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ABSTRACT:

The classification of building facade images is a challenging problem that receives a great deal of attention in the photogrammetry
community. Image classification is critically dependent on the features. In this paper, we perform an empirical feature evaluation task
for building facade images. Feature sets we choose are basic features, color features, histogram features, Peucker features, texture
features, and SIFT features. We present an approach for region-wise labeling using an efficient randomized decision forest classifier
and local features. We conduct our experiments with building facade image classification on the eTRIMS dataset, where our focus is
the object classes building, car, door, pavement, road, sky, vegetation, and window.

1 INTRODUCTION

Despite the substantial advances made during the past decade,
the classification of building facade images remains a challenging
problem that receives a great deal of attention in the photogram-
metry community (Rottensteiner et al., 2007; Korč and Förstner,
2008; Fröhlich et al., 2010; Kluckner and Bischof, 2010; Teboul
et al., 2010). Image classification is critically dependent on the
features. Typical feature evaluation can be divided into two stages.
First, image processing is used to extract a set of robust features
that implicitly contains the information needed to make class-
specific decisions while resisting extraneous effects such as chang-
ing object appearance, pose, illumination and background clutter.
Second, a machine learning based classifier uses the features to
make region-level decisions, often followed by post-processing
to merge nearby decisions. Instead of using some unsupervised
techniques, which bare generalization problem, it is popular way
that the classifier is trained using a set of labeled training ex-
amples. The overall performance depends critically on all three
elements: the feature set, the classifier & learning method, and
the training set. In this paper, we focus on evaluating different
feature sets.

Korč and Förstner (2009) published an image dataset showing
urban buildings in their environment. It allows benchmarking of
facade image classification, and therefore the repeatable compar-
ison of different approaches. Most of the images of this data set
show facades in Switzerland and Germany. Regarding terrestrial
facade images, the most dominant objects are the building itself,
the window, vegetation, and the sky. Fig. 1 demonstrates the vari-
ability of the object data.

In this work, we empirically investigate extended feature sets on
eTRIMS dataset (Korč and Förstner, 2009). We show random
forest gives some reasonable classification results on building fa-
cade images, and evaluate classification results by counting cor-
rected labeled regions. The remainder of the paper is organized
as follow. Section 2 reviews some existing methods for feature
evaluation and building facade image classification. Then, we in-
troduce feature sets for evaluation in the scope of the paper in
Section 3. Randomized decision forest classifier for performing
image classification is described in Section 4. In Section 5, we

Figure 1: Example images from benchmark data set (Korč and
Förstner, 2009).

show our results and discuss the effect of each feature sets with
respect to the classification of facade images. We finally conclude
with a brief summary in Section 6.

2 RELATED WORKS

Previous works on building facade classification mostly regard
the facade classification problem as multiple object detection tasks.
Building facade detection is a very active research area in pho-
togrammtery and computer vision. A feature selection scheme
with Adaboost for detecting buildings and building parts is pre-
sented in Drauschke and Förstner (2008) . In recent approaches,
graphical models are often used for integrating further informa-
tion about the content of the whole scene (Kumar and Hebert,
2003; Verbeek and Triggs, 2007). In another paradigm, the bag
of words, objects are detected by the evaluation of histograms of
basic image features from a dictionary (Sivic et al., 2005). Unfor-
tunately, both approaches have not been tested with high resolu-
tion building images. Furthermore, the bag of words approaches
have not applied to multifarious categories as building, and it is
extremely slow and often the most time consuming part of the
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whole system, even with optimizations such as kd-trees, or hier-
archical clusters (Nister and Stewenius, 2006).

Support vector machine (SVM) is widely considered as a good
classifier. Schnitzspan et al. (2008) propose hierarchical sup-
port vector random fields that SVM is used as a classifier for
unary potentials in conditional random field framework. While
the training and cross-validation steps in SVM are time consum-
ing, randomized decision forest (RDF) (Breiman, 2001) is intro-
duced to significantly speed up the learning and prediction pro-
cess. Existing work has shown the power of a randomized deci-
sion forest as a classifier (Bosch et al., 2007; Lepetit et al., 2005;
Maree et al., 2005). The use of a randomized decision forest
for semantic segmentation was previously investigated in Shot-
ton et al. (2008); Dumont et al. (2009); Fröhlich et al. (2010).
These approaches utilize simple color histogram features or pixel
differences. Fröhlich et al. (2010) present an approach using
an randomized decision forest and local opponent-SIFT features
(van de Sande et al., 2010) for pixelwise labeling of facade im-
ages. Teboul et al. (2010) perform multi-class facade segmen-
tation by combining a machine learning approach with procedu-
ral modeling as a shape prior. Generic shape grammars are con-
strained so as to express buildings only. Randomized forests are
used to determine a relationship between the semantic elements
of the grammar and the observed image support. Drauschke and
Mayer (2010) also use random forest as one of the classifiers to
evaluate the potential of seven texture filter banks for the pixel-
based classification of terrestrial facade images.

