
KAVUAKA: A Low-Power
Application-Specific Processor

Architecture for Digital Hearing Aids

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor-Ingenieur

(abgekürzt: Dr.-Ing.)
genehmigte Dissertation

von Herrn
Dipl.-Ing. Lukas Gerlach

geboren am 12. Januar 1988
in Duisburg, Deutschland

2021

1. Referent: apl. Prof. Dr.-Ing. Guillermo Payá Vayá
2. Referent: Prof. Dr.-Ing. Alberto García-Ortiz

Tag der Promotion: 09.03.2021

Preface

This dissertation was written while I was working as a research associate at the Institute of
Microelectronic Systems (IMS) of the Gottfried Wilhelm Leibniz Universität Hannover.

First of all, I would like to thank apl. Prof. Dr.-Ing. Guillermo Payá Vayá and Prof. Dr.-
Ing. Holger Blume for kindly providing me with the topic, the professional and scientific
support as well as the successful cooperation in various projects around the topic of hearing
aid processors. I would also like to thank Prof. Dr.-Ing. Alberto García-Ortiz for his interest
in the work and for taking on the role of 2nd examiner.

I would like to thank my colleagues and the students for the friendly cooperation at the in-
stitute. For the intensive cooperation I especially thank M. Sc. Christopher Seifert, M. Sc.
Florian Giesemann, Dipl.-Ing. Julian Hartig, M. Sc. Tobias Stuckenberg, M. Sc. Fabian
Stuckmann, M. Sc. Gia Bao Thieu, M. Sc. Fritz Webering and M. Sc. Moritz Weißbrich. I
would like to thank Dipl.-Ing. Marc-Nils Wahalla and M. Sc. Jens Karrenbauer for the hard
work of proofreading and helpful discussions.

The biggest thanks go to my parents and brothers. Thank you very much for the longtime
support and encouraging words during my time as a research associate. Furthermore, I would
like to thank my friends and relatives for their loving and diverse support.

Hannover, March 2021

Lukas Gerlach

iii

Abstract

The power consumption of digital hearing aids is very restricted due to their small physical
size and the available hardware resources for signal processing are limited. However, there
is a demand for more processing performance to make future hearing aids more useful and
smarter. Future hearing aids should be able to detect, localize, and recognize target speakers
in complex acoustic environments to further improve the speech intelligibility of the individual
hearing aid user. Computationally intensive algorithms are required for this task. To maintain
acceptable battery life, the hearing aid processing architecture must be highly optimized for
extremely low-power consumption and high processing performance.

The integration of application-specific instruction-set processors (ASIPs) into hearing aids en-
ables a wide range of architectural customizations to meet the stringent power consumption
and performance requirements. In this thesis, the application-specific hearing aid processor
KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid
algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech
recognition. Specialized and application-specific instructions are designed and added to the
baseline instruction set architecture (ISA). Among the major contributions are a multiply-
accumulate (MAC) unit for real- and complex-valued numbers, architectures for power re-
duction during register accesses, co-processors and a low-latency audio interface. With the
proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the com-
putation of a 128-point fast Fourier transform (FFT) compared to related programmable digital
signal processors. The power consumption during register file accesses is decreased by 6 %
to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %
lower compared to related audio interfaces for frame size of 64 samples.

The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-
processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-
power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains
individual customizations and hardware features with a varying datapath width between 24-bit
to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors
are organized in two clusters that share memory, an audio interface, co-processors and serial
interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC
and 0.6 mW for the 64-bit processor.

Case studies with four reference hearing aid algorithms are used to present and evaluate the
proposed hardware architectures and optimizations. The program code for each processor and
co-processor is generated and optimized with evolutionary algorithms for operation merging,
instruction scheduling and register allocation. The KAVUAKA processor architecture is com-
pared to related processor architectures in terms of processing performance, average power
consumption, and silicon area requirements.

Key words: hearing aid, processor, ASIP, ASIC, low-power, system-on-chip

iv

Kurzfassung

Die Leistungsaufnahme von digitalen Hörgeräten ist aufgrund ihrer kleinen physikalischen
Bauformen sehr begrenzt und die Hardware-Ressourcen für die Signalverarbeitung sind limi-
tiert. Es besteht jedoch ein Bedarf an mehr Rechenleistung, um zukünftige Hörgeräte nutzbrin-
gender und intelligenter zu machen. Zukünftige Hörgeräte sollen in der Lage sein, Sprecher
und Sprecherinnen in komplexen akustischen Umgebungen zu orten, zu lokalisieren und zu
erkennen, um das Sprachverstehen des einzelnen Hörgeräteträger und Hörgeräteträgerinnen
weiter zu verbessern. Für diese Aufgabe sind rechnerisch komplexe Algorithmen erforderlich.
Um eine akzeptable Batterielebensdauer zu erreichen, muss die Architektur der Hörgerätes-
ignalverarbeitung für extrem niedrigen Stromverbrauch und hohe Rechenleistung optimiert
sein.

Die Integration eines Prozessors mit anwendungsspezifischem Befehlssatz (ASIP) in Hörg-
eräten ermöglicht eine Vielzahl von Anpassungsmöglichkeiten der Architektur, um die stren-
gen Anforderungen an Stromverbrauch und Leistung zu erfüllen. In dieser Arbeit wird der
anwendungsspezifische Hörgeräteprozessor KAVUAKA vorgestellt, der mit Referenz-Hörg-
erätealgorithmen wie Sprecherlokalisierung, Rauschunterdrückung, Beamformer und Sprach-
erkennung angepasst und optimiert wird. Spezialisierte und anwendungsspezifische Instruk-
tionen werden entworfen und dem Basisbefehlssatz hinzugefügt. Zu den wichtigsten Anpas-
sungen gehören eine MAC-Einheit für reelle und komplexwertige Datentypen, Architekturen
zur Verlustleistungsreduzierung bei Registerzugriffen, Co-Prozessoren und eine Audioschnitt-
stelle mit niedriger Audio-Latenz. Mit der vorgeschlagenen MAC-Architektur benötigt der
KAVUAKA Prozessor 16 % weniger Zyklen für die Berechnung einer 128-Punkt schnellen
Fourier-Transformation im Vergleich zu verwandten programmierbaren digitalen Signalproz-
essoren. Der Stromverbrauch bei Registerdateizugriffen wird durch Isolations- und Bypass-
Techniken um 6 % bis 17 % verringert. Die hardwareseitige Audiolatenz ist 34 % niedriger im
Vergleich zu verwandten Audioschnittstellen bei einer Fenstergröße von 64 Samples.

Das finale Hörgeräte System-on-chip (SoC) mit vier KAVUAKA Prozessorkernen und zehn
Co-Prozessoren ist als ASIC unter Verwendung einer 40 nm Low-Power-Technologie integri-
ert worden. Die Chip-Größe beträgt 3.6 mm2. Jeder dieser Prozessoren und Co-Prozessoren
enthält individuelle Anpassungen, Hardware-Features und die Datenpfadbreite variiert zwis-
chen 24-bit to 64-bit. Die Fläche der 64-bit-Prozessorkonfiguration beträgt 0.134 mm2. Die
Prozessoren sind in zwei Clustern organisiert, die sich Speicher, eine Audioschnittstelle, Co-
Prozessoren und serielle Schnittstellen teilen. Die durchschnittliche Leistungsaufnahme bei
einer Taktfrequenz von 10 MHz beträgt 2.4 mW für das SoC und 0.6 mW für den 64-bit
Prozessor.

Fallstudien mit vier Referenz-Hörgerätealgorithmen werden verwendet, um die vorgeschlage-
nen Hardware-Architekturen und Optimierungen herauszustellen und zu bewerten. Der Pro-
grammcode für jeden Prozessor und Co-Prozessor wird mit evolutionären Algorithmen für die

v

Zusammenführung von Operationen, den Befehlsablauf und die Registerzuweisung generiert
und optimiert. Die Prozessorarchitektur von KAVUAKA wird mit verwandten Prozessorar-
chitekturen im Hinblick auf die Rechenleistung, den durchschnittlichen Stromverbrauch und
den Siliziumflächenbedarf verglichen.

