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Tensor-network approach for quantum metrology
in many-body quantum systems
Krzysztof Chabuda1, Jacek Dziarmaga2, Tobias J. Osborne3 & Rafał Demkowicz-Dobrzański 1*

Identification of the optimal quantum metrological protocols in realistic many particle

quantum models is in general a challenge that cannot be efficiently addressed by the state-of-

the-art numerical and analytical methods. Here we provide a comprehensive framework

exploiting matrix product operators (MPO) type tensor networks for quantum metrological

problems. The maximal achievable estimation precision as well as the optimal probe states in

previously inaccessible regimes can be identified including models with short-range noise

correlations. Moreover, the application of infinite MPO (iMPO) techniques allows for a direct

and efficient determination of the asymptotic precision in the limit of infinite particle num-

bers. We illustrate the potential of our framework in terms of an atomic clock stabilization

(temporal noise correlation) example as well as magnetic field sensing (spatial noise cor-

relations). As a byproduct, the developed methods may be used to calculate the fidelity

susceptibility—a parameter widely used to study phase transitions.
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Quantum metrology1–6 is plagued by the same computa-
tional difficulties afflicting all quantum information pro-
cessing technologies, namely, the exponential growth of the

dimension of many particle Hilbert space7,8. Apart from idealized
noiseless models1 as well as models operating within the fully
symmetric subspace9 (where the Hilbert space dimension grows
linearly with the number of particles) only small-scale problems are
feasible via direct numerical study, and even a slight increase in the
number of elementary objects makes such an approach intractable.
Interestingly, in case of uncorrelated noise models, easily compu-
table fundamental precision bounds are available10–16 and hence a
deep-physical insight may be obtained even if direct numerical
optimization is infeasible. However, in cases when one deals with
metrological models involving correlated noise, or whenever states
outside the fully symmetric subspace are involved, there are no
efficient methods that can be applied.

Correlated noise appears naturally in a number of highly rele-
vant metrological problems. Temporal noise correlations are
present in the atomic clock stabilization problem17, making
identification of the optimal quantum clock stabilization strategies
a highly non-trivial task18–20. An even more challenging case
involves models where time-correlated noise cannot be effectively
described via some classical stochastic process21 and as such
manifests non-Markovian features of quantum dynamics22, as e.g.,
in NV-center sensing models23. A second natural setting exhi-
biting non-trivial noise correlations is that of many-body systems
such as, e.g., spin chains. Here, typically, spatially correlated noise
emerges, which is of crucial relevance for any models where the
effective signal is obtained from spatially distributed probes24–26.

Temporal noise correlations usually decay rapidly. Similarly, in
the spatially correlated case one expects on dimensional and
energetic grounds that noise will be short-range correlated. The
most successful approach for classical simulating short-range
correlated many-body systems is via the variational tensor-
network state (TNS) ansatz27. Among many ansatz classes, that
led to unparalleled insights into the physics of quantum many-
body systems, the most relevant for the present work is the matrix
product operator (MPO) ansatz for density operators28 and also
its infinite particle limit known as infinite MPO (iMPO)29.

In this paper, building upon experience obtained from uncor-
related noise metrological studies30, where the optimal input states
where shown to be efficiently described as matrix product states
(MPS), we develop a comprehensive tensor-network-based fra-
mework allowing to (i) calculate relevant metrological quantities
(such as the Quantum Fisher Information (QFI) or a Bayesian-
type cost), (ii) optimize input probe states and as a result (iii)
identify the optimal metrological protocol. All this is accomplished
while remaining fully within the tensor-network formalism and
thus avoiding the curse of dimensionality along the way.

Results
Efficient identification of the optimal quantum metrological
protocol. A paradigmatic task in quantum metrology is sche-
matically depicted in Fig. 1. The central goal is to find the best
input probe state ρ0, the best measurement and estimator so as to
minimize the average uncertainty Δ2eφ ¼ hðeφ� φÞ2i, where the
expectation is over all measurement results x.

This task is somewhat facilitated by exploiting a fundamental
result in quantum metrology, namely, the Cramér-Rao
inequality31,32, which lower-bounds the average uncertainty of
the best possible estimator eφðxÞ

Δ2eφ � 1
FðρφÞ

; ð1Þ

where FðρφÞ is the QFI of the output state.

In this paper, we will use the following formula for the QFI9,33:

FðρφÞ ¼ sup
L

Fðρφ; LÞ; Fðρφ; LÞ ¼ 2Tr ρ0φL
� �

� Tr ρφL
2

� �
;

ð2Þ
where ρ0φ is the derivative of ρφ with respect to φ. This form is
equivalent to the standard definition of the QFI31,32, as can
be seen by solving the above maximization problem with respect
to L—this is formally a quadratic function in matrix L and
the resulting extremum condition yields the standard linear
equation for the symmetric logarithmic derivative (SLD) L,
ρ0φ ¼ 1

2 ðLρφ þ ρφLÞ. When the solution for L is plugged into the
above formula it yields FðρφÞ ¼ TrðρφL2Þ in agreement with the
standard definition of the QFI.

The above QFI formula has an advantage over the standard
one, when one wants to additionally perform optimization of the
QFI over the input states ρ0 in order to find the optimal quantum
metrological protocol. This problem can be written as a double
maximization problem:

F ¼ sup
ρ0

F½Λφðρ0Þ� ¼ sup
ρ0;L

F½Λφðρ0Þ; L�: ð3Þ
With Λφ fixed F½Λφðρ0Þ� is effectively a function of ρ0, so in what
follows for the sake of simplicity of notation we will write Fðρ0Þ,
and Fðρ0; LÞ instead of FðρφÞ, Fðρφ; LÞ. The Figure of Merit
(FoM) Fðρ0; LÞ is linear in ρ0 and quadratic in L. This
formulation leads to an extremely efficient iterative numerical
procedure for determining the optimal input probe state: start
with some random (or an educated guess for an) input state,
determine the corresponding optimal L by performing the
relevant optimization. Then, for the L just found, reverse the
procedure and look for the optimal input state. This procedure
converges very quickly and yields the optimal input probe state,
as well as the corresponding QFI. This approach was first
proposed in refs. 9,34 in the Bayesian estimation context, and then
applied to the QFI FoM in ref. 33 (recently the method has been
rediscovered in a slightly modified incarnation in ref. 35 and
proved useful in studying metrological properties of states with
a positive partial transpose). The above considerations are valid
whenever the quantity to be optimized is given in the form of
Eq. (2): ρ0φ need not necessarily be the derivative of the state with
respect to the estimated parameter. As such, this procedure is
applicable in the Bayesian approach, and also in case of less trivial
FoMs (see the atomic clock stabilization example).

