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Abstract 

With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) 

have transformed from a detector for chemical warfare agents and explosives to a widely used tool in 

analytical and bioanalytical applications. This increasing measurement task complexity requires higher 

and higher analytical performance and especially ultra-high resolution. In this review, we will discuss 

the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as 

a resolving power greater than 200. These instruments are drift tube IMS, travelling wave IMS, trapped 

IMS and field asymmetric or differential IMS. The basic operating principles and the resulting effects 

of experimental parameters on resolving power are explained and compared between the different 

instruments. This allows understanding the current limitations of resolving power and how ion mobility 

spectrometers may progress in the future. 

Introduction 

Ion mobility spectrometers (IMS) separate and analyze ions based on their motion through a neutral 

gas under the influence of an electric field. Ion separation in IMS occurs usually within milliseconds, 

and mostly based on the collision properties between ions and neutral gas molecules. This results in 

three major advantages of IMS that have led to their rising popularity in many applications. 

 IMS can be easily coupled to extremely efficient atmospheric pressure chemical ionization 

sources, allowing for limits of detection in the low pptv-range for substances amenable for 

chemical ionization. 

 IMS offer separation in a dimension different to gas chromatography, liquid chromatography 

and mass spectrometry on a millisecond timescale. Thus, both fast stand-alone detection 

devices and hyphenated instruments for multidimensional separations are feasible. 

 IMS separation is based on the physical structure of ions, providing size and shape information. 

The combination of the first two of these three strengths has led to its widespread use as a detector 

for chemical warfare agents [1, 2], explosives [2–4], drugs [5] and other hazardous compounds 

beginning in the 70s. A detailed history of IMS can be found in the text book on IMS by Eiceman, Karpas 

and Hill [6]. Today, IMS can be found at most airports and in many military units [2]. More recently, 

often coupled with gas chromatography for pre-separation, IMS have been used in the analysis of more 

complex samples, for example in the quality control of food [7–9] and pharmaceuticals [10, 11], 

process control [12] or exhaled breath gas analysis [13, 14]. 

However, it has been the combination of the latter two of these three strengths that has led to its rise 

in more analytical tasks, especially bioanalytical applications [15–24]. On the one hand, operating on 

a millisecond to second timescale, IMS perfectly combines both with chromatographic separation such 



as gas chromatography (GC), liquid chromatography (LC) or supercritical fluid chromatography (SFC) 

as well as with mass spectrometry (MS) [25]. This allows three-dimensional, or, when using 2D-GC or 

2D-LC, even four-dimensional separation [26, 27], enabling the selectivity needed for extremely 

complex samples. On the other hand, IMS not only provides another dimension of separation, but also 

structural information about the ions [15, 16, 20, 22, 28].  This allows distinguishing between many 

isomers and differently folded structures of biomolecules. 

Just as mass spectrometers divide into different instruments, e.g. time-of-flight, sector, quadrupole 

and ion trap devices, IMS can be also grouped into different instruments. Recent reviews list as many 

as eight different main operating principles [29, 30]. However, only a few of them are able to reach 

ultra-high resolution. Thus, two aspects should be discussed first in this review – the very basics of ion 

mobility spectrometry and how to define ultra-high resolution. 

Basics of ion mobility spectrometry 

Generally, ion mobility spectrometry separates and analyzes ions based on their motion through a 

neutral buffer gas under the influence of an electric field. The ion mobility K is then defined as the 

proportionality factor between the ion’s drift velocity vd and the electric field strength E according to 

eq. 1. 

𝑣𝑑 = 𝐾𝐸 1 

Ions are constantly accelerated in the direction of the electric field, but collide with neutrals due to 

their thermal motion, and decelerate. These processes quickly reach an equilibrium, leading to a 

constant drift velocity. As heavier ions accelerate slower, but also lose less energy during a collision, 

the likelihood of a collision becomes the most important parameter. Thus, ion mobility spectrometry 

is mostly a separation based on the ion-neutral collision properties. At extremely low collision energies, 

the ion mobility does also not depend on the structure of the ion, as repulsion due to polarization 

already occurs at large distances. Therefore, this is called the “polarization limit”. As given by eq. 2 [31, 

32], the ion mobility only depends on the ion mass m, the neutral mass M, the dipole polarizability of 

the neutral αd and the number density of the neutrals N. 
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However, this case is only applicable in cryogenic systems, as the thermal energy of the ions at room 

temperature is sufficient to leave this realm. At these thermal energies, the ion mobility will depend 

on the collision cross section (CCS) between ion and neutral Ω as given by eq. 3. Thus, the ion mobility 

is related to the size and shape of an ion. Other variables are the charge state z, the elementary charge 

e, the Boltzmann constant kB and the absolute temperature T. It is noteworthy that a certain 

correlation between ion mass m and ion-neutral collision cross section Ω exists, as molecules 

containing many atoms grow both heavier and larger. 
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It is important to note that eq. 3 was derived under the assumption of a negligibly low electric field. As 

soon as an electric field is applied, correction factors would be required to account for ion energies 

above the thermal energy of the ions and directional bias of collisions [33]. This increase in ion energy 

is often referred to as “ion heating”, as the effects are identical to those of increasing thermal energy 

[31]. Several correction approaches exist, most typical the two-temperature theory [34, 35], the three-

temperature theory [36, 37] and the momentum-transfer theory [33], each with different adjustments 

and with different quality of correction depending on the ions studied [38]. However, these correction 

factors can typically be neglected at low electric field strengths. An estimation for what might be 

considered a low electric field strength is given by eq. 4 [39]. Here, N0 is Loschmidt’s constant, which 

is the number density at standard conditions, and K0 is the ion mobility at standard conditions, known 

as the reduced ion mobility. It is noteworthy that the limit is given as the ratio between the electric 

field E and the number density of the neutral N, as either doubling E or halving N would have the same 

effect on the energy upon collision. E/N is called the reduced field strength and given in Townsend 

(Td). Furthermore, it is important to note that not only the static drift field needs to be considered, but 

also AC fields for example for ion focusing [40].  
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The drift velocity can also be calculated directly from the reduced ion mobility K0 and the reduced field 

strength E/N as given by eq. 5. Thus, ions move with the same drift velocity regardless of pressure 

when adjusting E to the same reduced field strength E/N. 

