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Abstract 

To increase competitiveness in the hot forming sector, there is a constant urge to improve the rolling process 
and its products. Industry 4.0 and its impact on data acquisition and data availability enable data driven 
methods for optimization. In order to optimize the quality prediction of rolled rings in Radial-Axial Ring 
Rolling (RARR) with regard to ovality as early as possible and hence prevent scrap and unnecessary rework, 
machine learning methods from the early classification on time series subdomain are used and evaluated 
within this research. Different approaches from the time series classification domain within supervised 
learning are used and compared. A so-called minimum prediction length of the ring rolling process time 
series is analysed using real world production data from thyssenkrupp rothe erde Germany GmbH. Building 
upon results of earlier research regarding the use of time series classification in RARR by FAHLE ET AL. 
fully automated as well as domain specific minimum prediction lengths will be investigated. The results of 
both approaches are compared and evaluated with regards to the current maximum prediction accuracy using 
the whole sequences, which should provide the highest score as it holds all available information of each 
sample.  
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1. Introduction 

Preventing scrap and unnecessary rework is a difficult task in many areas of manufacturing. In Radial-Axial 
Ring Rolling (RARR), production times vary depending on the rolled geometries. Smaller rings with an 
outer diameter smaller than 1.5 m may need production times less than one minute on the actual ring rolling 
machine and can be rolled within one heat. Rings with diameters of up to 16 m however need several minutes 
divided in different heats. For this process, current RARR machines log several channels during the forming 
and give access to high dimensional information including forming forces, torques, geometric features within 
the forming process and many more. All those information can be interpreted as a fixed sequence for each 
rolled ring and thus can be analysed using methods from machine learning. Every sample (representing a 
single rolled ring) used within this research was measured after the production process using an automated 
3D-laser measurement unit, producing accurate targets regarding the ovality of each ring. This combination 
of logged channels (features) and measured ovality (target) allows the utilization of supervised machine 
learning methods. Within supervised machine learning, there is the domain of time series classification 
(TSC), where time series such as the logged channels are used to predict a continuous or discrete label. For 
the underlying task of predicting ring quality, a discrete label approach is chosen. A general introduction and 
brief definition of TSC and time series is given.  
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According to FAWAZ ET AL. and specifications given by FAHLE ET AL. regarding RARR the TSC-task can 
be formulated as followed: An univariate time series  

𝑋𝑋 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑇𝑇]          (1) 

is a timestamp ordered set of real values with a fixed sampling rate. The length of X is equal to the real 
values T depending on the individual rolling time of each ring. Each univariate time series represents a 
logged channel of the RARR process. An M-dimensional multivariate time series  

𝑋𝑋 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀]         (2)  
consists of M different univariate times series with 𝑋𝑋𝑖𝑖 ∈ ℝT. A dataset 

𝐷𝐷 = {(𝑋𝑋1,𝑌𝑌1), (𝑋𝑋2,𝑌𝑌2), … , (𝑋𝑋𝑁𝑁 ,𝑌𝑌𝑁𝑁)}       (3) 

is a collection of corresponding pairs (𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖) with 𝑋𝑋𝑖𝑖  either being a multivariate or univariate time series 
and 𝑌𝑌𝑖𝑖 as its target variable vector. For now, the classes are defined as a binary classification task of either 
“no ovality” or “ovality” [1,2]. This data set can then be used for a supervised learning task to find a model 
that learns a function that maps the input sequences to a class label [3]. For more in depth information, a 
great introduction to the different problem definitions using machine learning in the domain of sequence 
data and its variants is given by LONING ET AL. [4]. 