We consider metrological models involving N distinguishable
d-dimensional probes, so that the total Hilbert space is
H¼NN

n¼1C
d . We assume that the parameter φ is unitarily

encoded in the output state ρφ according to a product of unitaries
given by the exponential of local generators (or Hamiltonians):

ρφ ¼ Λφðρ0Þ ¼ e�iHφΛðρ0ÞeiHφ; H ¼
XN
n¼1

h½n�; ð4Þ

�0 Λ� Πx

x
�(x)

Fig. 1 A scheme of a standard quantum metrological task. A probe state
ρ0 is subject to a parameter-dependent quantum evolution, mathematically
represented by a parameter-dependent quantum channel Λφ. A POVM type
measurement fΠxgx is then carried out yielding a conditional probability
distribution pðxjφÞ ¼ TrðρφΠxÞ, where ρφ ¼ Λφ ρ0

� �
. Given the conditional

probability distribution pðxjφÞ the objective is to estimate the value of the
unknown parameter φ. To this end one employs an estimator function eφðxÞ
to produce a given estimate for φ given the measurement outcome x.
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where h½n� is the generator acting on the nth particle. Most
importantly for this paper, the noise, represented above by the
operator Λ, is not assumed to be local, but admits the possibility of
noise correlations. In order to be able to make use of MPO
approach efficiently we assume that the noise correlations are
short-range, i.e., Λ may be effectively approximated as a product
of single, two-, three-, etc. particle maps up to some cutoff point
after which to is assumed that noise correlations do not extend
beyond r neighboring particles—see Supplementary Note 1 for a
more detailed and more physical discussion of this approximation.

Expressing the optimization problem using the MPO formal-
ism. The optimization scheme described above is completely
general and, provided the systems considered are small enough, it
can be implemented numerically using the standard quantum
state representation. For larger systems, however, this will not be
possible in general, and one way to circumvent this difficulty is to
implement the above algorithm using the MPO formalism.

In order to do so, we first write the initial N particle state ρ0 as
an MPO (see Supplementary Note 4 for a short introduction to
tensor networks):

ρ0 ¼
X
j;k

Tr R0½1�j1k1R0½2�j2k2 ¼R0½N�jNkN
� �

jj i kh j; ð5Þ

where jj i ¼ j1; ¼ ; jN
�� �

denotes the standard product basis for
N-particle states, with jn ¼ 0; ¼ ; d � 1 being the physical

indices, while R0½n�jnkn are Dρ0
´Dρ0

matrices (for which entries
are identified by virtual indices α; β ¼ 1; ¼ ;Dρ0

) and Dρ0
is

referred to as the bond-dimension of the MPO. The above state is
depicted diagrammatically below

where the contracted lines represent virtual indices and
uncontracted lines physical indices. We may vectorize ρ0 and
obtain its MPS representation by formally bending the vertical
legs upward ( jj i kh j ! j; kj i), which results in

where a thick vertical line ranges over a doubled physical
index ðj; kÞ.

Our next step is to find the tensor-network representation of
ρφ ¼ Λφðρ0Þ. For definiteness, we focus on the situation when the
noise operator Λ can be described by a subsequent action of singe-
particle Λ½n� and two-particle terms Λ½n;nþ1�—which in the
following are denoted by Y and X, respectively. Physically this is
the case when single and two-particle evolution terms commute
and no particle is distinguished—generalizations to more
complex situations are tedious but straightforward. In the tensor-
network representation the action of the Λ operator takes the

following form:

where we place X operators in a skewed orientation in order to
maintain a manifestly translation invariant model.

The operator X is defined with respect to a product basis
αj i ¼ j; kj i for the doubled legs and it acts on two
neighboring subsystems αj i and βj i, i.e., it is the tensor
X ¼Pα0;α;β0;βXα0;α;β0;β α

0j i αh j � β0j i βh j. We may now perform
the singular value decomposition (SVD) of tensor X, which
has the following graphical representation:

Here, we regard the two vertical legs of X on the left as a
doubled leg acting on a single virtual system and the two
vertical legs on the right as acting on a second virtual system:
in this way one can think of X as a simple matrix acting on a
virtual system and we can then apply the SVD.

We apply the SVD to each X operator and absorb
ffiffiffi
S

p
into the

U tensor from the right (respectively, into the Vy tensor from the
left). Let Dð2Þ (the upper index indicates two-particle nature of
the noise) be the number of non-zero (or more practically non-
negligible) singular values sγ of matrix S. Introduction of

T ¼ U
ffiffiffi
S

p
,W ¼ ffiffiffi

S
p

Vy
finalizes the decomposition of the X-layer

of the tensor-network:

The final step to obtain an MPO representation for ρφ is to
combine the tensors R0½n�, T, W, Y, and a tensor

Z ¼ e�ihφ � ðeihφÞT—which represents the unitary phase encoding
process—into a single new MPS tensor Rφ½n�:

The doubled horizontal legs in the scheme above can be now
combined into thicker horizontal legs to obtain the MPO
representation of ρφ (note that we have split back the vertical
legs so we have a proper density matrix, and not its vectorized
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form):

As a result we end up with an MPO with the bond-dimension
Dρ ¼ Dρ0

Dð2Þ. The generalization of this derivation beyond the
case of nearest-neighbor correlations will lead to an MPO
representation of the density matrix ρφ with bond-dimension

Dρ ¼ Dρ0
Dr . Here, Dr ¼

Qr
s¼2D

ðsÞ represents the contribution to
the effective bond-dimension of the output state resulting from
the action of the correlated noise, where DðsÞ is the number of
non-zero singular values that will appear when considering the
s-particle noise term.

Operator ρ0φ can be efficiently written as an MPO as well
thanks to the fact that it is as a commutator of ρφ with H, where
H is a sum of local Hamiltonians

ρ0φ ¼
XN
n¼1

i ρφ; h
½n�

h i
: ð6Þ

In what follows we assume that the basis jj i associated with the
physical indices j is chosen to be the eigenbasis of the local
Hamiltonian h, h ¼Pj ϵj jj i jh j, where ϵj are the corresponding
eigenvalues. The MPO representation of ρ0φ can be written at the
cost of doubling the bond-dimension (Dρ0 ¼ 2Dρ0

Dr):

ρ0φ ¼
X
j;k

Tr R0½1�j1k1R
0½2�j2k2 ¼R0½N�jNkN

� �
jj i kh j; ð7Þ

where R0½n�jnkn is equal to

iðϵk1 � ϵj1Þ 1

0 0

	 

� Rφ½1�j1k1 for n ¼ 1;

1 0

iðϵkn � ϵjnÞ 1

 !
� Rφ½n�jnkn for n 2 ½2; ¼ ;N � 1�;

1 0

iðϵkN � ϵjN Þ 0

 !
� Rφ½N�jNkN for n ¼ N:

8>>>>>>>>>><>>>>>>>>>>:
ð8Þ

The 2 ´ 2 matrices that appear in the above construction are
responsible for the increase of the bond-dimension but guarantee
that the effect of trace in Eq. (7) is equivalent to that resulting
from the sum of ρφ MPO acted upon consecutively by the
commutator of the local Hamiltonians corresponding to different
particles.

