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Summary 

Denitrification is the main source of N2O emissions from cryoturbated peat circles in the Eastern 

European Arctic tundra. These permafrost-affected bare peat circles lack vegetation, have a high 

amount of available nitrate, and a low carbon to nitrogen ratio. Together with a soil moisture of 

~ 70%, these are optimum conditions for denitrification and associated microorganisms.  An 

acidic in situ pH of these peat circles is hypothesized to be a major controlling factor influencing 

denitrification and triggering the release of N2O as emitted end product of denitrification, as the 

final enzymatic step of denitrification is impaired by a low pH. This thesis aimed to test if the 

ecophysiology of new and acid-tolerant denitrifiers affects the emissions of N2O from 

cryoturbated peat circles. 

Microcosm experiments with soil from bare peat circles and surrounding vegetated peat plateau 

were conducted to test denitrification potentials of both soils. Additionally, the influence of pH 

on denitrification was tested. Nitrate reduction and associated production of gaseous N-

products by denitrification were detected in both soils. In peat circle soil microcosms, 

independent of pH, the released end product was N2. Though nitrate reduction was slower at 

pH 4. In peat plateau microcosms N2 was as well the emitted main end product at pH 6, whereas 

at pH 4 N2O was emitted. Therefore, data indicate the potential for denitrification in both soil 

types, as well as complete denitrification potential at acidic pH in peat circles.  

Microcosms experiments supplemented with labeled acetate were conducted to reveal the 

active, organic acid utilizing archaeal and bacterial community of denitrifiers based on 16S rRNA 

stable isotope probing coupled to Illumina MiSeq amplicon sequencing. Results suggest 

Burkholderiaceae as key nitrate reducers and acetate assimilators. This is supported by a new 

species within the Burkholderiaceae (Caballeronia) isolated from peat circle soil that encodes 

diverse nitrate and nitrite reductases. Potential key denitrifiers responsible for the reduction of 

N2O to N2, the detected end product and product of complete denitrification, are 

Sphingobacteriacea. Altogether, collected data suggest an electron donor limitation in peat 

circle soil leading to high in situ emission of N2O, since peat circle soil demonstrated the potential 

for complete denitrification despite an acidic pH.  

 

Keywords: denitrification, N2O, permafrost, peat soil, Burkholderiaceae 
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Zusammenfassung 

Denitrifikation ist die Hauptquelle von N2O-Emissionen aus kryoturbierten Torfkreisen der 

osteuropäischen arktischen Tundra. Diesen vom Permafrost betroffenen kahlen Torfkreisen 

mangelt es an Vegetation, sie haben eine hohe Menge an verfügbarem Nitrat und ein niedriges 

Kohlenstoff-zu-Stickstoff-Verhältnis. In Kombination mit einer Bodenfeuchtigkeit von ~ 70% 

ergeben sich so optimale Bedingungen für die Denitrifikation und die damit assoziierten 

Mikroorganismen. Es wird angenommen, dass ein saurer in situ pH-Wert dieser Torfkreise ein 

wichtiger Kontrollfaktor ist, der die Denitrifikation beeinflusst und der Auslöser für die 

Freisetzung von N2O als emittiertes Endprodukt der Denitrifikation ist, da der letzte 

enzymatische Schritt der Denitrifikation durch einen niedrigen pH-Wert beeinträchtigt wird. Ziel 

dieser Arbeit war es zu testen, ob die Ökophysiologie neuer und säuretoleranter Denitrifizierer 

die N2O-Emissionen aus kryoturbierten Torfkreisen beeinflusst. 

Mikrokosmos-Experimente mit Boden aus kahlen Torfkreisen und dem umgebenden 

bewachsenen Torfplateau wurden durchgeführt, um die Denitrifikationspotentiale beider 

Böden zu testen. Zusätzlich wurde der Einfluss des pH-Wertes auf die Denitrifikation getestet. 

Die Nitratreduktion und die damit verbundene Produktion von gasförmigen N-Produkten durch 

Denitrifikation wurde in beiden Böden nachgewiesen. In Torfkreis-Bodenmikrokosmen war das 

freigesetzte Endprodukt, unabhängig vom pH-Wert, N2. Wobei die Nitratreduktion bei pH 4 

langsamer verlief. In Torfplateau-Bodenmikrokosmen bei pH 6 war ebenfalls N2 das freigesetzte 

Hauptendprodukt, während bei pH 4 N2O emittiert wurde. Die Daten weisen daher auf das 

Potential zur Denitrifikation in beiden Bodentypen hin, sowie auf das Potential zur vollständigen 

Denitrifikation bei saurem pH-Wert in Torfkreisen.  

Mikrokosmos-Experimente, supplementiert mit markiertem Acetat, wurden durchgeführt, um 

die aktive organische Säuren nutzende archaeelle und bakterielle Gemeinschaft von 

Denitrifizierern auf der Grundlage eines 16S rRNA basierenden Stabilen-Isotopen-Beprobungs-

verfahren gekoppelt an eine Illumina MiSeq Amplikon-Sequenzierung, zu enthüllen. Die 

Ergebnisse deuten auf Burkholderiaceae als wichtige Nitratreduzierer und Acetatassimilierer 

hin. Dies wird durch eine neue Art innerhalb der Burkholderiaceae (Caballeronia) unterstützt, 

die aus Torfkreisboden isoliert wurde und diverse Nitrat- und Nitritreduktasen kodiert. 

Potenzielle Hauptdenitrifizierer, die für die Reduktion von N2O zu N2, dem nachgewiesenen 

Endprodukt und Produkt der vollständigen Denitrifikation, verantwortlich sind, sind 

Sphingobacteriacea. Die Datenlage in ihrer Gesamtheit deutet auf eine Limitierung von 

Elektronendonoren im Torfkreisboden, die zu einer hohen in-situ-Emission von N2O führt, da der 
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Torfkreisboden trotz eines sauren pH-Wertes das Potenzial für eine vollständige Denitrifikation 

aufweist. 

 

Schlagwörter: Denitrifikation, N2O, Permafrost, Torfboden, Burkholderiaceae 

  



Acknowledgements 

VI 

Acknowledgements 

This dissertation would not have been possible without the help and inspiration of other people. 

First of all, I would like to thank Prof. Dr. Marcus Horn, my supervisor who guided me through 

all these years of work and was highly supportive during my time as a doctoral student. For the 

opportunities he gave me for scientific research and conference networking, as well as the 

chance to take part in helping to build a new working group, equip new laboratories and get out 

of my comfort zone by moving into a new city, I am very thankful. 

Then, of course, thanks to all the people from the days back in Bayreuth and the Department of 

Ecological Microbiology. I had a great time and people always lend a helping hand, were very 

supportive and willing to share their knowledge in discussions.  

