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ABSTRACT In the last decade, different control concepts for the synchronisation of voltage-controlled
power converters have been proposed in order to form converter-based power systems. The interoperability
of these grid-forming power controls is often analysed based on reduced-order models covering only the
slow controls or modes. In this article, the coupling of the outer, power-related and inner, inverter output-
related control of multiple grid-forming power converter systems is analysed, based on a minimal working
example. The elementary study cases each consist of a different grid-forming converter coupled with an
external (and passive) grid. Here, the investigated stability problems are already manifested in the simplest
possible setup. The analysis of these coupling effects is performed by modelling the system in impedance-
based, state-space and phase portrait-based frameworks. In particular, small coupling impedances, like short
transmission lines or small short circuit impedances, can be challenging for the controller stability of grid-
forming converters while the inner controls can even enhance this issue. The impact of this phenomenon
and the participating subsystems are identified in this work. Thus, recommendations concerning modelling
techniques and their legitimate assumptions are given. Laboratory experiments validate the performed
analysis by indicating a close correlation between analytical models and experimental results.

INDEX TERMS Coupling effects, grid-forming power converter, power-related control, stability analysis,
voltage control.

I. INTRODUCTION
Power electronic-based (PE) converters play a key role in
future electrical grids. The increasing penetration of renew-
able distributed energy resources (DER), high-voltage direct
current (HVDC) transmission systems and battery energy
storage systems (BESS) are, among others, popular examples
of the concentration of converters that occurs in the power
system sector. In order to properly integrate such a high
share of power converters, different control concepts are pro-
posed in the literature [1]. The main concepts can be divided
in grid-feeding, grid-supporting and grid-forming controls.
In this article, we define these concepts as follows: grid-
feeding converters are internally operated as a current source
that synchronises to an existing grid voltage; grid-supporting
controls include additional functionalities in order to assist
in frequency and/or voltage control; grid-forming converters
are operated as a voltage source that is often accompanied
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by an outer power control loop in order to enable parallel
operation of multiple entities. The outer (power) control loop
is denoted as the power-related control in this article. The
concentration of power converters can lead to weak grid
scenarios, also referred to as high coupling impedances, that
can challenge the interoperability of classical grid-feeding
converter clusters [2], [3]. Therefore, the integration of grid-
forming controls, which are more robust in weak grid con-
ditions due to their voltage source-like operation [4], [5],
is inevitable. In addition, realistic case studies of the Irish
power system illustrate the need of grid-forming converters in
future grids with 100% DER penetration [6]. However, these
systems are more prone to an instability in stiff grid scenarios,
also referred to as low coupling impedances. Regardless of
the used control algorithms, coupling of neighbouring con-
verter controls through the network impedance is unavoid-
able and can lead to controller instabilities if not properly
designed. The typical destabilising effects are mostly either
predominantly caused by the fast inner control loop, filter and
grid resonances or by the power-related control loop which
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allows to separate the phenomena based on the manifested
frequency range. In the former case, these effects are mostly
reflected in the medium frequency range between the funda-
mental and the switching frequency; the latter case is located
near the fundamental frequency. In addition, this controller
instability is often referred to as harmonic stability regardless
of the actual frequency [2].

In the particular case of power-related control (or
synchronisation-related) stability, large converter clus-
ters or groups of synchronous generators can interact with
each other over wide distances. Models for these fairly large
systems are normally based on the assumption of fast electri-
cal transients and inner controls, that are usually at least ten
times faster than the outer loop. Thereby, the inner control and
grid states are often simplified [7] or even idealised/discarded
[8] due to the assumption of negligible impacts on the
power-related states [9], [10]. In addition, coherency-based
aggregation techniques are used to reduce the model to the
relevant participating modes [11], [12]. Thus, the model of
large-scale power systems is conventionally reduced either
by aggregation of clusters and/or assuming negligible inter-
actions between the inner and outer control loop in the power-
related frequency range. These simplifications are sufficient
for most of the classical synchronous generator-based power
systems due to their strong natural time scale separation. In a
power converter setup, both assumptions are no longer valid
for some cases [13], [14] and the impact of the latter aspect
on the stability will be comprehensively analysed for a basic
multi-master microgrid setup in this article.

Different concepts have been used by the power system and
power converter community to analyse controller stability
aspects, namely: (a) Lyapunov functions [15], [16]; (b) phase
portraits [17]; (c) state-space eigenvalue analysis [18], [19]
and (d) impedance-based analysis [20], [21]. The methods
(a) and (b) can be directly applied to non-linear equations
enabling the investigation of large-signal events. Unfortu-
nately, the derivation of Lyapunov functions is often not
intuitive and requires model order reductions in order to keep
the model manageable. In addition, this analysis is not pro-
viding much physical insights. The classical phase-portrait
analysis is also based on reduced-order models. In contrast,
the techniques (c) and (d) can be applied to complex systems
including cascaded control concepts, pulse width modulation
(PWM) and sampling delays aswell as aliasing effects. In par-
ticular, the impedance-based framework is also suitable to
analyse large power networks based on the equivalent mod-
els due to its modular nature. An exemplary analysis based
on sequence impedance models is illustrated in [22] and
[23]. However, all these small-signal methods require model
linearisation either in time domain or in frequency domain
around the steady-state operation point. Hence, a comprehen-
sive analysis can be based on the techniques (b) to (d) in order
to cover all relevant aspects while also providing different
insights by each framework.

The limits of separating the fast and slow states of grid con-
verters coupled with the power system has only been investi-

gated by a few publications. A comprehensive analysis of the
dynamic interactions of grid-feeding converters is elaborated
in [24]. Modelling of large-signal events that can jeopardise
the synchronisation-related stability of grid-feeding concepts
can be based on reduced-order models that neglects grid and
inner control states [25], [26]. Nevertheless, the synchroni-
sation process of coupled voltage-controlled entities yields
different characteristics that can not be treated in the same
manner. In [27], the fast grid states are introduced by a
dynamic phasor model (DPM) to accurately cover the impact
of large droop gains in grid-forming converters. However,
interactions with the inner controls are neglected. The lim-
itations of existing general converter models are explored in
[28]. In addition, a more precise model that includes the grid
states and some low-frequency characteristics of the inner
controls is derived by a systematic model-order reduction
method. Since this contribution focuses on legitimate model-
order reductions, a comprehensive and general analysis of
mutual power-related couplings in grid-forming converters is
missing. In [14], a general procedure to truncate the fast states
and add a pole-zero representation afterwards (‘‘peel-off and
add back’’) is used in order to cover a weak grid scenario
accurately by considering the impact of the inner control
of a grid-forming converter to the overall inductance seen
by the connected grid-feeding converter. However, the phe-
nomena that occur in voltage-controlled systems and their
interoperability are beyond the scope of that work. A general
overview regarding a variety of different synchronisation-
related stability aspects is provided in [4].

As a contribution of this article, the authors’ aim is to
extensively elaborate the constraints of separating the power-
related control loop from the fast inner control for two
different grid-forming converters that can consist of three
different inner control variations. In particular, this analysis
will contribute to the identification of the relevant electrical
and control states to cover the main phenomena in converter-
dominated power-related stability studies that predominantly
are based on grid-forming concepts, i.e. microgrids. In addi-
tion, even though different objectives are considered in [14]
and [28], the presented procedure can be one solution to
represent the identified states in a generalised manner.

This article is organised as follows. The considered
study case, i.e. the different grid-forming converter con-
trols and their inner control variations, are described in
Section II. Subsequently, the equivalent models are derived
for the impedance-based, state-space and phase portrait-
based framework in Section III. In Section IV, an analysis
of the potential oscillatory modes is obtained in each frame-
work. The experimental validation of the performed analysis
is described in Section V. Finally, Section VI concludes the
article.

II. SYSTEM DESCRIPTION
The key aspects of interactions between the inner and outer
control loops of a grid-forming converter system are exem-
plarily elaborated based on the system in Fig. 1.
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FIGURE 1. System under consideration: grid-forming converter with different variations of the inner inverter output and power-related control
loop; inner control: (a) dual loop voltage control, (b) single loop voltage control, (c) open loop voltage control; outer control: (I) droop control, (II)
virtual oscillator control; one of the inner (blue) and outer (orange) control blocks can be used in the main control structure to create one of the
six investigated cases.

This setup comprises a three-phase (3ph) two-level volt-
age source converter (VSC) which serves as a widely used
example for a DER. The DC link of these systems effectively
decouples the grid-side converter from the primary energy
side which enables the possibility to represent the power
source by an ideal constant voltage source. In addition, some
type of battery energy storage is often required for grid-
forming converters which emphasises the aforementioned
assumptions. An LC filter is used to minimise the harmonic
content according to the applicable standards. The voltage
at the point of common coupling (PCC) is controlled by
the inner inverter output control which receives its reference
values from the outer power-related control in a cascaded
control framework. In this analysis, three different inner and
two different outer control loops can be combined in order to
quantify their tendency to interact with each other. The final
control setups can be retraced in Fig. 1 by combining one
inner control (blue) and one outer control (orange) with the
main control structure. In particular, controller ‘‘Ia’’ corre-
sponds to the droop-controlled converter with an inner dual
loop voltage control.