Finally, the optimization algorithm needs to be implemen-
ted using the MPO structures introduced above. Here, we just
sketch how the two-step iterative process of identifying the
optimal L and ρ0 is implemented within the MPO framework
in order to arrive at the solution of Eq. (3)—see the Methods
section for a detailed description. In the first iteration step we
seek the maximum of the Fðρ0; LÞ over a Hermitian operator L
with a fixed initial density matrix ρ0 (QFI is a quadratic
function of L). We use the MPO representation of L and,
instead of trying to optimize the whole operator L at once, we
iteratively optimize each tensor site by site in a loop up to the
desired convergence of the FoM. During the one-site
optimization step we express our FoM as a quadratic function

of the vectorized tensor, which we want to optimize. This gives
us a condition for the extremum in a form of a linear equation
for the components of this tensor, which we solve using the
Moore–Penrose pseudo-inverse. The second iteration step,
where the optimization over the initial state is performed, is
similar in concept but varies in details. One can show that the
optimal input state is pure and then using the Heisenberg
picture of the evolution process express the optimization
problem as a minimization of a Rayleight quotient involving a
Hermitian operator and the respective input state. When the
Hermitian operator is interpreted as a Hamiltonian then such
a problem reduces to the well known variational method in
quantum mechanics, which when the MPS formalism is
incorporated can be efficiently solved using the DMRG
algorithm27.

Note that in the above process we have an outer iteration loop
related with the iteration process where we subsequently optimize
L and ρ0 in the FoM quantity Fðρ0; LÞ and at the same time we
have an inner iteration loop in each of these steps where we
iterate over sites of the relevant tensor-network in order to find
the optimal solution within a given class of MPO. Furthermore,
while running the algorithm, one has to choose the bond-
dimensions for the input state, as well as for the L operator. We
start with low bond-dimensions (typically 1 or 2) and then
increase them subsequently only when the increase yields a
noticable change (>1%) in the optimized FoM. In this way we
achieve the desired accuracy while keeping the bond-dimensions
as low as possible thus guaranteeing the efficiency of the
algorithm. This procedure may be implemented both in the
finite particle number regime as well in the asymptotic limit of
infinite number of particles by utilizing the iMPO—see the
Methods section. This latter approach provides us with a unique
insight into the asymptotic efficiency of the quantum enhanced
metrological protocols.

Below we present three applications of our framework chosen
in a way so as to highlight the possibility of applying the
framework to a variety of qualitatively different physical
problems and therefore demonstrate versatility of the approach.

Magnetic field sensing with locally correlated noise. Consider N
particles each with spin-12, which interact for a fixed time t with an
external magnetic field B (assumed to be in the z direction) whose
strength fluctuates. The fluctuations induce an effective dephasing
process on the particles and apart from the uncorrelated
dephasing contribution10,36 we will also take into account corre-
lations between field fluctuations at the nearest-neighbor particle
sites. The magnetic field at site n is given as B½n�ðtÞ ¼ Bþ δB½n�ðtÞ,
where B is the mean value of the field to be estimated. Here, we
assume that fluctuations are Gaussian and have no relevant
temporal correlations. The corresponding variance as well as
the nearest-neighbor correlation functions of the fluctuating
field read: hδB½n�ðtÞδB½n�ðt0Þi ¼ σ2δðt � t0Þ, hδB½n�ðtÞδB½nþ1�ðt0Þi ¼
χδðt � t0Þ, where χ represents the strength of correlations and
may be both positive and negative (anti-correlation)—for sim-
plicity, we assume periodic boundary conditions, so in fact also
the particles N and 1 are correlated. This model corresponds to

the choice h½n� ¼ σ ½n�z =2, φ ¼ gBt (where g is the gyromagnetic
ratio for the particle), whereas using the standard cumulant
expansion techniques the field fluctuations lead to:

Λðρ0Þ ¼
X
j;k

jh jρ0 kj ie�1
2ðj�kÞTCðj�kÞ jj i kh j; ð9Þ

where j; k are column vectors j ¼ ðj1; j2; ¼ ; jNÞT (jn ¼ ± 1
2), and
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C is the correlation matrix

C ¼ c 1c20¼ c2c2c1c20c2c1
..
. . .
. ..

.
c2 ¼ c1

	 

; ð10Þ

where c1 ¼ σ2g2t, c2 ¼ χg2t represent, respectively, local and
correlated dephasing strength—see Supplementary Note 2 for
extended discussion.

In order to write the evolution manifestly in the MPO
formalism, we will replace jj i kh j ! jj i kj i, which forms a basis for
the vectorized input density matrix ρ0

�� �
. The action of Λ on ρ0 is

identical to the action of the operator eΓ on ρ0
�� �

, i.e.,
Λðρ0Þ
�� � ¼ eΓ ρ0

�� �
, where

Γ ¼ � c1
2

XN
n¼1

ϒ½n� � c2
XN
n¼1

Ξ½n;nþ1�; ð11Þ

with

ϒ½n� ¼ h½n� � 1� 1� h½n�
� �2

; ð12Þ
and

Ξ½n;nþ1� ¼ h½n� � 1� 1� h½n�
� �

h½nþ1� � 1� 1� h½nþ1�
� �

:

ð13Þ
Note that the ϒ½n� and Ξ½n;nþ1� mutually commute with each other,
so that

eΓ ¼
YN
n¼1

e�
c1
2ϒ

½n�
e�c2Ξ

½n;nþ1�
: ð14Þ

Denoting Y ½n� ¼ e�
c1
2ϒ

½n�
and X½n;nþ1� ¼ e�c2Ξ

½n;nþ1�
we finally obtain

eΓ ¼
YN
n¼1

Y ½n�X½n;nþ1�; ð15Þ

which is the form of evolution the same as discussed in Result
section guaranteeing efficient MPO description.

