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Abstract

The mechanical torque input into the wind turbine drive train is a very useful measurement

for tests performed on a test bench. To ensure the accuracy and the reliability, an accurate

calibration of the torque measurement must be carried out and repeated within a certain period

of time. However, owing to the high torque level and large structure size, such a calibration is

both expensive and time consuming. To overcome this challenge, a new calibration method is

proposed here. The method is based on the electrical power measurement, where a high level

of accuracy is much easier to achieve. With the help of a special test process, a relationship

between the torque-measuring signal and the electrical power can be established. The process

comprises two tests with the drive train running in different operating modes. The calibration

is possible by carrying out the same test process on several different torque levels. Detailed

uncertainty analysis of the method is presented, whereby the uncertainty can be calculated by

means of matrix operation and also numerically. As a demonstration, the implementation of

the method on a test bench drive train that contains two 5-MW motors in tandem with the

motors operating in a back-to-back configuration is also presented. Finally, some variations on

the method and possible ways of achieving better accuracy are discussed.
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1 INTRODUCTION

The mechanical torque plays a very important role in the power transmission of wind turbines, transferring the mechanical power gained by the

rotor all the way to the generator. Although due to certain restrictions the mechanical torque measurement (referred to simply as the "torque"

below) is still not widely used in the everyday operation of wind turbines, it is indeed always an interesting variable for turbine tests both in a

laboratory environment and in the field. Torque measurement is vital for the determination of the drive train efficiency, as well as the aerodynamic

efficiency of the rotor. The enormous pressure to reduce costs in the wind energy industry makes efficiency a key parameter of the turbines on

the market. Additionally, the level and variation of the input torque also have a strong influence on the fatigue damage of the components in the

drive train, especially the gearbox.

Multi-MW wind turbines have one of the highest torque levels found in modern industries, along with hydro power and the shipbuilding,

for example. For newer wind turbines with high rated power, the rated torque can be close to 10 MN·m, while the extreme torque is even

higher. A calibration traceable to a national or international standard at this level is not possible at present, since the largest such calibration

capacity available anywhere in the world is only 1.1 MN·m,1 which is owned by the German national metrology institute PTB in Braunschweig.

The governing calibration standard is the German DIN 51309 standard.2 A new torque standard machine with a capacity of 5 MN·m is under

development at the PTB.3 Until adequate calibration capacity becomes available, the torque measurement can only be partially calibrated.

Measurement behaviour beyond that has to be extrapolated.4 Using this concept, the PTB has developed a 5-MN·m reference torque transducer
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(also known as "torque transfer standard").5,6 It is intended to be a movable reference torque measurement, which can be used to calibrate other

torque-measuring devices, for example on a wind turbine test bench. The PTB 1.1-MW torque standard machine has a relative uncertainty of 0.1

%.7 The partially calibrated and extrapolated 5-MN·m torque transfer standard (TTS) has been found to have a relative uncertainty of 0.15 %.5

This level of torque accuracy would be more than sufficient for the efficiency determination of the drive train. However, in order to achieve this

accuracy in the test, a state-of-the-art torque transducer similar to the PTB 5-MN·m TTS (or the TTS itself) has to be installed directly in front of

the drive train. Since the design, manufacture, and calibration of such torque transducers require high levels of professionalism, and also because

each transducer has to be individually customized for the specific application, the cost of such transducers can be a big challenge for industrial use.

As a fundamental variable, torque measurement is instrumented in almost all the nacelle and drive-train test benches for wind turbines.

However, there is no standard method for torque measurement. The solution for the measurement is mostly individually designed or specified for

each of the test benches. Some discussions about the different methods used on the nacelle test benches are given in the work of Foyer et al.6

For test benches that apply 6-DOF (degree of freedom) loads, the torque-measuring device is usually not located directly between the test

bench and the turbine nacelle. Instead, in order to reduce the impact of the non-torque loads and protect the torque transducer against the

shocks, the inherent torque-measuring devices of such test benches are often located behind the load application unit (LAU) that applies for

example the bending moment. As a result, the friction torque of the LAU can introduce a major uncertainty to the input torque for the turbine,

especially given that the friction torque is also highly temperature and load dependent. Research undertaken by Kock et al8 has studied the

friction behaviours of a specific LAU system on a 4-MW test bench,9 aiming to quantify the friction torque and the uncertainty introduced by

the LAU system. To measure the input torque to the turbine directly, the torque transducer needs to be very robust, in order to withstand the

large non-torque loads. One possible way is to use the shaft adapter between the test bench and the nacelle as a torque-measuring device.

Certain strain gauge connections can be applied on the cylindrical adapter to measure the torque-introduced strain on the adapter. A calibration

of enough accuracy is then necessary in order to convert the strain signal into torque.

For simpler test benches that apply only the torque, for example, the common end-of-line test benches of the turbine manufacturer, the

accompanying non-torque loads are not as critical as above. In this case, torque measurement with professional torque transducers would be

possible, but measuring with strain gauges on the adapter or connection shaft is still very attractive with lower cost of both funding and time.

On both types of test benches, accurate and regular calibrations are vital for the torque measurement where the accuracy is important, for

example, to determine the drive-train efficiency. However, the high cost and great effort required for the calibration often make it impossible to

achieve the desired high accuracy. Therefore, it makes good sense to seek a calibration process that is cost effective, practical to perform, and

easy to repeat. Even for those applications where an accurate torque measurement is not necessary, for example when an uncertainty below 5

% is sufficient, such a calibration process is also an important means of validation.

This paper proposes a new calibration method that establishes a relationship between the torque and the electrical power, so that the torque

measurement is indirectly calibrated through the electrical measurement. The relationship is determined through a series of tests whereby the

test bench and the turbine nacelle take turns to drive and generate power. Because no additional structural reconfigurations and only limited

instrumentation are needed for carrying out the calibration, the method has a clear advantage in time and cost perspectives. Due to a parameter

estimation adopted in the process, the method cannot be categorised as traceable calibration, which is strictly traced back to the national or

international standards with known uncertainty. But for easier understanding, the term ‘‘calibration’’ is still used in this paper to describe the

process of determining the linear relationship between the measured raw signal and the torque. As a countermeasure to the estimation, a detailed

analysis of the uncertainty budget related with the method is presented in this paper.

2 TEST PROCESS

In the previous study, a test process was proposed to determine the drive train efficiency with limited accuracy of the torque measurement.1011

A further study has shown that the same test process can also be used for the calibration of the torque measurement. A relationship between

the torque and the power measurement can be obtained through the test.