The complex nature of real power systems that includes the
existence of various different loads and DER located across
the complete multi-level voltage range are subject to some
degree of uncertainty that can rarely be analysed determin-
istically and thus are omitted. In order to be able to analyse
the described coupling effects, a minimal working example
(MWE) based on a reduced-order Thévenin equivalent model
of a stiff electrical grid is applied. In this work, a weak or stiff
grid is always related to the connected converter system
rating.

A. POWER-RELATED CONTROL
Two different power-related control algorithms are consid-
ered in the analysis process and are explained in the next sec-

tions. These outer control loops provide the voltage reference
for the inner control in Fig. 1.

1) DROOP CONTROL
The droop control in Fig. 1-I) is defined by the classical P-
ω and Q-V linear function, e.g. in [29] and [30], derived for
quasi-stationary phasors and described in Laplace domain1 as

ωref(s) =
mω
PN

GLP(s)(P(s)− Pref(s))+ ωN, (1)

V̂ref(s) =
mV

PN
GLP(s)(Q(s)− Qref(s))+ V̂N,

with GLP(s) =
ωLP

s+ ωLP
, (2)

where mω is the frequency droop coefficient; mV is the volt-
age droop coefficient; ωLP is the bandwidth of the power
filtering; ωN is the nominal frequency; V̂N is the nominal
voltage amplitude2; PN is the rated power; Pref(s)/Qref(s) are
the reference values for active and reactive power; P(s)/Q(s)
are the instantaneous active and reactive power; s = jω is the
complex frequency.

The instantaneous power values are calculated in time
domain based on the measured and unfiltered grid currents
igrid,αβ (t) and grid voltages vgrid,αβ (t) transformed to the αβ-
frame

p(t) =
3
2

(
vgrid,α(t)igrid,α(t)+ vgrid,β (t)igrid,β (t)

)
, (3)

q(t) =
3
2

(
vgrid,β (t)igrid,α(t)− vgrid,α(t)igrid,β (t)

)
. (4)

1The Laplace operator is denoted as s = jω.
2The amplitude of sinusoidal signals are represented by the hat operator,

i.e. x̂.
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The voltage reference can be represented as a space vector3

in αβ-frame by combining (1) and (2) which yields

V ref,αβ (t) = V̂refejωreft . (5)

The presented control formulation is equivalent to a first-
order low-pass filter with a time constant of T = 1

ωLP
and proportional gain of K =

{mω
PN
,
mV
PN

}
as illustrated

in Fig. 1; or alternatively, it is equivalent to a synchronous
generator with a droop coefficient of

{
Dp =

PN
mωωN

,Dq =

PN
mV

}
and a virtual inertia of

{
Jp =

Dp
ωLP
, Jq =

Dq
ωLP

}
as explained in [31]. Here, the applied droop parameters
in Table 2 of the appendix are chosen according to the nom-
inal grid operation (1fmax = 0.5Hz and 1|V |max = 5%).
However, a design procedure based on simplified transfer
functions can be more suitable in order to obtain the desired
dynamic performance [32].

2) VIRTUAL OSCILLATOR CONTROL (VOC)
The promising virtual oscillator control concept in Fig. 1-II)
that is intrinsically compatible with 3ph power systems has
been chosen from a variety of different non-linear oscillator
algorithms to be compared with the classical droop control.
The basic concept and its design is analysed in [33]. This
power-related control can be formulated in time domain by

v̇ref,α(t) =
ζ

k2v
(2V 2

N − |vref,αβ (t)|
2)vref,α(t)− ωNvref,β (t)

−
kvki
C

(
cosϕ(igrid,α(t)− iref,α(t))

− sinϕ(igrid,β (t)− iref,β (t))
)
, (6)

v̇ref,β (t) =
ζ

k2v
(2V 2

N − |vref,αβ (t)|
2)vref,β (t)+ ωNvref,α(t)

−
kvki
C

(
sinϕ(igrid,α(t)− iref,α(t))

+ cosϕ(igrid,β (t)− iref,β (t))
)
, (7)

where C is a virtual capacitance; ωN =
1
√
LC

is the natural
oscillator frequency; L is a virtual inductance; VN is the
nominal voltage; ζ is the convergence speed constant; kv/ki
are scaling factors for the voltages and currents, respectively;
ϕ can be used to consider the effect of the voltage amplitude
and frequency on the active and reactive power flow for
any resistive-inductive power system, i.e. ϕ = π

2 equals
the standard droop control; igrid,αβ (t) are the measured grid
currents.

The reference currents iref,αβ (t) are calculated based on
the internal voltage reference vref,αβ (t) and a setpoint signal
for the active and reactive power Pref(t)/Qref(t) which are
defined as

iref,α(t) =
2

3|vref,αβ (t)|

(
vref,α(t)Pref(t)+vref,β (t)Qref(t)

)
, (8)

iref,β (t) =
2

3|vref,αβ (t)|

(
vref,β (t)Pref(t)−vref,α(t)Qref(t)

)
. (9)

3Space vectors are written in bold letters with an underscore.

The voltage reference can be represented as a space vector in
αβ-frame by combining (6) and (7) which yields

V ref,αβ (t) = vref,α(t)+ jvref,β (t). (10)

Similar steady-state characteristics as for the droop control
can be achieved by choosing C = 1

√
2(1−mV/V̂N)2mω

and

ζ =
√
2

4(1−mV/V̂N)2C
·

1
1−(1−mV/V̂N)2

in the design process.4 The
steady state voltage phasor of the virtual oscillator is defined
as follows:

V̂ref = V̂N

(
1+

√
1+

2kvki
3CζVN

(
Qref − Q0

)) 1
2

, (11)

ωref =
2kvki
3CV̂ 2

ref

(
Pref − P0

)
+ ωN. (12)

Here, the steady-state active and reactive power is denoted as
P0/Q0.

In general, a virtual oscillator stabilises arbitrary wave-
forms to a sinusoidal steady state output (voltage) that is
synchronised to the input (current) without assuming well-
defined phasors, which yields a superior control bandwidth
for the nominal grid operation region [34], [35]. However,
this concept can be more prone to oscillations. In addition,
(6) - (10) is equivalent to the electrical tank circuit illustrated
in Fig. 1-II) with

u1(t) = ki
(
cosϕ(igrid,α(t)− iref,α(t))

− sinϕ(igrid,β (t)− iref,β (t))
)
, (13)

u2(t) = ki
(
sinϕ(igrid,α(t)− iref,α(t))

+ cosϕ(igrid,β (t)− iref,β (t))
)
, (14)

im(t) =
ζ

εωNk2v
(2V 2

N − |vref,αβ (t)|
2)vC(t), (15)

vm(t) =
ζ

ωNk2v
(2V 2

N − |vref,αβ (t)|
2)εiL(t), (16)

and the reference voltage vref,αβ (t) = kv(vC(t)+ jεiL(t)); ε =√
L
C is a scaling factor [33]. Here, the droop and VOC concept

are designed according to the aforementioned rules and the
parameters are listed in Table 2.

B. INNER INVERTER OUTPUT CONTROL
Three different inner control algorithms are considered in the
analysis process of the setup in Fig. 1 and are explained in the
next sections.

1) DUAL LOOP VOLTAGE CONTROL (DLVC)
In case of Fig. 1-a), the inner control includes two discrete
proportional and resonant controllers, an active damping
scheme and the inherent pulse width modulation (PWM)
and sampling delay expressed in Laplace domain as GCC(s),
GDLVC(s), GAD(s) and GD(s), respectively. The capacitor
current is used as a feedback for the active damping procedure

4In this case, the system is scaled based on kv = VN and ki = 3VNPN .
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according to [36]. The equivalent continuous time transfer
functions (TF) are defined as

GCC(s)= kP,I

(
1+

1
Ti,I

2ωBW,I(s cosφI−ω0 sinφI)

s2 + 2ωBW,Is+ ω2
0

)
, (17)

GDLVC(s) = kP,V,DL

(
1

+
1

Ti,V,DL

2ωBW,V(s cosφV − ω0 sinφV)

s2 + 2ωBW,Vs+ ω2
0

)
, (18)

GAD(s) =
Krcs
s+ ωrc

,GD(s) =
e−sTs − e−s2Ts

sTs
. (19)

The current and voltage control are specified by a propor-
tional and integral gain kP/Ti, a bandwidth ωBW for the
resonator and a phase lead φ; Krc and ωrc denote the propor-
tional gain and bandwidth of the active damping scheme; the
sampling period is defined as Ts.

2) SINGLE LOOP VOLTAGE CONTROL (SLVC)
The single loop voltage control in Fig. 1-b) consists of one
discrete proportional + resonant controller GSLVC(s) and the
identical active damping concept GAD(s), inherent PWM and
sampling delay GD(s). The single controller maintains the
voltage at the PCC and is defined by the continuous time
transfer function

GSLVC(s) = kP,V,SL

(
1

+
1

Ti,V,SL

2ωBW,V(s cosφV − ω0 sinφV)

s2 + 2ωBW,Vs+ ω2
0

)
. (20)

A design procedure for this type of control method can be
found in [37]. In general, it is expected that the LC filter
resonance frequency and possibly other resonances are less
damped due to the missing inner current control loop which
provides additional damping.