3 FEATURE SETS

Features contains the information needed to make the class-specific
decisions while being highly invariant with respect to extrane-
ous effects such as changing object appearance, pose, illumi-
nation and background clutter. Advances in feature sets have
been a constant source of progress over the past decade. Sev-
eral well-engineered features have been experimentally found to
be well fit for image classification task (Drauschke and Mayer,
2010). In this work, we derive 6 feature sets from each region
obtained from some unsupervised segmentation algorithms, such
as mean shift (Comaniciu and Meer, 2002), watershed (Vincent
and Soille, 1991), or graph-based method (Felzenszwalb and Hut-
tenlocher, 2004).

Basic features f1 First feature set f1 are basic features includ-
ing (1). number of components of the region (C); (2). number of
holes of the region (H); (3). Euler characteristic for planar fig-
ures (Lakatos, 1976) (E = C −H); (4). area (A); (5). perimeter
(U ); (6). form factor (F = U2/(4πA)); (7). height of bounding
box; (8). width of bounding box; (9). area ratio between region
and its bounding box; (10). height portion of center; (11). width
portion of center.

Color features f2 For representing spectral information of the
region, we use 9 color features (Barnard et al., 2003) as second
feature set f2: the mean and the standard deviation of R-channel,
G-channel and B-channel respectively in the RGB color space;
and the mean of H-channel, S-channel and V-channel respectively
in the HSV color space.

Histogram features f3 We also include features derived from
the gradient histograms as third feature set f3, which has been
proposed by Korč and Förstner (2008). We determine gradient
and its orientation and its magnitude. The histograms are de-
termined for the 3 colors R, G and B respectively in the region.
Then, we derive the mean, the variance and the entropy from each
histogram as features.

Peucker features f4 Peucker features are derived from gen-
eralization of the region’s border as fourth feature set f4, and
represent parallelity or orthogonality of the border segments. We
select the four points of the boundary which are farthest away
from each other. From this polygon region with four corners, we
derive 3 central moments, and eigenvalues in direction of major
and minor axis, aspect ratio of eigenvalues, orientation of poly-
gon region, coverage of polygon region, and 4 angles of polygon
region boundary points.

Texture features f5 We use texture features derived from the
Walsh transform (Petrou and Bosdogianni, 1999; Lazaridis and
Petrou, 2006) as fifth feature set f5, as features from Walsh fil-
ters are among the best texture features from the filter banks
(Drauschke and Mayer, 2010). We determine the magnitude of
the response of 9 Walsh filters. For each of the 9 filters, we deter-
mine mean and standard deviation for each region.

SIFT features f6 Sixth feature set f6 are mean SIFT (Scale-
Invariant Feature Transform) descriptors (Lowe, 2004) of the im-
age region. SIFT descriptors are extracted for each pixel of the
region at a fixed scale and orientation, which is practically the
same as the HOG descriptor (Dalal and Triggs, 2005), using the
fast SIFT framework in Vedaldi and Fulkerson (2008). The ex-
tracted descriptors are then averaged into one l1-normalized de-
scriptor vector for each region.

These features are roughly listed in Table 1. The resulting 178
features are then concatenated into one feature vector.