Two tests are necessary for the process, which are named test A and test B, respectively. The layout and the configuration of the tests are

illustrated in Figure 1, where the power losses through the drive train are demonstrated using the level change of the power curves. In the

figure, Pmech.A and Pmech.B are the mechanical powers at the measuring point for test A and test B, while Pelec.A and Pelec.B are the corresponding

electrical powers. Similarly, TA and TB denote the mechanical torques for the two tests, while 𝜔A and 𝜔B represent the speeds of rotation.

Torque measurement is realised on the shaft adapter between the test bench and the nacelle. Electrical power is measured between the turbine

generator and the converter. Additionally, position and rotational speed of the shaft are also measured by the incremental or absolute encoder

near the shaft adapter.

• In test A, the test bench and the turbine nacelle both operate in their normal mode. The test bench drives the nacelle running at a specific

operating point. A warm-up operation should be carried out prior to the test in order to achieve stable temperature conditions for the

components that influence the transmission and power conversion efficiency of the nacelle. The test should be run for a period of time, so

that influences from the non-torque loads and the structural dynamics can be well compensated in the mean measurement value.

• In test B, the power flows in the direction opposite to that in test A. The nacelle operates in motor mode while the test bench acts as a

generator. The nacelle drives the whole set-up so it is running at the same speed but in the direction opposite to that in test A. The measured
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FIGURE 1 Layout and power loss demonstration of test A and test B

FIGURE 2 Levels of mechanical and electrical powers in test A and test B
[Colour figure can be viewed at wileyonlinelibrary.com]

electrical power input to the nacelle generator should be carefully tuned to be as close as possible to the output power that is measured

during test A. The test should also run for a similar time length as in test A.

For comparison, the input and output power levels of test A and test B can be plotted together as shown in Figure 2, where P̄mech.A and P̄mech.B

are the mean values of the mechanical power in test A and test B, respectively, and P̄elec.A and P̄elec.B represent the mean values of the electrical

power. It is worth emphasising that these four variables are the theoretical true values. The rotational speed is controlled to be stable throughout

each test; therefore, the kinetic energy of the drive train inertia does not play a role in the equilibrium of the mean powers over a period of time.

The mean power loss in each of the tests can be expressed by definition as the difference between the input and output mean powers. This

is shown in Equation (1), where P̄loss.A and P̄loss.B denote the mean value of the power loss in test A and test B, respectively. As the equation is

expressed by the definition, P̄loss.A and P̄loss.B are also the true values without any uncertainty.

⎧⎪⎨⎪⎩
P̄loss.A = P̄mech.A − P̄elec.A

P̄loss.B = P̄elec.B − P̄mech.B.

(1)

The factor k is introduced as the relationship between P̄loss.A and P̄loss.B, as expressed in Equation (2). The equation can be further transformed

into the expression in Equation (3), with the relationship from Equation (1).

P̄loss.A = kP̄loss.B, (2)

P̄mech.A + kP̄mech.B = P̄elec.A + kP̄elec.B. (3)

Other than drawing the relationship between the mechanical and electrical powers through the absolute drive train efficiency, Equation (3)

forms the relationship based on the distribution of total power loss, which is depicted through a dash line in Figure 2. This is also the basis of the

torque calibration method proposed in the present paper.

3 METHOD OF TORQUE CALIBRATION

The mean values of the mechanical power P̄mech.A and P̄mech.B can be expressed as the accumulated energy divided by the corresponding duration,

where the accumulated energy is the integrated torque in the angle domain. As a result, Equation (3) can be expressed further as Equation (4). In

this equation, T denotes the torque, tA and tB are the durations of test A and test B, respectively, 𝜃A and 𝜃B are the corresponding accumulated

angle displacements in test A and test B. Since the angular position is the raw signal from the encoder, it is more accurate to determine the power

with the help of angle domain integration. Although encoders are often used on a wind turbine for measuring the rotational speed, the speed is

in fact a derivative of the original position signal. For better accuracy, 𝜃A and 𝜃B can be chosen as integer multiples of 2𝜋, so that the influence of

the non-torque loads can be better compensated with signal from integer number of revolutions.

∫ 𝜃A

0 Td𝜃

tA
+ k

∫ 𝜃B

0 Td𝜃

tB
= P̄elec.A + kP̄elec.B. (4)
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Replacing the theoretical true variables with the measured values, T and Pelec can be expressed as in Equation (5), where

• 𝜀 represents the measured raw signal from the the torque measurement channel. In many cases, the raw signal is the strain measured by the

strain gauges. Depending on the measurement principle and the channel configuration, the raw signal can also be other variables.

• a and b are the sensitivity and offset parameters that define the linear relationship between the measured raw signal 𝜀 and the true torque T.

Due to the non-linear behaviour of the measurement and external influences, the real relationship can be more complicated than the linear one

defined by a and b. The discrepancy from the linear behaviour is attributed to a time-varying quantity r(t), which also includes the repeatability

error of the measurement, for example the error caused by temperature change and the noise from EMI (Electromagnetic Interference).

• P̃elec is the measured signal of the electrical power. c and d are the sensitivity and offset errors of the measurement with respect to the

true electrical power P. Similar to the r(t) in the torque measurement, q(t) denotes here the non-linearity and the repeatability errors of the

electrical power measurement.

⎧⎪⎨⎪⎩
T = a𝜀 + b + r(t)

Pelec = (1 + c)P̃elec + d + q(t).
(5)

Using the definitions in Equation (5), the mean torque values can be expressed as Equation (6), where 𝜔̄A and 𝜔̄B are the mean rotational

speeds in test A and test B, respectively. For the mean rotational speed, no distinction is made here between the theoretical true value and the

measured value. The high positional accuracy provided by the encoder and the relatively long test period make it possible that the error of the

measured mean speed can be regarded as zero. The right-hand side of Equation (4) can be expressed as Equation (7), with ̄̃Pelec.A and ̄̃Pelec.B being

the mean values of the measured electrical power in test A and test B.

Defining RA = 1

tA
∫ 𝜃A

0 r(𝜃)d𝜃, RB = 1

tB
∫ 𝜃B

0 r(𝜃)d𝜃, QA = 1

tA
∫ tA

0 q(t)dt, and QB = 1

tB
∫ tB

0 q(t)dt, Equation (4) can be transformed into Equation (8).

