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Abstract: One of the most fundamental symmetries in physics is CPT invariance. This article reviews
the conditions under which CPT symmetry holds by recalling two proofs of the CPT theorem:
The original Lagrangian-based analysis and the more rigorous one in the context of axiomatic
quantum field theory. The presentation of the proofs is followed by a discussion of the major
physical implications that arise from CPT symmetry. Motivated by recent theoretical and experimental
interest in CPT tests, various approaches to the violation of CPT symmetry are mentioned, and it is
briefly discussed how they evade the CPT theorem. An attempt has been made to keep this work
self-contained and at a level suitable for a wider readership by excising as many technical aspects
as possible.
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1. Introduction

In the last century, the concept of symmetry in the laws of nature has played an increasingly
important role. On the one hand, symmetries are often desirable for reasons of theoretical consistency,
for their aesthetic appeal, as guiding principles for approaches to new physics, etc. On the other hand,
scientific progress has also been achieved in the past by the notion of approximate symmetries and by
the idea of symmetry violation.

In our present understanding, spacetime—although dynamical itself—serves as the arena for
all physical events. Spacetime symmetries therefore possess a particularly fundamental character in
physics. The present article focuses on the case of a flat Minkowski spacetime, i.e., situations in which
gravity can be neglected. The known continuous spacetime symmetries in this situation are global
translations in both space and time as well as global Lorentz transformations, which include both
boosts and rotations. The established discrete spacetime symmetry is given by CPT invariance, where
CPT represents the combined transformation of charge conjugation C, parity inversion P, and time
reversal T. It turns out that Lorentz and CPT symmetry are closely intertwined, a fact with significant
consequences for experimental investigations of spacetime symmetries. The purpose of the current
work is to review some theoretical aspects of this intimate relation with as few technical details as
possible and with the goal of broad accessibility.

Loosely speaking, C can be thought of as exchanging particle and antiparticle, P as reflecting all
three spatial coordinates (e.g.,~r → −~r), and T as reversing time coordinates (e.g., t→ −t). However,
we remind the reader that special care is required, for example, in cases involving pseudovectors, such
as the angular momentum~L =~r×~p. Although some physical theories, like quantum electrodynamics,
are separately invariant under C, P and T, this is not the case for the entire body of established physics.
In fact, CPT is the sole combination of C, P and T observed as an exact symmetry of nature at the
level of known fundamental physics. We mention that in nonrelativistic physics, antiparticles need to
be introduced to some extent by hand. In the context of combining special relativity and quantum
mechanics, however, the existence of antiparticles is essentially required. In this sense, the setting

Symmetry 2016, 8, 114; doi:10.3390/sym8110114 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry


Symmetry 2016, 8, 114 2 of 22

of relativistic quantum theory is most natural and meaningful for charge-conjugation symmetry or
its violation.

When interpreting and investigating the symmetry properties of a model, it is critical to consider
the correct type of transformation. Coordinate transformations are typically unsuitable in such contexts.
In physics, coordinates provide an elegant mathematical tool for the description of observables and
relations between them. However, they merely represent a labeling of spacetime points, which is
to a large extent arbitrary and without intrinsic physical relevance. In other words, physics should
be independent of the chosen coordinate system and independent of the observer. For this reason,
coordinate independence is also called observer invariance in the literature. On the other hand,
studying as to whether the transformed dynamical variables continue to satisfy the same equation
is more meaningful. Note that this corresponds to the actual experimental situation, in which
measurements before and after the transformation of the apparatus (and not the observer) are compared.
Such types of physical transformations are often called particle transformations. In the present context,
this means a CPT transformation on the coordinate system is insufficient to study the CPT properties of
a given model. Instead, the transformations need to be set up such that they correspond to transforming
the experimental set-up.

Motivations to study CPT invariance are threefold. First, the CPT theorem illustrates that
CPT symmetry is based only on mild physical requirements (conventional quantum mechanics,
Lorentz symmetry, energy positivity, and causality) which underlines its truly foundational character.
As such, tests of CPT invariance are at the same time probes of various cornerstones of physics.
Second, CPT contains charge conjugation, and therefore represents a symmetry between matter and
antimatter. However, cosmological observations indicate that the universe is dominated by matter
suggesting an asymmetry between matter and antimatter in nature. Although this asymmetry can be
explained in principle with the three Sakharov conditions [1] of C and CP violation, Baryon-number
violation, and interactions out of thermal equilibrium, the amount of CP violation contained in
the Standard Model appears to be insufficient for a convincing explanation of the observed baryon
asymmetry. On the other hand, Planck-size CPT violation may evade the Sakharov conditions and
generate a significant overabundance of matter [2]. Third, some theoretical approaches to physics
beyond the Standard Model, such as those mentioned in Section 4, contain a violation of CPT invariance
as a key prediction. For these reasons, CPT tests represent an interesting and timely avenue for
experimental research in fundamental physics.

This work contains two simplified versions of the proof of the CPT theorem with the goal to bring
to light clearly the minimal physical requirements for CPT symmetry to hold. The proofs are followed
by a discussion of three types of physical consequences that can be inferred from CPT invariance.
Based on the exposed ingredients for the CPT theorem, the present article proceeds to give a brief
account of the implications of, and possible mechanisms for, violations of CPT symmetry. Throughout,
we work in natural units h̄ = c = 1, and our metric signature is ηµν = diag (+,−,−,−).

2. The CPT Theorem

The CPT theorem states that under mild technical assumptions any unitary, local, Lorentz-
invariant point-particle quantum field theory in flat Minkowski space is CPT invariant. This theorem
was first established in the early 1950s in the context of Lagrangian field theory. A few years later,
a general version of the theorem was proved within the more abstract and mathematically rigorous
framework of axiomatic field theory. In the following two subsections, the line of reasoning behind
each of the two versions of the proof will be reviewed with particular focus on the key ingredients on
which the proofs rely.

There is a certain degree of arbitrariness in the construction of C, P, and T that cannot be removed
entirely from their definition without ad hoc assumptions. An example is given by phase factors that
leave unchanged the product CPT. Instead, one can consider a suitable discrete reflection Θ and
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establish the invariance of quantum field theories under this reflection. Indeed, some authors proceed
in exactly this way. However, the decomposition of Θ into C, P, and T,

Θ = CPT , (1)

does provide a clear physical interpretation of this reflection operation. The order in which the
individual C, P, and T transformations are performed turns out to be physically irrelevant.

Adopting the usual mathematical practice, we initially set up Θ to transform a physical state |ψ〉
to its CPT-conjugate state |ψ̄〉 in the same physical Hilbert space:

|Θ ψ〉 = Θ |ψ〉 ≡ |ψ̄〉 . (2)

Note that we consider a single theory that contains both states |ψ〉 and |ψ̄〉. Since Θ involves charge
conjugation, which connects particles and antiparticles, this means we take the theory to describe
both particle and antiparticle states at the same time. In particular, we do not consider situations
such as a mapping of the Pauli equation for an electron to the Pauli equation for a positron: These are
two distinct models, each with their own parameters that can in principle be specified separately.
The property

ΘΘ = 1 ⇒ Θ = Θ−1 = Θ† (3)

seems reasonable on physical grounds: two charge conjugations, two parity reflections, and two time
reversals should leave the physics unaffected. In the last step, we have used the fact that quantum
symmetry operations are known to be (anti)unitary. We finally remark that for the general form of the
transformation law for quantum operators A, we may take

A → ACPT = ΘAΘ† = Θ†AΘ . (4)

The second equality holds on account of Equation (3).

2.1. Proof Based on Lagrangian Field Theory

The first approaches to the CPT theorem by Bell [3], Lüders [4,5], and Pauli [6], and implicitly
already by Schwinger [7], are to a large extent based on the Lagrangian formalism in quantum field
theory. These approaches proceed essentially by construction: all physically acceptable terms that
can enter a Lagrangian density are formed. Alternatively, some of these authors work at the level
of the interaction Hamiltonian or the actual field equations. In any case, it is then shown that each
of these terms must necessarily be CPT symmetric. Often, this procedure is illustrated explicitly by
focusing on the physically most relevant cases of a scalar particle, a spin- 1

2 fermion, and a spin-1 boson:
All known elementary particles fall into one of these categories.

