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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

 
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance 
of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density, but feature a very high melting point of oxide layers 
while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken 
this oxide layer and enhance processability, a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use 
of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in 
structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density 
of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition. 
 
© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer review statement: Peer-review under responsibility of the Bayerisches Laserzentrum GmbH 

 Keywords: additive manufacturing; laser powder bed fusion, magnesium, magnesium alloys, hydrogen 

 
1. Introduction 

The increasing demand for efficient transportation drives 
the research for lightweight materials especially in additive 
manufacturing. Furthermore, due to high human life 
expectancy, innovative solutions for individual and complex 
biomedical implants are under special focus of research. 
Magnesium as a material for laser powder bed fusion (also 
known as Powder Bed Fusion by Laser Beam, PBF-LB/M) 
suits both applications having a low density while being highly 
biocompatible [1]. First studies to fabricate single tracks out of 
magnesium were carried out by Ng et al. in 2009 [2]. They 
proved that the fabrication of sintered tracks is possible, despite 
the tendency of balling and spattering. Since then 
developments in magnesium alloy composition and processing 
parameters improved the processability [3,4]. The first dense 
specimen were created in 2012 using magnesium alloy AZ91 
with a density of 99.5 %. However, the use of aluminum for 

alloying impairs the biocompatibility [4,5,6,7]. A promising 
magnesium alloy was created in 2016. With an yttrium (W) 
content of 4 % and rare earth elements (E) of 3 % this material 
(WE43) can be used as a biodegradable material. In PBF-LB a 
laser melts a multitude of particles in a powder bed, in which 
these particles are combined into geometric shapes. Due to the 
fabrication and handling of the magnesium powder, oxygen 
superficially oxidizes the particle’s surface [8]. The obstacle in 
PBF-LB of magnesium is this formation of oxide layers. The 
challenge is the high melting point (2852 °C) of the enveloping 
oxide layer with respect to the pure magnesium’s low 
vaporizing temperature (1110 °C). Due to this gap in 
processable temperature, the melt pools tend to overheat during 
the laser exposure. This leads to partial evaporations of the 
magnesium, which causes porosity [5]. This paper describes 
the use of a novel inert gas mixture and the effects on the 
processability of the magnesium alloy WE43 based on a series 
of investigations on hollow cuboids and solid cubes. 
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1. Introduction 

The increasing demand for efficient transportation drives 
the research for lightweight materials especially in additive 
manufacturing. Furthermore, due to high human life 
expectancy, innovative solutions for individual and complex 
biomedical implants are under special focus of research. 
Magnesium as a material for laser powder bed fusion (also 
known as Powder Bed Fusion by Laser Beam, PBF-LB/M) 
suits both applications having a low density while being highly 
biocompatible [1]. First studies to fabricate single tracks out of 
magnesium were carried out by Ng et al. in 2009 [2]. They 
proved that the fabrication of sintered tracks is possible, despite 
the tendency of balling and spattering. Since then 
developments in magnesium alloy composition and processing 
parameters improved the processability [3,4]. The first dense 
specimen were created in 2012 using magnesium alloy AZ91 
with a density of 99.5 %. However, the use of aluminum for 

alloying impairs the biocompatibility [4,5,6,7]. A promising 
magnesium alloy was created in 2016. With an yttrium (W) 
content of 4 % and rare earth elements (E) of 3 % this material 
(WE43) can be used as a biodegradable material. In PBF-LB a 
laser melts a multitude of particles in a powder bed, in which 
these particles are combined into geometric shapes. Due to the 
fabrication and handling of the magnesium powder, oxygen 
superficially oxidizes the particle’s surface [8]. The obstacle in 
PBF-LB of magnesium is this formation of oxide layers. The 
challenge is the high melting point (2852 °C) of the enveloping 
oxide layer with respect to the pure magnesium’s low 
vaporizing temperature (1110 °C). Due to this gap in 
processable temperature, the melt pools tend to overheat during 
the laser exposure. This leads to partial evaporations of the 
magnesium, which causes porosity [5]. This paper describes 
the use of a novel inert gas mixture and the effects on the 
processability of the magnesium alloy WE43 based on a series 
of investigations on hollow cuboids and solid cubes. 
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2. Materials and methods 