⎧⎪⎪⎨⎪⎪⎩

∫ 𝜃A

0 Td𝜃

tA
= a

tA ∫
𝜃A

0
𝜀(𝜃)d𝜃 + b𝜔̄A + 1

tA ∫
𝜃A

0
r(𝜃)d𝜃

∫ 𝜃B

0 Td𝜃

tB
= a

tB ∫
𝜃B

0
𝜀(𝜃)d𝜃 + b𝜔̄B + 1

tB ∫
𝜃B

0
r(𝜃)d𝜃,

(6)

P̄elec.A + kP̄elec.B = (1 + c)( ̄̃Pelec.A + k ̄̃Pelec.B) + d(1 + k) + 1
tA ∫

tA

0
q(t)dt + 1

tB ∫
tB

0
q(t)dt, (7)

a(
∫ 𝜃A

0 𝜀d𝜃

tA
+

k ∫ 𝜃B

0 𝜀d𝜃

tB
) + b(𝜔̄A + k𝜔̄B) + RA + RB = (1 + c)( ̄̃Pelec + k ̄̃Pelec) + d(1 + k) + QA + QB. (8)

Denoting X and Y as expressed in Equations (9) and (10), the relationship defined in Equation (4) can be expressed in a concise form shown in

Equation (11). A very clear linear relationship is seen in this equation, with a and b being the sensitivity and offset parameters. In fact, the aim of

the calibration is exactly this—to determine the values of a and b.

It is obvious here that the parameters a and b can be determined with at least two sets of X and Y values at different torque levels. This means

the test procedure described in Section 2 should be carried out on several different torque levels. If more than two sets of values are available, a

and b can be determined through linear fit using the least squares method.

X =
∫ 𝜃A

0 𝜀d𝜃

tA(𝜔̄A + k𝜔̄B)
+

k ∫ 𝜃B

0 𝜀d𝜃

tB(𝜔̄A + k𝜔̄B)
, (9)

Y =
(1 + c)( ̄̃Pelec.A + k ̄̃Pelec.B) + d(1 + k) + QA + QB − RA − RB

𝜔̄A + k𝜔̄B
, (10)

aX + b = Y. (11)

As can be seen in Equations (9) and (10), the X and Y values are expressions of the mechanical and electrical measurement as well as the factor

k. Additionally, some error terms are also in the expression, including c, d, QA, QB, RA, and RB. The measured mechanical and electrical values are of

course known for the calculation. The factor k must be determined through analysis to become a known value, denoted as k̂, with the uncertainty

taken into account. Note that the k factor is not necessarily estimated as 1. In the calibration process, the error terms in the expression do not

play any part, but they will be taken as uncertainty contributions in the following uncertainty analysis.

⎧⎪⎪⎨⎪⎪⎩

X̃ =
∫ 𝜃A

0 𝜀d𝜃

tA(𝜔̄A + k̂𝜔̄B)
+

k̂ ∫ 𝜃B

0 𝜀d𝜃

tB(𝜔̄A + k̂𝜔̄B)

Ỹ =
̄̃Pelec.A + k̂ ̄̃Pelec.B

𝜔̄A + k̂𝜔̄B

.

(12)
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For the calibration, the X̃-Ỹ value sets can be used for determining the parameters a and b. X̃ and Ỹ are defined in Equation (12). All the terms

in the expressions are known values, and therefore, the calibration can easily be carried out. Suppose the test process in Section 2 is carried out

on N different torque levels (N≥2), the estimated values of a and b, denoted as â and b̂, can be obtained through the linear fit,12, p246 and the

results can be expressed as Equations (13) and (14), where i is the index number of a certain torque level, X̃i and Ỹi are the corresponding values

obtained on the basis of that test. Note that the estimated value k̂ may be different for tests with different torque levels.

â =
N
∑N

i=1 X̃iỸi −
∑N

i=1 X̃i
∑N

i=1 Ỹi

N
∑N

i=1(X̃2
i
) − (

∑N
i=1 X̃i)2

, (13)

b̂ =
∑N

i=1(X̃2
i
)
∑N

i=1 Ỹi −
∑N

i=1 X̃i
∑N

i=1(X̃iỸi)

N
∑N

i=1(X̃2
i
) − (

∑N
i=1 X̃i)2

. (14)

With the â and b̂ known, and taking the definition in Equation (5) as the basis, the estimated torque T̂ can be calculated in Equation (15). The

term r(t) contributes to the uncertainty of the torque calculation.

T̂ = â𝜀 + b̂ + r(t). (15)

With r(t) being considered as a source of uncertainty, the expression can be simplified to Equation (16).

T̂ = â𝜀 + b̂. (16)

4 UNCERTAINTY CONSIDERATIONS

As a result of the calibration process, the torque measurement can be expressed as a function of the estimated â, b̂ and the measured raw

signal 𝜀. A time-varying variable r(t) takes account of the repeatability error of the measured signal as well as the non-linearity error of the T-𝜀

relationship. This situation is presented in Equation (15). The uncertainty in T̂ is therefore dependent on â, b̂, 𝜀 and r(t).
The uncertainty of the measured torque is ultimately composed of two parts. One part originates from the raw measurement itself, the other

from the calibration. The uncertainty in the raw measurement represents the quality of the measured raw signal, which is affected by the signal

noise, non-linear and hysteresis behaviour, signal drift due to temperature change and humidity, as well as other possible factors that make the

signal less repeatable. The uncertainty from the calibration indicates how accurately the sensitivity and offset parameters are derived from the

calibration. This paper will focus on the calibration uncertainty. Although the raw measurement uncertainty is not of great interest here, it does

exert an influence on the calibration uncertainty, because the raw signals have to be used in the calibration process. A better calibration cannot

improve the quality of the raw measurement, but better raw signals can indeed produce a more accurate calibration.

4.1 Uncertainty of the raw measurement

Since the variable 𝜀 is defined as the value of the raw measurement, the uncertainty of 𝜀 itself should be considered to be zero. As a result, the

uncertainty of the torque measurement directly owing to the raw signal is attributed to r(t), which is introduced in Equation (5) to represent all

the error contributions that cause the measured signal 𝜀 to deviate from the ideal linear response to the true torque. The error contributions

can be grouped into two categories, namely, the non-linear behaviour and the repeatability errors. The total uncertainty contributed by r(t) is

denoted here as uT.r . It characterises the quality of the measuring channel.

The non-linearity of a measurement is strongly dependent on the principle used and the measurement chain. In the case of a strain gauge-based

measurement, it depends on the material and structural non-linear behaviour of the part to which the strain gauges are applied, as well as the

non-linearity of the Wheatstone bridge circuit.13 Further, non-linearity comes also from the data acquisition (DAQ) system of the measurement.

The repeatability error of the measurement comes from a number of sources that cause the measurement to be time-varying. A common

source is the background noise in the measured signal due to EMI and the thermal noise14 in the strain gauge resistors. Creep effect of the

material and temperature change both cause a signal drift in the measurement and therefore also contribute to the repeatability error. Another

contributor is the so-called "cross-talk" effect, which means that the load in other directions exert an influence on the torque measurement.