𝑣𝑑 = 𝐾0 𝑁0  
𝐸

𝑁
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At much higher energies, even more structural information can be revealed about the ions. This is 

shown for isotopomers, which have the same mass and the same collision cross section, but can 

nevertheless be separated at high reduced field strengths [41, 42]. Thus, the different mass distribution 

within the ion must also affect these high energy collisions. Due to the complexity and limitations of 

the corrections mentioned above for more complex ion-molecule systems, the ion mobility at high 

electric field strengths is often empirically described through the alpha function α(E/N) as given by 

eq. 6. As the alpha function may not depend on the direction of the electric field, it is typically 

represented through an even power series [31, 43]. 
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The alpha function and therefore also K(E/N) contain various effects, as the increased ion energy may 

not only effect eq. 3, but also cause changes to the collision cross section itself, for example through 

declustering ion-molecule complexes, through changing conformations or simply due to the collision 

cross section being energy dependent. The alpha function can be measured through two different 

approaches, either by using a drift tube ion mobility spectrometer able to reach such high ratios of E/N 

[44–46] or by using an electric field alternating between high and low E/N, known from differential ion 

mobility spectrometry (DMS) or field asymmetric ion mobility spectrometry (FAIMS) [47, 48]. While a 

high reduced field strength drift tube IMS measures K(E/N) directly, differential or field asymmetric 



IMS can only obtain information on the alpha function, but not on the ion mobility. Furthermore, due 

to the dynamic field, measurements from differential or field asymmetric IMS may be perturbed by 

dynamic effects and also require a complex calculation to obtain the alpha function from measurement 

data. 

Thus, ion mobility spectrometry includes measurements of the true low field ion mobility, of an ion 

mobility perturbed by added energy, of the ion mobility at a defined increased energy and of the alpha 

function.  

Definition of ultra-high resolution IMS 

Following the terms of the IUPAC definition for chromatography, resolution in ion mobility 

spectrometry is defined as the separation between two peaks [49]. In practice, comparing resolution 

between two IMS would require to measure the same substances. Thus, the resolving power, defined 

as the ratio between the position of a peak and its full width at half maximum (FWHM) is usually used 

instead. As long as the relative positions of peaks remain the same, the resolution is proportional to 

the resolving power. Measurement results from a drift tube IMS may be reported in terms of the drift 

time td, the inverse ion mobility 1/K or the collision cross section Ω. The inverse ion mobility is often 

used instead of the ion mobility as it is proportional to the other two quantities. No matter which of 

the three scales is chosen, resolving power, resolution and peak capacity remain the same for a drift 

tube IMS, as all three scales are proportional to each other. However, for IMS with nonlinear ion 

motion, such as travelling wave IMS, this is not the case as shown in Figure 1. Despite the fact that the 

separation and thus resolution is exactly the same for both IMS, the resolving power of the travelling 

wave IMS appears to be worse in the time domain due to the different ion motion mechanism. Only 

after conversion to a common scale such as the inverse ion mobility 1/K or the collision cross section 

Ω the resolving powers of the two devices may be compared.  

  

Figure 1: Illustration of the observed resolving powers in the time and CCS domain of a drift tube IMS with linear ion motion 
and a travelling wave IMS with non-linear ion motion. Both devices show exactly the same degree of separation between the 
two peaks despite the fact that their resolving power appears different in the time domain due to different time scales. 

It has been suggested to use the resolving power in the scale of the collision cross section Ω for 

comparison [50] and we will follow this suggestion throughout the paper. Furthermore, it needs to be 

noticed that multiply charged ions are easier to separate and thus comparisons between instruments 

should be done using ions of the same charge state. 



𝑅𝑝 =
Ω

∆Ω
 7 

This way, all IMS measurements directly related to the collision cross section can be compared with 

each other. Only the alpha function is not directly related to the collision cross section and thus the 

resolving power of FAIMS cannot be compared directly with other IMS. At constant resolving power, 

ion separation by FAIMS may be better or worse compared to other IMS depending on the substance 

[51]. Furthermore, resolving powers can obviously not be compared directly between IMS and gas or 

liquid chromatography due to their different separation space. 

Following a previous definition [52], one can attribute high resolution to IMS with a resolving power 

above 80, which is the upper end for most commercial devices. A resolving power above 200 is 

considered ultra-high resolution, which is sufficient to resolve two peaks equal in height with a one 

percent difference in collision cross section with a valley of 12.5% of their peak height [53]. 

Furthermore, sharper peaks may also ease determining the peak position exactly and may even, in the 

case of a constant number of ions and thus a constant peak area, be higher, improving the signal-to-

noise-ratio [54]. Currently only five IMS technologies have reached ultra-high resolution: Drift tube ion 

mobility spectrometers (DT-IMS), the ion cyclotron mobility spectrometer, travelling wave ion mobility 

spectrometers with extended path lengths (cyclic-TW-IMS and SLIM-TW-IMS), trapped ion mobility 

spectrometers (TIMS) and differential or field asymmetric ion mobility spectrometers (DMS / FAIMS). 

Thus, this review will focus on these instruments. The different operational principles are illustrated in 

Figure 2 and Figure 3. An overview comparing the main parameters is given at the end of the review 

in Table 1. 



 

Figure 2: Different application of the electric field to the drift region in the different ion mobility spectrometers. A) Constant 
field strength in the drift tube IMS. B) Switched segments in the ion cyclotron mobility spectrometer. C) Moving wave in 
travelling wave IMS. D) Field gradient trapping the ions against the gas flow in trapped IMS. 

Drift tube IMS 

The drift tube ion mobility spectrometer is the original embodiment of an ion mobility spectrometer. 

The original measurements in the 1930s by Tyndall and Powell [55] as well as Bradbury and Nielsen 

[56] used this setup, as well as the first military trace gas detectors such as the chemical agents monitor 

(CAM) [2, 6] and the first analytical IMS(-MS) instruments [57, 58]. In order to measure the ion mobility, 

a small packet of ions is injected by an ion shutter into a drift tube with a constant electric field and 

the drift time required to reach the detector is measured. Drift tubes can be manufactured in a wide 

variety of sizes and from a wide variety of materials such as resistive glass tubes [59, 60], low 

temperature co-fired ceramics (LTCC) [61], printed circuit boards (PCB) [62, 63] or even 3D printing 

[64]. The expected drift time of an ion with ion mobility K through a drift tube of length L with the 

electric field E is given by eq. 8. 