After evolution through quantum channel Λ, the phase is
imprinted in our state through unitary evolution according to
Eq. (4) with local Hamiltonians h½n�—in the tensor-network
picture this is represented by the action of

QN
n¼1Z

½n�, where

Z½n� ¼ e�ih½n�φ � ðeih½n�φÞT. Written in the basis jj i, ρ0φ ¼ i½ρφ;H�
reads:

ρ0φ ¼
X
j;k

jh jρφ kj ii
X
n

kn � jn
� �

jj i kh j: ð16Þ

Figure 2(a) presents a comparison of results of the QFI
optimization procedure for exemplary noise parameters obtained
using the finite number of particles N MPO approach and the
asymptotic value of the QFI per particle obtained using the iMPO
approach. The results obtained via the two approaches are in very
good agreement. This is a numerical confirmation that indeed the
iMPO approach, which, as described in the Methods section is
much more conceptually involved, yields correct results. In
Fig. 2b we present the contour plot depicting the asymptotic value
of the QFI per particle as a function of noise parameters, where
bottom left inset also demonstrates that state-of-the-art methods
developed with uncorrelated noise models in mind yield bounds
that are far from satisfactory in case of correlated noise models.
The main qualitative feature that clearly emerges is the decrease
of the optimal QFI with the increase of correlated noise part
parameter c2. At the same time going into the anti-correlation
regime (negative c2) allows for a significant increase in the
achievable QFI—this is to be expected based on intuition

obtained from quantum error-correction-based metrology where
purely anti-correlated noise may be even completely removed
recovering the Heisenberg scaling26.

In case of purely local dephasing it is known that in the limit of
large number of particles the fundamental bound,
F=N ¼ η2=ð1� η2Þ, can be saturated by protocols involving
weakly spin-squeezed states10,37. We have performed analogous
analysis in case of correlated noise, see Supplementary Note 2, and
found out that asymptotically the strategy involving optimally
squeezed states and standard Ramsey measurement lead to the
asymptotic precision Δeφ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� e�c1 þ 2e�c1 sinh c2Þ=ðNe�c1Þp

,
which can be related with the corresponding Fisher information
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Fig. 2 Quantum Fisher Information for the magnetic field sensing model.
a Comparison of the QFI per particle for a magnetic field sensing problem in
presence of locally correlated dephasing as a function of the number of spins
in a chain N (for dephasing noise model with local noise parameter c1 ¼ 1 and
correlation parameter c2 ¼ 0:1) calculated using the finite MPO approach
(black dots) with asymptotic value obtained using the iMPO approach (black
solid line). Gray crosses indicate results obtained via the standard full-Hilbert
space description. Gray lines show state-of-the-art bounds on QFI=N
obtained by decomposing the dynamics into effectively independent channels
of increasing complexity (dotted, dash-dotted, dashed)—see Supplementary
Note 2 for details. For comparison, the solid gray line corresponds to the
bound obtained when all correlations are neglected and only local dephasing
noise is taken into account. b Asymptotic value (obtained using iMPOs) of
QFI per particle for dephasing type noise in function of local c1 and between
nearest neighbors c2 noise parameters. Black equipotential lines are in
logarithmic scale. Left inset shows a slice of the main plot along c1 ¼ 1 and
presents the results obtained using the iMPO approach (black dots)
compared with the exact asymptotic result for a weakly squeezed state
strategy (light gray line), and the gray lines show state-of-the-art bounds on
QFI/N (dotted, dash-dotted, dashed). Right inset shows a slice of the main
plot along c2 ¼ 0 and presents result obtained using iMPO approach (black
dots) compared with the known exact result for strictly local noise F=N ¼
η2=ð1� η2Þ with η ¼ e�c1=2 (light gray line).
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per particle equal to:

F
N

¼ e�c1

1� e�c1 þ 2e�c1 sinh c2
: ð17Þ

We have checked that this formula agrees with our numerical results
up to the desired accuracy (<1%), and the representative comparison
of the numerical data and this formula is provided in the left inset of
Fig. 2b. This implies that similarly as in the uncorrelated dephasing
models, weakly spin-squeezed states are asymptotically optimal.

Using the above formula, we may also go back to the original
problem of magnetic field sensing. Utilizing the relation φ ¼ gBt
we get the corresponding magnetic field sensing precision:

ΔeBt ¼
1
gt
Δeφ ¼ 1

gt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�σ2g2t þ 2e�σ2g2t sinhðχg2tÞ

Ne�σ2g2t

r
: ð18Þ

The above formula assumes a fixed interrogation time t. We may
generalize the considerations, and fix the total interrogation time
T, which we allow to split into T/t independent interrogation
steps. The corresponding estimation uncertainty reads:

ΔeBT ¼ 1ffiffiffiffiffiffiffiffi
T=t

p ΔeBt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�σ2g2t þ 2e�σ2g2t sinhðχg2tÞ

g2tTNe�σ2g2t

s
; ð19Þ

which when optimized over t reaches the minimal value when
t ! 0 and yields:

ΔeB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 2χ
TN

r
: ð20Þ

Based on the above results we can expect that weakly spin-
squeezed states should also be optimal in case of a more general
dephasing noise, provided the range of correlations r is finite and
we consider the asymptotic limit N ! 1. In this case, following
analogous calculations, we would arrive at the optimal magnetic
field sensing precision of the form

ΔeB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 2

Pr
s¼2 χs

TN

r
; ð21Þ

where χs represent magnetic field correlations for particles at
distance s� 1: hδB½n�ðtÞδB½nþs�1�ðt0Þi ¼ χsδðt � t0Þ. Comparing
this result with the performance of the GHZ states for the same
model, see ref. 38, we notice that there is the

ffiffi
e

p
factor

improvement in performance of the optimally spin-squeezed
states over the GHZ states familiar from uncorrelated dephasing
considerations36,37.

Atomic clock stabilization. A typical atomic clock operates in a
feedback loop where the local oscillator (LO, e.g., laser) is stabilized
to atomic reference frequency by periodically interrogating atoms
(using radiation from the LO) and based on the measured response,
the frequency of the LO is corrected17. One of the main goals in the
design of the clock interrogation scheme is to achieve the lowest
instability typically quantified by the Allan variance (AVAR)

σ2ðτÞ ¼ 1
2τ2ω2

0

Z 2τ

τ
dtωðtÞ �

Z τ

0
dtωðtÞ

	 
2
* +

; ð22Þ

where �h i represents averaging over frequency fluctuations of the LO
described by some stochastic process, τ denotes averaging time, ω0
atomic reference angular frequency and ωðtÞ time-dependent angular
frequency of the LO. The key feature from our perspective is the fact
that the LO frequency fluctuations are temporally correlated and lead
effectively to a temporarily correlated dephasing of atoms.

