
J
H
E
P
1
1
(
2
0
1
6
)
0
3
1

Published for SISSA by Springer

Received: September 9, 2016

Accepted: October 26, 2016

Published: November 7, 2016

SU(2|2) supersymmetric mechanics

Evgeny Ivanov,a Olaf Lechtenfeldb and Stepan Sidorova

aJoint Institute for Nuclear Research,

Dubna, Moscow Region, 141980, Russia
bInstitut für Theoretische Physik and Riemann Center for Geometry and Physics,

Leibniz Universität Hannover,

Appelstraße 2, 30167 Hannover, Germany

E-mail: eivanov@theor.jinr.ru, lechtenf@itp.uni-hannover.de,

sidorovstepan88@gmail.com

Abstract: We introduce a new kind of non-relativistic N=8 supersymmetric mechanics,

associated with worldline realizations of the supergroup SU(2|2) treated as a deformation

of flat N=8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed

as coset manifolds of this supergroup, and the corresponding superfield techniques are

developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct

and analyze the most general superfield and component actions. Common features are

mass oscillator-type terms proportional to the deformation parameter and a trigonometric

realization of the superconformal group OSp(4∗|4) in the conformal cases. For the simplest

(5,8,3) model the quantization is performed.

Keywords: Conformal and W Symmetry, Extended Supersymmetry, Field Theories in

Lower Dimensions, Superspaces

ArXiv ePrint: 1609.00490

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)031

mailto:eivanov@theor.jinr.ru
mailto:lechtenf@itp.uni-hannover.de
mailto:sidorovstepan88@gmail.com
https://arxiv.org/abs/1609.00490
http://dx.doi.org/10.1007/JHEP11(2016)031


J
H
E
P
1
1
(
2
0
1
6
)
0
3
1

Contents

1 Introduction 2

2 Deformed N=8, d=1 superspaces 3

2.1 Superalgebra 4

2.2 Basic SU(2|2) supercoset, Cartan forms and covariant derivatives 6

2.3 Transformation properties 7

2.4 Chiral SU(2|2) superspace 8

2.5 Harmonic superspace 10

2.6 Biharmonic superspace 11

3 The multiplet (3, 8, 5) 12

3.1 Kinematics 12

3.2 Invariant action 14

3.3 Duality transformations 15

4 The multiplet (4, 8, 4) 18

4.1 Kinematics 18

4.2 Invariant actions 20

5 The multiplet (5, 8, 3) 21

5.1 Kinematics 21

5.2 Invariant actions 22

5.3 Description in terms of SU(2|1) superfields 23

5.4 The free quantum model 25

6 Conclusions 26

A Details of invariant action for the multiplet (3, 8, 5) 28

A.1 Calculation of the superfield action 28

A.2 Harmonic integrals 30

B Superconformal symmetry 31

B.1 Superconformal algebra osp(4∗|4) and its su(2|2) subalgebra 31

B.2 Superconformal properties of the multiplet (3,8,5) 33

B.3 Superconformal properties of the multiplet (5,8,3) 34

C The multiplet (3, 4, 1) 35

– 1 –



J
H
E
P
1
1
(
2
0
1
6
)
0
3
1

1 Introduction

In recent years, interest has grown in theories invariant under some “curved” analogs of rigid

Poincaré supersymmetry in diverse dimensions [1–3]. The main motivation was to check

general gauge/gravity correspondences in concrete field-theoretical examples, classically as

well as quantum mechanically. One construction of such theories is by the localization

method [4], which proceeds from the relevant supergravity theories in component formu-

lation. Alternatively, one can start from the supergroup of the corresponding “curved”

supersymmetry, list its various coset superspaces and develop appropriate superfield tech-

niques. These permit the derivation of invariant actions as superspace Berezin integrals,

with Lagrangians being functions of superfields and their covariant derivatives. This second

approach was used in [5–7] and goes back to [8] where superfield techniques for OSp(1|4)
supersymmetry in four dimension were fully developed for the first time.

Supersymmetric mechanics [9, 10] represents the extreme d=1 case of Poincaré-

supersymmetric field theory. In the underlying d=1 “Poincaré superalgebra” the super-

charges square to the Hamiltonian (and perhaps some constant or operator-valued central

charges). Mechanical analogs of higher-dimensional curved rigidly supersymmetric theories

can be based on semi-simple supergroups which yield flat d=1 supersymmetries through

some contraction. In other words, mechanical models on such supergroups can be treated

as deformations of standard supersymmetric mechanics. The main difference between the

two types of supersymmetric mechanics models lies in the closure of the supercharges: in

the deformed case it contains not only the Hamiltonian but also generators of some non-

trivial internal symmetry. As a consequence, the corresponding Hilbert spaces and spectra

essentially differ from each other. In particular, in the deformed case an energy level may

carry unequal numbers of bosonic and fermionic states.

The simplest examples of such deformed supersymmetric mechanics substitute flat

N=4, d=1 supersymmetry with the supergroup SU(2|1). At the component level, they were

constructed in [11–15]. The SU(2|1) symmetry in the model built on the multiplet (1,4,3),1

has been considered first in [11] and christened there “weak supersymmetry”. Models based

on the chiral (2,4,2) multiplet were considered in [12–15], including a computation of the

superconformal index.

The superfield approach to SU(2|1) mechanics was worked out in [16–19]. The super-

field techniques not only reproduced the models of [11–15] (and their interacting extensions)

but also revealed some new models, in particular those associated with the (4,4,0) multi-

plet. The latter admits a harmonic SU(2|1) superspace description generalizing flat N=4,

d=1 harmonic superspace [20]. Many notions and models of N=4 mechanics still await a

deformation to the SU(2|1) case, for instance N=4 supersymmetric Calogero-Moser sys-

tems [21, 22], the gauging procedure in N=4 mechanics [23, 24], or N=4 models coupled

to background abelian or non-abelian gauge fields [25–27].

1Multiplets of the standard and deformed N=4, d=1 supersymmetry are denoted as (k,4,4−k) with

k=0, 1, 2, 3, 4. These numbers correspond to the numbers of bosonic physical fields, fermionic physical fields

and bosonic auxiliary fields, respectively. N=8, d=1 multiplets are denoted in the same way as (k,8,8−k),

where k=0, 1, . . . , 8.
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The present paper makes one step in a new direction, initiating a study of deformed

supersymmetric mechanics models associated with worldline realizations of the supergroup

SU(2|2). This supergroup contains eight supercharges and so can be viewed as a deforma-

tion of flat N=8, d=1 supersymmetry. N=8 mechanics has appeared in many contexts

(see, e.g. [28–41]). Our aim here is to construct and discuss SU(2|2) analogs for some

of these models, employing the appropriate worldline superfield approach generalizing the

SU(2|1) one. Our consideration relies essentially on [29, 31, 33, 34], where superfield meth-

ods were efficiently applied for flat N=8, d=1 supersymmetry. In the contraction limit,

when SU(2|2) goes over into its flat counterpart, the models of this paper specialize to

those considered in [29, 31, 33, 34].

In [42], Berenstein, Maldacena and Nastase proposed an M-theory matrix model with

16 supercharges, which spurred investigations of massive super Yang-Mills mechanics (see,

e.g. [43–48]). Since their matrix model has SU(2|4) supersymmetry [44, 45], SU(2|1) and

SU(2|2) supersymmetric mechanics are expected to be relevant for massive matrix models

with 4 and 8 supercharges, respectively.

The plan of the paper is as follows. In section 2 we describe coset superspaces of

SU(2|2), to be used in the following sections for defining superfields carrying various irre-

ducible SU(2|2) multiplets. Besides the standard real SU(2|2) superspace we introduce the
chiral superspace, the harmonic superspace and the biharmonic superspace. We define the

necessary elements of the corresponding superfield technique: covariant derivatives, trans-

formation laws, and invariant integration measures. In sections 3, 4 and 5 we present the

models associated with the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3). We

give both the superfield and component-field actions for all cases. Some of these actions

reveal enhanced superconformal-type symmetries, some do not. Common features of most

actions are an oscillator-type mass term for the fields and a trigonometric realization of

the superconformal symmetries. As an example of a quantum model, in subsection 5.3 we

discuss SU(2|2) quantum mechanics based on a free (5,8,3) multiplet. In the concluding

section 6 we mention links with other models and outline some directions for further study.

We also adduce arguments why certain flat N=8, d=1 multiplets (in particular the “root”

multiplet (8,8,0)) seem not to admit a deformation to SU(2|2) mechanics. We transferred

into three appendices some technical points, including the calculation of various harmonic

integrals, the embedding of the superalgebra su(2|2) into the N=8, d=1 superconformal

algebra osp(4∗|4), the realization of the latter on the SU(2|2) multiplets considered, as well

as a short account of the off-shell SU(2|1) multiplet (3,4,1). The latter is an important

constituent of our SU(2|2) multiplets but was not properly treated in previous papers on

SU(2|1) mechanics.

2 Deformed N=8, d=1 superspaces

In this section, we formulate a deformed real N=8, d=1 superspace where worldline real-

izations of the supergroup SU(2|2) can be defined. Then we construct the corresponding

chiral, analytic harmonic and analytic biharmonic SU(2|2) superspaces. In the following

sections, these types of superspaces will be used for defining different types of superfields

– 3 –
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and for setting up SU(2|2) invariant actions of the latter, generalizing those constructed

in [29, 31, 33, 34] in the presence of flat N=8, d=1 supersymmetry.

2.1 Superalgebra

Our starting point is the superalgebra su(2|2) with three central charges:

{

Qia, Sjb
}

= 2im
(

εabLij − εijRab
)

+ 2εabεijC, (2.1)
{

Qia, Qjb
}

= 2 εijεab (H + C1) ,
{

Sia, Sjb
}

= 2 εijεab (H − C1) ,
[

Lij , Lkl
]

= εilLkj + εjkLil,
[

Rab, Rcd
]

= εadRbc + εbcRad,
[

Lij , Qka
]

=
1

2

(

εikQja + εjkQia
)

,
[

Rab, Qkc
]

=
1

2

(

εacQkb + εbcQka
)

,

[

Lij , Ska
]

=
1

2

(

εikSja + εjkSia
)

,
[

Rab, Skc
]

=
1

2

(

εacSkb + εbcSka
)

.

All other (anti)commutators are vanishing.

The superalgebra su(2|2) contains in general three central charges C, C1 and H. The

generators Lij = Lji, Rab = Rba form two mutually commuting su(2) algebras, su(2)L and

su(2)R. The conjugation rules are as follows:2

(Qia)
† = Qia, (Sia)

† = Sia, (Lij)
† = −Lij , (Rab)

† = −Rab,

H† = H, (C)† = C, (C1)
† = C1 . (2.2)

The mass dimension parameterm plays the same role as in the SU(2|1) case: by contraction

m → 0 the relations (2.1) are reduced to those of the flat N=8, d=1 “Poincaré” super-

algebra extended by central charges C, C1 and possessing a restricted R-symmetry group

SO(4) ∼ SU(2)L × SU(2)R.
3 Correspondingly, (2.1) can be considered as a deformation of

the flat N=8, d=1 supersymmetry, with m as a deformation parameter.

To understand the origin of the central charge operators in (2.1), let us note that

these relations in fact coincide with those defining a deformation of the flat N=(4, 4), d=2

Poincaré superalgebra. Indeed, in the m = 0 limit (2.1) can be identified with a sum

of two independent N=4 , d=2 algebras in the left and right sectors of d=2 Minkowski

space-time in the light-cone parametrization, with H +C1 and H −C1 being the mutually

commuting translation operators along two light-cone directions. Moreover, one can realize

the d=2 Lorentz group SO(1, 1) as an additional automorphism group of (2.1) acting as

real rescalings of the mutually (anti)commuting sets (Qia, H+C1) and (Sia, H−C1) (with

the weights (1/2, 1) and (−1/2,−1), respectively). In such an interpretation, the generator

C in (2.1) is SO(1, 1) singlet and so it is the central charge from the d=2 perspective as

well, while C1 generates the translation along the spatial d=2 direction. The natural and

2The doublet indices are raised and lowered in the standard way by the ε symbols, e.g.,

Qia = εijεabQ
jb
, ε12 = − ε

12 = 1 .

3If C = C1 = 0 , the R-symmetry group enhances to SO(8).
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simplest reduction from d=2 to d=1 proceeds by eliminating altogether the dependence on

the spatial coordinate, i.e. just by putting to zero the generator C1. In what follows we will

deal with such a limited su(2|2) superalgebra, corresponding to the choice C1 = 0 in (2.1).

In principle, it is easy to construct the SU(2|2), d=1 superfield formalism with C1 6= 0,4

but in all examples considered below there is no need to activate this central charge. It is

not the case for the “genuine” central charge C which defines an actual symmetry, e.g., in

the models based on the multiplet (4,8,4) (section 4).

One can rewrite the superalgebra (2.1) (hereafter with C1 = 0) in a different form by

defining the complex supercharges

Πia :=
1√
2

(

Qia − iSia
)

, Π̄ia :=
(

Πia

)†
=

1√
2

(

Qia + iSia
)

. (2.3)

In the complex basis, the (anti)commutators of (2.1) become

{

Πia, Π̄jb
}

= − 2m
(

εabLij − εijRab
)

+ 2 εabεijH, (2.4)
{

Πia,Πjb
}

= − 2i εijεabC,
{

Π̄ia, Π̄jb
}

= 2i εijεabC,
[

Lij , Lkl
]

= εilLkj + εjkLil,
[

Rab, Rcd
]

= εadRbc + εbcRad,
[

Lij ,Πka
]

=
1

2

(

εikΠja + εjkΠia
)

,
[

Rab,Πkc
]

=
1

2

(

εacΠkb + εbcΠka
)

,

[

Lij , Π̄ka
]

=
1

2

(

εikΠ̄ja + εjkΠ̄ia
)

,
[

Rab, Π̄kc
]

=
1

2

(

εacΠ̄kb + εbcΠ̄ka
)

.