Table 1: List of derived features from image regions. The number
indicates feature numbers in each feature set.

f1 basic features (11)
region area and perimeter, compactness and aspect ratio, etc.
f2 color features (9)
mean and standard deviation of RGB and HSV spaces
f3 histogram features (9)
mean, variance and entropy of histogram from the gradients
f4 Peucker features (12)
moments and eigenvalues of a region
f5 texture features (18)
texture features derived from the Walsh transform
f6 SIFT features (128)
mean SIFT descriptor features

4 RANDOMIZED DECISION FOREST

Features are evaluated by a classifier which operates on the re-
gions defined by unsupervised segmentation. we take random-
ized decision forest (RDF) (Breiman, 2001) as the classifier for
performing feature evaluation, where the derived features from
the image regions for the RDF classifier are chosen from Table 1.
Existing work has shown the power of decision forests as the clas-
sifiers (Maree et al., 2005; Lepetit et al., 2005; Bosch et al., 2007).
As illustrated in Fig. 2, a RDF is an ensemble classifier that con-
sists of T decision trees (Shotton et al., 2008). The feature vector
of image region is classified by going down each tree. This pro-
cess gives a class distribution at the leaf nodes and also a path for
each tree. The class distribution is obtained by averaging the class
distribution over the leaf nodes for all T trees. This classification
procedure is identical to Shotton et al. (2008).

In order to train the RDF classifier, we take the ground-truth label
of each region to be the majority vote of the ground-truth pixel
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Figure 2: Decision forest. A forest consists of T decision trees.
A feature vector is classified by descending each tree. This gives,
for each tree, a path from root to leaf, and a class distribution at
the leaf. As an illustration, we highlight the root to leaf paths
(yellow) and class distributions (red) for one input feature vector.
(Figure courtesy by Jamie Shotton (Shotton et al., 2008).)

labels. Then a RDF is trained on the labeled data for each of
the classes. According to a decision tree learning algorithm, a
decision tree recursively splits left or right down the tree to a
leaf node. We use the extremely randomized trees (Geurts et al.,
2006) as learning algorithm. Each tree is trained separately on a
small random subset of the training data. The learning procedure
is identical to Shotton et al. (2008). We refer the reader to Shotton
et al. (2008) for more details.

5 EXPERIMENTAL RESULTS

We conduct experiments to evaluate the performance of differ-
ent image feature sets on the eTRIMS 8-class dataset (Korč and
Förstner, 2009). In the experiments, we take the ground-truth la-
bel of a region to be the majority vote of the ground-truth pixel
labels. We randomly divide the images into training and test data
sets.

5.1 Experimental Setup

We start with the eTRIMS 8-class dataset which is a comprehen-
sive and complex dataset consisting of 60 building facade images,
mainly taken from Basel, Berlin, Bonn, and Heidelberg, labeled
with 8 classes: building, car, door, pavement, road, sky, vegeta-
tion, window. These classes are typical objects which can appear
in images of building facades. The ground-truth labeling is ap-
proximate (with foreground labels often overlapping background
objects). In the experiments, we randomly divide the images into
a training set with 40 images and a testing set with 20 images.

Features are evaluated by the RDF classifier which operates on
the regions defined by unsupervised segmentation. Therefore, the
initial unsupervised segmentation algorithms may play an impor-
tant role in the final classification results. To test how much the
influence of the segmentation algorithms would be, we employ
two unsupervised segmentation methods to segment the facade
images, namely the mean shift algorithm (Comaniciu and Meer,
2002) and the watershed algorithm (Vincent and Soille, 1991).

First, we segment the facade images using mean shift algorithm
(Comaniciu and Meer, 2002), tuned to give approximately 480
regions per image. In all 60 images, we extract around 29 600
regions. We have following statistics. Compared to the ground
truth labelling, almost 36% of all the segmented regions get the
class label building. 26% of all regions get the class label win-
dow. These statistics are very comprehensive, because facade
images show buildings typically contain many windows. Fur-
thermore, 21% of the regions get the class label vegetation, and
2% belong to sky, and the last 15% of the regions are spread over

most of other classes. Table 2 summarizes the statistics for the
percentage of each class label, the average size of the region of
each class, and the percentage of the image covered by each class
for the baseline mean shift segmentation on the eTRIMS 8-class
dataset (Korč and Förstner, 2009).

Table 2: Statistics of the percentage of each class label, the av-
erage size of the region of each class, and the percentage of the
image covered by each class for the baseline mean shift segmen-
tation on the eTRIMS 8-class dataset. (b = building, c = car, d =
door, p = pavement, r = road, s = sky, v = vegetation, w = window,
same for all the following tables and figures.)