𝑡𝑑 =
𝐿

𝐾𝐸
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Drift tube IMS can be considered a “jack of all trades”-instrument, being applicable to most 

measurement tasks. The full ion mobility spectrum is acquired within a single measurement of a few 

to a few ten milliseconds and can be averaged to increase the signal-to-noise-ratio and thus lower the 

limits of detection. However, the short time frame of spectra require fast mass spectrometers for fully 



nested operation [65, 66]. Ion yield can be vastly increased by using multiplexing [67–71], a field 

switching shutter for compatible ion sources [72, 73] or injection from an ion trap when operating at 

reduced pressure [74]. There is no inherent limit to the ion mobility range of a drift tube IMS – when 

measuring negative ions in gases not capturing electrons such as nitrogen, even an electron peak can 

be observed [75, 76], while the upper limit is only given by the ability to bring ions into the gas phase. 

However, it should be noted that measuring very slow and very fast ions in a single spectrum requires 

an ion shutter with extremely low discrimination of slow ions, meaning that the initial packet width 

should not depend on the ion mobility [46, 77, 78]. Furthermore, as there is a direct relationship 

between drift time and ion mobility, ion mobility and collision cross section can be directly obtained 

from a measurement without calibration through eq. 8 and eq. 3. Specialized high accuracy drift tube 

IMS are able to measure the ion mobility within ±0.1% [79–81] and serve as the reference standard for 

other ion mobility measurements. 

Generally, the resolving power of any separation by ion mobility strongly depends on the diffusion 

during the ion drift. The diffusion limited resolving power Rp,Diff [82, 83] can be calculated from drift 

time, diffusion and velocity of the ion motion [84] as given by eq. 9. The diffusion limited resolving 

power just depends on three parameters – the absolute temperature T, the charge state of the ions z 

and the drift voltage U. As mentioned above, higher charge states and lower temperatures improve 

IMS separation power, which needs to be kept in mind when comparing different IMS. Furthermore, 

as these constants will appear in many more equations, we define a combined constant C as given by 

eq. 10 to simplify notations. 

𝑅𝑝,𝐷𝑖𝑓𝑓 = √
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However, analytical modelling of drift tube IMS has progressed much further over the years to include 

additional effects such as initial ion packet width and amplifier distortion, which in turn also create a 

dependence on ion mobility and drift length. Every drift tube has an optimum drift voltage that 

maximizes its resolving power by striking a balance between the diffusion during long drift times and 

the increasing effect of the additional peak width caused by ion injection and detection at short drift 

times [82, 83, 85–87]. The maximum resolving power can be given as a function of the optimum drift 

voltage [54, 85, 88], and is √2/3 of the diffusion limited resolving power at the same drift voltage [54]. 

This of course requires an IMS designed to operate at this optimum drift voltage [85]. Increasing the 

drift voltage above the optimum results in a slight loss of resolving power, but universally increases 

the signal-to-noise-ratio [89] due to sharper peaks, less ion losses and more averages due to the 

reduced time frame of the spectra. However, we will use the simple model in eq. 9 in this review, as 

models for other IMS concepts just consider ion motion, and thus the different models will be 

comparable. 

Atmospheric pressure drift tube IMS (AP-DT-IMS) 

As most other ultra-high resolution IMS concepts are tailored to be coupled with mass spectrometers 

and therefore operated at reduced pressures, we will consider atmospheric pressure drift tube IMS 

and low pressure drift tube IMS separately for easier comparison. Beside IMS aiming to reach high 



reduced field strengths [44–46], stand-alone instruments are practically always operated at 

atmospheric pressure. Furthermore, some IMS-MS also use drift tubes at atmospheric pressure due to 

their superior separation performance [90–93]. 

The expected resolving power of a drift tube IMS is derived by inserting eq. 10 into eq. 9 and given by 

eq. 11. As drift tube IMS employ a constant and uniform field as shown in Figure 2 A), the drift voltage U 

and drift field strength E are directly related through the length L.  

𝑅𝑝,𝐴𝑃−𝐷𝑇 = √𝐶 
𝑧 

𝑇
 𝑈 11 

The main advantages of operating IMS at atmospheric pressure are easier coupling to highly effective 

atmospheric pressure chemical ionization sources for maximum ion yield and sensitivity and low E/N 

even at high voltages. Therefore, high drift voltages can be applied to short drift tubes to maximize 

resolving power as long as the electronics for ion injection and detection are sufficiently fast. The 

highest resolving drift tube IMS reported achieves a resolving power of 250 to 260 for several small, 

single charged ions such as DMMP, benzene, toluene and acetone by applying a drift voltage of 25 kV 

across a 15 cm drift tube at 1000 mbar [53, 88]. Another drift tube IMS with a length of 63 cm operated 

at 325 mbar with 10 kV has been reported to reach a resolving power of 172 for single charged C60 

clusters [94] and 240 for the minus four charge state of CH3(SO2NHSO2(CH2)6)5SO2NHSO2CH3 [95] as 

well as 260 for an unidentified peak [95]. Using a drift region at atmospheric pressure with a length of 

13 cm and a drift voltage of only 3.6 kV, a resolving power of 216 was obtained for the plus eleven 

charge state of cytochrome c [90]. This extremely high resolving power at low drift voltage again 

emphasizes the need to keep the charge state in mind when comparing resolving powers. 

In summary, the available maximum drift voltage is the resource limiting both the resolving power and 

the signal-to-noise-ratio and therefore the ultimate limit of drift tube IMS performance. Future 

improvements in atmospheric pressure drift tube IMS will thus most likely proceed together with 

improvements in compact high voltage power supplies, power and data isolation as either the ion 

source or the detector is referenced to this high voltage and improved systems design to handle high 

voltages in small enclosures without breakdown. Furthermore, increasing drift voltage at the same 

drift length requires faster electronics for ion injection and detection. 

Low pressure drift tube IMS (LP-DT-IMS) 

When coupling IMS to MS, a reduced pressure in the drift tube simplifies the ion transfer and gives the 

opportunity to store or mass-select ions prior to injection. However, below a certain pressure the low 

field limit given by eq. 4 must be considered due to decreasing neutral density N. At this point, it is no 

longer possible to apply arbitrary drift voltages to a drift tube without heating the ions, leaving two 

possible scenarios. If the low field mobility is the quantity of interest, the drift field is now fixed to a 

maximum Emax and increasing the resolving power is only possible by increasing the drift length as 

shown by eq. 12.  