Fixing the physical properties of the atoms the goal is to
optimize their initial states, interrogations times, measurements
and feedback corrections in order to minimize the AVAR.
Performing such a comprehensive optimization is not feasible. In

ref. 20 a lower bound on the achievable AVAR was introduced the
quantum Allan Variance (QAVAR):

σ2QðτÞ ¼ σ2LOðτÞ �
1
ω2
0
sup
ρ0;L;T

FAðτ; ρ0; L;TÞ; ð23Þ

FAðτ; ρ0; L;TÞ ¼ 2Tr ρ0L
� �

� Tr ρL2
� �h i

=2; ð24Þ

where σ2LOðτÞ is the AVAR of free running LO, 1
ω2
0
FAðτ; ρ0; L;TÞ

represents a correction to it from the feedback loop and T is the
interrogation time. We do not provide here explicit forms of the
operators ρ and ρ0, and refer the interested reader to ref. 20, but just
note that the structure of the formulas are similar to that in Eq. (2).
The important information is that, if the atoms with which the
atomic clock interacts are described via states on some d
dimensional Hilbert space H, then the ρ and ρ0 objects act on a

tensor spaceH�N , where N ¼ 2ðτ=TÞ � 1 is the number of atomic
cycles that need to be considered in order to calculate QAVAR.

In Fig. 3a we present the exemplary results for an atomic clock
operating on one two-level atom, where the LO fluctuations are
characterized by the autocorrelation function RðtÞ, which is a
combination of Ornstein-Uhlenbeck (OU) process and white
Gaussian frequency noise RðtÞ ¼ αe�γt þ βδðtÞ (α ¼ 1 ðrad=sÞ2,
β ¼ 0:1 ðrad=sÞ2s, γ ¼ 2 s�1) (see more detailed discussion of the
model in Supplementary Note 3). In the long averaging time limit
QAVAR takes the form σ2QðτÞ ’ c=ðτω2

0Þ with some constant c,
which we will refer to as asymptotic coefficient. The results
indicate that completely neglecting noise correlations in the
analysis of the clock performance is unjustified. These calcula-
tions have been attempted in ref. 20 using the full-Hilbert space
description, but were not capable of approaching the regime
where the character of the scaling of the QAVAR and the
coefficient could be unambiguously read out.

Following this approach we calculate the QAVAR asymptotic
coefficient c and the corresponding optimal interrogation time T
as a function of the number of atoms in the clock, see Fig. 3b.
From this figure we see that the differences in QAVAR between
cases with strictly local noise and when nearest-neighbor
noise correlations are included only grow with the increasing
number of atoms. This implies that noise correlations play an
important role in the accurate analysis of clock performance. We
confront the results (which are optimized over the input state)
with values obtained using a NOON/GHZ states as an input,
ψj i ¼ ð 0j i þ d � 1j iÞ= ffiffiffi

2
p

. The NOON states are highly prone to
dephasing noise, and hence the optimal interrogation times will
be necessary reduced compared to the optimal, more robust
states. This is a manifestation of a generic poor performance of
the NOON/GHZ states in realistic (noisy) scenarios with
increasing particle number N10,11,36.

Fidelity susceptibility for many-body thermal states. In con-
densed matter context, fidelity Fðφ;φþ εÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρφp ρφþε
ffiffiffiffiffiρφpp

between many-body states ρφ and ρφþε, that differ by a small
variation of a parameter φ in a Hamiltonian, is a mean to identify
the location φc of a phase transition

41,42. This is where the fidelity
susceptibility χφ, defined by Fðφ;φþ εÞ � 1� 1

2 χφε
2, has a

maximum indicating a fundamental change in the state of the
system. This concept was employed in ref. 43 to evaluate the
usefulness of a quantum phase transition, that happens at zero-
temperature, for precise sensing of the parameter φ in a realistic
system at a finite temperature. QFI defines a metric in the space
of quantum states (the Bures metric)32 and is directly related with
the fidelity susceptibility, namely F ¼ 4χφ.
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Unlike at zero-temperature, the fidelity between a thermal
many-body states represented by MPOs is not tractable in general.

This is why a quasi-fidelity was employed eFðφ;φþ εÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr ffiffiffiffiffiρφp ffiffiffiffiffiffiffiffiffiρφþε

pq
defining a quasi-susceptibility, eFðφ;φþ εÞ �

1� 1
2eχφε2, that provides bounds for the exact fidelity suscept-

ibility40

eχφ � χφ � 2eχφ: ð25Þ
The Hamiltonian considered in ref. 43 was the spin-12 XX model

H ¼ �
XN�1

n¼1

σ ½n�x σ ½nþ1�
x þ σ ½n�y σ ½nþ1�

y

� �
þ φ

XN
n¼1

σ ½n�x ; ð26Þ

with a quantum critical point at φc ¼ 0. Taking the MPOs studied
in ref. 43, we bypass the tractability problem employing the part of
our scheme with ρ0φ ¼ ðρφþε � ρφÞ=ε to calculate the QFI
F ¼ 4χφ. This exact susceptibility for the chain with 64 spins is
shown in Fig. 4, together with the upper and lower bounds
(Eq. 25). The accuracy of the fidelity susceptibility is limited by the
finite bond-dimension DL as well the finite parameter difference ε.

Nevertheless, we obtain satisfying results with relative error
around 1% for ε ¼ 10�4 and DL ¼ 4.

This example demonstrates that the scheme for calculating
fidelity susceptibility is a useful byproduct of our general
algorithm. Beyond the present metrological context, it paves a
way to generalize the zero-temperature fidelity approach to
detecting quantum phase transitions41,42—by now standard in
condensed matter physics—to phase transitions in quantum
many-body systems at finite temperature.

Discussion
We have provided a comprehensive framework for optimization
of quantum metrological protocols using the tensor-network
formalism. The potential to deal effectively with correlated noise
models, as well as directly access the asymptotic N ! 1 is what
makes this framework unique. We also expect that this frame-
work may be adapted to deal with even more challenging
metrological problems including noisy multiparameter
estimation44,45, waveform estimation46,47, or the study of the
effectiveness of adaptive metrological protocols, including
quantum error-correction-based schemes16,26,48,49. We also
expect that this numerical framework may be crucial for
understanding better metrological models with temporally cor-
related noise especially of non-Markovian nature22, where
effective tools to find the optimal metrological protocols in such
cases are yet to be developed.

Methods
We have implemented all of our algorithms in MATLAB with the help of ncon()
function50 for tensor contraction.

Optimization in the finite number of particles regime. As discussed in the main
text maximization of our FoM Fðρ0; LÞ, see Eq. (3), leading to the maximal possible
QFI for a given metrological model is a two-step iterative process. First, we show
how to maximize the FoM over a Hermitian operator L with fixed ρ0, and then we
focus on the maximization over the input state ρ0 with fixed L.