Mean shift
b c d p r s v w

class percentage 36 5 2 2 2 2 21 26
average size of region 1014 424 569 1671 2563 6741 380 310
class covering percentage 48 3 1 4 6 16 11 11

Then, we segment the images using watershed algorithm (Vin-
cent and Soille, 1991), which turns out to give approximately
900 regions per image. In all 60 images, we extract around 56
000 regions. We have following statistics. Almost 34% of all the
segmented regions get the class label building. 28% of all regions
get the class label window. Furthermore, 23% of the regions get
the class label vegetation, 2% belong to sky, and the last 13% of
the regions are spread over most of other classes. Table 3 sum-
marizes the statistics for the percentage of each class label, the
average size of the region of each class, and the percentage of the
image covered by each class for the baseline watershed segmen-
tation on the eTRIMS 8-class dataset (Korč and Förstner, 2009).

Table 3: Statistics of the percentage of each class label, the av-
erage size of the region of each class, and the percentage of the
image covered by each class for the baseline watershed segmen-
tation on the eTRIMS 8-class dataset.

Watershed
b c d p r s v w

class percentage 34 4 1 2 2 2 23 28
average size of region 614 268 477 684 1490 4096 209 152
class covering percentage 49 3 1 4 6 16 11 10

5.2 Evaluation with mean shift segmentation and RDF clas-
sifier

In the following, we first evaluate with RDF classifier on each
feature set f1,f2,f3,f4,f5, and f6. Then, we evaluate with
RDF classifier on the combination of feature sets, and show that
RDF gives some reasonable results on building facade images.

The overall classification accuracy is listed in Table 4, when ap-
plying RDF classifier on each feature set. The number of decision
trees is chosen as T = 250. In all the following experiments, we
always assume maximum depth of each decision tree D = 7.
A random classifier for 8 classes, the expected classification ac-
curacy is 12.5%. Fig. 3 shows the corresponding classification
results over all 8 classes. Each class is normalized to 100%.

Table 4: Average accuracy of RDF classifier on each feature set
of eTRIMS 8-class dataset.

feature set f1 f2 f3 f4 f5 f6

accuracy 43.8% 49.6% 36.5% 40.9% 27.9% 54.1%

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

515



(a) On feature set f1 (Left), f2 (Right)

(b) On feature set f3 (Left), f4 (Right)

(c) On feature set f5 (Left), f6 (Right)

Figure 3: Accuracy of each class on each feature set, with each
class is normalized to 100.

Table 5: Average accuracy of RDF classifier on the feature sets.
Feature sets −f i mean the rest of all 6 feature sets except f i is
used, i = 1, · · · , 6.

feature sets −f1 −f2 −f3 −f4 −f5 −f6

accuracy 58.1% 57.2% 58.8% 58.1% 58.3% 53.0%

From Fig. 3, we observe that each feature set performs reason-
able results on building, window, and vegetation classes. Color
features f2 perform better than other features on vegetation class
because most vegetation parts are homogeneous regions. For
other classes, each feature set performs not good. Relatively,
Peucker features f4 perform better than other feature sets on mi-
nor classes. SIFT features f6 perform better than other features
on average.

We also make the experiments using leave-one-out method. The
overall classification accuracy is listed in Table 5. Feature sets
−f i mean the rest of all 6 feature sets except f i is used, i =
1, · · · , 6. The number of decision trees is chosen as T = 250.

In the following, we make use of all the feature sets f1, f2, f3,
f4, f5, and f6. We run experiments 5 times, and obtain overall
averaging classification accuracy 58.8%. The number of decision
trees is also chosen as T = 250. Fig. 4 Left shows the classifi-
cation results over all 8 classes. The classification accuracy with
respect to numbers of decision trees T for training are shown
in Fig. 4 Right. While increasing the number of decision trees,
the classification accuracy also increases. After 250 iteration, the
accuracy converges. So we choose T = 250 for performing ex-
periments above.

Fig. 5 and Fig. 6 present some result images of RDF method. The
black regions in all the result images and ground truth images cor-
respond to background. The qualitative inspection of the results

Figure 4: The classification accuracy of each class of the RDF
classifier with mean shift and the accuracy with respect to the
numbers of the decision trees. Left: the classification accuracy of
each class on all feature sets. Right: the classification accuracy
with respect to the numbers of the decision trees for training.

Table 6: Accuracy of RDF classifier with the mean shift seg-
mentation on the eTRIMS 8-class dataset. The confusion ma-
trix shows the classification accuracy for each class (rows) and
is row-normalized to sum to 100%. Row labels indicate the true
class (Tr), and column labels the predicted class (Pr).

