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Abstract

Entangled possibly mixed states are an essential resource for quantum computation, communi-
cation, metrology, and the simulation of many-body systems. It is important to develop and
improve preparation protocols for such states.
One possible way to prepare states of interest is to design an open system that evolves only

towards the desired states. A Markovian evolution of a quantum system can be generally de-
scribed by a Lindbladian. Tensor networks provide a framework to construct physically relevant
entangled states. In particular, matrix product density operators (MPDOs) form an important
variational class of states. MPDOs generalize matrix product states to mixed states, can rep-
resent thermal states of local one-dimensional Hamiltonians at sufficiently large temperatures,
describe systems that satisfy the area law of entanglement, and form the basis of powerful numer-
ical methods. In this work we develop an algorithm that determines for a given linear subspace
of MPDOs whether this subspace can be the stable space of some frustration free k-local Lind-
bladian and, if so, outputs an appropriate Lindbladian.
We proceed by using machine learning with networks of quantum channels, also known as quan-

tum neural networks (QNNs), to train denoising post-processing devices for quantum sources.
First, we show that QNNs can be trained on imperfect devices even when part of the training
data is corrupted. Second, we show that QNNs can be trained to extrapolate quantum states
to, e.g., lower temperatures. Third, we show how to denoise quantum states in an unsupervised
manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-
Zeilinger, W, Dicke, and cluster states subject to spin-flip, dephasing errors, and random unitary
noise.
Finally, we develop recurrent QNNs (RQNNs) for denoising that requires memory, such as

combating drifts. RQNNs can be thought of as matrix product quantum channels with a quantum
algorithm for training and are closely related to MPDOs.
The proposed preparation and denoising protocols can be beneficial for various emergent quan-

tum technologies and are within reach of present-day experiments.

3



Keywords: denoising, state preparation, open quantum systems, quantum machine learn-
ing, dissipative preparation, quantum state engineering, parent Lindbladians, matrix product
density operators, quantum neural networks, recurrent quantum neural networks, quantum au-
toencoders, quantum channels, quantum state extrapolation.

4



Contents

List of Abbreviations 10

1. Overview 13

2. Preliminary material 17
2.1. Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1. Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2. Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3. Fixed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4. Simultaneous block diagonalization and subalgebras of observables . . . . 21

2.2. Lindbladians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1. Differential equation for quantum Markov evolution . . . . . . . . . . . . 24
2.2.2. The weak coupling derivation . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4. Tensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1. Area law for entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2. Matrix product states (MPS) . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3. Parent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4. Matrix product density operators (MPDOs) . . . . . . . . . . . . . . . . . 37

2.5. Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1. Quantum simulators and engineering . . . . . . . . . . . . . . . . . . . . . 40
2.5.2. Digital quantum computers . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.3. Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.4. DiVincenzo criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.5. Quantum error correction (QEC) . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.6. Noisy intermediate-scale quantum (NISQ) devices . . . . . . . . . . . . . . 47
2.5.7. Designing interactions and dissipation. . . . . . . . . . . . . . . . . . . . . 49

2.6. Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.1. Learning scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.2. Neural networks (NN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.3. Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.4. Not-so-simple networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7. Quantum data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7.1. Data from many-body systems . . . . . . . . . . . . . . . . . . . . . . . . 61

5



Contents

2.7.2. Quantum simulators as data sources . . . . . . . . . . . . . . . . . . . . . 62
2.7.3. Quantum metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.4. Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7.5. Quantum communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.6. Quantum memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8. Quantum neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.1. Criteria for a good quantum neuron . . . . . . . . . . . . . . . . . . . . . 72
2.8.2. Networks of quantum channels . . . . . . . . . . . . . . . . . . . . . . . . 72

3. Parent Lindbladians for matrix product density operators 77
3.1. Outline of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2. Constructing local term in a Lindbladian . . . . . . . . . . . . . . . . . . . . . . . 78
3.3. Patching local parts - dimension of a stable space . . . . . . . . . . . . . . . . . . 80
3.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4. Quantum neural networks for denoising 85
4.1. Are QNNs suitable for NISQ devices? . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1. Model for noisy neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.2. Model for corrupted data . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2. Extrapolation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1. Need for mini-batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2. Decreasing learning rate, recursive cost and random batches . . . . . . . . 96
4.2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3. Autoencoders for unsupervised denoising . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1. Denoising a single state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2. Denoising multiple states . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3. Sparse quantum autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.4. Noisy networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4. QNNs for error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5. Quantum neural networks meet tensor networks:
recurrent quantum neural networks 119
5.1. Supervising sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2. RQNNs: training algorithm for quantum channels with memory . . . . . . . . . . 120
5.3. Filtering of interferometric outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. Conclusions and outlook 127

6



Contents

A. Constructing local terms in a parent Lindbladian: an alternative algorithm outline 129

Acknowledgement 135

Curriculum Vitae 183

List of Publications 185

7





9



List of Abbreviations

AKLT Affleck-Lieb-Kennedy-Tasaki

AdS anti-de Sitter

AE autoencoder

BB84 Bennett-Brassard 1984

BEC Bose-Einstein condensate

CFI classical Fisher information

CFT conformal field theory

CHSH Clauser-Horne-Shimony-Holt

cMPS continious matrix product state

CNOT controlled-NOT

CP completely positive

CPTP completely positive trace-preserving

CSS Calderbank-Shor-Steane

DI device independent

DMRG density matrix renormalization group

EPR Einstein–Podolsky–Rosen

FF feed forward

FF feed forward neural network

FI Fisher information

GHZ Greenberger-Horne-Zeilinger

GKP Gottesman-Kitaev-Preskill

GKSL Gorini–Kossakowski–Sudarshan–Lindblad

LOCC local operations and classical communication

LSTM long short-term memory

ML machine learning

MPDO matrix product density operator

MPO matrix product operator

MPS matrix product state (states)

NISQ noisy intermediate-scale quantum

NMR nuclear magnetic resonance

NN neural network

NP non-deterministic polynomial-time

NV nitrogen-vacancy

PEPS projected entangled pair stares

10



POVM positive operator-valued measurement

QEC quantum error correction

QEC quantum error correcting code

QFI quantum Fisher information

QKD quantum key distribution

QMA quantum Merlin Arthur

QML quantum machine learning

QNN quantum neural network

ReLU rectified linear unit

RNN recurrent neural network

RQNN recurrent quantum neural network

SQL standard quantum limit

TP trace-preserving

TN tensor networks

11





1. Overview

Entangled states are an essential resource for quantum computation, communication, metrology,
and the simulation of many-body systems. If the system of interest is open, it is usually described
by a mixed state.
We are interested in the following question: how do we prepare a known, possibly highly

entangled and mixed, quantum state ρ? The word “know” in this question can be understood
in two different ways. We can say that we know a state if we have its full classical description.
Alternatively, we can say that we know a state if we can build a source that produces states that
contain information about ρ. This thesis deals with both of these scenarios.

1

Target: a known state ρ
???

classical representation quantum source

The number of parameters of a generic many-body quantum state grows exponentially with
the system size. Thus, it is crucial to identify classes of states that admit an efficient classical
description and are physically relevant. Tensor networks provide a framework for constructing
physically relevant entangled states. In particular, matrix product states [196] (MPS, see Fig. 1.1)
can efficiently describe ground states of one-dimensional gapped local Hamiltonians (originally
proven in [257], later with exponentially better parameters in [33]).
It is also important to demand that the state can be prepared via a protocol such that the

control effort does not grow too fast with the system size. One way to achieve such a state
preparation is dissipative engineering—the design of few-body interactions and dissipation such
that the system relaxes into a desired state. It is clear how to dissipatively prepare a given
space of MPS [334, 598]. Indeed, for any space of MPS one can construct a so-called parent
Hamiltonian [196]—a frustration-free local Hamiltonian that has the given MPS as its unique
ground state. By adding energy dissipation to each local term one can ensure that the only
stable state of the constructed evolution is the desired MPS.

() ground states of local 1d HMPS ≡

Figure 1.1.: Matrix product states can approximate well ground states of 1d local Hamiltonians
and have a parent Hamiltonian.
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1. Overview

A direct generalization of MPS for mixed states are matrix product density operators (MP-
DOs) [597, 657]. MPDOs can represent thermal states of local Hamiltonians [287, 122]. However,
it has not been previously clear if a given space of MPDOs can be dissipatively prepared using
k-local operators (see Fig. 1.2). In this work we develop an algorithm that constructs k-local
parent Lindbladians. That is, the algorithm either outputs a k-local frustration-free Lindbladian
that has stable space consisting only of a given space of MPDOs or proves that such a Lind-
bladian does not exist. This construction is based on the connection between fixed spaces of
quantum channels and stable spaces of Lindbladians and is presented in Chapter 3.

>=)? frustration-free local LMPDO ≡

Figure 1.2.: Does a given space of matrix product density operators have a parent Lindbladian?

We proceed to study how we can improve noisy quantum sources of states. Virtually every
experimental preparation of a quantum state introduces noise. Usually, it is hard to design a
denoising protocol. First, one has to identify and characterize all noise sources. Second, one
has to invent a protocol that corrects the noise without affecting any relevant features of the
quantum state. Machine learning can automate this task.

We simulate a source to produce a data set and use it to train a post-processing device. We
train networks of quantum channels, also known as quantum neural networks (QNNs) [56], to
perform denoising (see Fig. 1.3). QNNs can be implemented and trained on a quantum computer
and deal with highly entangled states.

1

shot-to-shot noise
non-optimal parameters (e.g. T)drifts

trained denoiser desired states

transmission errors

Figure 1.3.: Trained post-processor improves a noisy source.

In Chapter 4 we deal with noise that feed-forward QNNs can mitigate. We do not assume
access to a noiseless supervising source.

First, we verify that this is a viable approach for not perfect devices by numerically studying
if QNNs can be trained on noisy devices with noisy data [56, 516].

Second, we work with sources that produce parametrized states in an undesired parameter
region. We use QNNs trained on the available parameter interval to extrapolate quantum states
to more desired parameter values, see Fig. 1.4. We concentrate on the case of temperature
for the transverse-field Ising model, even though the techniques discussed can be used to other
parameters and systems of interest [179].

14



1

train

0◦K Ttest

Figure 1.4.: We assume that the source can produce states in some temperature interval. We
train a QNN to cool states inside this interval. The network learns to extrapolate,
i.e. to take input states from the lower-temperature part of the available interval
and output colder states outside the training interval.

Third, we combat shot-to-shot noise. As there is often no noiseless reference state to com-
pare with, unsupervised learning is required. Classical data can be efficiently denoised by
autoencoders—neural networks with a bottleneck that can be trained without supervision. We de-
velop a novel quantum autoencoder [85] that successfully denoises Greenberger-Horne-Zeilinger,
W, Dicke, and cluster states subject to spin-flips, dephasing errors, and random unitary noise.

j i
denoising

j i

Figure 1.5.

We conclude Chapter 4 with the remark about mitigating noise while the quantum state is
being transmitted or stored by learning quantum error correcting codes.

Finally, in Chapter 5 we combine intuition from MPDOs with QNNs to develop a technique
to combat drifts. Drift mitigation requires memory, so feed-forward networks are not ideal. We
develop an algorithm to train recurrent QNNs (RQNNs, see Fig. 1.6).

1

memory

Figure 1.6.: Recurrent networks incorporate memory.

RQNNs can be thought of as matrix product quantum channels with a quantum algorithm for
training (see Fig. 1.7) and are closely related to MPDOs studied in Chapter 3. We demonstrate
that RQNNs can be used to design optimal low- and high-pass filters for quantum devices.
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1. Overview

=)QNN

Figure 1.7.: If recurrent networks are trained on sequences of length L, they can be unrolled to
a length-L matrix product quantum channel. Lower circles represent input qubits
and upper circles—output qubits.

We conclude in Chapter 6 that quantum channels can be organised in networks or optimized for
tensor network states. Such networks of quantum channels is a versatile tool for state preparation
that is robust against noise. We follow by a discussion of possible applications and open problems.
The preliminary material needed to understand the results in this thesis is contained in Chap-

ter 2.
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2. Preliminary material

This chapter contains the ingredients necessary for understanding the results of this thesis.

Notation 2.0.1. Given m 2-level systems, we denote

σij = 1⊗(j−1) ⊗ σi ⊗ 1⊗(m−j), i ∈ {x, y, z}, (2.1)

where 1 = |↑〉〈↑|+ |↓〉〈↓| is the identity and σx = |↑〉〈↓|+ |↓〉〈↑|, σy = i|↑〉〈↓| − i|↓〉〈↑|,
σz = |↑〉〈↑| − |↓〉〈↓| the Pauli operators for a single qubit.
We also associate |0〉 ↔ | ↓〉 and |1〉 ↔ | ↑〉.

2.1. Quantum channels

In this section we will define the most general maps between quantum states—quantum chan-
nels. These are the main protagonists of this thesis—we discuss network-based methods for the
construction of an appropriate quantum channel.
For a more in-depth introduction to quantum channels, see e.g. [73, 639, 303, 496, 424].
The most general quantum state can be described as a density matrix. A density matrix is a

generalisation of a probability distribution. As probabilities are real positive numbers that sum
up to one, a density matrix is a self-adjoint positive trace one operator.

Notation 2.1.1 (Trace-class). We will denote the space of linear operators with trace acting
from a Hilbert space H1 to H2 as T (H1,H2). We will denote the space T (H,H) as T (H).

A map ε : T (H) → T (H) should preserve convex combination of states. Indeed, for a
probability distribution {pi}ni=1 and density matrices {ρi ∈ T (H)}ni=1 the convex combination∑

i piρi represents that the state is ρi with probability pi

ε

(∑
i

piρi

)
=
∑
i

piε(ρi). (2.2)

The map ε can be naturally extended to a linear map.
For the image of any density matrix to also be a density matrix, the map ε should be positive—

that is, to map positive operators to positive operators

ε ≥ 0 if ρ ≥ 0⇒ ε(ρ) ≥ 0, (2.3)

and ε should be trace preserving (TP)

Tr (ε(ρ)) = Tr (ρ) . (2.4)

17



2. Preliminary material

However, even if ε maps any quantum state to a quantum state, it does not mean that ε can
be realised physically. Indeed, it is not practically possible to build a machine that operates on
any scale—any conceivable device can have a non-negligible effect only on a small part of the
universe. Let us choose some n-dimensional subsystem of the universe that is not affected by
the operation under consideration. It makes sense to demand that ε ⊗ idn also maps density
matrices to density matrices. If ε ⊗ idn is positive, the ε is called n-positive. As H is usually
only a tiny subspace of the universe, it is reasonable to demand that ε is n-positive for any n.
Such maps are called completely positive (CP)

ε is completely positive⇔ ε⊗ idn ≥ 0 ∀n. (2.5)

Not every positive map is completely positive. The simplest example is the transpose map for
qubits, εtranspose : T (C2)→ T (C2), εtranspose(ρ) = ρT . This map is positive, but not completely
positive.
Let us collect all the properties discussed so far in this section:

Definition 2.1.2 (Quantum channel). We call a map ε a channel or, alternatively, a completely
positive trace preserving (CPTP) if

• ε is linear.

• ε is completely poitive: ε⊗ idn ≥ 0 ∀n.

• ε is trace preserving: Tr (ε(ρ)) = Tr (ρ) .

The most general physical operations that act between density matrices are CPTP maps. 1

2.1.1. Observables

To describe experiments, one needs to describe measurements. Only discussing states is not
sufficient, it is also crucial to define things that are being measured—observables. A state corre-
sponds to a linear functional mapping an observable A onto finite real numbers—an expectation
value 〈A〉.

Notation 2.1.3 (Bounded operators). We will denote the algebra of bounded linear operators
acting from a Hilbert space H1 to H2 as B(H1,H2). We will denote the space B(H,H) as B(H).

The condition that the expectation values should be finite leads to observable A ∈ B(H) and
the condition that the numbers should be real—to the space of observables being closed under
adjoints. It is possible to construct observables by combining other observables. This leads to
a demand that the space of observables is closed under multiplication. Finally, it is natural to
have a trivial observable.

1Description of a system may not take some possibilities into account. In classical systems, that corresponds to
the sum of considered probabilities being less than 1; in the quantum case, instead of a density matrix our
knowledge of a system is described by a positive operator σ such that Tr[σ] ≤ 1. The corresponding operations
are described by CP, trace non-increasing maps.

18



2.1. Quantum channels

Definition 2.1.4 (Observables). An algebra of observables A is a closed linear subspace of B(H)

that contains an identity 1 ∈ A and is closed under multiplication A,B ∈ A ⇒ AB ∈ A and
adjoints A ∈ A ⇒ A† ∈ A.

Definition 2.1.5 (Expectation value). Given a state ρ ∈ T (H), the expectation value of an
observable A ∈ A ⊆ B(H) is

Tr(ρA). (2.6)

Instead of describing the evolution as a transformation of states ρ→ ε(ρ) (Shrödinger picture),
one may describe the evolution of observables A→ ε†(A) (Heisenberg picture). The expectation
values should not depend on the picture, so the consistency condition is

Tr [ε(ρ)A] = Tr
[
ρε†(A)

]
, (2.7)

and Equation (2.7) defines mutually adjoint or dual maps.

Notation 2.1.6. We will denote byMd the algebra of d× d matrices with complex entries.

In this thesis we will be mainly interested in the case of finite-dimensional observables A ∈
B(Cd) ∼=Md.

2.1.2. Representations

In this section we will discuss several ways to parametrize and represent quantum channels. More
information on this topic can be found in Chapters 1 and 2 of [639] and Chapter 2 of [303].

Theorem 2.1.7 (Kraus representation). A linear map ε† ∈ B(Md,Mq) is CP if and only if it
admits a representation

ε†(A) =
r∑
j=1

KjAK
†
j

ε(ρ) =

r∑
j=1

K†jρKj . (2.8)

This representation has the following properties:

1. Normalization: ε is trace-preserving iff
∑

jK
†
jKj = 1.

2. Kraus rank: The sufficient number of Kraus operators {Kj ∈ B(Cd,Cq)}rj=1 is r ≤ dq.

3. Orthogonality: There is always a representation with r Hilbert-Schmidt orthogonal Kraus
operators (i.e. Tr

[
K†iKj

]
∝ δij).

4. Freedom: Two sets of Kraus operators {Kj}rj=1 and
{
K̃l

}r̃
l=1

represent the same map ε

iff there is a unitary U such that Ki =
∑

l UjlK̃l and the smaller set is padded with zeros.
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2. Preliminary material

It is often convenient to see a quantum channel as an evolution of a part of a closed subsystem.
This view can be made rigorous. Let us start with a useful tool.

Proposition 2.1.1 (Schmidt decomposition). For every vector |ψ〉 ∈ H1 ⊗ H2 there exist or-
thonormal bases {|ei〉 ∈ H1} and {|fi〉 ∈ H2} such that

|ψ〉 =
d∑
i

√
λi|ei〉|fi〉 with λi ≥ 0,

∑
i

λi = ‖ψ‖2, (2.9)

where d = min(dim(H1),dim(H2)). The set {
√
λi}di=1 are called Schmidt coefficients.

Corollary 2.1.8 (Purification). For a density matrix ρ1 =
∑d

i=1 λi|ei〉〈ei| Proposition (2.1.1)
provides a purification such that ρ1 = Tr(|ψ〉〈ψ|).

Thus, any mixed state can be regarded as a subsystem of some larger pure system. However,
it is important to establish that not only the states, but the dynamics can also be treated as
being part of a larger closed system.

Theorem 2.1.9 (Stinespring dilation). Let ε :Md →Mq be a CP map. For every Kraus rank
r there is a V : Cd → Cq ⊗ Cr such that

ε†(A) = V †(A⊗ 1r)V, ∀A ∈Md. (2.10)

ε is TP iff V †V = 1d (i.e. V is an isometry).

Proof. This follows from Proposition 2.1.7: let V :=
∑

jKj ⊗ |j〉, where {|j〉} is an orthonormal
basis in Cr and ε†(A) =

∑r
j=1KjAK

†
j .

The ancillary system Cr is usually called dilation space. If we move to Schrödinger picture, we
get ε(ρ) = TrCr [V ρV

†]. As a consequence we get

Theorem 2.1.10 (Open-system representation). Let ε : Md → Mq be a CPTP map. Then
there is a unitary U ∈Mdq2 and a normalized vector |θ〉 ∈ Cq ⊗ Cq such that

ε(ρ) = TrE

[
U(ρ⊗ |θ〉〈θ|)U †

]
(2.11)

where E denotes the first two tensor factors in H = Cd ⊗ Cq ⊗ Cq.

Proof. For Stinespring dilation in Schrödinger picture ε = TrCr [V ρV
†] we can embed V into

unitary which acts on tensor product as V = U(1d ⊗ |θ〉).

Let us compare open-system representation with closed-system evolution ρ̃→ Uρ̃U †. We can
see that ε(ρ) can be interpreted as evolving a closed enlarged system ρ̃ = ρ ⊗ |θ〉〈θ| and than
restricting to a subsystem TrE(ρ̃).
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2.1. Quantum channels

2.1.3. Fixed spaces

Often it is important to look at states that are not changed under time evolution.

Definition 2.1.11 (Fixed space). For a quantum channel ε the space of states such that

ε(ρ) = ρ (2.12)

is called a fixed space.

These states naturally arise in long-term dynamics, see e.g. [639, Chapter 6]. Indeed, if the
quantum channel is applied many times, the state either changes after each application, or reaches
the fixed space. Engineering interactions such that any initial state dissipates to a desired fixed
space is a viable strategy for state preparation (see Subsection 2.5.7 and Chapter 3).

It is known, see e.g. [639, Section 6.4], that for a trace-preserving positive map T :Md →Md

fixed space FT : {ρ|T (ρ) = ρ} is of the form

FT = U

(
0d0 ⊕

K⊕
k=1

(ρk ⊗Mdk)

)
U † (2.13)

where ρk are diagonal and positive, U is unitary, and 0d0 is a d0 × d0 zero matrix.

2.1.4. Simultaneous block diagonalization and subalgebras of observables

From the Equation 2.13 follows, that any fixed space of a quantum channel has a block diagonal
structure, U

(
0d0 ⊕

⊕K
k=1 (ρk ⊗Mdk)

)
U † ∈ U

(
0d0 ⊕

⊕dim(ρk)
j=1

⊕K
k=1Mdk

)
U †. In Chapter 3

we will need a subroutine that, given a set of states {ρi}i∈J , finds the smallest fixed space F
such that ∀i ∈ J ρi ∈ F . A reasonable starting point in this endeavor is to simultaneously block
diagonalize the set {ρi}, for example via the algorithm presented in [413].

21



2. Preliminary material

Algorithm 1 Pseudocode for the algorithm [413] that finds finest block-diagonalization for a
set of self-adjoint matrices.

Input: A set of self-adjoint matrices {Oi}.
Output: A matrix Q such that Q†OiQ ∈ Block ({di}), where Block ({di}) = 0d0 ⊕

⊕
iMdj .

With probability 1, dim(Block) is minimal.
Optional output (convenient for Section 3.2): The dimensions of blocks {di}, a diagonalized
random linear combination Σ of inputs.

1: Take a random linear combination of the inputs, A =
∑

i xiOi, where {xi} are uniformly
distributed on a real interval, e.g. [0, 1].

2: Find a unitary matrix R that diagonalizes A, that is R†AR = Σ and
Σ = diag (α11m1 , . . . αk1mk). Let Ri be a matrix consisting of orthonormal vectors
corresponding to eigenvalues αi ∈ R.

3: Put K = {1, . . . , k}, and let ∼ be an equivalence relation on K such that

i ∼ j ⇔ ∃p : R†iOpRj 6= 0. (2.14)

Let K =
⋃q
i Ki be the partition of K into equivalence classes with respect to ∼. Define

matrices R[Kj ] = (Ri|i ∈ Kj)

4: Output Q = (R[K1], . . . , R[Kq]).

There are several available simultaneous block diagonalization algorithms, see e.g. [4, 413, 379,
378, 380, 150, 283, 62, 204, 61, 108]. An advantage of the Algorithm 1 is that it, with probability
1 and in contrast to Jacobi-like algorithms, is exact; moreover, it can be generalised to find the
smallest algebras of observables.

As a quantum channel can be treated in different pictures (see Subsection 2.1.1), it should not
be surprising that a statement that is similar to Equation 2.13 exists for observables.

Theorem 2.1.12. Any observable subalgebra I of B(Cd) can be represented as

I = U
J⊕
j=1

(
1kj ⊗Mdj

)
U † (2.15)

where
∑

j kjdj = d.

See e.g. [73, Section and Theorem 2.7] and [639, Section 1.6]) for the proof and discussions.

Experiments are often composed of a discrete set of machines each measuring a correspond-
ing observable Oi. It is useful to understand the power of this measurement apparatus, that
is, the smallest algebra that contains the whole set {Oi}. This algebra, specified e.g. by a
set
{
U, {dj}Jj=0, {kj}Jj=1

}
like in Theorem 2.1.12, can be found using the algorithms developed

in [413, 379].
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2.2. Lindbladians

Algorithm 2 Pseudocode for the algorithm [413, 379] that finds the smallest observable algebra
that contains a given set of observables.

Input: A set of self-adjoint matrices {Oi}.
Output: With probability 1, the smallest observable algebra I such that ∀i Oi ∈ I. With
probability 0, an observable algebra containing I.

1: Take a random linear combination of the inputs, A =
∑

i xiOi, where {xi} are uniformly
distributed on a real interval, e.g. [0, 1].

2: Find a unitary matrix R that diagonalizes A, that is R†AR = Σ and
Σ = diag

(
α1

11k1 , . . . α
1
d1
1k1 , . . . , α

J
11kJ , . . . α

J
dJ
1kJ

)
. Let us denote by Rji a unitary

matrix such that
(
Rji

)†
ARji = αji1kj .

3: Let Gi = (Vi, Ei) be a set of directed graphs with vertices Vi = {1, . . . , di} and edges
Ei =

{
(l,m; p) :

((
Ril
)†
OpR

i
m

)
6= 0

}
. Fix a spanning tree Ti for each Gi.

4: For a tree Ti, let P i1, . . . P idi be the ki × ki matrices that satisfy

P i1 = 1ki , (2.16)

P im =
((
Ril
)†
OpR

i
m

)†
Pl/cplm, (l,m; p) ∈ T i, (2.17)

where cplm is a positive number such that
(
Ril
)†
OpR

i
m

((
Ril
)†
OpR

i
m

)†
= c2

plm1ki .

5: Output the set
{
Ũ †, {dj}Jj=0, {kj}Jj=1

}
, where Ũ † = R · diag

(
P 1

1 , P
1
2 , . . . , P

J
dj

)
and

I = Ũ
[
0d0 ⊕

⊕J
j=1

(
Mdj ⊗ 1kj

)]
Ũ †.

6: (Optional) Perform an appropriate SWAP to get
{
U, {dj}Jj=0, {kj}Jj=1

}
such that

I = U
[
0d0 ⊕

⊕J
j=1

(
1kj ⊗Mdj

)]
U †.

Our Wolfram Mathematica code for this algorithm is available at [1]. An analogous algorithm
for states and fixed spaces rather than observables can be found in Chapter 3.

2.2. Lindbladians

An important set of quantum channels are the ones that describe continuous time evolution.
In this section we concentrate on the case of an evolution without memory—that is, given the
present, the future does not depend on the past. This is called the Markov property. This
property naturally arises in physical systems that are weakly coupled to an environment, as we
discuss in Subsection 2.2.2. We construct Markovian local CPTP maps that prepare desirable
quantum states in Chapter 3.
For a more in-depth introduction to Markovian quantum channels, see e.g. [496].

Notation 2.2.1. We will denote by ε(t1,t0)(·) a channel that corresponds to the evolution from
time t0 to time t1, that is ρ(t1) = ε(t1,t0) (ρ(t0)).
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2. Preliminary material

Definition 2.2.2 (Markovian evolution). If an evolution that corresponds to a family of channels
ε(t,τ)(·) has the property

ε(t2,t0) = ε(t2,t1) ◦ ε(t1,t0), t0 ≤ t1 ≤ t2, (2.18)

it is called Markovian.

2.2.1. Differential equation for quantum Markov evolution

For positive ε, consider the difference

ρ(t+ ε)− ρ(t) =
(
ε(t+ε,t) − 1

)
ρ(t). (2.19)

Provided that the limit ε→ 0 is well defined, we can obtain a linear differential equation for ρ(t)

(called master equation).

dρ(t)

dt
= lim

ε→0

ε(t+ε,t) − 1
ε

ρ(t) ≡ Ltρ(t), (2.20)

where by definition the generator of evolution is

Lt ≡ lim
ε→0

ε(t+ε,t) − 1
ε

. (2.21)

For Markovian evloution, one can derive the most general form for the generators (2.21).

Theorem 2.2.3 (GKSL equation). A differential equation is a Markovian master equation iff it
can be written in the form

dρ(t)

dt
= −i[H(t), ρ(t)] +

∑
k

[
Vk(t)ρ(t)V †k (t)− 1

2
{V †k (t)Vk(t), ρ(t)}

]
, (2.22)

where H(t) and Vk(t) are time-dependent operators, H(t) is self-adjoint, [·, ·] is a commutator
and {·, ·}— an anticommutator.

The proof for this theorem can be found in Chapter 4 (5 in the arXiv version) of [496].
The equation (2.22) is called the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equa-

tion [228, 328, 364]. The generator (2.21) of Markovian evloution is called quantum Liouvillian,
or Lindbladian.
If one is also interested in expectation values of unbounded operators, there are Markovian

generators that are not of this from [550].
For discussion about non-Markovian dynamics, see e.g. [158].
From the Schrödinger equation it is straightforward to get that for closed system evolution

with the Hamiltonian H(t)

dρ(t)

dt
= −i[H(t), ρ(t)], (2.23)

thus it is tempting to interpret equation (2.22) as an open system that evolves with the Hamilto-
nian H(t) and is coupled to an environment that manifests itself through operators Vk(t). This
interpretation can be made rigorous.
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2.2. Lindbladians

2.2.2. The weak coupling derivation

Let us derive a master equation for a density matrix of some system ρS . Assumed that the
system is weakly coupled to an environment. The Hamiltonian H is a sum of Hamiltonians of
the system HS , the environment HE and an interaction between the two HSE ,

H = HS +HE +HSE . (2.24)

The dynamics of the entire system is governed by the equation (2.23). Let us go to the interaction
picture

M̃ = ei(HS+HE)tMe−i(HS+HE)t for arbitrary operator M. (2.25)

Equation (2.23) becomes

˙̃ρ = −i
[
H̃SE , ρ̃

]
. (2.26)

The equation (2.26) can be integrated directly to give

ρ̃(t) = ρ̃(0)− i
∫ t

0
dτ
[
H̃SE(τ), ρ̃(τ)

]
. (2.27)

We can substitute (2.27) back into (2.26) to obtain

˙̃ρ = −i
[
H̃SE(t), ρ̃(0)

]
−
∫ t

0
dτ
[
H̃SE(t),

[
H̃SE(τ), ρ̃(τ)

]]
. (2.28)

We now assume that there is initially no correlation between the system and environment ρ̃(0) =

ρ̃S(0)⊗ ρE(0). By tracing out the environment degree of freedom we get

˙̃ρS = −TrE

(∫ t

0
dτ
[
H̃SE(t)

[
H̃SE(τ), ρ̃(τ)

]])
. (2.29)

If the environment is much larger than the system and the coupling between the system and
the environment is week, the dynamics of the system cannot significantly alter the environment.
This yields yet another approximation, ρ̃(t) = ρ̃S(t)⊗ ρE(0). The master equation becomes

˙̃ρS = −TrE

(∫ t

0
dτ
[
H̃SE(t),

[
H̃SE(τ), ρ̃S(τ)⊗ ρE(0)

]])
. (2.30)

Finally, we employ the Markov approximation—that the time derivative of the density matrix
depends only on its current state, and not on its past. This assumption is valid under fast
bath dynamics, wherein correlations within the bath are lost extremely quickly, and amounts to
replacing ρ̃S(τ)→ ρ̃S(t) on the right hand side of the equation.