Proceeding in this manner, we need the properties of the field operators under the reflection Θ,
i.e., under the CPT transformation:

φ(x)→ Θ φ(x)Θ† = φ†(−x) , (5)

ψ(x)→ Θ ψ(x)Θ† = −γ5ψ†T(−x) , (6)

Aµ(x)→ Θ Aµ(x)Θ† = −A†
µ(−x) , (7)

where we have adopted the gamma-matrix conventions of Ref. [8]. Here, the transpose operation
denoted by the superscript T is not to be confused with the time-reversal transformation; it applies
only to the spinor indices, and does not refer to the entire quantum-field Hilbert space. We mention
that by virtue of Equation (3), the CPT operator Θ and its Hermitian conjugate may be interchanged in
Equations (5)–(7) in much the same way as in Equation (4).
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The demonstration that Θ can indeed be interpreted as the CPT-transformation operator is most
convincingly achieved in quantum field theory. Here, we merely motivate with a few heuristic
remarks that Equations (5)–(7) indeed implement CPT conjugation. The inversion of the spacetime
point x → −x is intuitively reasonable. It arises from a PT reflection, and C would be expected
to leave x unchanged. The Hermitian or complex conjugation of the field operators arises from C.
Consider, for example, an electrically charged scalar field φ with charge q. It must couple to the
photon field Aµ via a gauge-covariant derivative Dµ = ∂µ − iqAµ if the usual gauge invariance
and the resultant charge conservation is to be maintained. The field equation for φ† then contains
D∗µ = ∂µ + iqAµ because it can be obtained via Hermitian conjugation from the field equation for φ [9].
Inspection of Dµ and D∗µ reveals that φ and φ† couple with opposite charge q to the electromagnetic
field compatible with being charge conjugates of one another. The minus sign in the transformation of
Aµ is also intuitively reasonable by looking at the example of classical electromagnetism. Changing the

sign of source charges (ρ,~j) C−→ (−ρ,−~j), parity inversion (−ρ,−~j) P−→ (−ρ,+~j), and time reversal

(−ρ,+~j) T−→ (−ρ,−~j) changes the overall sign of the source current jµ, so the sign of Aµ must reverse
as well [10].

Another ingredient in the construction of Lagrangians is the 4-gradient ∂µ. This operator remains
unchanged under Θ:

∂µ → Θ ∂µ Θ† = ∂µ. (8)

This behavior stems from the question of whether equations of motion of the same form, and in
particular with the same derivative structure, are satisfied by the CPT conjugate fields. For example,
consider ∂

∂xµ Aµ(x) = c for real-valued Aµ(x) and c = const. CPT symmetry holds if
Θ Aµ(x)Θ† = Aµ(−x) also satisfies this equation, i.e., ∂

∂xµ Aµ(−x) = c. The equation− ∂
∂xµ Aµ(−x) = c

holds trivially because it follows from the original equation by renaming x → −x. This is consistent
with the aforementioned fact that pure changes of coordinates should not have physical effects.

For general, dynamical rank-n tensor densities T µ1µ2 ...µn(x), the following relation holds:

Θ Tµ1µ2 ...µn(x)Θ† = (−1)n T †
µ1µ2 ...µn(−x). (9)

Roughly speaking, tensor densities with an even (odd) number of indices are CPT even (odd). Note that
this property is compatible with the above definitions (5), (7), and (8). For example, the transformation
of the electromagnetic field-strength tensor Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x) can either be obtained with
Equation (9) for Fµν(x) or with Equations (7) and (8) for ∂µ Aν(x)− ∂ν Aµ(x), and the results agree:

Θ Fµν(x)Θ† = Θ
[
∂µ Aν(x)− ∂ν Aµ(x)

]
Θ†

= − ∂

∂xµ
Aν(−x) +

∂

∂xν
Aµ(−x)

=
∂

∂(−xµ)
Aν(−x)− ∂

∂(−xν)
Aµ(−x)

= +Fµν(−x). (10)

Using the spin–statistics theorem, we will argue below that spinors are also compatible with the
transformation law (9). Nondynamical objects with Lorentz indices do not follow this rule. For example,
a complex-valued four-vector zµ transforms as four complex numbers zµ → Θ zµ Θ† = zµ∗ and
involves complex conjugation according to Equation (11) to be discussed next.

Antilinearity of T. The time-reversal transformation is an antilinear operation [11]; it complex
conjugates complex numbers z: T z T−1 = z∗. The other two transformations, charge conjugation C
and parity inversion P, are both linear. This means that Θ, just like T, is also antilinear:

z→ Θ z Θ† = z∗. (11)
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This implies in particular that Lagrangian parameters, such as couplings, masses, mixing angles,
entries of Dirac matrices, etc. are complex conjugated under the CPT transformation. We remark that
Θ−1 = Θ†, so that ΘΘ† = Θ†Θ = 1. Antilinear operators that obey this additional condition are
called antiunitary.

The action of Θ and other antiunitary operators on matrix elements needs to be defined carefully,
so for the moment we switch from the bra–ket notation to one that better clarifies how operators act on
states 〈ψ|A|χ〉 = (ψ,Aχ) = (A†ψ, χ). Consider, for example, an ordinary unitary transformation U
on both the states ψ and χ as well as on the operator A: (ψ,Aχ)→ (ψ′,A′χ′) = (Uψ, UAU† Uχ) =

(ψ, U†UAU†U χ) = (ψ,Aχ), which leaves the matrix element trivially unchanged. For our present
purpose of searching for physical invariances, such trivial types of transformation are uninteresting.
Instead, a nontrivial unitary or antiunitary transformation of a matrix element involves the states only
(ψ,Aχ)→ (ψ′,Aχ′) consistent with the mathematical definition of a transformation on a Hilbert space.
For an antiunitary transformation, this yields

(ψ′,Aχ′) = (Θψ,AΘχ) = (ψ, Θ†AΘ︸ ︷︷ ︸
ACPT

χ)∗ = (χ,A†
CPTψ) . (12)

Here, ACPT is the CPT-conjugate operator determined by the general rules above. The complex
conjugation of the matrix element in the second step differs from the usual unitary-operator case;
it follows from the mathematical theory of antilinear operators. The last step uses the usual properties
of Hilbert-space scalar products. Physical observables are usually Hermitian. Moreover, they may
describe a process in time, such as scattering 〈 f |S|i〉, with an initial and final state. The last step in

Equation (12) then reads 〈 f |S|i〉 CPT−→ 〈i|SCPT| f 〉, i.e., CPT affects not only the scattering operator S ,
but also interchanges initial and final states, as expected from the time-reversal factor in CPT.

Connection between Spin and Statistics. The proof of the CPT theorem proceeds by using the
connection between spin and statistics in the following way [12]. Since the Lagrangian density is
a Lorentz scalar, spinor indices must be contracted, so that spinors always come in pairs. These spinor
bilinears are formed such that they transform like Lorentz tensors, i.e., that they possess zero, one,
or two Lorentz indices: ψ̄ψ, χ̄γ5γµψ, ψ̄σµνψ, etc. This allows a straightforward Lorentz-invariant
coupling to other tensors, like Aµ, φ, and ∂µ. A CPT transformation yields χ̄(x)ψ(x) →
Θ χ̄(x)Θ† Θ ψ(x)Θ† = χT(−x)γ5γ0∗γ5ψ†T(−x) = −χT(−x)γ0∗ψ†T(−x) = −χ†T†γ0∗ψ†T(−x) =

−
[
ψT(−x)γ0TχT†(−x)

]†
= +

[
{χ†(−x)γ0ψ(−x)}T]†. Here, we used that γ0 and γ5 anticommute,

and that γ5γ5 = 1. The crucial step is the last one, in which we simplified the spinor-space transpose;
it requires reversing the order of χ and ψ. It is this step that uses the connection between spin and
statistics: fermion fields anticommute. The term in the curly brackets is a spinor-space scalar, so the
spinor transposition may be left out and we have χ̄(x)ψ(x) → [χ̄(−x)ψ(−x)]†. Extension of this
reasoning including fermion anticommutation to the other Dirac bilinears shows that they also follow
the general rule (9) established above for dynamical tensor densities.

Lorentz invariance. We have already used Lorentz symmetry implicitly in the above individual
ingredients for the construction of field-theory Lagrangian densities: the Minkowski position x,
the scalar, spinor, and vector fields in Equations (5)–(8), and the general tensor densities in Equation (9)
are all realizations of the Lorentz group, i.e., rotations and boosts of these objects are implemented
by Lorentz transformations. In Lagrangian field theory in Minkowski space, Lorentz invariance is
guaranteed if the action, and thus the Lagrangian density, are both Lorentz scalars. This implies that
all fields and derivatives in a Lagrangian density must be combined such that not only the spinor
indices, but also all Lorentz indices are properly contracted. Through this pairwise contraction, the
total number of Lorentz indices in each Lagrangian term of field products must be even n = 2k, k ∈ N.
According to Equation (9), this yields for the Lagrangian density

ΘL(x)Θ† = (−1)2kL†(−x) = L†(−x) (13)
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under CPT. Here, the assumption has been made that all fields in L(x) are combined at the same
spacetime point x. We will have to say more about such pointlike interactions below [13].