3) OPEN LOOP VOLTAGE CONTROL (OLVC)
In case of the open loop control concept in Fig. 1-c), the ref-
erence voltage of the power-related control is directly utilised
to generate the PWM signals. Thus, only the equivalent delay
GD(s) and an identical active damping scheme GAD(s) are
included in this control approach. The damping concept may
be necessary to suppress high frequency interactions while
a similar damping performance as for the SLVC case is
expected.

C. ELECTRICAL POWER SYSTEM
The MWE in Fig. 1 is identified to be suitable to cover
possible coupling effects of the inner and outer control loops
of grid-forming converters manifested as sideband oscilla-
tions [4], [38]. In that respect, the system is condensed to
connecting an inductive and stiff Thévenin equivalent with
a converter based on the aforementioned control concepts.
Thus, the electrical power system is represented as a passive
element consisting of an ideal voltage source (here: ideal

FIGURE 2. Block diagram of the three considered inner inverter output
control concepts in frequency domain: DLVC, SLVC and OLVC.

voltage-controlled entity) with a relative small and mostly
inductive impedance Zgrid = Rgrid + jωLgrid. In this work,
a small or large impedance is always referred to the converter
impedance in Section III-A.

III. SYSTEM MODELLING
Different concepts and modelling frameworks have been
developed and adapted over the last decades to analyse power
systems considering their special properties. Each concept
offers its own advantages and disadvantages in the analysis
procedure, e.g. degree of modelling assumptions or ability
to cover non-linear effects. In order to overcome individual
drawbacks and rather emphasise each benefit, the described
system is investigated in an impedance-based framework,
in state space and based on phase portraits to guarantee a
comprehensive analysis procedure.

In particular, the detailed small-signal impedance model is
used to identify oscillatorymodes of the terminal currents and
voltages, while the coupling path of inner and outer control
loop is investigated based on the state-space eigenvalues.
Transient responses to large-signal disturbances are covered
by phase portrait models.

A. EQUIVALENT IMPEDANCE MODEL
The fundamental concept of representing each subsystem of
a power network in frequency domain by an impedance with
an ideal voltage source (Thévenin equivalent) or an admit-
tance with an ideal current source (Norton equivalent) can be
utilised to analyse the local stability of two subsystems, e.g.
the device under test and the electrical grid.

The mathematical equations of each converter system can
be reformulated to meet these input-output characteristics
yielding detailed high-order models that can cover discrete
controllers, aliasing effects and includes an accurate PWM
and sampling representation. In addition, the modularity of
these models, i.e. the fact that characteristics of each subsys-
tem can be often calculated separately, allows to easily apply
this framework for a large-scale power system analysis.

In contrast, only linear input-output characteristics can be
covered in the local stability analysis of two subsystems and
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identifying the contribution of each component, i.e. converter
in the grid, to a specific oscillatory mode can only be done
with additional effort and is somewhat limited [19]. In gen-
eral, this framework is restricted to the small-signal stability
analysis of different operation points.

1) INNER INVERTER OUTPUT CONTROL
The three different inner inverter controls in Fig. 1 are rear-
ranged and illustrated as a block diagram in Fig. 2 in order to
obtain the equivalent impedance and control characteristics.

a: DUAL LOOP VOLTAGE CONTROL (DLVC)
The basic model of a dual loop voltage-controlled converter
can be derived based on Fig. 2 and is published in [21]. The
input-output characteristics are described by (21) where Cf
and Lf are the filter capacitance and inductance; resistances
are omitted for the sake of brevity. Here, the actually imple-
mented discrete controller TFs and the aliasing aspects in [39]
are considered in order to achieve a good model fidelity for
frequencies up to the sampling frequency fs.

Hereby, the Thévenin equivalent of a dual loop voltage-
controlled converter is defined by {Gcl,DLVC(s),ZC,DLVC(s)}
in (21). The frequency response of the closed loop inner
control Gcl,DLVC(s) is shown in Fig. 3.

b: SINGLE LOOP VOLTAGE CONTROL (SLVC)
Consequently, a model of a single loop voltage-controlled
converter is derived based on Fig. 2 which yields the equiva-
lent TFs in (22). Again, all resistances are neglected.

The converter system is completely modelled by the devel-
oped Thévenin equivalent {Gcl,SLVC(s),ZC,SLVC(s)} in (22).
In addition, the closed loop control characteristicsGcl,SLVC(s)
are illustrated in Fig. 3.

c: OPEN LOOP VOLTAGE CONTROL (OLVC)
A similar representation is achieved for an open loop voltage-
controlled converter in Fig. 2. Reformulating the filter equa-
tions in order to quantify the impact of the inverter voltage

FIGURE 3. Bode plots of the three considered inner inverter output
control concepts, whose parameters are listed in Table 2: DLVC, SLVC and
OLVC.

and PCC current on the terminal voltage yields (23) for the
non-resistive case.

The Thévenin equivalent is described based on the
closed loop control TF and the converter impedance
{Gcl,OLVC(s),ZC,OLVC(s)} in (23). The control TF is also
shown in Fig. 3.

2) LINEARISED POWER-RELATED CONTROL
A small-signal model of the considered variations of a grid-
forming converter can be derived by linking the input/output
in (1) - (5) or in (6) - (10) with the inner inverter output control
in (21) - (23) and conduct the necessary linearisation.

a: DROOP CONTROL
The model of a droop-controlled converter is published in
[40] and can be derived by specifying an operation point
based on the steady-state values vPCC = V̂0ejϕu , iPCC = î0ejϕi
and ω = ω0 at the PCC (eq. to subscsript ’grid’ in Fig. 1).
A small-signal current di(̃s) and voltage dV (̃s) perturbation
with the disturbance frequency s̃ = jωd are introduced which

DLVC


Gcl,DLVC(s)=

VPCC(s)
Vref(s)

∣∣∣∣
IPCC(s)=0

=
GCC(s)GDLVC(s)GD(s)

CfLfs2 + CfGAD(s)GD(s)s+ CfGCC(s)GD(s)s+ GCC(s)GDLVC(s)GD(s)+ 1

ZC,DLVC(s) =
VPCC(s)
IPCC(s)

∣∣∣∣
Vref(s)=0

=
Lfs+ GCC(s)GD(s)

CfLfs2 + CfGAD(s)GD(s)s+ CfGCC(s)GD(s)s+ GCC(s)GDLVC(s)GD(s)+ 1

(21)

SLVC


Gcl,SLVC(s) =

VPCC(s)
Vref(s)

∣∣∣∣
IPCC(s)=0

=
GSLVC(s)GD(s)

CfLfs2 + CfGAD(s)GD(s)s+ GSLVC(s)GD(s)+ 1

ZC,SLVC(s) =
VPCC(s)
IPCC(s)

∣∣∣∣
Vref(s)=0

=
Lfs

CfLfs2 + CfGAD(s)GD(s)s+ GSLVC(s)GD(s)+ 1

(22)

OLVC


Gcl,OLVC(s) =

VPCC(s)
Vref(s)

∣∣∣∣
IPCC(s)=0

=
GD(s)

CfLfs2 + CfGAD(s)GD(s)s+ 1

ZC,OLVC(s) =
VPCC(s)
IPCC(s)

∣∣∣∣
Vref(s)=0

=
Lfs

CfLfs2 + CfGAD(s)GD(s)s+ 1

(23)
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yields the following phasors5

VPCC(̃s) =
(
V̂0 + dV (̃s)

)
, (24)

IPCC(̃s) =
(
î0ej(ϕu−ϕi) + di(̃s)

)
. (25)

Here, the steady state voltage is aligned with the real axis
which simplifies the model derivation. Furthermore, the mea-
sured active and reactive power required for the droop control
in (1) - (5) can be calculated based on the instantaneous power
in frequency domain defined as

S(̃s) = P(̃s)+ jQ(̃s) =
3
2
VPCC(̃s)IPCC(̃s), (26)

where IPCC(̃s) denotes the conjugate complex of IPCC(̃s).
Neglecting any cross coupling between di(̃s) and dV (̃s) as
part of the linearisation and only addressing the disturbance
response yields the following small-signal droop equations

dθref (̃s) =
3mω
2PÑs

GLP(̃s)
(
Re{V̂0di(̃s)} + Re{dV (̃s)i0}

)
, (27)

dV̂ ref(̃s) =
3mV

2PN
GLP(̃s)

(
Im{V̂0di(̃s)} + Im{dV (̃s)i0}

)
, (28)

in which i0 = î0ej(ϕu−ϕi) is used for the sake of brevity.
These equations describe the input-output characteristic of

the droop control to current and voltage disturbances which
are propagated to the inner control loop. The coupling of both
control loops is established by dictating a reference value for
the PCC voltage expressed as

Vref(s) =
(
V̂0 + dV̂ ref(̃s)

)
ej(dθref (̃s)+ω0t), (29)

where the frequency (or Laplace operator) s = jω in αβ-
frame is the sum of a disturbance frequency s̃ = jωd and the
steady-state frequency jω = jω0. The Thévenin equivalent of
the inner controls in (21) - (23) can be linked with the outer
control by describing the PCC voltage as

VPCC(s) = Gcl(s)Vref(s)− ZC(s)IPCC(s). (30)

In order to combine (29) with (30) and effectively derive a
linear model, (29) needs to be simplified using the relation
ej(dθref(s)+ω0t) ≈

(
1 + jdθref(s)

)
ejω0t . In addition, cross cou-

pling between dV̂ ref (̃s) and dθref (̃s) is neglected in this step
such that the small-signal behaviour can be introduced as

dVref(s) =
(
dV̂ ref (̃s)+ jdθref (̃s)V̂0

)
ejω0t , (31)

dVref(s) =
3

2PN
GLP(̃s)

(
mω
s̃
V̂0jRe{V̂0di(̃s)+ dV (̃s)i0}

+mV Im{V̂0di(̃s)+ dV (̃s)i0}
)
ejω0t . (32)

Finally, the converter impedance ZC(s) can be elabo-
rated by substituting (32) in (30) and applying the relations
Im{X} = X−X

2j and Re{X} = X+X
2 so that the system is

described by a linear equation system

A
(
��
��

)
x
(
�
�

)
= B

(
�
�

)
, (33)

5Phasors are denoted with bold letters, small-signal perturbations of these
phasors are represented by a ‘‘d’’ in front of the letters and steady-state values
are expressed by ‘‘0’’ in the subscript.

where � indicates non-zero matrix/vector6 entries. These
equations yield a 2× 2 sequence impedance matrix which is
also called a modified sequence-domain model [41]. Details
of the equation system can be found in Appendix A.