The supergroup SU(2|2) contains a few SU(2|1) subgroups. One of them has the

bosonic subgroup SU(2)L × U(1)R with U(1)R ⊂ SU(2)R, while another has the bosonic

subgroup SU(2)R × U(1)L with U(1)L ⊂ SU(2)L. These supergroups are equivalent up to

switching SU(2)R ↔ SU(2)L. In what follows, we will mainly deal with the first choice,

where SU(2|1) generators [16] are singled out as5

Πi1 =: Qi, Π̄j1 =: Q̄j , Li
j =: Iij , R12 =: F, (2.5)

{Qi, Q̄j}=2δij (H−mF )+2mI ij , {Qi, Qj}=0,
[

F,Qi
]

=
1

2
Qi,

[

F, Q̄i

]

=−1

2
Q̄i . (2.6)

The second basic su(2|1) subalgebra is formed by the generators Π1a, Π̄1b, R
ab, L12, H.

Actually, the generators (2.5) form the centrally extended superalgebra ŝu(2|1) with the

central charge H, and the same is true for the second SU(2|1). The central charge H

in (2.5) is a difference of external and internal U(1) generators in the extended superalgebra

su(2|1) ⊕ u(1)ext [17]. If the generator H − mR12 is chosen as the full internal U(1)

generator of su(2|1) (such a choice is admissible since H commutes with everything), then

R12 decouples and becomes a generator of the external U(1)ext R-symmetry, such that

u(1)ext ⊂ su(2)R .

4Non-zero C1 could be generated within the Scherk-Schwarz type d=2 → d=1 reduction (see, e.g., [49]).
5The other pair of supercharges Πi2, Π̄j2 also form an su(2|1) superalgebra, with the same set of bosonic

generators.
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2.2 Basic SU(2|2) supercoset, Cartan forms and covariant derivatives

We will be first interested in the realization of SU(2|2) supersymmetry in a real N=8,

d=1 superspace identified with the following supercoset of the supergroup with the

superalgebra (2.1):

PSU(2|2)× R2

SU(2)L × SU(2)R × R1
=

{

Qia, Sjb, Lij , Rab, C,H
}

{Lij , Rab, C} . (2.7)

Here, the supergroup PSU(2|2) is a corresponding supergroup SU(2|2) without central

charges. Further, we will use the notation SU(2|2) as a supergroup with central extensions.

An element of this supercoset is defined as

g = eθiaQ
ia

eθ̂iaS
ia

eitH , g† = g−1, (2.8)

and the supercoset parameters are treated as a set of superspace coordinates

ζ =
{

t, θia, θ̂jb
}

, (θia) = θia, (θ̂ia) = θ̂ia. (2.9)

The central charge generatorH is associated with a translation generator along R2/R1 ∼ R1

parametrized by the time coordinate t.

Before presenting the realization of SU(2|2) on these coordinates induced by the left

shifts of the element (2.8), it will be convenient to calculate the left-covariant Cartan

1-forms defined by

g−1dg = i∆tH +∆θiaQ
ia +∆θ̂ia S

ia +Ωij L
ij +ΩabR

ab +Ω(C)C. (2.10)

The explicit expressions for these forms are

∆t = dt− iθiadθia − iθ̂iadθ̂ia +
4m

3
θ̂jdθ̂idθ̂

a
(idθj)a ,

∆θia = dθia, ∆θ̂ia = dθ̂ia + 2im θ̂jaθ̂ibdθjb ,

Ωij = 2im θ̂a(idθj)a , Ωab = 2im θ̂k(adθ
k
b) , Ω(C) = 2 θ̂iadθ

ia. (2.11)

The covariant derivatives of some superfield ΦA
(

t, θia, θ̂jb
)

can be found from the gen-

eral expression for its covariant differential

∆ΦA = dΦA +
[

Ωij L̃
ij +Ωab R̃

ab +Ω(C) C̃
]A

B
ΦB

=
[

∆tD(t) +∆θiaD
ia +∆θ̂ia∇ia

]

ΦA. (2.12)

Here, L̃ij and R̃ab are “matrix” parts of the full SU(2) generators (realized as well on

Grassmann coordinates), which act on the external indices of covariant derivatives as

L̃ijDka = − 1

2

(

εikDja + εjkDia
)

, R̃abDkc = − 1

2

(

εacDkb + εbcDka
)

, etc . (2.13)

In the same way, they act on the external SU(2)L×SU(2)R indices of superfields. The rule

of complex conjugation for these matrix parts is as follows

(

L̃ij

)†
= L̃ij ,

(

R̃ab

)†
= R̃ab,

(

C̃
)†

= − C̃. (2.14)

– 6 –



J
H
E
P
1
1
(
2
0
1
6
)
0
3
1

Explicitly, the covariant derivatives are given by the following expressions

Dia =
∂

∂θia
− i

(

θia − 2im

3
θ̂ibθ̂jaθ̂jb

)

∂t − 2 θ̂iaC̃ − 2im θ̂ibθ̂ja
∂

∂θ̂jb

− 2im
[

θ̂aj L̃
ij − θ̂ib R̃

ab
]

,

∇ia =
∂

∂θ̂ia
− iθ̂ia∂t ,

D(t) = ∂t =
∂

∂t
. (2.15)

They satisfy the anticommutation relations

{

Dia,∇jb
}

= − 2im
(

εabL̃ij − εijR̃ab
)

− 2 εabεijC̃,
{

Dia, Djb
}

= − 2i εijεab∂t ,
{

∇ia,∇jb
}

= − 2i εijεab∂t . (2.16)

By rewriting the covariant derivative as

Dia =
1√
2

(

Dia − i∇ia
)

, D̄ia =
1√
2

(

Dia + i∇ia
)

, (2.17)

we obtain that

{

Dia, D̄jb
}

= 2m
(

εabL̃ij − εijR̃ab
)

− 2i εabεij∂t , (2.18)
{

Dia,Djb
}

= 2i εijεabC̃,
{

D̄ia, D̄jb
}

= − 2i εijεabC̃. (2.19)

2.3 Transformation properties

The transformation properties of the N=8 superspace coordinates under the left shifts

with the parameters ǫia and ǫ̂ia, as well as the induced stability subgroup infinitesimal

transformations, can be found from the general formula

g−1
(

ǫiaQ
ia + ǫ̂iaS

ia
)

g = g−1δg + ωij L
ij + ωabR

ab + ω(C)C. (2.20)

The explicit calculations yield the following transformations:

δθia = ǫia + 2im θibθjaǫ̂jb , δθ̂ia = ǫ̂ia − 2im
[

θ̂j(bθ
a)
j ǫ̂ib + θ̂

(j
b θi)bǫ̂aj

]

,

δt = − iθ̂iaǫ̂ia − iθiaǫia +
2m

3
θibθjaθjbǫ̂ia . (2.21)

The induced elements in (2.20) are

ωij = − 2im θa(i ǫ̂j)a , ωab = − 2im θi(a ǫ̂
i
b) , ω(C) = 2 θiaǫ̂ia . (2.22)

It is straightforward to check that the coset-space Cartan forms undergo SU(2)L × SU(2)R
induced transformations under the coordinate transformations (2.21):

δ
(

∆θia
)

= ωi
j ∆θja + ωa

b ∆θib, δ
(

∆θ̂ia
)

= ωi
j ∆θ̂ja + ωa

b ∆θ̂ib. (2.23)

– 7 –
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Superfields are assumed to transform according to the general law

δΦA =
(

ωij L̃
ij + ωab R̃

ab + ω(C) C̃
)A

B
ΦB , (2.24)

where an external index A of the superfield ΦA specifies the SU(2)L × SU(2)R matrix

representation by which this superfield is transformed (and that of C̃).

The SU(2|2) invariant N=8, d=1 superspace integration measure is given by

dζ = dt d4θ d4θ̂ , δ (dζ) = 0 . (2.25)

2.4 Chiral SU(2|2) superspace

We introduce the complex coordinates

ζc =
{

t, ϑia, ϑ̄jb
}

, (ϑia) = ϑ̄ia, (2.26)

which are related to those defined in (2.9) as

ϑia =
1√
2

(

θia+iθ̂ia− 2im

3
θ̂ibθ̂jaθ̂jb

)

, ϑ̄ia =
1√
2

(

θia−iθ̂ia− 2im

3
θ̂ibθ̂jaθ̂jb

)

. (2.27)

It will be also convenient to pass to the new infinitesimal parameters

ηia =
1√
2

(

ǫia + iǫ̂ia
)

, η̄ia =
1√
2

(

ǫia − iǫ̂ia
)

, (2.28)

in terms of which the transformation properties of the superspace coordinates in (2.26) are

as follows

δϑia = ηia + 2mϑibϑja (ηjb − η̄jb) , δϑ̄ia = η̄ia + 2mϑ̄ibϑ̄ja (ηjb − η̄jb) ,

δt = − iϑiaη̄ia − iϑ̄iaηia +
2m

3
θibθjaθjbǫ̂ia +

2m

3
θ̂ibθ̂jaθ̂jbǫia . (2.29)

The measure of integration over (2.26) can be checked to be invariant under these trans-

formations:

dζc = dt d4ϑ d4ϑ̄, δ (dζc) = 0 . (2.30)

Specializing to the ηi2-transformations in (2.29) yields the odd transformations correspond-

ing to the SU(2|1) subgroup (2.5).

The covariant derivatives (2.15) take the following form in the basis (2.26):

Dia = ∂ia − iϑ̄ia∂t + i
(

ϑia − ϑ̄ia
)

C̃ −m
(

ϑib − ϑ̄ib
)

(

ϑja − ϑ̄ja
)

∂jb

−m
[

(

ϑa
j − ϑ̄a

j

)

L̃ij −
(

ϑi
b − ϑ̄i

b

)

R̃ab
]

,

D̄ia = ∂̄ia − iϑia∂t + i
(

ϑia − ϑ̄ia
)

C̃ +m
(

ϑib − ϑ̄ib
)

(

ϑja − ϑ̄ja
)

∂̄jb

−m
[

(

ϑa
j − ϑ̄a

j

)

L̃ij −
(

ϑi
b − ϑ̄i

b

)

R̃ab
]

. (2.31)

Hereafter, we use the notation:

∂ia = ∂/∂ϑia , ∂̄ia = ∂/∂ϑ̄ia . (2.32)
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Now it is easy to show the existence of a left chiral subspace parametrized by the

coordinates

ζL =
{

tL, ϑ
ia
}

, (2.33)

where

tL = t− iϑiaϑ̄ia − im

[

1

3
ϑ̄ibϑ̄jaϑ̄ia −

1

2
ϑ̄ibϑjaϑ̄ia −

1

2
ϑibϑ̄jaϑ̄ia + ϑibϑjaϑ̄ia

]

ϑjb . (2.34)

Indeed, the set (2.33) is closed under the SU(2|2) transformations

δϑia = ηia + 2mϑibϑja (ηjb − η̄jb) , δtL = − 2iϑiaη̄ia +
4im

3
ϑibϑjaϑjbη̄ia . (2.35)

Actually, the set (2.33) can be identified with the following complex coset superspace

of SU(2|2):
{

Πia, Π̄jb, Lij , Rab, C,H
}

{

Π̄jb, Lij , Rab, C
} . (2.36)

The invariant measure of integration over (2.33), dζL, is defined by

dζL = dtL d4ϑ, δ (dζL) = 0 . (2.37)

In the coordinates (2.33), the covariant derivatives (2.31) are written as

Dia = ∂ia − 2i

[

ϑ̄ia +m

(

ϑicϑkaϑ̄kc −
1

3
ϑ̄icϑ̄kaϑ̄kc

)]

∂tL −m
(

ϑib − ϑ̄ib
)

(

ϑja − ϑ̄ja
)

∂jb

+ i
(

ϑia − ϑ̄ia
)

C̃ −m
[

(

ϑa
j − ϑ̄a

j

)

L̃ij −
(

ϑi
b − ϑ̄i

b

)

R̃ab
]

,

D̄ia = ∂̄ia + i
(

ϑia − ϑ̄ia
)

C̃ +m
(

ϑib − ϑ̄ib
)

(

ϑja − ϑ̄ja
)

∂̄jb

−m
[

(

ϑa
j − ϑ̄a

j

)

L̃ij −
(

ϑi
b − ϑ̄i

b

)

R̃ab
]

. (2.38)

From the structure of the covariant derivative D̄ia we observe that the general covariantly

chiral SU(2|2) superfield ΦA,

D̄iaΦA = 0 , (2.39)

can be made explicitly chiral after the appropriate ϑ, ϑ̄-dependent SU(2)L and SU(2)R
rotation of ΦA with respect to the external indices. For instance, if ΦA has the SU(2)L ×
SU(2)R matrix assignment (1/2,1/2), this additional redefinition is given by

Φia
(

t, ϑia, ϑ̄
jb
)

=
[

e−
m
2
(ϑjb−ϑ̄jb)(ϑb

k
−ϑ̄b

k)L̃
jk
]i

l

[

e
m
2
(ϑjb−ϑ̄jb)(ϑj

c−ϑ̄j
c)R̃bc

]a

d
Φld
L (tL, ϑia) , (2.40)

(

L̃jk
)i

l
=

1

2

(

εijδkl + εikδjl

)

,
(

R̃bc
)a

d
=

1

2

(

εabδcd + εacδbd

)

. (2.41)

On the other hand, it is not possible to eliminate C̃ from D̄ia in a similar way. In fact,

C̃ should always be vanishing on chiral superfields, as follows from the anticommutation

relations (2.19), which are just the integrability conditions for the chirality constraint (2.39)

and its anti-chirality counterpart:

D̄iaΦA = 0 ⇒ C̃ΦA = 0 . (2.42)
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2.5 Harmonic superspace

We perform a harmonization of the SU(2)L indices and define the analytic subspace

ζ(A) =
{

t(A), θ
+
a , θ̂

+
a , w

±
i

}

, (2.43)

where

θ+a = θiaw+
i , θ̂+a = θ̂iaw+

i + im θ̂ibθ̂
jbθkaw+

i w
+
j w

−
k ,

t(A) = t− iθiaθkaw
+
i w

−
k − iθ̂iaθ̂kaw

+
i w

−
k . (2.44)

It is closed under the following SU(2|2) transformations

δθ+a = ǫiaw
+
i − im θ+b θ

+bǫ̂iaw
−
i , δθ̂+a = ǫ̂iaw

+
i − im

(

2 θ̂+b θ
+bǫ̂ia − θ̂+b θ̂

+bǫia

)

w−
i ,

δw+
i = 2im θ+a ǫ̂

jaw+
j w

−
i , δw−

i = 0 , δt(A) = 2i
(

θ+a ǫ
ia + θ̂+a ǫ̂

ia
)

w−
i . (2.45)

Note that the transformation properties of the harmonic variables w±
i , as well as the

precise relation between the “central basis” coordinates (t, θia, θ̂ia) and the “analytic basis”

coordinates (t(A), θ
+
a , θ̂

+
a ) , are uniquely fixed just by requiring (2.43) to be closed under

the SU(2|2) transformations.