˙̃ρS = −TrE

(∫ t

0
dτ
[
H̃SE(t),

[
H̃SE(τ), ρ̃S(t)⊗ ρE(0)

]])
. (2.31)

If the interaction Hamiltonian HSE has the form

HSE =
∑
k

Sk ⊗ Ek (2.32)
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2. Preliminary material

for system operators Sk and environment operators Ek, the master equation yields

˙̃ρS = −
∑∫ t

0
dτ ([Si(t)Sj(τ)ρ̃S(t)− Sj(τ)ρ̃S(t)Si(t)] Tr [Ei(t)Ej(τ)ρE(0)] +

[ρ̃S(t)Sj(τ)Si(t)− Si(t)ρ̃S(t)Sj(τ)] Tr [Ej(τ)Ei(t)ρE(0)]) . (2.33)

If system and environment operators can be chosen in a way so that S2i+1 = S†2i, E2i+1 = E†2i
and, due to rapid decay of correlations in the environment, Tr

[
Ei(t)E

†
j (τ)ρE(0)

]
= 1

2δi,jδ(t−τ),
we obtain

˙̃ρS = −1

2

∑
i

[
Si(t)S

†
i (t)ρ̃S(t)− S†i (t)ρ̃S(t)Si(t)

]
−1

2

∑
j

[
ρ̃S(t)Sj(t)S

†
j (t)− S

†
j (t)ρ̃S(t)Sj(t)

]
=

∑(
S†i (t)ρ̃S(t)Si(t)−

1

2

{
Si(t)S

†
i (t), ρ̃S(t)

})
. (2.34)

By setting Sk(t) = Ṽk(t), we arrive to equation (2.22). A slightly more general derivation is
contained in [55].
Let us summarize. The differential equation for Markovian evolution is GKSL equation (2.22).

This equation can also be derived by assuming weak enough interaction with an environment
much larger than the system that does not become correlated with it. This makes GKSL equation
an extremely useful tool for the study of open quantum systems. For more discussion, see
e.g. [496, 468], [639, Chapter 7], [648, Section 1.3] and [279, 22].

2.3. Entanglement

Quantum states can have correlations that are not present in any classical theory. We deal with
states exhibiting such correlations throughout this thesis. In this section we discuss how to define
these non-classical correlations and how to quantify them. For more information on the topic,
see e.g. [276, 303].

Definition 2.3.1 (Entanglement). A state ρ ∈ T (
⊗

iHi) is called classically correlated [619] if
it can be written as

ρ =
∑
j

λj
⊗
i

ρji , λj ≥ 0, ρji ∈ T (Hi). (2.35)

Otherwise, the state is called entangled.

We can make the definition more precise by including the amount of parties that are entangled.

Definition 2.3.2 (Entanglement depth). A state ρ ∈ T (
⊗

iHi) is called m-particle entangled
if it can not be written as

ρ =
∑
j

λj
⊗
i

ρji,mij , λj ≥ 0, ρji,mij ∈ T

(mij⊗
k=1

Hπi(k)

)
, max(mij) ≤ m− 1, (2.36)

26



2.3. Entanglement

where {πi} is a set of permutations. The maximum m such that the state ρ is m-particle entangled
is called the entanglement depth.

It is often important to know not just that there is some entanglement, but to quantify it. It
can be easily done for pure bipartite systems.
Indeed, the only classically correlated pure states are of the form |ψ〉 =

⊗
i |ψi〉. For bipartite

state one can use Schmidt decomposition |ψ〉 =
∑d

i λi|ei〉|fi〉 and quantify entanglement using
Schmidt coefficients.

Claim 2.3.3 (von Neumann entropy). For a bipartite pure state |ψ〉 ∈ H1⊗H2 and corresponding
reduced density matrix ρ2 = TrH1(|ψ〉〈ψ|) the von Neumann entropy

SvN (ρ2) = −Tr [ρ2 ln (ρ2)] (2.37)

quantifies the amount of entanglement. We will use the notation SvN (|ψ〉) interchangeably with
SvN (ρ2).

The claim 2.3.3 can be axiomatised by treating entanglement as a resource. A state |ψ〉 can
be transformed into state |φ〉 via only local operations and classical communication (LOCC) iff
SvN (|ψ〉) ≥ SvN (|φ〉) [422]. However, there are other entanglement monotones—entanglement
measures that do not increase under LOCC [600]. A prominent family of entanglement monotones
are Rényi entropies [494, 600]

Sα(ρ) =
1

1− α
ln Tr (ρα) . (2.38)

While one can prove that SvN = limα→1 Sα [410], von Neumann entropy has some unique
algebraic properties (see [170, 463]) that make it especially useful. See e.g. [121] for a review.
For three parties or more, it is much harder to formalise the amount of entanglement in the

system. One of the reasons is that there is no Schmidt decomposition for non-bipartite systems.
Moreover, there are different classes of entangled states that cannot be transformed via LOCC
into each other. There are three classes for tripartite states [177] and infinitely many classes for
more than three parties. In fact, for more than three parties almost any state is a maximally
entangled state [514, 105]! Thus, quantifying entanglement becomes somewhat meaningless in
the LOCC framework for many parties. Understanding multipartite entanglement and suitable
resource theories is an active research topic (see e.g. [135, 420, 555]).
It can be NP-hard to check if even a bipartite mixed state is entangled [244, 222]. Thus,

any way to quantify mixed state entanglement is either hard to compute or cannot discriminate
between certain classes of mixed and entangled states. Despite these drawbacks, there are many
entanglement measures for mixed states, e.g. logarithmic negativity [602], quantum Fisher infor-
mation [265, 224, 452], relative entropy [591, 593], convex roof of entanglement or entanglement
of formation [580, 258], Wigner function negativity [593, 159], entanglement of distillation [65],
and others [424, 592], that can be useful for appropriate tasks.
Luckily for us, in this thesis we mainly deal with the situations when intuition about pure

bipartite states can be generalised to mixed multipartite states.
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2. Preliminary material

In practice one usually works with a relatively small subset of states. If there is an interest in
using non-classical properties of this subset, it is important to have a certificate that witnesses
that these states are indeed entangled.

Definition 2.3.4 (Entanglement witness). A ∈ B(H1 ⊗ H2) is called an entanglement witness
for ρ ∈ T (H1⊗H2) an entangled state if Tr[ρA] > 0 and Tr[σA] < 0 for all classically correlated
σ ∈ T (H1 ⊗H2).

Proposition 2.3.1. For any ρ ∈ T (H1 ⊗H2) there exists an entanglement witness.

For proof see e.g. [303, Section 2.4].
Entanglement can find numerous applications, from modeling of ground states (see Section 2.4),

to quantum computing (see Section 2.5); from secure cryptography to precise measurements (see
Section 2.7). Entanglement is at the core of the quantum theory, and understanding its properties
is a key to using it in practice.

2.4. Tensor networks

Tensor networks (TNs) are a family of variational classes well suited to study highly entangled
quantum many-body systems. In this section we introduce this family and proceed to discuss a
physically motivated subfamily of states—matrix product density operators (MPDOs). MPDOs
describe mixed one-dimensional states that obey area law for entanglement. In Chapter 3 we
discuss how an MPDO space of choice can be prepared via long-term local dynamics.
TNs were initially used to construct [196] and numerically find [625] ground states of one-

dimensional spin chains. However, the range of applicability of this formalism has quickly ex-
tended to higher dimensions, excited and thermal states. TNs are currently also investigated
as a natural framework to classify exotic phases of quantum matter [526, 484], as the basis for
new non-perturbative formulations of the renormalization group [625, 601, 190, 189, 324] and
interacting quantum field theories, as a lattice realization of the AdS/CFT correspondence in
quantum gravity [442], to maximise achievable estimation precision in quantum metrology [118],
quantum error correction [52, 201, 200], category theory [57] and as a variational class for machine
learning [560, 607, 497]. See e.g. [431, 649, 182, 565] for a review.
We will use the term tensor to refer to a multidimensional array of complex numbers.
To understand why TNs are natural and needed, let us consider a chain of n spin-j particles.

If we are interested, for example, in the ground-state wave function of an arbitrary Hamiltonian,
it is a superposition of computational basis vectors

|ψ〉GS =
∑

i1,...,in∈{0,...,2j}

Ci1,...in |i1 . . . in〉. (2.39)

In general, it leaves us with (2j+ 1)n−2 degrees of freedom - that is, the number of components
of Ci1,...in minus phase and normalization. This immediately yields a problem, as even relatively
small systems of, say, a hundred particles do not fit into the memory of not only any existing,
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2.4. Tensor networks

but also any currently conceivable classical computer. This dictates the need to work in some
specific subspace of wave functions, and this subspace should contain wave functions that are
arbitrarily close to some set of entangled ground-states.
One way to tackle this problem is to use a variational class that limits the amount of entan-

glement between different local parts of the system. Let us do a Schmidt decomposition (2.1.1)
of |ψ〉GS with respect to spins {1, . . . , k} and {k+ 1, . . . , n} and absorb the Schmidt coefficients
into the tensor A

Ci1,...in =

χ∑
a=1

Aai1,...ikB
a
ik+1,...in

. (2.40)

The quantity χ is called the bond dimension. Now there are χ((2j+1)k+(2j+1)n−k)−2 degrees
of freedom—significantly fewer than (2j + 1)n − 2, if χ is not too large.
The bond dimension limits the maximal amount of entanglement. Indeed, for a bipartite wave

function |ψ〉GS with bond dimension χ there are exactly χ Schmidt coeficients {λi}χi=1. The
entropy of entanglement (see claim 2.3.3) for such state is

SvN (|ψ〉GS) = −
χ∑
i=1

λi ln(λi) ≤ ln(χ). (2.41)

Nevertheless, this ansatz can give highly entangled states.

Example 2.4.1. Let us consider the GHZ state

|GHZn〉 =
|0〉⊗n + |1〉⊗n√

2
, (2.42)

which is known to be entangled with maximal depth (see definition 2.3.2 and e.g. [237]), and
demonstrate that it can be obtained via the decomposition discussed above. Take a ∈ {0, 1}, so
that the bond dimension is 2. We can set

Aai1,...ik =

 1
4√2

if a = i1 = · · · = ik

0 otherwise
(2.43)

and use an analogous definition for Bα
ik+1,...in

- it is non-zero and equals 1
4√2

only if all of the
indices are the same. It is trivial to check that with such definitions we get |GHZn〉.

As χ((2j + 1)k + (2j + 1)n−k) − 2 can still be too large, we would like to reduce A and B

further— that is, to introduce smaller tensors that are being contracted with each other.
Formulas for contractions of n tensors often start to look very complicated. For simplicity,

a diagrammatic notation was invented. It has also proven to help introduce patterns of tensor
contractions that correspond to physical intuition.
In tensor network diagrams tensors are represented by shapes and their indices by lines emerg-

ing from the shapes. When two shapes share a line, it corresponds to a contraction of the
corresponding index. It is also possible to join several lines into one multi-index, if the same two
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scalar

vector

matrix

rank-3 tensor
i1 i2 in

(≤ 3) (n)

Figure 2.1.: Diagrams for (≤ 3) tensors of rank ≤ 3 and (n) an n-rank tensor Ci1i2...in .

tensors share them. Likewise, it is possible to join shapes in such a way that outer lines do not
change.

j1 j2 jm

a1

aK

i1 i2 in

j1 j2 jmi1 i2 in

j1 j2 jmi1 i2 in

multi-index

Ci1i2:::inj1j2:::jm =
P

a1:::aK
A

a1;:::aK

i1i2:::in
B

a1;:::aK

j1j2:::jm
=

= =

=

Figure 2.2.: Joining shapes and introducing multi-indices.

Consider a physical system that is defined on some arbitrary lattice. Let A be an operator
which depends only on the lattice sites k, . . . ,m. Then we can also represent such an operator
by some shape with m−k ingoing and outgoing lines – 2(m−k) lines in total. If we have such a
diagram for |ψ〉, we will denote 〈ψ| by the same diagram but flipped upside down. Then we will
have the following figure 2.3 representing the expectation value 〈ψ,Aψ〉 of A with respect to ψ

i1 i2

ik im

in

Figure 2.3.: Diagrammatic expression for 〈ψ,Aψ〉.

Suppose A : V n → V m is an operator that has n ingoing and m outgoing lines. Given positive
definite Hermitian forms 〈·, ·〉V n : V n×V n → C and 〈·, ·〉Vm : V m×V m → C, one can define the
adjoint of operator A, namely A† : V m → V n, via

〈Aψ, φ〉Vm = 〈ψ,A†φ〉V n ∀ψ ∈ V n and ∀φ ∈ V m (2.44)

and such object is represented, just like 〈ψ|, by a flipped diagram (see figure 2.4).
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i1 in

j1 jm i1 in

j1 jm

Figure 2.4.: The adjoint of A is represented by the flipped diagram.

We would like to represent objects like Ci1,...iN which have N outer lines. If we have a tensor
with k outer lines, we can contract it with another tensor so that the total number of outer lines
increases. This requires at least tensors of rank 3 (see figure 2.5).

i1 im

im+1
=

i1 im

im+2
=

im+1i1 im

im+1

i1 im

im+1

Figure 2.5.: In order to construct a tensor with many legs from a low-rank connected tensors,
one needs tensors of at least rank 3.

If a TN for a state has disconnected components, it is a product state where each party
corresponds to a connected component.

We can obtain a rank n tensor with no disconnected parts by contracting O(n) rank-3 tensors.
This gives a state which is potentially entangled and has only O(n) parameters! This is a great
simplification of the task, however, it is essential to see that such states are physically relevant.

2.4.1. Area law for entanglement

Physical interactions in many-body systems are typically local: individual constituents interact
mainly with their few nearest neighbors. This locality of interactions is reflected by the ground
state entanglement entropy scaling laws. The entropy of the reduced state of a subregion often
grows with the subregion’s boundary area, not its volume. See e.g. [638, 183] for the discussion.

This “area law” for entanglement can be used as an inspiration for TN classes. Indeed, consider
a TN diagram built from tensors that are situated in some lattice. If each constituent tensor is
connected only to neighbouring sites by legs of the same dimension and has one open physical
leg, the TN diagram exhibits an area law.
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1d) 2d)

Figure 2.6.: Tensor networks in 1 and 2 dimensions that obey the area law for entanglement. The
number of bonds (gold) that are connecting a subregion (encircled by the brown line)
is proportional to the area of the subregion (solid part of the brown line).

Such TN diagrams form the basis of powerful numerical methods. We will concentrate on
these TNs in one dimension for the rest of this section.

2.4.2. Matrix product states (MPS)

The space of matrix product states (MPS) is spanned by the states of the form

|ψ〉a0,anMPS =
∑

i1,...,in∈{0,2j}

χ∑
a1,...,an−1=1

A
a0a1,[1]
i1

·Aa1a2,[2]
i2

· . . . ·Aan−1an[n]
in

|i1i2 . . . in〉 (2.45)

There are (2j+ 1)nχ2− 2 = O(n) parameters in such an ansatz, where χ is the bond dimension.
For simplicity, we will concentrate on the translational invariant case

A
ab,[j]
i = Aabi ∀j. (2.46)

Most results discussed in this subsection can be trivially generalised to the non-translational
invariant case.
Fig.2.7shows the TN diagram for an MPS.

A
αβ
i ≡

α β

i
j ia0;an

MPS =

a0 an

Figure 2.7.: Diagrammatic representation of MPS.

Boundary conditions can be imposed by contracting free horizontal legs with some additional
tensor.

Figure 2.8.: MPS (green) with boundary conditions (gold).

Expectation values of local operators in MPS can be computed efficiently. Let us consider a
k-local operator h (see Fig. 2.9) for a system of length n� k.
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Figure 2.9.: Expectation value of k-local operator h.

Let us introduce the transfer operator (see Fig.2.10)

T ab;α,β =
∑
i

Aabi

(
Aαβi

)†
. (2.47)

T
ab;αβ

≡

a b

α β

Figure 2.10.: Transfer operator for MPS.

The transfer operator can be treated as a χ2×χ2 matrix. A contraction ofm transfer operators
(see Fig.2.11) is a multiplication of m matrices of dimensions χ2×χ2 and this operation requires
just O(χ4) memory and at most O(mχ6) time. For the translational invariant case we can take
a power (T )m, which is even faster.

m contractions

= (T )m

Figure 2.11.: Contraction of m transfer operators.

Let us assume that h acts on spins m,m + 1, . . . ,m + k − 1. Let us denote the tensor that
specifies the boundary conditions by Ba0an . The expectation value

〈h〉 =
∑

a0,an,b0,bn

〈ψ|b0,bnMPS

(
Bb0bn

)†
hBa0an |ψ〉a0,anMPS . (2.48)

is, once (T )m and (T )n−m−k have been contracted, a contraction of 2k + 5 tensors with at most
max(4, 2k) legs with bond dimensions that are either 2j + 1 or χ (see Fig.2.9 and Fig.2.12).
Under assumption that both k and χ are small, this contraction is easy to perform.

(T )m (T )n−m−k

Figure 2.12.: Expectation value of k-local operator h after contracting transfer operators to the
left and to the right of it.
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The procedure also works for operators that act on k sites not adjacent to each other. Let us
demonstrate it for k = 2. Suppose the operator of interest acts on sites m and m + s. We can
efficiently contract all adjacent operators (see Fig.2.13). Once again, if χ is small, the rest of the
contractions is easy to perform. The procedure is straightforward to generalize for any k � n.

(T )m (T )n−m−s−1(T )s−1

Figure 2.13.: Partially contracted TN diagram for expectation value of operator acting on on
sites m and m+ s.

Let us normalise the wave function so that the eigenvalues of transfer operators are between
0 and 1. This can always be done as the transfer operator is manifestly positive.
The appearance of (T )s−1 in Fig.2.13 leads to the fact that MPS can represent only exponen-

tially decaying correlations. Indeed, entries of normalized (T )s−1 fall exponentially with s.
Despite being limited to exponentially decaying correlation functions, MPS can be used to

describe critical systems. On the numerical side, it is possible to extract certain properties
of the system by looking at the scaling with growing bond dimension, see e.g. [568, 349,
654]. On the theoretical side, König and Scholz have developed a rigorous truncation procedure
for MPS approximations to (1+1)d CFTs [326, 325]. König and Scholz have proved that the
error, namely, the difference between any correlation function and the MPS representation of
this correlation function, decreases exponentially with the truncation parameter N , while bond
dimension increases as the number of vectors with weight less or equal to nN , where n is the
number of (non-vacuum) fields.
Translational invariant MPS allows calculations in the thermodynamic limit. Normalized (T )∞

is a projector on the eigenspace of T with the eigenvalue 1.
We can cut the system in two parts by removing one of the connections between tensors that

constitute the MPS. Then, we can use Schmidt decomposition

|ψ〉MPS =
∞∑
α=0

λαψL,MPS ⊗ ψR,MPS (2.49)

with Schmidt coefficients λα. We can quantify an error of the approximation as

ErrorMPS =

∞∑
α=χ

|λα|2. (2.50)

Hastings has proved [257] (see [33] for the proof with exponentially better parameters) that
ground states of gapped Hamiltonians in one spatial dimension can be approximated arbitrarily
well by MPS in an efficient manner (see Fig. 2.14).

Theorem 2.4.2 (MPS approximates ground states). For ground states of one-dimensional
gapped local Hamiltonians ErrorMPS scales as χ−c, where c is a constant that depends on the
energy gap and the dimension of the Hilbert space on each site.
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(= ground states of local 1d H

Figure 2.14.: Matrix product states can approximate ground states of 1d local Hamiltonians well
(see theorem 2.4.2)

The MPS ansatz is used in various numerical algorithms including the density matrix renor-
malization group (DMRG) ( [625], for a more up-to-date review see e.g. [524]). Today it remains
a method of choice for the analysis of a large number of one-dimensional systems.
An important generalization of the MPS to two-dimensional (or, in a similar way, higher-

dimensional) systems are projected entangled pair stares (PEPS) [595, 599].

Figure 2.15.: PEPS in two dimensions.

This approach enables not only to describe the bulk of the material but also the edge modes
[646]. However, PEPS is much harder to work with than MPS, both numerically and theoretically.
For open mathematical questions regarding PEPS, see e.g. [131].
There have been studies that generalize the MPS to a continuous number of variables [596].

These continuous MPS, or cMPS, provide a new approach to quantum field theory and a fresh
view on the real-space renormalization group methods (see e.g. [432, 292]).
MPS algorithms can also be implemented on quantum computers, see e.g. [49].

2.4.3. Parent Hamiltonian

While it is established that MPS can be used to approximate ground states of local Hamiltonians
(see theorem 2.4.2 and e.g. [524]), it is worthwhile to draw a connection in the other direction.
Given a state, for example an MPS, can we construct a local Hamiltonian H such that this MPS
is the ground state of H (see Fig.2.16)?

=) ground states of local 1d H

Figure 2.16.: Matrix product states are the ground states of a parent Hamiltonian (see defini-
tion 2.4.5 and theorem 2.4.7)

One application of such construction is to obtain Hamiltonians for novel integrable models.
This was one of the original motivations to introduce tensor networks. The construction of a
Hamiltonian from what is now considered a prototypical MPS occurred in [15] for the AKLT
state [14]. This result, together with [5], has inspired a series of generalisations [194, 195]
culminating in a general way to produce an integrable model from an MPS [196].
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The other application is to prepare states of interest. If a certain state |ψ〉 is the ground state
of a gapped Hamiltonian H that can be realised in an experiment, and if there is either a way to
ensure that the temperature is low enough or to have energy dissipation (see Subsection 2.5.7),
the system will evolve towards |ψ〉.

It is important to concentrate on local Hamiltonians. Indeed, the unique ground state of
H = 1−|ψ〉〈ψ| is |ψ〉. However, 1−|ψ〉〈ψ| can have interacting terms that have arbitrary ranges
and do not fall with distance. These kind of interactions are very hard to realise experimentally
with sufficient precision (see Section 2.5), often rendering such global Hamiltonians rather useless.

It is also vital to be able to construct the Hamiltonian using limited computational resources.
One way to do this is to demand that a model is frustration free—a ground state minimizes each
local part in the Hamiltonian. This is especially useful if the density matrix of a subregion is
efficiently computable, as is the case for MPS.

A prototypical frustrated system—the antiferromagnetic Ising chain on a triangular lattice was
studied in [611], yet a general concept of frustration was defined in [581, 586].

Definition 2.4.3 (Frustration free Hamiltonian). A k-local Hamiltonian H =
∑

i hi, where each
hi acts non-trivially only on k sites is called frustration free, if

inf
|ψ〉
〈ψ|H|ψ〉 =

∑
i

inf
|ψ〉
〈ψ|hi|ψ〉 (2.51)

Example 2.4.4. Consider a spin-1
2 antiferromagnetic chain described by the Hamiltonian H =

J
∑N

i=1 σ
z
i σ

z
i+1 with J > 0 and periodic boundary conditions—the site N + 1 identified with site

1.

If N is even, the energy is minimised by the states in which the spins are anti-aligned, so there
are two ground states. In this case the Hamiltonian is frustration free. For odd N , there is a
kink produced by two contiguous aligned spins in a ground state. There are 2N ground states
and the system is frustrated. See Fig. 2.17 for N = 4, 3.

Figure 2.17.: Ground states of N = 4 (left, one of 2) and N = 3 (right, one of 6) spin-1
2 antifer-

romagnetic chain with periodic boundary conditions. The chain is not frustrated
for even N and frustrated for odd N .

Any short-range Hamiltonian with a gap between the ground and excited states can be approx-
imated by a frustration free Hamiltonian with interaction length that is logarithmic in system
size [256].

Combining the demand for local and frustration free interactions we can define a class of
Hamiltonians we are looking for—parent Hamiltonians.
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Definition 2.4.5 (Parent Hamiltonian). A Hamiltonian H is called parent for a linear space of
states V if it is local, frustration free and

inf
|ψ〉
〈ψ|H|ψ〉 = 〈φ|H|φ〉 ∀|φ〉 ∈ V (2.52)

Let us construct a candidate for MPS parent Hamiltonian.

Construction 2.4.6 (Parent Hamiltonian for MPS). Consider an MPS |ψ〉 and its reduced
density matrix for k particles, starting from particle i: ρ[i,i+k−1]. Let hi be a projector on
ker
(
ρ[i,i+k−1]

)
. Construct HP =

∑
i hi.

While it is easy to see that |ψ〉 is indeed a ground state of HP , there might be other ground
states of HP if the locality k is chosen inappropriately. Nevertheless, HP is indeed a parent
Hamiltonian for the MPS |ψ〉 if k is chosen large enough.
Let us argue that the number of ground states of HP can indeed depend on locality of inter-

actions. Suppose that l-particle |ψ〉 ∈ Hl has a bond dimension χ and the physical dimension
dim(H) = d. By construction 2.4.6, max

(
rank(ρ[i,i+k−1])

)
= χ2. Let us first consider a situation

when dk ≤ χ2. This can lead to ρ[i,i+k−1] being full-rank, which in turn produces HP = 0, and
thus any state is a ground state of HP . Let us show that this problem can be solved by increasing
k. Let us increase k so that dk > χ2. Then each local term hi has at least dk−χ2 excited states,
leading to non-trivial HP . Note that the higher the locality k is, the smaller is the proportion of
ground states in the spectrum of each hi.
But is there a sufficient interaction range such that the construction 2.4.6 produces a parent

Hamiltonian? And, if so, what happens to the gap of this Hamiltonian in the thermodynamic
limit? While each hi is gapped, can we be sure that limN→∞

∑N
i=1 hi/N is also gapped? Fortu-

nately, in the translational invariant case, the answer to both of these questions is yes.

Theorem 2.4.7. Consider a transnational-invariant MPS |ψ〉 defined by a tensor A. Let an HP

be a parent Hamiltonian candidate constructed via 2.4.6 for |ψ〉. There exists a function i(A)

such that if the interaction range k of HP satisfies k > i(A), then |ψ〉 is the unique ground state
of HP , and HP has a spectral gap above the ground state energy. Moreover, i(A) ≤ χ2(χ2−d+1),
where χ is the bond dimension and d—the physical dimension of |ψ〉.

Theorem 2.4.7 was proven in [512], building on earlier results obtained in [450, 415, 196]. A
detailed discussion about parent Hamiltonians can be found in e.g. [506].

2.4.4. Matrix product density operators (MPDOs)

A direct generalization of MPS for mixed states are matrix product density operators (MP-
DOs) [657, 597]. The length-l MPDO with bond dimension χ can be written as

ρα0αl
MPDO =

∑
i1,j1...,il,jl∈{0,2j}

χ∑
α1,...,αl−1=1

Ri1j1,[1]
α0α1

Ri2j2,[2]
α1α2

. . . Riljl,[l]αl−1αl
|i1, i2, . . . il〉〈j1, j2, . . . jl| (2.53)

for some family of rank-4 tensors R[k] (see Fig. 2.18).
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R
[1]

R
[2]

R
[l]≡ρ

α0αl

MPDO
α0 αl

Figure 2.18.: Diagrammatic representation of MPDOs.

Just like MPS, MPDOs obey the area law for entanglement (see Section 2.4.1). That is,
MPDOs efficiently approximate mixed states for which entanglement of purification grows with
the area of a subregion [287].
MPDOs are well suited to represent thermal states of local Hamiltonians [122, 398, 256, 624,

77], see Fig. 2.19. In particular, it is sufficient for the bond dimension to scale as χ = (N/ε)O(β),
where N is the system size, β is the inverse temperature and ε is the error in approximation the
thermal state [398]. The error is defined as

∥∥ρ− e−βH/Z∥∥
1

= ε, where ρ is the approximation
and e−βH/Z is the thermal state. Conveniently, this result holds in any dimension [398].

(= thermal states of local HMPDO ≡

Figure 2.19.: MPDOs can approximate thermal states of local Hamiltonians for high enough
temperatures. This result can be generalized to arbitrary dimensions [398].

Algorithms that use MPDOs as a variational class are more elaborate than the algorithms
for MPS. Any non-degenerate MPS represents a wave function, but a matrix product operator
(MPO) must be positive to be an MPDO. It is NP-hard in the system size to check whether a
given MPO is positive [318].
One way around the positivity problem is to work with a purification (see corollary 2.1.8) of

an MPDO to an MPS [290, 617] (see Fig.2.20).

Open systems

l
2

l

purify

trace out

ρ

= ρ

Figure 2.20.: An MPDO obtained by tracing out additional degrees of freedom in an MPS is
guaranteed to be positive.

However, the bond dimension of the purification may grow significantly [154, 155] and transla-
tional invariance may be lost [151]. However, the growth of the bond dimension can be mitigated
if a purification is performed up to a small error [153]. Another way around the positivity prob-
lem is to unravel the master equation and then employ pure-state techniques, at the expense of
having to sample over many realizations [146, 397]. Yet another option is to obtain an MPDO
of interest by evolving a simple initial MPDO state and ensuring that the errors during time
evolution stay small [597], or by searching only over the stable space of a Lindbladian (see Section
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2.2)[143]. See e.g. [86] for comparison between methods based on time evolution and sampling
realizations of pure states and e.g. [570] for comparison with methods based on purification.

MPDOs have been successfully used for numerical investigation of various physical systems
(see e.g. [40, 41, 42, 564, 371, 219, 288, 117, 455]). See e.g. [615] for a review of methods based
on MPDOs and a discussion about their alternatives. There are open-source software packages
that can be used for such simulations, e.g. [19, 289].

This makes MPDOs a very compelling variational class to study stable spaces of local Lind-
bladians (Fig.2.21).

 � stable space of local LMPDO ≡

Figure 2.21.: While there are more open qustions compared to MPS, MPDOs are known to be a
very powerful variational class for stable spaces of local Lindbladians.

However, unlike for MPS, the question about parent Lindbladians for MPDOs is not yet fully
settled (see Fig.2.22).

=)? stable space of local LMPDO ≡

Figure 2.22.: Is there a parent Lindbladian for a given space of MPDOs?

We show how to construct a k-local parent Lindbladian or to verify that it does not exist for
a given space of MPDOs and locality k in Chapter 3.

2.5. Quantum computation

In this section we discuss how highly tunable quantum systems can perform computations inac-
cessible to classical computers. We start by introducing quantum simulators—adjustable systems
that can reproduce the behaviours of important, yet complex and often poorly understood quan-
tum systems. We proceed to highlight the benefits that quantum computers—digital quantum
simulators, have. We then describe what conditions quantum computers have to satisfy to be
maximally useful. Among these conditions is the long relevant coherence time. We outline
how with error correction the coherence time can be prolonged arbitrarily, yet current quantum
hardware is too noisy for error correction. Nevertheless, even noisy intermediate-sized quantum
computers are believed to be an enabling technology; we assume access to such a machine in
Chapters 4 and 5. We conclude this section with a description of a simulation approach based
on designed interactions and explain how it can gain robustness from designed dissipation. We
assume access to a dissipation-based device in Chapter 3.
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2.5.1. Quantum simulators and engineering

Insights about some systems are easier to obtain by employing a simulator—a system that shares
key features with the original, but is simpler and can be precisely controlled. While classical
simulation is available for a restricted set of problems, such as studying few-particle systems or
calculation of ground- and thermal-state properties in low dimensions (see section 2.4), in general
such simulation is expected to be inefficient. However, current progress in building quantum sys-
tems that are highly controllable and scalable enables quantum simulators. Originally proposed
in [382] and [205], various physical platforms are currently used as quantum simulators [8].

Highly controllable systems can be interesting not just as simulators, but in their own right.
They can make scenarios that have previously been merely thought experiments and toys for
theoreticians a reality. Examples include systems with synthetic dimensions (e.g. [470, 82, 376,
433]) and artificial gauge fields (e.g. [147, 627, 218, 241, 45]), quantum computing (e.g. [300])
and cellular automata (e.g. [199]), many-body localisation [525, 88, 129, 375, 25] and systems
with exotic long-range order (e.g. [604, 603, 539, 306]). The art of choosing useful and interesting
systems that are within experimental reach can be called quantum engineering.