𝑅𝑝,𝐿𝑃−𝐷𝑇 = √𝐶 
𝑧 

𝑇
 𝐸𝑚𝑎𝑥  𝐿 12 

This has given rise to drift tubes several meters long. An IMS-IMS-IMS-MS instrument with a drift tube 

as long as 3 m has been reported [96], however, to our knowledge no resolving power when using the 



whole drift tube as one has been reported. For a 2 m long drift tube operating between 15 mbar and 

20 mbar, a resolving power of 109 was measured for the plus two charge state of angiotensin II using 

a drift voltage of 5 kV [97]. Moving back to higher pressure would be a possible remedy. Halving the 

length and doubling the pressure would result in both the same resolving power and reduced field 

strength, but in a more compact instrument and, due to the constant drift velocity given by eq. 5, also 

in halved measurement times. On the other hand, high reduced field strengths can also be used to 

purposefully increase the ion energy and thus not measure only K(0), but also K(E/N), adding another 

dimension of ion separation and characterization [44, 45]. This also leads to higher resolving powers, 

as high voltages in short drift tubes are now possible again. For example, by applying a drift voltage of 

18 kV across a drift tube of 30 cm at a pressure of 20 mbar, which equals 120 Td and is close to the 

breakdown of air, a resolving power of 140 has been achieved for single charged methyl salicylate [46]. 

Still, the breakdown of the drift gas creates an ultimate limit for the achievable field strength. Thus, 

although low pressure drift tube IMS offer a number of advantages, achieving ultra-high resolution is 

difficult. 

Extending separation time 

As the achievable performance of an accordingly designed drift tube IMS is limited by the maximum 

drift voltage available, while the maximum drift field strength Emax is limited at reduced pressure, an 

increase in resolving power would only be possible through longer drift tubes. Thus, several quite 

different approaches have been developed to overcome this limitation. They all share one common 

defining feature – they are able to trade measurement time for resolving power by prolonging the 

measurement and thus “reusing” the same drift voltage. This is possible as all such IMS operate at 

reduced pressure and can thus employ radial focusing. Nevertheless, as can be seen from Figure 2, 

they all retain the same principle of ion motion along a drift region, but with differently applied electric 

fields. Often, ions move several cycles through the instrument and the voltage is only applied to 

segments of the drift region. In this review, we will unanimously use n for the number of cycles and m 

for the number of segments. While this differs from the nomenclature used in some of the references, 

it ensures that the notation is consistent throughout this work. 

It should be kept in mind that the ion focusing may affect the measurement through ion heating. 

Furthermore, these techniques are only applicable for ions that can actually be focused, leading to a 

limitation of the accessible mobility range and mass range [98, 99]. However, for most applications not 

related to trace gas analysis, this limitation is typically not of practical relevance. Additionally, 

extending the separation time also increases the diffusion, meaning that more averages and thus even 

more measurement time is typically necessary to maintain the same signal-to-noise-ratio. Generally, 

one would expect four times the measurement time to double resolving power and another four times 

to maintain the signal-to-noise-ratio. However, these devices are relatively new and theories regarding 

the ion motion and separation do not consider the signal-to-noise ratio yet. 

Ion cyclotron mobility spectrometer 

The first such device was the ion cyclotron mobility spectrometer or cyclical drift tube IMS originally 

published in 2009 [100] followed by two improved versions in 2010 [101] and 2013 [102]. It consists 

of four curved quarter-circle drift tube segments with ion funnels in between to re-focus the ions, 

together forming a circular drift tube with a length of 181 cm. Thus, possible operating pressure are 

limited to a few millibar by the ion funnel operating range. The drift field is switched periodically to 



keep the ions moving around the circle as shown in Figure 2 B) for n cycles, leading to an n times longer 

drift tube that only requires the drift voltage for two of its m segments to be switched on at the same 

time. Thus, the resolving power and required voltage are given by eq. 13 and eq. 14. The drift time is 

simply what would be expected of a drift tube prolonged to this length. 

𝑅𝑝,𝑐𝑦𝑐𝑙𝑜𝑡𝑟𝑜𝑛 = √𝐶 
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𝑇
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However, this is only strictly true during the first few cycles. As the spectrum spreads out around the 

ring, ions not moving at the drift field switching frequency are eliminated. Faster ions move ahead of 

the drift field and are discharge at its front, while slower ions lag behind the drift field and are 

discharged there. This turns the device into an ion filter as known from overtone ion mobility 

spectrometry (OMS) [103–105]. Here, the ion current passing the device at a certain drift field 

application frequency is measured. The resolving power equation for OMS is rather complex [104] and 

depends both on the resolving power expected from the effective drift length and the number of 

segments passed along that length. However, we will not go into detail here, as the resolving power 

expected from the effective length seems to be sufficient for comparison. 

Using n = 100 cycles to achieve a drift length of about 180 m results in resolving powers above 1000 

[102], here measured for the z = 3 charge state of substance P at a pressure of 3 mbar. This was 

published in 2013 and the first reported resolving power above 1000 in the history of IMS. 

Furthermore, the measured mobilities agree well with those measured by a conventional drift tube 

IMS [101], meaning that no additional calibration would be required. However, possible ion heating 

effects have not been studied, although the good agreement with drift tube values suggests that they 

are low. 

Despite the possibility to filter four ion packets simultaneously as four segments exist [102], the device 

is ultimately limited by the significant loss of ions at long drift times of more than a second. Combined 

with the need to scan the drift field application frequency to record the full ion mobility spectrum, 

extremely long measurement times are required. This may presumably be the reason why no further 

research concerning the ion cyclotron mobility spectrometer has been reported despite the 

outstanding separation capability. 

Travelling wave ion mobility spectrometry (TW-IMS) 

Travelling wave ion mobility spectrometry was first published in 2004 [106, 107], with a second 

generation instrument being published in 2011 [108]. Again, the drift field is not applied across the 

whole drift tube, but only across small segments. These segments are not switched on and off as a 

whole, but move along the drift tube ring by ring as shown in Figure 2 C), forming the namesake 

travelling waves that push the ions through the drift tube. Furthermore, unlike a moving drift field, the 

waves move faster than the ions and thus cause them to roll over the waves instead of moving through 

the IMS with constant drift velocity. Normally, ions would be pushed towards the drift tube wall at the 

front and at the end of a travelling wave and eliminated. However, an additional RF potential is applied 

between adjacent rings similar to an ion funnel [98, 109, 110], focusing the ions towards the center of 



the drift tube throughout the whole length and minimizing ion discharge at the walls. Again, operating 

pressures are limited to a few millibar by the operating range of the ion focusing.  