For further calculations, it will be convenient to pass to another set of harmonic vari-

ables in the harmonic superspace (2.43),

u+i = w+i − im θ+a θ̂
+aw−i, u−i = w−i. (2.46)

With this choice, the realization of the fermionic SU(2|2) transformations in the analytic

subspace is as follows,

δu+i = Λ++u−i , δu−i = 0 ,

δθ+a = ǫ+a + im
(

θ̂+b θ
+bǫ−a − θ+b θ

+bǫ̂−a

)

,

δθ̂+a = ǫ̂+a + im
(

θ̂+b θ̂
+bǫ−a − θ̂+b θ

+bǫ̂−a

)

,

δt(A) = 2i
(

θ+a ǫ
−a + θ̂+a ǫ̂

−a
)

, (2.47)

where

Λ++ = im
(

θ+a ǫ̂
+a − θ̂+a ǫ

+a
)

−m2
(

θ+a ǫ̂
−a + θ̂+a ǫ

−a
)

θ̂+b θ
+b,

ǫ±a = ǫiau±i , ǫ̂±a = ǫ̂iau±i . (2.48)

The SU(2|2) covariant harmonic derivative D++ preserving analyticity is uniquely defined

by requiring it to transform as

δD++ = −Λ++D0, D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+a ∂

∂θ+a
+ θ̂+a ∂

∂θ̂+a
. (2.49)
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It reads

D++ = ∂++ + i
(

θ+a θ
+a + θ̂+a θ̂

+a
)

∂A + im θ̂+b θ
+b

(

θ+a∂+a − θ̂+a∂̂+a

)

+
m2

2

(

θ+
)4

∂−−,

(2.50)

where

∂±± = u±i ∂

∂u∓i
, ∂A =

∂

∂t(A)
, ∂+a =

∂

∂θ+a
, ∂̂+a =

∂

∂θ̂+a
,

(

θ+
)4

:=
(

θ+b θ
+b
)(

θ̂+a θ̂
+a

)

.

This harmonic derivative reveals some unusual properties to be used below:

D++u−i = u+i, D++u+i =
m2

2

(

θ+
)4

u−i, D++Λ++ =
m2

2
δ
(

θ+
)4

. (2.51)

The analytic subspace integration measure

dζ
(−4)
(A) := dt(A) du d

2θ+ d2θ̂+ (2.52)

transforms as

δ
(

dζ
(−4)
(A)

)

= 2 dζ
(−4)
(A) Λ , (2.53)

with

Λ := im
(

θ̂+a ǫ
−a − θ+a ǫ̂

−a
)

. (2.54)

It is easy to check that

Λ++ = −D++Λ . (2.55)

2.6 Biharmonic superspace

One can extend the superspace (2.9) by biharmonic coordinates w
(±1)
i and v

(±1)
a associated

with the subgroups SU(2)L and SU(2)R , respectively. No such an option exists in the

SU(2|1) case because of presence of only one SU(2) subgroup in SU(2|1). Like in the

previous case, the transformation laws of the double set of harmonics and the precise

proper change of the superspace coordinates can be found from the requirement of the

existence of the invariant analytic subspace ζ(B) in the full biharmonic superspace

ζ(B) =
{

t(B), θ
(1,0)
a , θ̂

(0,1)
i , w

(±1)
i , v(±1)

a

}

. (2.56)

The relation between the coordinates (2.56) and the original coordinates (2.9) is given

by the following substitutions,

θ(1,0)a = θiaw
(1)
i , θ̂

(0,1)
i =

[

θ̂ai − 2im θ̂bi θ̂
jaθjb + 4m2θ̂bi θ̂

jaθ̂kcθkbθjb

]

v(1)a ,

t(B) = t− iθiaθjaw
(1)
i w

(−1)
j − iθ̂iaθ̂biv

(1)
a v

(−1)
b + 2mθ̂iaθ̂bi θ̂

kcθdkv
(−1)
a v

(−1)
b v(1)c v

(1)
d . (2.57)

Now it is straightforward to explicitly find the relevant coordinate SU(2|2) transformations

leaving closed the analytic coordinate set (2.56)

δθ(1,0)a = ǫ(1,0)a − im θ
(1,0)
b θ(1,0) bǫ̂(−1,0)

a , δθ̂
(0,1)
i = ǫ̂

(0,1)
i − im θ̂

(0,1)
j θ̂(0,1) jǫ

(0,−1)
i ,

δw
(1)
i = Λ(2,0)w

(−1)
i , δw

(−1)
i = 0 ,

δv(1)a = Λ(0,2) v(−1)
a , δv(−1)

a = 0 ,

δt(B) = 2iθ(1,0)a ǫ(−1,0) a + 2iθ̂
(0,1)
i ǫ̂(0,−1) i. (2.58)
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Here

ǫ(±1,0) a = ǫiaw
(1)
i , ǫ̂(±1,0) a = ǫ̂iaw

(1)
i , ǫ(0,±1) i = ǫiav(±1)

a , ǫ̂(0,±1) i = ǫ̂iav(±1)
a , (2.59)

Λ(2,0) = 2im θ(1,0)a ǫ̂(1,0) a, Λ(0,2) = 2im θ̂
(0,1)
i ǫ(0,1) i. (2.60)

The analytic subspace has an invariant integration measure,

dζ
(−2,−2)
(B) := dt(B) dw dv d2θ(1,0) d2θ̂(0,1), δ

(

dζ
(−2,−2)
(B)

)

= 0 . (2.61)

Now we can define the covariant harmonic derivatives

D(2,0) = ∂(2,0) + iθ(1,0)a θ(1,0) a ∂(B) , D0
w = ∂0

w + θ(1,0) a
∂

∂θ(1,0) a
,

D(0,2) = ∂(0,2) + iθ̂
(0,1)
i θ̂(0,1) i ∂(B) , D0

v = ∂0
v + θ̂(0,1) i

∂

∂θ̂(0,1) i
, (2.62)

where

∂(±2,0) = w
(±1)
i

∂

∂w
(∓1)
i

, ∂0
w = w

(1)
i

∂

∂w
(1)
i

− w
(−1)
i

∂

∂w
(−1)
i

, ∂(B) = ∂/∂t(B) ,

∂(0,±2) = v(±1)
a

∂

∂v
(∓1)
a

, ∂0
v = v(1)a

∂

∂v
(1)
a

− v(−1)
a

∂

∂v
(−1)
a

. (2.63)

They possess the standard transformation laws

δD(2,0) = −Λ(2,0)D0
w , δD0

w = 0 , δD(0,2) = −Λ(0,2)D0
v , δD0

v = 0 . (2.64)

One can check that

Λ(2,0) = D(2,0)Λ(0,0), Λ(0,2) = D(0,2)Λ(0,0), (2.65)

Λ(0,0) = 2im
[

ǫ
(0,−1)
i θ̂(0,1) i + ǫ̂(−1,0)

a θ(1,0) a
]

. (2.66)

3 The multiplet (3, 8, 5)

3.1 Kinematics

On one hand, the multiplet (3,8,5) can be described by a superfield V ij satisfying the

constraints

D(i
a V

jk) = 0 , ∇(i
a V

jk) = 0 , C̃ V ij = 0 . (3.1)

According to (2.24), the “passive” transformation law of V ij is

δV ij = ωi
kV

kj + ωj
kV

ik. (3.2)

On the other hand, one can define the harmonic superfield

V ++
(

ζ(A)

)

= V ijw+
i w

+
j

[

1 + 2im
(

θ̂kaw+
k + im θ̂kb θ̂

mbθnaw+
k w

+
mw−

n

)

θlaw
−
l

]

, (3.3)

which lives on the analytic harmonic superspace (2.43). The Grassmann analyticity con-

ditions for V ++ amount just to the constraints (3.1) for V ij in the original central basis.
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After passing to the new harmonic variables (2.46), the transformation of V ++ can be

written through the parameter Λ defined in (2.54) as

δV ++ = − 2ΛV ++. (3.4)

The analytic superfield V ++ satisfies the harmonic condition

D++V ++ = 0 , (3.5)

which can be proved using (3.3) expressed in terms of the harmonic u±i , as well as the

explicit expression for D++, eq. (2.50). In fact at this step one can forget about the

relation (3.3) and deal with the real analytic harmonic superfield V ++ (Ṽ ++ = V ++)

subjected to (3.5). The harmonic constraint implies the following component structure

of V ++:

V ++ = viju+i u
+
j +θ+aξiau

+
i +θ̂+aξ̂iau

+
i +

(

θ+a θ
+a−θ̂+a θ̂

+a
)

A0−iv̇iju+i u
−
j

(

θ+a θ
+a+θ̂+a θ̂

+a
)

− 2θ+a θ̂
+aC0+θ+(aθ̂+b)Cab−iθ+aθ̂+b θ̂

+b
(

ξ̇ia+
m

2
ξ̂ia

)

u−i −iθ̂+aθ+b θ
+b

(

˙̂
ξia−

m

2
ξia

)

u−i

−
(

θ+
)4

(

v̈ij +
m2

2
vij

)

u−i u
−
j − µ

(

θ+a θ
+a + θ̂+a θ̂

+a
)

, (3.6)

where the fields satisfy the reality conditions:

(vij) = vij , vij = vji, (ξia) = − ξia,
(

ξ̂ia
)

= − ξ̂ia,

(Cab) = −Cab , Cab = Cba , (C0) = −C0 , (A0) = −A0 . (3.7)

Thus, we are left with three physical bosonic fields vij(t), eight fermionic fields ξia(t), ξ̂
i
a(t)

and five bosonic auxiliary fields A0(t), C0(t), Cab(t), i.e., just with the (3,8,5) content. A

new constant µ , [µ] = 1 , came out in the course of solving (3.5). It survives in the flat

limit m = 0.

We also present here the transformation properties of the component fields,

δvij = ǫ(ia ξ
j)a + ǫ̂(ia ξ̂

j)a ,

δξia = 2i
(

ǫjav̇
ij −m ǫ̂jav

ij
)

+ 2 ǫia (A0 − µ)− 2 ǫ̂iaC0 − ǫ̂ibCab ,

δξ̂ia = 2i
(

ǫ̂jav̇
ij +mǫjav

ij
)

− 2 ǫ̂ia (A0 + µ)− 2 ǫiaC0 + ǫibCba ,

δA0 =
i

2

(

ǫ̂ia
˙̂
ξia − ǫiaξ̇

ia
)

,

δC0 =
i

2

(

ǫia
˙̂
ξia + ǫ̂iaξ̇

ia
)

,

δCab = 2i
[

ǫ̂i(bξ̇
i
a) − ǫi(a

˙̂
ξib)

]

+ 2im
[

ǫi(aξ
i
b) + ǫ̂i(aξ̂

i
b)

]

. (3.8)

Note that the SU(2|2) covariant constraint (3.5) and the transformation law (3.4) can

be generalized to an arbitrary analytic superfield q+n of the harmonic U(1) charge n:

D++q(+n) = 0 , δq(+n) = −nΛ q(+n). (3.9)
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This is similar to the analogous phenomenon observed in the flat N=4, d=1 harmonic

superspace [20]. For even n one can impose the reality condition on q(+n). The difference

from the N=4, d=1 case is that for n = 1 the constraint in (3.9) implies the equations

of motion for the physical fields and is similar in this respect to the harmonic equation of

motion for the analytic hypermultiplet superfield in N=2, 4D case [50, 51]. For n = 2 ,

this constraint remains purely kinematic and defines the d=1 analog of the N=2, d=4

tensor multiplet, with the constant µ appearing as a solution of the d=1 reduction of the

well-known “notoph” condition ∂µAµ = 0 in 4D. All these features are retained in the flat

limit m = 0 .

3.2 Invariant action

Since for n = 2 the m = 0 version of (3.9) defines an off-shell (3,8,5) multiplet, it is

expected that the analytic real superfield V ++ := q(+2) describes the off-shell multiplet

(3,8,5) of SU(2|2) supersymmetry as a deformation of the corresponding flat off-shell

supermultiplet.

Confronting the transformation law of V ++ (3.4) with the transformation of the an-

alytic measure (2.53), one concludes that it is impossible to construct any invariant La-

grangian out of V ++ (even the free one), with harmonic U(1) charge +4 (needed to cancel

the negative charge −4 of the measure). To evade this difficulty, we will proceed by analogy

with the construction of the superconformal actions in [20, 52].