Of particular interest for this thesis is quantum state engineering—the preparation of useful
multipartite entangled states (e.g. [81]).

2.5.2. Digital quantum computers

Several challenges are present in any highly tunable system. First of all, it is important to build
systems that show a rich variety of behaviours using only few operations that are experimentally
available. Second, it is not trivial to design control protocols and tuning parameters in such a
system to obtain something useful. Third, any real-world control is not perfect and is prone to
errors. Thus, it is crucial to mitigate such errors.

All of these problems can be accessed via using digital devices, see e.g. [300, 424]. A sequence
of operations performed on a digital device is called computation. Computation can be defined
as via the circuit model (see Fig. 2.23, [163] and e.g. [300, Section 1.3]). First, an elementary
subsystem is defined. In classical computation, the most common elementary subsystem is a bit.
In quantum computation, an elementary subsystem is associated with a Hilbert space H = Cd;
d is usually chosen as 2, and such subsystem is called a qubit. Each elementary subsystem
corresponds to a wire. A circuit consists of wires and elementary operations on wires, also called
gates. Each gate is an element of a finite set of operations G that, without the loss of generality,
can be assumed to be reversible. Thus, for quantum computation, G can be assumed to be a finite
subset of unitary operations. The wires never feedback to a prior location in the circuit. At each
time t each wire enters at most one gate. The outputs are read off the wires leaving the circuit
at the right side of the diagram. The outputs can either be classical values or quantum states. It
is sufficient to assume that classical outputs are measured in some pre-set computational basis.
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G1

G2

G1

G3

G2

G4

G5
ρ
in

o1

o2

ρ
out

Figure 2.23.: A circuit diagram. The horizontal lines represent wires carrying the elementary
subsystems, and the blocks represent gates. The same gate can be applied to
different and not necessarily adjacent wires, e.g. gate G2 on this diagram. Gates
can be local, such as 1-local G1, G2 and 2-local G2, G4, or global, such as G5.
Information propagates through the circuit from left to right. The input is ρin.
Some of the wires can be measured at the end of the diagram to produce real
values o2 and o1. It is enough to demand that the measurements are performed
in some pre-set computational basis. However, it might be reasonable to assume
that the measurement basis for each wire can be different. Moreover, the basis may
depend on the outcomes of previous measurements. For example, the measurement
basis for the second wire might depend on the outcome of the measurement of the
first wire. The output of the circuit is a combination of the measured values o1, o2

and a possibly entangled state ρout.

Sometimes it is easier to perform different measurements than to perform reversible operations.
In this case, some gates can be performed by measurements that are conditioned on earlier mea-
surement outcomes. If a part of the input is a so-called cluster state, any quantum computation
can be performed via measurements only [103, 481, 482].
It turns out that a very small number of local gates is sufficient to represent any operation,

see Subsection 2.5.3. As few building blocks describe simple operations, it is often easier to
program digital rather than analog devices. Finally, in digital devices the information contained
in one elementary subsystem can be redundantly encoded into several subsystems, making error
correction possible, see Subsection 2.5.5.
Unfortunately, digital quantum devices also have drawbacks. For one, it is much harder to

build a digital, rather than analog, quantum system that is complex enough to shed light on pre-
viously unknown phenomena. Current analog quantum simulators can prepare macroscopically
entangled states of 104 particles [26], where digital devices coherent enough have not yet reached
a 100 qubits [35, 401] (with the record for a state that has a reasonable fidelity with GHZ being
27 [400] qubits and 24 [459] qubits on a machine that can fit in existing data center racks).

2.5.3. Universality

It turns out that a small number of digital operations is sufficient to perform any computation.
Thus, building many-qubit devices that are tuned to perform this small but universal [162]
instruction set is a viable way to explore physics of arbitrary complication and richness.

Definition 2.5.1 (Universal instruction set). We call an instruction set G universal, if any
unitary U can be approximated arbitrary well using only operations from G.

41



2. Preliminary material

It is of high interest to understand what are the simplest universal instruction sets. A detailed
derivation of the universality of sets of gates discussed in this subsection can be found in [424].

Theorem 2.5.2. A universal instruction set can be composed of operations that act non-trivially
on at most two levels.

Proof. Any element U ∈ SU(d) can be written as

U = eit1G1 · . . . eitn2−1Gn2−1 , (2.54)

where tj ∈ R and Gj are generators of the su(d) Lie algebra, j = 1, . . . n2−1. The generators Gj
can be chosen as a set of diagonal matrices and matrices of the form δmn + δnm or iδmn − iδnm,
d ≥ m > n ≥ 1. If Gj is diagonal, eitjGj can be written a composition of one-level operations,
otherwise eitjGj is a two-level operation.

A general two-level operation can be global. However, a universal instruction set can be
composed only of one- and two-qubit operations.

Definition 2.5.3 (Controlled gates). A controlled-U is a linear operation on two subsystems—a
control qubit and a target subsystem. If the control qubit is in the state |1〉 ≡ |↑〉, U is applied to
the target subsystem, otherwise target is left alone; that is, for basis states |c〉|t〉 → |c〉U c|t〉. The
controlled-U is denoted by a circuit

U
.

In particular, the action controlled-NOT or CNOT on basis states is |c〉|t〉 → |c〉|c⊕ t〉, where
⊕ is addition modulo 2, and is denoted by a circuit .

Theorem 2.5.4. One-qubit operations and CNOT gate is a universal instruction set.

This theorem can be proved by observing that any two levels can be exchanged via one-qubit
and CNOT gates (see [424, Subsection 4.5.2]). Thus, any operation on levels l1 and l2 can be
performed by exchanging l1 with the level that forms a qubit together with l2, doing the desired
two-level operation on the levels of one qubit and undoing the exchange; Theorem 2.5.3 concludes
the proof. It should be noted that the choice of CNOT is somewhat arbitrary, as almost any
other two-qubit gate would still yield universality [368, 164].
Any one-qubit gate can be generated by very few operations. In fact, universal instruction set

can be discrete.

Definition 2.5.5 (Standard one-qubit gates). The Hadamard gate H, phase gate S and π/8

gate T are

H =
1√
2

[
1 1

1 −1

]
, S =

[
1 0

0 i

]
, T =

[
1 0

0 eiπ/4

]
. (2.55)

Theorem 2.5.6 (Standard set of univesal gates). An instruction set consisting of the Hadamard,
phase, π/8 and CNOT gates is universal.
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A universal instruction set has to contain a two-qubit gate, e.g. CNOT, as one-qubit operations
map product states to product states. However, it is sufficient to work with two-qubit operations
that act only on adjacent qubits according to some ordering. Indeed, a two-qubit operation on
non-adjacent qubits can be performed by SWAP-ing one of the qubits in adjacency to the other
one and then SWAP-ing it back.

Definition 2.5.7 (SWAP). A linear operation SWAP : H1 ⊗H2 → H2 ⊗H1 is defined on basis
states as ∀ |φ〉 ∈ H1, |ψ〉 ∈ H2 SWAP|φ〉|ψ〉 = |ψ〉|φ〉. The SWAP is represented by a circuit

.

A SWAP gate can be constructed from 3 CNOT gates.
Now that we have a universal instruction set, how do we approximate an n-qubit unitary of

interest U with accuracy ε? It can be a hard task, as simple counting of number of states versus
number of operations shows that there are unitary transformations that take Ω

(
2n logc(1/ε)

log(n)

)
operations to approximate, see e.g. [424, Subsection 4.5.4]. Nevertheless, there is an efficient way
to generate such an approximation [149].

Theorem 2.5.8 (Solovay-Kitaev, [313, 149]). Let G be an instruction set for SU(d), and let a de-
sired accuracy ε > 0 be given. There is a constant c < 4 such that for any U ∈ SU(d) there exists
a finite sequence S of gates from G of length O (logc (1/ε)) such that sup‖ψ‖=1 ‖(U − S)ψ‖ < ε.
There is no algorithm such that c < 1. [255]
Approximating sequence S can be found on a classical computer (using an algorithm in [149])

with a running time O (loge (1/ε)).

Results discussed in this subsection tell us that any unitary transformation can be approxi-
mated using, possibly many, instructions chosen from a universal set. A universal instruction set
can consist of just 4 elements acting on at most 2 qubits.
A transformation can be experimentally relevant if it requires a small, e.g. polynomial or

logarithmic, number of instructions. Unfortunately, the results discussed in this section do not
tell us what transformations are experimentally relevant.

2.5.4. DiVincenzo criteria

We are now in a position to state a minimal set of conditions necessary for an experimental
realization of a scalable quantum computer. [169]

1. A scalable physical system with well-characterized qubits.

2. An ability to initialize the state of the qubits to a simple fiducial state, such as |0 . . . 0〉.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A universal instruction set.

5. A qubit-specific measurement capability.

43



2. Preliminary material

Meeting these criteria suffice for quantum computation. However, it is highly beneficial to be able
to exchange information between different devices. In order to perform quantum communication
(see Subsection 2.7.5), two more criteria should be met.

1. An ability to interconvert stationary and flying qubits.

2. An ability to faithfully transmit flying qubits between specified locations.

2.5.5. Quantum error correction (QEC)

Long coherence times necessary to build a quantum computer (see Subsection 2.5.4) and reliable
transmission of quantum information (see Section 2.7) can be achieved by redundantly encoding
information into bigger Hilbert space, using e.g. more qubits, see Fig. 2.24. The encoding ensures
that if an error on a small fraction of the qubits occurs, the decoder can correct, or at least detect,
the error. The information to be transmitted over a noisy channel is encoded by a sender and
decoded by a receiver; the information manipulated by a quantum device can be shielded against
degradation by performing gates on encoded data [545] and running an error correction routine
with an appropriate frequency.

Noiseencoder decoder

Figure 2.24.: Errors can be detected and corrected by redundant encoding into bigger Hilbert
space. This example shows an encoding of two qubits into four.

Depending on a situation, either detection or correction of errors is desirable. Error correcting
codes conveniently allow transmission or computation to go uninterrupted by noise. However,
error detecting codes tend to require fewer resources. If the error probability is small, it is often
more economical to redo the transmission or computation if the error is detected rather than
pay the overhead for error correction.
Error detection codes are exemplified by bytes consisting of information bits and one extra

parity bit. If the party of information bits does not equal the parity bit, an error has occurred.
However, for a typical 8 information bits in a byte, this encoding is insufficient to correct the
error.
Classically, the simplest kind of encoding is repeating one bit of information n times. Even

if
⌊
n−1

2

⌋
bits are corrupted, the information can still be decoded by the majority rule. See

e.g. [377] for a deeper discussion on classical error detection and correction. However, such
repetition error correcting schemes cannot work for quantum data, which cannot be broadcasted
and, thus, cloned.

Theorem 2.5.9 (No broadcasting, [48]). Let ρs ∈ T (H), s ∈ {0, 1} and ρ̃s ∈ T (H ⊗ H) be
quantum states such that Tr1(ρ̃s) = Tr2(ρ̃s) = ρs. A quantum channel ρs → ρ̃s exists if and only
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if ρ0 and ρ1 commute.

Corollary 2.5.10 (No cloning, [440, 641]). There is no unitary operator U acting on H ⊗ H
and such that for any |φ〉 and some |e〉 ∈ H and real α(φ, e)

U |φ〉 ⊗ |e〉 = eiα(φ,e)|φ〉 ⊗ |φ〉. (2.56)

There is a bound on how well an approximate cloning can be performed; notably, the error
vanishes in the classical limit.

Theorem 2.5.11 (Approximate N toM cloning, [304]). For any cloning map of N to M copies
T : B

(
H⊗N

)
→ B

(
H⊗M+

)
of approximate cloning, the error in one-particle expectation values

∆(T ) = sup
ψ,a≤1∈B(H),k

∣∣∣〈ψ|T (1⊗(k−1) ⊗ a⊗ 1⊗(M−k)
)
|ψ〉 − 〈ψ|a|ψ〉

∣∣∣ (2.57)

is bounded from below as

∆ ≥ d− 1

d

∣∣∣∣1− N

N + d

M + d

M

∣∣∣∣ , (2.58)

where d = dim(H) and H⊗M+ is a space spanned by |φ〉⊗M , |φ〉 ∈ H. The bound is tight.

Despite no-cloning theorem, quantum error correction is possible. Consider a set of messages
{i} and a set C = {ci} of sufficiently distinguishable states in a large Hilbert space Hc. If noise
E maps different ci to disjoint regions Ci of Hc, then the encoding from physical to logical states
i→ ci renders any error induced by E correctable, see Fig. 2.25.
The noise present in an experiment typically cannot be canceled exactly. However, it usually

can be approximated by a correctable noise E . It is important to characterise how stable are the
logical states. Note that the noise acting on the logical states may be significantly different from
the noise acting on the physical states [302, 435].

0

1

Hc

C0

C1

Figure 2.25.: Errors can be corrected if information (0 and 1) is encoded (black arrows with filled
heads) into states that are mapped by noise (dark red arrows with empty heads)
to disjoint regions (C0 and C1) of a large Hilbert space Hc.

Definition 2.5.12 (Quantum error correcting code (QECC)). Let Hc be a Hilbert space and C
a subspace of Hc. C is a QECC correcting the set of errors {Ei} iff ∀ |ψ〉 ∈ C there is a quantum
channel R such that R ◦ Ei|ψ〉 = |ψ〉.

The historically first and simplest example of QECC is a three-qubit bit flip code [449], see
Fig. 2.26. It encodes one qubit into three and corrects a set of errors {Ei = πi1

⊗2⊗σxπ†i }, where
πi is a set of permutations and σx is a spin-flip operator.
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j i

j0i

j0i

Uenc

j i
1

or

Ei

Figure 2.26.: The tree-qubit bit flip code encodes |ψ〉 = α|0〉+ |1〉 into Uenc|ψ〉 = α|000〉+ |111〉
and can correct any error Ei = πi1

⊗2 ⊗ σxπ†i .

The first QECC that corrects any one-qubit error was discovered in [544]. It encodes one
qubit into 9 via

|0〉 → |c0〉 = (|000〉+ |111〉)⊗3, |1〉 → |c1〉 = (|000〉 − |111〉)⊗3. (2.59)

Later, encoding into 5 qubits—the minimal number required to correct any on qubit error, was
constructed [348, 71].
The number of qubits needed to correct a given set of errors is bounded from below by the

Knill-Laflamme bound [319].
Note that a large Hilbert space needed for QEC can be in principle realized using as little as one

particle. Information can be encoded in a big subspace of the infinite-dimensional Hilbert space
of a single oscillator. First considered in [130], such QECC can use, for example, symmetric and
anti-symmetric superposition of coherent states [134], or equal-weight superposition of squeezed
states [233].
Since the inception of QEC, a number of diverse and powerful families of codes were discovered.

the most widely-used class of QECC are stabilizer codes [229], with prominent subclasses of
CSS [110, 558], GF (4) [109] and topological codes [314, 315, 161, 84].
Automated search of QEC codes using classical computers was pioneered by [489]. Today this

is a well-established technique; as a characterization of a noise channel is usually a hard task,
machine learning (see Section 2.6) is a popular method for this task [211], especially widely used
for the search of decoders [576, 332, 589, 43, 367, 385, 44, 99, 590, 119, 30, 417].
So far we have not discussed that the gates used to encode and decode information are can be

faulty. In a poorly designed error correction protocol, a problem with a single gate can spread
the error throughout the circuit. Luckily, it is possible to keep the error propagation in check
and build a device that works efficiently when its elementary components are imperfect. Such
fault-tolerant quantum devices were first proposed in [545].

Definition 2.5.13 (Fault-tolerance). Suppose individual quantum gates produce errors in their
output independently with probability p. For a given error-correcting code that corrects one error,
an implementation of a gate acting directly on encoded states is considered to be fault-tolerant if
the probability that the implementation introduces an unrecoverable error is bounded above by cp2

for some constant c.

Example 2.5.14. Let us consider a CNOT operation that acts on 3 encoded qubits operation
CNOTenc : |i〉⊗3|j〉⊗3 → |i〉⊗3|i⊕ j〉⊗3. It can be realized in several non-equivalent ways:
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Non-fault-tolerant) Fault-tolerant)

If an error occurs in the first qubit of a non-fault-tolerant implementation, it propagates to
every controlled qubit. For the fault-tolerant implementation, however, this error only affects
one controlled qubit and information can be successfully decoded.

Every stabilizer code can be implemented fault-tolerantly [230].
QECmay bring a hefty overhead in terms of extra qubits and run time over unencoded protocol.

Thus, fully fault-tolerant computation is viable only if the information protection overcompen-
sates the extra opportunities for errors due to a larger number of operations, decreasing the net
logical error rate. This is possible if elementary steps in computation can be performed with
the error rate smaller than the threshold 1/c. Once the noise strength under the threshold was
achieved, it can further be brought down using concatenated codes [321, 314, 16, 178]. Indeed, let
an encoding F of one qubit into n decrease error rate r-fold. Then k concatenations F ◦F · · ·◦F
(see Fig. 2.27) is an encoding of 1 qubit to dk that decreases error rate rk fold.

F = F ◦ F =

Figure 2.27.: 2 concatenations of F encoding 1 qubit into 3.

See e.g. [231, 232, 466] and [300, Chapter 10] for further discussion. Currently experimentally
investigated codes are estimated to have a threshold of around 1/100 [212, 46]
Experimental proof-of-principle demonstration of QEC protocol was achieved using various

physical platforms, e.g. NMR [137, 320], ions [127, 517], NV centers [605, 569, 141], photons [458,
32], superconductors [487, 301, 136, 495]. Impressively, 7 topological [425, 27] and GKP [209,
157, 111] codes were implemented on ion-trap and superconducting devices. Lifetimes of qubits
were prolonged via QEC [301, 428, 27]. Moreover, quantum devices themselves were used to
optimize encodings [409]. Nevertheless, there are still enough hurdles on the way to fully fault-
tolerant quantum computer [76]. Available number of qubits and performance of experimental
building blocks, such as gates and read-out, is not yet adequate to achieve the breakeven point
of beneficial QEC. Luckily, a lot of effort is directed to both enhancing existing platforms and
developing new architectures to achieve this goal, see e.g [92, 251, 352].

2.5.6. Noisy intermediate-scale quantum (NISQ) devices

Current quantum computers have less than 100 noisy qubits. Fault-tolerance is not yet achievable
with currently available experimental building blocks. Even worse, quantum computers are
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expensive and often each qubit requires extensive calibration and certification by highly-skilled
workers (see e.g. [35]).
On the other hand, classical computers are abundant, fault-tolerant, well-connected over the

internet and cost per bit and operation is incredibly low. Why use quantum?

Definition 2.5.15 (Quantum advantage (or supremacy [467])). A circuit with run time Tq ex-
hibits a quantum advantage if the time Tc needed to simulate it on any existing classical computer
of comparable cost satisfies Tc � Tq.

Small-scale devices—computers with up to several dozen qubits, can not demonstrate quantum
advantage, as any computation they perform can be accurately modelled on mass-produced
classical computers. There are well-known tasks where quantum computers show exponential
speed-up over classical ones (see e.g. [300]). Thus, with a lot of qubits and long coherence times
quantum advantage is easily achievable. But can modern, noisy intermediate-scale (from
around 50 to several hundred) quantum (NISQ, [469]) be useful?
The answer is believed to be yes.
First of all, a full description of an arbitrary intermediate-scale wave function can not fit into

a memory of any currently conceivable classical computer. This makes even the simplest tasks
for a universal quantum computer, such as producing a sufficiently generic and pure random
state, classically hard (see e.g [91] for relevant bounds). This is a basis for current claims of
quantum advantage, such as [35] (while not as dramatic as initially stated, the claim still holds
if more efficient known classical algorithms are taken into account [443, 444, 436]) and [651].
States generated in these claims are not of the highest practical importance, yet they prove the
potential utility of current quantum devices.
Second, memory is not the only bottleneck for classical devices. Even shallow circuits can

reduce run time for computation.

Theorem 2.5.16 (Quantum advantage with shallow circuits [96]). There are computational
problems that can be solved by a constant-depth quantum circuit consisting of one- and two-qubit
gates but require at least a logarithmic-depth classical probabilistic circuit with bounded fan-in
gates.
The classical circuit of depth asymptotically growing at least as fast log(n)

log(log(n)) is requires if
qubits are subject to local stochastic noise with strength below a threshold value independent of
circuit width n [97].

Once again, the main use of problems studied in [96, 97] is to show the separation in run time
between quantum and classical gates; hopefully, the class of problems where the separation exist
also includes practically relevant tasks.
Third, there are a lot of sources of quantum data (see Section 2.7) that could benefit from

some post-processing (see e.g. Chapters 3 and 5). Turning quantum information into classical
is a resource-intensive procedure. For example, full tomography of a state requires exponential
in the dimension of the Hilbert space number of measurements. Using quantum devices for
post-processing can be a very natural and economical approach.
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Finally, a quantum advantage is an overly strong requirement. Maybe there are efficient
classical algorithms that can simulate this particular quantum circuit, but discovering these
algorithms may be harder than building a sufficiently powerful quantum device. This is often the
case for the simulation of quantum many-body systems with a straightforward implementation
on a particular quantum computing architecture [310, 311].
We can see that there are many reasons why NISQ devices can be very useful, and it is

important to design algorithms that exploit their potential to the fullest. See e.g. [78] for a
review of available NISQ algorithms.
Some of the leading architectures for NISQ devices are superconducting qubits [316], trapped

ions [104] and photons [556, 208].

2.5.7. Designing interactions and dissipation.

Instead of focusing on representing local gates, one can focus on designing interaction. While
the two approaches are polynomially equivalent [18], there are several benefits in concentrating
on interactions.
Evolution with local interaction allows targeting states inaccessible by shallow local circuits.

If a system is evolving with a local Hamiltonian H =
∑

i hi, the evolution operator e−iHt is, in
general, a non-local gate. Shallow circuits of local gates can approximate short time evolution
via e.g. Suzuki-Trotter expansion e−itH =

∏
i e
−ith+O(t2), yet are not conducive for exploration

of long-term dynamics. In contrast, even noisy devices with tunable interaction can explore e.g.
steady states of evolution operators.
Ground states of a large class of Hamiltonians {Hi} can be obtained in the framework of adia-

batic quantum computation [197]. The system can be initialized as a ground state of some easy
to realize Hamiltonian, say spin-1/2 particles coupled with strength b to the external magnetic
field H0 = b

∑
i σ

z
i , by keeping the temperature much below the spectral gap 2b. The system is

then evolved for time T with time-dependant H(t) = [1− f(t)]H0 + f(t)Hi, such that f(0) = 0

and f(T ) = 1. Due to the adiabatic theorem, the system will remain in the ground state if
T = O

(
1

g2min

)
, where gmin is the minimal spectral gap of H(t). Fortunately, answers to many

interesting problems can be encoded into ground states of relatively simple Hamiltonians. For
example,

HZZXX =
∑
i

(biσ
z
i + ∆iσ

x
i ) +

∑
i<j

(Jijσ
z
i σ

z
j +Kijσ

x
i σ

x
j ) (2.60)

is QMA-complete [80]. QMA (e.g. [17]) is the quantum analog of NP—if an answer to a decision
problem is YES, the proof is provided in a form of a state that with high probability convinces
a polynomial-time quantum verifier. The proof can always be provided as a ground state of
HZZXX with appropriately chosen {hi,∆i, Jij ,Kij} and verified by measuring 〈HZZXX〉.
A device with tunable interactions may be easier to implement than a set of high-fidelity

universal gates. There are many systems that sport interactions alike present in HZZXX , from
flux qubits [430] and ions [75, 490] to polar molecules [395]. It is not a coincidence that the first
commercially available digital quantum device was a quantum adiabatic computer [631].
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Not every ground state can be efficiently prepared adiabatically—if the minimal gap vanishes,
one has to compromise between extremely long run time and significant overlaps of the prepared
state with excited states.

Quantum systems are usually coupled to their surrounding environment. Such couplings are
needed to control the system and to measure observables. This may lead to decoherence, dis-
sipation and consequential washing out of interesting quantum effects. Thus, significant efforts
have been made to isolate quantum systems and dissipation is typically treated as an adversary.

However, many exciting systems are open and deserving of simulation. Moreover, whereas it
is usually worthwhile to shield the system from noise, dissipation can be a fully-fledged resource.
While closed systems can efficiently simulate open ones [317], a controlled environment can
improve the robustness of the experiment by deriving the system to the desired stable space and
suppressing unwanted overlaps.

There are several ways to introduce controlled dissipation into a quantum simulation. In
closed-system simulators, part of the system can be treated as the environment, see e.g. [518]. A
different adjustable physical platform coupled to the system may play a role of the reservoir, see
e.g. [522, 100, 253, 312, 477, 331]. Alternatively, not the different platform itself, but rather the
coupling between it and the system undergoing state preparation can be tuned, see e.g. [490, 167].
Measurements may be used to steer the system in a desired direction, see e.g. [344, 345, 54, 610,
416, 192].

Different physical platforms are best suited for each of the different controlled dissipation
schemes. Some of them are more conducive to gate-based quantum computation, while con-
tinuous evolution with adjustable interactions is more appropriate for others, see e.g. [8]. It is
important to understand what useful channels and states are realizable via a given dissipative
engineering [167] scheme.

Universal gate-based open system simulators were experimentally demonstrated using ions,
see [518, 407]. This is a promising platform for quantum machine learning, see e.g. [56, 502]
and Subsection 2.8.2; we assume access to a universal quantum channel simulator in Chapters 4
and 5. We pay special attention to the realizability of our protocols on NISQ devices.

Highly-entangled states have been prepared using dissipation via adjustable interactions; some
of the platforms used are superconducting devices [541, 246, 207], ions [490, 477] and atoms [335],
including Rydberg ones [355]. There is also a number of theoretical proposals for experiments,
e.g. [167, 491, 454, 475], including for schemes that yield universal quantum simulation, e.g. [637].
See e.g. [408] for a review.

The simplest preparation scheme involves designing local interactions and dissipation to pro-
duce steady states. It is a very robust preparation scheme—even if the evolution operator have
substantial errors, the produced state can be closed to the desired one; see [106, Theorem 4]
for the ergodic case, i.e. stable space is one-dimensional, and [142, Theorem 7] for the case of
polynomially decaying errors in rapidly-mixing Lindbladians (compare with orthogonality catas-
trophe for non-dissipative Fermi gases [29, 220]). Local dissipation and driving can also rectify
currents [645], activate approximate conservation laws [351] and improve sensors [476, 478]. Sta-
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bility and simplicity make this protocol a conducive candidate for quantum memories [441].
There are large classes of states that can be prepared this way, such as stabilizer spaces [334]
and, importantly, any state with parent Hamiltonian [574] (see Subsection 2.4.3). In particular,
an MPS [598] (see Subsection 2.4.2) can be prepared via local interactions and dissipation.
Nevertheless, there are still large gaps in understanding what stable spaces local dissipative

dynamics can have. Discovery of novel systems that can benefit from dissipative engineering is
an active research field [20, 156, 508, 271] with a number of open questions. One such question
is related to the generalization of MPS to mixed states—MPDOs, see Subsection 2.4.4. MPDOs
are the basis of various variational methods for 1d open systems. While we know that MPS have
parent Hamiltonians, see Subsection 2.4.3, we had not yet know if parent Lindbladians exist for
MPDOs, what is the sufficient locality and how to construct them. We construct a parent k-local
quantum channel and Lindbladian for a given space of MPDOs or prove that such evolution does
not exist in Chapter 3.

2.6. Machine learning

In this section we discuss how algorithms can improve automatically through experience. Based
on this discussion, we introduce quantum neural networks in Section 2.8—a workhorse for the
denoising techniques described in Chapters 4 and 5.
With the ever increasing complexity of systems that our society deals with, the ab-initio

understanding of important processes remains a distant dream. However, useful behaviours
can be learned by experience and without in-detail understanding. As our ability to gather,
store, generate and process data has rapidly progressed, the algorithms that are able to improve
automatically by the use of data—machine learning (ML)—have become much more powerful.
One of the most popular ML techniques are neural networks (NNs), which have found numerous
applications, from self-driving cars to drug discovery (see e. g. [640, 423, 227]).
ML algorithm typically contains the training data set—a number of correct input-output pairs

of the desired map {xi, yi}Li=1 ∈ (X × Y )L, a variational class of maps fv : X → Y parameter-
ized by a vector v and a cost function C. The variational parameters in v are optimized such
that C({xi, yi}Li=1) = 1

L

∑L
i=1 d(fv(xi), yi) reaches a (local) minimum. Here, d is an appropri-

ate distance measure. Typically the optimization employs some variant of the gradient descent
algorithm (see e.g. [505]).
An optimized fv should generalize well to validation set—previously unseen data coming from

the same source as the training set.
The richness of the variational class has to be sufficient to capture significant features of the

data; otherwise we say that the ML approach is suffering from underfitting. Underfitting can
often be diagnosed by observing the cost function after training—if it remains significantly above
levels that can be attributed to noise.
While the cost function can reach the absolute minimum on the training set, it can be arbitrar-

ily large on the validation set. There are several reasons why this might happen; one of them is a
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poor quality of the training set, another one is too expressive variational class. Unlike many op-
timization algorithms, ML can also suffer from overfitting—a learning outcome that corresponds
too closely or exactly to a particular set of data, and may therefore fail to fit additional data or
predict future observations reliably, see Fig. 2.28. The problem of overfitting is especially acute
for noisy training data, as overparametrized variational optimization can learn to reproduce the
features of noise rather than the signal.

underfitting) overfitting)

f

x

f = a1x

generalization)

f =
P
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Figure 2.28.: A result of training f ∈ {f~a} (violet) for variational classes of various expressive
powers and the same data. Training set is represented by black disks, validation
set—by dark red crosses. A class of linear functions f~a = a1x parametrized by a
single parameter underfitts and fails to reproduce even the structure of the training
data. More parameters are needed for generalization. Polynomials of arbitrary
degree f~a =

∑
i aix

i overfits. While achieving arguably perfect performance on the
training set, the errors for validation set can be arbitrarily large. Less parameters
are needed for generalization. Quadratic polynomials generalize well despite noise
in the data.

Prior information is necessary for successful learning. Indeed, without any assumptions about
underlying structure of the available data, any output on unseen data is no better than a random
guess.

Theorem 2.6.1 (No free lunch, see e.g. Theorem 1.6 in [640]). For the training data
S = {xi, g(xi)}Li=1 ∈ (X × Y )L, let L < |X| < ∞, |Y | < ∞. For any function to be learned
g : X → Y and a variational function fS : X → Y define Cg(fS) = Px [fS(x) 6= g(x)], where Px
is the probability with respect to a uniform distribution of x over X. Then expected cost averaged
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uniformly over all g ∈ Y X and training data sets fulfills

Eg [ES [Cg(fS)]] ≥
(

1− 1

|Y |

)(
1− L

|X|

)
. (2.61)

A quantum generalization of this theorem is available in [460].

The no free lunch theorem implies that there is no order among learning algorithms. If one
algorithm beats another on some learning tasks, the converse has to hold on other tasks. This
has to be put into perspective, however, since not all learning is equally relevant.
One approach to constructing learning algorithms that ace real-life tasks is to gain inspiration

from networks of neurons that complex living organisms use: just like (artificial) neural networks.

2.6.1. Learning scenarios

Depending on the data, one can distinguish different learning scenarios for ML algorithms.
If the training data contains the desired outputs of the algorithm, the learning is called su-

pervised. For example, for the task of image recognition the training data can be composed of
images and corresponding labels [243, 633].
Sometimes, only partial knowledge about the desired output of the algorithm is available. For

example, the full strategy of a game might be unknown while it is possible to assign a score to
every set played. This is an example of semi-supervised or reinforced learning [551, 101].
If nothing is known precisely about the algorithm’s desired outputs for the training inputs,

the learning is called unsupervised or self-supervised. Understanding of how systems can adapt
without supervision started to emerge as early as 1949 [261]. Applications of such learning include
very relevant for this thesis data denoising without access to a noiseless source, see Section 4.3.