The primary single-input-single-output (SISO) character-
istic ZC(s) =

dV (s)
di(s) can be extracted by solving this equation

system. In particular, the system response, e.g. ZC(s), not
only differs for positive- and negative-sequence perturbations
of di(s) but also introduces a second voltage component
dV (2jω0 − s) which is often called a mirrored harmonic.
Any aspects of interactions between dV (s) and dV (2jω0−

s) in coupled power systems can be included in a small-
signal analysis following the steps in [42]. In [43], the authors
derive a procedure to bypass the necessary (generalised
Nyquist [44]) analysis of suchmultiple-input-multiple-output
(MIMO) systems by defining the model differently in order
to extract one characteristic SISO transfer function that can
be used for a stability analysis.

However, since the power-related frequencies are weakly
coupled in this case (small off-diagonal elements in the
impedance matrix; evaluated according to [41]), only the
primary impedance ZC(s) is considered which is sufficient for
most stability phenomena.

b: VIRTUAL OSCILLATOR CONTROL (VOC)
The model of a VOC-controlled converter can be derived in
a similar fashion, in particular by specifying an operation
point based on the steady-state values vPCC = V̂0ejϕu ,
iPCC = î0ejϕi and ω = ω0 while the identical voltage
and current perturbations, i.e. (24) and (25), are applied.
In addition, sequence domain-like equivalents of (6) - (10)
can be derived in Laplace domain introducing

Iref(s) = iref,α(s)+ jiref,β (s), (34)

Vref(s) = vref,α(s)+ jvref,β (s), (35)

IPCC(s) = igrid,α(s)+ jigrid,β (s), (36)

Sref = Pref + jQref. (37)

This enables the possibility to derive an input-output charac-
teristic for positive and negative sequences in the αβ-frame.
Thus, the equation system in (6) - (7) can be described by

phasors in frequency domain as

sVref(s) =
(
2ζ
k2v
V 2
N −

ζ

k2v
|Vref(s)|

2
+ jωN

)
Vref(s)

−
kikv
C

(
IPCC(s)−

2ejϕ

3|Vref(s)|2
SrefVref(s)

)
. (38)

where Sref denotes the conjugate complex of the reference
value for the apparent power Sref.

A linear equivalent impedance can be derived considering
small-signal disturbances in Vref(s) so that the following
equations can be obtained

Vref(s) = V̂0ejω0t + dVref (̃s), (39)

6Matrices are expressed by bold letters and vectors are denoted with an
underscore.
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|Vref(s)|
2
≈ V̂ 2

0 + V̂0
(
dVref (̃s)+ dV ref (̃s)

)
, (40)

where dV ref (̃s) denotes the conjugate complex of dVref (̃s)
equivalent to the mirrored disturbance frequency at
sm = 2jω0 − s for the droop-controlled system in the αβ-
frame.

Furthermore, only accounting for disturbances that occur
as a product of a steady-state value and a perturbation,
and thus effectively neglecting cross couplings between any
small-signal variables, e.g. dVref (̃s) or di(̃s), yields

s̃dVref (̃s) =
(
2ζ
k2v
V 2
N + jωN

)
dVref(̃s)−

kikv
C

di(̃s)

+
2kikvejϕ

3CV̂ 2
0

SrefdVref (̃s)−
ζ

k2v
0{|Vref(s)|

2Vref(s)}. (41)

in which 0{·} accounts for the cross coupling of dV ref (̃s)
and dVref (̃s) via (39) and (40) with details provided in
Appendix A. This coupling could also be considered for the
denominator in (38). However, this is not necessary for the
investigated case andwould only add complexity to themodel
description.

Finally, a linear equation system describing the primary
converter control characteristics can be derived based on (41)
and expressed as

A
(
��
��

)
⊗ x

(
�
�

)
= B

(
�
�

)
. (42)

Details of the model,7 i.e. the definition of matrix A and
vectors B and x, are provided in the Appendix.

Again, a primary impedance ZC(s) =
dV (s)
di(s) can be

obtained from this description comprising of comparable
coupling and disturbance characteristics as for the droop
control case. The mirrored component is neglected for any
following investigations.

3) ELECTRICAL POWER SYSTEM
The passive electrical grid is modelled based on an equivalent
grid impedance

Zgrid(s) = Rgrid + sLgrid, (43)

with an ideal inner sinusoidal voltage source Vslack(s) that is
often called a slack node or voltage in power systems.

B. STATE-SPACE MODEL
A detailed model of a linear time-invariant system can be
directly derived in time domain by means of the state-space
formulation. In contrast to an impedance-based modelling,
a stability criterion can be applied to directly determine the
global stability based on the state-space model.

These models can include detailed high-order represen-
tations of PWM and sampling delays, continuous and dis-
crete controls and highly meshed grid configurations with
the disadvantage of substantially increasing the model size.

7The operator ⊗ does not simply multiplies a matrix with a vector and is
defined in Appendix A.

Thus, reduced-order models are often necessary for large-
scale power systems to keep the models manageable.

On the flip side, a detailed analysis of the oscillatory
system modes and their participating states can be performed
providing the possibility to identify main contributors to spe-
cific low-damped oscillations [19]. These additional insights
can extend the high-order impedance-based stability analysis
of large-scale power systems based on a reduced-order state-
space model, i.e. only covering the essential states. Analo-
gously, this framework is restricted to the small-signal stabil-
ity analysis of different operation points.

1) ELECTRICAL STATES
The system under investigation needs to be described by
first-order implicit differential equations along with alge-
braic equations in order to derive a linear state-space model.
In case of 3ph power systems, the electrical components
are transformed to the dq-frame by Xdq(t) = Xαβ (t)e−jω0t

with Xαβ (t) = Xα(t) + jXβ (t) which yields constant steady-
state values by assuming sinusoidal-like transients with the
fundamental frequency ω0.

The considered electrical grid in Section II only consist
of the LC filter, the inner converter voltage source vinv,dq(t),
a grid impedance and the stiff voltage source vslack,dq(t).
Hence, the six electrical states are defined by the following
set of equations:

i̇inv,dq(t) =
1
Lf

(
vinv,dq(t)− vC,dq(t)− Rfiinv,dq(t)

−jω0Lfiinv,dq(t)
)
, (44)

v̇C,dq(t) =
1
Cf

(
iinv,dq(t)− igrid,dq(t)−

1
RC

vC,dq(t)

−jω0Cfvc,dq(t)
)
, (45)

i̇grid,dq(t) =
1

Lgrid

(
vgrid,dq(t)− vslack,dq(t)− Rgridigrid,dq(t)

−jω0Lgridigrid,dq(t)
)
, (46)

where Rf/Lf denote the filter inductor resistance and induc-
tance; RC/Cf are the filter capacitor resistance and capac-
itance; Rgrid/Lgrid are the grid resistance and inductance;
iinv,dq(t), vC,dq(t) and igrid,dq(t) are the inverter current, capac-
itor voltage and grid current in dq-frame, respectively.

2) INNER INVERTER CONTROL STATES
The inner inverter output control algorithms in (17) - (20)
need to be transformed to implicit differential equations in the
dq-frame. Since the coupling of power-related and fast inner
controls which are manifested in the low-frequency range
is considered in this work, continuous time representations
of the controls are sufficient. Thus, the impedance-based
model serves as a highly detailed reference model while the
state-space model is reduced to the participating continuous
states.

The resonant controllers (17), (18) and (20) are imple-
mented in αβ-frame in order to maintain the positive and
negative sequence of the fundamental frequency. Therefore,
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these controls can be represented by eight states in dq-frame
which are defined as

Ẋctrl,1,dq(t) = 1vdif,dq(t)− 4ωBWXctrl,1,dq(t)

−4(ω2
BW + ω

2
0)Xctrl,2,dq(t)

−8ωBWω
2
0Xctrl,3,dq(t)

−4ω2
BWω

2
0Xctrl,4,dq(t), (47)

Ẋctrl,2,dq(t) = Xctrl,1,dq(t), (48)

Ẋctrl,3,dq(t) = Xctrl,2,dq(t), (49)

Ẋctrl,4,dq(t) = Xctrl,3,dq(t), (50)

with 1vdif,dq(t) =
kP,V
Ti,V

(
vref,dq(t) − vC,dq(t)

)
, exemplarily

illustrated for the case of a voltage control loop. The con-
troller bandwidth ωBW and the resonance frequency ω0 are
constant values chosen in the design phase.