Schlagworte: Hörgerät, Prozessor, ASIP, ASIC, stromsparend, System-on-Chip

vi

Contents

Preface . iii
Abstract . iv
Kurzfassung . v
Contents . viii
Abbreviations . xiii

1 Introduction 1
1.1 Objectives . 2
1.2 Overview . 4

2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids 5
2.1 State-of-the-Art Algorithms for Hearing Aid Devices 7
2.2 State-of-the-Art Hearing Aid Processor Architectures 8

2.2.1 Hard-Wired Architectures . 11
2.2.2 Application-Specific Instruction-Set Processors 11
2.2.3 ASIPs with Hardware Accelerators 12

3 The KAVUAKA Hearing Aid Processor 15
3.1 Baseline Processor Architecture . 15

3.1.1 Related ASIP Architectures . 16
3.1.2 Baseline Instruction-Set Architecture 17

3.2 Specialization Towards Performance . 22
3.2.1 Real- and Complex-Valued Multiply-Accumulate Functional Unit . . 23
3.2.2 Efficient Emulation of Floating-Point Arithmetic 36
3.2.3 Tightly Coupled Co-Processors . 50
3.2.4 Operation Merging Extensions . 61
3.2.5 Issue-Slot Based Predication Encoding Technique 65

3.3 Specialization Towards Low-Power . 78
3.3.1 Configurable Datapath Width . 79
3.3.2 Dummy Register and Register Address Isolation 89
3.3.3 Low-Level Low-Power Optimization Techniques 95

3.4 Low-Power Interfaces and Connectivity . 103
3.4.1 A Low Latency Multichannel Audio Interface 103

vii

3.4.2 A Serial Interface with Special DMA Capabilities 117
3.5 Hearing Aid System-on-Chip ASIC . 120

4 Operation Merging, Instruction Scheduling and Register Allocation 129
4.1 Operation Merging . 131
4.2 Instruction Scheduling . 133

4.2.1 Issue-Slot Based Predication Register Allocation 135
4.2.2 Towards Power-Aware Instruction Scheduling 137

4.3 Register Allocation . 138
4.3.1 Power-Aware Register Allocation 141

5 Evaluation and Design Space Exploration 147
5.1 Case Study: Beamforming Algorithms . 147
5.2 Case Study: Speech Enhancement . 162
5.3 Case Study: Speaker Localization . 166
5.4 Case Study: Speech Recognition . 175
5.5 Comparison to Other Related Hearing Aids 179

5.5.1 ASIC Technology and Supply Voltage 179
5.5.2 Power Consumption . 182
5.5.3 Circuit Area . 183
5.5.4 Operating Clock Frequency . 184
5.5.5 Audio Datapath Width . 185
5.5.6 On-Chip Memory . 185

6 Conclusion 189

References 193

List of the Author’s Publications 217

viii

Abbreviations

ADC analog-to-digital converter. 6, 79, 86, 98, 103, 107–109, 122, 124, 125, 167, 180, 183,
185

ADM adaptive directional microphone. 7, 9

AFB analysis filter bank. 7, 8, 11, 13

AFE analog front end. 12, 16, 103, 179–184

AGC automatic gain control. 183

ALU arithmetic logic unit. 18, 61, 80, 166

ASIC application-specific integrated circuit. iv–vi, 3, 4, 8, 11, 12, 16, 21, 36, 39, 57, 59, 60,
68, 72, 81, 83, 90, 96–100, 117, 120, 122, 124–127, 137, 143, 152, 158, 175, 179–181,
185, 191

ASIP application-specific instruction-set processor. iv, vi, 2–5, 7, 10–12, 15–17, 97, 104,
137, 141, 148, 157, 160, 179–186, 189–191

BCLK bit clock. 109, 125

BMF beamforming. 7, 9

CFU custom function unit. 25

CFX coolflux dsp. 17, 35

CLZ count leading zeros. 38

CMAC complex-valued multiply-accumulate. 26, 27, 29, 30, 32, 34–36, 96, 122, 172, 173

CMOS complementary metal-oxide-semiconductor. 16, 179, 181

CMUL complex-valued multiply. 27

CNN convolutional neural networks. 12, 13, 187

CORDIC coordinate rotation digital computer. 3, 25, 50–60, 78, 101, 102, 119–121, 124,
157, 158, 160, 161, 164–167, 173, 174, 176, 178

CP co-processor. iv, 2, 3, 12, 15, 18, 20, 22, 50–53, 55–60, 78, 120–122, 124–126, 157, 158,
160, 161, 164–167, 170, 173, 174, 178, 190, 191

ix

CPU central processing unit. 50

CR condition read. 135, 136

CS condition set. 135, 136

DAC digital-to-analog converter. 6, 12, 103, 107–109, 122, 124, 125, 180, 185

DCU division co-processor unit. 22, 23

DDG data dependency graph. 133–136

DE instruction decode. 17, 20, 61, 97, 99, 100

DFT discrete fourier transform. 34

DIT decimation in time. 34

DLP data-level parallelism. 79, 80

DMA direct memory access. 18, 104–107, 114–120, 122, 124, 190

DMEM data memory. 20, 66, 101, 119

DNN deep neural network. 87, 101, 102, 175–179, 191

DRC dynamic range compression. 7, 9

DSP digital signal processor. iv, 2, 11–13, 16, 17, 23–25, 34, 38, 39, 44, 56, 68, 92, 104, 106,
107, 110, 117, 118, 157, 160, 166, 182, 187, 189, 190

EA evolutionary algorithm. 3, 130–135, 137, 138, 140, 141, 190

EX execution. 17, 20, 92, 97–100

FBC feedback cancellation. 7–9, 12, 13

FFT fast Fourier transform. iv, 12, 13, 16, 24–26, 28, 32, 34, 35, 46, 48, 49, 62, 64, 75, 84,
86–88, 101, 102, 123, 163, 165, 170, 172–176, 187, 189

FIFO first in first out. 105, 106, 109–118, 122, 124, 190

FIR finite impulse response. 12, 13, 16, 24, 25, 44, 46, 47, 72, 74, 84, 86–89, 102, 150, 182

FIREG file indirect register. 17, 18, 62, 65, 85, 101, 179

FLIX flexible length instruction extensions. 16

FPGA field programmable gate array. 125, 127

FU functional unit. 15, 17, 18, 20, 22–25, 29, 40, 61, 71, 72, 79, 91, 92, 95–97, 121, 129,
172, 173, 185

x

GMM gaussian mixture model. 166, 167, 169, 170, 174, 185

GSC generalized sidelobe canceller. 84, 87, 89, 90, 102

GTFB gammatone filter bank. 167, 168, 170–173

HDL hardware description language. 15

HFPM hybrid floating-point hardware modules. 39

HVT high threshold voltage. 21, 36, 57, 59, 60, 81, 83, 90, 96, 97, 99, 100, 120, 143, 158,
161, 175

HW hardware. iv, 2–5, 7, 11–13, 17, 22–24, 26, 30, 32, 34, 36–40, 43, 50, 51, 53–55, 61,
62, 66, 68, 78–80, 93, 101–105, 109, 112, 114, 120, 129, 137, 147, 148, 151, 156–158,
161, 163, 166, 169–171, 175, 176, 178, 179, 184, 185, 189, 191

I/O input/output. 6, 103, 117, 124–126

I2C inter-integrated circuit. 6, 117–120, 124

I2S inter-IC sound. 103, 107, 109, 124

IC integrated circuit. 107, 117, 124

IEEE institute of electrical and electronics engineers. 38–41, 44, 47–49

IF instruction fetch. 17, 97, 99, 100

IFFT inverse fast Fourier transformation. 102, 123, 163, 165

IIR infinite impulse response. 46–48, 72–74, 84, 87–89, 102, 123, 171, 182, 187

ILD interaural level difference. 166–170, 174

ILP instruction level parallelism. 66, 70, 75

IMEM instruction memory. 118–120

IPC instructions per cycle. 3, 17, 46–49, 53, 61, 73, 75, 80, 84, 156, 157, 164, 173, 178, 190

ISA instruction set architecture. iv, 16, 67, 68, 70, 129, 137, 160, 174, 178

ISNR intelligibility-weighted signal-to-noise ratio. 151–154, 157, 159, 190

ISR interrupt service routine. 104, 118

ITD interaural time difference. 166–170, 174

LMS least mean squares. 150

LRCLK left-right clock. 109, 125

LSB least significant bit. 62, 63, 66, 86

xi

LUT lookup table. 25, 50, 51, 120, 174

MAC multiply-accumulate. iv, v, 12, 13, 17, 18, 23–28, 30, 32, 34–36, 38, 61, 62, 98, 120–
122, 160, 161, 166, 171, 174, 176–179, 185, 189

MI micro-instruction. 17, 129, 132–135

MIMD multiple instruction, multiple data. 80

MO micro-operation. 17, 19, 61, 129, 131–135, 138, 164, 165

MSB most significant bit. 86

MUL multiply. 18, 26, 27, 29, 30, 36, 177, 178

MV move. 61, 62, 65, 67, 178, 179

NOP no operation. 20, 66, 75, 101, 112, 113, 124, 138, 139

NR noise reduction. 7–9, 11–13, 54, 55, 60

NT neural transduction. 170

OLSA Oldenburger Satztest. 151

PCB printed circuit board. 125, 127

PDM pulse density modulation. 107, 183

PESQ perceptual evaluation of speech quality. 3, 151–154, 157, 159

PGA programmable gain amplifier. 12, 180, 183

QFN quad flat no leads package. 125

RA register access. 17, 20, 97

RAM random-access memory. 187

REGA register allocation. 135, 140

RF register file. iv, 15–18, 20, 21, 25, 30, 61–63, 68, 69, 72, 80, 89–94, 97, 98, 129, 138,
140, 141, 144, 145, 156–158, 160, 161, 174, 175, 190