I am grateful for the warm welcome at the Department of Microbiology when I first arrived in 

Hannover. It was not very hard to get settled in the new working space with all the great 

colleagues, former and current ones. A big thank you goes out to all my dear Hörnchens! You 

are the best working group one could wish for. I enjoyed all the great, often controversial, 

discussions concerning work and science topics, and very much the off-topic ones. I know I am 

not only going to miss our social Thursdays. 

A very warm thank you goes out to my dear friend Kai, who was there for me through good 

times, and sometimes not so good times. There are no words to describe how thankful I am to 

have met you.  

There are a lot more people out there, aware or unaware of their contributions and support. 

Sometimes it is the little things. Thank you! 

Last, but definitely not least, I would like to thank my family. Without you I would not be where 

I am today. Thank you for always supporting me, I love you. 

 

  



List of Figures 

VII 

List of Figures 

Figure 1: Circum-Arctic permafrost and ground ice map. Modified after (Brown et al., 1997); 

International Permafrost Association. .......................................................................................... 1 

Figure 2: Proposed model of environmental factors determining N2O emissions from 

cryoturbated peat circles. Width and length of arrows and font size indicative for substrate input 

and product output. .................................................................................................................... 21 

 

 

  



List of Abbreviations 

VIII 

List of Abbreviations 

C   carbon 

CH4   methane 

CO2   carbon dioxide 

DNRA   dissimilatory nitrate reduction to ammonium 

GHG   greenhouse gas 

N   nitrogen 

N2   molecular nitrogen 

N2O   nitrous oxide 

NH4
+   ammonium 

NO   nitric oxide 

NO2
-   nitrite 

NO3
-   nitrate 

OTU   operational taxonomic unit 

PC   cryoturbated peat circle soil 

PP   peat plateau soil 

 



1 General introduction 

1 

 

1 General introduction 

1.1 Permafrost regions 

Subsurface that stays below 0 °C for at least two consecutive years is defined as permafrost 

(Everett, 1989) and occurs primarily in regions with cold winter temperatures and shallow snow 

cover, which results in a long-term negative annual heat energy balance of land surface. 

Permafrost is a characteristic feature of the ice and glacier free circum-Arctic region (Brown et 

al., 1997).  

 

Figure 1: Circum-Arctic permafrost and ground ice map. Modified after (Brown et al., 1997); International Permafrost 
Association.  

Approximately 16-25% of the global soil surface area are covered by permafrost (Figure 1), 

including large peatland areas, e.g. up to 80% of the West Siberian surface area, and are 

estimated to store 50% of the global below ground organic carbon, a potential donor for the 

generation of reactive N- from less reactive N-species  (Anisimov, 2007; Tarnocai et al., 2009). 

High carbon content is corelated with high organic N content, therefore northern peatlands are 

assumed to be large N reservoirs (Post et al., 1985), storing an estimated 67 Pg N in the upper 3 

m of soil (Harden et al., 2012). This is 500 times more than the annually globally loaded N to soils 

as fertilizer (Bouwman et al., 2013; Stocker et al., 2018), with northern peatland soils alone 

storing approximately 10% of the global soil organic matter N (Limpens et al., 2008; Loisel et al., 
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2014). All these low-temperature environments are colonized by cold-adapted microorganisms 

represented by all three domains of life: Archaea, Bacteria, and Eukarya (Casillo et al., 2019). 

 

1.2 Greenhouse gases 

Greenhouse gases (GHGs) re-emit energy they absorb from the lower atmosphere and thereby 

alter Earth’s climate. Indeed, GHGs are the main drivers of climate change (Stocker et al., 2018). 

Warming induced by GHGs is mainly due to anthropogenic CO2 emissions, though not alone. 

Further gases affecting climate are CH4, N2O, hydrofluorocarbons (HFCs), sulphur hexafluoride 

(SF6) and perfluorocarbons (PFCs) (Montzka et al., 2011). They can have an effect on climate 

decades, even up to millennia, after their emission, depending on their persistence in the 

atmosphere. Non-CO2 GHG emissions associated with anthropogenic sources will continue to 

rise and further increase global warming, since they are often linked to food and energy 

production (Montzka et al., 2011). The global warming potential of GHGs is based on their 

influence on climate, which is defined through their ability to absorb infrared radiation and their 

atmospheric lifetime, integrated over time (Montzka et al., 2011). This climate influence is then 

expressed in relation to an equivalent mass of CO2 (Montzka et al., 2011). N2O is the third most 

important greenhouse gas after CO2 and CH4. Its atmospheric concentration increased from 270 

to 319 ppm between 1750 and 2005, which is critical not only due to its long atmospheric 

lifetime and its role as ozone depleting substance (Forster et al., 2007; Ravishankara et al., 2009), 

but also because of its high global warming potential, that is 300 times higher than that of CO2 

on a 100 year basis (Forster et al., 2007; Spahni et al., 2005).  

 

1.2.1 Greenhouse gases and climate change 

In the European north of Russia significant permafrost degradation is occurring. Moreover, 

through the end of the century, the projected regional climate warming is almost twice that of 

the global average (Anisimov et al., 2013; Romanovsky et al., 2017). Between 1975 and 2005 

permafrost with a thickness of 10 to 15 m thawed completely in the Vorkuta area (Oberman, 

2008) (Figure 1). Hence, the southern permafrost boarder retreated north by approximately 80 

km and the continuous permafrost boarder has moved north by 15 to 50 km (Oberman, 2008). 
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Moreover, in the past several decades taliks, unfrozen soil layers within permafrost, have 

developed, and the thickness of existing closed taliks increased in the Vorkuta region from 6.1 

to 6.7 m (Romanovsky et al., 2010). Major factors, despite climatic factors, that explain 

permafrost and active layer trends at larger scales are local vegetation and soil variability 

(Streletskiy et al., 2015). For instance, well-drained landscapes like sandy tundra and blow outs, 

with little organic material, show more pronounced permafrost temperature responses to 

atmospheric variability compared to peatlands, mires, and bogs (Melnikov et al., 2004; 

Streletskiy et al., 2012; Vasiliev et al., 2008). Recent studies reported significant warming of 

active layer soil temperatures in the tundra landscape of the Vorkuta area from 1997 to 2018, 

that changed from -3.8°C to -1.9°C, accompanied by a near-surface permafrost thaw (Vasiliev et 

al., 2020). In addition, the permafrost table was lowered to 1.2 m below the ground surface in 

2015 from 0.6 m in 1999 (Vasiliev et al., 2020). Though, permafrost warming was rather 

moderate and ranged from 0.04 to 0.05°C yr-1 (Vasiliev et al., 2020). The region is situated in a 

metastable stage of permafrost degradation, after ground ice in the transient layer is completely 

thawed and permafrost degradation is enhanced (Vasiliev et al., 2020). Warming air 

temperature and added winter insulation, together with active layer thickening, permafrost 

table lowering, and an increasing ground temperatures, drive the observed permafrost 

degradation (Vasiliev et al., 2020). 