Due to the effect of ions rolling over the moving wave, the drift velocity becomes a nonlinear function 

of the ion mobility, depending approximately on its square assuming an idealized triangular waveform 

[111]. For all other waveforms, the dependence is significantly more complex and depends on the 

distribution of the electric field strengths inside the wave [111]. Thus, calibration with suitable 

standard ions becomes necessary in order to extract ion mobilities and collision cross sections [112, 

113]. Furthermore, heating of ions by the RF confinement needs to be considered [114–116], especially 

when choosing the standard ions [117–119], as these may experience heating effects too. Assuming 

an idealized triangular waveform and selecting the wave velocity to maintain rollover for the ions with 

the highest mobility Kmax, the drift time can be estimated by eq. 15 for comparison with other IMS 

instruments. 

𝑡𝑑,𝑇𝑊 =
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Calculating the theoretical collision cross section resolving power of a TW-IMS [111], again assuming 

the ideal triangular waveform, results in eq. 16. This is derived from equations 27 and 34 from 

reference [111]. The nonlinear ion motion in travelling wave IMS increases the ion mobility separation 

and therefore the collision cross section resolving power by a factor of √4. It should be noted that this 

is not observable on the non-linear drift time scale, underlining the mentioned need to use a common 

scale for resolving power comparisons. However, resolving power decreases for ion mobilities lower 

than the maximum ion mobility Kmax, diminishing this advantage. As given by eq. 17, the required 

voltage is reduced by twice the number of waves m in the travelling wave IMS compared to a drift tube 

IMS. The factor two stems from the electric potential decreasing with the maximum field strength Emax 

in both directions from its peak at the center of each wave. 

𝑅𝑝,𝑇𝑊 = √𝐶 
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𝑇
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By setting L/m constant, which means fixing the width b of a travelling wave, the required voltage UTW 

becomes independent of the drift length of the IMS. This is the main advantage of travelling wave IMS 

– while its resolving power is approximately the same compared to drift tube IMS using the same 

length and field strength, it can be built at arbitrary lengths without requiring additional voltage. 

Generally, the resolving power reported for travelling wave IMS is moderate for the first and second 

generation instruments, ranging from 10 [107] to 40 [108]. However, in recent years, two approaches 

have emerged that make full use of the advantages of the travelling wave approach by vastly extending 

the drift lengths. At a fixed maximum electric field strength, this is the only possibility for resolving 

power improvement. The first approach is a cyclic multi-pass arrangement first presented in 2014 [120, 

121] with a second generation instrument reported in 2017 [122]. This traveling wave IMS is simply 

arranged in a circle with a port for transferring ions in and out. Further modifications are not necessary, 

as the measurement principle already allows for infinitely long drift tubes. The length is thus multiplied 



by the number of cycles n in the instrument as given by eq. 18, resulting in a longer effective drift 

length, while the required voltage still remains the same. 
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𝑇
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As expected, the resolving power grows with the square root of the number of cycles. It reaches about 

550 for 50 cycles equivalent to an effective drift length of 50 m [122], measured for the single charged 

peptides SDGRG and GRGDS at a pressure of 1.8 mbar. The total drift time was about 90 ms. Due to 

the constant focusing, ion transmission was relatively high. An ion loss of 35 % was reported for six 

cycles, which corresponds to an effective drift length of six meters. 

It should be noted that, unlike in the ion cyclotron mobility spectrometer, ions are not eliminated by 

principle during the measurement. Thus, it is either necessary to distinguish between ions having 

travelled different number of cycles or to eliminate parts of the spectrum to obtain only data from ions 

all having the same cycle number. It was shown that the former is actually possible in IMS-MS systems 

due to the typical mass-mobility correlation [121]. However, multiplexing as in drift tube IMS is most 

likely impossible due to the overlap that would result between different injections having travelled 

different cycles. 

The second approach is based on structures for lossless ion manipulations (SLIM) as focusing devices 

instead of an ion guide. SLIM are planar structures etched on the surfaces of printed circuit boards 

(PCB), meaning that extremely long devices can be manufactured with low additional effort. They 

consist of two parallel boards with many parallel stripe electrodes, creating an arrangement similar to 

the rings in the drift tube shown in Figure 2. Again, a RF field is applied between adjacent stripes, 

focusing the ions towards the center between the two boards [123]. However, as now only two parallel 

stripes exist instead of a full ring, additional DC guard electrodes are placed bordering the stripe 

electrodes to prevent the ions from moving sideways. Similar to an ion funnel, operating pressures for 

SLIM are in the millibar range. SLIM have been first introduced in 2014 [123, 124] and it was quickly 

shown that both drift tube IMS [125, 126] and travelling wave IMS [127] can be built that way. Apart 

from the additional focusing electrodes, ion motion remains the same as shown in Figure 2 C). 

Exhibiting both the ability to store stable ions for hours [128] and lossless transmission across distances 

as long as 1 km [129], extremely long drift tubes become feasible. Furthermore, additional 

manipulation structures have been reported such as 90°-turns [130], switches between multiple paths 

on one level [126, 130] and even switching between several levels [131]. 

By combining these building blocks, it is possible to create folded, serpentine drift tubes to reach 

extremely long drift lengths without a prohibitively large instrument size. Starting with a length of 44 

cm [132] the device was later prolonged to a drift length of 13 m [133] on a 45.9 cm × 32.5 cm printed 

circuit board. Currently, a 3D instrument stacking several layers for even longer drift length is being 

developed. Longer paths have the advantage that extremely long drift lengths with less overlap of 

different parts of the spectrum can be achieved. Nevertheless, a routing system to allow multiple 

cycles along the 13 m long path has also been implemented, reaching effective drift lengths as long as 

1 km [129]. Again, resolving powers grow with the square root of the number of cycles, reaching a 

value of 1860 for the Agilent Tune Mix m/z 622 and 922 ions for 40 cycles, equaling an effective drift 



length of 540 m [129]. This is to our knowledge the highest resolving power ever reported in ion 

mobility spectrometry. 