RISC reduced instruction-set computer. 16, 24, 38, 44, 160

ROM read-only memory. 12, 187

RTL register-transfer level. 112

SCL serial clock. 125

xii

SDA serial data. 125

SDATA serial data. 125

SE speech enhancement. 9, 185

SFB synthesis filter bank. 7, 8, 11

SIMD single instruction, multiple data. 3, 15–18, 20, 22–30, 32–37, 39–46, 51, 53–55, 57,
59–61, 70–73, 79–86, 88, 102, 104–109, 111–113, 122, 124, 137, 156, 157, 160, 170,
173, 174, 177–179, 185, 189, 190

SLM straight line microcode. 66, 91, 129, 131–135, 137, 140, 164, 165

SNR signal-to-noise ratio. 3, 7, 9, 147, 163, 182, 185

SoC system-on-chip. iv, v, 3, 15–17, 101, 120, 122, 124–126, 137, 138, 141, 143, 180, 183,
191

SP single precision floating-point. 56

SR speech recognition. 9, 185

SRAM static random-access memory. 12, 17, 65, 66, 68, 83, 118, 120, 122, 124–126, 185,
187

SSL sound source localization. 9, 191

STOI short-time objective intelligibility. 147, 151–154, 157, 159, 185

SW software. 54, 71, 101, 102, 158, 164, 167, 173

TDM time-division multiplexing. 107, 109

TSMC taiwan semiconductor manufacturing company. 16, 17, 21, 36, 57, 59, 60, 72, 81, 83,
90, 96, 97, 99, 100, 120, 143, 158, 161, 175

TTA transport-triggered architecture. 175, 191

VAD voice activity detector. 9

VLIW very long instruction word. 3, 15–18, 22, 24, 34, 38, 39, 43, 44, 53, 55, 61, 65, 68–70,
91, 92, 104, 123, 129, 160, 175, 178, 190

VU vector unit. 17, 18, 20, 120

WB write back. 17, 20, 97

WDRC wide dynamic range compression. 11, 13

X2 operation merging. 17, 18, 20, 21, 61–66, 72, 92, 96, 120, 122, 129–132, 140, 164, 166

XML extensible markup language. 129

xiii

1 Introduction

According to the World Health Organization [1], approximately 466 million people world-
wide, about 5 % of the world’s population, suffer from disabling hearing loss. It is estimated
that this number will rise to over 900 million people by 2050. An even larger group of people
(15 %) is affected by mild or moderate hearing loss [2]. There are many causes of hearing loss.
These include genetic causes, diseases, drugs, infections, injuries, excessive noise exposure
or aging. The consequences of hearing loss are manifold. Major consequences are reduced
communication skills and related social and emotional burdens, disorders in the speech devel-
opment of children, and economic impacts, especially for developing countries [3].

Certain effects and consequences of a hearing loss can be reduced with modern hearing aids
by improving general hearing and speech intelligibility through digital signal processing. Al-
though a large number of hearing impaired people would benefit from the use of hearing aids,
only about 10 % of the global need is covered by current manufacturing and service sup-
ply [3]. New processors and algorithms are essential to make current hearing devices more
affordable and to increase their benefits. However, the small physical size of hearing aids and
battery operation limit the digital and advanced signal processing. Due to new findings from
research and continuous technological developments, the signal processors of digital hearing
aid systems are becoming increasingly powerful, smaller and more energy efficient [4]. This
enables the use of novel and computationally intensive signal processing algorithms that im-
prove speech intelligibility especially in complex acoustic scenarios, like in a cafeteria. For
example, future hearing aids will be able to recognize speaking people in the environment and
filter out the relevant speakers from the background noise.

Future and present hearing aid processors must meet various requirements:

• Low-power consumption for an acceptable battery life.

• High processing performance for computationally intensive and advanced algorithms.

• Small physical size for user preferences and physical design requirements.

• High programming flexibility to achieve short innovation cycles and to reduce manu-
facturing costs.

• Low audio delay for an acceptable synchronicity of audio-visual perception.

• etc.

1

1 Introduction

The power consumption of hearing aids is limited due to small battery sizes [5]. Despite
advances in semiconductor technology, the power consumption of the hearing aid’s signal
processing system is crucial, as there is the trend for more computationally intensive algo-
rithms [5]. A challenging task for future hearing aids will be binaural signal processing, e.g.,
detect, localize and identify target speakers in complex acoustic environments [6]. Another
example of an advanced algorithm is given in [7], where deep-learning techniques are used for
noise reduction. These algorithms require more processing performance compared to existing
algorithms, but may increase the speech intelligibility of the individual hearing aid user. In or-
der to make these algorithms applicable and to maintain an acceptable battery life, the hearing
aid processing architecture has to be optimized and customized for low-power consumption
and high processing performance.

Different processing architectures are feasible for hearing aids. Dedicated hardware solutions
have advantages in terms of energy and area efficiency, although they offer less flexibility com-
pared to programmable architectures. Digital signal processors (DSPs) are programmable, but
it is essential to reduce their power consumption by hardware customizations and optimiza-
tions. The integration of application-specific instruction-set processors (ASIPs) in hearing
aid devices is a current research topic [7–12]. Their advantages are high flexibility and pro-
grammability. However, compared to dedicated or analog hearing aids [13–15], their power
consumption is still too high. To compensate for this drawback, new customizations on the
hardware and software side are required in order to meet the stringent power consumption con-
straints and processing performance requirements. In many cases, these ASIP architectures
are optimized on different design levels and are enhanced with dedicated hardware acceler-
ators. This combination offers a good trade-off between flexibility through programmability
and efficiency in terms of processing power per watt. However, the design space is large and
the exploration of the architectures and their evaluation based on hearing aid algorithms is
challenging.

1.1 Objectives

The main objective of this thesis is a novel hardware architecture for low-power hearing aids,
which is called KAVUAKA 1. Secondary objectives are depicted in Figure 1.1. The general fo-
cus lies in the architecture of the programmable application-specific instruction-set processor
(ASIP) and the co-processors. The processor architecture is based on the Moai4k2 architec-
ture, a scalable and configurable ASIP architecture for multimedia applications [16]. In this
thesis, it is customized and optimized for hearing aid applications. To enable efficient use of
the application-specific hardware architecture, new software techniques for optimization and

1Partial results of this thesis were presented in previous publications, which are included in the List of the
Author’s Publications.

2

1.1 Objectives

software frameworks for evaluation are developed. The goal is to improve the overall effi-
ciency of hearing aid processing in terms of processing performance per watt and silicon area.
The efficiency of the KAVUAKA architecture is compared to related research and commercial
architectures.

Instruction Scheduler
• Evolutionary

Algorithms
• Power-aware

scheduling and
allocation Optimizations

• Specialization
• Parallelization
• Architecture-Level
• Gate-Level

Precision
• Fixed-Point Analysis

Power
• Dynamic
• Static

Processing Perfomance
• Cycles, IPC, etc.

Silicon Area
• Standard cells

Software Libraries
• Application-specific

optimizatios
• Evaluation tools

Processor
• Generic Arichtecture
• VLIW & SIMD

Co-Processors
• CORDIC

System-on-chip
• Research Chip

ASIC Technology
• Low-Power

Hearing Aid Algorithms
• Representative benchmarks
• Beamformer, Noise Reduction, etc.

Audio Quality
• SNR, PESQ, etc.

Hearing
Aid

ASIP

KAVUAKA

Testing Framework
• In-circuit Emulation

Design Space Exploration

Design Space Exploration

Figure 1.1: Objectives of this thesis.

Due to the ASIP-based hearing aid processor design, optimized software libraries are essen-
tial for the efficient use of available and custom hardware resources. Therefore, customized
instruction scheduler techniques are developed. The extended instruction scheduler will use
evolutionary algorithms and hardware-related information for instruction scheduling, opera-
tion merging, and register allocation. It will support new hardware features such as issue-slot
based predication and bypass register techniques for a power-aware instruction scheduling and
register allocation. In addition, optimization techniques for fixed-point and emulated floating-
point arithmetic software libraries for VLIW-SIMD processors and co-processors will be de-
veloped.

Another important part of this work is a design space exploration of the developed hardware

3

1 Introduction

and software components. Therefore, the hardware will be synthesized and manufactured us-
ing application-specific integrated circuit (ASIC) technology. The hardware customizations
will then be evaluated based on the silicon area requirements. Power consumption will be ac-
curately predicted by hardware simulations and physical measurements. Fixed-point software
models of the hearing aid algorithms will be used to evaluate the processing performance and
precision of the algorithms.