2.6.2. Neural networks (NN)

Artificial neural networks, usually simply called neural networks (NNs), are a family of parametrized
maps vaguely inspired by the nervous system of animals. Just like the biological prototype, NNs
are composed of relatively simple units—neurons, that are able to interact with each other. Neu-
rons are usually denoted as vertices of a network and interactions between them—as connections
in it.
A neuron in an artificial NN is a parameterized map. The outputs of a set of neurons—a

layer—are fed into the next layer. If a layer n gets all its inputs from layers k < n, the network
is called feed forward (FF). The input x ∈ X of the NN is the first layer, and the output fv(x)—
the last. The number of layers is the depth of a NN, and the maximal number of neurons per
layer—its width. The geometry of the neuronal interconnections—the topology of a NN—and the
choice of neurons determine the variational class given by the NN.
Output of a neuron, or activation function, p is usually chosen to be an affine function followed

by a non-linearity s, p (~x; ~w, b) = s (~w · ~x+ b). Parameters to be learned are weights ~w and bias
b. Some popular choices for the non-linearity are (for more examples, see e.g. TensorFlow
documentation [571] or [630]):
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• Rectifier s(z) = max(z, 0). Is often used as a default in modern NN, the activation function
is called rectified linear unit, or ReLU; see [247, 248] for initial biology-inspired motivation
and e.g. [225] for comparison in with other activation functions in deep artificial NNs.

• Softplus s(z) = log(1 + ez)

• Sigmoid functions, such as:

– Step s(z) = sgn(z). Arguably historically the earliest [499], yet hard to optimize with
gradient descent (see Subsection 2.6.3).

– Logistic s(z) = 1
1+e−z .

– Tanh s(z) = tanh(z).

There are activation functions that do not follow this pattern, for example

• Polynomial p
(
~x; {aj1,...,jii }

)
= a0 +

∑
j a

j1
1 xj1 +

∑
j1,j2

aj1,j21 xj1,j2 + . . . . Used in pioneering
deep learning algorithms from late 1960s–early 1970s [285, 286].

• Radial activation functions, such as

– Gaussian p (~x; ~w, b) = e
−‖~x−~w‖2

2b2

– Multiquadratics p (~x; ~w, b) =
√
‖~x− ~w‖2 + b2

With suitable neurons FFNNs are universal—any (sufficintly "nice" ) map can be represented
as an FFNN. For this, it is sufficient to use one, although potentially very wide, layer. Original
proof for sigmiod neurons [144] was extended to show that the only non-linearity for which
wide one-layer FFNNs are not univeral is, despite its early practical success, the polynomial
one [275, 456]. Width can often be to some extent traded for depth. In particular, any function
f : Rn → Rm can be approximated up to arbitrary low error with a deep ReLU network of width
minn+ 1,m [252]. This bound is tight and for width below min(n+ 1,m) approximation power
deteriorates drastically—only zero-measure sets can be approximated [372]. For more general non-
affine neurons, width n+m+2 is sufficient for universality [308]. This can be extended to functions
on more general spaces [333]. Deep networks of bounded width are also capable to represent
distributions, i.e. transform uniformly distributed one-dimensional noise into an arbitrarily close
approximation of any two-dimensional Lipschitz-continuous target distribution [448].

Gains from utilizing deep instead of wide network typologies can be dramatic. There are
examples when adding just one more layer decreases the necessary width exponentially [185].
Additionally, for ReLU neuron approximations of sufficiently smooth functions finite-width deep
networks require strictly smaller connectivity than finite-depth wide networks [447].

For more information about the modern state of the art, as well as the history of artificial
neural networks, see e.g. [227, 521]
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2.6.3. Gradient descent

Gradient descent is one of the simplest and most popular algorithms to perform optimization.
It is far the most common way to optimize neural networks. We will review different variants of
the algorithm following [505].
The objective is to minimize a cost function C

(
{xi, yi}Li=1; θ

)
parametrized by a model’s

parameters θ. Gradient descent seeks to achieve it by updating the parameters in the opposite
direction of the gradient of the cost with respect to θ, ∇θC

(
{xi, yi}Li=1; θ

)
. A related algorithm

of gradient ascent seeks to maximize the cost function, it is achieved via updating in the direction
of ∇θC

(
{xi, yi}Li=1; θ

)
. For simplicity, we concentrate on the descent in this subsection.

There are, however, many ways to update the parameters once the gradient was computed.

Batch gradient descent

An update with a step size, also called learning rate in the opposite direction of the gradient of
a cost function reads

θ → θ − η∇θC
(
{xi, yi}Li=1; θ

)
. (2.62)

This update takes every data point into account. While it is crucial for a small data set, if
the data is big, batch gradient descent recomputes gradients for similar examples before each
parameter update; moreover, memory-intensive data sets simply can not fit into random-access
memory in one batch.

Stochastic gradient descent

The redundant evaluations of the gradient can be resolved by using a single data point for each
update

θ → θ − η∇θC ({xi, yi}; θ) . (2.63)

Stochastic gradient descent can be much faster than batch, but the drawback is that frequent
updates with large variance cause the cost function to fluctuate wildly.

Mini-batch gradient descent

The middle ground between batch and stochastic descent is to use some data for each update

θ → θ − η∇θC
(
{xi, yi}j+ni=j ; θ

)
, (2.64)

where n is the batch size.
As stated, gradient descent does not have memory, wastefully ignoring already computed

gradients in the previous update steps. It can easily be fixed.
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Momentum

Without memory, gradient descent has troubles navigating ravines, i.e. areas where cost surface
curves much more steeply in one direction than in the other. This problem can be mitigated
via momentum m—by accumulating updates that point in same direction and let the oscillations
cancel each other out [473] (see Fig. 2.29)

mt = γmt−1 + η∇θC (θt−1) ,

θt = θt−1 −mt. (2.65)

no momentum) momentum)

Figure 2.29.: Contour plots in the parameter space of a cost function (black) and optimization
steps of a gradient descent (dark red). The extra momentum term accelerates the
updates in the relevant direction and dampens oscillations.

Nesterov accelerated gradient [419]

In the system with momentum, we can use knowledge of the average direction of movement.
The gradient can be calculated not at the current parameter value, but at the point where the
system is expected to occur. That is, where the system would move only due to momentum

mt = γmt−1 + η∇θC (θt−1 − γmt−1) ,

θt = θt−1 −mt. (2.66)

So far we have not discussed how to choose the learning rate, η. Sadly, the optimal value for η
does not just depend on data and specific model used in a machine learning algorithm, but also
tend to change as optimization progresses.

RMSprop

If the gradients are large, even a small step can change the cost function substantially. If the
gradients are small, however, the optimization can get stuck in barren plateaus where no signifi-
cant changes happen. This can be addressed by dividing the learning rate by a weighted sum of
the past cost function gradients. The currently computed gradients should have higher weights
than the ones encountered long ago. This weighted sum can be obtained via an exponentially
decaying average of squared gradients

gt = ∇θC (θt−1) ,

E
[
g2
]
t

= (1− α)E
[
g2
]
t−1

+ αg2
t , where 0 < α < 1,

θt = θt−1 −
η√

E [g2]t + ε
gt, (2.67)

where ε is a small constant needed to avoid divisions by zero.
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Adam [166]

Adaptable learning rate in RMSprop has a drawback—if E
[
g2
]
0
is initialized as 0, E

[
g2
]
t
is

biased towards zero, especially during the initial time steps. Adam combines RMSprop with
momentum and bias-corrects first and second moment estimates

gt = ∇θC (θt−1) ,

mt = (α1 − 1)mt−1 + α1gt, where 0 < α1 < 1,

rt = (1− α2)rt−1 + α2g
2
t , where 0 < α2 < 1,

m̃t =
mt

1− αt1
,

r̃t =
rt

1− αt2
,

θt = θt−1 −
η√
r̃t + ε

m̃t. (2.68)

Nadam [172]

Putting all the pieces in this subsection together, Adam can be combined with Nestorov accel-
erated gradient

gt = ∇θC (θt−1) ,

mt = (1− α1)mt−1 + α1gt, where 0 < α1 < 1,

rt = (1− α2)rt−1 + α2g
2
t , where 0 < α2 < 1,

m̃t =
mt

1− αt1
,

r̃t =
rt

1− αt2
,

θt = θt−1 −
η√
r̃t + ε

(
α1m̃t +

1− α1

1− αt1
gt

)
. (2.69)

Even if the optimum was reached, Adam and Nadam are prone to decaying oscillations if used
with a small data set. It is more of a nuisance than a problem.

Note, that the found optimum can depend on the optimizer [426] and initial conditions [462,
427], especially for overparametrized variational classes.

One can ask if an increase in performance balances the additional complexity of Nadam.
It is often so (see Fig. 2.30). Moreover, Nadam is less sensitive to the initial choice of the
hyperparameters of the optimization algorithm, such as the initial learning rate. In this thesis
we usually use Nadam. Our implementation of every optimizer presented in this subsection for
quantum neural networks (see Section 2.8) is avaliable at [2].
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Figure 2.30.: Comparison between different optimizers: mean squared error (MSE) as cost for
training and validation on the MNIST data set [172].

Backpropagation

The gradient of deep (classical) networks can be efficiently computed via a chain rule for differ-
entiation and recursion. Let us consider a cost function C. The cost Fn of an n-layer network
parameterized by θ0 and consisting of layers {fi} is

Fn(θ0) = (C ◦ fn ◦ · · · ◦ f2 ◦ f1) (θ0). (2.70)

For convenience, let us denote fn+1 ≡ C.

First, we compute Fn(θ0) via forwardpropagation: each of the Fi+1(θ0) ≡ (fi ◦ Fi) (θ0) is
recursively evaluated for i = 1, . . . , n. It is not necessary to know the value of the cost function
for the gradient descent. Nevertheless, it is often advantageous, and we will reuse the results
of the forwardpropagation. For the classical information, {Fi(θ0)} can be stored and copied; if
Fi(θ0) is a quantum state, however, it has to be produced anew every time it is used. This is a
fundamental bottleneck for optimization of quantum layered structures, see e.g. [594].

Via a chain rule,

(∇Fn) (θ0) = (∇ [fn+1] ◦ Fn−1) (θ0) · (∇ [Fn−1]) (θ0). (2.71)

We can recall Fn−1(θ0) from the memory and compute (∇ [fn+1] ◦ Fn−1) (θ0). Once it is done,
the only yet unevaluated quantity on the right-hand side is (∇ [Fn−1]) (θ0). It, in turn, can be
evaluated via a chain rule until

(∇ [F0]) (θ0) ≡ ∇f1(θ0) (2.72)

is reached. The complexity of this algorithm, called backpropagation, scales linearly with depth of
the network. It can be further optimised by taking into account how neurons in two neighbouring
layers are connected to each other. For more details, see e.g. [227, Section 6.5].
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2.6.4. Not-so-simple networks

So far we have only discussed how FFNN can learn on supervised data. Luckily, more general
tasks can be reduced to this scenario, including unsupervised extraction of relevant features and
networks with memory.

Autoencoders (AE) for unsupervised learning

Autoencoders are a prominent example of NNs that learn without supervision, see e.g. [227].
An AE is an FFNN for extracting the most relevant features from the input data. They have

equal input and output layers separated by a bottleneck—AEs are designed so that they are
unable to copy.
The bottleneck of an undercomplete AE is a layer with a smaller width than the input and

output layers. The training data is a set {xi, xi}Li=1 of equal training inputs and reference outputs.
In general, the desired output for x is not x itself: the bottleneck (see Fig. 2.31) should force
the AE to discard irrelevant information. Since no correct reference outputs are provided, the
training of AEs is unsupervised.
While in this thesis we concentrate on the undercomplete case, this is not the only way to

limit the expressive power of a network. Regularized AEs use a cost function that encourages the
model to have other properties besides the ability to copy its input to its output. Such properties
can include e.g. sparsity of the representation or robustness to missing links and inputs. Training

input outputbottleneck

Figure 2.31.: Network architecture of an undercomplete AE. The bottleneck prevents the AE
from just copying the input data to the output so that it has to extract relevant
features.

AEs can be a stand-alone method. Some of their earliest applications was denoising [354] and
compression [187] of data. There is often no source of noiseless labels to act as supervision, as
exemplified recordings of bird songs in the wilderness [465]. Alternatively, AEs can be a data
simplification subroutine in supervised learning. For example, AEs have been trained as a step
in gesture generation [341, 342, 343] to reduce the dimensionality, and thus—complexity, of the
learning task and to reduce redundancy in the training data.

Recurrent neural networks (RNN) for learning with memory

Networks with memory are not feed forward. Memory requires sequential structure; some in-
formation about previous inputs should be shared with the parts of the model responsible for
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later outputs. This can be achieved via an information storage unit that different parts of the
model have access to. However, this division is not necessary. We can always treat memory
and computing units as a single entity that recalls information from itself. On the other hand,
elements of the model can be responsible for both remembering and processing data, so there
are systems that can remember, but without the dedicated information storage. In other words,
some of the outputs of a general model with memory are its inputs, see Fig 2.32.

memory

rememberrecall out

computation

in

recurrent

computation
memory

out

in

−!

Figure 2.32.: Any computation with access to memory (dark red) can be represented by a system
that treats some of its outputs as inputs at later times.

Recurrent neural networks (RNNs) are a family of NNs for processing sequential data. As an
RNN shares parameters used for processing data at various positions in a sequence, the model can
be applied to examples of different length and generalize across them. RNNs can be unfolded, or
unrolled, transforming a recursive structure into repetitive one (noted already in [396]). Instead
of passing information to itself, we can think that network passes information to its copy see
and Fig. 2.33. Typically different copies of the network in the unrolled form are labeled by time

NN

outt

int

= NN

out1

in1

NN

out2

in2

memory0 NN

outT

inT

Figure 2.33.: Recurrence (dark red) is equivalent to a network passing some of the outputs to a
copy of itself. The sequential data is labeled by a time index t. As the copies share
parameters, the length T of training data sequences may vary. The memory can be
initialized at the beginning of computation (memory0).

index. As unrolled RNN has a layered structure without loops, computing the gradient can
be done by a straightforward application of the backpropagation (see Subsection 2.6.3) through
time [507].
Training of RNNs was demonstrated in the 1980s, e.g. [274, 507, 295, 616, 636], yet the

performance was not yet sufficient for a widespread adoption. Simple recurrent cells, e.g. ReLU or
sigmoid neurons, tend to produce either vanishing or exploding gradients while training [268, 64].
The problem was severe enough that random guessing of weights and biases tended to produce
better results than backpropagation [270]. This was circumvented by long short-term memory
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(LSTM [269]) via moving to a slightly more complicated cell. LSTM tames the gradients by
having two types of recurrent connections—short-term and, only weakly coupled to the rest of the
network, long-term memory. Since the invention of LSTM, RNNs have exploded in popularity,
and other cells that do not suffer from vanishing gradients were invented [238]. Some, such
as gated recurrent unit [128], have only one type of memory. Note that search for good NN
architectures can be automated [188]. As sequential processes are omnipresent in human life,
today RNNs enjoy diverse technological applications and can improve both our social (e.g. [342,
21, 236, 254]) and physical (e.g. [653, 429, 360, 340]) well-being.
Any digital computation can be represented by a specific RNN of finite size (RNNs are uni-

versal—in a different sense than the FFNN). The output can be read from the network after
a number of time steps that is asymptotically linear in both the length of the input and the
number of time steps used by the corresponding Turing machine [548, 549, 547, 281].
RNNs are close relatives of matrix product operators, see Subsections 2.4.2 and 2.4.4. Quan-

tum recurrent neural networks discussed in Chapter 5 can be thought of as quantum training
algorithms for matrix product channels.
For more information about classical RNNs, see e.g. [227, Chapter 10].

2.7. Quantum data

ML demands access to interesting data sets. As in this thesis we assume that such data is
available, in this section we review sources of quantum data that would benefit from some post-
processing.
Quantum many-body systems are a natural source of entangled states; a deeper understanding

of them would greatly benefit material science and chemistry. Quantum simulators are a vast
source of quantum data. Their outputs may need extra processing to extract or predict interesting
features. This may require the transmission of an output of an analog quantum simulator to
a digital quantum computer. Measurement devices and cryptography can benefit from sources
of entangled states that are robust to noise. Information may be converted from one physical
platform to another or exchanged via a quantum internet [175, 612] for e.g. distributed or cloud
quantum computing. However, interfaces and transmission channels may lead to distortion,
becoming sources in need of denoising themselves.

2.7.1. Data from many-body systems

Quantum many-body systems, such as molecules, nuclei and certain materials, are notoriously
hard to understand. Even though first-principle methods allow us to predict the behaviour of and
control small systems (see e.g. [623, 171, 272] for a review and e.g. [557, 546, 480, 272, 271] for
applications), their capabilities are limited. Despite stellar progress in incorporating physically
sound approximations into numerical methods such as tensor networks (see Section 2.4), density
functional [543, 115] and dynamical mean-field [31, 329] theory, determining properties of real-life
systems is often outside of their reach. The accuracy necessary to identify the path of relatively
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simple chemical reactions that we do know to occur, such as nitrogen capture in plants [488], is
beyond current technological capabilities; predicting unknown properties of complex compounds
for now remains a distant dream.
It should not come as a surprise that understanding quantum many-body effects was the

initial motivation behind the idea of quantum simulators [382, 205]. As of today, there are
a variety of platforms and algorithms tailored to the exploration of many-body systems, see
e.g. [386]. However, further progress in hard- and software is necessary to address numerous
exciting applications of these methods.
Surprisingly, if there are experimental means to do enough observations and comprise a classical

data set, ML can vastly improve the current state of art in predicting important properties [114,
336, 291] (sometimes employing quantum computers along the way [359, 403]), even for such
huge systems as proteins [534, 535].
The success of classical ML and promising algorithms for quantum computers bring high hopes

for quantum ML as a means to explore quantum many-body systems. Unfortunately, collecting
quantum data from a system of choice is a non-trivial task. Transferring the entire quantum
state of a real-life system to a quantum computer is usually unfeasible. However, quantum data
sets can be harvested either from quantum simulations of a system of interest, or from quantum
states used to probe the system. We will discuss those scenarios in Subsections 2.7.2 and 2.7.3,
respectively.

2.7.2. Quantum simulators as data sources

Outcomes of a simulation can be used to understand, mimic, simplify and improve the pro-
cesses and systems under simulation. For example, a digital device can learn to reproduce an
experiment (see Example 2.8.1). Such reproduction may be easier to run and analyze than the
original. Various unwanted features of the underlying analog implementation, such as noise (see
Section 4.3), memory (see Chapter 5) or hard to achieve parameters (see Section 4.2), can be
canceled or widely adjusted by quantum ML on a digital reproduction.
Furthermore, quantum computers can be used for other tasks such as the analysis and classifi-

cation of experimental outcomes, see e.g. [531, 527, 536], or the processing of classical data [366].
Long computations on NISQ devices can benefit from shallow denoisers (see Section 4.3). The
obtained data can be shared with a physically separated interested party or uploaded to a more
powerful quantum cloud computer to perform resource-demanding tasks [245].

2.7.3. Quantum metrology

Precise and fast measurements were instrumental for technological development in every epoch
of our history. Notable examples include the development of calendars, clocks, interchangeable
parts—a keystone of industrial revolution [501], magnetic resonance tomography and satellite
navigation. Entangled states can vastly increase the sensitivity of measurements [223]. This
statement can be formalized using the Fisher information (FI). This section follows to a large
extent [203]. For a review of quantum metrology, see e.g. [452, 224].
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Definition 2.7.1 (POVM). A positive operator-valued measure (POVM) is a set of positive
semi-definite matrices {Mi} on a Hilbert space H that sum to the identity matrix

∑
iMi = 1.

The POVM element Mi can be associated with a measurement outcome µi, such that the
probability to find µi when making a measurement on the quantum state ρ is given by

P (µi) = Tr(ρMi). (2.73)

We consider a density operator ρ(θ) that is a differentiable function of a parameter θ ∈ R. We
are interested in the precision with which θ can be determined from measurements on ρ(θ).
Suppose there is a measurement with the possible discrete outcomes µi corresponding to a

POVM {Mi}. The probability to measure µi given ρ(θ) is

Pθ(µi) = Tr[ρ(θ)Mi]. (2.74)

The difference between the probability distributions Pθ and Pθ+ε can be quantified by the
Hellinger distance

[d(Pθ, Pθ+ε)]
2 =

1

2

∑
j

(√
Pθ(µj)−

√
Pθ+ε(µj)

)2

. (2.75)

The corresponding statistical speed [221], or sensitivity,

lim
ε→0

∂εd(Pθ, Pθ+ε) =

√
F (θ)

8
(2.76)

can be expressed in terms of the classical Fisher information (CFI)

F (θ) =
∑
j

1

Pθ(µj)
[∂θPθ(µj)]

2 =
∑
j

Pθ(µj) (∂θ ln [Pθ(µj)])
2 . (2.77)

Thus, the CFI quantifies how fast Pθ changes with θ and depends on the POVM. Maximizing
the CFI over all POVMs defines the quantum Fisher information (QFI) [95].
When accessing the precision of measurements, the statistical speed is not the only possible

choice for a figure of merit. A popular alternative is the variance of the observable. Conveniently,
the FI also provides a bound for the achievable variance.

Theorem 2.7.2 (Cramér-Rao bound, [214, 140, 139, 479]). Suppose θ is an unknown determin-
istic parameter to be estimated from N independent measurements. The variance of any unbiased
estimator Θ of θ is then bounded by the reciprocal of the CFI F [N ](θ):

∆2
θΘ ≥

1

F [N ](θ)
. (2.78)

For large N the bound is asymptotically saturated by the maximum likelihood estimator [206, 451,
356].

To understand how sensitive and precise a measurement may be, we need to evaluate the
maximal value that the FI can attain.
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Theorem 2.7.3 (Convexity of FI). Consider a convex combination of density operators {ρ(k)(θ)},

ρ(θ) =
∑
k

pkρ
(k)(θ), with

∑
k

pk = 1, 0 ≤ pi. (2.79)

Both the CFI F and the QFI FQ are convex,

F (θ) ≤
∑
k

pkF
(k)(θ) and FQ(θ) ≤

∑
k

pkF
(k)
Q (θ). (2.80)

Theorem 2.7.4 (Additivity of FI). Consider a tensor product of density operators {ρ(k)(θ)},

ρ(θ) =
⊗
k

ρ(k)(θ). (2.81)

Both the CFI F and the QFI FQ are additive,

F (θ) =
∑
k

F (k)(θ) and FQ(θ) =
∑
k

F
(k)
Q (θ). (2.82)

Additivity and convexity limit the FI of classically correlated states (see Definition 2.3.1).

Corollary 2.7.5 (Standard quantum limit (SQL)). Suppose that the one-partite CFI F [1] is
bounded from above, F [1](θ) ≤ c. Then the CFI of a classically correlated state can grow at most
linearly with the system size N :

F [N ](θ) ≤ cN. (2.83)

The same holds for the QFI.
In particular, given the CFI F and QFI FQ of a single experiment, the corresponding CFI F [N ]

and QFI F [N ]
Q of an experiment repeated N times are

F [N ](θ) = NF (θ) and F
[N ]
Q (θ) = NFQ(θ). (2.84)

However, it turns out that the FI can exceed the SQL and have a more favourable scaling for
entangled states.

Theorem 2.7.6 (FI for unitary evolution). Let R be a Hermitian operator and |ψ(θ)〉 = e−iθR|ψ(0)〉.
Then the QFI of ρ(θ) = |ψ(θ)〉〈ψ(θ)| is

FQ = 4
(
〈ψ(0)|R2|ψ(0)〉 − 〈ψ(0)|R|ψ(0)〉2

)
. (2.85)

Theorem 2.7.7 (QFI is entanglement depth witness). Let R =
∑N

l=1 r
l ∈ B(H⊗N ), where

r(l) = 1⊗(l−1) ⊗ r ⊗ 1⊗(N−l) and |ψ(θ)〉 = e−iθR|ψ(0)〉. Let the largest eigenvalue of r be r+ and
the lowest r−. For a state with entanglement depth (see Definition 2.3.2) k the following bound
for the QFI FQ holds:

FQ ≤ (r+ − r−)2(ak2 + b), where a =

⌊
N

k

⌋
, b = N − ak. (2.86)

The bound is tight: for an entanglement depth of k, it is saturated by

|ψ(0)〉 =
1

√
2
a+1

(
|r+〉⊗k + |r−〉⊗k

)⊗a
⊗
(
|r+〉⊗b + |r−〉⊗b

)
(2.87)
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According to the expressions for the statistical speed (see Equation 2.76) and the Cramér-Rao
bound (Theorem 2.7.2), states with a large entanglement depth allow to achieve the same mea-
surement sensitivity with fewer repetitions. Quantum-enhanced metrology is an experimentally
viable technique with increasing appeal.
Contemporary gravitational-wave detectors use squeezed light to exceed the SQL [583, 242, 6]

(technique proposed in [116]). Proof-of-principle quantum-enhanced atomic clocks already ex-
ist [339, 445, 357, 278], and entanglement may soon improve cutting-edge clocks [260]. Atomic
inertial sensors can benefit from entanglement in momentum space [510, 338, 567, 540]; central
building blocks have recently been demonstrated [26, 642]. The read-outs of superconduct-
ing [609] and ion [388] systems used in quantum information processing have also been quantum-
enhanced. Note that beyond-SQL sensitivity is not useful per se; balancing out constrains and
goals of a particular device demands a detailed analysis [566, 532].
While quantum metrology is a very promising and already a practically useful tool, noise is

a great challenge for its wider success. Macroscopically entangled state tend to be extremely
fragile [217, 370, 174]. States that are especially sensitive to some signal are often also very
sensitive to noise. A measurement apparatus needed to harness all the metrological advantage
may be forbiddingly complicated [553]. Discovering states robust to decoherence [216, 173, 554],
understanding why these states are stable [203] and protecting them from detrimental effects of
the environment [176] is an important area of research. ML can greatly aid in this job [322, 421,
391].
A more in-detail introduction to quantum-enhanced metrology, as well as a discussion of the

robust preparation of useful macroscopically entangled states using spin-1 BECs, can be found
in [203].

2.7.4. Interfaces

Different physical systems are suitable for different tasks. For example, superconducting qubits [316]
and trapped ions [104] are leading platforms for digital quantum computation (see Section 2.5),
while cold atoms can be used for quantum-enhanced measurement of time and gravity (see Sub-
section 2.7.3). NV centers are suitable for nanoscale sensing [519] and memory [552]. Photons
are the default medium for quantum communication (see Subsection 2.7.5), and squeezed light
is used for gravitational wave detection.
There is a great interest in hybrid systems, which require interfaces between different quantum

devices. Information can be converted from one device, say an analog simulator or a metrological
apparatus, to another, such as a digital post-processor. Conversely, a quantum computer can be
used as a state synthesizer for an analog piece of equipment. Quantum processor and memory
can be realized on different physical platforms [509]. Multiple devices can be connected via
photon links to form a quantum distributed system. Two variants of the same system can be
encompassed in one hybrid machine. For example, in quantum logic spectroscopy [522], one type
of ions is used for the state initialisation, control and sympathetic cooling of another species of
ions used to observe physical quantities [100, 253].
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Fortunately, quantum hybrid systems have been demonstrated, e. g., for superconducting
qubits coupled to atomic and spin ensembles [346, 643], for trapped ions with cold atoms [575]
and atomic systems coupled to light [250].
Unfortunately, every interface brings an extra possibility for errors. Quantum autoencoders

discussed in Section 4.3 can remove deteriorating effects introduced at the interface between the
coupled platforms.

2.7.5. Quantum communication

Quantum communication is the art of transferring a quantum state from one place to another.
Not only that the state has to be transmitted faithfully—often it also has to be securely encrypted.
While technically challenging, quantum communication is a vital part of distributed quantum
systems and, due to increased security, a lucrative technology even for the transmission of classical
data. Moreover, it vastly expands the applicability of quantum ML by providing access to
remotely generated quantum data.
In the following, we sketch some of the basic building blocks of quantum communication be-

tween two parties—the sender A and the receiver B. Along the way, we point out how these
building blocks can benefit from post-processing by quantum ML, including the methods de-
scribed in Chapters 4 and 5.

Quantum teleportation and entanglement swapping

Channels that can transmit arbitrary entangled states may be hard to build. Fortunately, the
information can be sent via a quantum teleportation protocol using a shared source of Ein-
stein–Podolsky–Rosen (EPR [181, 83]) pairs |φ+〉AB = 1√

2
(|↓↓〉 + |↑↑〉) and the communication

of two classical bits.
Let us demonstrate how to teleport the state |s〉A = α|↓〉+ β|↑〉.

Definition 2.7.8 (Bell basis). The following four states form an orthonormal 2-qubit basis

|φ±〉 =
1√
2

(|↓↓〉 ± |↑↑〉), |ψ±〉 =
1√
2

(|↓↑〉 ± |↑↓〉). (2.88)

Suppose that the parties A and B share a state

|s〉A ⊗ |φ+〉AB =
1

2
[|φ+〉A ⊗ (α|↓〉+ β|↑〉)B + |φ−〉A ⊗ (α|↓〉 − β|↑〉)B+

|ψ+〉A ⊗ (α|↑〉+ β|↓〉)B + |ψ−〉A ⊗ (α|↑〉 − β|↓〉)B] . (2.89)

The sender A can perform a measurement in the Bell basis and send the outcome, encoded in two
bits, to B. Depending on the outcome, the receiverB performs one of {1|φ+ , σz|φ− , σx|ψ+ , σzσx|ψ−}
to obtain |s〉B.
Quantum teleportation was originally proposed in [70] and experimentally demonstrated in [90,

93]. Today teleportation has been demonstrated up to distances of 1400 km using satellite
communication [492].
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A related protocol—entanglement swapping [282]—allows to entangle two parties A and B,
which do not need to interact, via a third party C that shares an entangled bipartite state with
A and with B. Let C perform a Bell measurement on |φ+〉AC ⊗ |φ+〉BC and communicate the
outcome to B. Just like in the teleportation protocol, based on the outcome B performs one of
{1|φ+ , σz|φ− , σx|ψ+ , σzσx|ψ−} to obtain |φ+〉AB. The pioneering experimental demonstration is
described in [438].
Teleportation and its relatives can be generalized to higher dimensions and sharing any pre-

determined maximally entangled state, see [620].

Quantum repeaters

Signals attenuate exponentially with the depth of the communication medium they are sent
through. This fall is typically negligible at the scale of meters and can be mitigated for up to
a thousand kilometers in satellite communication, albeit at the price of a reduced transmission
rate and a larger equipment size. However, the attenuation is a serious problem for Earth-wide
communication or low-power sender and receiver devices. The solution is to use a network of
repeaters that amplify the signal and are positioned at an appropriate distance from one another
(see Fig. 2.34).

sender receiver

repeaters

Figure 2.34.: Use of repeaters between sender and receiver to get a better signal while using
smaller communication equipment.

No-broadcasting (Theorem 2.5.9) requires quantum amplifiers to differ significantly from con-
ventional classical technology. The key to enhancing quantum signals is the quantum teleporta-
tion protocol. While we cannot produce multiple copies of an unknown state for amplification
(without signal deterioration, see Theorem 2.5.11), we can produce multiple EPR pairs. Once
distributed, the pairs will have a decreased fidelity F with the ideal EPR state. Fortunately, the
entanglement can be distilled [71]—there is an LOCC (see Section 2.3) operation that produces
one pair with high fidelity to a given target state from several source pairs with lower fidelity to
this state.
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Unfortunately, distillation works only if F ≥ Fmin for some cut-off fidelity Fmin [305]. This
makes the distribution of EPR pairs over large distances technologically unfeasible. Quantum
repeaters can address this problem by combining distillation with entanglement swapping [102].