The active damping scheme in (19) can be directly
derived in the dq-frame based on iC,dq(t) = iinv,dq(t) −
igrid,dq(t) with (44), (46) and the general αβ/dq relation
Xαβ (t) = Xdq(t)ejω0t which yields two states

v̇ad,dq(t) = Krc
(
i̇C,dq(t)+ jω0iC,dq(t)

)
−ωrcvad,dq(t)− jω0vad,dq(t), (51)

where Krc and ωrc denote the proportional gain and band-
width of the active damping scheme; ω0 is the steady-state
frequency of the linearised operation point.

Considering only a proportional current control loop in
(17) in case of a DLVC concept, the controller output can be
described by

vctrl,dq(t) = {kP,C, 1}
(
Ti,V1vdif,dq(t)+ 2ωBWXctrl,1,dq(t)

+4ω2
BWXctrl,2,dq(t)+ 4ωBWω

2
0Xctrl,3,dq(t)

+4ω2
BWω

2
0Xctrl,4,dq(t)− j2ωBWω0Xctrl,2,dq(t)

)
−{kP,C, 0}iinv,dq(t)− vad,dq(t), (52)

where {·, ·} accounts for the DLVC and SLVC case, respec-
tively.

The PWMand sampling delay characteristics are described
by a first-order low-pass filter introducing two additional
states:

v̇inv,dq(t)=
1
Td

(
vctrl,dq(t)−vinv,dq(t)− ω0Tdvinv,dq(t)

)
, (53)

where Td is the equivalent time delay. Hence, the converter
output voltage can be described based on the controls, active
damping scheme and the equivalent delays.

In contrast to the impedancemodel, continuous time equiv-
alents of the control algorithms are used and a first-order
approximation of the PWMand sampling delay is introduced.
All of these simplifications are negligible in the considered
frequency range.

3) POWER-RELATED CONTROL STATES
A small-signal model of the considered system can be derived
by linking the inner controls and electrical circuit in (44) -
(53) with the dq-equivalents of the non-linear power-related
controls in (1) - (7) and conduct the necessary linearisation.

a: DROOP CONTROL
The droop control in (1) - (2) can be described by the follow-
ing three states

Ṗfilt(t) =
3
2
Re{vgrid,dq(t)igrid,dq(t)} − ωLPFPfilt(t), (54)

Q̇filt(t) =
3
2
Im{vgrid,dq(t)igrid,dq(t)} − ωLPFQfilt(t), (55)

δ̇ref(t) =
mω
PN

(
Pfilt(t)− Pref(t)

)
, (56)

with V̂ref(t) =
mV
PN

(
Qfilt(t)−Qref(t)

)
+V̂N which is equivalent

to a time-domain large-signal representation of (27) and (28).
Here, Pfilt(t)/Qfilt(t) are the low-pass filtered active and reac-
tive power; ωLPF is the cutoff frequency; δref(t) is the phase
angle of the converter voltage phasor in dq-frame.

It should be pointed out that the non-linear charac-
teristics are introduced by the measured power S =
3
2vgrid,dq(t)igrid,dq(t).

b: VIRTUAL OSCILLATOR CONTROL (VOC)
The two states of a virtual oscillator control in (6) - (7) can
be expressed as

v̇ref,dq(t) =
ζ

k2v

(
2V 2

N − |vref,dq(t)|
2
)
vref,dq(t)

−j
kvki
C

igrid,dq(t)+
2kvkiejϕ

3C|vref,dq(t)|2
Sref(t)vref,dq(t), (57)

analogously to transforming (38) to the time domain in dq-
frame for ω0 = ωN. Again, the convergence speed constant
ζ , the scaling factors kv/ki, the virtual capacitor C and phase
angle ϕ are design parameters.

Here, the non-linear characteristics are introduced by
the non-linear control law of the oscillator that includes
|vref,dq(t)|2.

4) LINEARISATION
Based on (44) - (57), the system equations can be generally
expressed as

ẋ(t) = f
(
x(t), u(t)

)
, (58)

with the system states x(t) = {x1(t), . . . , xn(t)} and the
system input u(t) = vslack(t).

Linearisation of the power-related control is necessary in
order to perform a stability analysis in state space. In general,
small-signal perturbations of the states x(t) can be described
by the first-order approximation

1ẋ(t) =
∂f
(
x(t)

)
∂x(t)T

∣∣∣∣∣
x0

1x(t), (59)

where the system steady state is defined by x0.8

8Small-signal variables are expressed by lower-case letters with1 in front
of the letters, steady-state variables are denoted with lower-case letters as
well but with a ‘‘0’’ in the subscript.
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This provides the possibility to formulate the small-signal
model as vectors and matrices:

1ẋ(t) = A1x(t)+ B1u(t), (60)

1y(t) = C1x(t)+ D1u(t), (61)

consisting of the state matrixA, the input matrixB, the output
matrix C and the feed-forward matrix D.
Here, the state vector is exemplarily listed for a VOC-

controlled converter with an inner DLVC concept:

1x(t) =
[
1iinv,dq(t),1vC,dq(t),1igrid,dq(t),1vad,dq(t),

1Xctrl,1−4,dq(t),1vref,dq(t),1vinv,dq(t)
]T (62)

In addition, the state vector of a droop-controlled converter
with an inner DLVC concept can be described by

1x(t) =
[
1iinv,dq(t),1vC,dq(t),1igrid,dq(t),1vad,dq(t),

1Xctrl,1−4,dq(t),1Pfilt(t),1Qfilt(t),

1δref(t),1vinv,dq(t)
]T
. (63)

The system input is identically defined for all cases as

u(t) =
[
1vslack,dq(t)

]T
. (64)

More details are provided in Appendix B and are published
for similar grid-forming setups with different objectives in
[18], [45].

C. PHASE PORTRAIT MODEL
The ability of a cluster of voltage sources, e.g. syn-
chronous generators or grid-forming converters, to remain
synchronised during severe disturbances is part of the tran-
sient stability analysis. In case of grid-forming converters,
the power-related controls are responsible for the synchroni-
sation. Phase portraits of the considered systems can be used
to investigate theses events. In particular, the phase-portrait
analysis is an indirect stability assessment in time domain
for large-signal aspects [8] and has already been applied to
droop-controlled converter systems [17].

In order to perform this analysis, reduced-order models
need to be derived. In addition, this approach is limited to
analyse specific large-signal events while analytical solutions
are often difficult to acquire. Thus, a numerical integration
can be necessary in order to perform a graphical evaluation
of the δ̇ − δ curve, which is the so-called phase portrait [17].
In general, this framework provides the possibility to

investigate special events like a severe voltage sag in a
design-oriented analysis due to the ability to cover large-
signal transients. Hence, this method extends the previously
described small-signal analysis concepts.

1) STATIC PHASOR-BASED MODELLING
Some basic properties of the synchronisation-related tran-
sients are assumed in the conventional phase-portrait anal-
ysis, namely: (a) all relevant transients can be represented
by phasors of the fundamental frequency (slowly varying

sinusoidal signals); the electrical power system can be rep-
resented by static impedances and admittances (states of e.g.
the transmission lines and transformers are not participating
in the relevant modes); (c) the inner converter controls can be
neglected due to their fast nature; (d) only the power-related
control states are taken into account. These assumptions lead
to similar simplifications as for the quasi-steady state concept
used in power system simulations.

Therefore, the droop-controlled converter setup in Fig. 1
can be described by the non-linear set of equations in (54) -
(56) combined with the Thévenin equivalent of the electrical
grid which yield

δ̈(t) = −ωLPFδ̇(t)− mωωLPF

(
−

3Xgrid
2|Zgrid|2

E(t)V (t) sin δ(t)

+Pref(t)−
3Rgrid
2|Zgrid|2

(
V (t)2−V (t)E(t) cos δ(t)

))
, (65)

V̇ (t)=ωLPF(V̂N−V (t))−mVωLPF

(
3Rgrid
2|Zgrid|2

E(t)V (t) sin δ(t)

+Qref(t)−
3Xgrid
2|Zgrid|2

(
V (t)2−V (t)E(t) cos δ

))
, (66)

with V (t) = |VPCC(t)|, E(t) = |Vslack(t)|

and δ(t) = 6 {VPCC(t)− Vslack(t)}.

Here, phasors are indicated by bold symbols and V 6 δ is the
voltage phasor at the PCC which is equivalent to the inner
droop control voltage phasor in (1) - (2). A similar model is
derived in Appendix C for a VOC-controlled converter.

This basic model has recently been used to investigate the
droop control for short-circuit aspects [17]. However, the cou-
pling of the electrical grid with the inner and outer con-
trol loop in the power-related frequency range is considered
in this work. Since these aspects are classically neglected,
an extension covering these aspects is presented in the next
section.

