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Abstract: The realization of the increasing automation of production systems requires the guarantee
of process security as well as the resulting workpiece quality. For this purpose, monitoring systems
are used, which monitor the machining based on machine control signals and external sensors.
These systems are challenged by innovative design concepts such as hybrid components made of
different materials, which lead to new disturbance variables in the process. Therefore, it is important
to obtain as much process information as possible in order to achieve a robust and sensitive evaluation
of the machining. Feeling machines with force sensing capabilities represent a promising approach to
assist the monitoring. This paper provides, for the first time, an overview of the suitability of the
feeling machine for process monitoring during turning operations. The process faults tool breakage,
tool wear, and the variation of the material transition position of hybrid shafts that were researched
and compared with a force dynamometer. For the investigation, longitudinal turning processes with
shafts made of EN AW-6082 and 20MnCr5 were carried out. The results show the feeling machine is
sensitive to all kinds of examined errors and can compete with a force dynamometer, especially for
roughing operations.
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1. Introduction

In production, the aim is to achieve full automation of manufacturing through autonomous
machining processes. In this context, process monitoring systems are an important part of modern
production plants. They protect machines and machine operators from damage, reduce downtime,
and improve workpiece quality by eliminating chatter [1]. Rehorn et al. estimated, if the computer
numerical control (CNC) machine tool is equipped with a monitoring system, downtime can be
reduced by up to 20% while productivity can be raised by 50%. Machine utilization even increases by
more than 40% [2]. The increasing complexity of series production represents a challenge for process
monitoring. This also includes the use of new design strategies, e.g., by combining different materials
in hybrid workpieces. These workpieces with locally adapted properties offer a promising approach for
designing components with energy-efficient applications while reducing the use of high-alloy materials.
This is the main focus of the Collaborative Research Center (CRC) 1153, where material combinations
are joined and formed with different processes and then machined [3,4]. Due to different material
properties and chemical compositions, the machining properties and chip formation mechanisms
change during the cutting process and pose challenges for machining. In particular, the force gradient
during material transition can lead to increased tool wear and the various material properties affect
the workpiece geometry and surface quality. In addition, the trend to single part production or small
batch sizes as well as the high demands on surface quality and manufacturing tolerances pose further
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challenges. For this reason, modern process monitoring systems must be provided with process
information of the highest possible quality.

In this context, more monitoring approaches that combine different signals and features are
being researched [5–7]. A process parameter that offers a high level of information regarding various
production errors is the process force [2,8]. Balsamo et al. showed that a catastrophic tool failure during
turning can be monitored by multi-sensor signal processing of force and acoustic emission [9]. Jie et al.
successfully developed an approach for tool condition monitoring during the machining of titanium
alloys, which is also based on the force and acoustic emission signal [10]. In addition, the development
of a cloud-based framework for monitoring manufacturing processes for online process monitoring
services takes into account process force information due to its high sensitivity [11]. In general,
the machine tool does not provide detailed information about forces. Therefore, various approaches
have been studied in the past to extract this information parallel to the machining. A method to obtain
information about the process force is to extract the process components from control signals [12,13].
This is associated with a high modelling effort, which has to be carried out for each machine due to
manufacturing and assembly tolerances. By using external sensors, process forces can be measured
with high sensitivity [14,15]. These sensor systems require high acquisition costs, are limited in their
flexibility, and restrict the installation space for workpieces [16]. Further approaches to determine
process force information have focused on modelling forces by virtual processing [17]. The simulations
reach their limits if tool wear and thermal effects are to be considered in real time. In addition, a high
modeling effort is required to take the structural dynamic effects into account. To overcome these
challenges, Denkena et al. developed the idea of the "feeling" machine tool. They integrated sensory
machine components, which are placed close to the process and are located directly in the force flow.
These sensory components are equipped with strain gauges that measure the structural strain caused
by the process force. Forces are then reconstructed from the strains. With this approach, the static and
dynamic behavior of the machine structure is generally maintained and a flexible force measurement
is realized. In milling machines, the spindle slides have been modified to become a sensory machine
component. Based on the force sensing properties of the slide, the static tool deflection was determined
during the process. The workpiece quality was improved by online adaptation of the tool position
using an axis offset [18]. The monitoring of geometrical errors of the workpiece was investigated by
a feeling clamping system for a milling process. Therefore, holes were drilled into the workpiece
to represent a material defect for a subsequent flank milling operation. A dynamometer was used
as a reference. The errors could be detected by both measuring systems based on confidence limits.
However, due to a lower signal-to-noise ratio, the feeling clamping system had a lower sensitivity to
the error [19]. Denkena et al. integrated metallic strain gauges in four carriages of a linear guide of
a spindle-driven position axis [20]. The load on the carriages could be measured in two directions
orthogonally to the direction of travel. The quality of the recorded measurement signals was suitable
for detecting parallelism errors in the linear guide. Based on the achieved force, sensitivity process
monitoring could not be performed.