Despite the effort and common methods available for the compensation against cross-talk,15 a satisfactory compensation is usually very difficult

on a wind turbine.16 Fortunately, in some cases, the transient value of the measurement is of less interest, for example, in a stable operation on

the test bench. The torque can then be determined by the mean of a period of time, or more precisely the mean value of an integer number of

revolutions. This will be the case for a torque calibration test process as mentioned in Sections 2 and 3.

4.2 Uncertainty associated with the calibration

The parameters â and b̂ are the results of the linear fit of a number of (X̃i-Ỹi) points in the X-Y plane. This is schematically illustrated in Figure 3,

where four points are available. For each point, both X̃i and Ỹi have uncertainties. The uncertainties are presented in the form of error bars, with
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FIGURE 3 Linear fit in the X-Y plane

the corresponding estimated values X̃i and Ỹi located in the middle of the error bars. The length of the error bar represents the uncertainty of the

corresponding variable, although this does not necessarily mean that the true value is located within the range defined by the bar. The probability

distribution of the true value within and beyond the error bar can be of different types. The most common form is the normal distribution,

as shown enlarged in the lower right part of Figure 3. Each individual uncertainty represented by the error bar makes a contribution to the

uncertainty in â and b̂ and hence the measured torque T̂. Therefore, all the uncertainties of the X̃i and Ỹi values have to be considered in the

uncertainty calculation for â, b̂.

Furthermore, the uncertainty covariances of each two values also exert influence on the overall uncertainties of â, b̂. These include the

uncertainty covariance of each two different X̃ values, of each two different Ỹ values, and the uncertainty covariance of each X̃ and Ỹ combination.

In fact, because the same k factor is used in the expression of both X̃ and Ỹ, and also since the measurements on different torque levels are

obtained from the same measurement chain, the covariances are of considerable significance. The standard uncertainty in T̂ due to the linear fit

parameters â and b̂ (which are also the products of the calibration) is denoted in the following as uT.cal.

The uncertainty uT.cal represents the uncertainty of the (â𝜀 + b̂) part of Equation (15), where â and b̂ are functions of N sets of X̃i-Ỹi values.

Following the principle of uncertainty propagation,17uT.cal can be determined,12, p253 as expressed in Equation (17).

u2
T.cal =

N∑
i=1

( 𝜕T̂
𝜕Ỹi

)2s2
Ỹi
+

N∑
i=1

( 𝜕T̂
𝜕X̃i

)2s2
X̃i
+

N∑
i=1

( 𝜕T̂
𝜕Ỹi

)2𝜎2
Ỹi

+ 2
N−1∑
i=1

N∑
k=i+1

( 𝜕T̂
𝜕Ỹi

)( 𝜕T̂
𝜕Ỹk

)𝜎Ỹi Ỹk
+

N∑
i=1

( 𝜕T̂
𝜕X̃i

)2𝜎2
X̃i

+ 2
N−1∑
i=1

N∑
k=i+1

( 𝜕T̂
𝜕X̃i

)( 𝜕T̂
𝜕X̃k

)𝜎X̃i X̃k
+ 2

N∑
i=1

N∑
k=1

( 𝜕T̂
𝜕X̃i

)( 𝜕T̂
𝜕Ỹk

)𝜎X̃i Ỹk

(17)

where sX̃i
and sỸi

are the random standard uncertainties in the variables X̃i and Ỹi, respectively.

𝜎X̃i
and 𝜎Ỹi

similarly denote the systematic standard uncertainty of X̃i and Ỹi.

𝜎Ỹi Ỹk
, 𝜎X̃i X̃k

and 𝜎X̃i Ỹk
are the covariance estimators for the correlated systematic errors of the corresponding variables in the subscript.

Examining the equation, it is seen that most of the terms are very easy to obtain:

• The partial derivatives of 𝜕T̂
𝜕X̃i

and 𝜕T̂
𝜕Ỹi

can be estimated numerically on the basis of the finite difference method. According to Equations (13),

(14), and (16), the estimated torque T̂ can be explicitly expressed with the estimated X̃, Ỹ values and the measured signal 𝜀, all of which are

known or already determined.

• The random uncertainties sX̃i
and sỸi

refer to the uncertainty components which are independent and have no correlation with other

components. Based on the definition of X and Y in Equations (9) and (10), the random uncertainty sX̃i
can be considered as zero, because the

accuracy of the time and angle position measurements (and hence the mean speed as well) are very high, and as a result, their uncertainties

are negligible. The value of sỸi
is mostly dependent on the random uncertainty of the electrical power measurement.

• The systematic uncertainties 𝜎X̃i
and 𝜎Ỹi

are introduced by systematic reasons and can therefore be related with the uncertainties from other

measurements. For example, the uncertainty in the measured electrical power on a certain power level can be related to the uncertainty on
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another power level or on the same level from another test. The values of 𝜎X̃i
and 𝜎Ỹi

are dependent on the uncertainties from the estimated k̂

factor and the electrical power measurement.

• The effect of the correlations between the systematic uncertainties is quantified in the calculation with covariances 𝜎Ỹi Ỹk
, 𝜎X̃i X̃k

, and 𝜎X̃i Ỹk
. The

covariance can be further expressed as a function of two systematic uncertainties and the corresponding correlation coefficient between

them,17 as expressed in Equation (18). Therefore, the task of determining the covariances is converted to the determination of correlation

coefficients.

⎧⎪⎪⎨⎪⎪⎩

𝜎X̃i X̃k
= 𝜎X̃i

𝜎X̃k
rX̃i X̃k

𝜎Ỹi Ỹk
= 𝜎Ỹi

𝜎Ỹk
rỸi Ỹk

𝜎X̃i Ỹk
= 𝜎X̃i

𝜎Ỹk
rX̃i Ỹk

.

(18)

Although Equation (17) appears complicated with the large number of terms, most of the terms are in fact the diagonal and cross entries

of a 2N × 2N matrix. Therefore, the equation is suitable for processing with matrix operations. One possible way of establishing such a matrix

operation is discussed in this section.

Define a row vector v as the array of partial derivatives with respect to X̃ and Ỹ at different torque levels. The vector has 2N elements, and

is expressed in Equation (19). Similarly, define 𝜎 as a row vector containing 𝜎X̃ and 𝜎Ỹ at different torque levels as expressed in Equation (20).

Vector 𝜎 also has 2N elements. Based on v and 𝜎, two 2N × 2N matrices (vTv) and (𝜎T𝜎) can be obtained by means of simple matrix operations.