Unitarity. The next ingredient for the CPT theorem is a Hermitian Lagrangian density L = L†,
so that with Equation (13), we have

ΘL(x)Θ† = L(−x) . (14)

A Hermitian L will lead to a Hermitian Hamiltonian H. The time evolution U(t) = exp(−iHt) is then
unitary, so that probability is conserved in time: 〈t0 + t|t0 + t〉 = 〈t0|U†(t)U(t)|t0〉 = 〈t0|t0〉. Without
this property, a conventional interpretation of the quantum mechanics of closed systems would appear
to be difficult.

Point interactions. To conclude the Lagrangian version of the proof of the CPT theorem, we show
that the action S =

∫
d4xL(x) remains invariant under Θ. With the above result (14), we write

Θ S Θ† =
∫

d4xL(−x) =
∫

d4yL(y) = S , (15)

where we have changed the dummy integration variable x → −y in the second step. As mentioned
earlier, the validity of this step hinges crucially upon the absence of non-pointlike interactions.
Consider, for example, Lagrangian contributions of the form 1

2 ∂µφ(x)∂µφ(x) + φ(x)ϕ(x− d) for two
real scalar fields φ and ϕ; dµ is a constant nonzero four-vector. The equations of motion for φ read
∂µ∂µφ(x) = ϕ(x− d). This shows that the behavior of φ at x is determined by the value of ϕ at the point
x− d indicating an interaction at a distance. According to Equation (5), real scalars reverse the sign of
their entire spacetime argument under CPT, i.e., Θ φ(x)Θ† = φ(−x) and Θ ϕ(x− d)Θ† = φ(−x + d).
The corresponding piece of the action therefore obeys Θ δS Θ† =

∫
d4x Θ† φ(x)ϕ(x − d)Θ =∫

d4x φ(−x)ϕ(−x + d) =
∫

d4y φ(y)ϕ(y + d) 6= δS. It thus becomes apparent that CPT symmetry is
not automatically satisfied in theories with interactions at a distance. We remark that such interactions
would typically be associated with violations of causality. The axiomatic proof the CPT theorem to be
discussed next further illuminates the role of microscopic causality.

2.2. Proof Based on Axiomatic Field Theory

In 1950s, efforts to place quantum field theory on a more rigorous mathematical footing intensified.
Within this mathematical-physics context, the Lagrangian formalism turned out to be too narrow, and
sets of axioms, such as the Wightman axioms, were adopted [14]. A next natural step was then to ask
what properties of quantum field theory follow rigorously from these axioms. For the case of CPT
symmetry, this question was answered by Jost [15] in 1957. Although more technical, his proof of the
CPT theorem thoroughly illuminates the close connection between Lorentz and CPT symmetry.

The core of the argument involves the complexified version of Lorentz transformations, which are
essentially boosts and rotations by complex-valued velocities and angles acting on complex-valued
Minkowski vectors, tensors, etc. When in the conventional real Lorentz-transformation laws complex
velocities and angles are entered, physical interpretation is usually lost for most input values, but the
equation may still be mathematically correct. However, it turns out that for judiciously chosen
imaginary boosts and real rotation angles, a complete spacetime inversion, which goes a long way to
a full CPT transformation, can be achieved. Now, this is clearly not a proper orthochronous Lorentz
transformation. However, this transformation does have a physical interpretation and is usually
already contained in the mathematical structure of the transformation law. It is this complexification
feature of the Lorentz transformations in quantum physics that is used to prove the CPT theorem and
that exposes the intimate connection between CPT and Lorentz symmetry.

Let us illustrate this idea with an example. It has already been argued above that the Minkowski
position xµ would change sign under CPT: Θ† xµ Θ = −xµ, i.e., CPT can be implemented by
multiplying xµ with −1, where 1 is the 4× 4 identity matrix. Consider a Lorentz transformation
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Λ(w, α) consisting of a boost along the x-axis with rapidity w = arctanh v and a rotation about the
x-axis by an angle α:

Λ(w, α)=


cosh w sinh w 0 0
sinh w cosh w 0 0

0 0 cos α − sin α

0 0 sin α cos α

 . (16)

It is apparent that for any proper Lorentz transformation, which has velocities −1 < v < +1 and thus
rapidities −∞ < w < +∞, and which has angles 0 ≤ α < 2π, we have Λ(w, α) 6= −1. However, if we
chose a purely imaginary w→ πi and let α→ π, we do obtain

Λ(w = πi, α = π) = −1 . (17)

This illustrates that if the equations of physics remain invariant not only for real-valued boosts
and rotations, but also for complex-valued Lorentz transformations, we can expect them to be left
unchanged also under spacetime inversion. In particular, spacetime inversion amounts to a CPT
transformation for, e.g., spacetime points xµ.

The actual proof of the CPT theorem includes further physical input, such as energy positivity
and microscopic causality. It also includes some technical mathematical aspects including an analysis
of the circumstances under which the above analytic continuation into the complex plane is valid.
The goal of the following paragraphs is to shed some more light on this proof.

Jost’s proof proceeds in the context of Wightman’s approach to rigorous quantum field theory in
a flat-spacetime background [16]. Weak gravitational fields can be expanded about flat backgrounds
and are in this sense included in the framework. Strong gravitational fields, however, seem to lie
outside Wightman’s rigorous quantum field theory, so that Jost’s proof would need to be generalized.

Wightman’s approach is based on a set of axioms that define what is meant by a sensible quantum
field theory. To appreciate the generality of the CPT theorem, it is useful to spell out these axioms and
comment on their physical significance. In the literature, a few variations of Wightman’s definition
of a quantum field theory can be found. For example, certain axioms may be combined into a single
one or, vice versa, axioms may be separated into subaxioms. Nevertheless, in one form or another,
the following physical assumptions are made:

(1) Lorentz- and translation-covariant Hilbert spaceH. This assumption essentially states that we
consider a relativistic version of quantum theory in which the usual rules of quantum mechanics
apply. In particular, there are unitary operators U(Λ, a) that implement Lorentz transformations
Λ and spacetime translations a. The unitarity of these transformations ensures that under Λ and
a states in H transform to other states in H such that all transition amplitudes remain unchanged.

(2) Vacuum state. The Hilbert space contains a unique state, called the vacuum |0〉, that remains
invariant under both the Lorentz transformations and the translations up to a phase
U(Λ, a)|0〉 ∼ |0〉. In particular, the vacuum can neither have a nonzero four-momentum nor
a nonzero angular momentum, as these quantities would change under U(Λ, a). Together with
axiom (4) below, the vacuum needs to be the state with lowest energy. These requirements
are intuitively reasonable: the flat-spacetime vacuum looks the same to all inertial observers.
An additional, more technical assumption is that |0〉 be cyclic. This essentially means that all
other physical states inH can be constructed by acting with the field operators of axiom (3) on the
vacuum. This property is akin to that of the usual quantum harmonic oscillator, where excited
states can be reached from the ground state with the creation operator.

(3) Field operators. Physical quantities are represented by polynomials of field operators φ(x)
acting on this Hilbert space. These field operators transform under the Lorentz transformations
as scalars, vectors, tensors, spinors, etc. Moreover, these fields are set up such that each
corresponds to a definite finite spin and mass allowing the usual particle interpretation. It turns
out that field operators are mathematically not well-defined at a spacetime point, so there is the
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technical assumption of them being tempered distributions “smeared out” with test functions.
This assumption can, for example, be used to establish continuity properties as the field operators
vary with spacetime, but otherwise this level of rigor will be unnecessary for our present purposes.

(4) Energy positivity. Translation invariance leads to a conserved four-momentum operator Pµ.
Its zeroth component P0, the energy operator or Hamiltonian, is postulated to have non-negative
eigenvalues p0 ≥ 0. Together with the condition of Lorentz symmetry, this implies that the
four-momentum eigenvalues pµ are lightlike or timelike four-vectors pµ pµ ≥ 0. In other words,
pµ must lie in the forward momentum-space lightcone. This property is closely tied to the
requirement of stability: if there were no lowest-energy state, it would seem difficult to prevent
the system from filling an infinite number of pairs of positive- and negative-energy states.