A working TSC model for the application in RARR does provide several advantages such as a cost-efficient 
post-process labelling of product quality regarding the used threshold for its training data. If the model is 
sufficiently accurate and precise, this can lead to an alternative way of predicting quality instead of 
measuring it for every single sample whilst only measuring those that were predicted to be of bad quality 
and thus save production and energy costs. Other benefits of such a TSC model are several techniques such 
as a class-activation-map (CAM) which visualizes the decision of the model to show what neuron is firing 
given each time step within the sequence [2]. However, TSC holds one negative effect, which is the post-
process prediction of each label, i.e. the rolling process has to be finished before a prediction of the quality 
(ovality) can be made by the used model. This does only allow for a prediction and not for a prevention of 
the regarded quality aspects. Extending the model to prevent bad quality, a prescriptive approach has to be 
implemented. This can be done by using models and methods of a subdomain called early classification on 
time series (ECTS) that seeks to classify time series as early as possible while not neglecting the prediction 
accuracy. In contrast to the approach of labelling a full time series with a label, there is the challenge of 
classifying a time series as early as possible. Thus, this approach tries to classify time series with less time 
steps than the TSC approach and therefore is generally a more difficult task to provide sufficient or equally 
accurate results according to MORI ET AL. [5]. A more in depth and detailed definition of the ECTS approach 
is given by XING ET AL. and MORI ET AL. [5,6].  

In the following section, a short summary of the basic domains i.e. RARR, TSC and ECTS is given by 
presenting related works in form of current research and industrial advances in each domain. 

2. Related Work 

The following section covers the related work in the domain of RARR and the two subdomains of the 
machine learning domain: TSC and ECTS. Current research and state-of-the-art algorithms will be discussed 
and presented to give a broader overview of the research focus within this experiment. 

2.1 Radial-Axial Ring Rolling 

Many approaches concerning current research within the domain of RARR are dealing with FEM-
Simulation, quality issues and process improvements. For example ALLEGRI ET AL. proposed new milling 
curves that achieved good quality results with reduced process time and loads based on a FE-Simulation [7]. 
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An innovative control strategy for titanium alloy based on an intelligent FE-simulation is introduced by 
LI ET AL. to prevent damage to the microstructure of the titanium alloy by controlling its temperature [8]. 
Enhancing this approach, LIANG ET AL. used an intelligent FE-simulation to plan rolling paths for the ring 
rolling process of titanium alloy [9]. 

Process improvements and new and innovative ways to combine RARR with other processes are researched 
as KUHLENKÖTTER ET AL. investigated the suitability to combine the RARR process with thermal spraying 
to compact coatings in an innovative manner. Yet a final intact coating could not be established in the initial 
experiments, promising results, showing that by the subsequent rolling of thermally sprayed coatings the 
porosity can be significantly reduced and higher compressed residual stresses can be induced, are presented 
[10]. Another approach where RARR was combined with a different process is shown by MICHL ET AL. by 
using additive manufacturing in form of a wirearc additive manufacturing. The authors explored whether 
wirearc additive manufacturing is a suitable solution to produce better near-net shape pre-forms. Referring 
to their results, wirearc additive manufacturing shows promising results to lower process expenses and 
improve process efficiency [11]. 

An overview of the advantages of data driven techniques in metal forming as well as remaining research 
questions are given by HAVINGA ET AL. such as model uncertainty and measurement accuracy in metal 
forming [12]. Research regarding machine learning for quality prediction was conducted by different 
authors. GIORLEO ET AL. used a regression model based on process parameters from FEM data to classify 
product quality with regards to the fishtail defect [13]. A different form error prediction using machine 
learning was researched by FAHLE ET AL. regarding ovality. The authors investigated the data utilization and 
data analysis methods in RARR in 2019 for a variety of German ring rolling companies [14]. Moreover, they 
used a TSC to classify real world production data to improve the process quality and focused on different 
preprocessing approaches [1]. This TSC approach will be enhanced throughout this study and the current 
related work for the domain of TSC and ECTS will be lined out. 

2.2 TSC 

During recent years, many models and algorithms of different types have been proposed and a comparable 
data base for validated comparisons was established by introducing the UEA & UCR Time Series 
Classification Repository [15]. This database was the baseline to validate a variety of models such as HIVE-
COTE: a big ensemble with great results on the repository [16]. A big effort was taken by BAGNAL ET AL. 
in their review of current advances regarding TSC algorithms where a variety of current algorithms was 
evaluated and compared [17]. Nevertheless, deep learning approaches, which have gained great popularity 
during the last decade due to their advances in image recognition and other areas, have not been the focus of 
the review. However, several deep learning approaches to solve TSC tasks have been proposed such as 
InceptionTime that bases on an Inception architecture [18] or another approach combining the convolution 
based structure with long short-term memory cells in a so-called MLSTM-FCN network architecture [19]. 
During the last years several approaches have been taken to form unified architectures for the TSC task, one 
of those is sktime by LÖNING ET AL. which is compatible with the famous scikit-learn python library and 
presents a unified interface to deal with time series [4]. 