Let the distance L between repeater nodes {C1, · · · , Cm+1} be such that F > Fmin can be
achieved. First, n×m EPR pairs are distributed and distilled to obtain m pairs shared by the
neighbouring nodes. Next, the entanglement is swapped to obtain an EPR pair with fidelity of
at least F between the nodes C1 and Cm+1 separated by the distance mL. See Fig. 2.35 for an
example. These steps can be repeated in a nested fashion to obtain maximally entangled pairs
at an arbitrary distance using technologically feasible communication devices.

noise

distillation

via LOCC

EPRscale

0

L

Entanglement

swapping

noise

distillation

via LOCC

EPR

2L

Figure 2.35.: A quantum repeater using n = 3 EPR pairs for distillation and swapping entangle-
ment between m = 2 links.

The repeater nodes in the protocol discussed above should be equipped with memory (see
Subsection 2.7.6), as they need to store the shared EPR pairs until all the links in the network
are ready [542]. This requirement is a bottleneck in practical implementations.

Quantum repeaters have been experimentally demonstrated [647, 511]. Unfortunately, the
technology is not yet developed enough to build a commercially viable quantum repeater. More
complicated protocols were invented [411, 39] and demonstrated [361] in order to relax the
memory constraint. The need for storage can be eliminated either completely or to an extent [89]
taking into account the trade-offs [439, 107] imposed by other components in the set-up. These
protocols are often based on the resilience of entanglement in graph (use in repeaters suggested
in in [656, 655]) or code [411, 213, 191, 412] states and require the direct transition of quantum
information. This makes the quantum autoencoders discussed in Section 4.3 a compelling tool for
realizing quantum repeaters without memory. Moreover, quantum autoencoders can be trained
to denoise code states (see Section 4.4) and, if the employed hardware platform offers some
small amount of storage, endowed with recurrent connections (see Chapter 5) for a robust and
economical quantum repeater.
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Quantum key distribution

Quantum information cannot be broadcasted (see Theorem 2.5.9), and this can be advanta-
geous for the security of communication. Quantum key distribution (QKD) protocols can detect
whether an eavesdropper has accessed a significant portion of a generated key.
The first proposed [68] and implemented [69] QKD protocol is BB84. Inspired by [628] and

building on [66], it encodes information into non-orthogonal sets of states.
Let us consider two bases in C2: + = {|0〉, |1〉} and × = { 1√

2
(|0〉+ |1〉) , 1√

2
(|0〉 − |1〉)}. The

BB84 protocol starts with the sender randomly choosing a basis from {+,×} and sending a
random basis state to the receiver. The received state is measured in a basis chosen at random
from {+,×}. The transmission and measurement are repeated for L rounds. Afterwards, the
parties publicly exchange via an authenticated classical channel their choice of measurement
bases; if their choices differ, the round is ignored. A randomly chosen half is publicly discarded
from the remaining ∼ L/2 measurement outcomes to obtain a length ∼ L/4 key. The parties
proceed by running a check on a test message to verify the successful key generation, otherwise
the process is started from scratch. An eavesdropper trying to peep the state of a transmitted
qubit has to guess the measurement basis. An incorrect guess projects the qubit into another
state, which leads, with 50% probability, to a one-bit error in the receiver’s key. Such an error
gets detected in decoding the test message. This protocol is provably secure if the devices that
the parties use locally to execute the steps of the protocol, e.g., for preparation and measurement,
do exactly what they are instructed to do. There is a non-zero threshold for how many bits can
differ between the parties (due to noise or eavesdropping) in a usable key [67, 120].
QKD using BB84 is a mature (see e.g. [472, 362], for a review see [369] and Table 1 in [327])

and commercially available technology [513, 635, 632, 634]. It is, e. g., used in a communication
network spanning over 4600 km [125]. This may seem to contradict the statements about the
unsatisfactory performance of current quantum repeaters. However, this network is using trusted
repeater nodes. That is, the network cannot distribute qubits over long distances. Instead, quan-
tum key distribution is performed between neighboring nodes and the key is stored (classically)
at each repeater station, which has to be trusted.
Entanglement can be used for device independent (DI) QKD, where the need for trust in

devices used locally can be eliminated.

Definition 2.7.9 (Bell inequality [60]). Consider p parties sharing a state ρ and a finite set
of one-partite observables {Oij ∈ B(Hi)} such that −1 ≤ Oij ≤ 1. We say that a function
f : ×ijB(Hi)→ B (H1 ⊗ · · · ⊗ Hp) yields a Bell inequality if ∃βc ∈ R such that

ρ is classically correlated ⇒ Tr [ρf({Oij})] ≤ βc and

∃ ρq ∈ T (H1 ⊗ · · · ⊗ Hp) , Tr[ρq] = 1 : Tr [ρqf({Oij})] > βc. (2.90)

The state ρq is said to violate the Bell inequality.

States that violate a Bell inequality form a strict subset of entangled states, e.g. [276]. The
simplest example of a Bell inequality is the Clauser-Horne-Shimony-Richard Holt (CHSH) in-
equality.
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Theorem 2.7.10 (CHSH [133]). Given two parties, ∃{Oij ∈ B(Hi)}2i,j=1 with eigenvalues ±1

such that the function

fCHSH

(
{Oij}2i,j=1

)
= O11 ⊗O21 +O11 ⊗O22 +O12 ⊗O21 −O12 ⊗O22 (2.91)

yields a Bell inequality. It satisfies the Tsirelson’s (or Cirel’son’s) bound [132]

ρ is classically correlated ⇒ Tr [ρfCHSH({Oij})] ≤ 2 and

∃ ρq ∈ T (H1 ⊗H2) , Tr[ρq] = 1 : Tr [ρqfCHSH({Oij})] = 2
√

2. (2.92)

Moreover,

Tr [ρfCHSH({Oij})] = 2
√

2 ⇒ ρ = ρr ⊗ ρ2 max, (2.93)

where ρ2 max is a maximally entangled two-qubit state and ρr does not matter [618].

Bell inequality violations are observed with ever increasing efficiency since 1970s, e.g. [215,
37, 36, 614, 437, 500]. Such experiments have many applications, from answering fundamental
questions about quantum mechanics, e.g. [493, 123], and quantum field theories [563, 562] to
characterising correlations in BEC experiments, e.g. [523].
The earliest QKD protocol using the violation of a Bell inequality is E91 [184] (see e.g. [585, 365]

for early experiments): Suppose that the sender and receiver share L copies of a maximally
entangled state, e.g. |φ+〉AB. In extension to BB84, for each copy of |φ+〉AB the parties randomly
choose a basis from {+,×, π/4}, where the π/4 basis is {cos(π/8)|0〉+ sin(π/8)|1〉, sin(π/8)|0〉−
cos(π/8)|1〉}. Both parties measure in the chosen basis and, after observing the outcomes,
publicly share their choice via an authenticated classical public channel. If both parties have
chosen the π/4 basis, the measured outcome constitutes a key bit; otherwise, the outcomes are
used to measure the CHSH inequality. If the Bell violation is sufficiently close to 2

√
2, the

sender and receiver can be sure that the states they share are approximately uncorrelated with
a potential eavesdropper.
The E91 protocol can be somewhat simplified and modified to achieve DI. One of the parties

can perform measurements in two bases instead of three [11, 9]. DI is ensured by abandoning
the protocol if bases choices significantly deviate from the expected uniform distribution or if
the CHSH measurements fail to yield the expected correlation [50, 9].
A large Bell violation is essential for the security of DI QKD (see e.g. [464] for a review of se-

curity in QKD). Curiously, while the GHZ state maximally violates a complete set of inequalities
for n-partite systems with two dichotomic observables each [622], a high entanglement entropy
is not necessary for a strong Bell violation [10, 12, 297]. This observation motivates the search
for Bell-violating states, as well as inequalities and corresponding experimental set-ups, that
are much more robust to noise; ease in incorporating various practical constraints makes ML a
compelling tool for this task [392, 160, 112, 79].
Unlike for BB84, only proof-of-principle demonstrations of DI QKD are available to date. The

rate of key generations is way too slow to even approach practicality [414]. Fortunately, recent
theoretical proposals suggest that this technology may soon mature enough for applications [533].
For more information, see e.g. [457].
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2.7.6. Quantum memory

Quantum memories are hard to realize experimentally. A significant fraction of the stored in-
formation can be lost or corrupted. Nevertheless, it is an enabling technology for a variety of
applications.
Unless specifically stated, the implementations and technical details in this subsection can be

found in [267, 552].
Platforms used for proof-of-principle demonstrations include such diverse sets of physical sys-

tems as rare-earth-ion doped solids, nitrogen-vacancy centers in diamond, alkali vapours (ranging
from cryogenic to above room-temperature), semiconductor quantum dots, molecules and super-
conducting quantum circuits [485]. All of these systems are coupled to light, as is desirable for
quantum communication (see Subsection 2.7.5).
There are several requirements that quantum memory should ideally fulfill. The fidelity be-

tween the original and recalled state should approach 1. Fidelities of the order of 0.9 can
be achieved in several platforms, with few outliers able to reach the order of 0.95. The recall
efficiency—the probability to re-emit photons that have been stored, should be high. The current
state-of-art is well below the believed fundamental limitations of underlying physical platforms.
Typical demonstrated efficiencies range from several to several tens of percent, yet recently a few
exceptional implementations were able to reach efficiencies on the order of 80% [126, 126, 277].
Good memory should have a long coherence time. While there are experiments that probe the
storage time scale of a minute [406, 263, 264], typical coherence times are on the order of 102−103

µs (see [316] for the progress in superconducting devices). Finally, it is nice to have as much
memory as possible, being preferably also capable of storing states with a significant entangle-
ment depth (see Section 2.3). Although, for many quantum repeater protocols it is sufficient
to store individual photons. Current experiments realize quantum memories of more than a
hundred, yet not very entangled, qubits [293, 471]. Unfortunately, rarely does a single platform
excel at different requirements.
There are large gaps between theoretically feasible and currently realized capacities to store

quantum information. ML is a promising and often low-effort method to shrink these gaps. For
example, it has been used to design a driving that significantly prolongs the coherence time [264].
We can also understand quantum memory as a source of data in need of denoising. In particular,
quantum autoencoders (see Section 4.3) could be used to improve the read-out of the stored
data.

2.8. Quantum neural networks

Machine learning (ML) could benefit from the rapid progress of quantum computing hard- and
software (see e. g. [424, 621]). Moreover, there are important ML tasks where the data comes as
a set of quantum, and possibly—highly entangled, states; see Section 2.7. We call ML quantum
if it uses quantum algorithms and quantum data (see e. g. [63, 629]).
A big benefit of using quantum algorithms for ML tasks is that quantum speed-ups can be
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obtained with general-purpose algorithms even for classical data sets [366]. Of course, the speed-
up is not guaranteed, yet ML can help to vastly expand a rather small set of algorithms that
show quantum advantage [424].
Neural networks (NNs) are an extremely capable and flexible class of models in classical ML

(see Subsection 2.6.2). In this section we motivate and describe their quantum analog. We will
use these quantum NNs (QNNs) in Chapters 4 and 5 to denoise quantum sources.

2.8.1. Criteria for a good quantum neuron

Various quantum neurons have been proposed in [56, 530, 358, 606, 145, 24, 226, 330, 577, 198,
529, 113, 309, 34, 559], see e.g. [381] for a review. It is not obvious which proposals can have
higher merit for this thesis, thus it is worthwhile to make a list of criteria a suitable QNN must
fulfill.

Criteria for a good QNN

1. A QNN should consist of simple building blocks: neurons and connections between them.

2. A QNN should be capable of universal quantum computation.

3. Deep QNNs could be implemented and trained efficiently, e.g. using few qubits.

4. There is a possibility of probabilistic output due to e.g. contradicting labels.

There are also extra conditions that, while may be not strictly necessary, make any proposal
much more appealing.

1. The cost function should have a clear operational meaning.

2. There should be a convincing set of examples where QNNs work in practice.

3. Neurons should be capable of building networks of various topologies without additional
elements.

4. An open-source implementation should be available.

2.8.2. Networks of quantum channels

We follow [56], since these QNNs satisfy all of the desired criteria (yet there are also other
worthwhile QNNs, e.g. [606]). These networks are essentially networks of quantum channels (see
Fig.2.36) and can perform general operations with mixed states—rather convenient for denoising
applications studied in this thesis. The parameters of such a QNN are classical variables. In
general, quantum parameters may be useful [594], but for ML tasks without memory they can give
only a marginal improvement [399]. When the memory is needed, we use recurrent architectures,
see Chapter 5.
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We specify the quantum neuron from [56] by attributing a single qubit to every neuron. Let
{|↑〉, |↓〉} denote an orthonormal basis of a qubit. In each layer following the input, the jth
neuron acts by a unitary Uj on its own qubit and the preceding layer. The non-input qubits are
initialized in |↓〉. The kth layer, k > 1, of m neurons maps the state ρk−1 of layer k − 1 onto

N k(ρk−1) ≡ Trk−1

(
U
(
ρk−1 ⊗ (|↓〉out〈↓|)⊗m

)
U †
)
, (2.94)

where the unitary U ≡ Um . . . U1 is subject to optimization (see Fig. 4.14). Note that this
definition is related to the general form of a quantum channel (see Theorem 2.1.10). The quantum
channel describing the full network with K layers is N (ρin) = NK(· · · N 2(ρin) · · · ).

ρ
out

= trin;hid

(

Uin;out;hid

(

ρ
in
⊗ j # : : : #iout;hidh# : : : # j

)

U
y
in;out;hid

)

Uin;hid;out = U
K
mK

U
K
mK�1 : : : U

2
2
U

2
1

Figure 2.36.: A quantum neural network defined in [56] is a network of quantum channels (see
Section 2.1). Each qubit in the open-system representation 2.1.10 of the full channel
is associated to a neuron. Learning parameters are contained in a unitary Uin,out,hid

that is a concatenation of many unitaries UJi . Each UJi is associated to the con-
nections in the network, that is UJi acts non-trivially only on the ith qubit in the
Jth layer and all the directly connected qubits in the previous layer.

These QNNs are capable of universal quantum computation even when the connectivity of a
network is limited. A network of 4 neurons: two input connected to each of two output, can
learn any 2-qubit unitary V . Indeed, such networks can apply V to the input qubits followed by
the SWAP of the state from input to output qubits, see Fig. 2.37. Two-qubit gates are universal
(see subsection 2.5.3), so networks composed of neurons with two inputs and two outputs are
also universal.

U1

U2

Figure 2.37.: Let us number input qubits as (in,1), (in,2) and output qubits as (out,1),
(out,2). For every input two-qubit state ρ the depicted QNN outputs
V ρV † = Trin

[
U2U1 (ρ⊗ |↑↑〉〈↓↓|)U †1U

†
2

]
, where U1 =

(
id(out,1) ⊗ V(in,1)(in,2)

)
·(

SWAP(out,1)(in,1) ⊗ id(out,2)
)
(orange) and U2 = id(in,1) ⊗ SWAP(in,2)(out,2) (green).
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The number of qubits needed to evaluate N k(ρk−1) is the sum of width of kth and k − 1st
layers. As the whole network is just the concatenation of individual layers, at most 2 × width
qubits are needed to evaluate N (ρin).

An advantage of variational classes that can simulate quantum channels, and are not restricted
to unitary evolution, is the possibility of uncertain outputs. The QNNs we use are capable of
learning and producing meaningful outputs even if there are contradicting labels in the data set,
see Section 4.1 and Subsections 4.3.2 and 4.3.4.

Any distance measure for pure states is a function of fidelity F . For training data {ρin
i , |ψref

i 〉}Li=1

with pure desired outputs, F (ρ, |ψ〉) = 〈ψ|ρ|ψ〉. We choose the cost function as

C
(
{ρin

i , |ψref
i 〉}Li=1

)
= 1− F̄

(
{N (ρin

i ), |ψref
i 〉}Li=1

)
, (2.95)

where F̄ ({ρi, |ψi〉}Li=1) = 1
L

∑L
i=1 F (ρi, |ψi〉) ≤ 1. In the following, we abbreviate pure ρin

i =

|ψin
i 〉〈ψin

i | by |ψin
i 〉.

For mixed states, however, there are many nonequivalent distance measures. The fidelity for
mixed states ρ and σ is generalized as the largest fidelity between any two purifications of the
given states [296]. By the theorem of Uhlmann [584]

F (ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

. (2.96)

It is hard to design efficient quantum algorithms that estimate fidelity of two mixed states—the
first algorithm with complexity scaling as a polynomial in the number of qubits appeared a couple
of weeks before this thesis was submitted [608]. It is also hard to design efficient algorithms that
obtain various other quantities with interesting operational interpretations [424], such as relative
entropy [591] S(ρ‖σ) = Tr [ρ(log ρ− log σ)] and a rather general recently introduced class of
kringel divergences [74], or probability to distinguish two states via optimal measurement [273,
266, 434] 1

2 + 1
4‖ρ− σ‖1.

It is easy to calculate 〈ψ|ρ|ψ〉 and, more generally, the overlap Tr[ρσ], ρ, σ ∈ T (H) on
a quantum computer via SWAP test [193], see Fig. 2.38. This leads us to use ‖ρ − σ‖22 =

Tr
(
(ρ− σ)†(ρ− σ)

)
as a distance measure for mixed states. It can be calculated by evaluating

Tr(ρ2), Tr(σ2) and Tr(ρσ). We choose the cost function for problems that involve mixed labels
as

CHS

(
{ρin

i , σ
ref
i }Li=1

)
= 1− 1

L

L∑
i=1

‖N (ρin
i )− σref

i ‖22. (2.97)
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H H

ρ

σ

j0i

Figure 2.38.: A circuit for calculating the overlap via the SWAP test. The inputs are states ρ
and σ, one extra qubit is initialized in the |0〉 state. The Hadamard gate H is
applied to the first qubit, followed by control-SWAP gates controlled by ρ and σ.
One more Hadamard gate is applied to the first qubit followed by a measurement
in computational basis. The probability to measure 0 is 1

2 + 1
2Tr(ρσ).

The QNN can be optimised via the gradient descent (see Subsection 2.6.3). Let the current
value of neuron unitaries be UJI ∈ B

(
C2mJ−1+1

)
. For a given training data, the cost to be

minimized depends on the neuron unitaries

C
(
{ρin

i , σ
ref
i }Li=1

)
= C̃

({
N|{UJI } (ρin

i ), σref
i

}L
i=1

)
≡ C̃

({
UJI
})
. (2.98)

There exists a set of Hermitian basis {sαIJ} such that the exact gradient of the cost with respect
to a variational parameterization of the neuron unitaries can be deduced from [528]{

C̃
({
eis

α
IJUJI e

−isαIJ
})}

. (2.99)

Thus, a round of the gradient descent can be performed by evaluating each of

θαIJ = C̃
({
eis

α
IJUJI e

−isαIJ
})
− C̃

({
UJI
})

(2.100)

and updating the neuron unitaries as

UJI → ei
2
mJ−1λ
L

∑
I,J,α θ

α
IJs

α
IJUJI e

−i 2
mJ−1λ
L

∑
I,J,α θ

α
IJs

α
IJ , (2.101)

where λ is the learning rate. While this algorithm is easy to implement on a quantum computer,
its complexity scales exponentially with the amount of connections between the consecutive
layers. While it might not be the problem for relatively small or sparse networks, yet an approach
with better scaling is highly desirable. This issue is not architecture-specific.
A gradient of the network with respect to neuron unitary parameterization contains terms of

the form

∇θβTrk−1

(
ei
∑
β θ

βsβUe−i
∑
β θ

βsβ
(
ρk−1 ⊗ (|↓〉out〈↓|)⊗m

)
e−i

∑
β θ

βsβU †ei
∑
β θ

βsβ
)

(2.102)

that contain commutators. An algorithm that can compute commutators efficiently can be
leveraged for QNN optimization with favourable scaling with width, see Supplementary note 5
in [56] for details.
The computational complexity per training round scales at most quadratically with the depth

of the NN.
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Example 2.8.1 (Unitary evolution). A simple, yet an immensely useful task is learning to
reproduce evolution. In the simplest case, the task reads: given the training data {|ψi〉, U |ψi〉}Li=1,
|ψi〉 ∈ H, UU † = U †U = 1H learn to maximize the fidelity of the output with U |φ〉 for any input
|φ〉, see Fig. 2.39.

1

|ψi〉 U U |ψi〉

Figure 2.39.: The learning objective is to reproduce whatever the black box box does—unitary
evolution with U .

Of course, if V = span
(
|ψi〉Li=1

)
6= H, any learning algorithm can only guess the correct

output for any input ∈ V ⊥. If U as well as {|ψi〉} are assumed to be random and uniformly
distributed, the optimal fidelity for the best unitary possible which exploits all the available
information can be estimated as F ∼ L

N + N−L
ND(D+1)

(
D + min

{
L2 + 1, D2

})
, where D = dimH

and N is the number of test pairs. The authors of [56] have trained a network, denoted by
[3, 3, 3]. Impressively, the trained QNN is able to closely match this theoretical prediction, see
Fig. 2.40.
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Figure 2.40.: A [3, 3, 3] network trained for 1000 rounds with n = 1, 2, . . . , 8 training pairs and
evaluated the cost function for a set of 10 test pairs afterwards. The results are
averaged over 20 rounds (orange points) and compared to the estimated value of
the optimal achievable cost function (violet points).

For more examples, see e.g. [85, 7, 58].
In this thesis we investigate networks with layers of variable width, see Section 4. Conveniently,

the neuron discussed in this section is the only building block required for this setting.
The authors of [56] provide an open-source implementation of QNNs written in several lan-

guages available at [2].
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3. Parent Lindbladians for matrix product
density operators

In this chapter we show how to dissipatively engineer sources for matrix product density operators
(MPDOs).

We present an algorithm that determines whether there exists a parent Lindbladian for a
given space of MPDOs and, if so, outputs such a Lindbladian (see Fig. 3.1). It turns out that
the desired Lindbladian exists if and only if a local frustration-free quantum channel with given
MPSOs as a fixed space exists. Sections 3.2 and 3.3 are devoted to different steps of the algorithm
– to the construction of the local terms in the Lindbladian and to ensuring that the sum of the
local terms does not have unwanted stable states. Examples are contained in Section 3.4.

>=)? stable space of local LMPDO ≡

MPS ≡ () ground states of local H

generalization to mixed states

Figure 3.1.: MPS are connected to ground states of local gapped 1d Hamiltonians. MPS can
approximate such ground states well, and each MPS is the unique ground state of a
parent Hamiltonian. MPDOs and Lindbladians are a direct generalization of MPS
and Hamiltonians to mixed states. MPDOs can represent thermal states for high
enough temperature and are a well-established variational method for stable states
of open-system dynamics. But do MPDOs have parent Lindbladians?

As was discussed in Subsection 2.4.4, MPDOs are at the core of powerful numerical methods
suitable for 1d open systems. MPDOs can represent thermal states of local Hamiltonians and
are a direct generalization of MPS (see Subsection 2.4.2) to mixed states.
Ground states of local gapped 1d Hamiltonians are well approximated by an MPS (see The-

orem 2.4.2). Moreover, every MPS is a unique ground state of a frustration free gaped local
Hamiltonian—a parent Hamiltonian (see Subsection 2.4.3).
One way to prepare a state of interest is to design a dissipative evolution leading in the long
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3. Parent Lindbladians for MPDOs

term only to the desired states, see Subsection 2.5.7. A Lindbladian describes the evolution in
the Markovian case (see Section 2.2). Dynamics consisting of the parent Hamiltonian and energy
dissipation provide a recipe for dissipative preparation for a given MPS [334, 598].
We seek to extend parent Hamiltonian construction to mixed states. We look for parent—

local and frustration free, Lindbladians with stable space consisting only of given MPDOs. As
achievable locality is often limited in experiments, we concentrate on k-local Lindbladians. This
construction can be used to design preparation protocols for MPDOs, provide a way to invent
new integrable systems and give insight into what kind of systems are well described by this
variational class.

3.1. Outline of the algorithm

There are two important steps in constructing k-local parent Lindbladians:

1. For the Lindbladian L =
∑

i Li,...,i+k−1, construct a local term Li,...,i+k−1 with stable space
k

.

2. Check that L =
∑L−k−1

i=1 Li,...,i+k−1 ≡
∑

i Li does not have any additional stable states:

∩

dim = d

dim = s

k

⊗Md

Md⊗ ⊗Md⊗
=

HereMd denotes an algebra of d× d complex matrices.
Any of these two steps may return a negative result, i.e. either Li,...,i+k−1 or L have extra

stable states in addition to desired stable state space of MPDOs. This means that there is no
frustration free k-local parent Lindbladian for a given space of MPDOs.

3.2. Constructing local term in a Lindbladian

In this section we construct a local term in Lindbladian such that a given length-k matrix product
operators (MPOs) (see the first step in 3.1) form the stable space of such term or determine that
such local term does not exist. Note that given a length-L MPDO, the length-k < L MPOs are
not necessary density operators.
To construct a local term with a given stable space F we first construct a quantum channel

with the fixed space F . For every CPTP map T there exists a Lindbladian L such that T [ρ] =
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3.2. Constructing local term in a Lindbladian

ρ⇒ L[ρ] = 0, for example defined via

L[ρ] = const · (T [ρ]− ρ) for some const > 0. (3.1)

Moreover, for the k-local and frustration free Lindbladian L, namely

L =
∑
i

Li,...,i+k−1 and L[ρ] = 0 ⇔ ∀i Li,...,i+k−1[ρ] = 0, (3.2)

it is possible to associate a k-local CPTP map T via

T =
1

L− k − 1

L−k−1∑
i=1

Ti,...,i+k−1, where Ti,...,i+k−1 = eLi,...,i+k−1 , (3.3)

such that L[ρ] = 0 ⇒ T [ρ] = 0. This means that a construction of a parent Lindbladian and a
question of its existence can be concluded from the study if the space of interest is a fixed space
of a quantum channel.

A fixed space of a quantum channel T is of the form (see Subsection 2.1.3)

FT = U

(
0d0 ⊕

K⊕
k=1

(ρk ⊗Mdk)

)
U †, UU † = U †U = 1, ρk ≥ 0. (3.4)

Let the space of k-local MPOs starting from site i be spanned by matrices
{
Oib
}
, where different

values of b = {l, r} corresponds to different boundary conditions:

= b

Our goal is to find the smallest fixed space F such that ∀b Olb ∈ F . If dim(F) = dim
(
span

[{
Oib
}])

,
the local CPTP term Ti,...,i+k−1 can be chosen as a projection on F ; otherwise no k-local parent
Lindbladian does not exist, as for each local term the stable space is too large. Note that fixed
space can be spanned by self-adjoint operators. Thus, it is sufficient to work with self-adjoint
linear combination of MPOs, e.g.

{
Oj +O†j , iOj − iO

†
j

}
.

The algorithm presented below determines the smallest fixed space F of any CP map such that
a given set of operators are in F . This algorithm uses subroutines discussed in Subsection 2.1.4.
An alternative algorithm that can use any simultaneous block diagonalization subroutine can be
found in Appendix A.
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3. Parent Lindbladians for MPDOs

Algorithm 3 Pseudocode for the algorithm that finds the smallest fixed space of a quantum
channel that contains a given set of states.

Input: A set of matrices
{
Oib
}
.

Output: With probability 1, the smallest fixed space (see Subsection 2.1.3) F i such that
∀b Ob ∈ F i. With probability 0, an algebra containing F .

1: Find self-adjoint linear independent matrices {Si} such that span ({ζi}) = span ({Oi}).
2: Run the Algorithm 1 from Subsection 2.1.4. Store the output Q and optional outputs {di},Σ.
3: Let Di =

∑i
j=0 di. Construct a matrix

V = diag

{1}D0
k=1,

{√
1∑D1

i=D0+1 Σ2
ii

}D1

k=1

, . . . ,


√

1∑Dj+1

i=Dj+1 Σ2
jj


Dj

k=1

, . . .

 . (3.5)

4: Run the Algorithm 2 from Subsection 2.1.4 with the input
{
V Q†ζbQ

}
including the optional

step. As Algorithms 2 and 1 share first few steps, use the results already computed during
step 2 of this algorithm. Obtain the set

{
U, {dj}Jj=0, {kj}Jj=1

}
.

5: Output the set
{
U, V, {dj}Jj=0, {kj}Jj=1

}
, where F i ≡ UV −1

(
0d0 ⊕

⊕J
j=1

(
1kj ⊗Mdj

))
U †.

Let us run this algorithm for the space F i of matrices that span the given length-k MPO
to get FTi,...,i+l−1

. If the dimension of FTi,...,i+l−1
equals to the dimension of F i, than we can

choose Ti,...,i+l−1 as a projector on FTi,...,i+l−1
. The local term in a Lindbladian can be chosen as

Li,...,i+l−1 = 1− Ti,...,i+l−1. Otherwise, there is no k-local Lindbladian such that its stable space
is the desired space F i.

3.3. Patching local parts - dimension of a stable space

In this section we investigate what happens when k-local parts get patched together to form the
space of arbitrary long MPDOs (see the second step in 3.1).
Let us investigate the k-local Lindbladian

Lj

L[ρ] =
∑L

j=1 (1− Tj,...,j+k−1) [ρ] =

j j+k−1

∑L
j=1

where Tj,...,j+k is a CPTP map that acts non-trivially only on k neighbouring qudits. By con-
struction, any state that is in the desired stable space of MPDO states is a fixed space of any
local CPTP map Tj,j+1,...,j+k−1. Our goal is to find all states that are in the fixed space of
Tj,j+1,...,j+k−1 for every j ∈ {1, 2, · · · , L}.
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We use a technique inspired by [405]. Suppose we have a set of sn linearly independent
solutions for the first l ≥ k sites in the form

R[1] R[2] R[l]

ρ[1,l] ≡ ρi1j1,...,iljlα0αl
= R

i1j1,[1]
α0α1 R

i2j2,[2]
α1α2 . . . R

iljl,[l]
αl−1αl

≡

|i1, i2, . . . il〉〈j1, j2, . . . jl|

with in, jn = 1, . . . d and αn = 1, ..., sn; here and below all the repeated indices are summed over.
The R’s satisfy the linear independence conditions

Rinjn,[n]
αn−1αnxαn = 0, ∀in, jn, αn−1 ⇔ xαn = 0, ∀αn (3.6)

We now add one more site to the chain and look for eigenvalue zero states of L in the form

ρi1j1,...,iljlα0αl
= ρ

i1j1,...,il−k+1jl−k+1
α0αl−k+1 ·

R
il−k+2jl−k+2,[l−k+2]
αl−k+1αl−k+2 . . . R

il+1jl+1,[l+1]
αl+1αl+1 (3.7)

The unknown tensor Ril+1jl+1,[l+1]
αlαl+1 must satisfy a system of linear equations

Cσ,il+1jl+1αlR
il+1jl+1,[l+1]
αlαl+1 = 0, (3.8)

where σ = αl−k+1il−k+1jl−k+1 . . . iljl and

Cσ,il+1jl+1αl
=

≡ C = Ll−k+1
(
|il−k+2, . . . , il+1〉〈jl−k+2, . . . , jl+1|·

R
il−k+2jl−k+2,[l−k+2]
αl−k+1αl−k+2 . . . R

iljl,[l]
αl−1αl

)

Ll−k+1

l+1l−k+1 l

σ

is a matrix with dimension rsl−k×d2sl. The number of solutions is exactly sl+1 = d2sl−rank(C).
In particular, this gives a necessary and sufficient condition for the whole stable space to be an
space of MPDO form with bond dimension s, that is rank(C) = s(d2 − 1).

3.4. Examples

Let us first illustrate the algorithm outlined in Section 3.1 on the simplest possible non-trivial
sets of states. Consider a set of MPDOs

ρ({αj}) =

(
12

2

)⊗L
+
∑
i∈J

αiσ
⊗L
i , (3.9)

where σi are Pauli matrices, J ⊂ {1, 2, 3} and {αj}j∈J are numbers such that ρ({αj}) is a state.
The bond dimension of ρ({αj}) can be chosen as D = |J |+ 1 with the corresponding tensors
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3. Parent Lindbladians for MPDOs

1 1 = 12

2
i i = σi.