As a result of climate change and subsequent permafrost thaw, processes of the N-cycle are 

assumed to be fueled by the increase of available N (Anisimov, 2007; Marushchak et al., 2011). 

This is supported by studies investigating the effect of warming and permafrost thaw in in situ 

experiments along with higher temperatures experiments that result in increased N2O emissions 

(Voigt et al., 2017b, 2017a; Yang et al., 2018). 

 

1.2.2 Nitrous oxide and its formation  

Soils, especially agricultural and tropical rainforest soils, are the main source of N2O emissions 

and for 60-70% of the annually emitted N2O (Behrendt et al., 2019; Christensen, 2009; Conrad, 

1996; Denman et al., 2007; Marushchak et al., 2011; Mosier et al., 1998; Repo et al., 2009). Both 

abiotic and biotic processes can lead to the formation of N2O. Chemodenitrification is an abiotic 

process that can contribute to the emission of N2O under low pH and oxygen limited conditions, 

though the main products of the process are NO and NO2 (Kresovic et al., 2009; van Cleemput, 
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1998). Furthermore, the process will most likely be outcompeted by the faster microbial 

denitrification (Kresovic et al., 2009; van Cleemput, 1998). Biotic processes leading to the 

emission of N2O include nitrification, dissimilatory nitrate reduction to ammonium (DNRA) and 

denitrification. Ammonia oxidizing archaea, performing the first step of nitrification, are well 

known for their contribution to N2O emissions from aerated soil and sediment (Siljanen et al., 

2019). Although N2O is not formed enzymatically and originates form the non-enzymatic 

conversion of the released intermediates NO and hydroxylamine (NH2OH) (Zhu-Barker et al., 

2015). In anaerobic soils and sediments, the emissions of N2O can be attributed to DNRA or 

denitrification, depending on the C/N ratio and the pH (Rütting et al., 2011; Tiedje et al., 1983; 

Yoon et al., 2015). However, in terms of DNRA N2O is only a byproduct, produced via the non-

specific interaction of nitrate reductase with NO2
- (Philippot and Hojberg, 1999; Smith and 

Zimmermann, 1981). For further details see section 4.2.3 Dissimilatory nitrate reduction and 

associated organisms in Horn and Hetz, 2021. 

 

1.3 Denitrification 

Denitrification is defined as the sequential reduction of NO3
- or NO2

- to molecular dinitrogen gas 

via the gaseous intermediates NO and N2O: 

 NO3− (+5) →  NO2 − (+3) →  NO(+2)  →  N2O (+1) →  N2(0)
 

 

Microorganisms can possess all or only particulate enzymes associated with denitrification, 

hence, many truncated forms exist and N2O is not only an obligate intermediate of this process, 

but also a possible end product (Cofman Anderson and Levine, 1986; Stein and Klotz, 2016). For 

further details see section 4.2.3 Dissimilatory nitrate reduction and associated organisms in Horn 

and Hetz, 2021. 
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1.3.1 Denitrifying microorganisms 

Denitrifiers can be found within all three domains of life (Archaea, Bacteria, and Eukarya), 

showing a high phylogenetic and functional variability. More than 60 genera are known to 

harbor denitrifiers (Philippot et al., 2007; Zumft, 1997), the major genera being the bacterial 

Alpha-, Beta-, Gamma-, and Epsilonproteobacteria, and the Firmicutes. Within the Eukarya, 

denitrification is mainly limited to fungi, even though it has also been reported to occur in some 

foraminifer species (Kraft et al., 2011). However, fungi generally lack the nitrous oxide reductase 

and the released end product is N2O (Chen et al., 2014; Lavrent’ev et al., 2008; Morozkina and 

Kurakov, 2007; Mothapo et al., 2015; Takaya, 2009).  

The majority of denitrifiers are facultative, heterotrophic anaerobes that use sugars and/or 

organic acids as electron donors but are generally not capable of growing by fermentation. 

However, reduced S-compounds, H2, NH4
+, NO2

-, or Fe2+ can be used as alternative electron 

donors by autotrophic denitrifiers (Shapleigh, 2006; Tiedje, 1988; Zumft, 1992). Another 

possible form of denitrification, though biochemically challenging, is the methane dependent 

denitrification, that oxidizes CH4 with NO3
-/NO2

- via denitrification (Thauer and Shima, 2008), 

e.g. by the bacterium “Candidatus Methylomirabilis oxyfera” of the candidate phylum NC10  

(Ettwig et al., 2010). Under oxygen limiting conditions, many of the classical “autotrophic” 

ammonia oxidizers are capable of denitrification as well by converting NH4
+ to NO2

-, which is 

then sequentially reduced to NO and further to N2O (Colliver and Stephenson, 2000). In addition, 

many heterotrophic nitrifiers are capable of aerobic denitrification, using the periplasmic nitrate 

reductase napA and either one of the nitrite reductases nirS or nirK. The end product of aerobic 

denitrification is primarily N2O (Ji et al., 2015; Stein, 2011). For further details see section 4.2.3 

Dissimilatory nitrate reduction and associated organisms in Horn and Hetz, 2021. 

 

1.3.2 Enzymes involved in denitrification 

Complete denitrification from NO3
- to N2 involves four reductions catalyzed by seven enzymes 

(Zumft, 1997). The reduction of NO3
-, common to denitrification and nitrate ammonification, is 

catalyzed by the nitrate reductase Nar or Nap (Zumft, 1997). The reduction of NO2
- is performed 

by the nitrite reductase NirK or NirS, the key enzyme of denitrification, and results in the first 

gaseous product of the process, NO (Zumft, 1997). In the next step, NO is reduced to N2O by the 
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NO reductase cNor or qNOr, with qNor also being used by non-denitrifying prokaryotes for NO 

detoxification (Zumft, 2005). The last step of denitrification, the reduction of N2O to N2, is 

catalyzed by the only known enzyme capable of this reaction, the nitrous oxide reductase Nos 

(Jones et al., 2008; Zumft, 1997). For further details see section 4.2.3 Dissimilatory nitrate 

reduction and associated organisms in Horn and Hetz, 2021. 