We search for the optimal L in the form of an MPO

L ¼
X
j;k

Tr S½1�j1k1S½2�
j2
k2
¼ S½N�jNkN

� �
jj i kh j; ð27Þ

with a finite bond-dimension DL . Without loss of generality, each S½n�jnkn is assumed
Hermitian in its physical indices,

S½n�jnkn ¼ S½n�knjn ; ð28Þ

to ensure that L is Hermitian. We call this condition a Hermitian gauge.
The bond-dimension DL for L is expected to be small for weakly correlated

noise models. Indeed, in the limit of an uncorrelated product state ρφ ¼ ϱ�N
φ , L is a

sum of local operators, L ¼PN
n¼1L

½n� . Here, L½n� is the SLD for the single-particle
problem applied to particle n. In a similar way as for ρ0φ presented in the main text,
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Fig. 3 Quantum Allan Variance in the atomic clock stabilization model.
a QAVAR (times ω2

0) as a function of the averaging time τ for the atomic clock
(based on one atom) with the local oscillator (LO) noise, which is strictly local
(yellow line) or also includes the nearest neighbors correlations (orange line),
plotted against the AVAR of uncorrected LO (black line). b QAVAR asymptotic
coefficient as a function of the number of atoms in the atomic clock with LO
noise, which is strictly local (yellow dots connected by solid line/light gray dots
connected by dotted line) or also includes the nearest neighbors correlations
(orange dots connected by solid line/gray dots connected by dotted line) for
the optimal/NOON state, plotted against the AVAR asymptotic coefficient of
uncorrected LO (black dots connected by solid line). The sphere depicts Husimi
Q distribution on the Bloch sphere for the optimal state of ten atoms with
marked equipotential lines where quasiprobability is equal to 0.1 for coherent
spin state (black dashed line) and for this optimal state (black solid line), which
shows that the state is squeezed.
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Fig. 4 Fidelity susceptibility for the thermal state. Exact fidelity
susceptibility for a thermal many-body state (dots connected by the line)
at the critical point in function of dimensionless inverse temperature β in
the XX model (Eq. 26) with 64 spins. The shaded band shows the bounds
(Eq. 25). As predicted in refs. 39,40, the exact value tends to the upper/
lower bound for high/low temperatures.
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the sum can be represented by an MPO with a bond-dimension 2. Therefore,
DL ¼ 2 is the limiting value for uncorrelated noise models.

Graphical representation of the FoM Fðρ0; LÞ reads:

Maximization of the FoM over L is equivalent to a joint maximization over each
tensor S½n�. We relax this optimization problem by iterating an optimization loop.
In the loop we first find the optimal S½1�, then S½2�, and so on up to S½N�, after
which we go back to S½1�. The optimization over each S½n� is performed with all
other tensors fixed. The loop is repeated until the FoM converges.

After fixing the other tensors, the FoM becomes quadratic in S½n� and the
optimal S½n� is found as a solution to a linear equation. For definiteness, to explain
the procedure, we focus on the generic example of S½2�. We start by vectorizing
S½2� ! S½2�j i:

This allows us to represent the S½2�-FoM as:

which can be also written in a compact way as

Fðρ0; LÞ ¼ 2
X
α

bαS½2�α �
X
αβ

S½2�αAαβS½2�β: ð29Þ

Here, bα are the elements of the vector bj i, and Aα;β are the elements of the matrix
A. Both bj i and A describe the entire tensor-network complementing the
distinguished vector S½2�j i in the two respective terms of the S½2�-FoM. After taking
a derivative with respect to S½2�α , we obtain a linear equation for the extremum:

1
2

Aþ AT
� �

S½2�j i ¼ bj i: ð30Þ

The d2D2
L ´ d

2D2
L matrix eA ¼ 1

2 Aþ AT
� �

typically has a non-zero kernel and the
linear equation does not have a unique solution. We use the Moore–Penrose

pseudo-inverse, eAþ
, to obtain a solution S½2�j i ¼ eAþ

bj i that does not contain any
zero modes of eA.

If the linear equation was non-singular, then its exact solution would satisfy the
Hermitian gauge (Eq. 28). For the typical singular case, using an SVD of eA to
construct its pseudo-inverse, we have to truncate singular values falling below a
small but finite cutoff, set by κ multiplied by the highest singular value. As the
cutoff solution S½2�j i need not satisfy the Hermitian gauge condition exactly, we
filter out its small anti-Hermitian part with the substitution:

S½2�j2k2 !
1
2

S½2�j2k2 þ S½2�k2j2
� �

: ð31Þ

From experience, this substitution can improve numerical stability but is not
necessary when all initial S½n� are in the Hermitian gauge (Eq. 28) and κ is large
enough to suppress the anti-Hermitian part of the solution. However, with too
large a cutoff the final optimized L does not reach the maximal possible value of the
QFI. Therefore, we adjust κ to obtain the highest QFI achievable without
compromising the stability.

Now we move on to the maximization of the FoM over the input state ρ0 for a
fixed L. We start by rewriting Fðρ0; LÞ as

Fðρ0; LÞ ¼ 2Trðρ0φLÞ � TrðρφL2Þ
¼ 2Trði½Λφðρ0Þ;H�LÞ � TrðΛφðρ0ÞL2Þ
¼ 2Trðρ0i½H;Λ	

φðLÞ�Þ � Trðρ0Λ	
φðL2ÞÞ;

ð32Þ

where by Λ	
φð�Þ we denote the channel, which is dual to Λφð�Þ (the evolution

written in the Heisenberg picture). We can rewrite this as

Fðρ0; LÞ ¼ Tr½ρ0ð2L0	φ � L	2;φÞ�; ð33Þ

where we introduce L	φ ¼ Λ	
φðLÞ, L0	φ ¼ dL	φ

dφ ¼ i½H; L	φ� and L	2;φ ¼ Λ	
φðL2Þ. By

analogy with the construction of the MPO representation for ρφ ¼ Λφðρ0Þ and
ρ0φ ¼ i½ρφ;H�, we can easily construct the MPO representation of L	2;φ and L0	φ from
the known MPO form of L. The tensors determining the MPO form of L	2;φ and L0	φ
are denoted by S2½n� and S0 ½n�, respectively, and their respective bond-dimensions
are DL2

¼ D2
LDr and DL0 ¼ 2DLDr .