The separation with 40 cycles also takes over 13 seconds, as the drift velocity remains constant since 

the electric field strength cannot be increased any further. This timeframe is significantly longer than 

conventional ion mobility separations, although still extremely fast compared to chromatographic 

methods. Thus, despite the high resolving power, diffusion for the prolonged time results in peak 

widths of tens of milliseconds – as long as the timeframe of a full ion mobility spectrum in many drift 

tube IMS. While these timescales allow simpler coupling to mass spectrometers, they are the main 

challenges in cyclic or SLIM travelling wave IMS. On the one hand, as the number of ions determines 

the peak area, a wider peak is necessarily lower at the same number of ions. Therefore, even at 

perfectly lossless transmission, a much higher number of ions is required to maintain signal intensity. 

To this end, ion introduction through a flat SLIM funnel [134], trapping inside the SLIM structures [135] 

and compression of the ion packet inside the SLIM structure [135, 136] have been used to increase ion 

population. On the other hand, ion lifetime can become a limitation depending on the ions studied. 

While the ions in the presented studies have been shown to be stable for hours [128], others ions are 

known to have lifetimes of only milliseconds [137–141]. 

Trapped ion mobility spectrometry (TIMS) 

The above mentioned separation techniques prolong the effective drift length of the ions through 

folded drift tubes and through flying along these drift tubes several times. Another possibility for 

increasing the effective drift length is using a fast counter flow of drift gas, pushing the ions back [142]. 

Trapped ion mobility spectrometry combines this concept with trapping the ions and was first 

published in 2011 [143, 144]. A short review of theory and hardware advances can be found in [145]. 

Generally, a drift gas flow with the velocity vg pushes the ions towards the detector, while a position-

dependent electric field E pushes them back as shown in Figure 2 D). This way, ions advance up to the 

position where the drag from the drift gas and the drag from by the electric field are in balance, that 

is vg = KE [146]. Then, ions are eluted towards the detector or mass spectrometer by slowly lowering 

the maximum of the electric field, allowing the gas flow to push ions with sufficiently low ion mobility 

across the electric field plateau. From the point in time where the electric field was no longer able to 

trap the ion, its ion mobility can be determined. Unlike the other methods, no ion packet injection is 

necessary, instead, the trapping region can simply be filled by a continuous ion current. Again, radial 

ion focusing is employed to minimize ion losses, limiting the operating pressure to the millibar range. 

In the case of trapped IMS, the drift rings are split into four segments to create a quadrupole field for 

focusing. 

It can be shown that under typical conditions the effective drift length is the displacement caused by 

the gas velocity vg during the time required for crossing the electric field plateau tp [146], resulting in 

the resolving power given by eq. 19. Ee is the electric field strength on the plateau at the moment of 

elution. A recent derivation arrives at a slightly different result where the effective drift length is 

additionally multiplied by the ratio between the ion velocity due to the electric field and the gas 

velocity [147]. However, this factor is expected to be close to unity under conditions for high resolving 

power. 
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In principle, the actual physical length of the instrument does not define the effective drift length. 

Instead, gas velocity vg and time to pass the electric field plateau tp need to be maximized together 

with the electric field strength on the plateau at the moment of elution Ee. The latter follows directly 

from the elution condition, vg = KEe. The time to pass the electric field plateau depends not only on its 

length L and the ion mobility K, but also on the scanning rate of the electric field β, since the electric 

field continues to change while the ions cross the electric field plateau. Combining these effects results 

in eq. 20 [146, 147], which equals equation 22 in reference [146] and equations 17 and 18 in reference 

[147]. It is especially noteworthy that slower ions separate much better, as they require a higher 

electric field to elute and spend a longer time on the plateau. This dependence is more pronounced 

than in any other type of IMS, making trapped IMS especially efficient for large molecules, such as in 

bioanalytical applications. 
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The time to record an ion mobility spectrum, as given by eq. 21, can be calculated by using the equation 

for the expected elution time from reference [146] and calculating the difference between the most 

extreme ion mobility values of interest. This is also an advantage compared to the other presented 

types of IMS, as it is possible to measure only the range between the highest and lowest ion mobility 

of interest. In drift tube and travelling wave IMS, the delay between ion injection and arrival of the 

most mobile ions of interest passes without providing any analytical information. 
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However, the above equations are only approximations as the exact time spent in the trapped IMS 

contains additional non-linear terms [146, 148]. Thus, while there have been attempts to directly 

calculate mobilities and collision cross section values [148], trapped IMS usually require calibration to 

extract both values [149, 150], The effects of ion heating have also been studied [137, 151], showing 

that they need to be considered. 

As shown by eq. 20, there are three tuning parameters to improve the resolving power of trapped IMS. 

The first is increasing the length of the analyzer, which would also require higher voltage. However, 

this is less efficient than in the other types of IMS. Nevertheless, as current analyzers are only as long 

as 4.6 cm, increasing the length remains a possible option. The second is increasing the gas flow 

velocity, which strongly increases the separation performance, however, complex fluid dynamics need 

to be considered [147, 152] and non-idealities such as a non-uniform flow profile or the pressure drop 

across the analyzer gain influence. Furthermore, the ability to still trap the slowest ions using the 

maximum possible field strength limits the maximum possible gas flow velocity [153]. In order to 

compare with other types of IMS also limited by the maximum possible field strength, we will 

substitute vg by Kmin Emax in eq. 20, leading to eq. 22. 
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The only remaining and most common possibility is decreasing the scanning rate β in order to increase 

the effective drift length but also measurement time. Like increasing the physical length, decreasing β 

is less efficient than in other IMS, however, as it is simply the slew rate of a voltage, it can be set to any 

desired value. Just as increasing the effective drift length in other IMS, losses in signal-to-noise-ratio 

go along with longer measurement times [146]. To mitigate these effects, ions can be stored in a 

second electric field gradient during analysis to increase the duty cycle to 100% [154] and non-linear 

scans can be employed to shorten the measurement time by only resolving the ion mobility range of 

interest [155, 156]. Such scans of a limited ion mobility range can also be used to couple trapped IMS 

to slower mass spectrometers such as FT-ICR [157]. 