 

1.3.3 Factors influencing denitrification in soils 

Denitrification can act as source or sink of N2O, depending on several factors, including pH, the 

C/N ratio, as well as oxygen and substrate availability, and the microbial community (Bergaust 

et al., 2010; Bru et al., 2011; Dorsch et al., 2002; Enwall et al., 2005; Holtan-Hartwig et al., 2000; 

van Cleemput, 1998). Acidity, early growth phase, and high NO3
-/organic carbon ratios stimulate 

release of N2O during denitrification (Baggs et al., 2010; Van Breemen and Feijtel, 1990). Indeed, 

in certain systems denitrification is impaired by a pH below 5 and associated with an increased 

product ratio of N2O to N2 (Cuhel et al., 2010; Simek et al., 2002). This product ratio can also 

reflect the relative abundance of the bacterial community capable of N2O reduction in the 

environment (Graf et al., 2014; Hallin et al., 2012; Philippot et al., 2009). Highest known N2O 

emissions from natural terrestrial ecosystems originate in the tropics, where a high supply of 

mineral nitrogen and favorable soil moisture occur, both supporting conditions for N2O 

production (Potter et al., 1996; Repo et al., 2009; Werner et al., 2007). In contrast, low N2O 

emissions have been reported from pristine terrestrial ecosystems at northern latitudes 

(Martikainen et al., 1993; Potter et al., 1996), where cold humid conditions  (Shaver et al., 1992) 

and low atmospheric deposition of N (Dentener et al., 2006) slow the mineralization of organic 

matter. Therefore, plants and microorganisms compete for available nitrogen, which is scarce. 

Biological processes are generally N limited in northern latitudes (Jonasson et al., 1999), leading 

to low N2O emissions from these systems. However, such a view is now changing for certain 

permafrost-affected systems as outlined below. For further details see section 4.2.3 

Dissimilatory nitrate reduction and associated organisms in Horn and Hetz, 2021. 
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1.4 Major goals 

Cryoturbated peat circles of the Arctic tundra are “hot spots” of N2O emissions, contrary to the 

surrounding unturbated peat plateau soil (Marushchak et al., 2011; Repo et al., 2009). N2O, also 

known as laughing gas, is a potent greenhouse gas with an atmospheric lifetime of 

approximately 114 years and a global warming potential about 300-fold higher than CO2 (Forster 

et al., 2007; Spahni et al., 2005). Permafrost affected systems are considered as reactive 

concerning global warming (Stocker et al., 2018). New, acid-tolerant nitrate reducers and 

denitrifiers inhabit these systems and are potential sources of N2O emissions. The reduction of 

NO3
- to NO2

- is part of the denitrification process. Denitrification is the sequential reduction of 

N-oxides like NO3
- and NO2

- to N2O and molecular N2 via NO. N2O is formed as an intermediate 

during denitrification, but, depending on denitrification regulation, can also be consumed and 

further reduced to N2 (Zumft, 1997). Major factors influencing N2O production and consumption 

are the availability of nitrate and oxygen, as well as pH. It is assumed that the ratio of N2O to N2 

rises as the pH drops below 6.5, therefore leading to an increase in N2O emissions at low pH 

(Cuhel et al., 2010; Simek and Cooper, 2002). It is furthermore assumed that the N2O-reductase 

is inhibited at low pH and therefore N2O is the emitted end product of denitrification (Liu et al., 

2014). Even though denitrification is a major N2O-forming process and denitrification is an 

important process controlling N2O-emissions in peat soils, the ecophysiology of active 

denitrifiers is mostly unknown. Therefore, denitrifiers and nitrate reducers associated with N2O-

emissions, as well as diverse environmental factors, were investigated.  

The main hypothesis of this work was that the ecophysiology of new and acid-tolerant denitrifier 

communities affects the emission of N2O from cryoturbated peat circles. For this purpose, (i) the 

phylogeny of active, organic acid utilizing denitrifiers based on 16S rRNA, (ii) the relative effect 

of bacteria and archaea, and (iii) the effect of environmental factors on new, acid-tolerant key-

denitrifiers in cryoturbated peat circles was investigated and identified. Furthermore (iv) key-

denitrifiers were isolated and characterized. 

 

1.5 Structural note 

The research objectives were addressed in four different experiments, represented as 

manuscripts and discussed therein. Original ideas for the experiments and incubations set ups 
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were conceived together with the co-authors of these manuscripts. Experiments were 

conducted by myself, as well as analysis, if not stated otherwise. I contributed significantly to 

the discussion and interpretation of results, first drafts of manuscripts were written by me and 

refined with the co-authors.  
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2.4 Published abstracts at national and international conferences 

1. Hetz SA, Horn MA (2016). Nitrous oxide production in peat circles of the arctic tundra is driven 

by available organic carbon limited denitrifiers. 16th International Symposium on Microbial 

Ecology (ISME-16). 
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Pristine permafrost-affected acidic peat circles of the Eastern European Tundra contain up to 2 

mM nitrate and emit nitrous oxide (N2O) in the range of heavily fertilized agricultural soils. N2O 

is a greenhouse gas and ozone depleting substance. Thus, its origin and fate are of major 

concern. During anoxia, denitrification, which is the sequential reduction of nitrate via nitrite, 

nitric oxide, and N2O to dinitrogen gas (N2), is the main process yielding N2O. Denitrification is 

regulated by organic carbon to nitrate ratios, pH, and the N2O/N2 ratio. The assembly of a 

functional N2O-reductase of neutrophilic model denitrifiers is blocked at acidic pH. Diverse novel 

denitrifiers are associated with the N2O production of peat circles and it is hypothesized that 

peat circle denitrifiers are (i) adapted to low pH and capable of complete denitrification, and (ii) 

operating under substrate limitation. Anoxic slurry incubations were conducted at in situ near 

pH 4. The effect of [13C]- and [12C]-acetate on denitrification was tested with and without nitrate 

and with and without acetylene. Acetate with nitrate stimulated denitrification by 150% and 

nitrate stimulated acetate consumption concomitant to CO2 production rates by 200% relative 

to control treatments. In the absence of acetylene, nitrate was consumed but N2O was not 

detectable, suggesting complete denitrification. Differential RNA stable isotope probing is 

ongoing to identify the denitrifying key players in peat circles. The data indicate that peat circle 

denitrifiers produce large amounts of nitrate derived N2 via complete denitrification at pH 4 

under substrate limited conditions. 

 

2. Hetz SA, Horn MA (2016). Denitrifiers limited by available organic carbon drive nitrous oxide 

production in peat circles of the arctic Tundra despite their capability for nitrous oxide 

consumption. XI. International Conference on Permafrost (ICOP 2016). 