Each matrix contains all the possible products of two different elements from the corresponding vector (the cross entries of the matrix), as well

as products of each vector element with itself (diagonal entries of the matrix). In matrix (𝜎T𝜎), each entry is a product of two standard systematic

uncertainties. According to Equation (18), this product can be converted to the covariance of the two uncertainties after being multiplied by the

relevant correlation coefficient. Inserting this correlation coefficient into the corresponding position of another 2N×2N matrix and repeating this

for all the entries allows matrix of correlation coefficients to be obtained. This new matrix is denoted here as R.

v =
(

𝜕T̂
𝜕X̃1

, … ,
𝜕T̂
𝜕X̃N

,
𝜕T̂
𝜕Ỹ1

, … ,
𝜕T̂
𝜕ỸN

)
, (19)

𝜎 =
(
𝜎X̃1

, … , 𝜎X̃N
, 𝜎Ỹ1

, … , 𝜎ỸN

)
. (20)

The Hadamard product of matrix (vTv), (𝜎T𝜎) and R, denoted as Usys in Equation (21), contains all the systematic uncertainty components in

u2
T.cal

as expressed in Equation (17). A summation of all the entries of matrix Usys is easy to achieve in the calculation and can be expressed

analytically as eUsyseT, where e is a row vector with all elements being 1. Therefore, with the help of matrix operations, the expression of u2
T.cal

in

Equation (17) can be converted into a concise form shown in Equation (22).

Usys = (vTv)◦(𝜎T𝜎)◦R, (21)

u2
T.cal =

N∑
i=1

( 𝜕T̂
𝜕Ỹi

)2s2
Ỹi
+

N∑
i=1

( 𝜕T̂
𝜕X̃i

)2s2
X̃i
+ eUsyseT. (22)

In summary, the systematic uncertainty can be obtained using the two vectors v and 𝜎, together with the correlation matrix R. The calculation

process is suitable for matrix operations, which can be effectively carried out with computer programmes or commercial mathematical software.

While v and 𝜎 can be easily obtained through numerical calculation, the matrix R requires more analysis of the uncertainty source. Due to space

limitation, the analysis is not discussed in detail in this paper. Nevertheless, the matrix R is not difficult to obtain as most of its entries are close

or equal to zero or one.

5 EXPERIMENT WITH THE METHOD ON A 10-MW NACELLE TEST BENCH

During a re-commissioning of the motors on the nacelle test bench ‘‘DyNaLab,’’18 the mechanical torque on the structure between the two

tandem motors is needed for the validation of the electrical model of the motors, which is a basis of the motor controller. In order to measure

the torque between the motors, strain gauges are applied to the intermediate shaft between the motors, and thus the measured signal from

the strain gauges needs to be calibrated. One possible calibration method is the FEM analysis of the intermediate shaft, where the relationship

between structure strain and torque can be established. However, the accuracy is considered insufficient due to the accumulated uncertainty

from the strain measurement and the FEM analysis. Another method is to apply torque on one side of the drive train with a lift crane over a lever

of known length. The problem with this method is the logistic expense and the difficulty to lock the drive train on the other side.

After evaluation of possible ways of calibration, the method proposed in this paper is considered to be the most convenient and accurate way

of calibration. Additionally, the efficiencies of the motors at different operation points can be also determined as by-products. The method and

test process are therefore carried out during the re-commissioning.
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FIGURE 4 The 10 MW nacelle test
bench ‘‘DyNaLab’’ at Fraunhofer IWES in
Bremerhaven. Top left: the coupling and
load application system (LAU) with a
moment bearing. Top right: two tandem
motors and the intermediate shaft.
Bottom: overview of the test bench
[Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Parameters per one motor Motor Type Rated power Rated torque Overload Torque Rated speed Speed range

Synchronous 5000 kW 4.3 MN · m 6.5 MN · m 11 rpm 2.5 - 25 rpm

FIGURE 5 Drive train layout of the drive system [Colour figure can be
viewed at wileyonlinelibrary.com]

The motors and the test bench ‘‘DyNaLab’’ are shown in Figure 4. Two motors are connected together in tandem by an intermediate shaft

between them. The basic information about a single motor is listed in Table 1. In the normal operation, the two motors work together to provide

the driving torque of the test bench. During the re-commissioning, the motors run in back-to-back mode instead. In application of the new

method, motor I and motor II correspond to the test bench and the turbine, respectively, as described in Sections 2 and 3.

5.1 Instrumentation of the measurement system

The drive train layout of the two motors is shown in Figure 5. The rotors are connected together and supported by two bearings on the front and

rear shafts. The intermediate shaft as well as the rotors have a hollow structure. Three manholes are available on the intermediate shaft, which

enable operations to be carried out inside the rotating part, for example, applying the strain gauges on the inner surface from inside the structure.

Owing to the large diameter of the intermediate shaft, this has clear logistic advantages over applying the strain gauges on the outer surface.

The strain gauges and the instrumentation for the measurement are illustrated in detail with a cross-sectional sketch of the middle of the

intermediate shaft in the A-A direction, as shown in Figure 6.

Three identical wheatstone strain gauge full bridges are applied at three different positions on the inner surface of the structure, labelled as

60◦, 180◦, and 300◦ in the figure. The positions are chosen to be as far away from the manholes as possible, which means that they are located

at the mid-points between the manholes. This keeps the strain gauges away from the strain concentration and complexity at the vicinity of the

manholes. The full bridges are applied so as to measure the local shear strain. Each full bridge is located at a single position, and therefore, the

temperature difference within the full bridge is minimised. In order to compensate the strain component that is introduced by the shear force,

the average of the three full bridge signals should be taken as the signal for the torque measurement. This can be demonstrated with a simple

equation as shown in Equation (23), where 𝛾torque denotes the shear strain that is introduced purely by the torque, while 𝛾60◦ , 𝛾180◦ , and 𝛾300◦ are
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FIGURE 6 Cross section A-A on the
intermediate shaft

FIGURE 7 Examples of the strain gauges before and after the protective covering is affixed. At each position, two identical full bridges are used
to provide redundancy. This explains why two output cables can be seen in each photo [Colour figure can be viewed at wileyonlinelibrary.com]

the corresponding local shear strains. Two photos showing how the strain gauge is mounted are presented in Figure 7.

𝛾torque = (𝛾60◦ + 𝛾180◦ + 𝛾300◦ )∕3. (23)

During the test, the manholes have to be closed with the covers. Therefore, the cables of the full bridge channels are led out through a small

hole (available on another cross-section) to the data acquisition (DAQ) system, shown in Figure 6. The DAQ system is fixed to one of the manhole

covers, with the help of the bolts for the cover. Since the strain gauges together with the DAQ system are located on the rotating part, a WLAN

(Wireless LAN) connection is utilised for the communication between the rotating system and the stationary parts, including the data and time

synchronisation server, as well as the remote measurement controller. Time synchronisation on the rotating DAQ system is realised through the

WLAN connection in the network time protocol (NTP). The router of the WLAN system is also fixed to the cover. To ensure the quality of the

wireless connection, three antennas are placed at equal separations along the circumference of the intermediate shaft.