Let us first look at the case J = {3}. There is a two-local parent Lindbladian for ρ({α3}).
Indeed, the first stage of our algorithm outputs a local term Li,i+1 as an identity minus the
projector on the algebra 12 ⊗ (M1 ⊕M1) and the second stage proves that the sum of local
terms has the same number of stable states as one local term.
However, if |J | = 2 there is no k-local parent Lindbladian for any k. Indeed, the space spanned

by 1⊗k, σ⊗ki , σ⊗kj does not form an algebra for i 6= j, and already the first stage of the algorithm
outputs that no desired Lindbladian exists. This situation is rather generic for MPDOs and is
drastically different to the case of MPS, where a parent Hamiltonian exists for large enough k,
see Theorem 2.4.7.
Beforehand we obtained a parent Lindbladian for a set of density matrices that can be simul-

taneously diagonalised. If we now look at the case |J | = 3, the local term of a Lindbladian will
be an identity minus the projector on the non-commuting algebra 12 ⊗M2.
Similar examples can be constructed using higher-dimensional representations of su(2).
We will now look at the thermal states of local Hamiltonians, ρ = e−βH

tr[e−βH ]
. Let us start with

the Ising model H =
∑

i σ
i
zσ

i+1
z . This state can be described as a MPDO with bond dimension 2:

e−βσiσi+1 = e−βH =

SVD

=≡

We are interested in the parent Lindbladian of the space of MPDOs that correspond to the

Ising model without the boundary terms . Let us first try to construct the two-local
Lindbladian. The local term can be chosen as an identity minus the projector on the algebra⊕4

i=1M1. However, the second stage of the algorithm shows that rank(C) = 4 < 6 and thus,
no 2-local parent Lindbladian exists. The situation changes when we increase the locality -
the algorithm finds the 4-local parent Lindbladian for the Ising model as a sum of projectors
on algebra U

(⊕4
i=1(ρ̃i ⊗M1)

)
U †. Here ρ̃1 = diag(e−8b, 1, 1, 1), ρ̃2 = diag(1, e8b, 1, 1), ρ̃3 =

diag(1, 1, e8b, 1), ρ̃4 = diag(1, 1, 1, e−8b), Uij = 1 if j = 2i− 1 or i = 8 + j/2 and 0 otherwise.
While the Ising model plays an important role in physics, it is classical. One way to proceed is

too build excitations on top of an entangles state, the other approach is to add non-commuting
terms to the Hamiltonian. Let us first proceed with the later option. The Hamiltonian for the
Ising model in a transverse field is H =

∑
i σ

i
zσ

i+1
z + hσix. The thermal state of this model is

entangled, but it might be not so straightforward to write it down in a MPDO form. Thus, we
will study the first Suzuki-Trotter decomposition of the thermal state. There are two obvious
possibilities for such decompositions: ρh = 1

Zh

(
e−β

∑
i
h
2
σixe−β

∑
i σ
i
zσ
i+1
z e−β

∑
i
h
2
σix
)

and ρβ =
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1
Zβ

(
e−

β
2

∑
i σ
i
zσ
i+1
z e−β

∑
i hσ

i
xe−

β
2

∑
i σ
i
zσ
i+1
z

)
, where Zh and Zβ are normalizations. If we denote

ε = e−β
h
2
σz , we can draw the corresponding tensors as

=≡
εh

εh

≡

ρhZh

=ρ2βZ2βεh

boundary terms

We are interested in the space of MPDOs without the boundary therms.
However, the ρh is classically correlated, as the bond dimension is 2.[152] For the parameters

tested (β = 1, h ∈ {1/10, 1/2, 1, 2, 10} , k ≤ 6) neither of these MPDOs have parent Lindbladians.
Every time the first step of the algorithm failed - the stable space of a local Lindbladian is too
large.
The other option to generate a quantum model related to Ising model is to start with any wave

function |ψ〉 spanned by |0〉⊗L and |1〉⊗L and add domain walls at each site with probability p –
for every n starting from 1 to L we define

ρn−1 = (1− p)ρn + p1⊗n ⊗ σ⊗(L−n)
x ρnσ

⊗(L−n)
x ⊗ 1⊗n

starting with ρ0 = |ψ〉〈ψ|. The space VL of all ρL can be written in MPDO form as

k
= 1 if i = j = k and 0 otherwise; i; j; k 2 f0; 1gi j

≡ +

VL =

(1 � p) p

y
≡, where

The state ρL can be entangled (for p = 0 the ρL can be GHZ). Different boundary conditions
correspond to different choices of |ψ〉 from a 4-dimensional space and to mixtures of odd or even
number of domain walls. Correspondingly, ρL is an element of 8-dimensional space. There is a
2-local parent Lindbladian MPDOs that give rise to ρL and it is a sum of identities minus the
projectors on algebra U(M2⊗M2)U †, where U is a permutation (2, 3, 1, 4) in one-line notation.
Note that this algebra is non-commuting.
The code for all of the examples can be found at [3].

3.5. Conclusions and outlook

We developed an algorithm that determines if a given (small) linear space of MPDOs can be
a stationary space for some k-local Lindbladian and, if so, outputs such a Lindbladian. Such
Linbladian exist if and only if a local frustration-free quantum channel with given MPDOs as the
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fixed space exists. This gives a recipe for an experimental preparation of MPDOs via dissipative
engineering. It is also a good starting point to invent new integrable systems.
The most computationally expensive step of the presented algorithm is simultaneous block-

diagonalization of s2 matrices of dimension dk × dk, where s is the bond dimension, and d is the
dimensionality of the underlying elementary physical systems. It scales quadratically with the
bond dimension, but exponentially with the locality of the desired Lindbladian.
The interesting remaining questions are what happens to the gap of such Lindbladian in

thermodynamic limit and what is a sufficient locality parameter k such that a parent Lindbladian
exists. Moreover, it would be useful to understand what kind of MPDOs have parent Lindbladian;
it was conjectured by Sofyan Iblisdir that this question might be connected to ranks of different
decompositions [154, 153]. It would also be interesting to study how the ideas from this work
can be applied to the random MPDOs and random Lindbladians.
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Virtually every experimental preparation of a quantum state introduces noise. Usually, it is
hard to design a denoising protocol. First, one has to identify and characterize all noise sources.
Second, one has to invent a protocol that corrects the noise without affecting any relevant features
of the quantum state. Machine learning (ML) can automate this task.

We use the quantum neural networks (QNNs) described in Section 2.8 to train denoisers for
simulated quantum sources. As current quantum hardware is not fault-tolerant and has intrinsic
noise (see Section 2.5), we verify that learning (in Section 4.1) and denoising (in Subsection 4.3.4)
is possible even with imperfect devices.

For state-of-the-art experiments, there is usually no source that exhibits lower noise and can
be used for supervision. Thus, in this chapter we focus on data sets that are obtained from a
single source. Successful learning can be facilitated either by a clever data acquisition or by the
use of network architectures appropriate for unsupervised learning.

While increasing the quality of an experimental output is hard, decreasing it is usually easy.
In Section 4.2, we train a network to map from a parameter region of decreased performance to
the region of best available performance. After training, the QNN is able to extrapolate from
the region of available performance to a region of yet unseen quality. Due to the experimental
relevance of thermal noise, we use this approach for extrapolation to lower temperatures.

In Section 4.3, we construct undercomplete quantum autoencoders (AEs) to combat shot-to-
shot noise. Suppose that a tunable data source produces a certain class of states that are subject
to random noise. Just like in classical AEs (see Subsection 2.6.4), a bottleneck allows quantum
AEs to filter out irrelevant information and preserve only relevant features that are present in
every member of a class. We use this technique to successfully denoise GHZ, W, Dicke and
cluster states subject to spin-flips, dephasing errors and random unitary noise.

Finally, in Section 4.4 we teach a source to shield itself from noise by learning quantum error
correction codes. This also does not require a supervising source—the training just has to ensure
that the encoded and decoded states match.

A supervising source might be available if a post-processing device is trained for a source with
significant constraints affecting its performance, such as cost, transportability or fast output rate.
We discuss this situation in Chapter 5. There, we also study denoising protocols that require
memory. In the present chapter we concentrate on protocols where feed-forward networks are
sufficient.

See Fig. 4.1 for a schematic representation of the tasks studied in this chapter.
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shot-to-shot noise
non-optimal parameters (e.g. T)

trained denoiser desired states
tunable

intrinsic noisetransmission errors

Figure 4.1.: The setting studied in Chapter 4. We use QNNs to train denoisers for quantum
sources. The source may be tunable, but we do not assume access to an addi-
tional supervisory source. We concentrate on noise cancellation that does not re-
quire memory, such as dealing with non-optimal parameters, shot-to-shot noise and
transmission errors. Denoising can be successful even if the QNNs are implemented
on hardware with some intrinsic noise.

4.1. Are QNNs suitable for NISQ devices?

A practical ML protocol has to be robust to noise. Most data sets are not perfect. Thus, it is
crucial to verify that QNNs can work even with some of the data is corrupted.
The cost function that must be evaluated for training can be measured only with finite preci-

sion. Moreover, current NISQ devices are by definition noisy. Thus, it is important to examine
whether QNNs can still be useful if implemented on realistic devices.
This section shows that QNNs can tackle noisy data even when being implemented on a noisy

device. The presented results were first obtained for a bachelor’s thesis co-supervised by the
author [516] and were included in [56].

4.1.1. Model for noisy neurons

We model the noise in the network by evolving the state with a random time-dependent Hamil-
tonian H(τ) before and after each operation. As a result the noisy unitary that corresponds to
the jth neuron in the lth layer is

U lj(t) = R(t)U ljR̃(t), (4.1)

where R(t) and R̃(t) are two different realisations of a random unitary generated by the same
probabilistic process. The update rule is also modified into

U lj → R(t)
(
eiεK

l
jU lj

)
R̃(t). (4.2)

The evolution with H(τ) can be constructed via a quantum Brownian circuit [652, 353]. Let us
consider a family of Hamiltonians {Hj = H(j∆τ)}nj=1, ∆τ = T/n, where every Hj is Hermitian
and its entries are Gaussian distributed with zero mean and a standard deviation of 2π~ν

√
n

2m .
The noise strength is captured by a dimensionless parameter t = νT . We model both R(t) and
R̃(t) as

(∼)

R (t) =
n∏
j=1

exp(iHj∆τ/~) . (4.3)
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By Itô’s calculus, there exists a H(t) such that

(∼)

R (t) = T exp

(
i/~
∫ T

0
H(τ) dτ

)
+O

(
1√
n

)
, (4.4)

where T is the time ordering operator. We use n = 20. To assess the effect of this noise, we
study the fidelity of random 3-qubit states |ψ〉 with R(t)R̃(t)|ψ〉, see Fig. 4.2.

Noise parameter t

Fidelity

0.002 0.004 0.006 0.008 0.010
.994

.995

.996

.997

.998

.999

1• • • • • • • • • • • • • • • • • • • • •

Figure 4.2.: Noisy identity operation. Relation between the fidelity |〈ψ|R(t)R̃(t)|ψ〉|2 and the
noise strength t for 500 random 3-qubit states |ψ〉.

We return to Example 2.8.1 and study how the performance of the network deteriorates with
noise. While the performance of the QNN indeed falls as the noise strength t increases, the
change is smooth. The results for the [3, 3, 3] ∼ network can be seen in Fig. 4.3.
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1 2 3 4 5 6 7 8

0.1
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0.3

0.4

0.5

0.6
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0.9

1

Number of training pairs

Fidelity on test data

t = 0.0000
t = 0.0033
t = 0.0066
t = 0.0100
t = 0.0133

Figure 4.3.: A [3, 3, 3] network intended to reproduce a unitary evolution, see Example 2.8.1;
trained for 1000 rounds with n = 1, 2, . . . , 8 training pairs and noise strength t.
The cost function is evaluated for a set of 10 test pairs afterwards. The results are
averaged over 20 rounds. Image taken from [516].

4.1.2. Model for corrupted data

We model corrupted data by substituting a subset of labels in the training set with random
states.

We concentrate on learning unitary evolutions, see Example 2.8.1. The training data is
{|ψi〉, |φi〉}Li=1, |ψi〉, |φi〉 ∈ H, where |φi〉 is U |ψi〉 with probability 1− p and a random pure state
sampled from a uniform distribution with probability p. The objective is to maximize the fidelity
of the output with U |φ〉 for any input |φ〉, see Fig. 2.39. We train the network [2, 3, 2] ∼
with noisy neurons (see Subsection 4.1.1) for 300 rounds on 100 noisy training pairs. Figure 4.4
shows that noisy training data almost does not deteriorate the performance of the QNN up to
p ∼ 2

3 . As expected, as long as the fraction of corrupted training data is small, a stronger noise
affecting the neurons decreases the fidelity on the test data. However, the latter relation can get
reversed if a big fraction—around 9

10—of the data is corrupted. If low-noise devices are available
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1

|ψi〉
U U |ψi〉

Random |φi〉

signal

noise

Figure 4.4.: We assume that the signal in data labels is produced by an unknown unitary evo-
lution. With some probability the data is corrupted - the labels are random with a
uniform distribution.

for a task with highly corrupted data, the optimal amount of noise can be achieved by injecting
noise artificially, e.g. by modifying the update direction of gradient descent steps.
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Percentage of noisy pairs

Fidelity on test data

t = 0.0000
t = 0.0033
t = 0.0050
t = 0.0066
t = 0.0100
t = 0.0133
t = 0.0150

Figure 4.5.: Robustness of QNNs. A [2, 3, 2] network trained for 300 rounds with 100 training
pairs, where some of the labels were replaced by random uniformly distributed pure
states. The neurons were subject to approximately depolarizing noise with noise
parameter t (see Subsection 4.1.1). Image taken from [516].

4.1.3. Conclusion

We conclude that QNNs, for example the ones proposed in [56], can be successfully implemented
on NISQ devices. There are intermediate-scale learning tasks for which one can still train net-
works of imperfect neurons and obtain valuable results even from very noisy data. Moreover, we
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observe that the imperfections of neurons are less of an issue if the available data is very noisy.
This leads to the speculation that NISQ devices are especially promising for ML task where
perfect data is not available.

4.2. Extrapolation of parameters

In this section we work with sources that produce states that can be described by a parameter.
We deal with the situation that the source produces states in an undesired parameter region. We
use QNNs trained on the undesired parameter interval to extrapolate quantum states to more
desired parameter values. While the techniques discussed in this section are applicable to any
parameter of interest, we concentrate on the case of temperature.

non-optimal parameters (e.g. T)

trained denoiser desired states
tunable

It should be noted that extrapolation is a hard [47] and actively researched [582, 51, 384]
problem for classical neural networks (NNs). Addressing this task, NNs tend to suffer from
overfitting [294] or to generate oversimplified predictions [249]. Sometimes, this oversimplification
is a provably generic behaviour [644]. There are alternative methods for extrapolating properties
of quantum systems via classical ML, for example Gaussian processes [587, 588]. However, there
are classes of functions that NNs can provably extrapolate; moreover, there are subfamilies of NNs
that do not seem to suffer from the aforementioned drawbacks [644]. NNs have been successfully
used to extrapolate properties of systems as complex as nuclei [294, 418].

The results in this section were produced as part of a bachelor’s thesis [179] supervised by
Tobias Osborne and the author and have greatly benefited from a collaboration with Robert
Salzmann.

We assume that a source can prepare states in a parameter range [Tmin, Tmax] and that it
is desirable to obtain states with parameters T < Tmin. We choose a function f(T ) < T and
generate training data as pairs of parametrised states

{
ρ
(
T iin
)
, ρ
(
f
(
T iin
))}Ndata

i=1
(4.5)

such that ∀i f
(
T iin
)
∈ [Tmin, Tmax]. We proceed by choosing f(·) and training an FFQNN N on

this data set so that the lower part of the available parameter region is extrapolated by N to
states inaccessible to the source, see Fig. 4.6. Thus, the goal is that

∃Tl, Th : Tmin ∈ [Tl, Th], ∀T ∈ [Tl, Th] ∃T̃ < T : N (ρ(T )) ≈ ρ(T̃ ). (4.6)
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1

train

0◦K Ttest

Figure 4.6.: We assume that the source is able to produce states in some temperature interval.
We train a QNN to cool states inside this interval. The network should learn to
extrapolate, that is input states from the lower-temperature part of the available
interval are mapped to colder states that are outside of the training interval.

We choose f(T ) = γT with γ < 1. This choice is, as of now, not well-motivated. It is
worthwhile to check for which choices of f the corresponding quantum channel actually exists,
see [234, Theorem 1 and Corollary 1] for a starting point. We set γ = 0.8. For numerical examples
with different γ, see [179, Section 7.3]. Note that γ > 1 correspond to heating. Unsurprisingly,
heating is easier to achieve than cooling.
There is a long history of attempts to produce colder states. Thermal noise is an undesirable

feature in many experiments (see e.g. [515]), and decreasing the temperature tends to increase
the sensitivity [312, 626, 280, 538]. Low enough temperatures can reveal novel phases of matter,
exemplified by the discovery of superconductivity [298] and superfluidity [299, 23]. Reaching the
extreme cold needed for this can require hard work of multiple generations. For example, the
prediction of Bose-Einstein condensation (BEC) in weakly interacting atomic gases was published
in 1925 [180], yet pioneering observations in 23Na [148], 7Li [94] and 87Rb [28] occurred only in
1995 (to be fair, BECs in superfluid helium and semiconductor excitons [363, 239] were obtained
earlier). Nevertheless, even judging by the few examples listed above, this hard work often pays
off.
We concentrate on thermal states ρ = e−

H
T

Tr

[
e−

H
T

] of the transverse-field Ising model

H = H [{Jij , hi}] =
∑
i<j

Jijσ
z
i σ

z
j +

∑
i

hiσ
x
i , Jij , hi ∈ R. (4.7)

This is the simplest and, via D-Wave [87], currently the only commercially available model used
in quantum adiabatic computers (see Subsection 2.5.7). The transverse-field Ising model is not
known to be QMA-complete, yet it is a complete problem of a complexity class that contains
classical NP [98]. If Jij = Jδj,i+1 and hi = h, this system exhibits in the thermodynamic limit
a quantum phase transition at J = h = 1 [453, 186].
As the labels in our training data are thermal states and mixed, our initial choice for the cost

function is

CHS

({
ρ
(
T iin
)
, ρ
(
f
(
T iin
))}Ndata

i=1

)
= 1− 1

Ndata

Ndata∑
i=1

‖N
(
ρ
(
T iin
))
− ρ

(
f
(
T iin
))
‖22, (4.8)

see Subsection 2.8.2 for a discussion of alternative cost functions.
To evaluate the quality of the extrapolated states, we employ a function that compares a given

output to the thermal state with temperature T .
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Definition 4.2.1 (Comparison function). For a given state ρ, the comparison function F compρ (T )

is defined via

F compρ (T ) = D

ρ, e−
H
T

Tr
[
e−

H
T

]
 , (4.9)

where D is some distance measure. We pick the fidelity-based distance measure D(ρ, σ) = 1 −(
Tr
√√

ρσ
√
ρ
)2.

Note that the comparison function is not used for training or validation, but only for the
visualization. While the choice of distance measure in the cost function is relevant for the
performance, the one employed in the comparison function is not; we could as well use the
Hilbert-Schmidt norm both times.

4.2.1. Need for mini-batches

We consider sources that can provide training data with input states in the temperature re-
gion T iin ∈ [Tmin/γ, Tmax] = [4, 8]. In other words, we assume that the temperature region
[Tmin, Tmax] = [3.2, 8] is accessible. Temperatures that are significantly below γTmin = 2.56 lead
to numerical instabilities in our simulation, while temperatures significantly above Tmax = 8 yield
differences in the cost function that are too small for successful learning. We show results for
two qubits with J = J12 = 1 and h = h1 = h2 = 1. We do not observe any significant sensitivity
to the Hamiltonian parameters in the training outcomes, with a somewhat better performance
for h/J > 1. Similar results were obtained for J, h ∈ {1, 2, 10} in [179, Section 7.4].
Unlike for the other tasks considered in this thesis, the batch gradient descent is not suitable

for cooling thermal states. While the cost function rapidly decreases (see Fig. 4.7), the learning
outcomes tightly cluster around a value within the label parameter range, see Fig. 4.8.

Figure 4.7.: The cost function while training a [2, 2, 2] network on 1000 data pairs with the batch
gradient descent. Figure taken from [179].

This clustering suggests that it can be beneficial to use mini-batches. Indeed, the concentra-
tion around a single point is not a low-cost solution if the training minimizes a cost function for
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Figure 4.8.: The comparison functions (see Definition 4.2.1) for the post-processed states (black
to lime) and for the corresponding label states (red to pink). Left: a [2, 2, 2] network
trained with 1000 data pairs for 20 training rounds. Right: a [2, 5, 2] network trained
with 1000 data pairs for 1000 training rounds. Figure taken from [179].

two sets of states belonging to parameter regions centered at separate points. For every train-
ing mini-batch i we fix ∆Tmbi and randomly choose Tmbi according to a uniform distribution
on [Tmin/γ, Tmax − ∆Tmbi ]. We generate training data such that the input temperatures are
uniformly distributed on

[Tmbi , Tmbi + ∆Tmbi ]. (4.10)

Mini-batches indeed slightly improve the performance. However, the outputs are still too clus-
tered, see Fig. 4.9. This can be attributed to the last mini-batch having the highest impact on
the end result of the training, as can be observed from Fig. 4.10. It can be resolved by adjust-
ing the training hyperparameters of the gradient descent for each mini-batch, as we discuss in
Subsection 4.2.2.
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Figure 4.9.: The comparison functions (see Definition 4.2.1) for the post-processed states (black
to lime) and for the corresponding label states (red to pink) for the examples listed
in Table 4.1. Top left: mb1. Top right: mb2. Bottom left: mb3. Bottom Right:
mb4. Figure taken from [179].
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Figure 4.10.: The cost function during training for the examples listed in Table 4.1. The spikes
stem from the sharp increase of the cost function when training with a new mini-
batch begins. This signals that the training overfits to the current mini-batch. Top
left: mb1. Top right: mb2. Bottom left: mb3. Bottom Right: mb4. Figure taken
from [179].

Example
Parameter mb1 mb2 mb3 mb4
∆Tmb 1 2.5 4 4
Training pairs per mini-batch 6 6 6 60
Number of mini-batches 20 20 20 20
Training rounds per mini-batch 50 50 50 500
Network [2 2 2] [2 2 2] [2 2 2] [2 5 2]

Table 4.1.: Parameters for the training with mini-batches. Comparison functions for post-
processed states are depicted in Fig. 4.9 and the cost function during training in
Fig. 4.10.
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4.2.2. Decreasing learning rate, recursive cost and random batches

A smaller learning rate can help to avoid the overfitting to the latest mini-batch, which we have
observed in Fig. 4.10, but the optimization time significantly increases. Even more disappoint-
ingly, small learning rates can cause the optimization to get stuck in a shallow local minimum
without converging even for a single mini-batch.
A good strategy to enjoy the benefits of both a large and a small learning rate is to make it

mini-batch dependent and decrease it as training progresses. We use the Nadam optimizer and
a learning rate ηj that polynomially decreases (see Equations 2.69) with the mini-batch index j:

ηj =
1

1
ηmax

+
(

j
Nmb

)p (
1

ηmin
− 1

ηmax

) , (4.11)

where Nmb is the number of mini-batches and ηmin, ηmax and p are hyperparameters.
We add an extra term to the cost function. Instead of the cost C

({
ρ
(
T iin
)
, ρ
(
f
(
T iin
))}Ndata

i=1

)
,

we use what we call a recursive cost Ck of depth k,

Ck
({{

ρ
(
T iin,j

)}k
j=0

}Ndata

i=1

)
=

1

k

[
C
({
ρ
(
T iin,0

)
, ρ
(
T iin,1

)}Ndata

i=1

)
(4.12)

+ C
({
N
(
ρ
(
T iin,0

))
, ρ
(
T iin,2

)}Ndata

i=1

)
+ . . .

+ C
({
N ◦ · · · ◦ N

(
ρ
(
T iin,0

))
, ρ
(
T iin,k

)}Ndata

i=1

)]
,

where T iin,j = f
(
T iin,j−1

)
, j = 1, . . . , k, and T iin,0 = T iin. (4.13)

The recursive cost of depth k requires the ability to produce
{{

ρ
(
T iin,j

)}k
j=0

}Ndata

i=1

as training

data. If the input parameter range remains unchanged, Ck requires a wider temperature range
to be accessible to the source. If an efficient algorithm to compute C exists, Ck can also be
computed efficiently. Note that this construction is not limited to the particular cost function
used.
While the recursive cost gives a mild increase in training performance, the main benefit of this

technique is that it facilitates overfitting detection. Each term in the cost function is computed
separately, such that we have access to each of the Cj≤k. If C2 is much larger than C1, it is a
sign of overfitting. This greatly simplifies hyperparameter tuning. We use a depth of k = 2.
We proceed by randomizing the size of the mini-batch temperature intervals {∆Tmbj}. The

intuition behind this is two-fold. First, different widths of temperature regions have different
benefits and drawbacks. Large regions suffer less from overfitting, yet smaller regions provide
better learning outcomes for the states with parameters in this region. Second, if the learning
rate is not too large, the overfitting to the data seen last is reduced if consecutive mini-batches
are substantially different.
Combining all the techniques listed in this section, we achieve the learning outcomes depicted

in Fig. 4.11. While the outputs of the QNN do not match the labels perfectly, the resemblance
is close enough to hope for a successful extrapolation. To verify this hope, we first need to check
that the outputs of the QNN are close to thermal states. This can be done by observing whether
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the minima of the comparison functions 4.2.1 for different outputs of the trained network get
close to zero. In Fig. 4.12 we see that the minimum values of the comparison functions are either
on the order of 10−3 or smaller even outside the temperature region the QNN was trained on.
Thus, to each output of the network we can assign the temperature corresponding to the value of
T where the comparison function reaches its minimum. By comparing the temperatures of the

input states with the temperatures assigned to the outputs, we confirm that the ∼ [2, 5, 2]

QNN successfully learned to extrapolate to colder temperatures, see Fig. 4.13.
We observe that the extrapolation performance deteriorates as the width of the network de-

creases. Unfortunately, the performance also deteriorates as the depth increases. This is due
to the problem of outcome clustering described in Subsection 4.2.1. Each extra layer tends to
increase clustering (as also happens in extrapolation with classical NNs [294]). We conjecture
that random dropping out connections and neurons during training can solve this problem.

Figure 4.11.: A [2, 5, 2] network trained with 2000 mini-batches, ∆Tmb (see Equation 4.10) uni-
formly distributed on (0, 1), and 6 data pairs and 100 training rounds per mini-
batch. Left: recursive cost function (see Equation 4.12) of depth 2 with the Nadam
learning rate falling as a degree 3 polynomial (see Equation 4.11). Right: the
comparison function 4.2.1 for the post-processed states (black to lime) and of the
corresponding label states (red to pink). Figure taken from [179].
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Figure 4.12.: The comparison functions for the output states (black to lime) and the correspond-
ing input states (red to pink) for the QNN trained as depicted in Fig. 4.11. Left:
input states are colder than the temperature region the network was trained on.
Right: input states are hotter than the temperature region the network was trained
on. Figure taken from [179].
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Figure 4.13.: Extrapolation with the [2, 5, 2] network trained as depicted in Fig. 4.11. The lines
visualize the effect the network has on the input thermal states with temperatures
given by the x-coordinate of the upper end of each line. The assigned temperatures
of the corresponding output states equal the x-coordinate of the lower end of each
line. The blue connections correspond to input states outside of the training region.
The lime connections correspond to input states inside the training region. The red
connection corresponds to the state that has the highest temperature out of the
states not cooled by the network. The network cools every state that is hotter
than the "red" state. Upper plot: an overview of the temperature mapping of the
network. Lower plot: the marked area in detail. Figure taken from [179].
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4.2.3. Discussion

We have successfully trained a QNN to extrapolate thermal states to lower temperatures. How-
ever, there are a number of different cooling quantum algorithms on the market, e.g. [461,
476, 477, 404, 522, 347, 393] (and schemes to access low-temperature properties of a system,
e.g. [573, 387, 138, 394]). Why QNNs?

The benefit of QNNs is their flexibility and extendability. Unfortunately, in com-
parison to [461, 476, 477], our proposal needs vastly greater resources. It is no wonder that
minimalist approaches like [476, 477] are the ones that are experimentally implemented!

Our training algorithm produces better results for wider networks and tends to produce over-
simplified outputs if the depth is increased (a problem analogous to classical NNs [644, 294]).
Can width be efficiently traded for depth (see Subsection 2.6.2 and [572])? We hypothesize that
drop out, i.e. random omission of connection and neurons, can help in this. It is also worthwhile
to check if a different cost function (see Subsection 2.8.2) or a different function f(·) used for
data generation (see Equation 4.5) is better suited for the task. As graph neural networks seem
to suffer less from extrapolation problems [644], it might be worthwhile to combine our method
with [58].

The picture gets brighter for our approach if we consider that QNNs are universal and are
capable of much more than cooling. Its flexibility means that the ML approach to extrapolation
presented here trivially generalizes to other parameters, such as interaction strength, conserved
charges or amount of squeezing; see also [587, 588, 294] for some other applications of extrapo-
lation for physical systems.

We develop a variety of denoising algorithms in this thesis, and QNNs can deal not only with
undesired parameter ranges, but also mitigate shot-to-shot noise, drifts and transmission errors.
Extendability means that there is no reason why a single QNN cannot learn to cancel multiple
noise sources or to do extra analysis and processing.

4.3. Autoencoders for unsupervised denoising

In this section we train denoisers to combat shot-to-shot errors.

trained denoiser desired states

shot-to-shot noise

There is often no denoised reference state to compare with, thus unsupervised learning is
required. Autoencoder neural networks (AEs) can train unsupervised and are widely used for
denoising, see Subsection 2.6.4.

We construct quantum AEs capable of quantum advantage (see Definition 2.5.15) for the
purpose of denoising quantum data. We apply them to single and continuously parameterized
sets of small highly entangled states subject to different kinds of noise. We observe excellent

100



4.3. Autoencoders for unsupervised denoising

denoising without fine tuning of the hyperparameters. The results in this section were first
presented in [85, 516].
Classically simulable quantum AEs have been studied in [235]. In [498, 606] shallow quantum

AEs have been introduced for data compression. The QNNs in [498, 606] are closely related to
the neurons from [56]. Contrary to a claim in [498] they are universal. However, the authors of
[498] restrict the class of operations to get polynomial complexity scaling with the width of the
network. Data compression via AEs has been demonstrated with photons [446]. In [350], it has
been proposed to train AEs for quantum data compression using genetic algorithms on a classical
computer. After [85] was published, an algorithm that combines training task from [85] with
the network architecture from [498] appeared in [650]. The trained AEs have been implemented
on superconducting qubits [168]. Classical ML techniques have been used to design experiments
that produce entangled states [391, 421] that are useful and robust to noise [322, 421]. The
general setting of quantum unsupervised ML has been studied in [537].
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Figure 4.14.: Network architecture of an AE. The bottleneck prevents the AE from just copying
the input data (violet) to the output (orange) so that it has to extract relevant
features—denoised states. Each neuron unitary acts on its qubit and the connected
qubits in the previous layer (e. g. navy or dark red).

We construct undercomplete quantum AEs: the bottleneck is represented by a layer of smaller
width than the (equal) input and output layers. Due to the no-cloning (Theorem 2.5.10), it is
impossible to use copies of the training inputs |ψin

i 〉 as reference outputs |ψref
i 〉. Instead, these

states have to be prepared independently. If the data source is noisy, the paired states will be
different due to different noise realizations. However, if these states share essential features,
the AE can still be trained. Below, we use half of the noisy training data as input and half as
reference output in unsupervised learning.
Our distance measure is one minus the fidelity F . For training data {ρin

i , |ψref
i 〉}Li=1 with pure

desired outputs, F (ρ, |ψ〉) = 〈ψ|ρ|ψ〉 and the cost function reads

C
(
{ρin

i , |ψref
i 〉}Li=1

)
= 1− F̄

(
{N (ρin

i ), |ψref
i 〉}Li=1

)
, (4.14)

where F̄ ({ρi, |ψi〉}Li=1) = 1
L

∑L
i=1 F (ρi, |ψi〉) ≤ 1. In the following, we abbreviate pure ρin

i =

|ψin
i 〉〈ψin

i | by |ψin
i 〉.