Pristine permafrost-affected acidic peat circles (pH approximates 4) in the Eastern European 

Tundra have recently been discovered to harbor up to 2 mM of pore water nitrate (NO3) and 

emit significant amounts of nitrous oxide (N2O) in the range of heavily fertilized agricultural 

fields. N2O is a greenhouse gas and ozone depleting substance. Thus, processes releasing and 

consuming N2O are of major concern. Under anoxic conditions, N2O is primarily produced by 

denitrification, which is the sequential reduction of nitrate via nitrite, nitric oxide, and N2O to 

dinitrogen gas (N2) in the absence of oxygen. Denitrification can act as both source and sink of 

N2O. Denitrifiers are facultative aerobes that respire N-oxides rather than oxygen when oxygen 

becomes limited. Diverse new denitrifiers are associated with the N2O production of peat circles. 
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Microbially available organic carbon to nitrate ratios and pH regulate denitrification and the 

N2O/N2 ratio. High nitrate and pH-values lower than 6.5 increase the N2O/N2 ratio. Indeed, the 

assembly of a functional N2O-reductase of neutrophilic model denitrifiers is blocked at acidic pH. 

It is hypothesized that (i) peat circle denitrifiers are adapted to low pH and capable of complete 

denitrification to N2, and (ii) high nitrate pore water concentrations in and N2O fluxes of peat 

circles are due to denitrifiers operating under substrate (i.e., microbially easily degradable 

organic carbon) limited conditions. Anoxic slurry incubations with peat circle soil were 

conducted at in situ near pH 4 and under more neutral conditions at pH 6. Soil slurries were 

supplemented with and without nitrate in the presence or absence of acetylene (inhibitor of the 

N2O-reduction to N2). Supplemental nitrate was quickly consumed and N2O produced in the 

absence of oxygen at both pH-values. In treatments with acetylene, almost 100 % of 

supplemented nitrate-N was recovered in N2O-N. N2O was essentially not detected in the 

absence of acetylene. Ammonium, ferrous iron, sulfate and methane remained stable 

throughout the incubation or were below the detection limit, indicating that dissimilatory 

nitrate reduction to ammonium, iron and sulfate reduction as well as methanogenesis were 

marginal. Thus, the denitrifier communities present in peat circles are capable of complete 

denitrification at low pH. 

In a second set of incubations, the effect of [13C]- and [12C]- acetate on denitrification was tested 

in anoxic soil slurries at pH 4 with and without nitrate and in the presence of acetylene. 

Substrates were supplemented in pulses. Acetate was consumed without appreciable delay with 

nitrate and stimulated denitrification by 150% relative to nitrate only treatments. Nitrate 

stimulated acetate consumption and CO2 production rates by 200% relative to acetate only 

treatments. Recovery of [13C]-acetate carbon in [13C]O2 in nitrate and acetate supplemented 

slurries approximated 30-40%. [13C]-labeled organic acids were insignificant, suggesting a 

substantial assimilation of acetate carbon by peat circle microbes. Recovery of nitrate-N in N2O-

N approximated 50%, likewise indicating assimilation. 65% of the total CO2 was [13C]O2, 

suggesting that acetate carbon was preferentially dissimilated relative to peat derived organic 

carbon. In the absence of acetylene, results were similar to incubations in the presence of 

acetylene with the exception that N2O was not detectable, suggesting complete denitrification. 

Experiments are ongoing to identify the denitrifying key players in peat circles by stable isotope 

probing. 
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The combined data indicate that peat circle denitrifiers are substrate limited, thus producing 

large amounts of nitrate derived N2O despite their remarkable capability to reduce N2O and 

complete denitrification at pH 4. 

 

3. Hetz SA, Horn MA (2018). Complete denitrification at pH 4 in peat circles of the arctic Tundra 

is primarily driven by acetate assimilating Burkholderiaceae. 17th International Symposium on 

Microbial Ecology (ISME-17). 

The assembly of a functional nitrous oxide (N2O) reductase of classical neutrophilic model 

denitrifiers is impaired at pH < 6 resulting in increased N2O/N2 (dinitrogen gas) ratios. 

Accordingly, acidic peat circles (pH 4) in the Eastern European Tundra, with up to 2 mM pore 

water nitrate, emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate 

regions. The main process yielding N2O under anoxic conditions is denitrification, i.e. the 

sequential reduction of nitrate to N2O and N2. Organic carbon to nitrate ratios and pH are crucial 

factors impacting denitrification and N2O/N ratios. Active key denitrifiers of peat circles are 

important but hitherto unknown. Thus, it is hypothesized that acid tolerant peat circle 

denitrifiers are new, impaired by pH and unable to reduce N2O. Anoxic microcosms +/- 

supplemental nitrate and +/- acetylene (N2O reductase inhibitor) at in situ pH 4 were used to 

test the effect of [13C]- and [12C]-acetate on denitrification and N2O production. Relative to 

unsupplemented controls, nitrate alone stimulated N2O production by 1000 % and supplemental 

acetate with nitrate stimulated N2O production by 330 %, with rather than without acetylene, 

suggesting complete denitrification at pH 4. Burkholderiaceae, other Proteo-, and Actinobacteria 

as well as Verrucomicrobia, were identified as key acetate assimilating denitrifiers in peat circles 

via 16S rRNA SIP. Collective data indicate that peat circles host new complete denitrifiers capable 

of N2O reduction at pH 4 that operate under substrate limitation in peat circles and thus produce 

large amounts of nitrate derived N2O. 

 

4. Hetz SA, Horn MA (2018). Burkholderiaceae are primary acetate assimilating denitrifiers in 

peat circles of the arctic tundra capable of complete denitrification at pH 4. 70th Annual 

Conference of the Association for General and Applied Microbiology (VAAM 2018). 
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Acidic peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM nitrate and emit 

the greenhouse gas nitrous oxide (N2O) like heavily fertilized agricultural soils in temperate 

regions. The sequential reduction of nitrate via nitrite, nitric oxide, and N2O to dinitrogen gas 

(N2), called denitrification, is the main process yielding N2O under anoxic conditions. Crucial 

factors altering denitrification and impacting the N2O/N2 ratio are organic carbon to nitrate 

ratios (OC/N) and pH. Low pH (< 6) blocks the assembly of a functional N2O-reductase of classical 

neutrophilic model denitrifiers and like a low OC/N results in increased N2O/N2 ratios. Active key 

denitrifiers of peat circles are important but unknown to date. Thus, it is hypothesized that peat 

circle denitrifiers are (i) new, (ii) adapted to low pH and capable of complete denitrification and 

(iii) operate under substrate limitation. The effect of [13C]- and [12C]-acetate on denitrification 

was tested in anoxic microcosms +/- supplemental nitrate and +/- acetylene at in situ near pH 4. 