2.3 ECTS 

SANTOS ET KERN investigated different approaches for the early classification on time series and many 
agreed on the definition that a classification decision should be made as early as possible while the 
classification accuracy should not be sacrificed too much. They further investigated different approaches 
and already included deep learning approaches to solve the ECTS problem [20]. Another recent systematic 
review for ECTS was published and reviewed different ECTS approaches for many different domains such 
as Human Activity Recognition, Industrial Process Mining, Quality Monitoring and others [21]. A fairly 
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new approach is proposed by SCHÄFER ET LESER named TEASER. TEASER uses a two-tier approach where 
a slave-master structure is established to find the best individual decision times for an early classification. 
The slave classifier classifies the time series and computes class probabilities which are then passed to a 
master classifier that decides whether the probability is sufficient to emit a final classification result [22]. 
Another approach that focuses more on the multivariate aspect in ECTS is a confidence-based approach by 
HE ET AL. Within their research they focus on a multivariable and interpretable approach based on 
interpretable rules mined from the time series and using subsequences [23]. Moreover, ECTS is used in a 
variety of different domains. It is used by HATAMI ET CHIRA to classify odor in the bio-chemical domain. 
They use an ensemble to agree on either accepting or rejecting the class label. The authors use their 
implementation as the core mechanic for their online e-nose system for odor classification [24]. Moreover, 
it is applied to other real world datasets within the UCI machine learning repository such as the hydraulic 
system monitoring data set. One example is the divide-and-conquer-based approach by GUPTA ET AL. [25] 
or other applications of ECTS such as semiconductor manufacturing [26,27]. 

3. Experimental setup 

The following section describes the essential parts of the later conducted experiments namely the data set all 
experiments are based on, the preprocessing steps and the used models and approaches.  

3.1 Data set 

The used data set for this research is provided by thyssenkrupp rothe erde Germany GmbH and is part of its 
real world production data of different production days. The used samples represent a mixture of different 
geometric preforms and rolled shapes. New production data is constantly added and preprocessed but the 
state of the current data set consists of 1078 multivariate samples. Due to a non-disclosure agreement the 
dataset must not be made available to public. The data set is almost evenly distributed as the threshold for 
the quality prediction was set to in internal standard to enable a working model to increase production quality 
by a sufficient amount. The data is acquired at thyssenkrupp together with their representing targets acquired 
by an independent measurement unit. The multivariate channels/features of the dataset range from radial and 
axial forces, ring growth rates, motor current and several geometric features of the process. The used data 
set is split up into a train and test split using an 80/20 split ratio to prevent information leakage. Moreover, 
a five-fold shuffle split validation is performed for more reliable classification results on the domain specific 
approach. 

All data samples were backpadded to ensure an equal length as process variations lead to different length 
time series. Backpadding was used because of the requirement that this model is intended to be deployed in 
a real world radial-axial ring rolling mill system and predicting ovality as early as possible to enable counter 
measurements. Thus, a backpadded approach is used because the incoming time series length of the process 
is not known prior due to the different preforms and rolled geometries. Moreover, a second preprocessing is 
used to the extent that a specific logged channel represents the current rolling phase that the process is in. 
This channel was used in earlier research by FAHLE ET AL. [1] to investigate suitable preprocessing methods 
for the application in RARR. Figure 1 depicts an idealized trend of the ring rolling process and its respective 
rolling phase. The preprocessing that is done in this research in addition to the single backpadding is a cutting 
between phases, meaning that all samples were separated in four different data sets each containing the 
samples up to the different rolling phases (e.g. Start,…, End Phase 1; Start, …, End Phase 2; etc.). This is 
done to investigate a minimum predictive length for the ECTS approach in combination with necessary 
process specific counter measurements that need to be performed at specific times in the process as they 
cannot be implemented in every step of the process. 
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In addition, all samples, neglecting their earlier preprocessing, were examined using standardization, with a 
scaler fitted on training samples only to ensure no information leakage into the test set, or their raw input 
values with no standardization. All these preprocessing steps are performed to ensure an early classification 
as well as ensure system specific requirements due to the process nature. 