The highest reported resolving powers range from 320 to 400 for a set of single charged 

polybrominated diphenyl ether metabolites using a scanning rate of β = 579 Vm-1s-1 (10 V in 500 ms) 

[158]. Using a scanning rate of β = 3536 Vm-1s-1 (122 V/s for 900 ms), a resolving power of 295 was 

obtained for the plus seven charge state of ubiquitin [159]. Using a reported scanning rate of β = 2691 

Vm-1s-1 in a 900 ms scan, a resolving power of 228 was obtained for the single charged m/z = 1822 ion 

of an ESI tune mix [146]. It should be noted that often the voltage difference and scan time are 

reported instead of β. We converted these quantities into β using the potential gradients shown in 

Figure 3 of reference [148]. As expected, the highest resolving powers are achieved at the lowest β 

and for higher charge states. 

Differential or field asymmetric ion mobility spectrometry (DMS/FAIMS) 

Differential mobility spectrometry (DMS) or field asymmetric ion mobility spectrometry (FAIMS) differ 

considerably from the techniques discussed before that a dedicated text book exists [47]. Often, 

however not always in an identical fashion, the two names have been used to distinguish between 

cylindrical and planar devices. As only planar devices have been demonstrated to achieve ultra-high 

resolution, we will only consider them in this review. 

Field asymmetric IMS were originally developed in the USSR [160] and first published in 1991 [43, 161]. 

While the separation principle differs from other IMS, it can be directly explained from eq. 6. A gas 

stream pushes ions along two parallel plates, the ion filter region, between which a time-varying 

separation voltage is applied as shown in Figure 3. It generates low E/N for a longer time and high E/N 

for a shorter time and in opposite direction. The integrals are identical so that ions with α(E/N) = 0 

would experience no net displacement along the electrical field axis. All other ions are deflected 

towards one of the plates depending on the shape of their alpha function. A small, constant 

compensation voltage is applied between the two plates and scanned to allow different ions to pass 

the filter region, obtaining a spectrum. Ion heating is obviously unavoidable in field asymmetric IMS, 

as it is the measurement principle [162–164]. Operation is possible under a wide range of pressures 

[165, 166]. 



 
Figure 3: Application of the electric field in a field asymmetric IMS 

Due to its operation at high E/N, measurement results of field asymmetric IMS can only be compared 

with measurements of high field drift tube IMS [167, 168]. However, this orthogonality to low field IMS 

also enables multidimensional IMS such as FAIMS-IMS setups [169, 170]. Furthermore, the alpha 

function shows less correlation with the ion mass than the collision cross section, possessing slightly 

better orthogonality to mass spectrometry than low field IMS [47]. As field asymmetric IMS act as a 

filter, they pass a continuous stream of selected ions and thus achieve 100% duty cycle if only a single 

ion species is being monitored. This is especially useful when coupling field asymmetric IMS to slow 

mass spectrometers. If multiple ions need to be monitored, the duty cycle drops accordingly and 

becomes one over the number of points in a spectrum. 

The peak width of a field asymmetric IMS accounting for the filtering effect and diffusion can be 

estimated according to eq. 23 [171]. Expressing the diffusion coefficient D through the ion mobility K 

by using the Nernst-Einstein-Townsend relation is in this case only of limited validity, as ion heating 

will increase diffusion disproportionally [31, 172]. Nevertheless, doing so as an approximation allows 

for vastly simplifying the equation to a form similar to those for other IMS. Increasing the time the ions 

spend in the filter tfilt or the ion mobility K narrows the peaks as ions not passing the filter move further 

towards the plates at the same compensation voltage. 
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The reduced compensation field strength Ec/N defining the peak position in the spectrum depends in 

a complex way on the shape of the alpha function, the shape of the applied separation voltage 

waveform and the magnitude of the reduced separation field strength ED/N. [43, 171, 173]. A rough 

approximation ignoring all terms of higher order is given by eq. 24. α2 is the first term of the series 

expansion shown in eq. 6, while f3 is the average of the cube of the separation waveform. Increasing 

any of the three coefficients in eq. 24 will move the peaks further apart from each other, improving 

resolving power at a constant peak width. It is interesting to note that the peak width depends on the 

absolute ion mobility, but the peak position on the alpha function. Therefore, resolving power can 

sometimes be a misleading quantity in field asymmetric IMS, as under certain conditions, groups of 

peaks may shift simultaneously to lower or higher compensation voltages. By carefully tuning 

experimental parameters to showcase such effects, it is for example possible to increase the apparent 

resolving power from around 20 to 7900 without any increase in resolution between the peaks [174]. 
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Being a non-linear separation method, more possibilities for improving separation performance exist 

compared to other types of IMS as shown by eq. 23 and eq. 24.  First, the filter time tfilt can be increased 



as needed by lowering the gas velocity. However, this will require larger gaps between the plates to 

still maintain acceptable ion transmission [171], as no focusing exists in planar field asymmetric IMS. 

Furthermore, the total measurement time already increases with increasing resolving power due to 

being an ion filter, as more points are needed to maintain the same number of points per peak [175] 

and can already be several minutes for a single high resolution spectrum. Thus, longer filter times are 

often not a feasible way to higher resolving power. Second, the ion mobility K can be increased by 

using high fractions of light gases such as helium or hydrogen in the drift gas, also increasing the energy 

uptake of the ions [175–178]. This has vastly helped to increase resolving power of field asymmetric 

IMS, however, there is no possibility to surpass the ion mobility in pure hydrogen or helium for further 

improvement. Furthermore, the increased risk of electrical breakdown has to be kept in mind. Third, 

the magnitude of the alpha function can be increased through modifiers which cluster with the target 

ions during the low field period  [179–181]. This can be an ion specific process and thus add selectivity, 

increasing the spread between different peaks even further. Fourth, changing the shape of the 

separation voltage waveform to better approximate a rectangular shape will increase f3 at the cost of 

more complex high voltage electronics and higher power consumption due to high charging currents 

[182, 183]. This optimization approach is obviously limited when having reached a rectangular shape. 

Fifth, increasing the reduced dispersion field, which is limited by breakdown based on Paschen’s curve 

[172, 178] and ion losses due to fragmentation at extremely high fields [184]. While most of these 

parameters have already been explored to their limit individually, the various possible combinations 

allow tuning field asymmetric IMS for the measurement task at hand. For example, it has recently been 

shown that maintaining resolving power is possible when replacing helium with nitrogen, thus 

widening the peaks, but increasing the dispersion field as possible by the higher electrical breakdown 

of nitrogen, thus increasing the peak shift [185].  