2.1. Machine set up and materials 

The machine setup is a SLM125HL PBF-LB system by 
SLM Solutions GmbH (Luebeck, Germany) with a 100 W 
continuous wave ytterbium fiber laser. The laser has a focus 
diameter of 70 µm and a wavelength of 1070 nm. Carpenter 
Additive (Cheshire, Great Britain) supplied the WE43 alloy.  

 

 

Fig. 1. WE43 powder 

After the building process, the specimen are embedded in a 
two-component epoxy resin. Cross sections of the specimen 
will be made with a Tegramin-30 by Stuers (Ballerup, 
Denmark). The evaluation is based on microscopic images of 
these sections made with a Stemi 2000-C by Zeiss 
(Oberkochen, Germany) and a VK-X1000 by Keyence (Neu-
Isenburg, Germany). The determination of width and density 
of these images is done with python scripts. To prevent 
negative consequences of hydrogen use, silica bags are applied 
in the process chamber, to absorb the resulting moisture of the 
reaction of hydrogen and the remaining oxygen, which impairs 
the flowability of the powder and thus the powder application. 

2.2. Experimental set up and methods 

In this paper, the influence of an admixture of hydrogen in 
the existing argon inert gas is investigated. This addition is set 
at 2 % to reduce the risk of oxyhydrogen detonating reactions, 
but to allow the remaining oxygen to be reduced to moisture, 
thus reducing oxidation of the molten magnesium. At first, 
investigations are carried out to determine the influence of the 
atmosphere on the structure width of single tracks in hollow 
cuboids. In a second step, the influence on solid cubes and their 
relative density is examined. The specimen are even cuboids 
with the dimension of 5 x 5 x 5 mm. The single track cuboids 
are directly connected to the build plate and the solid cubes are 
connected with a 1 mm line support structure.  

The first series of investigations regarding the single tracks 
is divided into four blocks, depending on the atmospheric 
conditions as shown in table 1. 

Table 1. Atmospheric conditions of the single track experiment. 

Block Inert gas Build plate temperature in °C 

I 100 % Argon 40 

II 100 % Argon 200 

III 

IV 

98 % Argon; 2 % Hydrogen 

98 % Argon; 2 % Hydrogen 

40 

200 

Each block is divided into four different laser exposure 
strategies, resulting in 16 groups:  

• outer contour line 
• an inner contour line 
• a double outer laser line exposure  
• outer and inner contour line 

Within these groups, hollow cuboids with six different 
parameter sets are produced (Table 2). This results in a total 
number of 96 samples in the first study. The parameters are 
given by the statistic software JMP and originate from a 
preliminary test, with the aim to have a lower (20 W) und upper 
(100W) energy density boundary.  

The expected result of these parameters is a non-melting of 
the powder at low power and a much wider melting than the 
laser spot diameter at high power. To get more statistical 
significance, the parameter with a medium energy density is 
fabricated twice. The ideal result of the melting process is a 
dense rectangular wall with the width of the laser spot. The 
adhesion of one particle layer is expected and so results up to 
150 µm are targeted. Results above a wall thickness of 196 µm 
(i.e. adhesion of the largest particle diameter of 63 µm on both 
sides of the 70 µm spot) are not desired in this experiment, as 
an ideal thin structure is to be produced first.  

Table 2. Laser parameters of the cuboids.  

Number Laser power in W Scanning speed in 𝑚𝑚𝑚𝑚𝑠𝑠  

I 20 100 

II 20 900 

III 

IV 

V 

VI 

60 

60 

100 

100 

500 

500 

100 

900 

The second series of investigations regards the relative 
density of solid cubes with identical atmospheres according to 
the blocks in table 1. It considers two hatching strategies:  

• chess pattern 
• line pattern 

Table 3 shows the investigated laser parameters. There is a 
full factorial experiment within a narrow interval. The hatch 
distance is set to 45 µm. The resulting total amount of the 
investigated cubes is 72. 