(5) Microscopic causality. Many textbooks seems to suggest that the property of causality is
automatically contained in a Lorentz-symmetric theory. However, consider a model with
spacelike particle four-velocities uµ. Being a four-vector, uµ transforms covariantly under
the Lorentz transformations compatible with Lorentz symmetry. However, a spacelike
four-velocity is associated with superluminal particle speeds and thus acausalities. For this
reason, causality is imposed separately as follows. Field operators φ commute or anticommute
if they cannot be connected by light signals: [φ(x), φ(y)]± = 0 for (xµ − yµ)(xµ − yµ) < 0.
In the mathematical-physics literature, this requirement is sometimes also called locality. The
microcauslity condition may be understood intuitively by recalling the usual quantum-mechanical
uncertainty relation ∆ψ A ∆ψB ≥ 1

2 |〈ψ|[A, B]|ψ〉| for two Hermitian operators A and B, with the
usual definition of the uncertainty ∆ψA =

√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2 for any Hermitian operator

A with respect to the state |ψ〉. Here, one measurement generally affects the other measurement
because their uncertainties are not independent unless the commutator [A, B] vanishes. A careful
reasoning in the present context shows that with the above microcausality condition, the physics
at x cannot affect the physics at y and vice versa if the separation between x and y is spacelike [17].
We remark in passing that in this axiomatic framework the spin–statistics theorem follows
rigorously, so that the above choice between commutators and anticommutators is actually fixed:
commutators for integer-spin fields and anticommutators for half-integer spin fields.

Note the generality of the above axioms. In particular, no Lagrangian is required, and the details of the
field equations are not specified. This set of axioms is sufficient to prove CPT symmetry.

The basic field-theory objects in Wightman’s approach are Wightman functionsW defined simply
as vacuum expectation values of field operators:

W(∆x1, ∆x2, . . . , ∆xn) ≡ 〈0|φ(x0)φ(x1) . . . φ(xn)|0〉, ∆xk ≡ xk − xk−1. (18)

Here, the spacetime points xk are physical, i.e., each point is described by a set of four real numbers.
The fact that the Wightman functions depend only on spacetime differences follows from translation
invariance postulated in Axiom (1). The field operators can be of any type, i.e., scalar, vectors, tensor,
spinor, etc. Now, the Wightman reconstruction theorem [18] roughly states that a quantum field theory
is uniquely determined by its Wightman functions. The theorem follows from the axioms above.
The significance of the reconstruction theorem in the present context is that the CPT theorem needs
to be proved only for all theW : if they satisfy CPT symmetry, so will the corresponding quantum
field theory. This simplifies matters because instead of working with abstract field operator and
Hilbert-space states, one needs to consider ordinary functions only.

In what follows, our sole focus will be on scalar fields, which is sufficient to gain a flavor of
the proof and to appreciate the significance of the physical ingredients needed. More general types
of fields are considered in Ref. [16]. We first state the CPT theorem, and then proceed to prove it.
Translated into the present context, the theorem asserts that the CPT-transformed Wightman functions
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should be identical to the original ones. As the Wightman functions are matrix elements, we employ
Equation (12) to state the CPT theorem as

〈0|φ(x0)φ(x1) . . . φ(xn)|0〉 = 〈0|φ†(−x0)φ
†(−x1) . . . φ†(−xn)|0〉∗ , (19)

where we have used Equation (5). The usual Hilbert-space properties give 〈0|φ†(−x0) . . . φ†(−xn)|0〉∗
= 〈0|[φ(−xn) . . . φ(−x0)]

†|0〉∗ = 〈0|φ(−xn) . . . φ(−x0)|0〉 = W(∆xn, . . . , ∆x1). In other words, one
must show that

W(∆x1, ∆x2, . . . , ∆xn) =W(∆xn, ∆xn−1, . . . , ∆x1) (20)

is satisfied by all Wightman functions in order to prove CPT symmetry.
Physical Lorentz symmetry. Axioms (1) and (3) imply invariance of the Wightman function

under the usual physical Lorentz transformation Λ, so we can write:

W(∆x1, ∆x2, . . . , ∆xn) =W(Λ∆x1, Λ∆x2, . . . , Λ∆xn) for real xk . (21)

We cannot immediately extend this equation to complex Lorentz transformations, such as the inversion
in Equation (17) becauseW may have singularities, branch points, discontinuities, etc.

Energy positivity. The next idea is to resolveW into its Fourier components. These will contain
plane-wave 4-momenta, for which we can use Axiom (4). As an example, let us sketch this idea for the
particular Wightman functionW(y− x) = 〈0|φ(x)φ(y)|0〉 involving two field operators. Inserting a
complete set of momentum eigenstates

∫
d4 p |p〉〈p| and employing the translation operator on both

fields φ(x) = exp(iP · x)φ(0) exp(−iP · x) and φ(y) = exp(iP · y)φ(0) exp(−iP · y) yields

W(y− x) =
∫

d4 p〈0|φ(x)|p〉〈p|φ(y)|0〉

=
∫

d4 p 〈0|eiP·x︸ ︷︷ ︸
=〈0|

φ(0) e−iP·x|p〉︸ ︷︷ ︸
=e−ip·x |p〉

〈p|eiP·y︸ ︷︷ ︸
=〈p|eip·y

φ(0) e−iP·y|0〉︸ ︷︷ ︸
=|0〉

=
∫

d4 p eip·(y−x)|〈p|φ(0)|0〉|2 . (22)

This is the desired Fourier decomposition ofW(y− x), where we have used that |0〉 is translation
invariant and that the |p〉 are momentum eigenstates P|p〉 = p|p〉.

Since the integral remains well behaved for decaying exponentials, we may insert certain
complex-valued spacetime differences y − x → ∆z = Re(∆z) + i Im(∆z). Complexifying the
exponent gives

ip · (y− x)→ ip · ∆z = ip · Re(∆z)− p · Im(∆z) = ip · Re(∆z)− [p0Im(∆z0)− ~p · Im(∆~z)]. (23)

The only real contribution to the exponent is the square bracket term, so it must give an overall
negative contribution for exponential suppression. Axiom (4) guarantees that p is in the forward
momentum-space lightcone, i.e., p0 > 0 and (p0)2 > ~p2. Then, the exponential decays for Im(∆z) in
the forward position-space lightcone, i.e., Im(∆z0) > 0 and Im(∆z) is timelike Im(∆z0)2 > Im(∆~z)2.
This reasoning can be made rigorous for all Wightman functions, so that energy positivity implies that
Equation (21) remains valid for certain complex position differences:

W(∆z1, ∆z2, . . . , ∆zn) =W(Λ∆z1, Λ∆z2, . . . , Λ∆zn) for zk with Im(∆zk) in forward cone. (24)

Here, the Λ are still the usual real Lorentz transformations.
Complex Lorentz transformation. A theorem by Bargmann, Hall, and Wightman [19] now states

that Equation (24) remains valid for an even larger set of complex ∆z and also for complex Lorentz
transformations. This larger set consists of all the original ∆zk that have their imaginary part in the
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forward cone and also all ∆z′k that can be generated from ∆zk with complex Lorentz transformations
Λc: ∆z′k = Λc ∆zk. This set is sometimes called the “extended tube.” Equation (24) therefore takes
the form

W(∆z1, ∆z2, . . . , ∆zn) =W(Λc∆z1, Λc∆z2, . . . , Λc∆zn) for ∆zk in extended tube. (25)

A special case of this relation is

W(∆z1, ∆z2, . . . , ∆zn) =W(−∆z1,−∆z2, . . . ,−∆zn) for ∆zk in extended tube, (26)

where we plugged in the specially chosen complex Lorentz transformation (17), i.e., Λc = −1.
Another important difference between Equations (24) and (25), which follows from the

Bargmann–Hall–Wightman theorem, is that there are no real-valued, physical ∆zk in Equation (24)
because the imaginary parts of these ∆zk are all timelike vectors and therefore strictly nonzero.
However, Equation (25) holds for some real-valued spacetime points: the extended tube contains not
only the above complex ∆zk, but also transformed points Λc∆zk, and a complex Lorentz transformation
acting on a complex ∆zk can give a real four-vector. Consider the example of ∆z = (i, 0, 0, 0).
Clearly, Im ∆z = (1, 0, 0, 0) is in the forward cone, so it is valid input for Equation (24). For Equation (25),
we may transform ∆z to ∆y by any complex Λc, so, in particular, we may select an imaginary boost
w = 1

2 iπ

∆y = Λ(w = 1
2 iπ, α = 0)∆z =


0 i 0 0
i 0 0 0
0 0 1 0
0 0 0 1




i
0
0
0

 =


0
−1
0
0

 . (27)

These special, physical points ∆yk in the extended tube are called Jost points. A special case of
Equation (26) is therefore

W(∆y1, ∆y2, . . . , ∆yn) =W(−∆y1,−∆y2, . . . ,−∆yn) at Jost points. (28)

By using matrix manipulations, Jost showed that all ∆yk are not only real but also spacelike.
The significance of this result is that it permits the application of Axiom (5).