1.2 Overview

In Chapter 2 the state-of-the-art application-specific instruction-set processor (ASIP) archi-
tectures for hearing aids are introduced. Subsequently, the proposed hearing aid processor
architecture called KAVUAKA is described in detail in Chapter 3. The instruction scheduler
extensions for operation merging, instruction scheduling and register allocation are described
in Chapter 4. The evaluation and design space explorations are presented in Chapter 5. This
thesis is concluded with Chapter 6.

4

2 State-of-the-Art: Application-Specific
Processor Architectures for Hearing
Aids

Modern hearing aids, as shown in Figure 2.1, must meet a variety of technical requirements.
First of all, the power consumption of hearing aids is limited. To achieve an acceptable bat-
tery life, the average power consumption of hearing aids needs to be in the range of a few
milliwatts. The reason for the low energy budget is the small physical size of battery-powered
hearing aids. At the same time, the demand for more audio processing performance and
memory capacity is steadily growing. There are newly developed algorithms with more and
improved features and increasing demands for audio quality. In addition, it is essential that the
hearing aids can be individually fitted by the audiologist or the hearing aid user himself, adapt
to constantly changing environmental conditions and connect wirelessly to other electronic
devices. These requirements, i.e., low-power consumption and a high degree of flexibility
and programmability, imply extensive design space explorations and trade-offs between the
optimization goals (Figure 2.3).

Figure 2.2 shows the system components and peripherals of a state-of-the-art hearing aid.
Typically, hearing aids contain a central processing unit that provides the functionality and
connects all other components such as the receiver and microphones. The design and imple-
mentation of the processor is demanding and involves numerous trade-offs due to the wide
range of requirements and design space. The implementation alternatives in a multidimen-
sional design space are shown in Figure 2.3. Different hearing aid processor architectures
and implementations have been presented in the literature. There are analog, mixed-signal or
purely digital hearing aid signal processing architectures. Some use hard-wired processing and
control circuits, others use fully programmable application-specific instruction-set processors
(ASIPs) with custom instructions and hardware accelerators.

A study [22] published in 2016 presents state-of-the-art signal processing techniques in hear-
ing aids. Among the studied algorithms are feedback reduction, directional microphones,
noise reduction, and environment recognition. Current limitations and future trends, like bin-
aural and music processing, are highlighted. Binaural processing as a future hearing aid pro-
cessing technique is also addressed in the two surveys [5, 23] from 2005 and 2009. Both
papers present the state-of-the-art, challenges and future trends of signal processing in hear-

5

2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids

Battery Compartment

Microphones

Receiver

Earhook

Telecoil Digital Signal Processor

Mechanical Switches

Programming Jack

Antenna

Protective Filter

Figure 2.1: Schematic view and photograph of a behind-the-ear (BTE) hearing aid [17, 18].

ADC

ADC

Signal
Processing

Receiver

I2C
SPI

UART
Power Supply
Sensors

GPI/O

Wireless
Connection

Antenna

Push button

Volume Control

Fitting
Connector

Custom
Interface

Microphone

Microphone

Power
Management

Clock
Management

Security

Shared
Memory

Interrupts

Timer

DAC

Memories

Figure 2.2: System components and peripherals of a state-of-the-art hearing aid [19, 20].

6

2.1 State-of-the-Art Algorithms for Hearing Aid Devices

Technology
Requirements

Design
Effort

Latency
Implementation
Alternatives

Testability

Power Consumption
Performance

Time-to-
Market

Connectivity

Audio Quality

Flexibility

Silicon
Area

Figure 2.3: Implementation alternatives in a multi-dimensional design space [21].

ing aids. Physiological requirements due to hearing impairment are described as well as the
different audio processing methods such as directional microphones, noise reduction, acous-
tic feedback suppression, classification, and compression. No related work focuses on the
hardware perspective. Only little information is given about hardware architectures and cir-
cuit implementation and the different design methods. This chapter gives an overview of the
current processor architectures. A particular focus is on application-specific instruction-set
processors (ASIPs).

This chapter is structured as follows: Section 2.1 contains a list of algorithms implemented
on the hearing aid processors that are part of this overview. The hearing aid processors are
described in detail in Section 2.2. The differences between the architectures of hard-wired,
ASIP-based and heterogeneous (ASIP-based with accelerators) hearing aid processors are dis-
cussed.

2.1 State-of-the-Art Algorithms for Hearing Aid Devices

A typical high-end hearing aid processing is shown as a block diagram in Figure 2.4. Mul-
tiple microphones enable directional filtering. Therefore, beamforming (BMF) and adaptive
directional microphone (ADM) algorithms are the first in the chain and aim to increase the
signal-to-noise ratio (SNR) by performing directional filtering. Feedback is then suppressed
with a feedback cancellation (FBC) algorithm by analyzing the output signal and detecting
feedback loops. The algorithms that process frequency domain data, such as the noise reduc-
tion (NR) and dynamic range compression (DRC) algorithms, require an analysis filter bank
(AFB) and a synthesis filter bank (SFB). Classification algorithms generally generate control
signals for the processing chain. A list of typical algorithms is included in Table 2.1. This list
contains exclusively algorithms that are part of a processing chain in state-of-the-art hearing
aid processors from literature and commercial products. Publications with the implementation,
optimization and application of these algorithms are included in Table 2.1. There is a trend
towards algorithms, that are computationally more demanding. In the last years, algorithms

7

2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids

for machine learning and deep learning [24–26] and binaural processing algorithms [27] have
been used. Recently proposed algorithms of this type [28–30], that have not yet been imple-
mented on a hearing aid, are not listed in Table 2.1.

Wireless data exchange with
other hearing aid

Knowledge

Algorithm/
parameter
selection

Control
System

N
oi

se
re

du
ct

io
n

Feedback
cancellation

Directional
microphone

/omni-
directional

Situation

Knowledge

Classification
algorithm

Classification
system

Feature
extraction

A
na

ly
si

s
fil

te
rb

an
k

Sy
nt

he
si

s
fil

te
rb

an
k

A
m

pl
ifi

ca
tio

n
(i

nc
l.

dy
na

m
ic

co
m

pr
es

si
on

)

Figure 2.4: Simplified block diagram of the signal processing chain of state-of-the-art high-
end digital hearing aids [5, 31].

2.2 State-of-the-Art Hearing Aid Processor Architectures

In the literature, various hearing aid processors have been proposed over the last decades. All
hearing aid processors are subject to similarly stringent requirements with respect to limited
energy budget, available chip area, and performance requirements. However, a wide range
of different architectures, algorithms, approaches, and technologies have been introduced and
used to meet these stringent requirements. 30 research and commercial processors published
between 1996 and 2020 are listed in Table 2.2. This table provides a comparison of the ar-
chitecture, ASIC technology, supply voltage, average power consumption, silicon area, and
operating clock frequency of the various hearing aid systems.

The processor architectures are designed and optimized to efficiently execute particular hear-
ing aid algorithms listed in Table 2.1. The architectures of these processors can be grouped

8

2.2 State-of-the-Art Hearing Aid Processor Architectures

Table 2.1: List of hearing aid algorithms implemented on related hearing aid processors.

Application in a
Year Publication Class hearing aid processor

1982 [32] Beamforming (BMF) [8, 33]

1984 [34] Speech enhancement (SE) [11]

1985 [35] Noise reduction (NR) [19]

1995 [36] Noise reduction (NR) [8]

1996 [37] Speech enhancement (SE) [8]

1997 [38] Voice activity detector (VAD) [39]

1997 [40] Feedback cancellation (FBC) [41]

1999 [42] Feedback cancellation (FBC) [19, 43]

2001 [44] Adaptive directional microphone (ADM) [45]

2001 [46] Digital filter [13, 15, 39, 47–49]

2001 [50] Noise reduction (NR) [11]

2002 [51] Adaptive SNR Monitor [49]

2002 [52] Voice activity detector (VAD) [53]

2002 [54] Noise reduction (NR) [19, 41, 43]

2002 [55] Beamforming (BMF) [56]

2005 [57] Dynamic range compression (DRC) [8]

2005 [58] Speech enhancement (SE) [56]

2006 [59] Noise reduction (NR) [19, 43]

2007 [60] Noise reduction (NR) [53]

2008 [61] Dynamic range compression (DRC) [62]

2008 [63] Feedback cancellation (FBC) [11]

2008 [63] Dynamic range compression (DRC) [11, 19, 41, 43]

2008 [63] Adaptive directional microphone (ADM) [11]

2011 [27] Sound source localization (SSL) [56]

2013 [64] Speech enhancement (SE) [33]

2013 [65] Feedback cancellation (FBC) [8]

2016 [26] Speech enhancement (SE) [7, 12]

2017 [66] Speech enhancement (SE) [25]

2019 [24] Speech recognition (SR) [56]

9

2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids

Table 2.2: Related hearing aid processors and systems.