Table 3. Laser parameters for the cubes.  

Number Laser power in W Scanning speed in 𝑚𝑚𝑚𝑚𝑠𝑠  

I 75 400 

II 80 400 

III 

IV 

V 

VI 

VII 

VIII 

IX 

85 

75 

80 

85 

75 

80 

85 

400 

450 

450 

450 

500 

500 

500 

100 µm 
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3. Experimental Results 

3.1. Results of the first investigation 

The results of the first investigation show the influence of 
laser parameters, different hatching strategies and atmospheric 
condition. The figure 2 shows an exemplary build plate with 
unextracted specimen and the table 4 shows the overall results, 
differentiated by laser parameter, forming averages over all 
atmospheric conditions and exposure strategies. Figure 2 
illustrates the evaluation. Three specimens with good and two 
with undesirable structures can be identified. One of these 
specimens has too thin and the other too thick structures. 

 

 

Fig. 2. Single track specimen 

Figure 3 shows cross sections of wall structures. The one on 
the left is too thin, is middle is desirable and the one on the right 
is too thick. The ideal wall thickness is between 100 to 140 µm, 
forming a solid wall with the thickness of the laser spot (70 µm) 
with some adhering particles. 

 
 
 
 
 
 

 
 

Fig. 3. Cross sections of different wall structures, left too thin (65.2 µm), 
middle desirable (115.2 µm), right too thick (203.1 µm) 

The evaluation is shown in the table 4. Only the parameter 
III and IV (which are the same) resulting in a thin consistent 
structure. Thus, 32 desirable test specimens were selected in 
order to evaluate the influence of the exposure strategy and the 
atmospheric conditions in the next steps. 

Table 4. Averaged results of the cuboids, differentiated by laser parameter 

No. Mean width 
in µm 

Mean standard 
deviation in µm 

Evaluation of the structure 

I 84.8 38.7 Too thin & inconsistent 

II - - Powder did not melt 

III 

IV 

V 

VI 

137.4 

140.8 

590.1 

158.0 

24.4 

27.0 

16.8 

33.8 

Thin & consistent 

Thin & consistent 

Too thick & consistent 

Thin & slightly inconsistent 

 
Table 5 shows the averaged results of the 32 most desirable 

selected cuboids in structure width and standard deviation 
differentiated by exposure strategy, averaging the atmospheric 
conditions. It is displayed that the exposure strategy has no 
influence on the mean width or the standard deviation. 

Table 5. Averaged results of the best cuboids, differentiated by exposure 
strategy 

Exposure strategy Mean width in µm Standard deviation in µm 

Outer contour 138.7 25.0 

Outer contour double 139.0 25.6 

Inner contour 

Double contour 

139.5 

139.3 

26.9 

25.5 

 
The mean values of the wall thickness of the selected 

cuboids, differentiated by atmospheric conditions are shown in 
table 6. It is displayed, that the addition of hydrogen in the inert 
gas decreased the width by 20.3 % and the standard deviation 
by 20.6 %. There is an influence of the build plate temperature, 
but it is not systematic. 

Table 6. Averaged results of the best cuboids, differentiated by atmospheric 
condition 

Block Mean width in µm Standard deviation in µm 

I (Ar – 40 °C) 148.9 27.9 

II (Ar – 200 °C) 160.8 29.5 

III (H2 – 40 °C) 

IV (H2 – 200 °C) 

119.7 

127.2 

23.3 

22.3 

3.2. Results of the second investigation  

The following results display the influence of the build plate 
preheating temperature, the hatching strategy and the hydrogen 
addition in the inert gas on the relative density on solid cubes. 
Figure 4 displays the analyzed cross sections as examples with 
two different relative densities. These cubes were fabricated 
with identical parameters except for scanning speed. 

