classifier performance metrics, 
in: , 2009 21st IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2009). IEEE, pp. 59–
66. 

[89] Vishwakarma, G., Sonpal, A., Hachmann, J., 2021. Metrics for benchmarking and uncertainty quantification: 
Quality, applicability, and best practices for machine learning in chemistry. Trends in Chemistry 3 (2), 146–156. 

[90] Saito, T., Rehmsmeier, M., 2015. The precision-recall plot is more informative than the ROC plot when evaluating 
binary classifiers on imbalanced datasets. PloS one 10 (3). 

[91] Powers, D.M.W., 2007. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & 
Correlation. Technical Report SIE-07-001. 

[92] Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters 27 (8), 861–874. 

[93] Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating characteristic (ROC) 
curve. Radiology 143 (1), 29–36. 

 

Biography 

Nicolas Jourdan, M. Sc. (*1992) is a research assistant and PhD student at the Institute of Production 
Management, Technology and Machine Tools (PTW) at the Technical University of Darmstadt, Germany 
since 2020. His research interests include the robustness analysis of machine learning models for 
manufacturing applications. 

Lukas Longard, M. Sc. (*1992) is a research assistant and PhD student at the Institute of Production 
Management, Technology and Machine Tools (PTW) at at the Technical University of Darmstadt, Germany 
since 2019. His research interests include the further development and introduction of machine learning to 
digital shop floor management - a management tool in the production area. 

Tobias Biegel, M. Sc. (*1993) is a research assistant and PhD student at the Institute of Production 
Management, Technology and Machine Tools (PTW) at the Technical University of Darmstadt, Germany 
since 2019. His research interests include the application of Deep Learning for in-process multivariate 
statistical process control (MSPC) in manufacturing processes.  

Prof. Dr.-Ing. Joachim Metternich (*1968) has been the head of the Institute for Production Management, 
Technology and Machine Tools (PTW) at the Technical University of Darmstadt, Germany since 2012. In 
addition, Prof. Metternich is the spokesman for the Center of Excellence for Medium-Sized Businesses in 
Darmstadt and president of the International Association of Learning Factories. 

513