While, in practice, one has no access to the desired outputs of the NN {|ψid
i 〉}Li=1, the per-

formance of AEs is best studied in a setting where these target states are known. We call the
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learning process successful if the mean validation function

F̄val

(
{ρin

i , |ψid
i 〉}Li=1

)
= F̄

(
{N (ρin

i ), |ψid
i 〉}Li=1

)
(4.15)

is large, particularly, as compared to F̄ ({ρin
i , |ψid

i 〉}Li=1) before the NN is applied. We define

F
(i)
val({ρ

in
i , |ψid

i 〉}Li=1) = F (N (ρin
i ), |ψid

i 〉),

F (i)({ρin
i , |ψid

i 〉}Li=1) = F (ρin
i , |ψid

i 〉).
(4.16)

Note that the validation function, which compares {N (ρin
i )}Li=1 with the target states, differs

from the fidelity entering the cost function for training, which compares {N (ρin
i )}Li=1 with the

noisy data.
For the classical simulation of the quantum AE we have upgraded the MATLAB code from

[56]. Most importantly, we now use the Nadam (see Section 2.6.3 or [172, 505]) gradient descent
algorithm. The updated code is available at [2].
A Qiskit implementation of the quantum AEs was developed in [7].

Noisy test states

We consider highly entangled Greenberger-Horne-Zeilinger (GHZ), W, Dicke, and cluster states.
Such states are important for quantum information and quantum enhanced metrology [452, 177,
482].
For practical applications the states have to be protected from experimental noise. We investi-

gate two complementary noise processes—spin-flip errors and small random unitary transforma-
tions (see e. g. [73, 424, 639])—and show how quantum AEs can be used to denoise small GHZ,
W, Dicke, and cluster states.

4.3.1. Denoising a single state

GHZ states

We call
|GHZφ〉 =

1√
2

(
|↑〉⊗m + eiφ |↓〉⊗m

)
(4.17)

anm-qubit GHZ state with phase φ or a GHZ-φ state. GHZ states are macroscopic superposition
states with maximal entanglement depth.

Spin flip noise

For spin-flip errors we assume that for a time T all qubits are flipped back and forth at some
rate Γ. Thus each qubit has a probability of p = (1 − e−2ΓT )/2 ≤ 0.5 to end up in a flipped
state. The flips of the jth qubit affect the density matrix ρ of the initial, noiseless, m-qubit state
according to

Ej(p, ρ) = pσxj ρσ
x
j + (1− p)ρ. (4.18)
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The total noise channel is obtained by concatenating Ej for all qubits j ∈ {1, . . . ,m}:

E(p, ρ) = Em(p, Em−1(p, · · · E1(p, ρ) · · · )) (4.19)

We assume that in each experimental shot a subset J ⊆ {1, 2, . . . ,m} of a total of m qubits is
flipped. The probability of ρJ =

∏
j∈J σ

x
j ρ
∏
j∈J σ

x
j is Pp(J) = p|J |(1− p)m−|J |. Note that states

ρJ with different J may coincide or have non-orthogonal supports.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

expected noise
noisy sample
[4,2,1,2,4] denoised
[4,1,4,1,4] denoised

Figure 4.15.: Quantum AEs removing spin-flip errors from the GHZ-0 state. We show the av-
erage fidelity of noisy test states with the GHZ-0 state before denoising (red dots,
F̄ ) and after denoising (yellow circles / violet crosses, F̄val). Error bars display
standard deviations. Blue plus signs show F̄∞ ± ∆F∞. The arrays [4, 2, 1, 2, 4]

and [4, 1, 4, 1, 4] indicate different AE topologies. 200 noisy training pairs, training
rounds, and noisy test states per p.

First, we show how well an AE can denoise 4-qubit GHZ states with zero phase. We employ
two AE topologies. One is the deep QNN denoted by [4, 2, 1, 2, 4] and the other one is a
stacked QNN: we train the AE ∼ [4, 1, 4] but denoise with ∼ [4, 1, 4, 1, 4] by applying
[4, 1, 4] twice. Each training employs 200 training pairs and takes 200 steps of the gradient
descent algorithm (200 training rounds). We test the trained AEs on 200 GHZ-0 states exposed
to the respective noise. The validation function, which, ideally, should reach one, is the fidelity
between the denoised output of the AE and the GHZ-0 state.
Fig. 4.15 summarizes our results in the case of spin-flip errors. For each spin-flip probability

p we, first, draw the training data and one set of L = 200 noisy test states {|ψi〉}Li=1 according
to the probability distribution Pp(J). We independently train both AE topologies. For each
topology, we apply the respective AE to every |ψi〉 and get outputs ρi. To assess the performance
of the AE, we evaluate the mean validation function after denoising—F̄val({|ψi〉, |GHZ0〉}Li=1)

F
(i)
val(S) = 〈GHZ0|ρi|GHZ0〉 (yellow circles / violet crosses)—and compare it to its value before

denoising—F̄ ({|ψi〉, |GHZ0〉}Li=1) (red dots). We find that up to p = 0.3 both AE topologies
remove the spin-flip errors almost ideally.
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The error bars of F̄val indicate the standard deviation ∆Fval =

√∑
i(F

(i)
val − F̄val)

2. Note

that, contrary to F
(i)
val, F̄val + ∆Fval can exceed one. For the input, ∆F =

√
F̄ (1− F̄ ) is

large since F (i) ∈ {0, 1}. Instead of adding error bars to F̄ , we show how {|ψi〉}Li=1 compares
to the ideal probability distribution Pp(J) of spin-flipped GHZ-0 states. The blue plus signs
mark the expectation value of F , F̄∞ = (1 − p)4 + p4. Their vertical bars indicate the stan-
dard deviation ∆F∞/

√
L =

√
F̄∞(1− F̄∞)/L, which characterizes the spread of the average

F̄ ({|ψi〉, |GHZ0〉}Li=1) for independent draws of L noisy states.

Spin-flip errors: limitations of denoising

A simple argument suggests that an AE might denoise GHZ-0 states all the way up to p =

0.5. For all p < 0.5 the most probable of all spin-flipped GHZ-0 states is the GHZ-0 state
itself. All (non-identical) flipped GHZ-0 states are orthogonal to each other. Hence, the
state ρ which maximizes the average fidelity with the ideally distributed flipped GHZ-0 states,
argminρ

∑
J Pp(J)〈GHZ0|

∏
j∈J Fjρ

∏
k∈J Fk|GHZ0〉, is the original, noiseless GHZ-0 state.

Why do our AEs fail to denoise GHZ-0 states beyond p ≈ 0.3? For p → 0.5 all flipped GHZ
states become equally probable. On a finite training sample the ordering by probability can get
misrepresented. Furthermore, the small difference in cost corresponding to a small difference in
probabilities can be missed due to a finite training precision. Finally, an actual AE can learn
more than a single state. Note also that, so far, we have not optimized the hyperparameters of
the gradient descent for individual noise strengths.
For Fig. 4.19 we, again, train our stacked [4, 1, 4, 1, 4] AE to remove spin-flip errors from the

GHZ-0 state. As compared with Fig. 4.14a, we increase the number of training pairs from 200 to
1500 and optimize the gradient descent for a large spin-flip probability p. As a result, denoising
succeeds up to p = 0.4 instead of p = 0.3.

Unitary noise

For unitary errors we assume that any one-qubit error can occur with probability pu on every
qubit. The noise channel for the jth qubit is a depolarizing channel and can be written as

Ej(pu, ρ) = putrm+1

[
SWAPj,m+1

(
ρ⊗ Id

2

)
SWAP†j,m+1

]
+ (1− pu)ρ

=

(
1− 3pu

4

)
ρ+

pu
4

(
σxj ρσ

x
j + σyj ρσ

y
j + σzj ρσ

z
j

) (4.20)

The total noise channel is obtained by concatenating Ej for all qubits. Here trj(·) is a partial
trace and SWAPj,m swaps the jth with the mth qubit. A random error can be attributed to the
evolution with a random time-dependent Hamiltonian H(t), where the error probability pu is a
monotonic function of the interaction strength and the evolution time T . The evolution with
H(t) can be constructed just like in the Subsection 4.1.1. We consider a family of Hamiltonians
{Hj = H(j∆t)}nj=1, ∆t = T/n, such that the entries of every Hermitian Hj are Gaussian
distributed with zero mean and a standard deviation of π~ν

√
n

2m . The dimensionless parameter
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q = νT captures the noise strength. We assume that in each experimental shot the initial state
evolves with the unitary operator

U =

n∏
j=1

exp(iHj∆t/~) . (4.21)

We use n = 20.
Just as for spin-flip errors, we employ the [4, 2, 1, 2, 4] and [4, 1, 4, 1, 4] quantum autoencoders

(AEs) to denoise 4-qubit GHZ states with zero phase. Each training involves 200 training pairs
and takes 200 training rounds. We test the trained AEs on 200 noisy GHZ-0 states.
Random unitary noise gives Fig. 4.16a. To get a train or test state, we evolve the GHZ state

with a random unitary drawn according to the respective noise strength q. We, again, compare
the outcomes of the validation function before and after denoising. This time, we add error bars
of size ∆F(val) =

√∑
i(F

(i)
(val) − F̄(val))

2 to both F̄ and F̄val. Virtually perfect denoising succeeds
up to a noise strength of q = 0.375.
Next, we combine the two noise models. Spin-flip errors with p = 0.2 are followed by random

unitary transformations with q = 0.3. We train and test the [4, 2, 1, 2, 4] AE on the combined
noise. Fig. 4.16b shows that the AE impressively increases the fidelity of each noisy test state
with the GHZ state.
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Figure 4.16.: Quantum AEs denoising GHZ-0 states. The arrays [4, 2, 1, 2, 4] and [4, 1, 4, 1, 4] in-
dicate different AE topologies. 200 noisy training pairs, training rounds, and noisy
test states per q. (a) Random unitary noise. We show the average fidelity of noisy
test states with the GHZ-0 state before denoising (red dots, F̄ ) and after denoising
(yellow circles / violet crosses, F̄val). Error bars display standard deviations. (b)
Combined noise: spin-flip errors with p = 0.2 followed by random unitary transfor-
mations with q = 0.3. We show the fidelity of each noisy test state with the GHZ-0
state before denoising (red dots, F (i)) and after denoising (yellow circles, F (i)

val). The
respective average fidelities and standard deviations are F̄ = 0.058, ∆F = 0.056,
and F̄val = 0.953, ∆Fval = 0.006.

Dephasing

For a single qubit dephasing introduces a random relative phase between the states | ↑〉 and
|↓〉 [424, 468]. This is described by the channel

E(p−, ρ) = p−σ
zρσz + (1− p−)ρ, (4.22)

where p− is the probability of a phase jump of π. In a system with m > 1 qubits we can
distinguish two limiting cases. First, all qubits can dephase independently, which corresponds to
a concatenation of E acting on each individual qubit. Second, the qubits can dephase collectively,
such that σz in Eq. (4.22) has to be replaced by Sz =

⊗m
j=1 σ

z
j .

For the first case we assume that in each experimental shot the noiseless target state gets
evolved with U =

∏m
j=1 eiφjσ

z
j , where φj are independently and identically normally distributed

around zero. This is a special case of the unitary noise discussed in section 4.3.1, in the sense
that it is (up to a global phase) equivalent to restricting the random Hamiltonians in Eq. (4.21)
to diagonal operators. Similarly, in the second case we set U = eiφSz with φ normally distributed
around zero, which corresponds to a further restriction of the Hamiltonian operators in Eq. (4.21).
However, since GHZ states are particularly sensitive to dephasing, we discuss it here.
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In any case a GHZ-φ0 state evolves into GHZ-φ states with a phase φ which is normally
distributed around φ0 with some standard deviation of σ. We employ our AEs to denoise 4-
qubit GHZ-0 states subject to dephasing in the same way as for removing spin-flip errors and
unitary noise (see Fig. 4.15 and Fig. 4.16a). Fig. 4.17 shows excellent denoising up to σ ≈ π/2.
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Figure 4.17.: Quantum AEs denoising GHZ-0 states after dephasing. We show the average fidelity
of noisy test states with the GHZ-0 state before denoising (red dots) and after
denoising (yellow circles / violet crosses). Error bars display standard deviations.
The arrays [4, 2, 1, 2, 4] and [4, 1, 4, 1, 4] indicate different AE topologies. 200 noisy
training pairs, 200 training rounds, and 500 noisy test states per σ.

W, Dicke, and cluster states

To prove that our AEs are not limited to GHZ states, we train them to denoise highly entangled
W, Dicke, and cluster states. Each pure 3-qubit state with genuine 3-partite entanglement
belongs to one of two entanglement classes [177]. One class is represented by the GHZ state, and
the other one by the W state,

|W〉 =
1√
3

(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉) . (4.23)

Dicke states are eigenstates of the magnitude J2 and z-component Jz of a collective angular
momentum J = (Jx, Jy, Jz), which have been originally introduced for modeling spontaneous
radiation [165]. For an m-qubit state Ji = 1

2

∑m
j=1 σ

i
j . We focus on m-qubit Dicke states with

a maximal magnitude, |k,m − k〉 with J2|k,m − k〉 = m
2 (m2 + 1)|k,m − k〉 and Jz|k,m − k〉 =

(k−m
2 )|k,m−k〉. These states are called symmetric Dicke state because they are bosonic 2-mode

Fock states,

|k,m− k〉 =
1√

m!k!(m− k)!

∑
π∈Sm

m⊗
j=1

|lπ(j)〉, (4.24)
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where Sm is the symmetric group, and | lj〉 denotes |↑〉 for j ∈ {1, . . . , k} and |↓〉 for j ∈ {k +

1, . . . ,m}. Note that |1, 2〉 = |W〉. Symmetric Dicke states have been proposed as probe states for
quantum enhanced metrology (see e. g. [452, 579]) and for experimentally studying multi-partite
entanglement [578]. Twin Fock states |k, k〉 are particularly promising for these applications and
have already been prepared in various experiments (see e. g. [373, 374]). Therefore our second
example is the Dicke or twin Fock state |2, 2〉.
Cluster states [103] are an instance of graph states. A graph consists of vertices and links.

Here, the links are undirected, simple (two vertices can be linked only once), and without loops
(from a vertex to itself). Such a graph with m vertices can be described by an adjacency matrix
Γ ∈ {0, 1}m×m, where Γij = 1 if the vertices i and j are linked, and Γij = 0 otherwise. The
corresponding graph state consists of one qubit per vertex and is defined as

|GΓ〉 =
1

2m/2

∑
b∈{0,1}m

(−1)
1
2
bTΓb |b〉, (4.25)

where |0〉 ≡ |↑〉, and |1〉 ≡ |↓〉 [240]. The graph of a cluster state belongs to a d-dimensional lattice.
Graph states can be used for quantum error correction [240, 482, 483, 262, 520]. Cluster states
have, in general, a high persistency of entanglement—disentangling them requires a large number
of local measurements [103]. Furthermore, cluster states can serve as a universal resource for
measurement-based quantum computation [481, 482]. We consider the square state |Gsq〉 whose
underlying graph is a square with the adjacency matrix

Γsq =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 . (4.26)

The quantum error-correcting code based on the square graph has a code distance of two [240].
Fig. 4.18 summarizes our results for the W state, the Dicke state |2, 2〉, and the square state.

For each of the states we separately study both spin-flip errors and unitary noise. We employ
a [3, 2, 1, 2, 3] and a stacked [3, 1, 3, 1, 3] AE topology for the 3-qubit W state, and a [4, 2, 1, 2, 4]

topology for the 4-qubit Dicke and square states. For the latter target states the stacked
[4, 1, 4, 1, 4] AE, which successfully denoises GHZ states, has turned out to be unsuitable. Like
for the GHZ-0 state, we use 200 training pairs and up to 200 training rounds for each spin-flip
probability p and unitary noise strength q. All target states get denoised well in a wide range
of p and q. The denoising performance is similar for the different target states, including the
GHZ-0 state (see Fig. 4.15 and Fig. 4.16a).

4.3.2. Denoising multiple states

So far we have demonstrated that an AE can denoise the state on which it has been trained. But
it can do better. An AE can learn to denoise multiple target states, including ones not contained
in the training data. It is crucial, though, that the noise process is sufficiently different from
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the transformations connecting the target states. Otherwise, the attribution of noisy states to
target states becomes ambiguous. Assume that an experiment encodes some information into
the phase of a GHZ state, and that this GHZ state is affected by spin-flip errors. We show that
an AE can denoise the output of such an experiment. We consider 3-qubit states and employ
the simplest possible AE topology: ∼ [3, 1, 3].
As a first example, we imagine an experiment that outputs either a GHZ state with zero phase,

GHZ-0, or with phase π, GHZ-π. The AE is trained for 200 rounds on 100 pairs of noisy GHZ-0
states and 100 pairs of noisy GHZ-π states. To test the performance of the trained AE, we
apply it to 100 noisy GHZ-0 states and 100 noisy GHZ-π states and compare each output to the
respective noiseless state. Fig. 4.20a shows that the AE excellently denoises the two GHZ states
up to a spin-flip probability of p = 0.4. Note that the AE deduces whether the experiment has
given a phase of zero or π from the particular noisy input state alone.
Our second example is even more demanding. We assume that the experiment can output a

GHZ state with any phase φ ∈ [0, π]. We restrict the phase to [0, π] because it is impossible to
distinguish a GHZ-φ state with |J | flipped qubits from a GHZ-(−φ) state with 3 − |J | flipped
qubits. The training involves only four equidistant training phases φi between φ0 = 0 and φ4 = π.
It, again, employs 100 training pairs per φi and takes 200 training rounds. We test the AE on
200 noisy GHZ-φ states with randomly chosen phases φ ∈ (0, π).
Considering a GHZ-φ state with φ /∈ πZ roughly doubles the number of different spin-flipped

states as compared to φ ∈ πZ. Only for φ ∈ πZ, the flipped m-qubit states
∏
j∈J σ

x
j |GHZφ〉

and
∏
j∈M\J σ

x
j |GHZφ〉 with J ⊆ M = {0, 1, . . . ,m} are, up to a global phase, identical. As

a consequence, for 3-qubit GHZ-φ states with φ ∈ πZ, correcting spin-flip errors with |J | = 1

suffices for perfect denoising. For φ /∈ πZ, errors with |J | = 2 and |J | = 3 need to be regarded
separately.
Fig. 4.20b displays the capability of the AE to denoise GHZ states with a random phase.

Note that for p = 0 the fidelity of the outputs with the test states reaches one. Because of the
bottleneck, the AE cannot learn the identity operation; nevertheless, it correctly reproduces GHZ
states with phases not contained in the training data. The AE improves the average value of the
validation function for p ≤ 0.35, but it leaves a considerable variance (yellow circles). However,
if we keep only the test states with |J | ≤ 1, we observe excellent denoising up to p = 0.2 (violet
crosses).
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Figure 4.18.: Quantum AEs denoising various states: the W state (a, b), the Dicke state |2, 2〉
(c, d), and the square state |Gsq〉 (e, f). We show the average fidelity of noisy
test states with the target states before denoising (red dots, F̄ ) and after denoising
(yellow circles / violet crosses, F̄val). Error bars display standard deviations. (a,
c, e) Spin-flip errors. Blue plus signs show F̄∞ ±∆F∞. (b, d, f) Random unitary
noise. The arrays [3, 2, 1, 2, 3], [3, 1, 3, 1, 3], [4, 2, 1, 2, 4], and [4, 1, 4, 1, 4] indicate
different AE topologies. 200 noisy training pairs, 200 noisy test states, and up to
200 training rounds per p and q.
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Figure 4.19.: A stacked [4, 1, 4, 1, 4] quantum AE removing spin-flip errors from the GHZ-0 state.
1500 noisy training pairs, 1500 noisy test states, and 75 training rounds per p. We
show the average fidelity of noisy test states with the GHZ-0 state before denoising
(red dots, F̄ ) and after denoising (violet crosses, F̄val). Error bars display standard
deviations. Blue plus signs show F̄∞ ±∆F∞.
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Figure 4.20.: [3, 1, 3] quantum AEs correcting spin-flip errors in mixtures of GHZ-φ states with
different phases φ. We show the average fidelity of noisy test states with the respec-
tive noiseless GHZ-φ states before denoising (red dots) and after denoising (yellow
circles). Error bars display standard deviations. For each p: 100 training pairs
per training phase, 200 training rounds, and 200 test pairs. (a) Fifty-fifty mixture
of GHZ-0 and GHZ-π states, both for training and testing. Blue plus signs show
F̄∞ ±∆F∞. (b) Training phases {0, π/3, 2π/3, π}, and testing on random phases
φ ∈ (0, π). Blue squares before denoising and violet crosses after denoising are
obtained for the test states with |J | ≤ 1.
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4.3.3. Sparse quantum autoencoders

Figure 4.21.: A sparse [4, 2, 1, 2, 4] quantum AE. In each layer, different colors highlight different
neurons.
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Figure 4.22.: Sparse [4, 2, 1, 2, 4] quantum AE (see Fig. 4.21) denoising GHZ-0 states. We show
the average fidelity of noisy test states with the GHZ-0 state before denoising (red
dots, F̄ ) and after denoising (yellow circles, F̄val). Error bars display standard
deviations. 200 noisy training pairs, training rounds, and noisy test states per p
and q. (a) Correcting spin-flip errors. Blue plus signs show F̄∞ ± ∆F∞. (b)
Correcting for random unitary noise.

In general, a neuron does not have to be connected to all the neurons in the preceding layer.
An NN containing neurons with fewer connections is called sparse. Sparse networks depend on
less variational parameters. On one hand, this reduces the variational class. Eventually, such
a QNN may become classically simulable (see e. g. [235]). On the other hand, this speeds up
both training and application, and makes the network less prone to overfitting. Recall that the
number of gates needed for one application of a fully connected network scales exponentially
with its width. If the number of connections per neuron is kept constant, this scaling becomes
linear.
We observe that full connectivity is not essential for the success of our quantum AE. Fig. 4.22

shows the denoising capability of the sparse [4, 2, 1, 2, 4] AE depicted in Fig. 4.21. The results
turn out to be compatible with the corresponding fully connected network, see Fig. 4.15. To the
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advantage of experiments, our sparse topology is local—the retained connections are immediately
adjacent.

4.3.4. Noisy networks

To show that quantum AEs can be successfully used for denoising even if implemented using
non-perfect neurons, we subject the neurons to approximate depolarizing noise of strength t as
described in Subsection 4.1.1. We train the network ∼ [3, 1, 3] to denoise GHZ-0 state
subject to spin-flip (see Fig. 4.23) and unitary (see Fig. 4.24) errors.

We observe that quantum AE are efficient at denoising if the intrinsic noise of constituent
neurons is small in comparison to the noise present in the data. We also observe that if the data
is very noisy (see e.g. q = 0.5 on Fig. 4.24 and p ≥ 0.3 on Fig. 4.23), the small intrinsic noise
does not lead to deterioration of denoising.

Deeper networks have higher intrinsic noise but often are more capable if implemented on
noiseless devices. This entails a practical limit for the depth of networks implemented on NISQ
devices (see Subsection 2.5.6).

We conclude that unsupervised denoising via quantum AE is an efficient method suitable for
currently available quantum computers. It especially fits data sets with significant, in comparison
to device AEs are implemented on, amount of noise.

Our results are confirmed by the analysis using Qiskit and more realistic noise models for
neurons found in [7].

The results in this subsection were produced as a part of bachelor’s thesis [516] co-supervised
by the author, Ramona Wolf and Tobias Osborne with valuable input from Polina Feldmann.
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Figure 4.23.: Quantum [3, 1, 3] AEs consisting of noisy qubits removing spin-flip errors. Inputs
are GHZ-0 states subjected to spin flips with probability of p per qubit. Neurons
and update matrices are evolved with a random time-dependant Hamiltonian with
noise strength t like in Subsection 4.1.1. Error bars for denoised outputs display
standard deviations. 200 noisy training pairs, training rounds, and noisy test states
per p and t. Figure taken from [516].

114



4.3. Autoencoders for unsupervised denoising

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.0

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.1

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.2

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.3

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.4

0.0125 0.0250 0.0375 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0000
0.0

Noise strength t

Fidelity on test data

Noisy input
Denoised output

q = 0.5

Figure 4.24.: Quantum [3, 1, 3] AEs consisting of noisy qubits removing unitary errors. Inputs
are GHZ-0 evolved with random time-dependant Hamiltonian with noise strength q,
neurons and update matrices—with noise strength t like in Subsection 4.1.1. Error
bars display standard deviations. 200 noisy training pairs, training rounds, and
noisy test states per q and t. Figure taken from [516].
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4.3.5. Discussion

We have constructed quantum AEs and have shown that these AEs can remove spin-flip errors
and random unitary noise from small GHZ, W, Dicke, and cluster states. Particularly, correcting
spin-flip errors has succeeded for a set of GHZ states parameterized by a continuous phase
parameter. Thus, AEs for denoising can be used not only for state preparation but also for
metrology. In principle, our method can be applied to any set of quantum states subject to any
kind of noise. Further possible applications of quantum AEs include data compression, quantum
error correction (see discussion at the end of Section 4.4), enhancing quantum repeaters and
memory (see Section 2.7) and parameterized state preparation.
We expect that larger input states will require deeper networks. The number of quantum

gates needed for one application of the fully connected AE scales exponentially with the width
but only linearly with the depth of the network. The exponential scaling can be avoided by
constraining sparse networks.
Small universal quantum computers (see Section 2.5) have been realized on several physical

platforms, e. g. superconducting qubits and trapped ions [316, 104]. If the state to be denoised
is prepared on the same platform as the AE, both may be affected by equal noise, and the AE
may become too noisy for denoising. However, there is a great interest in hybrid systems, see
Subsection 2.7.4. Our proposal can help to denoise states from a noisy platform using a well-
controlled one, or to remove deteriorating effects introduced at the interface between the coupled
platforms. Alternatively, an AEs can be used to improve the output of a subroutine that takes
much longer to execute than the AE. Conveniently, quantum AEs are efficient at denoising if the
noise affecting the AE itself is small in comparison to the noise present in the data.
Training an AE requires much more computational resources than testing it. To approach

the experimental implementation, a small AE trained on a classical computer can be tested on
a quantum computer, as has been done in [168] for data compression. Moreover, the photonic
realization [446] of a compressing quantum AE suggests that also the training of our AE is within
reach of current quantum technology.

4.4. QNNs for error correction

The standard method to mitigate noise is to redundantly encode information into a bigger space,
see Subsection 2.5.5. However, different devices and environments may lead to significantly
different optimal encoding and decoding scenarios. Machine learning (ML) can aid in developing
adaptable quantum error correction (QEC) codes that can be tailored for the circumstances of a
particular installation. Not only can such codes be optimized for errors occurring in real, rather
than idealized, devices, but we can also expect an ML algorithm to balance out an approximate
correction of many errors instead of perfect correction of few [72].
The results in this section were obtained in collaboration with Robert Salzmann with valuable

input from Terry Farrelly and Ramona Wolf.
Let us consider two parties, Sender and Receiver, that are separated by a noisy channel. They
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4.4. QNNs for error correction

can train an error correcting QNN by first agreeing about a sequence of states {|ψi〉}. These
states can be chosen as random and uniformly distributed. Sender possesses the encoder, and the
Receiver—the decoder. They together train the network consisting of the encoder and decoder
separated by the noisy channel on the training data {|ψi〉, |ψi〉}.
This protocol is connected to unsupervised denoising via quantum autoencoders (see Sec-

tion 4.3) but is, in a sense, an opposite to it.

We have trained a ∼ [1, 3] encoder and a ∼ [3, 1] decoder. The noise is a spin flip
with probability p on one random of the qubit. The network has successfully trained to fidelity
1, see Fig. 4.25. Even though this approach to QEC can produce functional codes, there are,

Fidelity

Training round

Noise

Figure 4.25.: A network consisting of [1, 3] encoder and [3, 1] decoder trains to counter one spin
flip at a random location. Spin flips occur with probability p = 3/4. The fidelity
reaches one, with variance for the last 50 training rounds of 4.1664 · 10−13.

unfortunately, several problems in this approach.

A logical niche for quantum machine learning (QML) are high-dimensional QECC. Any device-
specific QEC code should outperform general purpose codes and the code the device was originally
designed around. Such codes can be pretty robust and hard to improve upon. Nevertheless, large
quantum devices can often have complicated noise sources (see e.g. [613, 284, 561, 383]) that
were not accounted for during their design, making them a conducive target for ML. Classical
optimisation and ML algorithms are used to find QEC protocols, especially decoders. As classical
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4. Quantum neural networks for denoising

computers can not simulate large quantum devices efficiently, QML is a logical choice for the
design of high-dimensional QECC. However, the success in learning a three-qubit and other small
codes is by no means a proof that our approach will be successful in producing codes that are
too big to be accessed classically.
A more conceptual problem is that a simple approach outlined in this section is not guaranteed

to produce fault-tolerant codes. We can expect QNN to avoid noisy gates, but errors can spread
through the network. The error propagation can be to some extent mitigated by reducing
connectivity of the network, yet this has to be balanced out with the expressive power of the
network.
A promising way to circumvent these problems is to use QNNs in subroutines for already

existing QECC. In particular, Markus Müller and Lorenzo Cardarelli have recently suggested
employing quantum autoencoders as a stage in QEC protocols.

4.5. Conclusions and outlook

In this chapter we have successfully shown that QNNs can successfully learn to denoise quantum
sources without additional supervision. This can be achieved through either the design of data
sets obtained from a tunable source or AE architectures. Learning can occur if some of the data
is corrupted and the QNN is implemented on a noisy device. As such, QNNs can be trained to
improve state preparation protocols.
In this chapter we have considered noise sources that are uncorrelated in time. Such noise

sources include the preparation of states with non-optimal parameters, shot-to-shot noise and
transmission errors.
We provide a proof-of-principle demonstration for ML systems that are able to extrapolate

quantum states to lower temperatures and learn QECC. For quantum extrapolation, it would
be nice to understand how to trade width for the depth of the network. It is also worthwhile
to explore extrapolation beyond the case of temperature considered in this thesis. For learning
QECC, it is important to develop methods that would ensure fault-tolerance of the obtained
protocol.
We show that quantum AEs can denoise highly entangled quantum states from generic shot-

to-shot errors. The protocol works for significant noise strength, for denoising of multiple states
parameterized by e.g. a phase and if the AE is implemented on non-perfect hardware. As
such, it is a compelling tool for practical tasks spanning data compression, optimization of
quantum circuits, noise mitigation at interfaces, design of quantum repeaters without memory
and information retrieval from quantum memory. However, in order to use quantum autoencoders
in practice, it is important to understand how to implement QNNs and facilitate their learning
with as little hardware resources as possible.
Each approach discussed in this chapter can benefit from a more in-detail understanding of the

theoretical limitations of learning and denoising protocols. Finally, it would be nice to combine
the building blocks presented in this chapter into one more powerful system.
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5. Quantum neural networks meet tensor
networks: recurrent quantum neural
networks

In this chapter we train recurrent quantum neural networks (RQNNs). They are a general-
purpose quantum machine learning method for data with sequential structure, just like classical
RNNs (see Subsection 2.6.4). In particular, we use RQNNs to design low- and high-pass filters
and combat drifts. This work was done in collaboration with Tobias Osborne, Robert Salzmann
and Victoria Schmiesing, with valuable comments from Kerstin Beer and Polina Feldmann.