Microscopic causality and spin–statistics. Translating Equation (28) back to vacuum expectation
values gives

〈0|φ(y0)φ(y1) . . . φ(yn)|0〉 = 〈0|φ(−y0)φ(−y1) . . . φ(−yn)|0〉 at Jost points, (29)

where ∆yk = yk − yk−1. The CPT theorem (19) contains the Hermitian-conjugate fields, so we can
use the general Hilbert-space scalar-product property 〈ψ|A|χ〉 = 〈χ|A†|ψ〉∗ on the right-hand side of
Equation (29) to write

〈0|φ(y0)φ(y1) . . . φ(yn)|0〉 = 〈0|φ†(−yn)φ
†(−yn−1) . . . φ†(−y0)|0〉∗ at Jost points. (30)

However, this leaves the fields on the right-hand side in the reverse order relative to Equation (19) that
we want to prove. However, since the Jost points are real and mutually spacelike separated, we can
use the commutativity property of Axiom (5) to change the order of the fields freely:

〈0|φ(y0)φ(y1) . . . φ(yn)|0〉 = 〈0|φ†(−y0)φ
†(−y1) . . . φ†(−yn)|0〉∗ at Jost points. (31)

As before, we can express this in terms of Wightman functions using 〈0|φ†(−y0) . . . φ†(−yn)|0〉∗
= 〈0|[φ(−yn) . . . φ(−y0)]

†|0〉∗ = 〈0|φ(−yn) . . . φ(−y0)|0〉 =W(∆yn, . . . , ∆y1):

W(∆y1, ∆y2, . . . , ∆yn) =W(∆yn, ∆yn−1, . . . , ∆y1) at Jost points. (32)



Symmetry 2016, 8, 114 11 of 22

We remark that this reordering implicitly uses the spin–statistics theorem, which can be proved
independently. If we had also considered half-integer spin fields, anticommutators would generate
a factor of −1 for each interchange of two fermionic fields.

Each of the two Wightman functions in Equation (32) have their respective analytic continuation
into the extended tube by the above line of reasoning. However, these analytic continuations need
not be the same a priori because the two functions only agree at Jost points, and not for all real ∆xk.
However, it can be shown that the Jost points form an open set, and there is a mathematical theorem
that guarantees the equality of analytic functions if they agree in a real-valued open set. Thus, the
two analytic continuations are, in fact, identical

W(∆z1, ∆z2, . . . , ∆zn) =W(∆zn, ∆zn−1, . . . , ∆z1) for ∆zk in extended tube. (33)

One can now take the limit of physical spacetime positions ∆zk → ∆xk:

W(∆x1, ∆x2, . . . , ∆xn) =W(∆xn, ∆xn−1, . . . , ∆x1) for real ∆xk. (34)

This is the result we needed to prove. Although more technical than the Lagrangian proof, the above
line of reasoning in axiomatic field theory reduces the requirements for CPT symmetry down to the
bare essentials, namely quantum physics, Lorentz symmetry, energy positivity, and microcausality.

3. Some Physical Consequences of CPT Symmetry

The Standard Model of particle physics, and indeed many theoretical approaches to unify
nongravitational interactions, satisfy the ingredients of the CPT theorem and are therefore CPT
invariant. It is then natural to inquire about the physical consequences of CPT symmetry. Since the
CPT transformation contains charge conjugation linking particles to antiparticles, CPT invariance is
expected to provide a correlation between the properties of matter and antimatter. In what follows,
we briefly recall key predictions of CPT symmetry.

Any physics prediction typically requires some form of theoretical framework. In what follows, we
will often rely on general features of a relativistic quantum theory. For example, we assume that a single
Hamiltonian operator H = P0 governs the dynamics of both particles and antiparticles. For such
a system, it is meaningful to predict properties of antimatter from those of matter using the CPT
symmetry of H. Examples include the quantum-mechanical Dirac Hamiltonian as well as Hamiltonians
constructed in quantum field theory. On the other hand, the usual non-relativistic single-particle
Hamiltonians present in the Schrödinger or the Pauli equation are unsuitable in the present context:
The corresponding antiparticle Hamiltonians must essentially be specified independently, so that
antiparticle properties cannot convincingly be considered predictions of the theory. With this in mind,
our goal is to ask the following:

Given CPT symmetry H = Θ H Θ†, how are the

properties of matter and antimatter states related? (35)

There are various ways in which matter and antimatter states can be compared. Here, we discuss
three of the most common ones. They concern properties of stationary states, observables related
to dynamical processes resulting from the time evolution of non-stationary states, and coupling
constants. We will see that the general line of inquiry (35) needs to be modified for couplings indicating
a qualitative difference with respect to the first two types of CPT-symmetry implications.

3.1. CPT-Symmetry Implications for Eigenstates

A particularly interesting set of quantum states are eigenstates of H. These are usually labeled by
quantum numbers such as charge, momentum, spin, intrinsic parity, isospin, etc. Thus, a first context
for question (35) is provided by the implications of CPT symmetry for the relation between particle and
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antiparticle quantum numbers. In what follows, we will focus on quantum numbers that arise from
exact continuous symmetries. By Noether’s theorem, these symmetries are associated with conserved
current densities, and in the absence of spontaneous symmetry breaking, these current densities can
be used to construct the spacetime-independent Hermitian operators that give rise to the quantum
numbers in question. We are thus led to investigate the CPT properties of these conserved quantities.

In addition to the presumed translation and Lorentz invariance, internal symmetries, such as
gauge symmetries, occur often in physics. The current densities are basically local products of fields
and field derivatives, so their behavior under CPT is determined by Equation (9). In particular, we do
not need their explicit, model-dependent form, but only their Lorentz-index structure. This structure
is taken to be determined solely by the indices on dynamical fields and four-gradients; nondymanical
objects with Lorentz indices, such as background fields, are excluded in the following:

internal: current jµ(x) Θ jµ(x)Θ† = −jµ(−x) ,
translations: energy–momentum tensor Tµν(x) Θ Tµν(x)Θ† = Tµν(−x) ,
rotations and boosts: angular-momentum tensor J µνρ(x) ΘJ µνρ(x)Θ† = −J µνρ(−x) .

(36)

Here, we have used that all three current densities are Hermitian, as expected for physical observables.
The internal-symmetry current density jµ is not necessarily the usual electromagnetic current. It could
also be associated with other internal symmetries. In fact, if there are n independent unbroken internal
symmetries, there are n independent conserved currents jµ

n(x) [20].
Standard arguments now yield the associated conserved operators as spatial integrals of the

currents. For example,

Q =
∫

d3x j0(t,~x) ,

Pµ =
∫

d3x T0µ(t,~x), (37)

Mµν =
∫

d3xJ 0µν(t,~x),

where we have chosen to arrange the expressions for the current densities such that they are conserved
in their first index. We remark in passing that the tensor Mµν is antisymmetric, so it has six
independent components resulting from three independent boosts and rotations. The three purely
spatial components represent the usual total angular momentum~J, with Jk = 1

2 εklm Mlm.
The CPT transformations (36) together with the expressions (37) determine the behavior of charges,

momenta, and angular momenta under CPT. For example,

Θ Q Θ† = −
∫

d3x j0(−t,−~x)

= −
+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

dx1 dx2 dx3 j0(−t,−~x)

=

−∞∫
+∞

−∞∫
+∞

−∞∫
+∞

dy1 dy2 dy3 j0(−t,~y) (38)

= −
+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

dy1 dy2 dy3 j0(−t,~y)

= −Q,
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where we have adopted Cartesian coordinates, changed the integration variable ~x → −~y, and used the
time independence of Q. Analogously, one can show

Θ Pµ Θ† = Pµ , (39)

Θ Mµν Θ† = −Mµν . (40)

In particular, this implies that the angular-momentum operator~J changes sign under CPT.
We continue by considering an arbitrary asymptotic one-particle state |pµ, j(j + 1), jp, q〉

labeled by its four-momentum pµ, its angular-momentum square j(j + 1), its angular-momentum
projection jp along ~p, and its charge q. The corresponding antiparticle state has then the following
quantum numbers:

Θ|pµ, j, jp, q〉 = |pµ, j,−jp,−q〉 . (41)

This equation follows from the transformation behavior (38)–(40) of the corresponding operators.
We demonstrate this for the case of pµ; the other quantum numbers can be treated analogously.
The goal is the determination of the four-momentum eigenvalue of the antiparticle state Θ|pµ, . . .〉
given that the particle state satisfies Pµ|pµ, . . .〉 = pµ|pµ, . . .〉. We have:

Pµ|pµ, . . .〉 = pµ|pµ, . . .〉 , so that

Θ Pµ Θ†︸ ︷︷ ︸
Pµ

Θ|pµ, . . .〉 = pµ Θ |pµ, . . .〉 , (42)

Pµ Θ|pµ, . . .〉 = pµ Θ |pµ, . . .〉.