This paper focuses for the first time on the investigation of the suitability of a feeling machine
for process monitoring of turning operations. In this context, the process force is measured based
on a feeling turret during machining and is compared with the measured forces of a dynamometer.
Individual process errors, which affect the process and workpiece quality, are investigated. These
include tool breakage, tool wear, and the varying material transition position of hybrid workpieces.
Based on the considered process errors and the measuring accuracy of the feeling turret, the sensitivity
of the monitoring is discussed for various process parameters.
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2. Materials and Methods

2.1. Materials

When researching the system, different investigations were performed with two different materials,
which were presented in Table 1. The samples were shafts with a diameter of 30 or 40 mm and a
length of 120 mm. Mono-material components were selected to investigate tool breakage and tool wear.
When studying the performance of material detection friction-welded specimens, two mono-material
shafts were used.

Table 1. Material properties.

Material Properties EN AW-6082 20MnCr5

density [g/cm3] 2.70 7.75
hardness [HV] 100 268

ultimate tensile strength [MPa] 310 980–1280
Young’s modulus [GPa] 70 210

thermal expansion coefficient [10−6K−1] 23.4 11.5
thermal conductivity [W/mK] 170–220 42

2.2. Machining and Data Acquisition

Experimental tests were carried out on the turning center Gildemeister CTX420 linear (Germany).
An industrial personal computer (IPC) was connected to an open platform communication server and
fieldbus interface of the Siemens Powerline 840D machine control (München, Germany) as well as to
the CAN bus of the feeling turret. For the longitudinal turning, an indexable insert DNMG150404-FP5
by Walter AG (Tübingen, Germany) was used. The machining operations were all carried out without
the use of cooling lubricant. The process force was measured by the sensory abilities of the turret,
which is equipped with strain gauges (HBM, Darmstadt, Germanycountry). The strain gauges were
set up as a Wheatstone-bridge and glued into the notch ground. The notches were designed by
finite element simulation to increase the measured strain. A total of six strain gauges were set up as
Wheatstone-bridges are placed on the turret. The signals are digitized by electronic devices close to the
measuring position and transmitted to the IPC via a CAN-BUS [21]. According to the occurring strains
during machining, the forces were calculated. The determined force resolution of the feeling turret is
64 N in the x-direction, 43 N in the y-direction, and 44 N in the z-direction. A dynamometer (Kistler
9129A, Winterthur, Switzerland) was used as a reference for the force measurement. Both systems have
a sampling rate of 1000 Hz. The low-pass frequency for the feeling turret is 25 Hz and 30 Hz for the
dynamometer. The passive force Fp acts in the x-direction, the cutting force Fc acts in the y-direction,
and the feed force Ff acts in the z-direction. The numerical control (NC) provided the axis positions
with a frequency of 83 Hz. The measurement setup is shown in Figure 1.

Within the evaluation, the process force was also simulated to investigate the process parameter
range in smaller steps. The force model was used according to Kienzle [22]. The Kienzle parameters
applied for the modelling were determined experimentally on the presented test set-up for the material
and tool combinations. These parameters are shown in Table 2.

Table 2. Summary of Kienzle parameters.

Parameter Symbol Material

20MnCr5 EN AW-6082

specific cutting force kc1.1 2140 N/mm2 742 N/mm2

material exponent mc 0.250 0.236
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Figure 1. Presentation of the measurement setup.