 
Figure 1: Representation of an idealized rolling phase of a RARR process adapted from [28] 

3.2 Baseline ECTS approach 

As a baseline the implementation of a non-myopic algorithm is adapted from [29,30]. The algorithm is non-
myopic in the sense, that it calculates an optimal time to give a prediction for each time step. This algorithm 
is chosen as a baseline comparison as it uses a k-nearest-neighbor classifier and chooses the time steps at 
which a prediction is made automatically, depending on some hyper-parameter choices (used choices in 
brackets). One parameter was the cluster size (2) for a needed clustering within the model. The next was a 
lambda (15) value for the evaluation of a prediction during the computation of the cost function. The cost 
time parameter, alpha (0.0001), is used to shift the trade-off between earliness and accuracy. Lastly, the 
minimum length (15) for a prediction is set via a separate hyper-parameter. The MPL for the baseline 
approach needs to be investigated and is only influenced by the hyper-parameter choice. 

3.3 Domain-specific rolling phase approach  

The domain specific rolling approach has been briefly discussed earlier. The general idea is to predict ovality 
on-line at designated process states to ensure, that if a prediction is made that requires a process intervention, 
suitable counter methods can still be applied and the process is not too advanced. This is done even though 
the accuracy might suffer in order to reach hard earliness requirements. Counter methods such as a 
dislocation of the ring or an induced change in the axial frame force might not be established with measurable 
effects if the process is too advanced. This leads to the proposed approach to predict at the end of each rolling 
phase, depicted in Figure 1. Thus, the MPL for the domain specific approach is set to either one of the four 
phase endings. 

3.4 Summary of chosen approaches 

This baseline approach was chosen to investigate the different prediction times, depending on the 
aforementioned hyper-parameters, if they were chosen automatically. Whereas the domain specific 
prediction times of the domain specific approach are fixed with regard to each individual process. These 
prediction times will be investigated and discussed within the evaluation in the next section. It will be 
analysed whether the domain specific approach and the corresponding process phase endings show similar 
MPL or are completely different.  
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4. Experiments 

The conducted experiments where divided into two parts. In the first part the automatically chosen prediction 
times using the baseline approach were investigated using model trainings on the train and test split. The 
second part uses a domain specific approach on the five-fold shuffle split validation using a Time Series 
Forest (100 estimators, criterion=entropy, max features=log2), InceptionTime (batch size=32, number 
filters=64, use_residual=True, use_bottleneck=True, depth=9, kernel size=64) and LSTM-FCN (LSTM=2, 
Filters=[64,128,64], Kernels=[8,5,3]) model as those models have been proven to be suitable for the time 
series classification task in the domain of RARR. 

4.1 Baseline-Approach 

The non-myopic model was used to generate different prediction times. The hyper-parameters were chosen 
using a grid search and the final parameters are mentioned in section 3.2. The model was trained on both the 
raw data set as well as on the standardized data set to see if prediction times could vary with respect to value 
changes due to standardization and the cost time parameter used to force an earlier or later prediction with 
an accuracy trade-off. It can be seen in Figure 2 that the standardization does change the prediction time for 
the non-myopic model significantly, as there is a shift from a heavily separated prediction split from either 
very early and very late prediction towards a more divided prediction, yet the high predictions at a very early 
stage of the process still occur in the standardized data. 

 
Figure 2: Differences in the earliness of predictions regarding standardization 

Moreover, regarding the accuracy within both data sets, it can be seen that with a lower alpha value the 
accuracy is lower due to the bigger focus on earlier predictions. Yet, it is surprising, that the lowest alpha 
value does not always produce the highest accuracies, as for the standardized data set predictions with an 
alpha value of 0.0001 produce a higher accuracy even though the predictions were made earlier than those 
with alpha 0.00001. Further, Figure 3 depicts two samples (left and right) of the data set that are predicted 
using the different alpha models and showing the results regarding accuracy. In the example, it can be seen 
that the prediction made on the bottom (red line) prediction is incorrect for both samples as the time series 
could not be distinguished correctly by the model at this early stage. The blue (first) and green (second) lines 
predictions show the later predictions. In this example the latest prediction correctly classifies both example, 
whereas the second model using an alpha value of 0.0001 does only correctly classify one of the two 
examples. 