The procedure is as follows. We introduce an auxiliary constant triplet cij . Its har-

monic projections c+− = ciju+i u
−
j and c±± = ciju±i u

±
j satisfy the relation

c++c−− −
(

c+−
)2

=
1

2
cijcij (3.10)

that follows from the completeness relation for the harmonics. Without loss of generality,

we choose cijcij = 1 . Next, we define the “shifted” superfield V̂ ++ as

V ++ = V̂ ++ + c̃++, c̃++ = c++ − m2

2

(

θ+
)4

c−−. (3.11)

The triplet c̃++ satisfies the condition

D++c̃++ = 0 , (3.12)

and so

D++V̂ ++ = 0 . (3.13)

The appearance of an additional term in c̃++ is related to the properties (2.51) of D++ .

Note also the useful relation

D++c+− = c++ +
m2

2

(

θ+
)4

c−− = c̃++ +m2
(

θ+
)4

c−−. (3.14)

The component structure of the shifted analytic superfield V̂ ++ related to V ++ by (3.11)

is obtained from (3.6) just via the substitution vij → v̂ij , where v̂ij = vij − cij .

– 14 –



J
H
E
P
1
1
(
2
0
1
6
)
0
3
1

The newly defined quantities are transformed as

δc̃++ = 4Λ++c+− −D++
(

Λ++c−−
)

,

δV̂ ++ = − 2Λ
(

V̂ ++ + c̃++
)

− 4Λ++c+− +D++
(

Λ++c−−
)

, (3.15)

where Λ++ = −D++Λ (recall eq. (2.55)). Using these relations, one can construct invariant

actions (see appendix A.1) with the superfield Lagrangian

L(+4) =
2
(

V̂ ++
)2

(

1+
√

1+2 c−−V̂ ++
)2 −m2

(

θ+
)4

(

c−−V̂ ++

√

1 + 2 c−−V̂ ++
+

c−−V̂ ++

1+
√

1+2 c−−V̂ ++

)

.

(3.16)

To find the component form of the action

S(3,8,5) =

∫

dζ
(−4)
(A) L(+4) =

∫

dtL(3,8,5) , (3.17)

we use the normalization
∫

dζ
(−4)
(A) (θ+)4 =

∫

dt du , dζ
(−4)
(A) =

1

16
dt du

(

D−
a D

−a
) (

∇−
a ∇−a

)

. (3.18)

The main technical problem is to do the relevant harmonic integrals. This can be accom-

plished using the formulas listed in appendix A.2. The component Lagrangian finally reads

L(3,8,5) =
1

2|v|

[

v̇ij v̇
ij +

i

2

(

ξ̇iaξia +
˙̂
ξiaξ̂ia

)

− i

2|v|2
(

ξ(ia ξ
j)a + ξ̂(ia ξ̂

j)a
)

vikv̇
k
j

− vij

2|v|2
(

ξai ξ̂
b
j Cab − 2 ξiaξ̂

a
j C0 + ξiaξ

a
j (A0 + µ)− ξ̂iaξ̂

a
j (A0 − µ)

)

− 1

4
CabCab

− 2 (A0 + µ) (A0 − µ)− 2 (C0)
2 +

3v(ijvkl)

8|v|4 ξai ξja ξ̂
b
kξ̂lb +

i

2
m ξ̂iaξia −m2vijv

ij

]

−
iµ v̇ij

(

cki vjk + ckj vik

)

|v| (|v|+ cijvij)
.

(3.19)

Here, |v| :=
√

vijvij . The expression within the square brackets can basically be obtained

by a dimensional reduction d=4 → d=1 from the d=4 Lagrangian of [52]. The new terms

are those ∼ µ (they survive in the m = 0 limit), the fermionic “mass” mixed term ∼ m

and the bosonic potential term ∼ m2 . The last term ∼ µ is a special WZ term for vik

known as a Lorentz-force type coupling to Dirac magnetic monopole [20, 29].

3.3 Duality transformations

In [52], duality transformations of the tensor multiplet was shown to lead to the free

hypermultiplet action. Here, we define in the same way duality transformations for the

d=1 multiplet (3,8,5).
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We can rewrite the action (3.17) as

S(3,8,5) =
1

2

∫

dζ
(−4)
(A)

(

f++
)2

, (3.20)

where f++ is an analytic superfield related to V ++ and V̂ ++ by

f++ =
2V̂ ++

1 +
√

1 + 2 c−−V̂ ++
−m2c−−

(

θ+
)4

(

1 +
1

2
√

1 + 2 c−−V̂ ++

)

⇒

V ++ = f++

(

1 +
1

2
c−−f++

)

+ c++ +m2c−−
(

θ+
)4 (

1 + c−−f++
)

,

V̂ ++ = f++

(

1 +
1

2
c−−f++

)

+m2c−−
(

θ+
)4

(

3

2
+ c−−f++

)

. (3.21)

In view of this one-to-one correspondence, the harmonic constraint (3.13) implies a nonlin-

ear constraint on the superfield f++. The transformations of f++ can be found from (3.21)

δf++ =
2

1 + c−−f++

[

−Λf++

(

1 +
1

2
c−−f++

)

− Λc++ − Λ++c+−

]

− 2c−−D++Λ++.

(3.22)

Next, we add to the action (3.20) an additional term with the Lagrange multiplier ω,

Sdual =

∫

dζ
(−4)
(A)

[

1

2

(

f++
)2

+ ωD++V ++
(

f++, u±i
)

]

, (3.23)

and thereby get rid of the condition (3.13), ending up with two independent analytic super-

fields, ω and f++. The requirement of invariance of this action implies ω to transform as

δω = − 2 (c+−Λ + c−−Λ++)

1 + c−−f++
. (3.24)

Integrating by parts the last term in (3.23), we obtain

Sdual =

∫

dζ
(−4)
(A)

[

1

2

(

f++
)2 − V ++

(

f++, u±i
)

D++ω

]

. (3.25)

By analogy to [52], we can cast the Lagrangian (3.25) in the form of the free action

Sdual = −1

2

∫

dζ
(−4)
(A) q+iD++q+i , (3.26)

where

q+i :=
[

f++u−i − 2ciju+j +m2c−−u−i
(

θ+
)4
]

cos
(

ω/
√
2
)

−
√
2
[

cijf++u−j + u+i +m2ciju−j c
−−

(

θ+
)4
]

sin
(

ω/
√
2
)

. (3.27)

From this relation, one can establish that

V ++ =
1

2
cij q

+iq+j . (3.28)
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Taking into account (3.22) and (3.24), one can find the superfield transformation of the

newly introduced analytic superfield q+i

δq+i = −Λ q+i . (3.29)

By making use of the transformation properties (2.49), (2.53) and (3.29), it is easy to check

the SU(2|2) invariance of (3.26).

We observe that the external doublet index i of q+i is inert with respect to the whole

SU(2|2) , including the SO(4) transformations. So it a sort of Pauli-Gürsey index and it is

convenient to replace it by another letter, e.g. as

q+i −→ q+A. (3.30)

The action (3.26) respects an additional invariance under an extra SU(2)PG rotating the

doublet index A.

The superfield q+A has the following θ-expansion:

q+A
(

ζ(A)

)

= x+A + θ+aλA
a + θ̂+aλ̂A

a +
(

θ+a θ
+a + θ̂+a θ̂

+a
)

B−A +
(

θ+a θ
+a − θ̂+a θ̂

+a
)

C−A

+ θ+a θ̂
+aD−A+θ̂+b θ̂

+bθ+aψ(−2)A
a +θ+b θ

+bθ̂+aψ̂(−2)A
a +

(

θ+
)4

A(−3)A. (3.31)

Here, all fields are defined on the extended bosonic space
(

t(A), u
±i
)

, i.e., their harmonic

expansions produce infinite towers of fields [51]. Eliminating auxiliary fields by the relevant

part of the equation of motion for (3.26),

D++q+A = 0 , (3.32)

we obtain the on-shell superfield q+A containing a finite set of physical fields,

q+A = xiAu+i + θ+aλA
a + θ̂+aλ̂A

a − i
(

θ+a θ
+a + θ̂+a θ̂

+a
)

ẋiAu−i , (3.33)

(xiA) = xiA, (λAa) = −λAa,
(

λ̂Aa

)

= − λ̂Aa. (3.34)

The constraint (3.32) puts the residual component fields on-shell:

ẍiA +
m2

4
xiA = 0 , λ̇Aa +

m

2
λ̂Aa = 0 ,

˙̂
λAa − m

2
λAa = 0 . (3.35)

They can be re-derived from the on-shell component Lagrangian

Ldual =
1

2
ẋiAẋiA +

i

4

(

λ̇AaλAa +
˙̂
λAaλ̂Aa

)

+
i

4
mλ̂AaλAa −

m2

8
xiAxiA , (3.36)

which is invariant under the transformations

δxiA = ǫiaλ
Aa+ǫ̂iaλ̂

Aa, δλAa = 2iǫai ẋ
iA − im ǫ̂ai x

iA, δλ̂Aa = 2iǫ̂ai ẋ
iA+im ǫai x

iA. (3.37)

These have an on-shell SU(2|2) closure. Note that the translational symmetry xiA →
xiA+aiA and its fermionic counterpart which are present in the undeformed m = 0 version

of (3.36) are broken by the oscillator terms.
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4 The multiplet (4, 8, 4)

4.1 Kinematics

The multiplet (4,8,4) can be described by the superfield qia, with (qia) = qia. The proper

constraints are imposed as

D(kbqi)a = 0 , ∇k(bqia) = 0 . (4.1)

The SU(2|2) covariance of these constraints requires that

C̃qia = − im qia. (4.2)

According to (2.24), the odd transformations of qi can be written as

δqia = 2im
(

ǫ̂jbθ
ibqja + ǫ̂jaθjbq

ib
)

. (4.3)

Now one can define the analytic biharmonic superfield

q(1,1)
(

ζ(B)

)

= qiaw
(1)
i v(1)a + 2im θ̂

(0,1)
k θkb q

ibw
(1)
i , (4.4)

living on the analytic subspace (2.56) and transforming as

δq(1,1) = Λ(0,0)q(1,1), (4.5)

where Λ(0,0) was defined in (2.66). While the Grassmann constraints (4.1) are automatically

satisfied for q(1,1) in the analytic basis, the restricted harmonic dependence in (4.4) amounts

to the harmonic constraints

D(2,0)q(1,1) = D(0,2)q(1,1) = 0 . (4.6)

Taking into account the transformation laws of D(2,0) and D(0,2), eqs. (2.64), as well as the

definitions (2.65) and (2.66), it is easy to establish the SU(2|2) covariance of (4.6).

The solution of (4.6) is given by the undeformed superfield

q(1,1) = f iaw
(1)
i v(1)a + θ(1,0) av

(1)
b χ b

a + θ̂(0,1) iw
(1)
j χ̂ j

i + θ(1,0) aθ̂(0,1) iFia

− i
(

θ
(1,0)
b θ(1,0) bv(1)a w

(−1)
i + θ̂

(0,1)
j θ̂(0,1) jv(−1)

a w
(1)
i

)

ḟ ia

− iθ̂
(0,1)
j θ̂(0,1) jθ(1,0) av

(−1)
b χ̇ b

a − iθ
(1,0)
b θ(1,0) bθ̂(0,1) iw

(−1)
j

˙̂χ j
i

− θ̂
(0,1)
j θ̂(0,1) jθ

(1,0)
b θ(1,0) bw

(−1)
i v(−1)

a f̈ ia. (4.7)

With taking into account (4.5) and (2.58), its components transformations are found to read

δf ia = − ǫibχ a
b − ǫ̂jaχ̂ i

j , δFia = 2i
(

ǫja ˙̂χ
j

i −ǫ̂ibχ̇
b

a

)

+2im
(

ǫ̂jaχ̂
j

i −ǫibχ
b

a

)

,

δχ b
a = 2i

(

ǫiaḟ
ib−m ǫ̂iaf

ib
)

− ǫ̂ibFia , δχ̂ j
i = 2i

(

ǫ̂iaḟ
ja −mǫiaf

ja
)

+ ǫjaFia . (4.8)

Since the superfield q(1,1) in itself is not deformed (only its transformation properties

prove to be deformed), we can realize on it the supersymmetry SU(2|2) in parallel with the
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standard flat N=8, d=1 Poincaré supersymmetry, or even with another SU(2|2) involving
the flipped-sign deformation parameter −m. The closure of all these symmetries including

the original SU(2|2) turns out to constitute an extended superalgebra introduced in [33]:

{

Q0
ia, S̃jb

}

= εij Jab−εab Iij+
1

2
εab εij Z,

{

S0
ia, Q̃jb

}

= εab Jij−εij Iab+
1

2
εab εij Z,

{

Q0
ia, Q

0
jb

}

= 2 εij εabH,
{

S0
ia, S

0
jb

}

= 2 εij εabH, (4.9)

[Iij , Ikl] = εil Ikj + εjk Iil , [Iab, Icd] = εad Ibc + εbc Iad ,

[Jij , Jkl] = εil Jkj + εjk Jil , [Jab, Jcd] = εad Jbc + εbc Jad , (4.10)

[

Iab, S
0
kc

]

=
1

2

(

εac S
0
kb + εbc S

0
ka

)

,
[

Iij , Q
0
ka

]

=
1

2

(

εik Q
0
ja + εjk Q

0
ia

)

,

[

Iab, Q̃kc

]

=
1

2

(

εac Q̃kb + εbc Q̃ka

)

,
[

Iij , S̃ka

]

=
1

2

(

εik S̃ja + εjk S̃ia

)

,

[

Jab, Q
0
kc

]

=
1

2

(

εacQ
0
kb + εbcQ

0
ka

)

,
[

Jij , S
0
ka

]

=
1

2

(

εik S
0
ja + εjk S

0
ia

)

,

[

Jab, S̃kc

]

=
1

2

(

εac S̃kb + εbc S̃ka

)

,
[

Jij , Q̃ka

]

=
1

2

(

εik Q̃ja+εjk Q̃ia

)

. (4.11)

In fact, the superalgebra (4.9)–(4.11) contains four SU(2) subalgebras with the generators

Iab , Iij , Jab , Jij . These generators differently act on the indices of the component fields
{

f ia, χ a
b , χ̂ i

j , Fia

}

. The generators Iab , Iij rotate only the upper-case indices i and a,

while Jab , Jij act only the lower-case ones (though denoted by the same characters). Thus,

the two types of SU(2) indices of the component fields can actually be split into four types.