2.3. Simulation of Process Errors

A tool breakage can result in a sudden increase in process force. This can be caused by the
broken cutting-edge jamming between the tool and workpiece. Afterward, the process force decreases
because the gap between tool and workpiece must first be overcome by the travel movement. Then the
remaining part of the tool collides with the workpiece, which increases the process forces again [23].
The described drop in force was simulated in the experiments by a material defect depicted in Figure 2a.
The missing material results in an identical force characteristic as in the case of a tool breakage.
The advantage of these simulated errors is the reproducibility and the fact that the machine tool
components are not critically stressed. To investigate, if tool wear can be identified with the systems,
the resulting force for machining with a new and a worn tool was measured. The worn tool exhibits a
cutting-edge failure with a length of 465 µm, which is depicted in Figure 2b.
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Figure 2. (a) Prepared workpiece and (b) presentation of the new and worn tool.

2.4. Monitoring

The confidence limits for monitoring tool breakage were calculated by performing 10 longitudinal
turning operations. The measured cutting forces were used to calculate the upper Lup and lower Llow
confidence limits. Thus, the confidence estimator approach according to Brinkhaus was used [24].
The confidence limits were updated after each process based on the expected mean value x standard
deviation σ, and a safety value Csaftey for each running measurement value i. The safety value influences
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the distance between x and the confidence limits. A safety value of Csaftey = 6 was used, which is
usually the default setting of a monitoring system.

Lup, low(i) = x(i) ∓Csa f tey·σ(i) (1)

In order to take account of temporal fluctuations, the confidence limit was calculated for a function
h(i). This function determines an envelope for the expected value x(i), which allows a time lag for a
specified time K. During the investigations, K was set to 100 ms. Based on this value, no false alarms
occurred after four processes in the teach-in phase.

hup(i) = max(x(i−K), . . . , x(i + K))
hlow(i) = min(x(i−K), . . . , x(i + K))

(2)

According to the combination of Equations (1) and (2), the shift of time and amplitude was taken
into account when calculating the confidence limits. The values of h and σwere calculated by a moving
average to allow dynamic weighting of the different measurements.

Lup(i) = hup(i) + Csa f tey·σ
(
hup(i)

)
Llow(i) = hlow(i) −Csa f tey·σ(hlow(i))

(3)

For detecting the currently machined material, the material-specific cutting force MatFc was
monitored [25]. In this approach, the cutting force Fc was normalized by the material removal rate
Qw. The material removal rate was calculated online using a dexel-based cutting simulation. Input
parameters for the simulation were the axis positions from the machine control. A material compound
was subsequently monitored on the basis of a defined boundary surface.

MatFc = Fc/Qw (4)

3. Results and Discussion

3.1. Tool Breakage

In cutting operations, process errors typically lead to an increase or decrease of the process force.
For this reason, the process force is well suited for a sensitive and robust monitoring in machining.
To determine the sensitivity of force measuring systems, material defects can be applied to the workpiece.
Similar to tool breakage, missing material lead to a drop in the process force. This characteristic was used
in order to compare the cutting force Fc,SG, which was determined by the feeling turret, and the cutting
force Fc,dyn, which was measured with the dynamometer. A longitudinal turning process was carried out
with a new tool for a cutting speed of 300 m/min and a feed rate of 0.1 mm. During machining, the depth
of cut was reduced stepwise from 1 to 0.1 mm. This process was repeated 10 times. Afterward, a shaft
was machined, which was prepared with a groove that had a width of 3 mm. The missing material
causes a decrease in cutting force at each depth of cut, depicted in Figure 3.

The comparison of the two force measurement systems showed that they have an identical time
behavior with regard to the signal change. The amplitude of the decreasing cutting force is also
identical for both systems. Therefore, it can be concluded that both systems are highly sensitive to
a change in cutting force due to tool breakage. However, by comparing the signals of the 10 good
processes, it becomes clear that the cutting force Fc,SG has a lower signal-to-noise ratio (SNR).

SNR = µ/σ (5)

The SNR was determined for each depth of cut ap by the mean value of the amplitude µ and the
standard deviation σ of the signal. The results of the SNR for both measuring systems are summarized
in Table 3.
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Table 3. Signal-to-noise ratio for the measured cutting force by using the dynamometer and feeling turret.