Acetate with nitrate stimulated denitrification by 150% and nitrate stimulated acetate 

consumption and CO2 production rates by 200% relative to unsupplemented controls. In the 

absence of acetylene, N2O was not detectable, suggesting complete denitrification at pH 4. 16S 

rRNA SIP coupled to Illumina MiSeq v3 amplicon sequencing suggested Burkholderiaceae, and 

other Proteo-, Actinobacteria as well as Verrucomicrobia as key acetate assimilating denitrifiers 

in peat circles. The combined data indicate that peat circle denitrifiers are operating under 

substrate limiting conditions due to recalcitrant old peat material and produce large amounts of 

nitrate derived N2O despite their capacity for complete denitrification at pH 4. 

 

5. Hetz SA, Horn MA (2018). Acetate assimilating Burkholderiaceae from acidic peat circles of 

the arctic Tundra drive N2O consumption. 23rd European Nitrogen Cycle Meeting (ENC 2018). 

Acidic peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM pore water nitrate 

and emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate regions. 

Denitrification, i.e. the sequential reduction of nitrate to N2O and N2, is the main process yielding 

N2O under anoxic conditions. Crucial factors impacting denitrification and N2O/N2 ratios are 

organic carbon to nitrate (OC/N) ratios and pH. The assembly of a functional N2O reductase of 

classical neutrophilic model denitrifiers is blocked at pH < 6 resulting in increased N2O/N2 ratios. 

Active key denitrifiers of peat circles are important but unknown to date. Thus, it is hypothesized 

that acid tolerant peat circle denitrifiers are new, impaired by pH and unable to reduce N2O. 

Anoxic microcosms ± supplemental nitrate and ± acetylene at in situ near pH 4 were used to test 
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the effect of [12C]- and [13C]-acetate on denitrification and N2O production. Relative to 

unsupplemented controls with endogenous nitrate, acetate with nitrate stimulated 

denitrification by 30%. In the absence of acetylene, N2O was not detectable, suggesting 

complete denitrification at pH 4. Comparative 16S rRNA SIP coupled to Illumina MiSeq amplicon 

sequencing suggested Burkholderiaceae, other Proteo-, and Actinobacteria as well as 

Verrucomicrobia as key acetate assimilating denitrifiers in peat circles. Furthermore, data 

indicate that peat circle denitrifiers operate under substrate limiting conditions due to old peat 

material, thus producing large amounts of nitrate derived N2O, yet being capable of N2O 

reduction at pH 4. 
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3 Main results and general discussion 

3.1 Recapitulation of findings 

In order to test the hypothesis that the ecophysiology of new and acid-tolerant denitrifier 

communities affects the emission of N2O from cryoturbated peat circles, different research 

objectives were deployed. Reduction potentials for NO3
- and N2O of acidic permafrost affected 

peatland soil of the Eastern European Arctic tundra were investigated. Therefore, two soil types, 

peat circle (PC) and surrounding peat plateau (PP), were sampled and soil slurries were 

incubated under nitrate reducing conditions at in situ near pH 4 and more neutral pH 6. For an 

easy differentiation between complete denitrification to N2 and incomplete denitrification to 

N2O, the acetylene-inhibition technique was used. Acetylene inhibits the N2O reductase, leading 

to N2O as the released end product of denitrification during incubations (Yoshinari et al., 1977). 

Furthermore, to assess the phylogeny of active, organic acid utilizing denitrifiers the stable 

isotope probing (SIP) technique coupled to 16S rRNA analysis via Illumina MiSeq amplicon 

sequencing was applied. Therefore, PC soil slurry microcosms were either directly supplemented 

with (labeled) 13C-acetate and incubated, leaving indigenous NO3
- to be used by microorganisms, 

or soil slurries were preincubated and then supplemented with both NO3
- and 13C-acetate at the 

start of incubation. In an additional approach, key denitrifiers of PC and PP soil were isolated.  

Depletion of supplemented NO3
- to PC soil slurry microcosms occurred faster at pH 6 than at pH 

4, though at both pH values the end product of denitrification was N2. In addition, detected NH4
+ 

at the end of incubation was near detection limit, recovery of supplemented NO3
- as NH4

+ < 1%. 

The recovery as N2-N from supplemented NO3
- was 15% higher at pH 4 than at pH6, reaching 

approximately 64% and 49%, respectively. Fermentation potentials, as indicated by negligible 

amounts of organic acids detected, were low for PC microcosms. In PP soil slurry microcosms 

depletion of supplemented NO3
- occurred faster at pH 6 as well, but still ~ 5 times slower than 

in PC microcosms (2.5 vs 13 days) and with delay. Again, the main end product of denitrification 

was N2, with a recovery of 70% from supplemented NO3
-, though N2O accounted for an 

additional 12%. PP microcosms incubated at in situ near pH 4 emitted N2O independent of 

acetylene, suggesting N2O as the sole end product of denitrification that accounted for 

approximately 70% of supplemented NO3
-. The fermentation potential of PP soil was higher, 

since organic acids were detected in higher, though not significant, amounts compared to PC 
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incubations. PP microcosms from pH 6 showed the highest fermentation potential with the 

detection of produced formate and acetate after the incubation period. 

PC microcosms with in situ near pH 4 showed depletion of both NO3
- and acetate without delay. 

Based on the acetylene-inhibition technique, the sole end product of denitrification was N2, 

approximating 40% of supplemented NO3
-, and suggesting complete denitrification at acidic pH. 

N recovery as NH4
+ was < 0.1%. Supplemented labeled 13C-acetate could be recovered in the 

form of 13C-CO2 reaching ~30%, leaving a substantial amount of labeled 13C for potential 

incorporation into nucleic acids for the SIP analyses. After incubations were completed and 

terminated, phylogenetic analysis, i.e. Illumina MiSeq amplicon sequencing and bioinformatic 

processing, was performed. Sequences retrieved by DNA-SIP using a universal primer pair for 

sequence analysis, revealed a relative abundance of Archaea within samples of up to 7%, though 

Bacteria dominated throughout all samples with mean relative abundances of 94%. Archaeal 

operational taxonomic units (OTUs), as revealed by RNA-SIP, all affiliated with the phylum 

Crenarchaeota and were dominated by the order Nitrososphaerales, independent of incubation 

conditions. The bacterial community was more diverse than the archaeal one, with the pre-

incubation community being dominated by the classes Alpha- and Gammaproteobacteria, 

Verrrucomicrobiae, and Bacteroidia. After the incubation members of the family 

Burkholderiaceaea (Gammaproteobacteria) had the highest relative abundances, reaching up to 

50% in heavy fractions of 13C-acetate supplemented microcosms, independent of NO3
- 

supplementation. Key denitrifiers, as indicated by differential analysis of count data, were OTUs 

affiliated with the genus Mucilaginibacter within the family Sphingobacteriaceae. 