The SU(2|2) generators of (2.1) can be identified with the following linear combinations

of the generators of the extended superalgebra (4.9)–(4.11):

Qia = Q0
ia − 2im Q̃ia , Sia = S0

ia − 2im S̃ia ,

Lij = − (Jij + Iij) , Rab = − (Jab + Iab) . (4.12)

Hence, the superalgebra (2.1) can be viewed as a subalgebra of the extended superalge-

bra (4.9)–(4.11), with the central charge

C = − imZ. (4.13)

The second SU(2|2) supergroup is generated by the supercharges

Q0
ia + 2im Q̃ia , S0

ia + 2im S̃ia . (4.14)

The integration measure (2.61) is invariant under the transformations of both SU(2|2)
supergroups, with the parameters m and −m , i.e. it is also invariant under the transfor-

mations produced by all generators of (4.9)–(4.11).
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The generators appearing in (4.12) are realized on the biharmonic superspace (2.56) as

Q0
ia = w

(1)
i

∂

∂θ(1,0) a
− 2iw

(−1)
i θ(1,0)a ∂(B) , S0

ia = v(1)a

∂

∂θ̂(1,0) i
− 2iv(−1)

a θ̂
(0,1)
i ∂(B) ,

Q̃ia = θ̂
(0,1)
i v(1)a ∂(0,−2) +

1

2
θ̂
(0,1)
j θ̂(0,1) j v(−1)

a

∂

∂θ̂(0,1) i
− θ̂

(0,1)
i v(−1)

a Z,

S̃ia = θ(1,0)a w
(1)
i ∂(−2,0) +

1

2
θ
(1,0)
b θ(1,0) bw

(−1)
i

∂

∂θ(1,0) a
− θ(1,0)a w

(−1)
i Z,

Iij = w
(1)
i w

(1)
j ∂(−2,0) +

1

2

[

w
(1)
i w

(−1)
j + w

(1)
j w

(−1)
i

]

(

θ(1,0) a
∂

∂θ(1,0) a
− Z

)

+ iw
(−1)
i w

(−1)
j θ(1,0)a θ(1,0) a ∂(B) ,

Iab = v(1)a v
(1)
b ∂(0,−2) +

1

2

[

v(1)a v
(−1)
b + v

(1)
b v(−1)

a

]

(

θ̂(0,1) k
∂

∂θ̂(0,1) k
− Z

)

+ iv(−1)
a v

(−1)
b θ̂

(0,1)
i θ̂(0,1) i ∂(B) ,

Jij =−1

2

[

θ̂
(0,1)
i

∂

∂θ̂(0,1) j
+θ̂

(0,1)
j

∂

∂θ̂(0,1) i

]

, Jab =−1

2

[

θ(1,0)a

∂

∂θ(1,0) b
+θ

(1,0)
b

∂

∂θ(1,0) a

]

. (4.15)

While applying these operators to the superfield q(1,1), one is led to put Zqia = qia, in

accord with (4.2) and (4.13). The algebra of the generators (4.15) can be extended by the

generator

K = i θ(1,0)a θ(1,0)a ∂(−2,0) + i θ
(0,1)
i θ(0,1)i ∂(0,−2) − t(B)Z , (4.16)

which, together with H = i∂(B) and Z , form the Heisenberg algebra h(2)

[K,H] = iZ . (4.17)

The superalgebra (4.9)–(4.11) with the generator K being included can be treated as N=8

extension of the algebra h(2) [33].

4.2 Invariant actions

Let us define the new “shifted” superfield

q̂(1,1)= q(1,1)−c(1,1), X = 2 c(−1,−1)q̂(1,1),

c(1,1)= ciaw
(1)
i v(1)a , c(−1,−1)= ciaw

(−1)
i v(−1)

a , c(1,1)c(−1,−1)−c(−1,1)c(1,−1)=
1

2
, (4.18)

where cia is a constant satisfying ciacia = 1. It is enough to consider the ǫ-transformations

δ q̂(1,1) = Λ(0,0)
ǫ q̂(1,1) + Λ(0,0)

ǫ c(1,1) − Λ(0,2)
ǫ c(1,−1),

δ X = Λ(0,0)
ǫ X + 2 c(−1,−1)c(1,1)Λ(0,0)

ǫ − 2 c(−1,−1)c(1,−1)Λ(0,2)
ǫ . (4.19)

Such transformations are similar to the “superconformal” transformations [33]. Then it

follows that an SU(2|2) invariant action can be constructed in the same way:

S(4,8,4) =

∫

dtL(4,8,4) =

∫

dζ
(−2,−2)
(B) q̂(1,1)q̂(1,1)

[

ln (1 +X)

X2
− 1

(1 +X)X

]

. (4.20)
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Since the superfield q̂(1,1) is not deformed, this action coincides with the one given in [33]

and so it is invariant under the full hidden supersymmetry with the algebra (4.9)–(4.11)

and the additional transformations with the generator (4.16). The central charge generator

Z acts as a dilatation generator in the target space, δZq
(1,1) = ωq(1,1) , where ω is a constant

parameter. Note that (4.20) is not invariant under the standard dilatations which affect

not only q(1,1), but also the time coordinate t(B).

Despite the transformations (4.8) are mass-deformed, the component Lagrangian

of (4.20) contains no terms with the parameter m. In particular, the bosonic core of

this Lagrangian is as follows

Lbos
(4,8,4) =

1

f2

(

ḟiaḟ
ia − 1

4
FiaF

ia

)

, f2 = fiaf
ia. (4.21)

On the other hand, from the SU(2|1) standpoint, the multiplet (4,8,4) is a direct sum

of two SU(2|1) multiplets, (4,8,4) = (4,4,0) ⊕ (0,4,4) , and it is known [19] that the

Lagrangian of the multiplet (4,4,0) in the general case explicitly involves the deformation

parameter m. In particular, its bosonic core is

∼ G(f)

(

ḟ iaḟia −
m2

4
f iafia

)

.

The only option for which the mass term becomes a constant and so fully decouples is just

G(f) = 1/f2 required by the SU(2|2) invariance.6 It can be shown that for this special

choice the parameter m disappears also from all other terms in the (4,4,0) Lagrangian.

Note that the Lagrangian (4.21) is invariant under the Z ‘dilatations”, δZf
ia = ωf ia,

δF ia = ωF ia and, up to a total derivative, under the transformations generated by the

operator K defined in (4.16), δKf ia = ω′ tf ia , δKF ia = ω′ tF ia .

5 The multiplet (5, 8, 3)

5.1 Kinematics

In the standard flat N=8, d=1 supersymmetry, chiral superfields with some extra con-

straints can be used to describe the supermultiplets (2,8,6) and (5,8,3) (see the table of

N=8 supermultiplets in [31]). As we have checked, the constraints defining the multiplet

(2,8,6) do not admit a generalization to the SU(2|2) supersymmetry, while those defining

the supermultiplet (5,8,3) can be SU(2|2) covariantized. Thus, the supermultiplet (5,8,3)

proves to be the only SU(2|2) multiplet for the description of which a chiral superfield can

be utilized.

We consider the complex superfield Ψ satisfying the standard chiral constraints

D̄iaΨ = 0 , L̃ijΨ = R̃abΨ = C̃ Ψ. (5.1)

6Note that the singularity of this metric at f ia = 0 can be avoided, e.g., by assuming that f ia starts with

a constant cia. The 4-dimensional manifold with such a metric is known as Hopf manifold (see e.g. [53]) and

it provides a simplest non-trivial example of the so called HKT (“hyper-Kähler with torsion”) manifolds.
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This superfield lives as unconstrained on the chiral subspace (2.33). It means that the

solution of (5.1) is given by the general ϑ-expansion

Ψ
(

tL, ϑ
ia
)

= z+
√
2ϑiaψia+ϑiaϑj

aAij+ϑiaϑb
iBab+

2
√
2

3
ϑibϑjaϑjb πia+

1

3
ϑibϑjaϑjbϑiaD,

Bab = Bba , Aij = Aji . (5.2)

The passive transformation law δΨ = 0 implies the following component transformations:

δz = −
√
2 ηiaψia , δψia = −

√
2
(

ηjaAij + ηbiBab − iη̄iaż
)

,

δAij = −
√
2 ηa(j

[

πi)a +mψi)a

]

−
√
2 η̄a(j

[

iψ̇i)a −mψi)a

]

,

δBab = −
√
2 ηi(b

[

πi
a) +mψi

a)

]

+
√
2 η̄i(b

[

iψ̇i
a) +mψi

a)

]

,

δπia =
√
2
(

− iη̄jaȦij + iη̄bi Ḃab − ηiaD
)

+
√
2m

[

(

ηja − η̄ja
)

Aij +
(

ηbi − η̄bi

)

Bab − iη̄iaż
]

,

δD =
√
2 iη̄ia

(

π̇ia +mψ̇ia

)

. (5.3)

Indeed, their Lie brackets are easily checked to form SU(2|2) symmetry. The chiral super-

field (5.2) contains 16 bosonic and 16 fermionic fields and so is reducible. To single out the

multiplet (5,8,3), we impose the extra SU(2|2) covariant constraints

D̄iaD̄b
i Ψ̄+DiaDb

i Ψ = 0 , 2
√
2 D̄iaVjk = − εi(jDk)aΨ , 2

√
2DiaVjk = − εi(jD̄k)a Ψ̄ ,

D̄(i
a Vjk) = 0 , D(i

a Vjk) = 0 , C̃ V ij = 0 , V ij
∣

∣

ϑ=ϑ̄=0
= vij , (5.4)

where V ij is an additional deformed N=8 superfield. Solving the constraints, we find that

Aij =
√
2 (− iv̇ij +mvij) , πia = − i ˙̄ψia +mψ̄ia −mψia , D = ¨̄z + im ˙̄z ,

(z) = z̄ , (ψia) = ψ̄ia, (vij) = vij , (Bab) = Bab = Bba. (5.5)

This field content now corresponds to the multiplet (5,8,3), and the deformed transfor-

mations (5.3) are rewritten for the involved fields as

δz = −
√
2 ηiaψia , δz̄ =

√
2 η̄iaψ̄ia , δvij = − ηa(jψ̄i)a + η̄a(jψi)a ,

δψia = 2iηjav̇ij − 2mηjavij −
√
2 ηbiBab +

√
2 iη̄iaż ,

δψ̄ia = − 2iη̄jav̇ij − 2mη̄javij −
√
2 η̄biBab −

√
2 iηia ˙̄z ,

δBab =
√
2 ηi(b

[

i ˙̄ψi
a) −mψ̄i

a)

]

+
√
2 η̄i(b

[

iψ̇i
a) +mψi

a)

]

. (5.6)

5.2 Invariant actions

The N=8 invariant deformed action can be written as an integral over chiral subspaces,

like in the case of flat N=8 supersymmetry [32]:

S(5,8,3) =
1

4

∫

dζL f (Ψ) +
1

4

∫

dζR f̄
(

Ψ̄
)

=

∫

dtL(5,8,3) . (5.7)
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The component Lagrangian reads

L(5,8,3) = g

[

˙̄zż + v̇ij v̇
ij +

i

2

(

ψia
˙̄ψia − ψ̇iaψ̄

ia
)

−mψiaψ̄
ia −m2vijv

ij +
1

2
BabB

ab

]

− i

2
mg ( ˙̄zz − żz̄) +

i

2
( ˙̄zgz̄ − żgz)ψiaψ̄

ia − 1

2

(

gz ψ
i
aψib + gz̄ ψ̄

i
aψ̄ib

)

Bab

+
i√
2

(

gz ψiaψ
a
j − gz̄ ψ̄iaψ̄

a
j

)

v̇ij − m√
2

(

gz ψiaψ
a
j + gz̄ ψ̄iaψ̄

a
j

)

vij

− 1

12

(

gzz ψ
ibψjaψjbψia + gz̄z̄ ψ̄

ibψ̄jaψ̄jbψ̄ia

)

. (5.8)

Here, g is a special Kähler metric defined as

g (z, z̄) = f ′′ (z) + f̄ ′′ (z̄) , gz =
∂g (z, z̄)

∂z
, gz̄ =

∂g (z, z̄)

∂z̄
, etc . (5.9)

As compared to the undeformed case, we observe the appearance of the oscillator-type

fermionic (∼ m) and bosonic (∼ m2) potential terms, as well as the internal bosonic WZ

term accompanied by some new Yukawa-type couplings.

The simplest free action Sfree
(5,8,3) corresponds to the choice f (Ψ) = Ψ2/4 . Its compo-

nent off-shell Lagrangian reads

Lfree
(5,8,3)= ˙̄zż+ v̇ij v̇

ij+
i

2

(

ψia
˙̄ψia−ψ̇iaψ̄

ia
)

−mψiaψ̄
ia− i

2
m ( ˙̄zz−z̄ż)−m2vijv

ij+
1

2
BabB

ab.