Inspecting not only those two examples, it was hard to differentiate whether there is a specific point in the 
process to which extend all information needed was gathered by the non-myopic approach. Yet, the 
prediction switches towards the depicted times at about 180 time steps (green) and 390 (blue) seem similar 
to the process phase approach discussed in the next section. 
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Figure 3: Visualization of different predictions on two samples made by the three different non-myopic models 

4.2 Domain specific phase approach 

The aforementioned similarity can be seen by analyzing the average phase lengths of each sample. Figure 4 
shows the range of the phase lengths on the left side and the cumulated time steps each phase ends on the 
right. It can be seen that the ending of phase one at about ten time steps is similar to the very early predictions 
of the non-myopic model. The average phase ending of phase two on the right shows a direct similarity to 
the model depicted in green in Figure 2. Yet, the average phase ending of phase three at about 320 on the 
right of Figure 3 is slightly earlier than the prediction made in blue in Figure 2. 

 
Figure 4: Comparison on the phase lengths and phase endings for the underlying RARR data set 

Table 1 shows the test results of the five-fold shuffle split validation training with five runs each for the 
LSTM-FCN, Inception and Time Series Forest model. It can be seen that the accuracy drop between the 
predictions after phase one and two as well as phase two and three are noticeable yet between phase three 
and four are only minor. It is surprising, that the best mean (0.884) and maximum (0.921) accuracy for not 
standardized data reached for all phases was after phase three and not after phase four. Moreover, it can be 
seen, that the Time Series Forest performs very well overall and even best when looking at not standardized 
data in Table 1. For a very early prediction e.g. after phase two the LSTM-FCN Model is performing best. 

With regard to the real-world deployment of those models it has to be discussed whether a prediction after 
phase two or three needs to be forced if the chosen counter measurements need to be applied during the 
earlier stages of the ring rolling process. The accuracy of the best performing models with regard to the phase 
is decently high, yet to be deployed into an industrial production chain the accuracies should improve to 
higher levels. 
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Table 1: Test-results for the early prediction using the domain specific rolling phase approach 

Rolling Phase 
No Standardization 

mean                        max 
Standardization 

mean                max 
Classifier 

1 
0.762 0.805 0.762 0.800 Inception 
0.771 0.800 0.772 0.805 LSTM 
0.812 0.847 0.732 0.753 TSF 

2 
0.864 0.888 0.856 0.893 Inception 
0.866 0.902 0.867 0.907 LSTM 
0.863 0.888 0.845 0.888 TSF 

3 
0.868 0.898 0.866 0.898 Inception 
0.871 0.907 0.868 0.898 LSTM 
0.884 0.921 0.878 0.907 TSF 

4 
0.870 0.907 0.867 0.907 Inception 
0.868 0.907 0.873 0.912 LSTM 
0.882 0.916 0.879 0.907 TSF 

5. Conclusion 

Within the present research, after reviewing the state of the art for TSC and ECTS, the fundamentals of 
RARR were explained. Then, the dataset used was described and a baseline and domain-specific approach 
was presented. Within the experiment section, both approaches were analyzed and compared and achievable 
accuracies of the ECTS case were presented. The investigation of the different prediction times chosen by 
the non-myopic approach showed, that the prediction times occur roughly at the same time as the ring rolling 
process phase changes. This underlines the used approach to link the prediction of different models to the 
rolling phase changes as it is done in section 4.2. The overall better performance of the domain specific 
approach is due to the different and more complex models used and the baseline approach was used to gather 
useful information about the minimum prediction length of the data. For the implementation at the radial-
axial ring rolling mill at the chair of production system real world experiments will be carried out using the 
early prediction models to initiate counter measurements to avoid ovality, resulting in better quality. 