Proc. Analog Tech. Supply Power Area Clock
Year Publication Arch. front end [nm] [V] [mW] [mm2] [MHz]

1996 [67] hard-wired yes 1200 1.30 1.300 28.00 0.200

1997 [68, 69] ASIP yes 800 1.30 1.950 35.00 1.024

1999 [70] hard-wired yes 1200 1.40 0.100 1.10 0.640

1999 [71] ASIP no 500 1.00 0.800 28.00 2.000

2000 [72] ASIP no [73] 250 1.05 0.660 20.00 2.500

2001 [74] ASIP+accelerator no 250 1.00 0.011 5.00 0.192

2003 [13] hard-wired yes 600 1.10 0.290 12.00 2.560

2004 [14] hard-wired yes 120 1.00 0.300 7.50 0.150

2005 [45] hard-wired no 250 1.25 0.045 0.67 —

2006 [49] hard-wired no 180 0.90 0.010 0.30 0.064

2006 [47] hard-wired yes 180 0.90 0.096 2.70 0.032

2007 [48] hard-wired yes 180 0.90 0.096 3.08 0.032

2008 [15] hard-wired yes 180 0.90 0.107 3.74 0.032

2010 [62] hard-wired no 90 0.60 1.095 3.10 8.000

2011 [8] ASIP no 65 0.80 0.964 0.49 11.000

2012 [9] ASIP+accelerator no 65 0.80 1.300 3.60 10.000

2013 [39] hard-wired no 180 0.90 0.025 0.50 0.032

2013 [75] ASIP no 130 1.00 0.863 — 8.000

2014 [53] hard-wired no 90 0.60 0.083 1.53 6.000

2014 [76] hard-wired yes 130 1.00 1.600 5.24 —

2014 [43] ASIP+accelerator yes 130 1.00 0.860 9.50 8.000

2015 [19] ASIP+accelerator yes 130 1.00 1.200 9.50 8.000

2016 [10] ASIP+accelerator yes 130 1.00 1.100 9.30 8.000

2018 [20] ASIP+accelerator yes 65 1.18 0.870 — 10.240

2018 [11] ASIP+accelerator yes 130 1.00 1.100 9.30 2.000

2018 [12] ASIP+accelerator no [7] 28 0.55 4.000 9.00 50.000

2019 [41] ASIP+accelerator no 65 1.00 1.300 2.71 8.000

2019 [56] ASIP+accelerator no 40 1.10 0.600 3.60 10.000

2020 [25] ASIP+accelerator no 40 0.60 2.170 4.20 20.000

2020 [33] ASIP+accelerator no 40 0.70 1.500 0.30 10.500

10

2.2 State-of-the-Art Hearing Aid Processor Architectures

into three main classes: hard-wired with dedicated processing blocks, ASIPs, and ASIPs with
hardware accelerators.

2.2.1 Hard-Wired Architectures

In case of a hard-wired hearing aid processing architecture, all components of the hearing
aid processing chain are implemented by dedicated circuits. Their basic function is fixed
and can only be changed before manufacturing. The algorithm parameters or control signals
can be changed while the hearing aid is in operation. There are pure analog [14, 70, 76],
mixed signal [13,15,47,48,67], or pure digital [39,45,49,53,62] hardwired hearing aid signal
processing architectures.

A digital hardwired hearing aid [53] is highlighted in the following. This architecture, which
is originally proposed in 2014, is remarkable for the flexibility that the dedicated architecture
offers compared to related architectures. It comprises a core-based architecture consisting
of a memory management unit for data exchange, a control unit and an arithmetic unit for
processing. Therefore, the processing is easier to control compared to other architectures.
The authors of [53] propose a sample-based perceptual multiband noise reduction algorithm
for the design of a digital hearing aid architecture. This noise reduction algorithm is part of
the hearing processing chain. An analysis and synthesis filter bank (AFB and SFB), noise
reduction (NR) [52, 60], insertion gain (IG) and wide dynamic range compression (WDRC)
are integrated on the hearing aid chip with an average power consumption of 83.7 µW. A
90 nm ASIC technology is used and the digital core voltage is 0.6 V.

2.2.2 Application-Specific Instruction-Set Processors

Application-specific instruction-set processor (ASIP) architectures include a digital signal pro-
cessor (DSP) for signal processing [8,68,69,71,72,75]. The DSP architecture is optimized for
the typical hearing aid algorithms, therefore it is here also denoted as an application-specific
instruction-set processors (ASIPs). The target algorithms can be replaced by changing the pro-
gram code. This offers greater flexibility compared to hard-wired architectures. However, due
to the more flexible processor architecture and memory requirements, the power consumption
and silicon area requirements are higher than for hard-wired architectures. Instruction-level
and data-level optimizations improve the efficiency of signal processing. New custom instruc-
tions increase performance.

A hearing aid with a DSP for signal processing is presented in [72]. This hearing aid publica-
tion is highlighted as the authors propose a silicon flow algorithm in addition to the proposed
hearing aid chip. This flow is integrated into the chip design flow and supports accurate and
fast simulation, ASIC synthesis, optimization and verification [72]. These tools are useful for

11

2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids

managing overall complexity and reduce design time, if the underlying ASIC technology is
changed. The DSP architecture consists of a datapath with several general purpose execution
units, a complex-valued multiplier, and a controller with a program read-only memory. The
clock frequency of the DSP is reduced by increased parallelism and reduced memory accesses.
A fast Fourier transform (FFT) algorithm case study for the architecture shows how a radix-8
implementation can minimize memory accesses and increase the number of parallel opera-
tions. Over 20 operations per cycle are achieved. In addition to clock gating and low voltage
operation techniques, the authors propose to partition the datapath and the read-only memory
(ROM) of the complete architecture. The underlying concept is that there are different types
of operations that do not require the same hardware resources. This partitioning is imple-
mented for reasons of power consumption optimization and depends on the operation mode:
FFT and non-FFT. Consequently, only one of the ROMs needs to be accessed in each clock
cycle, which reduces the power consumption of the DSP by about 40 %. The DSP is embed-
ded in the hearing aid chip with the instruction read-only memorys (ROMs) and the parameter
static random-access memorys (SRAMs). The final chip consumes on average 0.66 mW at a
core voltage of 1.05 V. The analog front end including a digital-to-analog converter (DAC),
programmable gain amplifier, and a serial interface is integrated on a separate chip [73].

2.2.3 ASIPs with Hardware Accelerators

There are hearing aid processing architectures that combine ASIPs with dedicated hard-wired
accelerators. These accelerators are used for frequent, computationally intensive tasks. The
flexibility and complexity of these accelerators varies. Examples of accelerators for hearing
aids can be found in Table 2.3. The hearing aid processing task is mapped to either the ASIP
or the accelerator. The goal is to process the intensive computing task on the accelerator, while
the ASIP controls the accelerator processing [12].

In [25], an arithmetic unit with a dual MAC and butterfly unit is introduced, which can oper-
ate either in FFT-mode or in CNN-mode. By sharing hardware resources, 42 % of hardware
complexity can be saved. In [12], a streaming DSP hardware accelerator is introduced, which
can compute applications such as keyword recognition or other algorithms for classifications.
Each of the co-processors in [56] can be disabled by clock gating, however these operations
are elementary and often used in hearing aid applications. This also applies to the FIR fil-
ter accelerators presented in [9, 74]. The accelerators presented in [9–11, 19, 20, 41, 43] are
more complex and specific, because they implement complete algorithms, such as noise re-
duction (NR), feedback cancellation (FBC) in hardware. An advantage is, that the computing
efficiency is increased by the hardwired implementation. This leads to lower power consump-
tion. However, the silicon area requirement can be higher. In case of algorithm changes, it is
possible to use ASIP processing resources instead of the accelerators.

12

2.2 State-of-the-Art Hearing Aid Processor Architectures

Table 2.3: Related hardware accelerators for hearing aid systems.

Publication Accelerators

[9, 20, 74] Finite impulse response (FIR) filter accelerators
[25] Convolutional neural networks (CNN) and fast Fourier transform

(FFT) accelerators for speech enhancement
[12] Streaming DSP for voice code word detection
[56] Co-processors for hyperbolic and trigonometric functions
[33] Noise reduction (NR) accelerator
[33] Multiply-accumulate (MAC) unit accelerator
[33] Fast Fourier transform (FFT) accelerator

[9–11, 19, 20, 41, 43] Analysis filter bank (AFB) accelerator
[9–11, 19, 20, 41, 43] Noise reduction (NR) accelerator
[9–11, 19, 20, 41, 43] Feedback cancellation (FBC) accelerator
[9–11, 19, 20, 41, 43] Wide dynamic range compression (WDRC) accelerator

13

3 The KAVUAKA Hearing Aid Processor

The design, architecture and optimization of KAVUAKA hearing aid processor are described in
this section. The architecture is based on the Moai4k2 architecture, a scalable and configurable
ASIP architecture for multimedia applications [16].

Previous studies [8, 10, 19, 20, 43, 68, 74, 75, 77–80], which investigate application-specific
instruction-set processors (ASIPs) for hearing aids, presented promising results. Compared to
dedicated and hard-wired hearing aid implementations [9, 13–15, 81], ASIP implementations
offer more flexibility, while maintaining the limits of low-power consumption and processing
performance.