The crucial step here is using the CPT transformation of the momentum operator Θ Pµ Θ† = Pµ; it
follows from Equation (39).

The CPT transformations (41) of the one-particle quantum numbers involve the total angular
momentum~J = ~L + ~S, which is composed of the orbital angular momentum~L and the state’s intrinsic
spin ~S. The transformation of the more customary spin quantum numbers can be made plausible using
classical-physics arguments: ~̇L = ~̇r×~p = ~̇r× (m~̇r) =~0, where we have used that ~p is constant in time.
Note also that the projection of~J onto ~p is independent of~L since~L ·~p = (~r×~p) ·~p = 0. This supports
the fact that spin is separately conserved for a free particle, and its quantum numbers can therefore
be used to label single-particle states. To determine the behavior of spin under CPT, note that the
corresponding spin contribution to the angular-momentum tensor J µνρ will also have three Lorentz
indices. Hence, it will exhibit the same CPT behavior as J µνρ, so that Equation (40) continues to hold
for the particle’s spin by itself. We can therefore recast Equation (41) as

Θ|pµ, s, sp, q〉 = |pµ, s,−sp,−q〉 . (43)

The spin projection sp onto the momentum ~p can be identified with the state’s helicity. The above
reasoning for the spin properties under CPT can be established more rigorously using the
Pauli–Lubanski vector Wµ = 1

2 εµνρσ MνρPσ [8].
We mention in passing two immediate consequences of the above results. First, assuming that

Lorentz symmetry holds and we can identify
√

pµ pµ = m or p0(~p = ~0) = E(~p = ~0) = m with
the particles’ invariant masses, it is apparent that particle and antiparticle states must have the
same mass [21]. Second, the reasoning (42) is general enough to hold also for multiparticle states.
In particular, consider the zeroth-component of (42). Since P0 = H is the Hamiltonian and p0 = E an
energy eigenvalue, one recognizes the usual stationary Schrödinger-type energy-eigenvalue equation.
We may therefore conclude that if there is a matter bound state |n〉 with eigenvalue En, there is also an
antimatter bound state |n̄〉 = Θ|n〉 with the same eigenvalue En. Thus, any matter bound state will
possess the same energy spectrum as the corresponding antimatter bound state.
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3.2. CPT-Symmetry Implications for the Dynamics of Nonstationary States

Next, consider quantum states with a nontrivial time evolution. In this context, question (35)
leads us to compare dynamical properties of matter and antimatter states, such as transition rates,
cross sections, branching ratios, etc. As an example, we consider the lifetime τ of an unstable particle.
A leading-order expression for its decay rate may often be obtained from Fermi’s Golden Rule:

Γi→ f = τ−1 = 2π|〈 f |Hint|i〉|2ρ(E f ) , (44)

where i and f refer to initial and final configurations, respectively, with |i〉 and | f 〉 eigenstates of some
CPT-invariant, free Hamiltonian H. The decay proceeds through an interaction Hamiltonian Hint

presumed to exhibit no explicit time dependence. In the Schrödinger picture, which is the required
form for Equation (44), Hint is therefore constant in time. The density of final states ρ(E) is defined as
the number of states dn = ρ(E) dE in the energy interval dE; it essentially provides a measure of the
phase space accessible to the decay products. Analogously, the antiparticle decay rate is

Γı̄→ f̄ = τ̄−1 = 2π|〈 f̄ |Hint|ı̄〉|2ρ̄(E f̄ ) , (45)

where ı̄ and f̄ denote the corresponding initial and final antiparticle configurations, τ̄ the antiparticle
lifetime, and ρ̄(E f̄ ) density of final antiparticle states. According to our above analysis, the kinematics
of the antiparticle’s decay process is essentially identical to that of the particle [22], so that we
may conclude that the final-state energies as well as the density of final states remain unchanged
ρ̄(E f̄ ) = ρ(E f ). With |ı̄〉 = |Θ i〉, | f̄ 〉 = |Θ f 〉, and Equation (12), we have

τ̄−1 = 2π|〈 f |Θ† Hint Θ|i〉∗|2ρ(E f ) = 2π|〈 f |Hint|i〉|2ρ(E f ) = τ−1 , (46)

where we have used CPT invariance Θ† Hint Θ = Hint in the second step. Thus, the lifetimes of particle
and antiparticle agree, at least at leading order in perturbation theory.

The above arguments for the CPT-transformation behavior of the various quantum numbers and
the decay time involve to some extent Lagrangian field theory and the canonical formalism, and they
sidestep intricate issues regarding the theoretical treatment of unstable particles in quantum field
theory. We mention in passing that these arguments can be made more rigorous [23]. For example,
the momentum-space propagator for free particles contains the factor Sfree(p2) ∼ (pµ pµ − m2)−1,
so that Sfree has a pole at the particle’s squared mass. The propagator Sfull of a fully interacting theory
will then in general have a pole at some complex p2 = (m − 1

2 iΓ)2 [24]. As the notation suggests,
the imaginary part of such a pole is tied to the decay rate of the particle: A ~p = ~0 plane-wave
solution will have ω = E = (m− 1

2 iΓ), leading to an exponentially decaying solution exp(−iωt) =
exp(− 1

2 Γt) exp(−imt). The probability for the particle state exp(− 1
2 Γt) exp(−imt)|i〉 after time t to

remain in the initial state |i〉 is then |〈i| exp(− 1
2 Γt) exp(−imt)|i〉|2 = exp(−Γt), so that Γ = τ−1 can be

interpreted as the decay rate. More careful arguments show that the measured mass and lifetime are
indeed determined by the real and imaginary parts of the pole, respectively [25]. Since the propagator
is a specific combination of momentum-space Wightman functions, the CPT transformation of mass
and lifetime can be studied nonperturbatively without assuming a Lagrangian density with the same
results m = m̄ and τ = τ̄ [26].

3.3. CPT-Symmetry Implications for Couplings

The relation between a given coupling constant pertaining to matter and the corresponding one
for antimatter is often considered to be a third type of consequence following from CPT symmetry.
To gain further insight, some preliminary considerations are necessary. One of these concerns
the definition of what actually constitutes a coupling constant. Typically, a coupling constant is
thought of as a number that parametrizes in one form or another the strength of a specific type
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of interaction. Numerical factors—possibly dimensionful—multiplying expressions of dynamical
variables in a Hamiltonian are prime candidates for being interpreted as coupling constants.

The above definition clearly needs further refinements. As one such refinement, we exclude pure

normalization factors. For example, the usual factor of one half in 1
2

p2

m in a nonrelativistic Hamiltonian
normalizes the kinetic energy relative to the potential energy and is therefore not usually considered
to be a coupling.

A second issue concerns the ambiguity in splitting an interaction term into a coupling factor a
and an operator factor A: selecting an arbitrary number b and defining a new coupling a′ ≡ b a and
a new operator A′ ≡ b−1A, it is clear that a′A′ represents the same overall Hamiltonian contribution.
Note that implies one can always choose a to be real valued. Such a choice is natural in the sense that
if the interaction aA is Hermitian and a is real, then the operator A is Hermitian.

A third question involves the specification of what an interaction term is. The conventional
decomposition of quantum-field Lagrangians into free-field and interaction terms is based partly on
considerations that are practical for perturbation theory. A bare-mass parameter mb, for instance,
(which is, in general, different from the actual particle mass m) would then be part of the free-field
terms. However, in many circumstances the corresponding term can equivalently be treated as an
interaction in the sense of perturbation theory with mb measuring the strength of this self interaction.

As a fourth question, one might want to consider whether the theory permits the free choice of
a given interaction strength. For example, the structure of the Standard Model dictates a relationship
between the electromagnetic couplings of charged leptons and quarks.

Another fifth issue to address is the meaning of matter coupling constant versus antimatter
coupling constant. For a particle in an external field, there is an intuitive notion for this concept:
the particle and antiparticle could have the same type of interaction with the external field
(e.g., they both couple linearly via their spin), but the strength of their respective couplings may
differ. However, in a field-theory Lagrangian, for example, the product of n fields can often be
interpreted as a simultaneous interaction of multiple particles and antiparticles whose numbers add
up to n. In such a scenario, the notion of pure matter versus pure antimatter coupling is blurred at best.