(5.10)

In [47], SU(2|2) supersymmetry was shown to underlie N=8 massive quantum me-

chanics of type I inspired by some super Yang-Mills theory. One can show that the rel-

evant Lagrangian in the abelian case with U(1) as a gauge symmetry coincides with the

on-shell Lagrangian obtained from (5.10). It would be interesting to inquire to which

higher-dimensional system the general Lagrangian (5.8) could correspond.

5.3 Description in terms of SU(2|1) superfields

The supergroup SU(2|2) contains as a subgroup the supergroup SU(2|1). Hence, SU(2|2)
supersymmetric mechanics can be equivalently viewed as SU(2|1) supersymmetric mechan-

ics [16–19] associated with a few irreducible SU(2|1) multiplets forming a given SU(2|2)
multiplet. Here, we deal with the supergroup SU(2|1) defined in (2.5). The multiplet

(5,8,3) can be split into SU(2|1) multiplets as (4,4,0) ⊕ (1,4,3) or (2,4,2) ⊕ (3,4,1).

We have restricted our consideration to the latter option.

The SU(2|1) superspace coordinates are defined in the basis (2.26) as
{

t , ϑi1 , ϑ̄
i1
}

=:
{

t , θi , θ̄
i
}

and are transformed under SU(2|1) according to

δθi = ǫi + 2m ǭjθjθi , δθ̄i = ǭi − 2mǫj θ̄
j θ̄i, δt = iǭiθi + iǫiθ̄

i . (5.11)

Here the parameters ǫi, ǭ
i are related to the parameters in (2.29) as

ηi1 =: ǫi , η̄i1 =: ǭi, ηi2 =: εi , η̄i2 =: ε̄i , (5.12)

the ε-transformations being associated with the hidden supersymmetry which extends

SU(2|1) to SU(2|2).
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The ǫ-transformations in (5.6) are split into SU(2|1) transformations corresponding to

the chiral multiplet (2,4,2) [16] with the U(1) charge κ = 0 and the multiplet (3,4,1) (see

appendix C):

Φ =
(

z, ψi1,−B22

)

⇒
(

z, ξi, B
)

, Vij =
(

vij ,−ψ̄i1,−ψi1,−
√
2 iB12

)

⇒
(

vij , χ
i, χ̄i, A

)

.

(5.13)

Generally, the SU(2|2) invariant Lagrangian can be written in terms of these SU(2|1)
superfields as

L(5,8,3) =

∫

d2θ d2θ̄
(

1 + 2mθ̄kθk

)

F
(

Φ, Φ̄, Vij

)

, (5.14)

where F is an arbitrary real scalar function of SU(2|1) superfields satisfying the five-

dimensional Laplace equation [28, 30]:

(

4 ∂2

∂Φ ∂Φ̄
+

∂2

∂V ij ∂Vij

)

F = 0 . (5.15)

The metric g := g (z, z̄, vij) of the target space is expressed as

g (z, z̄, vij) = − ∂2F (z, z̄, vij)

∂vij ∂vij
=

4 ∂2F (z, z̄, vij)

∂z ∂z̄
. (5.16)

One can explicitly check that (5.15) is the only condition which is required for the invari-

ance under the second subgroup SU(2)R of SU(2|2) in the terms quadratic and quartic

in fermions. Since the closure of SU(2|1) and SU(2)R transformations necessarily yields

the supersymmetry SU(2|2), the equations (5.15) is none other than the conditions of the

SU(2|2) supersymmetry. One can treat the invariant Lagrangian (5.14) as a Lagrangian

constructed in terms of harmonic superfields associated with Ψ, Ψ̄ and V ij . This way

of obtaining (5.14) can presumably be figured out from the harmonic formalism elabo-

rated in [30].

As a solution of (5.15), the Lagrangian (5.8) can be rewritten in terms of SU(2|1)
superfields as

L(5,8,3) =

∫

d2θ d2θ̄
(

1+2mθ̄kθk

)

{

1

4

[

Φ̄f ′ (Φ)+Φf̄ ′
(

Φ̄
)]

− 1

6
VijV

ij
[

f ′′ (Φ)+f̄ ′′
(

Φ̄
)]

}

.

(5.17)

Here, the function f is related to (5.7) as

f (Φ) ≡ f (Ψ) |ϑi2=ϑ̄i2=0 , (5.18)

and the relevant metric (5.16) coincides with that defined in (5.9).

The metric (5.9) corresponds to the most general solution of (5.15) for F restricted

to the 2-dimensional target space as F ≡ F (z, z̄) , g ≡ g (z, z̄). One can consider more

general solutions involving some extra dependence on the triplet vij . For instance, the

most general solution with g ≡ g (vij) yields the Lagrangian

L∗
(5,8,3) =

1

8

∫

d2θ d2θ̄
(

1 + 2mθ̄kθk

) Φ̄Φ− 2VijV
ij

√

VijV ij
. (5.19)
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In the component form it reads

L∗
(5,8,3) =

1

2|v|

[

˙̄zż + v̇ij v̇
ij +

i

2

(

ψia
˙̄ψia − ψ̇iaψ̄

ia
)

+
1

2
BabBab +

i

|v|2 ψ
(i
a ψ̄

j)avikv̇
k
j

+
vij

2
√
2 |v|2

(

2ψa
i ψ̄

b
j Bab + iψiaψ

a
j
˙̄z + iψ̄iaψ̄

a
j ż

)

−
3v(ijvkl)

8|v|4 ψa
i ψja ψ̄

b
kψ̄lb

− m

2
ψiaψ̄

ia −m2vijv
ij

]

, (5.20)

with

g (vij) =
1

2|v| . (5.21)

One can explicitly check that this Lagrangian is invariant under (5.6).

There can be many other solutions of (5.15) depending on all five fields. An example

of such a solution producing a superconformal model is given in appendix B.3.

5.4 The free quantum model

As an example, here we present quantization of the simplest free model corresponding

to (5.10). Eliminating auxiliary fields, we obtain

Lfree
(5,8,3) = ˙̄zż+ v̇ij v̇

ij+
i

2

(

ψia
˙̄ψia−ψ̇iaψ̄

ia
)

−mψiaψ̄
ia− i

2
m ( ˙̄zz−z̄ż)−m2vijv

ij . (5.22)

After performing Legendre transformations we obtain the canonical Hamiltonian

H =

(

pz̄ +
i

2
mz

)(

pz −
i

2
mz̄

)

+
pijpij
4

+m2vijvij +mψiaψ̄ia . (5.23)

Other Noether charges are given by

Πia =
√
2

(

pz −
i

2
mz̄

)

ψia +
(

pik + 2imvik
)

ψ̄a
k ,

Π̄jb =
√
2

(

pz̄ +
i

2
mz

)

ψ̄jb − (pjk − 2imvjk)ψ
k
b ,

Li
j = ψiaψ̄ja −

1

2
δij ψ

kcψ̄kc + 2ivikpkj − iδijv
klpkl ,

Ra
b = ψkaψ̄kb −

1

2
δab ψ

kcψ̄kc . (5.24)

The Poisson and Dirac brackets are imposed as

{z, pz} = 1 , {z̄, pz̄} = 1 ,
{

vij , pkl
}

=
1

2

(

δikδ
j
l +δilδ

j
k

)

,
{

ψ̄ia, ψjb

}

= − iδab δ
i
j (5.25)

and they are quantized in the standard way

[z, pz] = i , [z̄, pz̄] = i ,
[

vij , pkl
]

=
i

2

(

δikδ
j
l + δilδ

j
k

)

,
{

ψ̄ia, ψjb

}

= δab δ
i
j . (5.26)

We will use the operators

[

∇z, ∇̄z̄

]

= m,
[

∇−ij ,∇+
kl

]

=
m

2

(

δikδ
j
l + δilδ

j
k

)

, (5.27)
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where

∇z = pz −
i

2
mz̄, ∇̄z̄ = pz̄ +

i

2
mz, ∇±

ij =
1

2
(pij ± 2imvij) . (5.28)

In terms of the so defined creation and annihilation operators, the quantum version of the

generators of (2.4) takes the form

Πia =
√
2∇zψ

ia + 2∇+ikψ̄a
k , Π̄jb =

√
2 ∇̄z̄ψ̄jb − 2∇−

jkψ
k
b ,

Li
j = ψiaψ̄ja −

1

2
δij ψ

kcψ̄kc +
1

m

(

∇+ik∇−
jk −∇+

jk∇−ik
)

, Ra
b = ψkaψ̄kb −

1

2
δab ψ

kcψ̄kc ,

H = ∇̄z̄∇z +∇+ij∇−
ij +mψiaψ̄ia . (5.29)

As follows from the definition (5.28), the quantum generator Li
j in fact does not involve

the parameter m. So the latter appears only in the supercharges and the Hamiltonian.

To construct the Hilbert space of wave functions, we use the creation operators ∇̄z̄,

∇+ij , ψia and the annihilation operators ∇z, ∇−ij , ψ̄ia. Then, the energy spectrum of H

is found to be

HΩ(ℓ) = mℓΩ(ℓ), (5.30)

where Ω(ℓ) is a wave function at the Landau level ℓ. The ground state corresponds to

ℓ = 0 and the first excited level to ℓ = 1. The relevant wave functions are given by the

expressions:

Ω(0) = a(0) (z̄) e−
mzz̄
2 ,

Ω(1) =
(

a(1) (z̄) ∇̄z̄ + b
(1)
ij (z̄)∇+ij + c

(1)
ia (z̄)ψia

)

e−
mzz̄
2 . (5.31)

The coefficients a(0), a(1), b
(1)
ij and c

(1)
ia are some arbitrary antiholomorphic functions. This

infinite degeneracy is caused by action of the additional generators ∇z + imz̄ and ∇̄− imz

(magnetic translations) which commute with all quantum generators (5.29). All the higher

levels ℓ > 1 have wave functions of more complex structure and we will not consider

them here.

A few words about SU(2|2) representations are to the point. The ground state Ω(0) is

annihilated by all quantum generators (5.29), i.e., it is just a singlet. According to [54],

the level ℓ = 1 corresponds to the atypical SU(2|2) representation 〈1, 0; 1/2, 0, 0〉 , with the

overall dimension 8. All the higher ℓ wave functions can be also classified based on the

analysis of [54].

6 Conclusions

Using powerful d=1 superfield coset techniques, we have constructed and studied several

models of SU(2|2) supersymmetric mechanics based on the off-shell multiplets (3,8,5),

(4,8,4) and (5,8,3). This new kind of supersymmetric mechanics is a deformation of

flat N=8 supersymmetric mechanics. The corresponding actions were presented, both in

terms of superfields and of component fields. The extended symmetries of these actions

were revealed, and quantization was explicitly performed in one simple case.
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Off-shell supermultiplets of standard N=8 supersymmetric mechanics [29, 31, 33, 34]

other than (3,8,5), (4,8,4) or (5,8,3) do not seem to admit a deformation to SU(2|2)
multiplets. A possible explanation is the following. If we take for granted that the SU(2|2)
transformations form a subset of N=8 superconformal transformations (like the SU(2|1)
ones which are embedded into an appropriate N=4 superconformal group), then such su-

perconformal transformations can correspond only to the superconformal group OSp(4∗|4).
Indeed, the superalgebra osp(4∗|4) is the only one which contains su(2|2) as a subalgebra

(see appendix B.1). According to [38], OSp(4∗|4) transformations are realized only on

the multiplets (3,8,5) and (5,8,3). Hence, the supergroup SU(2|2) also admits an ac-

tion only on these two multiplets. The multiplet (4,8,4) is exceptional: none of N=8,

d=1 superconformal symmetries can act on it. However, one can realize on it an N=8

extended Heisenberg superalgebra [33]. In section 4, we showed that this extended superal-

gebra (4.9)–(4.11) contains an su(2|2) superalgebra. Hence, the SU(2|2) transformations of

all three multiplets (3,8,5), (4,8,4) and (5,8,3) are embedded into extended supergroups

containing SU(2|2) as a subgroup.

As an example for the contrary, the root multiplet (8,8,0) of flat N=8, d=1 super-

symmetry admits osp(8|2) superconformal transformations [37]. Besides a flat N=8, d=1

subalgebra, this superalgebra possesses two “curved” subalgebras with 8 supercharges [55],

namely su(1|4) and osp(4|2),7 but not su(2|2) . This is evidence in favor of the non-

existence of the multiplet (8,8,0) for SU(2|2) supersymmetry. Still, one might hope to

construct the root multiplet (8,8,0) as a sum of two mutually mirror SU(2|1) multiplets

(4,4,0)⊕ (4,4,0) [19]. However, by trial and error, we became convinced that there is no

way to extend SU(2|1) supersymmetry to SU(2|2) in such a system, although we are not

able to give a direct rigorous proof. Similar arguments also suggest the absence of SU(2|2)
analogs of the other “flat” off-shell N=8, d=1 multiplets discussed in [31, 34]. For a more

systematic search of these “missing” deformed multiplets, one should presumably study

general deformations of N=8 supersymmetric mechanics.

In [47], two types of N=8 massive super Yang-Mills quantum mechanics provided

matrix descriptions of supermembranes. Type I is based on the supergroup SU(2|2), while
type II uses the product supergroup SU(2|1) × SU(2|1). In section 5, we noticed that

the type I model of [47] reduced to the simplest U(1) gauge symmetry corresponds to

the free Lagrangian (5.10) of the multiplet (5,8,3). Our superfield approach gives the

more general SU(2|2) supersymmetric Lagrangian (5.8). It will be interesting to explic-

itly consider deformations yielding the supergroups SU(2|1)× SU(2|1) [47] or SU(1|4) [46].
Further off-shell deformed N=8 multiplets and the associated mechanics models may be

constructed in this way. It is especially interesting to inspect worldline realizations of the

supergroup SU(2|4) [44, 45], as they should bear a direct relation to the matrix models

of [42] (see also [46]). Such models can be studied directly in an SU(2|2) mechanics lan-

guage, proceeding from the fact that SU(2|2) is a subgroup of SU(2|4) and representing the

multiplets of the latter as direct sums of the appropriate SU(2|2) multiplets. For instance,

the SU(2|4) on-shell multiplet (10,16) can hopefully be organized from two copies of the

SU(2|2) multiplet (5,8,3).