The quantity Fðρ0; LÞ in Eq. (33) is maximal when ρ0 is a projection on the
eigenvector associated with the maximal eigenvalue of the Hermitian operator
2L0	φ � L	2;φ . Hence, without loss of generality, we can assume a pure input state
ρ0 ¼ ψj i ψh j with ψj i being an MPS with bond-dimension Dψ :

ψj i ¼
X
j

Tr P½1�j1P½2�j2 ¼ P½N�jN� �
jj i: ð34Þ

The input state ρ0 has bond-dimension Dρ0
¼ D2

ψ and its MPO tensors are

R0½n�jnkn ¼ P½n�jn � P½n�kn .
The maximization of Fðρ0; LÞ over the input state ψj i is equivalent to the

variational optimization for the ground state of a many-body “Hamiltonian”
L	2;φ � 2L0	φ , a problem widely discussed in the many-body physics MPS
literature27,51,52. After reinterpreting our problem as a variational minimization of
the “energy”

�Fðρ0; LÞ ¼
ψh jL	2;φ � 2L0	φ ψj i

ψjψh i ; ð35Þ

we proceed iteratively in a similar way as in the case of the maximization of
Fðρ0; LÞ over L.

For example, in order to find the minimum over P½2�, we begin by vectorizing
the tensor P½2� ! P½2�j i and expressing the “energy” (Eq. 35) as a Rayleigh
quotient

�Fðρ0; LÞ ¼
P½2�jF jP½2�h i
P½2�jN jP½2�h i : ð36Þ
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The tensor-network form of dD2
ψ ´ dD

2
ψ matrices F and N is given by

After taking the derivative of Eq. (36) we obtain the condition for the extremum:

F P½2�j i ¼ �Fðρ0; LÞN P½2�j i; ð37Þ
which is a generalized eigenvalue problem with eigenvalue �Fðρ0; LÞ. By
multiplying it with a pseudo-inverse of matrix N we bring it into the form of
ordinary eigenvalue problem, for which we obtain the lowest eigenvalue and its
corresponding eigenvector using the Lanczos algorithm.

Modification of the entire tensor-network framework to calculate the maximal
QFI for systems with open boundary conditions (OBC) poses no problem and, for
systems, which are not sensitive to boundary conditions, is even advisable. In OBC
the MPS representing ψj i can be brought to a canonical form, where the matrix N
becomes an identity and Eq. (37) reduces to a standard eigenvalue problem. There
is no need to pseudo-invert N .

To summarize the procedure: one needs to iteratively determine the optimal L
for a given ρ0 and then the optimal ρ0 for a given L, until one observes convergence
of the final result, e.g., the FoM does not change more than, say, 0:1% after a fixed
number of steps. From our numerical experience this happens very rapidly,
typically after five iterations of the ρ0 and L optimization steps.

While running the algorithm, one has to choose the bond-dimensions for the
input state, Dψ , as well as for the SLD, DL , over which the optimization is
performed. As in all tensor-network algorithms, keeping the bond-dimension as
low as possible is essential for their efficiency. In our calculations, we typically
started with a product input state, Dψ ¼ 1, and optimized for L with a minimal
non-trivial DL ¼ 2. Then we increased one of the bond-dimensions, either Dψ or
DL , each time repeating the optimization procedure, until we found that the QFI
did not change when increasing the D’s more than by, e.g., 1% and hence assumed
that relative error of our method is around 1%.

Optimization in the asymptotic limit. The previous subsection described an
algorithm that functions for a system with a finite number of particles N. For
quantum metrological problems in the presence of decoherence, it is the generic
situation that the optimal quantum enhancement thanks to the use of entan-
glement leads asymptotically (for large N) to an improvement by a constant
factor over product-state strategies. Even though the finite-system MPO
approach allows us to achieve values of N that are inaccessible via exact

full-Hilbert space computation, it may sometimes be not enough to reach the
asymptotic limit and determine the quantum enhancement coefficient with the
desired precision. For this reason, we would like to have a procedure that allows
us to go directly to the infinite particle limit, calculate the maximal achievable
QFI per particle and, as a result, determine the maximal quantum enhancement
coefficient.

For this purpose, we exploit the infinite MPO/MPS (iMPO/iMPS) approach, see
e.g., ref. 29. We assume that all tensors are translationally invariant (TI). Then we
take the limit of infinite N. Technically this limit is most natural in the case of
PBCs, where it is enough to notice that, for any TI transfer matrix E, the spectral
decomposition of EN is dominated by the leading eigenvalue and eigenvector of E.
This is why in the following discussion we proceed with PBCs. In the OBC case,
which is arguably more natural in some metrological contexts, one has in principle
to consider the boundary conditions at infinity. However, Ek applied to a boundary
vector gives the leading eigenvector of E when k becomes longer than the finite
correlation range (just as in the Lanczos algorithm). Therefore, in the bulk (i.e., far
from the boundaries), all equations the TI tensors have to satisfy become the same
as for the PBC.

When the input state ψj i is TI then the final state ρφ is TI as well. There is a
problem, however, with the operator ρ0φ . Its construction as an MPO in Eq. (8) is
not TI. Because of this, instead of calculating the derivative exactly, we approximate
it by a difference of two TI iMPOs:

ρ0φ ¼ ρφþε � ρφ
ε

ð38Þ

with infinitesimal parameter ε. Motivated by the defining equation for the SLD

ρ0φ ¼ 1
2
ðLρφ þ ρφLÞ; ð39Þ

we can consider a similar to Eq. (38) expansion of the operator L:

L ¼
eL� 1
ε

: ð40Þ

Here, eL and 1 are solutions of Eq. (39) when ρ0φ is replaced by, respectively, ρφþε

and ρφ . We search for the optimal eL, which is better suited for the TI formalism
than the original operator L. Let us denote by

f ðρ0;eLÞ ¼ 1
N
Fðρ0; LÞ ð41Þ

the QFI per particle that we want to maximize:

f ðρ0;eLÞ ¼ 1
Nε2

2Tr ρφþε
eL� �

� Tr ρφeL2� �
� 1

h i
: ð42Þ

A TI iMPO is defined by only one tensor, which we assign, respectively, as:
ψj i ! P, ρ0 ! R0, ρφ ! Rφ , eL ! eS, eL	φ ! eSφ , eL	2;φ ! eS2.

Optimization of a tensor-network consisting of identical tensors A is a highly
nonlinear problem in A and one might think that an approach similar to the
one used in the previous subsection is not applicable here. Fortunately, an
efficient method for the problem was developed in ref. 53. The main idea is
to find the optimal tensor Anew at one-site, treating all other tensors A as
fixed, and then rather then replacing all tensors by Anew perform a flexible
substitution,

A ! Anew sin λπð Þ � A cos λπð Þ; ð43Þ

with a mixing angle λ. The angle is optimized to yield the best possible FoM.
We now apply this approach to our two-step iterative procedure. First we need

to find the optimal eL, which is equivalent to the determination of the optimal local
tensor eS.