 

           

Fig. 4. Cross sections of cubes (H2, 200 °C, 75 W and 45 µm chess hatching). 
Left 99.86 % (400 mm/s) and right 98,99 % (450mm/s) relative density  

Table 7 shows the mean relative densities of the cubes 
differentiated by build plate preheating. The difference in 
median is below the standard deviation, thus negligibly small. 
  

Good structure 

Too thin structure  
 
Too thick structure 

2000 µm 2000 µm 

20 mm 

1 mm 
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SLM Solutions GmbH (Luebeck, Germany) with a 100 W 
continuous wave ytterbium fiber laser. The laser has a focus 
diameter of 70 µm and a wavelength of 1070 nm. Carpenter 
Additive (Cheshire, Great Britain) supplied the WE43 alloy.  

 

 

Fig. 1. WE43 powder 

After the building process, the specimen are embedded in a 
two-component epoxy resin. Cross sections of the specimen 
will be made with a Tegramin-30 by Stuers (Ballerup, 
Denmark). The evaluation is based on microscopic images of 
these sections made with a Stemi 2000-C by Zeiss 
(Oberkochen, Germany) and a VK-X1000 by Keyence (Neu-
Isenburg, Germany). The determination of width and density 
of these images is done with python scripts. To prevent 
negative consequences of hydrogen use, silica bags are applied 
in the process chamber, to absorb the resulting moisture of the 
reaction of hydrogen and the remaining oxygen, which impairs 
the flowability of the powder and thus the powder application. 

2.2. Experimental set up and methods 

In this paper, the influence of an admixture of hydrogen in 
the existing argon inert gas is investigated. This addition is set 
at 2 % to reduce the risk of oxyhydrogen detonating reactions, 
but to allow the remaining oxygen to be reduced to moisture, 
thus reducing oxidation of the molten magnesium. At first, 
investigations are carried out to determine the influence of the 
atmosphere on the structure width of single tracks in hollow 
cuboids. In a second step, the influence on solid cubes and their 
relative density is examined. The specimen are even cuboids 
with the dimension of 5 x 5 x 5 mm. The single track cuboids 
are directly connected to the build plate and the solid cubes are 
connected with a 1 mm line support structure.  

The first series of investigations regarding the single tracks 
is divided into four blocks, depending on the atmospheric 
conditions as shown in table 1. 

Table 1. Atmospheric conditions of the single track experiment. 

Block Inert gas Build plate temperature in °C 

I 100 % Argon 40 

II 100 % Argon 200 

III 

IV 

98 % Argon; 2 % Hydrogen 

98 % Argon; 2 % Hydrogen 

40 

200 

Each block is divided into four different laser exposure 
strategies, resulting in 16 groups:  

• outer contour line 
• an inner contour line 
• a double outer laser line exposure  
• outer and inner contour line 

Within these groups, hollow cuboids with six different 
parameter sets are produced (Table 2). This results in a total 
number of 96 samples in the first study. The parameters are 
given by the statistic software JMP and originate from a 
preliminary test, with the aim to have a lower (20 W) und upper 
(100W) energy density boundary.  

The expected result of these parameters is a non-melting of 
the powder at low power and a much wider melting than the 
laser spot diameter at high power. To get more statistical 
significance, the parameter with a medium energy density is 
fabricated twice. The ideal result of the melting process is a 
dense rectangular wall with the width of the laser spot. The 
adhesion of one particle layer is expected and so results up to 
150 µm are targeted. Results above a wall thickness of 196 µm 
(i.e. adhesion of the largest particle diameter of 63 µm on both 
sides of the 70 µm spot) are not desired in this experiment, as 
an ideal thin structure is to be produced first.  

Table 2. Laser parameters of the cuboids.  

Number Laser power in W Scanning speed in 𝑚𝑚𝑚𝑚𝑠𝑠  

I 20 100 
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III 

IV 
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The second series of investigations regards the relative 
density of solid cubes with identical atmospheres according to 
the blocks in table 1. It considers two hatching strategies:  

• chess pattern 
• line pattern 

Table 3 shows the investigated laser parameters. There is a 
full factorial experiment within a narrow interval. The hatch 
distance is set to 45 µm. The resulting total amount of the 
investigated cubes is 72. 