HHH
HHPr
Tr

b c d p r s v w

b 60 8 2 2 2 1 9 16
c 22 40 1 3 1 2 29 2
d 46 0 15 0 0 0 8 31
p 40 16 0 12 4 4 16 8
r 40 20 0 14 23 3 0 0
s 29 2 0 5 2 48 7 7
v 11 5 1 1 1 0 76 5
w 24 1 2 0 0 1 4 68

in Fig. 5 shows that RDF classifier yields good results. In Fig. 6,
there exists some misclassification for each class. For example,
the incorrect results at windows are often due to the reflectance
of vegetation and sky in the window panes. Most sky regions are
classified correctly. However, sky region is assigned label car in
one image (last row in Fig. 6). This can be resolved simply by in-
troducing some kind of spatial prior (Gould et al., 2008), such as
sky is above the building, road and pavement are below the build-
ing, car is above the road, and window is surrounded by building.

A full confusion matrix summarizing RDF classification results
over all 8 classes is given in Table 6, showing the performance of
this method.

5.3 Evaluation with watershed segmentation and RDF clas-
sifier

To test whether the classification result mainly benefits from the
mean shift segmentation method, and not from the feature sets we
use, we also employ another unsupervised segmentation method,
namely the watershed algorithm by Vincent and Soille (1991), to
segment the facade images.

The overall classification accuracy is 55.4%, with the RDF clas-
sifier on all the feature sets and the number of the decision trees
chosen as T = 250. The confusion matrix is given in Table 7.

In comparison with Table 6, the accuracy for each class remains
similar, which shows that the type of finding image regions from
the image segmentation algorithms is not critical and the low clas-
sification performance results from the lack of either good fea-
tures or contextual information.
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Figure 5: Qualitative classification results of a RDF classifier
with the mean shift on the testing images from the eTRIMS
dataset. (Left: test image, middle: result, right: ground truth.)

Figure 6: Some more classification results of a RDF classifier
with the mean shift on the testing images from the eTRIMS
dataset. (Left: test image, middle: result, right: ground truth.)

Table 7: Pixelwise accuracy of the image classificationusing the
RDF classifier and the watershed segmentation on the eTRIMS
8-class dataset. The confusion matrix shows the classification
accuracy for each class (rows) and is row-normalized to sum to
100%. Row labels indicate the true class (Tr), and column labels
the predicted class (Pr).

H
HHHHPr

Tr
b c d p r s v w

b 59 4 1 3 5 9 11 7
c 67 21 0 5 2 0 3 2
d 19 0 12 0 0 0 62 7
p 57 3 0 9 30 0 0 1
r 14 1 0 58 23 1 3 1
s 17 0 0 6 0 73 2 1
v 13 4 1 2 1 13 61 4
w 29 1 1 1 0 6 3 57

5.4 Discussion

With respect to the three most important classes building, win-
dow, and vegetation, we are satisfied with our classification re-
sults. But our multi-class approach does not perform very well
for most of the other classes. Our classification scheme is faced
with a dramatic inequality between the sizes of the classes. Al-
most 60% of the data is covered by only 2 classes, and the rest is
spread over the rest classes. And for the classes like car and door,
Gestalt features (Bileschi and Wolf, 2007) may play major role in
a good classification performance. We also believe symmetry and
repetition features are vital for classifying window class.

In this paper, features are extracted at local scale. Classification
results are achieved from bottom up on these local features by
classifiers. This factor leads to noisy boundaries in the example
images. To enforce consistency, a Markov or conditional ran-
dom field (Shotton et al., 2006) is often introduced for refinement,
which would likely improve the performance.

6 CONCLUSIONS

We evaluate the performance of seven feature sets with respect
to region-based classification of facade images. The feature sets
include basic features, color features, histogram features, Peucker
features, texture features, and SIFT features. We use randomized
decision forest (RDF) to perform the classification scheme. In our
experiments on the eTRIMS dataset (Korč and Förstner, 2009),
we have shown that RDF produces some reasonable classification
results.

The results show that these features and a local classifier are not
sufficient. In order to recover more precise boundaries, the work
presented in this paper has been fused into conditional random
field framework (Yang and Förstner, 2011) by including neigh-
boring region information in the pairwise potential of the model,
which allows us to reduce misclassification that occurs near the
edges of objects. As future work, we are interested in evaluat-
ing more features, such as Gestalt features (Bileschi and Wolf,
2007) and other descriptor features (van de Sande et al., 2010),
for building facade images.
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