6. Future Work 

The aforementioned results will be used to deploy an on-line system for quality prediction at a ring rolling 
mill. Depending on the different levels of earliness of the predictions different counter measurements will 
be triggered via a direct connection to the CNC: Further validations regarding those counter measurements 
will be conducted. Moreover, the earliness and accuracy will be constantly improved and the data set will 
be enlarged to achieve higher prediction accuracies throughout all rolling phases. 

Acknowledgements  

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 404517758 

The authors would like to additionally thank Dr.-Ing. Andreas Kneißler and thyssenkrupp rothe erde 
Germany GmbH for their support and access to their real world data.  

 

 

104



References 

 

[1] Fahle, S., Kneißler, A., Glaser, T., Kuhlenkötter, B., 2021. Research on Preprocessing Methods for Time Series 
Classification Using Machine Learning Models in the Domain of Radial-Axial Ring Rolling, in: Behrens, B.-A., 
Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (Eds.), Production at the leading edge of technology. 
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 487–496. 

[2] Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A., 2019. Deep learning for time series 
classification: a review. Data Min Knowl Disc 59 (2), 195. 

[3] Xing, Z., Pei, J., Keogh, E., 2010. Xing et al. A Brief Survey on Sequence Classification. SIGKDD Explorations 
(Volume 12, Issue 1), 40–48. 

[4] Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J., 2019. sktime: A Unified Interface for 
Machine Learning with Time Series (Preprint), 1–9. 

[5] Mori, U., Mendiburu, A., Keogh, E., Lozano, J.A., 2017. Reliable early classification of time series based on 
discriminating the classes over time. Data Min Knowl Disc 31 (1), 233–263. 

[6] Xing, Z., Pei, J., and Philip, S. Y., 2012. Early classification on time series. Knowledge and information systems 
(31 (1)), 105–127. 

[7] Allegri, G., Giorleo, L., 2020. Ring Rolling speed rolls optimization to improve ring quality and reduce production 
time. JMES 14 (1), 6272–6284. 

[8] Li, X., Guo, L., Wang, Y., Liang, L., 2019. Rolling paths design assisted by target-temperature driven intelligent 
FE simulation of radial-axial ring rolling. Manufacturing Rev. 6, 20. 

[9] Liang, L., Guo, L., Wang, Y., Li, X., 2019. Towards an intelligent FE simulation for real-time temperature-
controlled radial-axial ring rolling process. Journal of Manufacturing Processes 48, 1–11. 

[10] Kuhlenkötter, B., Glaser, T., Fahle, S., Husmann, S., Abdulgader, M., Tillmann, W., 2020. Investigation of 
compaction by ring rolling on thermal sprayed coatings. Procedia Manufacturing 50, 192–198. 

[11] Michl, D., Sydow, B., Bambach, M., 2020. Ring Rolling of Pre-forms Made by Wire-arc Additive Manufacturing. 
Procedia Manufacturing 47, 342–348. 

[12] Havinga, J., Mandal, P.K., van den Boogaard, T., 2019. Exploiting data in smart factories: real-time state 
estimation and model improvement in metal forming mass production. Int J Mater Form 207 (3), 663–673. 

[13] Giorleo, L., Ceretti, E., Giardini, C. Investigation of the fishtail defect in ring rolling by a FEM approach, in: , 
North American Manufacturing Research Institution, North American Manufacturing Research Conference et al. 
2012, vol. 40, pp 104–111. 

[14] Fahle, S., Kuhlenkötter, B., 2020. A Framework for Data Integration and Analysis in Radial-Axial Ring Rolling, 
in: Nyhuis, P., Herberger, D., Hübner, M. (Eds.), Proceedings of the 1st Conference on Production Systems and 
Logistics (CPSL 2020). Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 127-136. 

[15] Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Yanping, Hu, 
B., Begum, N., Bagnall, A., Mueen, A., Batista, G., Hexagon-ML, 2018. The UCR Time Series Classification 
Archive. 

[16] Lines, J., Taylor, S., Bagnall, A., 2018. Time Series Classification with HIVE-COTE. ACM Trans. Knowl. 
Discov. Data 12 (5), 1–35. 

[17] Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E., 2017. The great time series classification bake off: a 
review and experimental evaluation of recent algorithmic advances. Data Min Knowl Disc 31 (3), 606–660. 