2) DYNAMIC PHASOR-BASED MODELLING
The relevant couplings of the investigated scenario can be
included in (65) - (66) and in Appendix C by introducing an
extensions to include (a) all electrical states and (b) the inner
control states. Thus, the model can no longer be described by
a first- or second-order non-linear differential equation so that
the stability analysis is performed based on a reduced-order
time-domain simulation framework rather than by graphi-
cally analysing the trajectory in the phase plane.

However, this trajectory can still impressively illustrate the
oscillatory modes as in Fig. 6, even though the limits of this
analysis technique are reached.

a: ELECTRICAL STATES
The concept of dynamic phasors of the fundamental fre-
quency is suitable to represent the aspects of dynamically
changing sinusoidal signals due to the electrical grid [46].
Therefore, all inductors and capacitors in the electrical circuit
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need to be described by

VL(t) = RIL(t)+ L İL(t)+ jω0LIL(t), (67)

IC(t) =
VC(t)
R + CV̇C(t)+ jω0CVC(t). (68)

On a side note, this concept is also used by the power system
community when deriving a state-space model of electrical
grids in dq-frame, i.e. in (44) - (46). If a specific harmonic
content is of interest, one may include multiple dynamic
phasors analogously to the study case in [47].

b: INNER INVERTER OUTPUT CONTROL
The inner controls can be easily included using (50) - (53)
transformed to a phasor representation X(t) = Xd(t)+ jXq(t).
Thus, the final model is equivalent to the large-signal dq-
frame state-space model in (58) which needs numerical inte-
gration of specific study cases in order to evaluate stability
aspects. A direct stability assessment based on the eigenval-
ues is not applicable due to the non-linear nature.

In addition, illustration of the complete equation system is
omitted for the sake of brevity.

IV. ANALYSIS OF SYSTEM CHARACTERISTICS
The previously derived models serve as a basis to investigate
interactions between the inner and outer control loops via the
electrical grid in case of the setup illustrated in Fig. 1.
In addition, correlations between the different modelling

frameworks are studied in order to guarantee a consistent
modelling.

A. IMPEDANCE-BASED ANALYSIS
The setup in Fig. 1 can be represented in the impedance-based
framework by coupling the converter impedance ZC(s) with
the grid impedance Zgrid(s) which yields the so-called minor
feedbackNY = ZC(s)/Zgrid(s) [48]. In addition, a generalised
framework is proposed in [23] enabling the possibility to
create impedance equivalents for large-scale power systems.
In order to analyse the local stability, the Nyquist criterion can
be applied to the models, specified in the Appendix, which is
illustrated in Fig. 4 by a Nyquist plot for each inner control
setup in positive-sequence domain.

In general, the minimal distance ηh to the critical point
× = −1 + j0 (Nyquist criterion) is illustrated in Fig. 4
by black arrows indicating that no instability occurs for all
variations. However, modes with low damping ηh can be
identified in the high-frequency range and power-related fre-
quency range depending on the control concept. The high-
frequency characteristics of the VOC- and droop-controlled
converter are identical (blue line overlaps the red one for
f > 500Hz in Fig. 4) and are beyond the scope of this work.
Thus, ηh is only evaluated for the low frequency range of
f ≈ 0− 150Hz.
In particular, potentially power-related modes with a res-

onance frequency fh ≈ 26.5 − 31.9Hz and a low damping,
i.e. minimal distance ηh ≈ 0.29 − 0.54, can be identified

FIGURE 4. Stability Analysis of the considered system, whose parameters
are listed in Table 2: Nyquist criterion applied to the quotient of the
converter impedance ZC(s) and the impedance of the electrical grid
Zgrid(s) in positive sequence denoted as NY; considered power-related
frequency range: f ≈ 0 . . .150 Hz.
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FIGURE 5. Stability Analysis of the considered system, whose parameters
are listed in Table 2: analysis of the power-related eigenvalues λ of the
system matrix A for VOC, droop and a basic voltage control (VC);
considered power-related frequency range: f ≈ 0 . . .150 Hz.

for the DLVC and SLVC concept.9 In this case, the relatively
small (inductive) grid impedance contributes to this mode.
Thus, reducing the grid impedance Zgrid shifts the Nyquist
plots towards the critical point × which highlights the high
burden that is imposed on voltage-controlled entities by small
terminal impedances. The impact of Zgrid on the minor feed-
back is illustrated by a black arrow in Fig. 4. These results
are in line with the analysis in [32], [49], which is based on
simplified transfer functions10 in order to tune the dynamic
performance and derive necessary and sufficient constraints
for the droop and line parameters. Furthermore, the droop
control comprises a slightly higher damping compared to the
VOC concept while the resonance frequency is also slightly
higher. The OLVC curve does not indicate any potential
oscillations in the power-related frequency range. However,
the damping of the high-frequency resonance is lower in this
case due to the missing inner current and/or voltage control
which introduces additional damping.

In conclusion, only the coupled consideration of the inner
control, the electrical grid and the power-related control
reveals an oscillatory mode in the power-related frequency
range with low damping.

B. STATE-SPACE EIGENVALUES
The system stability can be analysed in the state-space frame-
work by the eigenvalues λ of the system matrix A. These
eigenvalues are equivalent to the system modes providing a
possibility to directly identify oscillatory modes. The results
of the investigated scenario are shown in Fig. 5 for all varia-
tions.

In general, the four modes of the αβ-frame resonant con-
trollers can be identified (here: f19,20/f20,21 ≈ 0Hz and
f11,12 ≈ 100Hz) for DLVC and SLVC which are intended
to oscillate and, thus, will not shift towards the unstable
region. In addition, the power-related modes λ16−17/λ17−18
are much closer (at least one order of magnitude) to the
imaginary axis (instability) than the high-frequency ones
λ3−4, i.e. located outside of the main plot range. Both pairs
of eigenvalues will shift towards the imaginary axis when
the grid impedance Zgrid(s) is reduced which is indicated by
a black arrow in Fig. 5.The most relevant modes are also
listed in Table 1. Based on their locations and participating
states, the high-frequency modes will probably not be excited
despite their low damping ζh.11

9The general Nyquist criterion for multivariable systems in [44] yields
fh ≈ 26.6 − 32.6Hz and ηh ≈ 0.29 − 0.61 which justifies applying the
characteristic SISO impedances.

10A time scale separation of the outer and inner control loop is assumed
and validated for the investigated case such that the inner control can be
neglected.

11The damping factor is defined as ζh = −
Re{λ}
|λ|

and is not identical
to the minimal distance ηh that can serve as an indication for oscillatory
modes in an impedance-based framework. However, a comparison of the
damping performance across the different converter variations based on these
indicators can be done in order to verify the equivalence of both models.
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FIGURE 6. Stability Analysis of the considered system, whose parameters are listed in Table 2: phase portrait of the transient
response to a voltage step from 1 pu to 0.92 pu; example case for the dual loop voltage control concept; δ denotes the inner voltage
phase angle, V̂ is the voltage amplitude and P/Q are the active and reactive power.

In particular, the power-related modes λ16−17/λ17−18 with
fh ≈ 27 − 33Hz are closest to the unstable region, com-
prise a low damping factor ζh ≈ 0.098 − 0.138 and will
probably oscillate when excited by a transient event. Fur-
thermore, the droop-controlled converter includes a slightly
higher damping and natural frequency consistently with
the impedance-based results. The grid-forming converters
with a SLVC concept are marginally better damped. Again,
the OLVC concept does not introduce insufficiently damped
power-related modes.

In addition, a modal analysis based on the participation
factors12 of each state to the oscillatory modes has been
performed and is listed in Table 1. In general, this enables
a systematic analysis of the system states which are major
participants to the relevant modes. It can be identified that
the power-related oscillatory modes λ16−17/λ17−18 are mani-
fested by the main coupling of the grid current igrid,dq (state of
Lgrid), the inner controls VCst,dq and the power-related control
PCst,dq. The state matrix A describes this coupling effect

12The participation factors are defined as PFki =
|V (k,i)W (k,i)|
|W (i,:)||V (:,i)| with the

matrices that contain the left and right eigenvectors V (column vectors) and
W (row vectors), respectively.

and is listed in Appendix B. Thus, these stability aspects are
not covered if one of the identified states is missing or not
modelled. In contrast, the high frequency modes λ3−4 are
mostly based on the LCL resonances coupled with the inner
converter control.

In conclusion, only small deviations regarding the natural
frequency fh or the damping performance ζh are identified
between state-space eigenvalues and the impedance-based
analysis. In addition, the participation analysis provides addi-
tional insights of the coupling path.

C. PHASE PORTRAIT
Numerical integration of the phase-portrait model in
Section III-C provides the possibility to investigate spe-
cific large-signal events in the time domain. Here, the tran-
sient response of a droop-controlled converter and a VOC-
controlled converter, both based on the DLVC concept, are
exemplarily shown in Fig. 6 for a voltage step from 1 pu to
0.92 pu. Both systems start in the steady state that is defined
by the voltage phasor marked by a black point in Fig. 6.
At time t = 0 s, the voltage step occurs which results in a
new steady-state voltage phasor (indicated by a second black
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TABLE 1. State-Space Analysis: Most Relevant Oscillatory Modes λ and
Participation Factors PF.

FIGURE 7. IAL Microgrid: photograph of the laboratory setup.

point). This time, the steady-state voltage phasors differ for
the droop control and VOC according to (1) - (2) and (11) -
(12).