In addition to the torque measurement, the speed and angular position are measured by an absolute encoder at the end of the test bench

drive train. The encoder measures the rotation of the rear shaft relative to the adjacent bearing housing. This encoder is part of the test bench

and has a resolution of 16384 CPR (counts per revolution). The signal is connected to a stationary DAQ system, with the same time reference as

the rotating DAQ system.

To measure the electrical power, voltage and current sensors are installed on the input power cables of the two motors. A high sampling

frequency DAQ system is used to measure the alternating voltage and current signals. The electrical power can be processed on the basis of the

voltage and current measurements. The same source of time reference is also used in this system for the signal time stamps.

5.2 Back-to-back test and torque calibration

Back-to-back tests are carried out following the method explained in Section 2. The electrical measurement of motor II is chosen as the reference

during the test process. Since motor I is connected to a number of other components in the front, including the moment bearing of the load
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TABLE 2 The whole test sequence for the torque calibration

Test Step 1 2 3 4 5 6 7 8 9 10

Motor II electrical power in relation to rated 20 % 40 % 60 % 75 % 85 % 20 % 40 % 60 % 75 % 85 %

Operating mode A A A A A B B B B B

Rotational speed, rpm 11 11 11 11 11 -11 -11 -11 -11 -11

FIGURE 8 The measured raw
signal of motor II electrical power
(top), shear strain for the torque
measurement (middle), and the
rotational speed (bottom) [Colour
figure can be viewed at
wileyonlinelibrary.com]

application system, the friction loss is greater than motor II and will additionally increase the uncertainty in the calibration; therefore, the electrical

measurement of motor II is preferred in the test and calibration process.

A test sequence of 10 steps is carried out with the motors run first in normal mode (test A), and later in reversed mode (test B). For each mode,

the test is run in five different power levels. Motor II is taken as the reference, so that the electrical power of motor II is at a similar level in the

corresponding steps of test A and test B. The test drive train rotates at the same speed, but in the opposite direction for the two modes. Detailed

information about the test sequence is listed in Table 2. The values given in the table should be considered as the nominal. The actual values are

controlled or tuned close to the nominal ones, and small discrepancies are allowed which deviate from the nominal values. Nevertheless, keeping

the discrepancies as small as possible does help reduce the uncertainty in the calibration, especially the electrical power difference of motor II in

mode A and mode B. Due to software limitations during the early phase of the commissioning, motor II is not run to 100 % of the rate power.

The torque calibration is then calibrated in the range of 20 % to 85 % of the rated torque.

The raw data of the measured electrical power, the strain, and the rotational speed are shown in Figure 8, where the real time series of the

complete test sequence are displayed. The segments corresponding to the test in mode A and mode B are highlighted in yellow in the figure. The

system needs to come to a halt between the two operating modes because the drive train needs to change the direction of rotation. At the same

time, the motor controllers also need to be reconfigured for the reversed operating mode. Although blank segments are seen in the signals of the

electrical power and rotational speed, the test and the measurements are indeed carried out sequentially and continuously. Here, the speed signal

is shown to provide a better indication of the operating condition, although the angle position instead of rotational speed is used in the calibration.

In Figure 8, the steps of different power levels can be clearly seen. For each step, the operation is kept on a stable state for at least 180

seconds, in order to have a stable measurement of sufficient length for the subsequent signal averaging. The power levels are marked on the plot

of the electrical power. A positive electrical power stands for active power output (generator mode), while the negative power values indicate

power input and that the machine is operating in motor mode. The motor speed stays at a very stable amplitude during both test A and test B.

The rotating direction in test B can be seen to be opposite to the direction of test A. This ensures that the mechanical torque measured by the

strain gauges is in the same direction for both test modes.

Before the torque calibration is possible, the k factor that describes the relationship between the power losses in the different operating modes

as defined in Equation (2) must be estimated. In this test, the k̂ factor is assumed to be 1.0 for all five test levels. Afterwards, the estimated X̃ and

Ỹ can be obtained on each test level using the measured data as per Equation (12). From the same equation, it is possible to derive that X̃ has the
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Power Level I (20 %) II (40 %) III (60 %) IV (75 %) V (85 %)

X̃ (𝜇m/m) 50.890 57.780 62.639 67.375 69.775

Ỹ (kN · m) 796.9 1836.4 2563.1 3282.2 3645.4

TABLE 3 Estimated X̃ and Ỹ on different test levels

FIGURE 9 X̃ - Ỹ points and the linear fit with the least squares method

same unit as the raw measurement 𝜀, a strain signal. The widely used unit micro-strain is adopted here as the unit of X̃ and expressed as 𝜇m∕m in

accordance with the common practice in the industry. The Ỹ is the result of power divided by rotational speed and therefore has the dimension

of torque. The unit kN · m is adopted here as the unit of Ỹ. The values are listed in Table 3.

Each set of X̃ - Ỹ values in Table 3 can be plotted as one point in the X-Y plane. Five points corresponding to the five test levels can be drawn as

shown in Figure 9. A linear fit of the five points is then possible. The slope and intercept of the line can be determined as â = 150.78 kN ·m∕(𝜇m∕m)
and b̂ = −6876.9 kN · m, as per Equations (13) and (14). The calibrated torque measurement can be expressed as in Equation (24), with the unit

of estimated torque T̂ being kN · m and the unit of raw signal 𝜀 being 𝜇m∕m.

T̂ = 150.78
kN · m2

𝜇m
· 𝜀 − 6876.9 kN · m. (24)

Unlike the conventional calibration methods that generate an accurate reference torque, the method described in this paper uses the electrical

power as the reference and is based on the fact that the electrical power can be measured easily and with good accuracy. To present a better,

visual explanation of the principle, the mean values of the mechanical, and electrical powers will be calculated and presented below. As the

torque measurement is already calibrated and expressed in Equation (24), the average mechanical powers ̄̂Pmech.A and ̄̂Pmech.B on a certain test level

can be expressed in Equation (25). The mean measured electrical powers ̄̃Pelec.A and ̄̃Pelec.B can easily be calculated in the normal way of averaging

over the time domain. ⎧⎪⎪⎨⎪⎪⎩

̄̂Pmech.A =
∫ 𝜃A

0 T̂d𝜃

tA

̄̂Pmech.B =
∫ 𝜃B

0 T̂d𝜃

tB

(25)

The mean mechanical and electrical powers ̄̂Pmech.A, ̄̂Pmech.B, ̄̃Pelec.A, and ̄̃Pelec.B can be calculated for each of the five test levels listed in Table 3.