7The superalgebra osp(4|2) is a superconformal N=4 algebra [56].
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A Details of invariant action for the multiplet (3, 8, 5)

A.1 Calculation of the superfield action

The idea is to construct the invariant Lagrangian as a power series in V̂ ++,

L(+4) ∝ ρ c̃++V̂ ++ +m2
(

θ+
)4

∞
∑

n=2

an
(

c−−V̂ ++
)n

+

∞
∑

n=2

bn
(

c−−
)n−2 (

V̂ ++
)n
. (A.1)

Using the fact that V̂ ++ is transformed inhomogeneously in (3.15), we require that the

variations of the adjacent terms in the sum cancel each other modulo a total derivative,

which will impose strict relations between the coefficients bn and, finally, fix the form of

the above series. We will properly employ the freedom in normalizing (A.1).

The physical normalization of the kinetic term of the boson triplet fixes b2 = 1/2. We

include the transformation of the integration measure (2.53) into the variations of various

terms in the Lagrangian (A.1). Then such a generalized variation of the first term in the

sum in (A.1) is reduced to (up to a total harmonic derivative)

δ

[

1

2

(

V̂ ++
)2
]

= V̂ ++
[

−Λ
(

V̂ +++2c̃++
)

−4Λ++c+−
]

= −
(

V̂ +++6c̃++
)

ΛV̂ ++. (A.2)

The first piece of this variation is going to be compensated from the variation of the term

∼
(

V̂ ++
)3

in (A.1), while the second piece is canceled with the variation of the term ∼ ρ

in (A.1). Indeed, it is easy to show that, up to a total derivative,

δ
(

ρ c̃++V̂ ++
)

= 4Λ
(

ρ c̃++V̂ ++
)

, (A.3)

and the choice ρ = 3/2 ensures the cancelation needed. Next, we consider the cubic term

b3 c
−−

(

V̂ ++
)3

with the variation

δ
[

b3 c
−−

(

V̂ ++
)3
]

= − 4Λ
[

b3 c
−−

(

V̂ ++
)3
]

− 2b3 Λ
(

V̂ ++
)2
+
5m2

2
b3

(

c−−V̂ ++
)2

δ
(

θ+
)4

.

(A.4)

Under the choice b3 = − b2 = − 1/2, the second piece in (A.4) exactly cancels the second

piece in (A.2). The remaining term in (A.4) is canceled by the variation of the term

5m2

4

(

θ+
)4 (

c−−V̂ ++
)2 ⇒ a2 =

5

4
. (A.5)

In this term, the variation of V̂ ++ yields a vanishing contribution due to the presence

of the highest-order θ monomial and the fact that both Λ and Λ++ involve at least one
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power of the Grassmann-odd coordinates. So its full variation is exclusively defined by the

variations of the explicit θ s. Proceeding further, we find that

b4 =
5

8
, b5 = − 7

8
, etc ,

a3 = − 7

4
, a4 =

45

16
, etc . (A.6)

After some effort, using the general formula

(

c−−
)n

c++=
n

2n+1

(

c−−
)n−1

+
1

2 (n+1)(2n+1)

(

D++
)2 (

c−−
)n+1

, n > 1, cijcij = 1 ,

(A.7)

we find a recurrence relation for the coefficients an and bn :

an = − (n+ 1) (2n+ 1)

2 (2n− 1)
bn+1 , bn+1 = − 2n− 1

n+ 1
bn . (A.8)

Then, using the property that, up to a total derivative,

c̃++V̂ ++ = −m2
(

θ+
)4

c−−V̂ ++, (A.9)

we represent the total Lagrangian L(+4) as

L(+4) = 4

∞
∑

n=2

(−1)n
(2n− 3)!

2nn! (n− 2)!
(c−−)n−2

(

V̂ ++
)n

− 2m2
(

θ+
)4

∞
∑

n=2

(−1)n
(2n− 1) (2n− 4)!

2n (n− 1)! (n− 2)!

(

c−−V̂ ++
)n−1

. (A.10)

It remains to learn to which functions these series sum up. Using the Taylor expansions

∞
∑

n=0

(2n+ 1)!

n! (n+ 2)!
xn+2 =

1

4

(

1− 2x−
√
1− 4x

)

, (A.11)

∞
∑

n=0

(2n)!

(n!)2
xn =

1√
1− 4x

,
∞
∑

n=0

(2n)!

n! (n+ 1)!
xn+1 =

1

2

(

1−
√
1− 4x

)

with

x := − V̂ ++c−−

2
,

it is straightforward to write (A.10) as

L(+4) =
2
(

V̂ ++
)2

(

1+
√

1+2 c−−V̂ ++
)2 −m2

(

θ+
)4

(

c−−V̂ ++

√

1+2 c−−V̂ ++
+

c−−V̂ ++

1+
√

1+2 c−−V̂ ++

)

.

(A.12)

Then, the SU(2|2) invariant Lagrangian for the multiplet (3,8,5) is given by

L(3,8,5) =

∫

dζ
(−4)
A L(+4). (A.13)
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A.2 Harmonic integrals

For the calculation of the component Lagrangian of (A.13), we take as input the known

harmonic integrals [20, 52]
∫

du

(1 + 2 c−−v̂++)3/2
=

1
√

1 + 2 cij v̂ij + v̂ij v̂ij
, (A.14)

∫ duu+(iu
−
j)

(1 + 2 c−−v̂++)3/2
=

−
(

cki v̂jk + ckj v̂ik

)

1+2 cij v̂ij+v̂ij v̂ij+(1+cij v̂ij)
√

1+2 cij v̂ij+v̂ij v̂ij
. (A.15)

After some algebraic manipulations involving integration by parts, the component La-

grangian is reduced to a few terms containing the expressions (all taken at θ = 0)

∂2L(+4)

∂v̂++2
=

1

(1 + 2 c−−v̂++)3/2
,

∂3L(+4)

∂v̂++3
= − 3 c−−

(1 + 2 c−−v̂++)5/2
,

∂4L(+4)

∂v̂++4
=

15 (c−−)
2

(1 + 2 c−−v̂++)7/2
. (A.16)

They appear with the specific combinations of harmonics and the corresponding harmonic

integrals are computed as
∫

du
∂2L(+4)

∂v̂++2
=

1
√

1 + 2 cij v̂ij + v̂ij v̂ij
,

∫

duu+k u
+
l

∂3L(+4)

∂v̂++3
= − ckl + v̂kl

(1 + 2 cij v̂ij + v̂ij v̂ij)
3/2

,

∫

duu+k u
+
l u

+
mu+n

∂4L(+4)

∂v̂++4
=

3 (c+ v̂)(kl (c+ v̂)mn)

(1 + 2 cij v̂ij + v̂ij v̂ij)
5/2

. (A.17)

There is also the harmonic integral

−
∫

du

[

v̂++v̂−−

√
1+2 c−−v̂++

(

1+
√
1+2 c−−v̂++

)+
c−−v̂++

1+
√
1+2 c−−v̂++

+
c−−v̂++

√
1+2 c−−v̂++

]

,

(A.18)

responsible for the potential term ∼ m2. It is not immediately obvious how to compute it.

It is easier to calculate this integral by considering its series expansion
∫

du
∞
∑

n=2

(−1)n−1 (2n− 4)!

2n−1 (n− 1)! (n− 2)!

[

(2n− 3) v̂−−v̂++ + (2n− 1) c−−v̂++
] (

c−−v̂++
)n−2

.

(A.19)

Using the identities
∫

du
(

c−−v̂++
)n

=
2n−1

2n+1

∫

du cij v̂
ij
(

c−−v̂++
)n−1 − n−1

2n+1

∫

du v̂++v̂−−
(

c−−v̂++
)n−2

,

∫

du v̂−−v̂++
(

c−−v̂++
)n−2

=
(n− 1) v̂ij v̂

ij

2n− 1

∫

du
(

c−−v̂++
)n−2

,

v̂ij v̂
ij = 2

(

v̂−−v̂++ − v̂+−v̂+−
)

, cij v̂
ij = c−−v̂++ + c++v̂−− − 2c+−v̂+−, (A.20)
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we transform (A.19) to the form

1

2
+
(

1 + 2 cij v̂
ij + v̂ij v̂

ij
)

∫

du
∞
∑

n=0

(−1)n+1 (2n+ 2)!

2n+2n! (n+ 1)!

(

c−−v̂++
)n

. (A.21)

The final result is given by the integral (A.14) as

(A.18) = −
∫

du
(

1 + 2 cij v̂
ij + v̂ij v̂

ij
)

2 (1 + 2 c−−v̂++)3/2
+

1

2
=

1

2

(

1−
√

1 + 2 cij v̂ij + v̂ij v̂ij
)

. (A.22)

B Superconformal symmetry

Superconformal N=4 symmetry in SU(2|1) superspace is realized by trigonometric trans-

formations [18]. Analogously, superconformal N=8 symmetry in SU(2|2) superspace also

yields trigonometric superconformal mechanics [57].

B.1 Superconformal algebra osp(4∗|4) and its su(2|2) subalgebra

There are four superconformal N=8, d=1 algebras [56]: osp(8|2), su(1, 1|4), F (4),

osp(4∗|4). According to [55] (table VI), the superalgebra su(2|2) can be embedded only

into the superconformal algebra osp(4∗|4). Here, we present this embedding.

The explicit structure of osp(4∗|4) is given by the following nonvanishing (anti)-

commutators:
{

Qia, Qjb
}

= − 2 εijεabP,
{

Qiα,Qjβ
}

= − 2 εijεαβP,
{

Sia, Sjb
}

= − 2 εijεabK,
{

Siα,Sjβ
}

= − 2 εijεαβK,
{

Qia, Sjb
}

= 2
(

εabT ij−εijεabD−2 εijT ab
1

)

,
{

Qiα,Sjβ
}

= 2
(

εαβT ij−εijεαβD−2 εijTαβ
2

)

,
{

Qia,Sjα
}

= − 2 εijUaα,
{

Qiα, Sja
}

= − 2 εijUaα, (B.1)

[D,P ] = − iP, [D,K] = iK, [P,K] = 2iD,
[

T ij , T kl
]

= − i
(

εikT jl + εjlT ik
)

,
[

Uaα, U bβ
]

= − 2i
(

εαβT ab
1 + εabTαβ

2

)

,
[

T ab
1 , T cd

1

]

= − i
(

εacT bd
1 + εbdT ac

1

)

,
[

Tαβ
2 , T γρ

2

]

= − i
(

εαγT βρ
2 + εβρTαγ

2

)

,
[

T ab
1 , U cα

]

= − i

2

(

εacU bα + εbcUaα
)

,
[

Tαβ
2 , Uaγ

]

= − i

2

(

εαγUaβ+εβγUaα
)

,

(B.2)

[

P, Sia
]

= iQia,
[

P,Siα
]

= iQiα,
[

K,Qia
]

= − i Sia,
[

K,Qiα
]

= − iSiα,

[

D,Qia
]

= − i

2
Qia,

[

D,Qiα
]

= − i

2
Qiα,

[

D,Sia
]

=
i

2
Sia,

[

D,Siα
]

=
i

2
Siα,

[

Uaα, Qib
]

= − i εabQiα,
[

Uaα,Qiβ
]

= − i εαβQia,
[

Uaα, Sib
]

= − i εabSiα,
[

Uaα,Siβ
]

= − i εαβSia,
[

T ab
1 , Qic

]

= − i

2

(

εacQib + εbcQia
)

,
[

T ab
1 , Sic

]

= − i

2

(

εacSib + εbcSia
)

,
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[

Tαβ
2 ,Qiγ

]

= − i

2

(

εαγQiβ + εβγQiα
)

,
[

Tαβ
2 ,Siγ

]

= − i

2

(

εαγSiβ + εβγSiα
)

,

[

T ij , Qka
]

= − i

2

(

εikQja + εjkQia
)

,
[

T ij
1 , Ska

]

= − i

2

(

εikSjb + εjkSia
)

,

[

T ij ,Qkα
]

= − i

2

(

εikQjα + εjkQiα
)

,
[

T ij ,Skα
]

= − i

2

(

εikSjα+εjkSiα
)

.

(B.3)

The bosonic subgroup is SO(5)× SU(2)× SO(2, 1).