A sixth important aspect worth mentioning here concerns couplings specifically in the framework
of quantum field theory. In this framework, coupling parameters can often be interpreted to depend
on the energy scale at which the parameter is measured. Although this effect arises through
renormalization theory and is thus quite well understood, it does add an additional level of
interpretational complexity.

These remarks illustrate that a comprehensive study of the consequences of CPT symmetry for
couplings would need to be preceded by in-depth discussions of a number of preparatory issues.
Addressing these in detail lies outside the scope of the present work. However, for definiteness, let
us consider all physical spacetime-constant model parameters of a theory that have been made real
valued and unambiguous by suitable prescriptions, which cannot be fixed by theoretical considerations
alone, and need to be measured (and actually can be measured) as coupling constants.

Regardless of the details of the definition of coupling constants, the above discussion highlights
two important points. First, extending the study of the consequences of CPT symmetry to couplings
necessarily introduces an additional layer of theory dependence. This contrasts our previous results,
such as Equations (41), (43), and (46) for stationary and time-dependent states. These relied only on
a few basic physical assumptions, such as the validity of quantum theory, Lorentz and translation
invariance, and internal symmetries. However, there are an infinite number of interactions compatible
with these symmetries, and each of these interactions comes with their own respective coupling
strength subject to suitable definitions and refinements, such as those discussed above. Second, the
previously adopted line of investigation (35) becomes less meaningful since couplings are input
parameters rather than predictions of the model; quantum states are not usually labeled by coupling
constants [27]; and the reasoning Θ b Θ† = b for real-valued couplings is meaningless.
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One possible way to proceed is to modify the original approach (35) and ask if a CPT symmetric
Hamiltonian necessarily needs to have a single coupling strength for a given interaction for both
matter and antimatter. It would then seem desirable to obtain further insight into the above fifth issue
and develop a theoretical notion to distinguish between matter and antimatter couplings present in
a single Hamiltonian describing both types of matter. In a conventional field-theory Lagrangian, the
matter and antimatter physics is contained in a single quantum field. An interaction is conventionally
modeled by a given product of these fields. Thus, this single product term parametrized by a single
coupling describes the interaction of both particles and antiparticles. In this sense, the equality of
matter and antimatter couplings becomes almost trivial.

A somewhat more general reasoning for the equality of couplings may be obtained as follows.
Consider the Hamiltonian [28]

H(~x) = H0(x) + aA(x) + ā Ā(x) . (47)

Here, A(x) may depend on the spacetime point xµ = (t,~x) and represents the operator for a given
type of interaction, such as a spin coupled to the magnetic field, and Ā(x) ≡ A(x)CPT = ΘA(x)Θ†

is its CPT conjugate. Note that the special case A(x)− Ā(x) = 0 is not assumed. The corresponding
coupling constants a and ā are independent and may differ. The remaining part of the Hamiltonian
is denoted by H0(x) and could, for example, include the free-particle physics and other interactions.
We further take the theory to be time-translation invariant, so that H is conserved and generates time
translations via the unitary operator exp(−iHt).

Before we continue and study the implications for a and ā when CPT symmetry is imposed
on H, we pause here to gain confidence that the interaction term Hint(x) = aA(x) + ā Ā(x) indeed
treats matter and antimatter differently. In particular, we seek to verify that the intuitive notion
for the single-particle case alluded to in the fifth issue above, is described by Hint as a special limit.
In other words, we want to show that single particles and single antiparticles obey the same type of
interaction, but with a different coupling strengths. To see this, consider the limit of one-particle states,
and in particular the situation in which the general structure of the operator A does not contribute
to the antiparticle interactions, so that 〈n̄|A|n̄′〉 = 0 for any pair of single-antiparticle states |n̄〉 and
|n̄′〉. Conversely, Ā is then irrelevant for particle interactions: 0 = 〈n̄|A|n̄′〉 = 〈Θ n|A|Θ n′〉 =

〈n|Θ†AΘ|n′〉∗ = 〈n|Ā|n′〉∗ for any two particle states |n〉 and |n′〉. The particle’s interactions
are now completely specified by the matrix elements 〈n|Hint|n′〉 = a〈n|A|n′〉 = a Ann′ , and the
CPT-conjugate situation for antiparticles is governed by 〈n̄′|Hint|n̄〉 = ā〈n̄′|Ā|n̄〉 = ā〈n̄′|Θ†AΘ|n̄〉 =
ā〈Θ n̄′|A|Θ n̄〉∗ = ā〈n′|A|n〉∗ = ā〈n|A†|n′〉 = ā Ann′ , where the hermiticity of A has been used in the
last step, and where we have allowed for time-dependent effects by reversing initial and final states.
This demonstrates that both particles and antiparticles have the same type of interaction represented
by Ann′ , but their respective couplings a and ā are independent. This reasoning can be extended to
multiparticle states containing both matter and antimatter and more general A: the corresponding
CPT conjugate state will have different interaction matrix elements if a 6= ā.

We may now proceed with confidence that the interaction (47) indeed represents a general
theoretical description for distinguishing between matter and antimatter couplings. More specifically,
we can now study in a meaningful way the relation between a and ā imposed by CPT symmetry.
Clearly, in the special caseA(x) = Ā(x), we have Hint(x) = (a+ ā)A(x), which corresponds to at most
one measurable coupling a′ = (a + ā), and there is nothing to prove. In what follows, we therefore
focus on the nontrivial case, in which A(x0)− Ā(x0) 6= 0 at least for some x = x0. The existence of
a unitary time-translation operator then guarantees that

A(0,~x0)− Ā(0,~x0) 6= 0 . (48)

This follows because any unitary transformation of a nonzero operator must give another
nonzero operator.
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CPT symmetry requires the CPT conjugate Hamiltonian

H̄(~x) = H̄0(x) + a Ā(t) + āA(t) (49)

to be equal to H(~x). Here, we have denoted H̄0(x) ≡ Θ H0(x)Θ†. To implement CPT symmetry,
we equate the right-hand sides of Equations (47) and (49):

H0(x) + aA(x) + ā Ā(x) = H̄0(x) + a Ā(x) + āA(x) . (50)

To relate H0(x) and H̄0(x), it is useful to display their time dependences explicitly using the
time-translation operator:

eiHt H0(0,~x) e−iHt + aA(x) + ā Ā(x) = e−iHt H̄0(0,~x) eiHt + a Ā(x) + āA(x) . (51)

Note that according to its definition, the time evolution of H̄0(t,~x) must be determined by
CPT-conjugating the time evolution of H0(t,~x). Subsequently, one then again use CPT invariance
H = H̄ to arrive at Equation (51).

With our definition of coupling constant, a and ā are free model parameters not determined within
the theory. We can therefore expect a self-consistent theory for large ranges of a and ā. In particular,
Equation (51) should remain valid in the special case of zero-strength interactions a = ā = 0:

eiHtH0(0,~x)e−iHt = e−iHt H̄0(0,~x)eiHt . (52)

While this limit affects the expression for H, and thus the time-evolution operator [29], both H0(0,~x)
and H̄0(0,~x) are left unchanged: H0(0,~x) and H̄0(0,~x) can be interpreted a Schrödinger-picture
operators, so that the time evolution of matrix elements is entirely contained in the states. In particular,
H0(0,~x) and H̄0(0,~x) are free of any dependence on other parts of H, such as a and ā. Setting t = 0,
we find that H0(0,~x) = H̄0(0,~x). Since both of these are constant in time, we may conclude that

H0(0,~x) = H̄0(0,~x) (53)

holds in general for all t, a, and ā. Equation (51) then becomes

eiHtH0(0,~x)e−iHt + aA(x) + ā Ā(x) = e−iHt H0(0,~x)eiHt + a Ā(x) + āA(x) . (54)

At t = 0 and ~x = ~x0 the H0 terms cancel, and we find aA(0,~x0) + ā Ā(0,~x0) = a Ā(0,~x0) + āA(0,~x0),
or

a
[
A(0,~x0)− Ā(0,~x0)

]
= ā

[
A(0,~x0)− Ā(0,~x0)

]
. (55)

Recalling the condition (48), Equation (55) is therefore only satisfied if

a = ā , (56)

i.e., matter and antimatter couplings must be equal. We stress that the reasoning leading to this
conclusion may not be the most general one. Nevertheless, a number of additional considerations
relative to the properties of quantum numbers and particle lifetimes under CPT seem to be necessary.