Using a mixture with 14 % nitrogen and 86 % hydrogen in combination with an extremely stable 

compensation voltage generator and filter times of 200 ms, a resolving power of 440 to 460 has been 

obtained for four times charged Syntide 2 [186]. Similar resolving powers were obtained in a 50/50 

mixture with 700 ms filter time. At these resolving powers and filter times, the total measurement 

time for scanning a single peak already exceeds one minute [186]. It was suggested that with better 

stability of experimental parameters during these timescales, resolving power might be significantly 

above 500. It is important to remember once again that FAIMS operates in a different separation space 

and thus, values for resolving power cannot be easily compared with other IMS. Nevertheless, ultra-

high resolving power in field asymmetric IMS translates to many separations not possible in low field 

IMS, for example distinguishing between isotopomers [41, 42]. 

Conclusion 

In this review, we have analyzed the main principles of ion mobility spectrometers with respect to 

ultra-high resolution and their limitations to further improvements. While drift tube IMS have the 

major advantage of providing a direct measurement of the ion mobility and collision cross section, they 

have most likely reached their maximum possible resolving power at values between 100 and 140 

when operated at low pressure. As higher fields are not permissible due to electrical breakdown and 

ion heating, the only way to increase resolving power at constant pressure is to increase the drift 

length. However, with instruments as long as 3 m, the practical limit for most applications has most 

likely been reached or even surpassed. Thus, higher resolving power in drift tube IMS is only possible 

when moving to higher pressures. Atmospheric pressure drift tube IMS provide, at the same low level 

of ion heating, much higher field strengths and thus faster analysis time in a smaller device. Here, 



increases in resolving power are still possible as long as the required drift voltages can be managed, 

allowing for full spectra to be recorded with ultra-high resolution in milliseconds. Current resolving 

powers are as high as 250 in a 15 cm long drift tube. 

Staying at reduced pressure while also circumventing the need for high voltage, increasing the effective 

drift length is another way to ultra-high resolving power. This can either be done by travelling a long 

folded drift tube, possibly even several times, such as in cyclic or SLIM travelling wave IMS or by 

pushing against a gas stream as in trapped IMS. At the cost of increased measurement time and 

requiring calibration to obtain collision cross sections, even higher resolving powers than possible with 

ultra-high resolution atmospheric pressure drift tube IMS can be obtained. Generally, the travelling 

wave variants reach the highest resolving powers with values of 550 and 1860, as it scales with the 

square root of additional measurement time. Resolving power in trapped IMS only scales with the 

fourth root of additional measurement time, however, measurement time can be set regardless of the 

physical drift length through the scanning rate and it is possible to scan only the ion mobility range of 

interest with high resolving power. This way, resolving powers of up to 400 have been achieved. 

Furthermore, differential or field asymmetric IMS offer an ion separation orthogonal to the above 

mentioned instruments. While no measurement of ion mobility or collision cross sections is possible 

and measurement times are extremely long for ultra-high resolving power, they offer additional 

possibilities for tuning the ion separation and, as an ion filter, deliver a continuous stream of ions for 

further analysis. This enables better coupling to slow mass spectrometers and even multidimensional 

IMS systems, such as FAIMS-IMS. 
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Table 1: Comparison of the different ultra-high resolution ion mobility spectrometers. 

 

Drift Tube IMS 

Cyclotron 
Cyclic- / SLIM- 

TW-IMS 
Trapped IMS FAIMS Atmospheric 

pressure 
Low pressure 

Measurable 
Quantities 

Mobility & CCS (Ω) 
 

Mobility & CCS (Ω) 
Alpha function 

Mobility & CCS (Ω) 
 

Mobility & CCS (Ω) 
 

Mobility & CCS (Ω) 
 

 
Alpha function 

Calibration required? 
No 

(reference standard) 
No Yes Yes 

No ion mobility 
measurement possible 

Ion Heating possibly 
relevant? 

No 
No / Yes  

(can be controlled) 
Yes Yes Yes Measurement principle 

Required voltage 𝑈 𝐸𝑚𝑎𝑥𝐿 
2𝐸𝑚𝑎𝑥𝐿

𝑚
 

𝐸𝑚𝑎𝑥𝐿

2𝑚
 𝐸𝑚𝑎𝑥𝐿 Not comparable 

Resolving power 
(Ω/ΔΩ) 

√𝐶 
𝑧 

𝑇
 𝑈 √𝐶 

𝑧 

𝑇
 𝐸𝑚𝑎𝑥  𝐿 √𝐶 

𝑧 

𝑇
 𝐸𝑚𝑎𝑥  𝑛𝐿 √𝐶 

𝑧 

𝑇
 𝐸𝑚𝑎𝑥

𝐾

𝐾𝑚𝑎𝑥

4𝑛𝐿 √𝐶 
𝑧 

𝑇
 𝐸𝑚𝑎𝑥

2√
2𝐿

𝛽
 
𝐾𝑚𝑖𝑛

4

𝐾3
 Not comparable 

Highest reported 
resolving powers 

(Ω/ΔΩ) 

250 (z=1) [53, 88] 
240 (z=4) [95] 

216 (z=11) [90] 

140 (z=1) [46] 
109 (z=2) [97] 

1040 (z=3) [102] 
1860 (z=1) [129] 
550 (z=1) [122] 

400 (z=1) [158] 
295 (z=7) [159] 
228 (z=1) [146] 

No ion mobility 
measurement possible 

460 (z=4) in CV/ΔCV 
[186] 

Time per 
measurement 

𝐿

𝐾𝑚𝑖𝑛𝐸
 

𝑛𝐿

𝐾𝑚𝑖𝑛𝐸
 

𝑛𝐿

𝐸
 

𝐾𝑚𝑎𝑥

𝐾𝑚𝑖𝑛
2 

𝑣𝑔

𝛽
(

1

𝐾𝑚𝑎𝑥

−
1

𝐾𝑚𝑖𝑛

) 

 
(β can vary during a 

measurement) 

𝐿

𝑣𝑔

 

Acquisition per 
measurement 

Full spectrum Single point 
Full spectrum for n=1 

Partial spectrum for n>1 
Full spectrum Single point 

Approximate time for 
a full spectrum 

Milliseconds Seconds to minutes Milliseconds to seconds  Milliseconds to seconds Seconds to minutes 
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