There are three SU(2) groups with generators T ij , T ab
1 , Tαβ

2 acting on the relevant

indices. Let us redefine the SU(2) indices a, b, c . . . and α, β, γ, . . . as

Qiα → Qia, Siα → Sia, Tαβ
2 → T ab

2 , Uaα → Uab. (B.4)

This redefinition just means that we passed to the equivalent basis where, instead of the

su(2) algebra with the generators Tαβ
2 , we deal with the diagonal su(2) in the direct sum

of the former su(2) and the one with the generators T ab
1 . Then, we define the m-deformed

supercharges

Πia(±m) :=
1

2

[

Qia − iQia ±m
(

Sia + iSia
)]

,

Π̄ia(±m) :=
1

2

[

Qia + iQia ±m
(

Sia − iSia
)]

(B.5)

and the bosonic generators

H = − 1

2

(

P+m2K
)

, U =
1

2
εcd U

cd, U (ab) =
1

2

(

Uab + U ba
)

, Lij = i T ij ,

Rab = i
(

T ab
1 + T ab

2

)

, R̃ab = i
(

T ab
1 −T ab

2

)

, T± =
1

2

(

P−m2K ± 2imD
)

. (B.6)

In terms of these redefined generators the superalgebra osp(4∗|4) takes the form:

{

Πia(±m), Π̄jb(±m)
}

= ∓ 2m
(

εabLij − εijRab
)

+ 2 εabεij (H±mU) ,
{

Πia(±m), Π̄jb(∓m)
}

= − εijεabT± ,
{

Πia(m),Πjb(−m)
}

= 2mεijU (ab) + 2mεijR̃ab,
{

Π̄ia(m), Π̄jb(−m)
}

= 2mεijU (ab) − 2mεijR̃ab, (B.7)

[H, T±] = ±m T± , [T+, T−] = − 2mH,
[

Lij , Lkl
]

= εilLkj + εjkLil,
[

Rab, R̃cd
]

= εadR̃bc + εbcR̃ad,
[

Rab, Rcd
]

= εadRbc + εbcRad,
[

R̃ab, R̃cd
]

= εadRbc + εbcRad,
[

Rab, U (cd)
]

= εadU (bc) + εbcU (ad),
[

R̃ab, U (cd)
]

= −
(

εacεbd + εadεbc
)

U,
[

U (ab), U (cd)
]

= − εadRbc − εbcRad,
[

R̃ab, U
]

= U (ab),
[

U (ab), U
]

= R̃ab, (B.8)
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[

Lij ,Πka(±m)
]

=
1

2

(

εikΠja(±m) + εjkΠia(±m)
)

,

[

Rab,Πic(±m)
]

=
1

2

(

εacΠib(±m) + εbcΠia(±m)
)

,

[

Lij , Π̄ka(±m)
]

=
1

2

(

εikΠ̄ja(±m) + εjkΠ̄ia(±m)
)

,

[

Rab, Π̄ic(±m)
]

=
1

2

(

εacΠ̄ib(±m) + εbcΠ̄ia(±m)
)

,

[

R̃ab,Πic(±m)
]

=
1

2

(

εacΠ̄ib(∓m) + εbcΠ̄ia(∓m)
)

,

[

R̃ab, Π̄ic(±m)
]

=
1

2

(

εacΠib(∓m) + εbcΠia(∓m)
)

, (B.9)

[

H,Πia(±m)
]

= ± m

2
Πia(±m),

[

H, Π̄ia(±m)
]

= ∓ m

2
Π̄ia(±m),

[

T±,Πia(∓m)
]

= ±mΠia(±m),
[

T±, Π̄ia(∓m)
]

= ∓m Π̄ia(±m),

[

U,Πia(±m)
]

= − 1

2
Πia(±m),

[

U, Π̄ia(±m)
]

=
1

2
Π̄ia(±m),

[

U (ab),Πic(±m)
]

= − 1

2

(

εacΠ̄ib(∓m) + εbcΠ̄ia(∓m)
)

,

[

U (ab), Π̄ic(±m)
]

=
1

2

(

εacΠib(∓m) + εbcΠia(∓m)
)

. (B.10)

Thus, the deformed supercharges Πia(m), Π̄jb(m) generate the su(2|2) superalgebra (2.4)

with central chargesH = H+mU and C = 0.8 Hence, the supercharges Πia(−m), Π̄jb(−m)

also form a su(2|2) superalgebra, but with the opposite-sign deformation parameter −m.

The closure of these two su(2|2) superalgebras yields the whole superconformal algebra

osp(4∗|4). In this embedding, the subgroup SO(5) contains the subgroup SU(2)R from

SU(2|2), i.e. SU(2)R ⊂ SO(5). Switching SU(2)R ↔ SU(2)L in SU(2|2), one can consider

the embedding where SU(2)L ⊂ SO(5).

B.2 Superconformal properties of the multiplet (3, 8, 5)

The component fields of (3.6) can be rewritten in a complex notation as

ξia =
1√
2

(

ψ̄ia e
− i

2
mt − ψia e

i
2
mt

)

, ξ̂ia =
i√
2

(

ψ̄ia e
− i

2
mt + ψia e

i
2
mt

)

,

A0 = − i

2

(

Aeimt + Ā e−imt
)

, C0 =
1

2

(

Aeimt − Ā e−imt
)

. (B.11)

Then the Lagrangian (3.19) is rewritten as

Lconf.
(3,8,5) =

1

2|v|

[

v̇ij v̇
ij +

i

2

(

ψia
˙̄ψia − ψ̇iaψ̄

ia
)

+
i

|v|2 ψ
(i
a ψ̄

j)avikv̇
k
j + 2AĀ− 1

4
CabCab

+
vij

2|v|2
(

iψa
i ψ̄

b
j Cab + iψiaψ

a
j Ā+ iψ̄iaψ̄

a
j A− 2µψiaψ̄

a
j

)

−
3v(ijvkl)

8|v|4 ψa
i ψja ψ̄

b
kψ̄lb

+ µ2 −m2vijv
ij

]

−
iµ v̇ij

(

cki vjk + ckj vik

)

|v| (|v|+ cijvij)
. (B.12)

8As discussed, any N=8, d=1 superconformal symmetry cannot be realized on the multiplet (4,8,4)

which has C 6= 0.
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The relevant transformations (3.8) leaving this Lagrangian invariant (modulo a total deriva-

tive), become

δvij = − ηa(jψ̄i)a e
− i

2
mt + η̄a(jψi)a e

i
2
mt,

δψia =
(

2iηjav̇ij − 2mηjavij − iηbiCab + 2µ ηia

)

e−
i
2
mt + 2iη̄iaAe

i
2
mt,

δψ̄ia = −
(

2iη̄jav̇ij + 2mη̄javij + iη̄biCab + 2µ η̄ia

)

e
i
2
mt − 2iηiaĀ e−

i
2
mt,

δCab = 2ηi(b

[

˙̄ψi
a) +

i

2
mψ̄i

a)

]

e−
i
2
mt + 2η̄i(b

[

ψ̇i
a) −

i

2
mψi

a)

]

e
i
2
mt,

δA = − ηia
(

ψ̇ia +
i

2
mψia

)

e−
i
2
mt, δĀ = η̄ia

(

˙̄ψia −
i

2
mψ̄ia

)

e
i
2
mt. (B.13)

Exploiting the property that the Lagrangian (B.12) depends only on m2, we can define

additional SU(2|2) transformations with m → −m:

δ′vij = − η′a(jψ̄i)a e
i
2
mt + η̄′a(jψi)a e

− i
2
mt,

δ′ψia =
(

2iη′ja v̇ij + 2mη′ja vij − iη′bi Cab + 2µ η′ia

)

e
i
2
mt + 2iη̄′iaAe−

i
2
mt,

δ′ψ̄ia = −
(

2iη̄′ja v̇ij − 2mη̄′ja vij + iη̄′bi Cab + 2µ η̄′ia

)

e−
i
2
mt − 2iη′iaĀ e

i
2
mt,

δ′Cab = 2η′i(b

[

˙̄ψi
a) −

i

2
mψ̄i

a)

]

e
i
2
mt + 2η̄′i(b

[

ψ̇i
a) +

i

2
mψi

a)

]

e−
i
2
mt,

δ′A = − η′ia
(

ψ̇ia −
i

2
mψia

)

e
i
2
mt, δ′Ā = η̄′ia

(

˙̄ψia +
i

2
mψ̄ia

)

e−
i
2
mt. (B.14)

The closure of these two types of SU(2|2) transformations gives a trigonometric realization

of the full superconformal symmetry OSp(4∗|4). Thus, the Lagrangian (B.12) is supercon-

formal and is recognized as a deformation of the parabolic Lagrangian given in [31] by the

oscillator mass term ∼ m2.

B.3 Superconformal properties of the multiplet (5, 8, 3)

Redefining component fields in (5.6) as

z → ze−imt, z̄ → z̄eimt, Bab → Bab ,

ψia → ψia e
− i

2
mt, ψ̄ia → ψ̄ia e

i
2
mt, (B.15)

we cast their SU(2|2) transformations into the form

δz = −
√
2 ηiaψia e

i
2
mt, δz̄ =

√
2 η̄iaψ̄ia e

− i
2
mt, δvij = − ηa(jψ̄i)a e

i
2
mt + η̄a(jψi)a e

− i
2
mt,

δψia =
(

2iηjav̇ij − 2mηjavij −
√
2 ηbiBab

)

e
i
2
mt +

√
2 η̄ia (iż +mz) e−

i
2
mt,

δψ̄ia =
(

− 2iη̄jav̇ij − 2mη̄javij −
√
2 η̄biBab

)

e−
i
2
mt −

√
2 ηia (i ˙̄z −mz̄) e

i
2
mt,

δBab =
√
2 ηi(b

[

i ˙̄ψi
a) −

3m

2
ψ̄i
a)

]

e
i
2
mt +

√
2 η̄i(b

[

iψ̇i
a) +

3m

2
ψi
a)

]

e−
i
2
mt. (B.16)
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Making the change m → −m in these transformations, we define additional SU(2|2) trans-
formations. In the same way as in the previous case, the two types of SU(2|2) transforma-

tions close on the superconformal symmetry OSp(4∗|4) in the trigonometric realization.

Superconformal Lagrangian admits construction in terms of SU(2|1) superfields corre-
sponding to the multiplets (2,4,2) and (3,4,1) as SU(1, 1|2) ⊂ OSp(4∗|4) superconformal

trigonometric Lagrangian. Superfield Lagrangian satisfying (5.15) is given by

Lconf.
(5,8,3) =

∫

d2θ d2θ̄
(

1 + 2mθ̄kθk

)

log

(

√

VijV ij +
√

VijV ij +ΦΦ̄

)

√

VijV ij
. (B.17)

In contrast to section 5.3, the chiral SU(2|1) superfield Φ describing the multiplet (2,4,2)

has a central charge9 b = −1 [18]. By analogy with (B.12) and previously constructed

trigonometric superconformal Lagrangians [18, 57], the relevant (5,8,3) superconformal

Lagrangian is a deformation of the parabolic superconformal Lagrangian [29, 31] by oscil-

lator term. The bosonic truncation of superconformal Lagrangian reads

Lconf.
(5,8,3) |bos =

(

vijv
ij + zz̄

)−3/2
[

˙̄zż + v̇ij v̇
ij +

1

2
BabBab −m2

(

vijv
ij + zz̄

)

]

. (B.18)

One can see that this Lagrangian is SO(5) × SU(2) invariant, where dynamical bosonic

fields form SO(5) vector and auxiliary fields are combined into SU(2) triplet.

C The multiplet (3, 4, 1)

We briefly consider the multiplet (3,4,1) described by the superfield V ij in the framework

of the SU(2|1) superspace [16]. It satisfies the SU(2|1) covariant constraints

D(kV ij) = D̄(kV ij) = 0 ,
(

V ij
)†

= Vij , V ij ≡ V ji, (C.1)

where SU(2|1) covariant derivatives are

Di =

[

1+mθ̄kθk −
3m2

4

(

θ̄kθk

)2
]

∂

∂θi
−mθ̄iθj

∂

∂θj
− iθ̄i∂t +mθ̄iF̃ −mθ̄j

(

1−mθ̄kθk

)

Ĩij ,

D̄j = −
[

1+mθ̄kθk−
3m2

4

(

θ̄kθk

)2
]

∂

∂θ̄j
+mθ̄kθj

∂

∂θ̄k
+iθj∂t−mθjF̃+mθk

(

1−mθ̄lθl

)

Ĩkj .

(C.2)

The solution is given by

V ij =

[

1 +mθ̄kθk −m2
(

θ̄kθk

)2
]

vij + θ(iχj) + θ̄(iχ̄j) − iθ̄(iθj)A

− i
[

θ̄(iθk + θ̄kθ
(i
]

v̇j)k − iθ̄kθk

[

θ(iχ̇j) − θ̄(i ˙̄χj)
]

+
1

2

(

θ̄kθk

)2
v̈ij ,

(vij) = vij , (χi) = χ̄i , (B) = B. (C.3)

9The central charge b is related to a scaling dimension parameter as b = −λD where λd=1 for the

multiplet (5,8,3) [38]. Thus, we have that b = −1.
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The superfield V ij has the following passive transformations

δV ij = −m
(

1+mθ̄lθl

)[(

ǫkθ̄
k+ǭkθk

)

V ij−
(

ǫkθ̄
i+ǭiθk

)

V kj−
(

ǫkθ̄
j+ǭjθk

)

V ik
]

, (C.4)

and its component fields transform as

δvij = − ǫ(iχj) − ǭ(iχ̄j), δA = ǫkχ̇
k − ǭk ˙̄χk + im

(

ǫkχ
k + ǭkχ̄k

)

,

δχ̄j = − 2iǫkv̇kj + iǫjA+ 2mǫkvkj , δχi = − 2iǭkv̇
ik − iǭiA− 2m ǭkv

ik. (C.5)

The general σ-model action for the SU(2|1) multiplet (3,4,1) is constructed as

S(3,4,1) =

∫

dtL = − 1

6

∫

dt d2θ d2θ̄
(

1 + 2mθ̄kθk

)

L
(

V 2
)

, V 2 = VijV
ij , (C.6)

where dt d2θ d2θ̄
(

1 + 2mθ̄kθk
)

is a SU(2|1) invariant measure. The simplest free La-

grangian corresponding to the choice L = V 2 reads

Lfree
(3,4,1) = v̇ij v̇

ij +
i

2

(

χ̄iχ̇
i − ˙̄χiχ

i
)

+mχiχ̄i −m2vijv
ij +

A2

2
. (C.7)

After eliminating the auxiliary field A, this Lagrangian can be viewed as an abelian reduc-

tion of the mass-deformed N=4 matrix models of type I [47]. Recently, in [48], the SU(2|1)
multiplet (3,4,1) was used at the component level for the description of a new class of

N=4 supersymmetric massive quiver matrix models. The component Lagrangian (C.7)

corresponds to the simplest case of one node without arrows and with a U(1) gauge group.
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