For simplicity, we assume access to a supervisory source (see Fig. 5.1). There are many
scenarios when this supervision is available, see Section 5.1.

trained denoiser desired states

supervision

memorydrifts

Figure 5.1.: A schematic representation of scenario considered in Chapter 5. We use supervisory
source and recurrent RNNs to train denoisers for processes that require memory,
such as drifts.

Classical RNNs is a valuable tool for quantum physics. Examples of applications include
optimizing measurements for state tomography [474] and modelling quantum optical [13] and
superconducting qubit [210] experiments, as well as optimizing dynamical decoupling protocols
for quantum memories [38] and magnetic field estimation in atomic magnetometry [307].

There were several proposals to use quantum hardware for learning with memory. In [59] an
evolution with non-linear Schrödinger equation was proposed as an activation function, and ap-
plications to classical data filtering were discussed. In [502, 503, 486] quantum Hopfield networks
were introduced. [124] presents an RQNN closely inspired by the LSTM. It can be implemented
on a quantum computer but is designed to work with classical data. [124, 53] introduced net-
works composed of highly structured neurons designed to mimic polynomial non-linearity; only
learning with classical data is presented, even though these methods can, in principle, operate
quantum data. Previously introduced RQNNs significantly differ from the approach presented
in this chapter, both in neurons used and in tasks considered. In particular, the author is not
aware of any other RQNN used to denoise quantum data.
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5. Recurrent quantum neural networks

5.1. Supervising sources

Unlike in Chapter 4, we assume access to a supervisory source. In this section we discuss a
typical use case for learning with supervision.
If a low noise level is the only requirement taken into account during source development, such

supervision might be unavailable (see Chapter 4). However, in practice this is often not the case
and every machine is a compromise. Given two machines optimized for different requirements,
one of them can supervise the post-processor for the other one. Such situations often arise in
quantum metrology (see Subsection 2.7.3) as demonstrated by an example below.
There might be a need for transportable or/and cheap measurement apparatus. Often the

signal of such apparatus can be improved by a compact post-processing device at a fraction of
the cost of a more advanced analog sensor. For example, a suitable low-pass filter can cancel
high-frequency noise. A post-processing device can be trained using a stationary high-precision
supervisory apparatus.
Let us discuss an application of supervised denoisers in the field of geodesy. Modern atomic

clocks are excellent gravimeters, as they are sensitive to gravitational time dilation. Their accu-
racy is sufficient to resolve gravity changes due to elevation shift by as little as 1cm [390, 389].
Comparison of the clock frequency with a reference in a well-measured location (alternatively,
one can use an apparatus with two atomic species on-site [504]) yields gravitational potential.
However, the most precise atomic clocks are assembled in laboratories and are too fragile to be
transported. Applied geodesy would benefit from measurements in a large number of sometimes
inhospitable locations, and a cost is always a consideration. As such, transportable atomic clocks
that fit in a trailer are being developed [253, 202].
Conveniently, transportable quantum processing units are becoming available. Some state-

of-the-art clocks have built-in quantum logic—a well-controlled additional quantum system that
is coupled to atoms with clock transition and is typically used for cooling [100, 253, 522, 477].
Simultaneously, quantum computers are also experiencing minimization in order to fit into stan-
dard data center racks [459] (which are much smaller than a typical trailer). Finally, relevant
quantum interfaces exist (see Subsection 2.7.4; although modern-day interfaces are far from per-
fect). As such, all the components needed for improved measurements are present: a low-noise
reference clock used for supervision; a noisy but transportable clock—a source to be denoised;
either built-in quantum logic or a compact quantum computer used as a hardware platform for
a QNN; if applicable, an interface between the atomic clock and the quantum computer.

5.2. RQNNs: training algorithm for quantum channels with
memory

To construct an RQNN, we first consider an FF QNN N with i + m input qubits and m + o

output qubits. Consider L copies of N . Let the output number k ≤ m of the jth copy be
connected by a single link to the i+ k input of the copy number j + 1. For the first copy, let the

120



5.2. RQNNs: training algorithm for quantum channels with memory

last m inputs be some fixed quantum state σ0, for example σ0 = |↓〉〈↓|⊗m. Assume that L may
vary. We have arrived at RQNNs, see Fig. 5.2.

=)QNN
FF

QNN

FF

QNN

Figure 5.2.: An RQNN is constructed from a chain of FF QNNs such that some of the outputs
of a previous unit are attached (dark red links) to the inputs of the next one.

Just like for the classical RNNs (see Subsection 2.6.4), the quantum learning algorithm can be
directly lifted from the FF case. However, even for pure labels, there are many possible choices
for the cost function. We are using the fidelity of labels with the outputs averaged over the
sequence. We assume that each output of the network is consumed and measured by another
device that does not communicate measurement outcomes to the RQNN. If the last layer of
jth recurrent cell is ρ[j] ∈ T (Ho ⊗Hm), Ho = Co,Hm = Cm, its output is TrHo

(
ρ[j]

)
and the

memory qubits are in the state TrHm
(
ρ[j]

)
. Given a sequences of outputs{{

ρ
(k)
j

}Tk
j=1

}N
k=1

, ρ
(k)
j ∈ T (Co) , (5.1)

and the corresponding labels{{
|ψ(k)
j 〉
}Tk
j=1

}N
k=1

, |ψ(k)
j 〉 ∈ Co, (5.2)

the cost function is

C(S) = 1− 1∑
k Tk

∑
k,j

〈ψ(k)
j |ρ

(k)
j |ψ

(k)
j 〉. (5.3)

If we do not assume that the output of each recurrent cell is measured before the next cell
is applied, the memory and outputs may be entangled. It might be worthwhile to use a cost
function that averages fidelity of a joint (and possibly entangled) output state of l cells with the
corresponding l-cell label state. This is especially worthwhile if l-cell label states are entangled.
Indeed, even pure labels cannot be written as a Sequence 5.2 if they are correlated. Generally,
we can write pure labels as {

|ψ(k)〉
}N
k=1

, |ψ(k)〉 ∈ Co·Tk . (5.4)

For a l-local cost function, it is a good idea to have a relatively small l, as the fidelity tends to
vanish as l→∞.
Just like for FF QNNs, RQNNs can also be trained with mixed labels.
As FF QNNs are universal, RQNNs are parameterizations of channels with memory defined

in [337]. Classical RNNs are universal in the sense that they can simulate Turing machines with
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5. Recurrent quantum neural networks

linear overheads (see Subsection 2.6.4). A quantum equivalent of this statement is found in [337]:
any quantum process in which outputs up to some time t do not depend on inputs at times t̃ > t

can be decomposed into a concatenated memory channel.
RQNNs can also be regarded as QNNs with some parameters being quantum states. Quan-

tum parameters can give at most a marginal improvement for ML tasks without memory [399].
However, RQNNs are suitable for learning with memory. We can treat the memory as quantum
parameters. Classical parameters can be used multiple times, so once the network has been
trained, there is no need to change them. Quantum parameters, on the other hand, cannot be
cloned (see Corollary 2.5.10), and if the quantum parameter has been measured, it has to be
prepared anew. We can view RQNN cells as preparation devices of quantum parameters for the
subsequent cells. Similarly, we can treat memory qubits as a system that is being controlled by
the inputs.
In the same sense as [49] presents a quantum optimization algorithm for MPS, RQNNs can be

regarded as quantum algorithms for training matrix product quantum channels.

5.3. Filtering of interferometric outputs

Some of the most popular signal-enhancing techniques are based on bandwidth reduction [402,
Section 6.8]. Such filters can be adaptive, e.g. [259]. These techniques filter out noise by analyzing
the frequency with which different events occur in the data stream. Information about frequen-
cies can be gathered only by having access to long sequences of inputs, necessitating recurrent
architectures. In this section we construct a simple toy model that mimics an interferometry
experiment and train quantum bandwidth filters for this model.
Consider a quantum source that is coupled to a time-dependent field B(t). At times t = jω,

j ∈ N the source outputs a superposition of two pre-defined states, let us call them |↓〉 and |↑〉.
The relative phase between these two states encodes information about B(jω). We call such a
source an interferometer.
We assume that there are two interferometers; one of them is noisy, while the other encodes

the information about the field faithfully. We denote the js outputs of the noisy device by
|φj〉 ≡ |↓〉 + eiφj |↑〉, and of the faithful one by |ψj〉 ≡ |↓〉 + eiψj |↑〉. We train an RQNN on the
data set {{

|φ(k)
j 〉, |ψ

(k)
j 〉
}Tk
j=1

}N
k=1

(5.5)

consisting of N input-output sequences of lengths {Tk}. The trained RQNN generalizes well if
given a sequence of inputs up to an arbitrary time t, {|φj〉}tj=1, it can approximate |ψt〉 better
than an FF QNN with the input |φt〉.
Suppose that the desired output is related to the current input and past label by some function

f :

ψ
(k)
j = f

(
φ

(k)
j , ψ

(k)
j−1, j

)
. (5.6)
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5.3. Filtering of interferometric outputs

Given enough resources, for classical data
{
{φ(k)

j , ψ
(k)
j }

Tk
j=1

}N
k=1

we can expect f to be learned
perfectly. This follows form the universality of RNNs.
However, this is not the case for the quantum Data 5.5 even if f is affine.

Proposition 5.3.1 (No perfect quantum multiplication). There is no CPTP ε such that for a
given number a /∈ {0, 1}

∀θ ε (|θ〉〈θ|) = |a · θ〉〈a · θ| (5.7)

Proof. The Operation 5.7 is non-linear and, thus, not a quantum channel.

Corollary 5.3.1 (No perfect quantum adders). There is no CPTP ε such that for any |x〉, |y〉 ∈
H, with different values of continuous parameters x, y corresponding to different quantum states,
ε (|x〉〈x| ⊗ |y〉〈y|) = ρx,x+y such that Tr1(ρx,x+y) = |x+ y〉〈x+ y| and Tr2(ρx,x+y) = |x〉〈x|.

Proof. If such ε would have existed, we could have broadcasted x by choosing y = 0. By encoding
into a tensor product of a sufficient number of states in the parameterized subspace, this would
lead to a possibility of broadcast an arbitrary state—a contradiction to the Theorem 2.5.9.

For a numerical search of approximate quantum adders, see also [168].
This dramatically complicates the design of quantum filters and manifests itself in RQNNs not

reaching fidelity 1 for Data 5.5 with the relation between inputs and labels 5.6.

Example 5.3.2 (High- and low-pass filters). Suppose that the input phases are uniformly dis-
tributed on the interval [−π, π]. Let us start with the simplest model for a low-frequency noise—a
drift with constant velocity v. The training data can be described as

ψj = φj − v · j. (5.8)

This noise is ubiquitous in both technological applications and every-day life. Classically, a
rather simple high-pass filter cancels linear drifts, such as the one depicted in Fig. 5.3. Animals
that fly in a windy environment routinely solve a more complicated version of this task (see [323]
for how flies solve this problem).

Vin Vout

Figure 5.3.: A simple classical passive high-pass filter that is capable of removing linear drifts.

Let us assume that the signal changes slowly but is corrupted by a high-frequency noise. This
noise is mitigatable by a low-pass filter that smoothens the variations. A simple model for the
training data is

ψj = αφj + (α− 1)ψj , 0 < α < 1. (5.9)
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5. Recurrent quantum neural networks

This filtering can be familiar to the reader from the discussion of the gradient descent with
adaptable learning rate, see Subsection 2.6.3. We use it as a part of the Nadam optimizer.
Let us combine the two models to obtain

ψj = α · (φj − v · j) + (1− α) · ψj−1. (5.10)

We observe that even a small amount of memory qubits greatly improves the performance of
the trained filter. First, we choose α = 3/5 and v = 0 (see Fig. 5.4) and train an RQNN. We see
that memory can decrease the error (1− 〈F〉, where 〈F〉 is the average fidelity) almost twofold.
Even greater boosts in performance are available for v 6= 0. 1

Figure 5.4.: Mitigating high frequency noise with RQNN and FF QNN. Vertical axis: cost func-
tion. Horizontal axis: training round. Parameters: α = 3/5 and v = 0.

5.4. Conclusions

We have proposed a novel architecture for an RQNN. Our RQNN can work with quantum data
and is efficiently implementable on quantum hardware. The training algorithm is identical to

1The plot for v 6= 0 that I have submitted my thesis with turned out to contain an error. While I have located
and fixed the error and observed the performance boost, I cannot put it into this version of the thesis due to
legal reasons. A version of this thesis with plots for v 6= 0 as well as estimates for FF QNN performance will
be available on arXiv shortly after this version will be published. Sorry for the inconvenience.
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that of FF QNNs discussed in Section 2.8.
The RQNNs we propose are parameterizations of quantum channels with memory. They can

also be regarded as a quantum learning algorithm that varies over matrix product quantum
channels.
We use RQNNs to train low-pass and high-pass filters that benefit from memory access. We

see that RQNNs can significantly outperform FF QNNs.
Nevertheless, it is important to establish bounds on the performance of FF QNNs and to verify

that the performance boost due to memory is not due to a poor training algorithm for FF QNNs.
It is also worthwhile to devise practical tasks that require entangled training data and check

that RQNN can learn successfully. It is interesting to test various cost functions and understand
how to choose their locality to maximize performance.
In this chapter we have considered supervised learning. It is desirable to develop unsupervised

RQNN algorithms.
Memory qubits in the RQNN can be regarded as a system under control via interactions with

input qubits. It is interesting to understand how to train the network to prepare a desired state
in the memory register.
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6. Conclusions and outlook

In this thesis we have investigated quantum channels that are composed of small building blocks.
We have developed a framework for robust state preparation using these building blocks, see
Fig. 6.1.

shot-to-shot noise
non-optimal parameters (e.g. T)

trained denoiser desired states

intrinsic noisetransmission errors

drifts

Figure 6.1.: A schematic representation of scenarios considered in this thesis. We have designed
dissipative sources of MPDOs in Chapter 3. We have proceeded to develop denoisers
that extrapolate states to more desirable parameter regions, cancel shot-to-shot noise
and shield against transmission errors in Chapter 4. We have continued with the
construction of denoisers that require memory, such as bandwidth filters.

We have developed an algorithm that designs local dissipative sources for an expressive class of
physically relevant states—MPDOs. Our algorithm determines if a given linear space of MPDOs
can be a stationary space for some k-local Lindbladian and, if so, outputs such a Lindbladian.
Such a Linbladian can be constructed if and only if a local frustration-free quantum channel with
given the MPDOs as the fixed space exists. This gives a recipe for the experimental preparation
of MPDOs via dissipative engineering. It is also a good starting point to invent new integrable
systems.
We have proceeded to train post-processors that mitigate the imperfections a source of states

can have. We use machine learning with networks of quantum channels, also known as QNNs,
to design post-processing devices.
In Chapter 4 we have focused on learning without a supervisory source. Successful learning

can occur either through the design of data sets obtained from a tunable source, or through AE
architectures. We have provided a proof-of-principle demonstration for ML systems that are able
to extrapolate quantum states to lower temperatures and learn QECCs. We have introduced
novel quantum AEs and use them to combat shot-to-shot errors. We have shown that these
AEs can remove spin-flip errors and random unitary noise from small GHZ, W, Dicke, and
cluster states. The protocol works for significant noise strength, for denoising multiple states
parameterized by e.g. a phase, and even if the AE is implemented on non-perfect hardware.
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As such, it is a compelling tool for practical tasks spanning data compression, optimization of
quantum circuits, noise mitigation at interfaces, design of quantum repeaters without memory
and information retrieval from quantum memory.
In Chapter 5 we have focused on denoising that requires memory. For this, we have introduced

recurrent networks of quantum channels, also known as RQNNs. They can be interpreted as
learning algorithms for matrix product quantum channels implemented on quantum hardware.
We have observed that these networks can learn to implement quantum low- and high-pass filters.
Still, many open questions remain.
For one, it is unclear what kind of MPDOs have a parent Lindbladian. Moreover, it is both

theoretically and practically interesting to understand how to construct an approximate parent
Lindbladian and when it exists.
We have demonstrated proof-of-principle extrapolation and QECC search. It is worthwhile to

bring this algorithm close to practice. For that, one needs to reduce the amount of resources
required for successful extrapolation. Perhaps, deeper networks with drop out can help? To
benefit from learned QEC protocols, one needs to find a training procedure that ensures that
the learned code is fault-tolerant.
Considering the success of MPS and MPDO methods, it is easy to imagine many applications

of matrix product quantum channels. As such, it is desirable to search for other tasks where
RQNNs can shine, such as the control of a system by probing particles.
This thesis is theoretical in nature. How can we turn the proposed methods into an everyday

tool? How to efficiently take into account that, even for local operations, the difficulty of imple-
mentation can vary significantly? What physical platforms and interfaces are mature enough?
For the RQNNs, how can we avoid (by e.g. working with high-frequency sources) hitting the
technological bottlenecks associated with memory?
There are several choices for a suitable cost function. For learning with mixed states, we have

used the Hilbert-Schmidt norm. Should we switch to the fidelity now that there is a polynomial-
time algorithm to estimate it? How local should the cost function for RQNNs be? Does it depend
on the entanglement properties of training data?
We have discussed how to use QML to cancel paradigmatic examples of noise. However, several

mechanisms are usually responsible for real-life noise. Can we design an out-of-the-box denoiser?
Is a recurrent extrapolating autoencoder feasible?
Finally, there is a great need to understand and prove the bounds on the performance of quan-

tum denoisers. Unfortunately, this thesis barely scratches the surface of such understanding.
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A. Constructing local terms in a parent
Lindbladian: an alternative algorithm
outline

Let us outline an algorithm determines the smallest fixed space of any CP map such that ε is its
fixed subspace and outputs a CP map that has such fixed space (see Subsection 2.1.3). It relies
on any simultaneous block-diagonalization subroutine. We will denote a space of fixed points of
some map ε as fix(ε).

• Obtain finest block-diagonalization of ρ0 and {λα}nα=1

• Some blocks can have further dependencies thus giving ρk in the resolution of fix(ε). If
two sets of blocks {Aα}nα=0 and {Bα}nα=0 are dependent, there exists a unitary U such that

Aα = κUBαU
† for every α and κ =

√
tr[A2

0]

tr[B2
0 ]
.

• Sequentially solve Aα = κUBαU
† with U =

⊕D
i=1 U(di) starting from α = 0, D = 1,

d1 = dim(A0). After each step choose the proper ordering of remaining degeneracies,
update the list {di}Di=1 and perform a rotation {Bβ}β>α → {UBβU †}β>α. If at some step
there is no such U then the blocks are independent, otherwise the corresponding eigenvalue
of ρk is κ.

The pseudocode is:

Algorithm 4 A map that has a given stabilizer code as its fixed point. Part 1 - input and
output

Input:

1. a self-adjoint matrix ρ0 ∈Md(C) such that tr[ρ0] = 1. Alternatively, we will denote it as
λ0 ≡ ρ0.

2. a set of self-adjoint traceless matrices {λi ∈Md(C)}, i = 1, . . . n.

We would like Λ = {ρ0 +
∑n

i=1 siλi|{si} ∈ S ⊆ Rn} to be a stabilizer space of interest. We will
assume that ρ0 is chosen to be as an inner point of this space.
Output: A space fixΛ such that ∀ CPTP ε(ρ) :Md(C)→Md(C) we have
Λ ⊆ fix(ε) ⇒ Λ ⊆ fixΛ ⊆ fix(ε) and ∃ a CPTP ε̃(ρ) :Md(C)→Md(C) such that
fix(ε̃) = fixΛ.
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A. A parent Lindbladian term: alternative construction

Algorithm 5 A map that has a given stabilizer code as its fixed point. Part 2 - support
procedures

procedure BlockDiagonalize({λα ∈Md(C)}nα=0) . Outputs the finest possible
block-diagonalization of a set of matrices

return {λ̃α ∈Md(C)}nα=0, B ∈ U(d); D = {{d0, k+1}, {di,mi}ki=1} . For α = 0, . . . n, the
block-diagonal matrix λ̃α = BλαB

†. This unitary B block-diagonalizes a set of matrices, such
that the first block is of dimension d0 and is composed entirely of zeros, and blocks of dimension
di+1 follow blocks of dimension di for i = 0,≤ k − 1. There are mi blocks of dimension di.
Moreover, blocks of dimension di, i > 0 are non-zero and di+1 6= di for i = 1, . . . , k − 1. D is
an array that stores these dimensions of the blocks.

procedure ExtractBlock(λ ∈Md(C);D ∈ (N0 × N)k+1 ; i, j ∈ N0) . Outputs
the j-th block of matrix λ of dimension di. The dimensions of the blocks are specified by data
structure D.

return λ̃ ∈Mdi

procedure ExtractBlock(A ∈Md(C); Blocks ∈ Nk; i ∈ N) . Outputs the i-th block of
matrix A. The array Blocks has dimensions of blocks as its entries.

return λ̃ ∈Mdi

procedure Diagonalize(A ∈Md, self-adjoint) . Diagonalizes A in such a way that
eigenvalues are in an increasing order.

return Ã ∈ diag(Rd); U ∈ U(d) . The diagonal matrix Ã = UAU †, where the unitary U
diagonalizes A. We also have the property that Aii ≤ Ajj for i ≤ j.

procedure DenoteConstant(A,B ∈Md) . Outputs a feasible κ such that A = κUBU †

return κ ∈ R+

procedure CompareBlockMatrix( A,B ∈ Md, self-adjoint; Blocks ∈
Nk,

∑k
i=1 Blocksi = d) . Denotes if there exists a unitary U with a block structure

given by Blocks such that A = UBU † and, if so, outputs a U and an encoding via SubBlocks
of residual free parameters in the choice of U . Zero matrices are excluded from solutions.

return IfEquivalent ∈ {0, 1}; U ∈
⊕k

i=1 U(Blocksi); SubBlocks ∈ Nk̃, k ≤ k̃ ≤ d

. IfEquivalent equals 0 if wanted U does not exist or if A or B are zero matrices, and
IfEquivalent = 1 otherwise. SubBlocks consists of the dimensions of invariant subspaces in
each of Blocksi.

procedure CompareBlockSet({Aα, Bα ∈Md, self-adjoint}nα=0) . Denotes if there exist
κ ∈ R+ and unitary U such that Aα = κUBαU

† for α = 0, . . .m and, if so, outputs κ and U .
return IfEquivalent ∈ {0, 1}; κ ∈ R+; U ∈ U(d) . IfEquivalent equals 0 if wanted κ and

U does not exist and 1 otherwise.

procedure ArrayInducedPermutation(d, k ∈ N0;O ∈ {N0 × N0}k) . Let us have a
basis {ei}d·ki=1. Let us assign the vectors {ei}(j+1)·d

i=j·d a number Oj,2. At each step the procedure

permutes two blocks {ei}(j+1)·d
i=j·d and {ei}(l+1)·d

i=l·d , and two columns Oj,i and Ol,i in such a way,
that Oj,2 becomes ordered. The output is the permutation matrix V that orders ei’s and an
ordered Oj,i.

return V ∈ S(d · k); Õ ∈ {N0 × N0}k . Õ is an ordered O.
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Algorithm 6 A map that has a given stabilizer code as its fixed point. Part 3 - essential routines
1: procedure CompareBlockMatrix(A,B;Blocks)
2: {A,UA} ← Diagonalize(A) . A convenient basis

to check if ∃ U =
⊕SizeOf(Blocks)

i=1 U(Blocksi) : A = UBU † is the eigenbasis of A, as in this
basis B should have block-diagonal structure U =

⊕SizeOf(Blocks)
i=1 Bi : dim(Bi) = Blocksi if

such U exists. Moreover, there is no extra increase in computational cost in moving to this
basis as we will use the spectral decompositions of A and B anyway.

3: B ← UABU
†
A

4: j ← 1

5: for i← 1, SizeOf(Blocks) do . These embedded cycles are responsible
for checking that B has a correct block-diagonal structure in the eigenbasis of A – this is a
necessary condition for existence of U =

⊕SizeOf(Blocks)
i=1 U(Blocksi).

6: for k ← j + Blocksi, dim(A) do
7: for l← j, j + Blocksi − 1 do
8: if Akl 6= Bkl or Alk 6= Blk then
9: return {0;1dim(A); dim(A)}

10: j ← j + Blocksi
11: j ← 0

12: SubBlockCount← 1

13: SubBlocks1 ← dim(A)

14: for i← 1, SizeOf(Blocks) do
15: a← ExtractBlock(A;Blocks; i)
16: b← ExtractBlock(B;Blocks; i)
17: {b, Ub} ← Diagonalize(b)
18: if a=b then
19: CurrentEigenvalue← a11

20: d← 0 . Dimension of a current sub-block. The initial value is 0 as a11 ≯ a11 (see
line 24) and d will increase to 1 at the first iteration (k = 1) of the cycle on line 21.

21: for k ← 1,Blocksi do . This cycle is responsible for writing the i-th block of U
and storing the remaining redundancies in the array SubBlocks.

22: for l← 1,Blocksi do
23: Uj+k,j+l ← (Ub)kl . Writing up U(SubBlocki) in

U =
⊕SizeOf(Blocks)

i=1 U(Blocksi).

24: if akk > CurrentEigenvalue then .

The redundancies correspond to degenerate eigenvalues. Let us remind that the procedure
Diagonalize(·) outputs a matrix with eigenvalues in ascending order.

25: SubBlocksSubBlockCount ← d

26: SubBlockCount← SubBlockCount+ 1

27: CurrentEigenvalue← akk
28: d← 1

29: else
30: d← d+ 1

31: else
32: return {0;1dim(A); dim(A)} . Here we return

result IfEquivalent= 0 if desired U does not exist. The second and the third output should
not matter and is a subject to convention.

33: SubBlocksSubBlockCount ← d . Here we store the last value of SubBlock that can be
deduced from i− th block of A and B.

34: j ← j + Blocksi
35: return {1, U, SubBlocks}
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A. A parent Lindbladian term: alternative construction

Algorithm 7 A map that has a given stabilizer code as its fixed point. Part 3 - essential routines
continued
1: procedure DenoteConstant(A,B)
2: return κ←

√
tr[A2]
tr[B2]

. There
are a lot of measures that will give out the correct output. Simply taking the trace is not
a good idea as A and B are typically traceless, and just taking the determinant may lead
to troubles as these matrices may have some zero eigenvalues. The constant κ can always
be chosen to be non-negative as the matrices that span the stable space can be chosen to
be positive semi-definite. Any function of the type 2n

√
tr[A2n]
tr[B2n]

will do the job, while for odd
powers one may encounter troubles with tr[B2n+1] = 0 for B 6= 0. Our choice of the way to
obtain κ is dictated only by simplicity and low computational cost arguments.

1: procedure CompareBlockSet({A,B}nα=0)
2: κ← DenoteConstant(A0, B0) . Let us remind that κ is the same for all Aα and Bα.
3: Blocks ∈ N, Blocks1 = dim(A) . When we determine if ∃U : A0 = κUB0U

† we permit
any unitary matrices, thus we can write U ∈

⊕1
i=1 U(dim(A)).

4: U = 1dim(A0) . Let us remind that dim(A0) = dim(Aα) = dim(Bα) for α = 0, . . . , n.
5: for α← 0, n do
6: {IfEquivalent;V ;Blocks} ← CompareBlockMatrix(Aα, κ ·Bα;Blocks)
7: if IfEquivalent then
8: U ← V ◦ U
9: for j ← α+ 1, n do
10: Bj ← V BjV

† . Probably some Bj , j > α will require
extra unitary rotation so that Aj = UBjU

†. However, this extra rotation is guaranteed to
not spoil Ai = UBiU

†, i ≤ α obtained earlier thanks to the structure of the unitaries stored
in the array Blocks.

11: else
12: return {0; 1;1dim(A0)} . Here we return result IfEquivalent= 0 if desired

U does not exist. The second and the third output should not matter and is a subject to a
convention.

13: return {1;κ;U}
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Algorithm 8 A map that has a given stabilizer code as its fixed point. Part 4 - the main routine
1: procedure MapWithSpecifiedFixedPoints(Input) . main
2: {{λα}nα=0;B;D} ← BlockDiagonalize({λα}nα=0)
3: for i← 2, D1,2 do . After the block diagonalization one needs to check if the blocks can

be further resolved. This cycle goes through the blocks of the same size with this aim.
4: l← 1 . Counter responsible for the first block for which the existence a finer

resolution is not yet known.
5: λrα ← ExtractBlock(λα;D;Di,1, r)
6: O ∈ {N0 × N0}Di,2 . This array

is responsible for storing all the ρ’s for block size Di,1. The diagonal components of ρ’s are
stored in the sub-array Ol,1 and are normalized so that the first eigenvalue of each ρ is 1. In
order to write the resolution in the form

⊕
iMDi,1ρNi , The blocks have to be ordered in a

specific way. The sub-array {Ol,2}
Di,2
l=2

7: for p← 2, Di,2 do
8: Oj,2 ← Di,2 . The value Di,2 is just a big enough value to denote the fact that we

do not yet know the finer resolution of fix(ε)

9: Ni ← 0 . Number of ρ’s needed for the finest resolution of blocks of dimension Di,1.
10: while l < Di,2 do . This cycle and the embedded for cycle are responsible for

checking which of the Di,2 blocks are linearly dependent.
11: Ni ← Ni + 1

12: Ol,1 = 1

13: Ol,2 = l

14: d← 1 . Number of blocks known to be linearly dependent (after appropriate
unitary rotation) on l’s block.

15: for j ← l + 1, Di,2 do . Here we denote the unitary rotation U and the
proportionality constant κ of l’th and j’th block and if such U and κ exist.

16: {IfEquivalent;κ;U} ← CompareBlockSet({λlα, λ
j
α}nα=0)

17: if IfEquivalent then . If the is a linear dependence, we
rotate the dependent block to an appropriate basis, increase the count of blocks dependent
on l’th block, store the proportionality constant and permute the blocks so that dependent
ones are in the consecutive order.

18: B ←
(
1D0,1+

∑i−1
m=2Dm,1·Dm,2+Di,1·(j−1) ⊕ U ⊕ 1Di,1·(Di,2−j)+∑D1,2

m=i+1Dm,1·Dm,2

)
◦

B

19: d← d+ 1

20: Oj,1 = κ

21: Oj,2 = l

22: {V ;O} ←ArrayInducedPermutation(Di,1, Di,2;O)

23: B ←
(
1D0,1+

∑i−1
m=2Dm,1·Dm,2

⊕ V ⊕ 1∑D1,2
m=i+1Dm,1·Dm,2

)
◦B

24: ρ[i,Ni] ← diag
[
{Oq,1}l+d−1

q=l

]
25: l← l + d

26: return ε(·) = B
(

0D1,1 ⊕
⊕D1,2

i=2

[⊕Ni
j=1

(
1Di,1(·)1Di,1 ⊗ tr[·]ρ[i,j]

)])
B†
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[538] A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht. Real-time kalman filter: Cooling of an
optically levitated nanoparticle. Phys. Rev. A, 97:033822, Mar 2018.

[539] J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt, X. Shao, M. Gottfried,
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[597] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac. Matrix product density operators:
Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93:207204, Nov
2004.

[598] F. Verstraete, M. Wolf, and I. Cirac. Quantum computation and quantum-state engineering
driven by dissipation. Nat. Phys., 5(9):633, 2009.

[599] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac. Criticality, the area law, and
the computational power of projected entangled pair states. Phys. Rev. Lett., 96:220601,
Jun 2006.

[600] G. Vidal. Entanglement monotones. Journal of Modern Optics, 47(2-3):355–376, Feb 2000.

178



Bibliography

[601] G. Vidal. Class of quantum many-body states that can be efficiently simulated. Physical
Review Letters, 101(11):110501, September 2008.

[602] G. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 65:032314,
Feb 2002.

[603] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider. Matter-wave diffraction
from a quasicrystalline optical lattice. Phys. Rev. Lett., 122(11):110404, 2019.

[604] K. G. H. Viebahn. Quasicrystalline optical lattices for ultracold atoms. PhD thesis, Uni-
versity of Cambridge, 2018.

[605] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima,
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