Signal-to-Noise Ratio (SNR) Depth of Cut ap [mm]

1 0.5 0.3 0.2 0.1

cutting force by dynamometer Fc,dyn 46 149 78 90 70
cutting force by feeling turret Fc,SG 40 26 16 12 7
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The SNR was determined for each depth of cut ap by the mean value of the amplitude µ and the
standard deviation σ of the signal. At an ap of 0.5 mm, Fc,dyn exhibits an SNR of 149. With a decreasing
ap, the SNR also decreases further. For ap = 0.1 mm, the SNR is still 70. The measured cutting force by
the dynamometer has the lowest SNR for ap = 1 mm with 46. The deviation to the other depths of cut
is caused by different chip formation, which led to a higher vibration of the system. For ap = 1 mm,
the Fc,SG shows a similar SNR with 40. However, with each reduction of ap, the signal-to-noise ratio
decreases for the signal Fc,SG. For the depth of cut of ap = 0.1 mm, the SNR is 7 and, thus, lower by a
factor of 10 compared to Fc,dyn. The repeatability of the individual measurements also shows a different
quality for both signals. The evaluation of the 10 good processes demonstrates that the cutting force
Fc,SG has larger variations between the measurements than Fc,dyn. With a depth cut of ap = 1 mm,
the standard deviation σi for the mean amplitudes of the different workpieces is for both systems
being almost identical with approximately 15 N. By changing the process parameters to a lower ap,
the standard deviation decreases for Fc,dyn to σi = 1.7 N while σi of Fc,SG is around 10 N.

If confidence limits are used to monitor the signal, the higher signal-to-noise ratio and variation of
the mean amplitude leads to a widening of the statistical limits and, thus, to a decreasing monitoring
sensitivity. In order to compare Fc,SG and Fc,dyn with regard to their qualification for confidence limit
based monitoring, the feature of the normed bandgap (NB) was determined [26]. The normed bandgap
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indicates the range in which the normalized signal has to be changed to trigger an alarm. For this
purpose, the confidence limit was calculated based on the distribution of the signal around its long-term
average. After eight processes, the limits had become close to the process. A further approximation
was only possible in very small steps due to the high standard deviation of the measured signal. It can
be assumed that 10 measurements are sufficient to generate the confidence limit and calculate the NB.

NB =
k
x
=

Lup − x
x

(6)

To evaluate the monitoring quality, the gap between the mean value x and the upper confidence
limit Lup was evaluated. The distance k between x and Lup was normalized to the average. Figure 4
shows the confidence limits after 10 processes for the cutting forces Fc,dyn and Fc,SG and the comparison
of the normed bandgap (NB) for both measuring systems.
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process with different depths of cut.

The sensitivity of the confidence limit, which is calculated based on the cutting force of the feeling
turret, declines with decreasing force. This is reflected by the increasing normed bandgap. For an ap of
1 mm, both signal sources achieve a similar monitoring performance. At a normed bandgap of 0.3,
a process error must result in a signal change of 30% to trigger the alarm. The ratio remains between
NB = 0.1–0.2 for all examined depths of cut if the cutting force is measured with the dynamometer
(Kistler, Winterthur, Switzerland). If the feeling turret is used, the normed bandgap for ap = 0.3 mm
shows a maximum of NB = 0.8. The NB increases to 2 with a reduction of ap to 0.1 mm. Thus,
the sensitivity of the dynamometer is higher by a factor of 10 compared to the feeling turret. The fact
that the feeling turret has a significantly lower sensitivity at low process forces is based on the lower
measurement resolution of the system relative to the dynamometer. This is primarily due to a higher
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signal-to-noise ratio, which has an increasing impact on the stochastic distribution of the signal for
lower cutting forces. A generalized statement about the required NB of a signal cannot be made since
each error is represented differently in the signal. However, based on the investigations, it is considered
when no finishing operations can be monitored by the feeling turret. For roughing operations, on the
other hand, a similar monitoring quality as with the dynamometer can be achieved.