In this section, new architectures and design methodologies for hearing aid application-spe-
cific instruction-set processors (ASIPs) are presented and evaluated. The section starts with a
description of the baseline processor architecture (Section 3.1) and continues with subsections
on processing performance (Section 3.2) and low-power optimizations (Section 3.3). A low
latency audio interface and a serial data interface for hearing aids are presented in Section 3.4.
A hearing aid system-on-chip (SoC) implementation is described in Section 3.5.

3.1 Baseline Processor Architecture

Within the RAPANUI project [16], a design space exploration framework for application spe-
cific VLIW-SIMD processors (ASIPs) was introduced. This framework comprises a pre-built
configurable VLIW-SIMD processor architecture, which is designed and implemented using a
hardware description language (HDL). The proposed generic baseline processor architecture
can be customized in accordance with application-specific specifications and requirements,
such as processing performance, silicon area, and power consumption. Not only the integra-
tion of new user-defined operations, e.g., new functional units or co-processors, is possible, but
also fundamental changes within the architecture, e.g., changes of pipeline stages, register file,
or external bus interfaces. In addition to the processor architecture, there is a corresponding
instruction scheduler. This instruction scheduler can be quickly adapted to the given processor
configuration. This section introduces the baseline VLIW-SIMD processor architecture, the
instruction-set architecture (Section 3.1.2), and the related ASIP architectures (Section 3.1.1).

15

3 The KAVUAKA Hearing Aid Processor

3.1.1 Related ASIP Architectures

The author of [77] presents an ASIP implementation based on the Cadence Tensilica Xtensa
LX4 processor for a digital hearing aid system. The baseline ASIP architecture consists of a
32-bit RISC architecture with configurable instruction and data cache sizes. The number of
instructions executed per clock cycle in parallel (called flexible length instruction extensions
(FLIX)) is also configurable. In addition, the Xtensa framework offers the possibility to add
user-defined instructions to the instruction set architecture (ISA) using Tensilica instruction
extensions (TIE). However, the Xtensa framework has limitations when it comes to chang-
ing certain parts of the underlying LX4 processor architecture. Major changes to the pipeline
architecture, e.g., significant reduction of the pipeline levels, or the register file architecture,
e.g., changing the number of ports of the general purpose register file, and extensions of the
forwarding path are not possible. It is shown that the most efficient LX4 configuration for
processing a complex modulated filter bank [82] and a noise reduction algorithm [58] requires
several TIEs and no FLIX extensions. The silicon area requirement is 0.623 mm2 (TSMC
40 nm low-power). The processor requires 13.24 MHz for real-time processing, while it con-
sumes about 2 mW.

The authors of [19] present a fully integrated system-on-chip with a digital signal processor,
low-power accelerators, an analog front end (AFE) and a class-D amplifier (switching am-
plifier). The 24-bit DSP and the dedicated accelerators are flexible and power-efficient with
respect to the evaluated hearing aid algorithms, i.e., wide dynamic range compression, noise
reduction, and feedback cancellation. The system was fabricated using a 130 nm CMOS tech-
nology and consumes approximately 1.2 mA current at 8 MHz clock frequency with a 1 V
power supply. 0.86 mA of this current is consumed by the DSP, which is 71 % of the total
current.

The authors of [8] present a modified Silicon Hive Pearl 16-bit three issue-slot VLIW ASIP
architecture with a 32-bit datapath, 40-bit intermediate result registers, separate instruction
and data memories, fixed-point arithmetic units and user-defined instructions. The algorithms
executed are beamforming, feedback suppression, a FIR filter bank, compression and noise re-
duction. With voltage and frequency scaling, the processor requires 0.964 mW average power
and a silicon area of 0.49 mm2. The application-specific integrated circuit (ASIC) technology
used is the TSMC C65G and the required and applied clock frequency is 11 MHz.

The authors of [75] propose a low-power fixed-point DSP containing a 16/32-bit datapath
and twelve simultaneous 16-bit multipliers. The processor is optimized for FFT computation
with up to 128-bit wide SIMD instructions, optimized instruction scheduling, and reverse bit
addressing for improved FFT processing. The executed algorithms are a FFT-based filter bank,
compression, and feedback suppression. After an optimization process, the DSP requires less
than 37.5 % of the total processing time for these algorithms. The total processing time is
specified as the real-time processing time at a clock frequency of 8 MHz.

16

3.1 Baseline Processor Architecture

A commercial hearing aid system-on-chip (SoC) with the name Ezario 7100 is presented
in [78]. This system comprises three hardware modules, a general purpose ARM core for
system management, an energy efficient 24-bit coolflux dsp (CFX) digital signal processor
and a dedicated hardware accelerator called HEAR. This system therefore offers a compromise
between software flexibility and hardware efficiency. The system was manufactured in a 65 nm
TSMC mixed-signal process, including 100 kB of SRAM memory. At a maximum clock
frequency of 10.24 MHz and at 1.25 V, the peak power consumption is 5 mW when four MACs
are used in parallel and the average power consumption is between 1 mW and 2 mW.

3.1.2 Baseline Instruction-Set Architecture

The pipeline architecture of the baseline VLIW-SIMD ASIP, as proposed in [16] and [83], is
shown in Figure 3.1. A vector unit (VU) is depicted. The vector unit is divided into five or six
pipeline stages in this baseline configuration: instruction fetch (IF), instruction decode (DE),
register access (RA), execution (EX1 and EX2) and write back (WB).

Within the instruction fetch (IF) stage, instructions are fetched from the local instruction mem-
ory. The instruction address is generated by the program counter (PC). Two instructions, so
called micro-operations (MOs), are encoded within a 64-bit micro-instruction (MI) [16]. One
MI represents one very long instruction word (VLIW). The encoding of one of the micro-
instructions is shown in Figure 3.2. The instruction-set is orthogonal to keep the complexity
of the hardware low. It includes several common instructions such as arithmetic, logic, per-
mutation, multiplication, control flow, and load/store instructions. It can be extended to match
the requirements of the applications.

The presented vector unit contains two issue slots, labeled issue 0 and issue 1, so that two
32-bit wide MOs are executed in parallel. Therefore, two almost independent instruction-
decoders are part of the instruction decode (DE) stage. To further increase the instructions
per cycle (IPC) value, two MOs can be merged into one X2-instruction, which is represented
as X2 mode in Figure 3.1 [83, 84]. In this mode, two identical instructions, which share
the same opcode (command and command modifier), are merged into one single instruction.
The merged X2-instruction controls two functional units of the same type, which are located
in the execution stage. The addressed registers differ only in their last significant address
bit. The corresponding implementation of the X2-mode register file is shown in Figure 3.4.
Therefore, more issue-slots are created virtually, because a X2-command needs only one issue-
slot, although it executes the command on duplicated functional units. Because only one
instruction is decoded, only minor changes to the instruction decode stage and register file
architecture are required to enable X2-mode execution with low overhead. A code example
for the X2-mode is shown in Figure 3.3.

Furthermore, the instruction decode stage contains file indirect registers (FIREGs), which are
shared between the two issue slots. These registers store address pointers, which point to

17

3 The KAVUAKA Hearing Aid Processor

Issue 0

Issue 1

ALU

ALU

FU

FU

DMA
Controller Address

Register
(FIREG)

Forwarding paths

Write back paths

Write back paths

(IF) Decode (DE) (RA) (EX1) (EX2) (WB)
InstructionInstruction Fetch Register Access Execution Execution Write back

Special-RF

X2 MODE

X2 MODE

Shared Memories / DMA Controller / co-processors

Pipeline registers

On-Chip Bus

MUL/MAC

Custom FU

Instruction
Memory

Instruction
Decoder

Instruction
Decoder

PC

PC
STACK

Data
Memory

FWD Unit

V0
32

registers
(64-bit)

V1
32

registers
(64-bit)

Partitioned
Register

File

Figure 3.1: Vector unit (VU) of the baseline VLIW-SIMD processor [16, 83].