As explained in Supplementary Note 4, the trace of an operator represented as
an iMPO is defined by its transfer matrix, so we start by introducing transfer

matrices E1 and E2 associated with, respectively, ρφþε
eL and ρφeL2, which are
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depicted below alongside their eigendecomposition:

Using this transfer matrices we can write Tr ρφþε
eL� �

¼ TrEN
1 , Tr ρφeL2� �

¼ TrEN
2

and with the fact that EN
i is determined by its leading eigenvalue we can write

TrEN
i ¼ λN�1

i;1 ðli;1jEijri;1Þ. Now we can construct iMPO representation of the FoM:

where we depicted f ðρ0;eLÞ and its version with tensor eS distinguished (after
performing vectorization).

This FoM can be also expressed in form of equation:

f ðρ0;eLÞ ¼ λN�1
1;1

P
α bαeSα � λN�1

2;1

P
αβ
eSαAαβ

eSβ � 1

Nε2
; ð44Þ

which give us condition for an extremum:

1
2
λN�1
1;1 Aþ AT
� �jeSi ¼ λN�1

2;1 jbi: ð45Þ
For N ! 1 the powers of the eigenvalues may seem to pose a problem.

Fortunately, however, this problem can be circumvented. For a given eL we can

calculate the associated value of our FoM per particle:

f ðρ0;eLÞ ¼ 1
Nε2

ð2λN1;1 � λN2;1 � 1Þ; ð46Þ

but going back to Eq. (2) we see that FoM per particle should have form
f ðρ0;eLÞ ¼ 2f 1 � f 2, where f 1 and f 2 are of the same order of magnitude as the
asymptotic limit of the QFI per particle. Assuming that our calculations are in the
regime of N ! 1, ε ! 0, and Nε2 ! 0, and remembering binomial expansion

ð1þ ε2f iÞ
N ¼ 1þ Nε2f i þ O½ðNε2Þ2�; ð47Þ

it is to be expected that the highest eigenvalues of the transfer matrices have the
form:

λ1;1 ¼ 1þ ε2f 1; λ2;1 ¼ 1þ ε2f 2; ð48Þ

which after inserting into Eq. (46) and using binomial expansion to the first order
give us exactly f ðρ0;eLÞ ¼ 2f 1 � f 2. Note that, it means that we can calculate value
of FoM per particle in a simple way:

f ðρ0;eLÞ � 1
ε2
ð2λ1;1 � λ2;1 � 1Þ: ð49Þ

It is clear now that for the purpose of solving Eq. (45) we can approximate λN�1
1;1

and λN�1
2;1 by ones and, hence, bring the condition for the optimal eS to a simpler

form:

1
2

Aþ AT
� �jeS i ¼ jbi: ð50Þ

This equation is solved with a pseudo-inverse and its anti-Hermitian part is filtered
out at every iteration step.

SLD is always traceless in any unitary parameter estimation problem, which can
be seen by solving Eq. (39) for the SLD using eigenbasis of ρφ ¼Pjλjjλjihλjj:

L ¼
X
j;k

2hλjjρ0φ λkj i
λj þ λk

jλji λkh j; ð51Þ

and taking into account that hλjjρ0φjλji ¼ ihλjj½H; ρφ�jλji ¼ 0. We can ensure that

solution eS has proper normalization using the condition TrL ¼ 0 or, equivalently
TreL ¼ Tr1 ¼ dN , which in the language of transfer matrices means that the highest
eigenvalue of the transfer matrix associated with operator eL has to be equal to d.

Now we turn to the second part of our optimization procedure, namely the
variational minimization over the input state. This step does not introduce any
qualitatively new challenges, so we only briefly discuss it for completeness. As for
the ρ0φ , we approximate the exact derivative of L0	φ by its discrete version:

L0	φ ¼ L	φþε � L	φ
ε

: ð52Þ

After the expansion L ¼ ðeL� 1Þ=ε, our task becomes equivalent to minimization
of the “energy density”:

�f ðρ0;eLÞ ¼ ψh jeL	2;φ � 2eL	φþε þ 1 ψj i
Nε2 ψjψh i

ð53Þ

over ψj i. We can depict Eq. (53) in a diagrammatic form:

where we have used transfer matrices E3, E4, and E5 associated with, respectively,
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ψh jeL	2;φ ψj i, ψh jeL	φþε ψj i, and ψjψh i that are represented graphically as

As previously, we expect that λi;1 ¼ 1þ ε2f i and for the purpose of finding the

optimal tensor P, we can approximate λN�1
3;1 and λN�1

4;1 by ones. After taking the
derivative we obtain the condition for the extremum:

F Pj i ¼ gN Pj i; ð54Þ
where g ¼ �f ðρ0;eLÞNε2 � λN�1

5;1 is a generalized eigenvalue, whereas the matrices
F and N have the following tensor-network representation

The matrixN is a tensor product of three matrices, r5;1, the identity, and l5;1, hence

its pseudo-inverse Nþ can be obtained as a tensor product of (pseudo-)inverses of
the smaller matrices. Applying Nþ to Eq. (54) we bring it into the form of a
standard eigenvalue problem. We solve this eigenproblem with respect to the
smallest eigenvalue and its corresponding eigenvector ψj i and require that ψj i is
normalized so that λ5;1 ¼ 1. Then we calculate the asymptotic value of the QFI per
particle:

�f ðρ0;eLÞ ¼ 1
Nε2

ðλN3;1 � 2λN4;1 þ 1Þ

� f 3 � 2f 4 ¼
1
ε2
ðλ3;1 � 2λ4;1 þ 1Þ:

ð55Þ

Just as for the finite N, iterating the eL and ψj i optimization steps leads to the
optimal solution with the maximal QFI per particle.

While performing the numerics one should choose ε to be small but not too
small as too small values may lead to numerical instabilities. Our general strategy in
obtaining numerical results in the examples presented, was to lower the value of ε
until we observed no noticeable change in the obtained results, while still
remaining in the regime where algorithm was stable. In all the examples we studied
in this paper this approach resulted in the choice of ε � 10�3�10�4 (instabilities
started to appear for ε < 10�6). Notice that in the asymptotic iMPO approach
described above we required Nε2 to be small—on the order of the precision we
expect from the numerical results. In other words setting the precision
requirements to 10�2 this implies that Nε2 � 10�2, and hence N � 104 � 106.
What this physically means is that in our set-up the QFI per particle does not
change in any noticeable way for larger N and hence the asymptotic behavior in the
actual N ! 1 limit may be inferred from this results.

Data availability
The data that support the findings of this study are available from the authors upon
request.

Code availability
The code used to implement the algorithms developed in the study are available from the
authors upon request.
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