3.2. Tool Wear

Tool wear generally leads to a change in process force. With increasing flank wear, friction
increases, which, in turn, leads to an increasing cutting force and cutting temperatures. If the wear
is mainly caused by crater wear, the change in rake angle can lead to a decrease in cutting force.
Consequently, the change in cutting force is also an indicator for monitoring the type of wear that
will influence the process and the workpiece quality. Tool wear is usually monitored by a static limit.
Therefore, the average measured cutting force with a new tool is determined for a predefined tool
path. Based on empirical values, a maximum tolerable change in force is defined as the limit for
the tolerable wear. If the limit is exceeded, the monitoring system initiates a tool change before an
intolerable influence on the workpiece quality occurs. In contrast to the confidence limits, the influence
of the signal-to-noise ratio on the monitoring quality is significantly lower since the average value is
evaluated over a defined range of the monitored signal. For a sensitive and robust monitoring of tool
wear, the repeat accuracy is mostly important. In addition to the 10 good processes with a new tool,
three measurements were carried out with a tool, which has a high chipping length of 465 µm. During
the machining, identical process parameters of ap, f, and vc were used as for the previous longitudinal
turning operations, depicted in Figure 5.
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Tool wear results in an increasing cutting force, which varies according to the depth of cut. At a
depth of cut of ap = 1 mm, an increase of 24% occurs with 158.5 N for Fc,dyn. With a reduction to
ap = 0.5 mm, the wear lead to an average increase in the cutting force of 38.6 N, which represents a
percentage change of 13%. The triple standard deviation of the measurements with the new tool is
3σ = 9 N for Fc,dyn. Assuming tool wear can be detected, if this value is lower than the resulting change
in cutting force, monitoring can be performed for both ap. The increase of Fc,dyn at an ap of 0.3 mm
is, therefore, with 7.5 N too small to detect the current tool wear for the defined process parameters.
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For the feeling turret, a 3σ for Fc,SG of 53 N is determined at a depth cut of 1 mm. Thus, the tool wear
can be robustly identified for ap = 1 mm. For the remaining process parameters, the variation of the
average cutting force is too low to realize tool wear monitoring.

As shown by the different depths of cut, no general statement can be made about the effect of
tool wear on the percentage change in cutting force. Therefore, it is not possible to make a universal
prediction of the ability to monitor tool wear. The influence of the wear mechanisms on the cutting
force vary significantly based on the selected process parameters. For this reason, it is more relevant to
compare what change in cutting force caused by tool wear can be theoretically identified with different
signals. For this purpose, the cutting force was modelled according to Kienzle for a new tool and three
wear-related force increases. The variation of the cutting speed has a smaller influence on the force
compared to the feed and depth of cut. For this reason, the cutting speed was fixed for the research
at vc = 300 m/min. Based on the modelled cutting forces, an increase in force was determined for a
combination of process parameters. It is assumed that the change can be monitored if the difference is
higher than the triple standard deviation 3σ of the cutting force measurement. Based on the previous
investigation, 3σ was set to Fc,dyn,3σ = 9 N and Fc,SG,3σ = 53 N. For both measuring systems, it process
parameters were researched at which a force difference of 10%, 20%, and 30% results can be detected
by the individual system, which was depicted in Figure 6. This investigation was carried out for a steel
(20 MnCr5) and an aluminum (EN AW-6082).
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Figure 6. Representation of the monitorable percentage increase of the cutting force for EN AW-6082
and 20MnCr5 based on the feeling turret and dynamometer.

With the dynamometer, almost the total process parameter range considered for both materials
can be monitored with regard to the three selected percentile cutting force changes. Only for aluminum,
the theoretical detection is not possible for low depths of cut and low feeds. In this case, the cutting
force difference caused by a wear-related force increase of 10% is too low. The evaluation of the cutting
force measured by the feeling turret shows the potential for monitoring tool wear for a wide range of
process parameters. Especially for steel, a large range is covered. For aluminum, higher ap and f are
required due to the different material properties. For the highest expected change of 30%, this includes
process parameters of ap = 0.5 mm and f = 0.17 mm. In the case of aluminum, large parts of the
considered process parameter range can theoretically not be monitored, especially if the cutting force
changes by only 10% due to tool wear. In general, higher ap and f are used for machining aluminum
than for steel. Then tool wear can also be monitored for aluminum during roughing operations.
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3.3. Material Detection