The transient response in Fig. 6 confirms the low-
frequency oscillatory mode manifested in the active and reac-
tive power (respectively in the voltage phasor V̂ 6 δ) with
f ≈ 27 − 29Hz. The droop-controlled converter comprises
a better damping which is consistent with the small-signal
analysis. In addition, the high-frequency mode is not excited.
The numerical simulation of the other controls validate the
small-signal stability analysis equivalently and are not shown
here for the sake of brevity.

In conclusion, identical results can be obtained with all
three model frameworks since the relevant coupling path
of the power-related oscillatory modes are included in each
model. In particular, the considered study case of a voltage
step from 1 pu to 0.92 pu, even being outside of the small-
signal region, yields similar oscillations as elaborated for the
impedance- and state space-based analysis.

FIGURE 8. IAL Microgrid: photograph of the converter system II.

V. EXPERIMENTAL VALIDATION
This section extends and validates the previously con-
ducted analysis by laboratory experiments with regard to the
impedance-based models and the excitation of oscillatory
modes during transients.

A. LABORATORY SETUP
The laboratory experiments have been performed at the
IAL Microgrid test bench with the basic setup shown
in Fig. 7. This configuration provides the possibility to anal-
yse a variety of different converter-related aspects based on
two Triphase converter systems PM15, each consisting of
up to four programmable inverters with a rated power of
SN = 16 kVA and a switching frequency of fs = 16 kHz,
that can be equipped with LC or LCL filters and custom
control algorithms. In addition, a four-quadrant digital power
amplifier Egston CSU 100 (SN = 100 kVA, fs = 125 kHz)
can be used in combination with two OPAL-RT real-time
simulators OP5707/OP4510 in order to establish a power-
hardware-in-the-loop setup. Additional equipment can be
used to create a small electrical grid and to obtain synchro-
nised measurements of different nodes.

All of the the considered grid-forming control concepts are
each implemented on one converter of the converter system II
in Fig. 8 (rated current IN = 24A, rated voltage VN = 400V)
based on the parameters listed in Table 2. The combination
of power amplifier and real-time simulator is operated in
one of two modes: (1) as an ideal current source directly
connected to the Triphase system in order to extract the
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FIGURE 9. Experimental validation of sequence impedance characteristics of the considered converter systems, whose parameters are listed
in Table 2: frequency sweep from 1 Hz to 16 kHz for positive- and negative-sequence impedance of VOC-controlled converter ZVOC(s),
droop-controlled converter Zdroop(s), the passive grid Zgrid(s) and experimental results Zmeas(s); the dual loop, single loop and open loop voltage
control is considered as inner control setup.

converter impedance by introducing a steady-state operation
point with a small-signal current disturbances; (2) as an ideal
voltage source connected to the Triphase system via the grid
inductor to be able to obtain the transient response to a volt-
age step. Either way, the measurements are performed using
three Testec TT SI9110 voltage probes (100MHz/1000 Vrms
AC/2% accuracy) and three Keysight N2783B current probes
(100 MHz/30 Arms AC/1% accuracy) linked to an LeCroy
HDO8108A oscilloscope (sampled with 1 MHz).

B. EVALUATION OF STEADY-STATE IMPEDANCE MODELS
A frequency sweep is performed based on the previously
described setup in order to extract the small-signal character-
istics of all considered grid-forming concepts. The procedure
to obtain these impedances is defined as: (1) VOC- or droop-
controlled converter: start operation; (2) power amplifier:
synchronisation; (3) power amplifier: set steady state; (4)
power amplifier: transition from PLL-based to current mode
with f = fN; (5) power amplifier: injection of a perturbation
and (6) data acquisition. In order to obtain a high accuracy,
five measurements are performed for each frequency. A small
standard deviation (≈ 2% of mean value; within the range of
the measurement accuracy) is achieved with this procedure
indicating a high confidence in the measurement results.
Hence, only the average for each frequency is used further.

The phase-domain impedance models are compared with
experimental results separately for positive and negative
sequence as amplitude and phase in Fig. 9 without error
bars. The grid impedance of the considered setup is shown
as a reference. It can be identified that the DLVC and SLVC
concept are nearly identical based on the fact that the inner
current control loop only adds additional damping due to the
non-existing integrator and similar control gains. In addition,
these concepts introduce either a capacitive (f < f0) or induc-

tive (f > f0) characteristic in the power-related frequency
range of f ≈ 0 − 150Hz that is more likely to interact with
the grid impedance towards low-damped oscillatory modes.
In particular, the combination of power-related control and
the integrator of the inner control loop cause this charac-
teristic which is typical for all popular grid-forming control
concepts (e.g. VSG, Synchronverter, droop and matching
control) due to their similar feedback characteristics [31],
[40], [48], [50]. Here, the capacitive case below f = f0 is
critical. In case of coupling with another grid-feeding con-
verter, a critical mode for the inductive case above f = f0 can
also arise, i.e. in [14]. As a side note, the capacitive case is
typically avoided or managed by adding an inductive virtual
impedance in the controls as elaborated for the context of
robust stability analysis in [38]. The impact of the power-
related control in Fig. 9 is mostly restricted to the positive-
sequence characteristics. The OLVC concept introduces a
marginally larger impedance with inductive characteristics
close to the fundamental frequency which is mostly based on
the LCfilter parameters. In general, onlyminor deviations are
identified confirming a high model fidelity.

C. EVALUATION OF TRANSIENT RESPONSE
The different grid-forming converters are coupled with an
external grid based on the previously described setup in order
to obtain the transient response to a voltage step from 1 pu
to 0.92 pu. The response is extracted by applying a specific
procedure: (1) power amplifier: start external grid; (2) VOC-
or droop-controlled converter: start operation and synchro-
nisation; (3) VOC- or droop-controlled converter: adjust ref-
erence values to meet the steady state in Table 2; (4) power
amplifier: dictate a voltage step. The measured and simulated
active and reactive power of the VOC- and droop-controlled
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FIGURE 10. Experimental validation of the transient response of the
considered systems, whose parameters are listed in Table 2: voltage step
from 1 pu to 0.92 pu; measured active and reactive power (meas) are
illustrated by solid lines, simulated power (sim) are illustrated by dashed
lines.

converter is illustrated in Fig. 10 for all control variations. The
simulation is based on the phase-portrait models.

At t = 0 s, the magnitude of the slack voltage V̂slack (inner
grid voltage or voltage of the power amplifier) drops from
1 pu to 0.92 pu, which ultimately yields a new steady state
operation point. Due to the non-negligible reactive power
flow, the steady-state reference voltage phasors V ref and
consequently the operation points of the VOC- and droop-
controlled converter are no longer identical based on the outer
control equations (1) - (2) and (11) - (12). In case that an
inner control loop is used (Fig. 10-a and -b), an insufficiently
damped oscillation of the active and reactive power can be
identified. In particular, the predicted oscillatory modes are
excited with correct damping relations between DLVC and
SLVC concept. In addition, the resonance frequencies match
the results obtained by the small-signal stability analysis.
If the inner controller is omitted (Fig. 10-c), the preferable
first-order low-pass behaviour of grid-forming converters
occurs. Hence, the OLVC concept contains no insufficiently
damped oscillatory modes in this study case. The MWE
confirms the potentially high burden that is imposed on the
voltage control by the coupling of grid-forming converters
with a relative small inductive impedance. Again, small refers
to the converter impedance at the oscillatory mode.

In general, the high model fidelity of the impedance-based
models is also verified for the state-space and phase-portrait
models.

VI. CONCLUSION
In this article, the coupling of inner control loops with the
power-related control in grid-forming power converters via
the grid states has been comprehensively investigated by
the impedance-based, state-space and phase portrait-based
framework for a minimal working example. Besides its basic
effects, the explicit coupling path is elaborated. Furthermore,
this analysis is validated by extensive laboratory experiments.

In particular, interactions of the inner and outer control
loops of grid-forming converter can occur for low-impedance
scenarios which need to be covered in a comprehensive power
system stability assessment. For this purpose, the inner con-
trol and grid states need to be modelled. In time-domain
simulations, this can be achieved by e.g. the dynamic pha-
sor concept. In frequency domain, detailed impedance-based
models can be combined towards a representation of the
power system. Conventional approaches, like a quasi-steady
state model, are missing these modes. Furthermore, the supe-
rior bandwidth of a VOC compared to the conventional droop
control yields a stronger coupling with the inner control
for the investigated scenarios. Thus, oscillations with less
damping occur for this setup.

In conclusion, detailed converter models can be necessary
even for the analysis of power-related transients in large-scale
converter-dominated power systems which requires suitable
methods to limit the computational burden. Due to its modu-
larity, the impedance-based framework is one of the preferred
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solutions that enables the analysis of small-signal stability
aspects. Among the published work in this area, the concept
of a generalised impedance-based framework, that allows
a systematic stability assessment of large-scale determinis-
tic power systems, can effectively reveal stability issues in
converter-dominated power systems.

APPENDIX A
IMPEDANCE MODELS
The steady-state impedance characteristics of a droop-
controlled converter can be described by the equation system
on the next page with the impedance and closed loop TF of
the inner control loop ZC(s) and Gcl(s), respectively.
Furthermore, the equivalent impedance of a VOC-

controlled converter can be derived based on the
equations (X) where Aj,k is the matrix entry in the j-th row
and k-th column and xi is the i-th vector entry. The notation
x1 defines the conjugate complex of x1. This representation
can be merged with the inner converter controls that yields
ZVOC,DLVC(s) = x1Gcl,DLVC(s) + ZC,DLVC(s) for the case of
a dual loop voltage controlled-converter.