Table 3. Laser parameters for the cubes.  

Number Laser power in W Scanning speed in 𝑚𝑚𝑚𝑚𝑠𝑠  

I 75 400 
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IV 
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VIII 

IX 
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80 
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Figure 3 shows cross sections of wall structures. The one on 
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Table 7 shows the mean relative densities of the cubes 
differentiated by build plate preheating. The difference in 
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Table 7. Averaged results of the cubes, differentiated by heating temperature 

Parameter Rel. density at 40 °C in % Rel. density at 200 °C in % 

I 

II 

III 

IV 

V 

VI 

99.84 

99.70 

99.53 

99.57 

99.91 

99.65 

99.91 

99.85 

99.76 

99.64 

99.88 

99.80 

VII 

VIII 

99.52 

99.61 

99.35 

99.60 

IX 99.75 99.65 

Median 99.67 99.72 

Std. deviation 0.13 0.17 

 
The influence of the hatching strategy is displayed in table 8. 

The mean values over all samples show a difference in 0.25 % 
density and the standard deviation is reduced by a factor of 4. 

Table 8. Averaged results of the cubes, differentiated by hatching strategy 

Parameter Rel. density with chess 
hatching in % 

Rel. density with line 
hatching in % 

I 

II 

III 

IV 

V 

VI 

99.86 

99.67 

99.51 

99.42 

99.89 

99.63 

99.88 

99.88 

99.78 

99.79 

99.91 

99.83 

VII 

VIII 

99.04 

99.49 

99.84 

99.73 

IX 99.61 99.75 

Median 99.57 99.82 

Std. deviation 0.24 0.06 

 
The table 9 shows the results differentiated by inert gas. It is 

shown that the difference in density is below the standard 
deviation and therefore the hydrogen shows no significate 
influence on mean value. However, eight of the ten specimen 
with the highest density are fabricated with hydrogen. 

Table 9. Averaged results of the cubes, differentiated by inert gas 

Parameter Rel. density Ar in % Rel. density H2 in % 

I 

II 

III 

IV 

V 

VI 

99.86 

99.74 

99.57 

99.63 

99.85 

99.70 

99.89 

99.82 

99.73 

99.58 

99.94 

99.75 

VII 

VIII 

99.44 

99.62 

99.43 

99.60 

IX 99.69 99.69 

Median 99.68 99.71 

Std. deviation 0.12 0.15 

4. Conclusion 

This investigation shows the influence of a 2 % hydrogen 
addition in a pure argon inert gas on the production of hollow 
cuboids and solid cubes in the PBF-LB with the magnesium 
alloy WE43. The first investigation determined the influence of 
the inert gas on single track structures in hollow cuboids. 
Different laser exposure strategies were applied but no impact 
occurred. A decrease of 20.3 % in structure width and a 20.6 % 
decrease in the associated standard deviation was shown, due 
to the addition of hydrogen in the inert gas. Which is a 
significate improvement and shows the potential of the 
research in atmospheric parameters in the PBF-LB process. 

The second investigation carried out a series of experiments 
to determine the influence of the inert gas on the relative 
density of solid cubes. The admixture of hydrogen and the build 
plate preheating showed no significate influence in terms of 
mean values of the density. Nevertheless, eight out of the best 
ten results were fabricated with hydrogen and five of these 
eight were fabricated with 200 °C plate temperature. It is 
shown that the line hatching improves the density and 
significantly reduces the standard deviation. It is suspected that 
there will be a noticeable difference in a wider process 
parameter interval, due to the major improvements in the first 
investigation.  

The next steps will be a series of investigations to determine 
if the hydrogen addition causes a shift of optimal process 
parameters of the relative density. This should improve the 
robustness of the process and increase the volume generation 
rate. The influence on surface roughness of the generated 
geometries, the microstructure of the building specimen and the 
tensile properties should be determined.  
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