18

3.1 Baseline Processor Architecture

31 30 29 28 27 26 25 24 23 22 21 20

X
2

In
st

ru
ct

io
n

Su
bw

or
d

M
od

e

Si
gn

ed
M

od
e

O
ve

rfl
ow

&
Sa

tu
ra

tio
n

C
on

dt
io

na
lE

xe
ct

iu
on

C
om

m
an

d
G

ro
up

C
om

m
an

d
Ty

pe
Command modifierCommand

CR & CSOVERSIGNX2TypeGroup RES

B
as

ic
A

ri
th

m
et

ic
, A

dv
an

ce
d

A
ri

th
m

et
ic

,
Sh

ift
&

R
ou

nd
, C

lip
&

M
ax

&
M

in
,

Pe
rm

ut
e,

L
og

ic
, T

ra
ns

fe
r,

B
ra

nc
he

s

R
eg

is
te

r,
R

eg
is

te
r,

R
eg

is
te

r
R

_R
_R

R
eg

is
te

r,
Im

m
ed

ia
te

, R
eg

is
te

r
R

_I
_R

R
eg

is
te

r,
Im

m
ed

ia
te

L
on

g,
R

eg
is

te
r

R
_I

L
_R

64
-b

it,
32

-b
it,

16
-b

it,
8-

bi
t

C
on

di
tio

n
R

ea
d

(C
R

),
C

on
di

tio
n

Se
t (

C
S)

,
C

on
di

tio
n

R
ea

d/
Se

t (
C

R
S)

19 18 17 13 12 11 7 6 5 4 0

In
di

re
ct

A
dd

re
ss

in
g

In
di

re
ct

A
dd

re
ss

in
g

Ve
ct

or
U

ni
t

Ve
ct

or
U

ni
t

Ve
ct

or
U

ni
t

R
eg

is
te

r
A

dd
re

ss
or

Im
m

ed
ia

te

TargetOperand 2Operand 1

VU VUREG REG IND VU REGIND

R
eg

is
te

r
A

dd
re

ss
or

Im
m

ed
ia

te

R
eg

is
te

r
A

dd
re

ss
or

Im
m

ed
ia

te
- - -

Figure 3.2: 32-bit MO. The MO is partitioned into the command, the command modifier, two
operands and one target register.

19

3 The KAVUAKA Hearing Aid Processor

(a)
1 // Issue slot #0 ; Issue slot #1
2 (0x00) ADD_16 V0R0 ,V0R2 ,V0R4 ; NOP
3 (0x01) ADD_16 V0R1 ,V0R2 ,V0R5 ; NOP
4 (0x02) ADD_16 V0R6 ,V0R8 ,V0R10 ; NOP
5 (0x03) ADD_16 V0R7 ,V0R9 ,V0R10 ; NOP

(b)
1 (0x00) ADD_16 V0R0 ,V0R2 ,V0R4 ; ADD_16 V0R1 ,V0R2 ,V0R5
2 (0x01) ADD_16 V0R6 ,V0R8 ,V0R10 ; ADD_16 V0R7 ,V0R9 ,V0R10

(c)
1 (0x00) ADD_16_X2 V0R0+V0R1 ,V0R2 ,V0R4+V0R5 ; NOP
2 (0x01) ADD_16_X2 V0R6+V0R7 ,V0R8+V0R9 ,V0R10 ; NOP

Figure 3.3: Example of a scheduled assembler code using the X2-mode [83]. (a) Four addi-
tions (ADD) executed with one arithmetic unit sequentially. Registers V0R0, . . . ,
V0R10 are used. (b) Replication of arithmetic unit. (c) Using X2-mode. Two un-
used issue-slots are present (filled with NOPs), when using X2-mode. Those can
be used with other instructions, which do not use the already used arithmetic unit.

any address in the global address space, including the main data memory (DMEM), the co-
processors or the register file. Indirect addressing can be used with post increment, decrement
and offset addressing.

Both issue-slots, belonging to one vector unit, share a partitioned register file [85], which is
located in the register access (RA) stage. In the configuration, shown in Figure 3.1, each parti-
tion, V0 and V1, contains 32 registers of 64-bit. Figure 3.4 shows a register file configuration
with four read and two write ports. The read and write ports are controlled by the instruction
decoders or the write back and forwarding paths. Since the number of register file ports can
be the bottleneck, that prevents dense code compaction, the register file is partitioned into
two small register files with 32 registers each. Table 3.1 lists different available register file
configurations, comparing normalized silicon area requirements and scheduling flexibility.

The functional units are in the execution stage. The output of the functional units is written
back to the register file or to local memory. Forwarding is used to avoid data hazard stalls. The
execution stage of the processor architecture can be customized to the application by adding
custom functional units, replacing existing functional units, or by duplicating them. Adding
new custom functional units is an approach to specialization, while duplication offers more
performance, e.g., the X2 mode. Functional units can be extended to implement 64-bit SIMD
commands using subword parallelism, i.e., the 64-bit operands can be divided into two 32-bit,
four 16-bit or eight 8-bit operands to perform the same operation on all these subwords si-

20

3.1 Baseline Processor Architecture

Table 3.1: Available register file configurations (4r2w = four read and two write ports, 2r1w =
two read and one write port) [83]. Results from an ASIC synthesis with the TSMC
40 nm HVT low-power ASIC technology at 50 MHz.

Port Port Parallel Parallel Normalized Scheduling
config. width X1-accesses X2-accesses area flexibility

RF1 4r2w 64 2 1 1.00 normal
RF2 4r2w 128 2 2 1.06 high
RF3 2r1w 128 1 1 0.76 low

128 128

64

128 128

128

[127:64] [63:0]

64

64 64 64 64 64 64 6464

64 6464

[63:0][127:64]

128(a)

64 64 64

64 64

Read ports

Write ports

Read ports

Write ports

Register File
32x64-bit

4r2w (even)

Register File
32x64-bit

4r2w (odd)

Control

Internal
data-path
structure

Control

Register File
64x64-bit

4r2w

(b)

Figure 3.4: Monolithic and partitioned register file (RF) configurations [83]. In (a) a mono-
lithic RF with 64×64-bit registers with four read and two write ports is shown. In
(b) a partitioned register file is shown. The port width is doubled for reading and
writing 128-bit. Two internal 32×64-bit RF are used. In case of a X2-instruction as
shown in Figure 3.3, the upper and lower 64-bit of the 128-bit data is written/read
to/from the even or odd register file.

21

3 The KAVUAKA Hearing Aid Processor

multaneously. Low-power mechanisms such as operand isolation and clock or power gating
are applicable. Additionally, conditional execution is used to convert control flow dependen-
cies into data dependencies. This results in higher code compression by avoiding conditional
branching, as shown in Figure 3.5. Since the critical path is usually in the execution stage,
complex functional units (FUs) with two or more pipeline stages can be implemented for
performance purposes.

1 for (i=0; i<8; i++){
2 if (V0R0[i*8+7:i*8] == 0){
3 V0R3[i*8+7:i*8] = V0R1[i*8+7:i*8] + V0R2[i*8+7:i*8];
4 }
5 }

1 SMVI V0CONDSEL ,# COND_ZERO // choose evaluated condition
2 SUBICS_8 V0R4 ,V0R0 ,#0 // store operation flags (CS)
3 ADDCR_8 V0R3 ,V0R1 ,V0R2 // cond. execution , using flags and cond. implicitly (CR)

Figure 3.5: Assembler example for subword parallelism and conditional execution [83]. The
addition is only executed for the 8-bit subwords for which the condition is set.

Co-processors (CPs) can be used for more complex operations [83]. Co-processors can be
tightly attached to the processor via an external bus interface. By default the VLIW SIMD
architecture includes a 2×32-bit SIMD fixed-point division co-processor unit (DCU), which
implements an iterative, non-restoring division algorithm in dedicated hardware [86–88]. Af-
ter saving the divisor operand, the processor starts the division and increases the accuracy of
the result in each cycle. Thus, the desired minimum accuracy can be controlled by the user-
defined number of cycles between saving the last operand and loading the result, as shown in
Figure 3.6.

3.2 Specialization Towards Performance

The application-specific hardware and software specialization for performance and power con-
sumption optimization reasons is of great significance in the design of hearing aid processors.
One of the central challenges is to provide sufficient processing performance for given and
future hearing aid algorithms under strict power consumption and silicon area constraints. In
this section, new hardware and software architectures for increased processing performance
for application-specific hearing processors are presented.

22

3.2 Specialization Towards Performance

(a)
1 //store dividend
2 STOREDCU HW_ADDRESS_DCU0_0 ,V0R0 ,#0
3 //store divisor / start
4 STOREDCU HW_ADDRESS_DCU0_1 ,V0R1 ,#4
5 // delayed load of result
6 LOADDCU V0R2 ,HW_ADDRESS_DCU0_0

(b)
1 (0x00) STOREDCU 0x200 ,V0R0 ,#0
2 (0x01) STOREDCU 0x201 ,V0R1 ,#4
3 (0x02) NOP
4 (0x03) NOP
5 (0x04) NOP
6 (0x05) LOADDCU V0R2 ,0x200

Figure 3.6: Exemplary use of division co-processor unit (DCU). (a) Coded assembler opera-
tions (b) Scheduled assembler operations. After both operands are stored, the DCU
is enables. The user-defined delay (#4), which determines the iteration counts of
the DCU. The LOADDCU instruction is scheduled with a minimum delay of (#4)
after the DCU starts the computation.