The online detection of the machined material is needed to realize a material-specific machining
of hybrid components. For this reason, the sensitivity of monitoring a material compound based on the
material-specific cutting force was investigated. A longitudinal turning process of EN AW-6082 and
20MnCr5 was performed and the signals of the dynamometer and the feeling turret were compared by
the statistical overlap factor (SOF). The SOF determines the degree of separation of the material-specific
cutting force between the first and second material. If a signal shows a high degree of separation due
to different material properties, the SOF increases. In addition to the resulting standard deviation
when measuring the cutting force, the influence of the variance of the simulated material removal
rate Qw was considered. The determined triple standard deviation for the simulation of Qw is 3–4%.
With Qw,min, the value at the lower end of the triple standard deviation is taken into account for the first
material i. In contrast, Qw,max is assumed for the second material j. This results in the material-specific
cutting force being calculated too low for steel and too high for aluminum in order to obtain the highest
possible variation. To guarantee robust monitoring, an SOF greater than six is necessary to separate
two materials during machining.

SOFi j =

∣∣∣∣ Fc,i
Qw,min

−
Fc, j

Qw,max

∣∣∣∣
σ
(

Fc,i
Qw,min

)
+ σ
(

Fc, j
Qw,max

) (7)

With a constant ap of 1 mm, the SOF was calculated for a varying feed rate of f = 0.1–0.4 mm and
a cutting speed of vc = 200–400 m/min, which are depicted in Figure 7. The influence of the simulation
error of Qw on the calculated SOF can be neglected. For the investigated aluminum-steel compound,
the SOF decreases by a maximum of 5% if the highest possible variation of Qw is considered instead of
assuming a constant value for Qw. The significant impact is, therefore, the measuring accuracy and the
signal-to-noise ratio of the cutting forces.
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For the feeling turret, the sensitivity of the monitoring system improves if the the feed and,
thus, the cutting force is increased. This is because the SNR is much more significant in the signal of
the structure-integrated strain gauges compared to the signals of the dynamometer. Consequently,
the SNR has a larger impact on the measurement of Fc and, subsequently, on the quality of the material
identification at lower process forces. For a feed of f = 0.1 mm, the average measured SOF is 6.0, while,
at f = 0.4 mm, the average SOF increases to 12.6. With the dynamometer, this effect does not appear
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due to the lower SNR. However, the SOF also varies for the material-specific cutting force measured by
the dynamometer over the examined process parameter range. This is caused by the higher sensitivity
to varying chip formation. Different chip forms results in changing peak2peak values of the signal
and, consequently, in different standard deviations of the force signal. This effect is less significant for
strain gauges due to the higher damping of the turret structure. In general, a higher SOF value and,
thus, better sensitivity is achieved by using the dynamometer for all considered process parameters.
The maximum statistical overlap factor is 23.9 while the minimum SOF is 13.5. Both measuring systems
are, therefore, qualified to robustly monitor the material during the machining of the aluminium-steel
compound for the examined process parameter range.

4. Conclusions

This paper presents the investigation of the application of a feeling machine for process monitoring.
In order to replace the dynamometer, a feeling turret was used, which determines process forces based
on the structure’s integrated strain gauges. The monitoring quality was compared with the performance
of a dynamometer regarding the detection of tool breakage, tool wear, and material transitions of
hybrid components. Investigations have shown that, especially in roughing operations, which are
characterized by higher process forces, the feeling turret has a good monitoring performance. At depths
of cut of ap = 1 mm, similar sensitivities were determined for monitoring with confidence limits as
with a dynamometer. If steel is machined, tool wear can be detected with the cutting force of the
feeling turret for roughing and finishing processes. For aluminum, on the other hand, only monitoring
roughing processes can be realized. However, it must be assumed that the tool wear also leads to
a significant change in cutting force of 10–30%. Similar to the dynamometer, the feeling turret is
suitable for monitoring the materials of aluminium-steel compound (EN AW-6082/20MnCr5). For the
examined process parameter range, the statistical overlap factor was higher than six. Consequently,
a classification of the materials based on the material-specific cutting force can be achieved. In further
steps, it will be investigated how the fusion of signals from the feeling machine and process data from
the machine control and external sensors can be used to improve the monitoring quality.
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