The isolation approach resulted in the finding of two isolates belonging to a new Caballeronia 

species, belonging to the Burkholderiaceaea, the highly abundant family at the end of SIP 

incubations. 

 

3.2 General discussion 

Slow mineralization of organic matter (Shaver et al., 1992), combined with a general limitation 

of bioavailable N (Jonasson et al., 1999), lead to the assumption that permafrost regions of the 

Arctic are insignificant in terms of N2O emissions. When, a decade ago, bare cryoturbated peat 

circles in the subarctic Eastern European Russian tundra were reported to emit N2O in the range 
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of heavily fertilized and tropical rainforest soils (Denman et al., 2007; Marushchak et al., 2011; 

Potter et al., 1996; Repo et al., 2009; Siljanen et al., 2019; Werner et al., 2007), this dogma 

needed to be reconsidered. 

Identified key reasons for the large N2O emissions from PC are the lack of vegetation, a low C/N 

ratio of the peat and a favorable moisture content (Repo et al., 2009). Microbial processes in PC 

depend on N from the mineralization of organic matter, since there is no considerable external 

N input from such as fertilization or atmospheric deposition (Marushchak et al., 2011). Gross N 

mineralization from bare PC soil is up to 6-fold higher than from vegetated PP soil. Due to the 

absence of plants, the mineralized N is readily available for microorganisms without competition 

(Marushchak et al., 2011). Nitrifiers are directly profiting from the high mineralization rates and 

the low NH4
+/NO3

- ratio in PC soil is indicative for nitrification derived NO3
- that is further 

available for denitrification (Marushchak et al., 2011). Previous studies showed that the lack or 

even the removal of plants can results in an increased mineral N content, right up to increased 

N2O emissions from soils (Maljanen et al., 2004; Marushchak et al., 2011). This phenomenon can 

also be reversed, as a restored peatland showed a decrease in N2O emissions after plant 

coverage was increased (Silvan et al., 2005). The low C/N ratio in PC soil can likely be attributed 

to the minerotrophic origin of the peat, an advanced stage of decomposition, where N is 

enriched relative to C when peat is decomposed (Kuhry and Vitt, 1996). Another factor 

controlling N2O emissions is soil moisture. It regulates the redox conditions, hence nitrification 

and denitrification (Klemedtsson et al., 1988). The optimum soil moisture for denitrification is 

between 60-70%, whereas nitrification occurs as main source of N2O emissions from drier soils 

(Abbasi and Adams, 2000; Bateman and Baggs, 2005; Dobbie et al., 1999). Therefore, PC soil 

with a soil moisture of approximately 70% as used for the experiments, provides ideal conditions 

for denitrifiers. Altogether, the lack of vegetation, relatively high N mineralization rates, high 

NO3
- concentrations, low C/N ratio and soil moisture content of ~ 70%, likely result in high in situ 

N2O emission from cryoturbated PC soil (Diáková et al., 2016; Marushchak et al., 2011; Palmer 

et al., 2010; Repo et al., 2009). But why is N2O and not N2 the emitted end product from PC soil? 

It is hypothesized that internal N-cycling fuels the large N2O emission, since a large proportion 

of excess N is available for denitrifiers (Diáková et al., 2016), hence, NO3
- will probably not be 

limited for PC denitrifiers and it is not mandatory for energy yields to utilize N2O as terminal 

electron acceptor (Zumft, 1997; Zumft and Kroneck, 2007).  
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Compared to PC soil, NO3
- concentration of vegetated PP soil is generally low and the NH4

+/NO3
- 

ratio is high, hence the NO3
- availability for denitrifiers is restricted (Marushchak et al., 2011; 

Repo et al., 2009). Denitrifiers not only compete for NO3
- with plants, but also with 

microorganisms capable of dissimilatory nitrate reduction to ammonium (DNRA) (Tiedje et al., 

1983). Factors regulating the differential electron flow towards denitrification and DNRA are 

NO3
- concentration, pH, and the C/N ratio. DRNA being favored under NO3

- limited conditions 

(Bleakley and Tiedje, 1982; Fazzolari et al., 1998). When comparing energy yields from DNRA 

and denitrification, the potential energy per electron donor (e.g. acetate) is higher for 

denitrification, but energy yield per mole NO3
- is slightly higher for DNA (Tiedje et al., 1983). 

Under in situ conditions, DNRA might therefore outcompete denitrification in PP soil. 

Nevertheless, results from microcosm experiments suggest supplemented NO3
- stimulated the 

indigenous denitrifier community of PC soil and lead to the release of N2O or N2, dependent on 

the pH, as end products of denitrification. This hypothesis is supported by the findings of a 

structural gene marker analysis in PP soil that revealed the genetic potential of the PP microbial 

community for (complete) denitrification (Palmer et al., 2012). Though, the abundances of 

detected marker genes for denitrification as well as the denitrifier communities differ 

phylogenetically from PC and PP soil (Palmer et al., 2012). In conclusion, contrasting N2O 

emissions from cryoturbated bare PC and unturbated vegetated PP soil (Marushchak et al., 

2011; Palmer et al., 2012; Repo et al., 2009; Siljanen et al., 2019) are the result of low NO3
- 

concentrations of vegetated PP soil and the dissimilar denitrifiers communities, rather than pH 

(Bru et al., 2011). 

Nevertheless, pH is a well-known factor regulating denitrification and its emitted products. 

Neutrophilic model organisms like Paracoccus denitrificans accumulate and release N2O at pH < 

7 (Bergaust et al., 2010). Results from recent studies lead to the hypotheses that the main cause 

preventing N2O reduction in soils with acidic pH is the preclusion of a successful assembly of a 

functional N2O reductase (Liu et al., 2014). Contrasting to field measurements and in situ 

incubation experiments (Marushchak et al., 2011; Palmer et al., 2012; Repo et al., 2009; Siljanen 

et al., 2019), the end product of denitrification in all PC microcosm experiments was N2, as 

indicated by the acetylene-inhibition technique, and not N2O. There are reports of acidic 

peatlands acting as temporary sinks for atmospheric N2O from both in situ measurements and 

microcosm experiments (Kolb and Horn, 2012; Marushchak et al., 2011; Palmer et al., 2010; 

Palmer and Horn, 2012). How is this possible, if the assembly of a N2O reductase is impaired by 

low pH? The explanation for this phenomenon might be microsites. Active denitrifiers, when 
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present in high density, might cluster together, similar to biofilm formation, resulting in a higher 

pH within these microsites which enables the assembly of a functional N2O reductase (Liu et al., 

2014). Though, in general, the ratio of N2O to total N gases emitted is higher in acidic soils 

compared to more pH-neutral soils (Simek and Cooper, 2002). Furthermore, the phylogenetic 

diversity, reflected in the soil microbial community structure, is affected by pH (Fierer and 

Jackson, 2006; Lauber et al., 2009). Rhodanobacter sp., e.g. Rhodanobacter denitrificans, are 

known acid tolerant bacteria capable of complete denitrification and have been reported from 

acidic subsurface environments associated with denitrification (Green et al., 2010; Van Den 

Heuvel et al., 2010). Approximately two-thirds of cultured denitrifiers harbor the gene for 

nitrous oxide reductase (nosZ) and are capable of complete denitrification, i.e. the utilization of 

N2O as terminal electron acceptor when NO3
- is limited (Zumft, 1997; Zumft and Kroneck, 2007). 