APPENDIX B
STATE-SPACE MODELS
The investigated state-space model is exemplarily listed for a
dual loop voltage control concept. The individual couplings
between different states can be illustrated by the following
submatrices.

a: ELECTRICAL STATES
Contribution to own states:

Ael =

−κ1I− ω0D− −
1
Lf
I 02

1
Cf
I −κ2I− ω0D− −

1
Cf
I

02 1
Lgrid

I −κ3I− ω0D−


Contribution to other states:

Ael/ad

= Krc
[
−(κ1 + κ2)I (κ22 − κ4)I (κ3 + κ2)I

]
Ael/ctrl

=

02×2 −kP,VTi,V
I 02×2

06×2 06×2 06×2


Ael/droop

=
3
2
ωLPF

[
01×2 igrid,d,0I−igrid,q,0D− vC,q,0D+ + vC,d,0I∗

01×2 01×2 01×2

]
Ael/d

=

[
−
kP,C
Td

I −
kP,CkP,V
Td

I 02×2

]
with κ1 =

Rf
Lf

, κ2 =
1

CRC
, κ3 =

Rgrid
Lgrid

, κ4 =

1
Lgrid

+
1
Lf

zero matrix 0, anti-diagonal matrix D− =

adiag(−1, 1)/D+ = adiag(1, 1) and identity matrix I =
diag(1, 1)/I∗ = diag(1,−1)

TABLE 2. Experimental Setup Parameters.

b: INNER INVERTER OUTPUT CONTROL STATES
Contribution to own states:

Ad = −
1
Td

I− ω0D−, Aad = −ωrcI− ω0D−

Actrl =


−2γ1I2 − (γ 2

1 + γ
2
2 )I − γ1γ

2
2 I −

1
4γ

2
1 γ

2
2 I

I 02 02 02
02 I 02 02
02 02 I 02


Contribution to other states:

Ad/el =

[
1
Lf
I 02×4

]T
, Ad/ad =

Krc

Lf
I, Aad/d = −

1
Td

I

Actrl/d =
kP,C
Td

[
γ1I γ 2

1 I−
γ1γ2
2 D−

γ1γ
2
2

2 I γ 21 γ
2
2

4 I
]

with γ1 = 2ωBW, γ2 = 2ω0, zero matrix 0 anti-diagonal
matrixD− = adiag(−1, 1) and identity matrix I = diag(1, 1)

c: POWER-RELATED CONTROL STATES
Contribution to own states:

Adroop

=

[
−ωLPFI 02×1
mω
PN

E 0

]
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AVOC

= µ1I+ µ2D−

+

 vC,d,0(µ3 −
2ζ
k2v
vC,d,0) −vC,q,0(µ3 −

2ζ
k2v
vC,d,0)

−vC,d,0(µ4 −
2ζ
k2v
vC,q,0) −vC,q,0(µ4 −

2ζ
k2v
vC,q,0)


Contribution to other states:

Adroop/ctrl =
kp,V
Ti,V

 0 mV cos δ0 −|vC,dq,0| sin δ0
0 mV sin δ0 |vC,dq,0| cos δ0

06×1 06×1 06×1


Adroop/d =

kp,Vkp,C
Td

[
0 mV cos δ0 −|vC,dq,0| sin δ0
0 mV sin δ0 |vC,dq,0| cos δ0

]
AVOC/ctrl =

kp,V
Ti,V

[
I

06×1

]
, AVOC/d =

kp,Ckp,V
Td

I

with

µ1 =
2kikvQset,0

3|vC,dq,0|
+
ζ

k2v
(2V 2

N − |vC,dq,0|
2),

µ2 =
2kikvPset,0
3|vC,dq,0|

µ3 =
4(Pset,0vC,q,0 − Qset,0vC,d,0)

3C|vC,dq,0|
,

µ4 =
4(Pset,0vC,d,0 + Qset,0vC,q,0)

3C|vC,dq,0|

zero matrix 0, identity matrix I = diag(1, 1), vector E =[
1 0
]
and anti-diagonal matrix D− = adiag(−1, 1) The the

steady state is defined by igrid,dq,0, vC,dq,0 and δ0.
The complete linearised state-space model of the droop-

controlled converter coupled with a passive grid is defined

by the following n = 21 states

A =


Ael 06×2 06×8 06×3 Ad/el

Ael/ad Aad 02×8 02×3 Ad/ad
Ael/ctrl 08×2 Actrl Adroop/ctrl 08×2
Ael/droop 03×2 03×8 Adroop 03×2
Ael/d Aad/d Actrl/d Adroop/d Ad

 ,

B =
1

Lgrid

[
02x4 −I KrcI 02x13

]T
,

C =
[
02×4 I 02×15

]
,

D =
[
021×1

]
,

with zero matrix 0 and identity matrix I = diag(1, 1), along
with the state vector in (63) and the input vector in (64).

The VOC-controlled converter is modelled based on the
following n = 20 states

A =


Ael 06×2 06×8 06×2 Ad/el

Ael/ad Aad 02×8 02×2 Ad/ad
Ael/ctrl 08×2 Actrl AVOC/ctrl 08×2
Ael/VOC 02×2 02×8 AVOC 02×2
Ael/d Aad/d Actrl/d AVOC/d Ad

 ,

B =
1

Lgrid

[
02x4 −I KrcI 02x12

]T
,

C =
[
02×4 I 02×14

]
,

D =
[
020×1

]
,

with zero matrix 0 and identity matrix I = diag(1, 1), in
combination with the state vector in (62) and the input vector
in (64).

A=

 1−
3
4
i0

ωLP

s+ ωLP − jω0
Gcl(s)j(V̂0

mω
PN(s− jω0)

−
mV

PN
) −

3
4
i0

ωLP

s+ ωLP − jω0
Gcl(s)j(V̂0

mω
PN(s− jω0)

+
mV

PN
)

−
3
4
i0

ωLP

jωN−s+ωLP
Gcl(2jω0 − s)j(V̂0

mω
PN(jω0 − s)

+
mV

PN
) 1−

3
4
i0

ωLP

jω0−s+ωLP
Gcl(2jω0 − s)j(V̂0

mω
PN(jω0 − s)

−
mV

PN
)

,

B =

−ZC(s)+ j
3
4
V̂0Gcl(s)

ωLP

s− jω0 + ωLP
(V̂0

mω
PN(s− jω0)

+
mV

PN
)

j
3
4
V̂0Gcl(2jω0 − s)

ωLP

jω0 − s+ ωLP
(V̂0

mω
PN(jω0 − s)

−
mV

PN
)

 di(s),
x =

[
dV (s)

dV (2jω0 − s)

]
→ Ax =

[
A1,1 A1,2
A2,1 A2,2

] [
x1
x2

]
= B,

A =
[

3CV 2
0 e
−jϕ
(
k2v (s− jωN)− 2ζ (V 2

N − V
2
0 )
)
− 2kik3vSref − 3CζV 4

0 e
−jϕ

−3CζV 4
0 e
−jϕ3CV 2

0 e
−jϕ
(
k2v (2jω0 − s− jωN)− 2ζ (V 2

N − V
2
0 )
)
− 2kik3vSref

]
,

B =
[
3V 2

0 kik
3
v

0

]
di(s),

x =
[

dV (s)
dV (2jω0 − s)

]
→ A⊗ x =

[
A1,1x1 + A1,2x2
A2,1x1 + A2,2x2

]
= B,
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APPENDIX C
PHASE-PORTRAIT MODELS
The conventional phase-portrait model of a VOC-controlled
converter can be derived based on (6) - (7) with the derivatives

of the voltage magnitude V̇ (t) = d
dt

√
vref,α(t)2+vref,β (t)2

√
2

and its

phase angle δ̇(t) = d
dt arctan

vref,β (t)
vref,α(t)

V̇ (t) =
ζ

k2v
V (t)

(
2V 2

N−V (t)
2)
+
kvki
C

(
2

3V (t)
Re{e−jϕSref(t)}

+Re
{

Zgrid
|Zgrid|2

(
E(t)ej(δ(t)−ϕ) − V (t)e−jϕ

)})
,

δ̇(t) = ωN −
kvki
C

(
2

3V (t)2
Im{e−jϕSref(t)}

+ Im
{

Zgrid
|Zgrid|2

(
E(t)
V (t)

ej(ϕ−δ(t)) − V (t)e−jϕ
)})

.

APPENDIX D
SETUP PARAMETERS
The active damping scheme has been designed iteratively in
order to achieve a good damping performance of the filter
resonance while passive damping is negligible. The propor-
tional gain of the inner current control loop is limited by the
minimal gain margin GM = 1

√
2
for the LC resonance peak

of the equivalent transfer function. The outer voltage control
loop is designed based on the concept in [51], adapted for the
equivalent transfer function and applied for the phase margin
PM = 55◦. This procedure and the concept in [37] are utilised
to design the single loop voltage control for PM = 55◦.
All parameters of the considered study case are listed

in Table 2.
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