For a better understanding, the values are plotted in Figure 10 together with level lines, similar to the procedure adopted in Figure 2. The plots

for the five test levels are placed in turns along the horizontal axis according to the value of the nominal electrical power. The exact position

along the horizontal axis is however not significant and therefore no grid or ticks are plotted on that axis. In contrast, the position along the

vertical axis does have a concrete meaning and indicates the absolute value of test power.

From Figure 10, an equation linking the electrical power and the mechanical power can be obtained on each test level with the help of

Equation (3). The calibration is therefore theoretically possible with two or more test levels. A potential improvement to the test process in this

calibration can be seen in the figure. The electrical powers of motor II in the motor and generator modes can be tuned to be closer to each other,

in order to have a lower uncertainty later on in the calibration. To achieve that, an on-line power analyser of the electrical measurement could be

helpful.

5.3 Uncertainty of the torque calibration

The uncertainty of the torque calibration comes mainly from the raw torque measurement, the electrical power, and the estimated k factor. Basic

parameters used in the calculation are listed in Table 4. The notations of the error components are given in accordance with the definition in
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FIGURE 10 Mechanical mean power ̄̂Pmech.A, ̄̂Pmech.B and electrical mean
power ̄̃Pelec.A, ̄̃Pelec.B of each test level displayed together [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 4 Basic uncertainty parameters
related to the calibration

Uncertainty Component Notation Error Range Standard Uncertainty u Type

Sensitivity error of electrical power c ±0.20 % ±0.12 % Systematic

Offset error of electrical power d ±3 kW ±1.73 kW Systematic

Miscellaneous electrical power Q ±2 kW ±1.15 kW Random

Miscellaneous mechanical power R ±8 kW ±4.62 kW Random

Error of estimated k̂ factor 𝛿k ±20 % ±11.55 % Systematic

TABLE 5 Standard uncertainty of X̃ and Ỹ at different
torque levels

Standard Uncertainty Unit i=1 i=2 i=3 i=4 i=5

X̃i systematic 𝜇m∕m 0.0109 0.0144 0.0148 0.0148 0.0131

Ỹi systematic kN · m 1.8147 2.7568 3.4033 4.0856 4.4844

— Ỹi systematic due to c kN · m 0.9202 2.1205 2.9596 3.7899 4.2094

— Ỹi systematic due to d kN · m 1.5035 1.5035 1.5035 1.5035 1.5035

— Ỹi systematic due to 𝛿k kN · m 0.8623 1.8362 1.5007 0.5224 0.7227

X̃i random 𝜇m∕m 0 0 0 0 0

Ỹi random kN · m 0.8179 0.8179 0.8179 0.8179 0.8179

Section 3. All the uncertainty components shown in the table are assumed to obey the rectangular distribution17 within the corresponding error

range.

The electrical power measurement result from the three-phase voltage and current measurement, where high accuracy industrial sensors

are used. The whole measurement chain is considered for the uncertainties of the voltage and current measurement channels, whereby the

uncertainty of the sensors turns out not to play a major role. One of the important reasons is that the power factor of the motor is close to 1,

which makes the otherwise very important phase error of the sensors less relevant to the overall power uncertainty. The miscellaneous errors of

the electrical and mechanical powers Q and R are integrated over a period of time or angular rotation, as defined in Section 3. As mentioned in

Section 5.2, the estimated factor k̂ is adopted as 1 for all the five test levels. A uniform error of 𝛿k is also assumed for all the levels. Of course,

both the estimated factor k̂ and its error 𝛿k can be considered individually for each test level. Here, a uniform assumption is adopted for the sake

of simplicity. As a result, a larger error range 𝛿k is also taken into consideration.

With the error parameters in Table 4 and according to the expressions for X̃ and Ỹ in Equations (9) and (10), the uncertainties of X̃ and Ỹ can

be calculated as shown Table 5. The subscript i in the table denotes different test levels. The five levels from 20 % up to 85 % presented in

Table 3 correspond to i being 1 to 5, respectively. In accordance with the discussion in Section 4.2, the systematic and random uncertainties are

listed separately. Three contributions of the systematic uncertainty of Ỹ are also listed in the table. Note that the random uncertainties of X̃ are

all zero, because the relevant uncertainties are attributed to the Y side, as shown in the definitions of the X and Y in Equations (9) and (10).

The correlation coefficient matrix R used in the calculation is presented in Table 6. The matrix R is defined in Section 4.2, and each of

the entries represents the correlation coefficient between the corresponding standard systematic uncertainties. In Table 6, the corresponding

standard systematic uncertainties are indexed in the first row and the first column. The values are taken with conservative considerations, and

therefore, most of the entries are 1 or 0.

The estimated torque T̂ is a function of the measured signal 𝜀, with the estimated â and b̂ as the sensitivity and offset parameters, shown in

Equation (15). Therefore, the uncertainty of T̂ comes from the uncertainties of â and b̂, which are in turn dependent on the uncertainties of the X̃

and Ỹ values. Although by definition no uncertainty is attributed to the raw signal 𝜀, it does exert an influence on the uncertainty of T̂ by affecting

and scaling the contribution of â. This influence is reflected in the partial derivatives of T̂ with respect to X̃ and Ỹ in Equation (17). The partial

derivatives have different values on different torque levels. An example is given in Table 7, where the measured raw signal 𝜀 equals 65 𝜇m∕m,
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𝜎X̃1
𝜎X̃2

𝜎X̃3
𝜎X̃4

𝜎X̃5
𝜎Ỹ1

𝜎Ỹ2
𝜎Ỹ3

𝜎Ỹ4
𝜎Ỹ5

𝜎X̃1
1 1 1 1 1 0 0 0 0 0

𝜎X̃2
1 1 1 1 1 0 0 0 0 0

𝜎X̃3
1 1 1 1 1 0 0 0 0 0

𝜎X̃4
1 1 1 1 1 0 0 0 0 0

𝜎X̃5
1 1 1 1 1 0 0 0 0 0

𝜎Ỹ1
0 0 0 0 0 1 0.92 0.86 0.79 0.73

𝜎Ỹ2
0 0 0 0 0 0.92 1 0.98 0.94 0.88

𝜎Ỹ3
0 0 0 0 0 0.86 0.98 1 0.98 0.95

𝜎Ỹ4
0 0 0 0 0 0.79 0.94 0.98 1 0.99

𝜎Ỹ5
0 0 0 0 0 0.73 0.88 0.95 0.99 1

TABLE 6 The matrix of correlation coefficient R

Partial Derivative Unit i = 1 i = 2 i = 3 i = 4 i = 5 Sum

𝜕T̂∕𝜕X̃i kN · m∕(𝜇m∕m) −6.776 −21.679 −32.282 −42.449 −47.615 −150.80

𝜕T̂∕𝜕Ỹi kN · m∕(kN · m) 0.0450 0.1439 0.2136 0.2816 0.3160 1

Note. The values in the table are dependent on the torque level.