Another perspective on the equality of coupling constants for matter and antimatter is provided by
the following reasoning. From a more experimental viewpoint, the measurement of a coupling typically
involves the properties of eigenstates or time-dependent states, such as spectra of confined particles or
cross sections, respectively. Carefully chosen systems and measurements then permit the extraction of
the value of a particular coupling. For example, the energy levels of a charged particle in a Penning
trap yield the g factor of the particle, and from the decay cross section of the muon (i.e., the muon
lifetime) the Fermi constant can be determined. We had earlier argued that CPT invariance guarantees
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the equality of spectra and decay times for a system and its CPT-conjugate counterpart. We remind the
reader that the equality between these primary experimental observables depends only on general
physical features, such as the validity of quantum physics, Lorentz and translation invariance, and
internal symmetries [30]. In particular, this equality is independent of the nature and the number of
the interactions relevant in the given experimental situation. If, in addition, a theoretical prediction for
the spectrum or the cross section in terms of specific interactions is known, the corresponding coupling
can be extracted. Assuming CPT invariance, the extraction procedure for a given physical system
and its CPT conjugate would, in essence, have to agree. This agreement together with the equality
of spectra and cross sections leads to identical couplings for matter and antimatter. Note, however,
that this idea requires additional theoretical input linking the interactions to the physical observables.
For example, in the Penning-trap case mentioned above, it must be postulated that the magnetic-field
interaction of the particle is of the specific form g µ~s · ~B to determine g. This reiterates the above point
that the equality of coupling constants represents a more theory-dependent result than the equality of
spectra, lifetimes, etc.

4. CPT Violation

The proof of the CPT theorem highlights the fundamental status of CPT symmetry. Tests of such
basic physics laws are interesting because they may either solidify the foundations of physics further,
or they may uncover fundamentally new physics. From a theoretical perspective, one might then ask
if and how CPT symmetry can be evaded in a physically acceptable manner. The proof of the CPT
theorem suggests three broad overlapping approaches to this question.

The first of these approaches is based on the fact that CPT holds in the framework of point-particle
quantum field theory. Thus, CPT symmetry could be avoided if more fundamental physics requires
a broader framework that contains quantum field theory only as a limiting case. One example in
this context is string theory. Indeed, it is known that in the field theory of the open bosonic string
spontaneous CPT violation is possible [31]. On the other hand, string theory does contain quantum
field theory in certain limits, as it should. Leading-order stringy CPT-violating effects might then
also be expected in the quantum-field limit. Indeed, the Standard-Model Extension (SME) mentioned
below is widely utilized to capture the leading, low-energy remnants of CPT breakdown in underlying
models, such as string theory.

In a more general context, we note the following. Our most fundamental models are theories for
large numbers of degrees of freedom. For example, the Standard Model is essentially a many-body
quantum theory. It therefore stands to reason that the underlying physics is also a theory with a large
number of degrees of freedom. Past experience has shown that certain meaningful physical predictions
do not require detailed knowledge of the dynamics of these degrees of freedom. For example,
many features of random excitations of such systems can be described with statistical methods
and thermodynamics. Such a system can also display collective excitations, in which the behavior of
many degrees of freedom is correlated. Examples are water waves, phonons, or elastic deformations
of macroscopic solid bodies. For the physical description of these systems at scales larger than
the interatomic spacing, detailed knowledge of the motion of individual atoms is not necessary:
various field-theoretic methods, including the Navier–Stokes and Beltrami–Michell equations as well
as phonon quantum field theory, have proved to be successful in these contexts. These are only a few
examples of a general pattern in physics: collective excitations of systems with a large number of
degrees of freedom are well described by field theory in the large-distance limit. For this reason,
one might expect that the dominant low-energy effects of general CPT violation arising from some
unknown underlying physics are likely to be amenable to a description within the framework of
ordinary quantum field theory.

Within the framework quantum field theory, there now remain two distinct options for CPT
violation. These two options are highlighted by the axiomatic proof of the CPT theorem discussed
in Section 2.2: Lorentz symmetry and a certain degree of smoothness in the physical laws, so that
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they remain valid for complex-valued Lorentz boosts. For CPT violation, one could therefore either
give up Lorentz symmetry, or one could give up some smoothness properties of quantum field theory.
This reasoning has been put on a rigorous footing by Greenberg [32]: Under the mild assumptions of
the usual domain and continuity properties of the fields and energy positivity, CPT violation implies
the breakdown of microcausality and Lorentz symmetry.

We begin by discussing the first option—Lorentz violation. In the last quarter century, relaxing the
condition of Lorentz symmetry has developed into its own research field. This idea has been studied
originally by Colladay and Kostelecký to capture the leading effects of a spontaneous breaking of
Lorentz symmetry in string theory [33], as mentioned above. This approach is theoretically attractive
because the mechanism of spontaneous symmetry breaking is well understood and the breaking
is correspondingly benign. Moreover, the consistency of quantum field theory does not seem to
require Lorentz symmetry, as the existence of many successful nonrelativistic field theories shows.
This idea has led to the construction of a general field-theory framework for the description of
perturbative Lorentz violation, the aforementioned SME [34–36]. In this framework, about half of the
Lorentz-breaking contributions also violate CPT invariance. However, Lorentz violation without CPT
breaking is certainly possible. The SME has been employed to identify, interpret, analyze, and compare
numerous experimental and observational studies of Lorentz and CPT symmetry [37]. We note that
at energies well below the symmetry-breaking scale, other ingredients of the CPT theorem, such as
microcausality and energy positivity, are maintained in the SME [38]. The scope of this idea and the
volume of experimental efforts in this context are arguably dominating the field.

A related approach has suggested the interesting possibility that a nontrivial spacetime topology
evades one of the prerequisite for the CPT theorem [39]. More specifically, the case of a background
Minkowski space with one of the three spatial dimensions compactified into a circle of cosmological size
has been considered. This manifold continues to be a flat spacetime, avoiding potential complications
due to gravity. On the other hand, the finite size of the compactified dimension imposes periodic
boundary conditions, so that the plane-wave momentum spectrum is discrete along this direction.
This results in a Casimir-type vacuum structure, so that |0〉 fails to be Lorentz invariant violating
Axiom (2). As a result, other states in the Hilbert space violate Lorentz and CPT symmetry as well.
The physical effects described by this model can be matched to the SME.

Next, we focus on the second option, giving up certain smoothness properties of physics.
These smoothness properties were based on energy positivity, microcausality, the validity of
closed-system quantum theory, as well as some technical assumptions, such as finite spin.

Carruthers has investigated models of bosons in which particle and antiparticle are both contained
in the same isospin multiplet [40–44]. This analysis demonstrated that the conventional quantization
of imposing the usual commutator relations on the creation and annihilation operators leads to
non-point interactions in the case of half-integer isospin. This nonlocality, which here is known to
violate microcausality, is the source of CPT violation in these models. However, multiplets of this type
have not been observed in nature.

Hawking has argued that CPT violation may arise from modifications of conventional quantum
mechanics due to gravitational effects [45,46]. The basic idea is that, in addition to the usual
quantum-mechanical uncertainty principle, the gravitational field causes another fundamental
limitation regarding the predictability of the future. Under ordinary circumstances, properly specified
initial conditions, together with the known laws of physics, permit the prediction of observables
at any later time. However, in the presence of black holes, for example, the interaction region may
contain event horizons beyond which the observer has only limited physical knowledge. Part of the
information about the system therefore seems inaccessible, and its quantum evolution may have to
involve thermodynamic features including non-unitarity.

In addition to Hawking’s idea, arguments for a different type of loss of quantum-mechanical
coherence in other approaches to quantum gravity have been made, and have been reasoned to
generate CPT breaking [47]. The idea is that the physics of observable low-energy particles is affected
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by unavoidable couplings to unobserved high-energy string states in the spacetime foam. This, in turn,
means that the observable sector must be regarded effectively as an open quantum system leading to
decoherence phenomena that include departures from CPT symmetry.

We finally mention that one of the technical requirements in Axiom (3) is that the fields have
definite, finite spin. As we have illustrated, the proof of the CPT theorem with spin-zero scalar
fields only, we did not need to incorporate this requirement explicitly. However, an investigation of
Lorentz-symmetric infinite-spin fields by Abers, Grodsky, and Norton has revealed CPT violation
as well as the presence of negative-energy states in these models [48]. Oksak and Todorov have
later extended this investigation and constructed infinite-spin fields that violate CPT invariance
while maintaining energy positivity [49]. These models underscore the necessity of the finite-spin
requirement for CPT symmetry. However, particles corresponding to such fields have not been
detected experimentally.
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