Collected data from the current studies, as well as from previous studies (Palmer et al., 2012), 

suggest that N2O will be used as terminal electron acceptor by acid-tolerant denitrifiers in PC 

soil, hence PC soil can act as temporary sink for N2O emissions, though this might not be relevant 

under in situ conditions due to the high supply of NO3
-. Well known for their direct contribution 

to N2O emissions during nitrification under (micro)oxic conditions in Arctic soils are ammonia 

oxidizing Archaea (Siljanen et al., 2019). Members of the Thaumarchaeota, recently re-

integrated into the Crenarchaeota, include ammonia oxidizers preferring acidic pH < 5.5 and low 

NH4
+ concentrations (De La Torre et al., 2008; Gubry-Rangin et al., 2010; Lehtovirta-Morley et 

al., 2011; Prosser and Nicol, 2008), in situ conditions that can be found in PC soil (Marushchak 

et al., 2011; Repo et al., 2009). Niche differentiation of ammonia oxidizing Archaea, as reported 

from Arctic soils, is shaped by soil moisture and N content, comprising a high β-diversity of 

Thaumarchaeota/Crenarchaeota (Alves et al., 2013). Positive correlations between NO3
- 

concentrations and amoA (ammonia monooxygenase subunit A) gene abundance were reported 

from permafrost affected peat soil surfaces from Finland and Siberia that emit N2O in the range 

of or even higher than managed peatland soils from northern countries (Siljanen et al., 2019). In 

the conducted SIP experiments, the archaeal community structure was not affected by any of 

the applied incubation conditions, though the importance of ammonia oxidizing Archaea as in 

situ source of N2O emissions from northern peatlands, including cryoturbated PC soil, has to be 

considered and needs to be investigated further. 

The microbial community from PC soil as reported from SIP experiments before 

supplementation is consistent with those from previous reports (Palmer et al., 2012). After 

incubation, the OTU with the highest relative abundance affiliated with Burkholderiaceae. 
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Screening of bacterial genomes, including several genomes from Burkholderiaceae 

representatives, revealed the presence of nosZ as well as nirK genes in diverse Burkholderiaceae 

(Sanford et al., 2012), thus the genetic potential of these organisms for denitrification. 

Burkholderia sp. isolated from Sphagnum tissue covering a Finnish acid mire, were reported to 

have their pH optimum at ~5 and produce N2O after NO3
- supplementation during incubation, 

independent of the presence or absence of acetylene. Every isolate harbored the gene for the 

nitrate reductase NarG, while neither typical nor atypical N2O reductase genes could be 

amplified and detected. Suggesting these Burkholderia sp. as incomplete denitrifiers (Nie et al., 

2015). Isolated new Caballeronia strains within the Burkholderiaceae from PC soil encode 

diverse nitrate and nitrite reductases, as well, but no genes encoding for a N2O reductase could 

be detected (Hetz et al., 2020). Data emphasizes on Burkholderiaceae being important nitrate 

reducers and potential key players for high in situ N2O emissions from PC soil. Potential N2O 

reducers in microcosm experiments with PC soil are Mucilaginibacter. These bacteria have been 

found and isolated in acidic and or permafrost-affected soils, including an acidic Sphagnum peat 

bog in Siberia (Pankratov et al., 2007), the Arctic tundra of Finnish Lapland (Männistö et al., 

2010), and the High Arctic tundra of Norway (Jiang et al., 2012). Though, the role of 

Mucilaginibacter in nitrate reduction and denitrification in these soils has yet to be determined, 

current results suggest participation in nitrate reduction and denitrification of this genus in 

investigated PC soil under incubation conditions. Known for their ability to reduce N2O to N2 

under acidic conditions are members of the genus Rhodanobacter (Van Den Heuvel et al., 2010) 

and nitrite reductase sequences closely related to Rhodanobacter sp. were previously retrieved 

from an acidic (pH ~4) Finnish palsa peat, with relative abundances of OTUs in amplicon libraries 

of 5% in the upper 20 cm of soil (Palmer and Horn, 2012). Relative abundances of Rhodanobacter 

sp. were lower in the current studies, reaching up to 2% in total as revealed by DNA SIP. Again, 

the role of these organisms as N2O-reducers in PC soil has yet to be determined, though under 

applied incubation conditions Rhodanobacter sp. might have contributed to the reduction of 

N2O to N2. 

In conducted microcosm incubations for SIP analysis, N2O could only be detected in the presence 

of acetylene, when the final step of denitrification, the reduction of N2O to N2, was inhibited. 

Investigated apparent Michaelis-Menten kinetics of nitrate-dependent denitrification in anoxic 

microcosms revealed that PC denitrifiers were saturated with less than half of the NO3
- 

concentrations occurring in situ, therefore suggesting a limitation of electron donor availability 

that restricts denitrification in cryoturbated PC soil (Palmer et al., 2012). Hence, when acetate 
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was supplemented for SIP analysis, a possible electron donor limitation was avoided and 

denitrification not restricted, leading to complete denitrification under these incubation 

conditions (Figure 2). This is supported by a study conducted with the bacterial denitrifier 

Alcaligenes faecalis in a steady state culture. By the addition of the electron donor acetate to a 

starved culture, the A. faecalis culture immediately reduced accumulated NO2
-, and N2 

production was increased (Schalk-Otte et al., 2000). Therefore, in situ electron donor limitation 

in cryoturbated PC soil might favor the emission of N2O, despite the molecular potential of the 

microbial community for the further reduction of N2O to N2.  

 

Figure 2: Proposed model of environmental factors determining N2O emissions from cryoturbated peat circles. 
Width and length of arrows and font size indicative for substrate input and product output. Corg – organic carbon. 
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