TABLE 7 Partial derivatives of T̂ with
respect to the X̃i and Ỹi when
𝜀 = 65 𝜇m∕m

TABLE 8 Torque uncertainty owing to the calibration on several torque levels

Torque Level, kN · m Standard Uncertainty uT.cal, kN · m Expanded Uncertainty U95, kN · m U95 Relative to the Torque Level, %

1000 10.59 21.17 2.12

2000 10.90 21.79 1.09

3000 11.43 22.87 0.77

3600 11.85 23.71 0.66

corresponding to around 2920 kN · m of torque. Note that the summation of all the partial derivatives w.r.t. X̃ in the table is roughly equal to the

inverse of the sensitivity â, while the summation of the partial derivatives w.r.t. Ỹ is exactly 1.

For the entire uncertainty of T̂, the component r(t) in Equation (15) also plays a role. It can be considered to be the uncertainty related to the

signal quality. Again, since this paper focuses on the calibration method, only the uncertainty due to the calibration process will be analysed here.

As defined in Section 4.2, the standard uncertainty of (15) caused by the calibration is denoted as uT.cal. The expanded uncertainty with the 95 %

confidence level is twice the value of uT.cal, and is denoted as U95. The uncertainty results of T̂ due to the calibration on several torque levels are

given in Table 8, where uT.cal, U95 as well as the percentage of the U95 relative to the nominal torque are also presented.

It is seen in Table 8 that the uncertainty stays at a relatively stable level as the torque level increases. This is partly due to the conservative

assumption made in Table 6 for the correlation coefficients. As the uncertainties 𝜎X̃i
and 𝜎X̃k

are assumed to be well correlated, this also means

the X̃-Ỹ points in Figure 9 deviate more collectively from the true positions. Other reasons are the constant components that are not dependent

on the torque level, for example, the offset error of the electrical power. Considering the percentage of the uncertainty (U95) in relation to the

measured torque, 0.66 % is achieved near the calibration upper limit around 3600 kN · m. At lower torque levels, the percentage of uncertainty

will be higher. However, for the majority of the measuring range, an uncertainty of less than 2 % of the nominal torque is achieved.

6 DISCUSSION

The calibration process described in this paper focuses on the measurement and behaviour on the turbine side. Both the electrical and mechanical

powers input and output of the the turbine are measured. In fact, the method can also be realised on the measurements on the test bench side

with the electrical power of the test bench being measured. The method actually requires only two electrical machines that can both run in motor

and generator modes and also in different directions. In this sense, the calibration method can also be used in other industries and applications

where a similar test layout can be realised. One advantage of focusing on the test bench is that the properties of this object are stable regardless

if a different turbine is under test. The disadvantage is the potentially greater uncertainty due to the large friction torque on the test bench.

The method can be carried out on turbines with or without a gearbox. As the turbine changes its operating mode and rotational speed at the

same time in the reversed test mode, the gear teeth inside the gearbox always mesh on the same side. This eliminates the concern that the

gearbox should not run under load in the opposite direction because the teeth are manufactured differently on the two sides. Nevertheless, it is

recommended to consult the gearbox supplier regarding potential problems and the efficiency difference in the two test modes.

To increase the calibration accuracy, efforts should be taken on the whole measurement chains of all electrical and mechanical raw

measurements. For the electrical power, special attention should be paid to the time delay and hence the phase errors between the voltage and the

current signals. For the torque measurement, the signal drift resulting from temperature change and creep has a direct impact on the calibration

results. Furthermore, a proper time-synchronisation is imperative, in order to avoid time and phase shift between different signal channels.
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For the test process, several efforts can be taken in the preparation and during the test. First, a preheating prior to the calibration test process

is necessary in order to reach a relatively stable temperature and lubrication status for the whole drive train and the measurement system.

Second, the ambient temperature should be kept as stable as possible during the whole test process, so that temperature changes in all systems

are kept under control. Third, the electrical power input and output amplitudes should be kept as close to each other as possible. In the case

shown in Figure 10, further improvement could be achieved by better controlling the electrical powers to be at the same level. Another effort is

to try to have the power factor of the electrical machine as close to 1 as possible, which helps reduce the uncertainty in the electrical power.

The biggest contribution to the uncertainty for the calibration is in many cases the uncertainty in the assumed k̂ factor. As the k factor cannot

realistically be determined by a test, it must be chosen either with the help of detailed analysis of the drive train and the electrical machine or

with an approximate assumption which results in a large uncertainty. Therefore, for a smaller uncertainty of the k̂ factor, a detailed analysis of

the power loss and the efficiency of the drive train is necessary.

7 CONCLUSIONS

The proposed new calibration method takes advantage of the high accuracy of the electrical power measurement while at the same time it greatly

reduces the uncertainty introduced by the power losses in the drive train. Based on the fact that the drive train tends to have a similar power loss

in both motor and generator mode, the effect of the power loss can be largely compensated by carrying out the test in both the normal mode and

in the reversed mode. With measured data from both test modes, an equilibrium can be drawn between the electrical and mechanical powers.

The calibration can be carried out with the help of several such equilibriums on different torque levels.

No special instrumentation is needed for the method. All the sensors and equipment used in the calibration are produced in series and

commercially available. The necessary test process can be carried out with the same mechanical layout as the normal test, which means that no

additional structural reconfigurations or logistical effort is necessary. As a result, the calibration is low cost and time efficient. It can also be easily

repeated whenever necessary.

One prerequisite of the calibration method is the ability of the test bench and the DUT (device under test) to run in reversed mode and

operate in both directions up to the rated power. The calibration method is demonstrated on a torque measurement between two 5-MW driving

motors of a nacelle test bench for the wind turbine, where both the calibration parameters and the accompanying uncertainties are determined.

With conservative considerations, the uncertainty due to calibration is, in this case, within 0.7 % at upper limit of the calibration range. Better

calibration accuracy can be achieved by reducing the electrical power uncertainty, improving the quality of the raw torque-measuring signal, and

most importantly, by a better analysis of the drive train and therefore a smaller uncertainty in the k factor estimation.
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