[18] Fawaz, I.H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb, G.I., Idoumghar, L., Muller, 
P.-A., Petitjean, F., 2020. InceptionTime: Finding AlexNet for time series classification. Data Min Knowl Disc 
34 (6), 1936–1962. 

105



[19] Karim, F., Majumdar, S., Darabi, H., Harford, S., 2019. Multivariate LSTM-FCNs for time series classification. 
Neural networks : the official journal of the International Neural Network Society 116, 237–245. 

[20] Santos, T., Kern, R., 2016. A Literature Survey of Early Time Series Classification and Deep Learning. 

[21] Gupta, A., Gupta, H.P., Biswas, B., Dutta, T., 2020. Approaches and Applications of Early Classification of Time 
Series: A Review. 

[22] Schäfer, P., Leser, U., 2020. TEASER: early and accurate time series classification. Data Min Knowl Disc 34 (5), 
1336–1362. 

[23] He, G., Zhao, W., Xia, X., 2020. Confidence-based early classification of multivariate time series with multiple 
interpretable rules. Pattern Anal Applic 23 (2), 567–580. 

[24] Hatami, N., Chira, C., 042013. Classifiers with a reject option for early time-series classification, in: 2013 IEEE 
Symposium on Computational Intelligence and Ensemble Learning (CIEL). 2013 IEEE Symposium on 
Computational Intelligence and Ensemble Learning (CIEL), Singapore, Singapore. 16.04.2013 - 19.04.2013. 
IEEE, pp. 9–16. 

[25] Gupta, A., Gupta, H.P., Biswas, B., Dutta, T., 2020. A Divide-and-Conquer–based Early Classification Approach 
for Multivariate Time Series with Different Sampling Rate Components in IoT. ACM Trans. Internet Things 1 
(2), 1–21. 

[26] He, G., Duan, Y., Peng, R., Jing, X., Qian, T., Wang, L., 2015. Early classification on multivariate time series. 
Neurocomputing 149, 777–787. 

[27] Lin, Y.-F., Chen, H.-H., Tseng, V.S., Pei, J., 2015. Reliable Early Classification on Multivariate Time Series with 
Numerical and Categorical Attributes, in: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. 
(Eds.), Advances in Knowledge Discovery and Data Mining, vol. 9077. Springer International Publishing, Cham, 
pp. 199–211. 

[28] Thyssen, 1990. Technologiehandbuch: Einführung in die Ringwalztechnologie. Thyssen Wagner Maschinenbau 
GmbH Dortmund. 

[29] Dachraoui, A., Bondu, A., Cornuéjols, A., 2015. Early Classification of Time Series as a Non Myopic Sequential 
Decision Making Problem, in: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. 
(Eds.), Machine Learning and Knowledge Discovery in Databases, vol. 9284. Springer International Publishing, 
Cham, pp. 433–447. 

[30] Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, Marie, Yurchak, Roman, 
Rußwurm, M., Kolar, K., Woods, E., 2020. Tslearn, A Machine Learning Toolkit for Time Series Data. Journal 
of Machine Learning Research 21, 118 (21), 1–6. 

  

106



 

Biography 

 

Simon Fahle (*1994) is a member of the Lehrstuhl für Produktionssysteme (LPS) at 
the Ruhr-University Bochum since 2019. He earned a bachelor’s and master’s 
degree in mechanical engineering at the Ruhr-University Bochum. His primary 
research topics are machine learning, time series and radial-axial ring rolling. 

 

 

Thomas Glaser (*1990) is a member of the Lehrstuhl für Produktionssysteme (LPS) of the Ruhr-University 
Bochum since 2019. He holds a bachelor's as well as a master's degree in mechanical engineering from the 
Ruhr-University Bochum, specialised in materials engineering. Thomas Glaser is currently focussing on 
research topics in the field of radial-axial ring rolling. 

 
Until 2009, Bernd Kuhlenkötter was responsible for product management and technology at ABB Robotics 
Germany. In 2009, Bernd Kuhlenkötter took over the professorship for "Industrial Robotics and Production 
Automation" at the Technical University of Dortmund. Since 2015, he has held the professorship for 
“Production Systems” at the Ruhr-University Bochum. 

 

107