3.2.1 Real- and Complex-Valued Multiply-Accumulate Functional Unit

Multiplication and addition operations are among the most frequently used operations in dig-
ital signal processing [89]. Fundamental signal processing tasks like correlations, filtering
or transformations require a large number of these operations. Hardware functional units for
multiply-accumulate (MAC) operations are therefore an essential part of digital signal pro-
cessors (DSPs) [9, 19, 74, 90–123]. The combination of a hardware multiplier and an adder
in a functional unit reduces the number of execution cycles required for the mentioned signal
processing tasks. The result of this architecture decision enables higher processing perfor-
mance or energy efficiency. However, due to the continuing demand for higher processing
performance in digital signal processing applications, further approaches, architectures, and
extensions for MAC units have been presented. The goal is to further parallelize and specialize
MAC operations. Parallelism is increased by duplicating the MAC unit in the DSP architec-
ture [74, 90, 96, 97, 100, 101, 104, 106, 110, 115] and by using single instruction, multiple data
MAC units [91–96,98–101,103–105,107–111,113,114,116–119,121,123]. Complex-valued
digital audio processing, such as for filter banks, is required [124, 125]. More specialized
MAC units also process complex-valued data [93, 96, 102, 103, 110, 115, 126, 127].

In this section, a new architecture of a real- and complex-valued multiply-accumulate (MAC)
functional unit for digital signal processors is introduced [128]. The new MAC architecture
described here is SIMD-capable for parallel processing and is specialized for complex-val-

23

3 The KAVUAKA Hearing Aid Processor

ued operations. The functionality of related real-valued SIMD-MAC units is maintained. By
reusing existing hardware adders and multipliers of the real-valued SIMD-MAC architecture,
complex-valued MAC operations and butterfly operations are implemented for the FFT com-
putation. The area overhead for these specialized complex-valued operations is discussed and
compared to the overhead of related complex-valued architectures.

Related Multiply-Accumulate Architectures

Hardware functional units for multiply-accumulate (MAC) operations are an essential compo-
nent in digital signal processors [9,19,74,90–123]. These MAC architectures can be classified
by the following architectures and use cases:

A single MAC unit is used in [10,19,43,112,120,129,130]. With these architectures a real-
valued multiplication and accumulation per instruction per cycle can be computed. Several
consecutive instructions are required to compute a complex-valued MAC operation. Indepen-
dent MAC units, implemented as a dual MAC unit architecture, are used in VLIW-DSP archi-
tectures to compute MAC operations in parallel [74,90,92,96,97,100,101,104,106,110,115],
reducing the number of processing cycles. In [92], the authors present a DSP consisting of four
identical data paths, each containing a MAC unit. The implementation of two almost iden-
tical MAC units, the so-called RMAC and IMAC units, is presented in [96] and [115]. With
these two units, the imaginary and the real part of a complex-valued operation are processed
in parallel.

SIMD MAC units are proposed in [75, 91, 93–96, 98–101, 103–105, 107–114, 116–119, 121,
123]. These SIMD-MAC units can be used to process multiple real-valued operands by exe-
cuting a single instruction, thereby increasing processing performance. Complex-valued MAC
operations require multiple successive instructions [106, 110, 119, 123, 131]. In [110], a DSP
core is equipped with a dual MAC architecture. This MAC architecture is optimized for the
computation of digital filters. An input port of one MAC is the delayed input of the other
MAC unit. Both MAC units support multiple subwords. This architecture decreases data
access requests for algorithms, that use the same operands for many MAC operations. The
authors of [106] and [115] introduce DSPs with two MAC units. In both cases the MACs can
reuse previously latched output values. These architectures are specially optimized for finite
impulse response (FIR) filter calculations. In [119] and [100], SIMD-MAC units are used for
a two-way superscalar RISC architecture and a DSPs with low-power consumption. In both
cases, the butterflies of a FFT are processed in parallel to increase performance.

Specialized complex-valued MAC units support complex-valued or both real- and com-
plex-valued operations [93, 126, 127, 132, 133]. Complex-valued operations can be computed

24

3.2 Specialization Towards Performance

with these units with fewer instructions compared to the computation with real-valued MAC
units, where real and imaginary part have to be computed separately. Some of these architec-
tures are also extended for a butterfly operation to accelerate the computation of FFT algo-
rithms [93, 126, 132, 133].

In [127], a DSP is equipped with a specialized complex-valued multiplier. This functional unit
cannot be used for real multiplications and does not support SIMD operations.

The MAC unit introduced in [93] supports real- and complex SIMD operations for single- and
full-precision 16-bit MAC operations. This unit is optimized for real- and complex-valued
FIR convolutions. A great acceleration for real- and complex-valued filter computation can
be realized by this architecture. Besides the efficient implementation of FIR filters with these
MAC architectures, there are disadvantages for the use in other cases. Parts of the computed
results, which are either real- or complex-valued, are stored in different accumulator registers,
which are part of the MAC architecture. Not all these registers are directly accessible in every
cycle. The output multiplexer of the MAC also limits the number of transferred words to
the register file. The complex-valued multiplication results of this MAC unit are used by the
butterfly processor architecture. One butterfly per cycle can be calculated.

The authors of [126] propose a data processing unit for DSPs. This unit consists of two mul-
tipliers with three pipeline stages and five adders. New instructions are introduced to perform
different combinations of additions and multiplications. This unit can perform two butterfly
operations in three cycles. The advantage of this unit is the flexibility to switch between real
and complex operations. The computation of the FFT algorithm is about 40 % faster than
DSPs using SIMD-MAC units. Two data paths without SIMD support are used in this de-
sign. Each datapath contains a multiplier and several adders, which are used simultaneously
in parallel algorithms such as the FFT.

A comparable multiple MAC architecture is introduced in [117]. It does not support the addi-
tional operations for computing parts of the butterfly and is about 20 % slower in the case of
a 1024-point FFT computation (7680 cycles). A processor with this MAC unit is about 90 %
faster than the single MAC approach presented in [92].

The butterfly unit of the FFT processor presented in [132] consists of four multipliers and four
adders. It computes a butterfly operation in one cycle. This butterfly unit has two complex
inputs and generates two complex outputs. The twiddle factors are stored in lookup tables
(LUTs) or calculated on-the-fly by a coordinate rotation digital computer (CORDIC) algo-
rithm. The computation of a 256 point FFT is about 50 % faster than the multi-cycle approach
presented in [126]. A complete custom function unit (CFU) for butterfly computation is pro-
posed in [133]. Each of these custom functional units consists of four multipliers and eight
adders. These units have two input ports and two output ports. Each port is 32-bit wide and
contains 16-bit real and complex values. With twelve of these units, twelve butterfly oper-
ations can be performed simultaneously. The 1024 point FFT performance (2496 cycles) is
about three times faster than the performance of the processor introduced in [126].

25

3 The KAVUAKA Hearing Aid Processor

A chronological representation of the publication dates for these architectures is given in Fig-
ure 3.7.

1999

SIMD MAC [119]

2000

SIMD MAC [91]

2001

SIMD MAC [92]

2003

SIMD MAC [99]

2005

SIMD MAC [114]

2006

SIMD MAC [101]

2007

SIMD MAC [94]

2009

SIMD MAC [111]
2009

SIMD MAC [100]

2013

SIMD MAC [117]

1999

Dual MAC [106] 2001

Dual MAC [74]
2002

Dual MAC [90]

2003

Dual MAC [110]
2004

Dual MAC [104]

2001

SIMD CMAC [102]
2002

SIMD CMAC [103]

2003

Dual CMAC [110]

2004

SIMD CMAC [93]

2014

Dual CMAC [96]

2014

Dual CMAC [115]

1999

SIMD MAC [116]

Figure 3.7: Related MAC architectures that have been published in recent years. Dual MAC
architectures include at least two independent MAC units, SIMD MAC architec-
tures include at least one MAC unit with SIMD capabilities and SIMD CMAC
architectures include at least one CMAC unit with SIMD capabilities, that can
additionally perform complex-valued operations.

Proposed area efficient real-and complex-valued multiply-accumulate SIMD unit

The proposed real- and complex-valued SIMD MAC unit, which is abbreviated as SIMD-
CMAC unit, is described in detail in this section. First of all, the arithmetic operations are
introduced and then the hardware implementation is presented. Table 3.2 shows the arithmetic
operations implemented in the proposed SIMD-CMAC unit. These operations include real-
and complex-valued multiply, multiply-accumulate operations, and a butterfly operation for
the FFT acceleration. Since SIMD mechanisms are used, all operations can process several
subwords simultaneously.

The generic multiply (MUL), the multiply-accumulate (MAC), and the multiply-accumulate
with place zero (PLZ) (MACPLZ) operations are defined by Equation 3.1. The number of

26

3.2 Specialization Towards Performance

Table 3.2: Real- and complex-valued operations: multiply, multiply-Accumulate and butterfly

Arithmetic Operation Real-valued Complex-valued

multiply MUL CMUL
multiply-accumulate MAC CMAC

multiply-accumulate-zero MACPLZ CMACPLZ
Butterfly — BUTTERFLY

SIMD subwords is hereinafter referred with the index variable s.

as = as +bs� cs
a1
a2
...

as

=


a1
a2
...

as

+


b1
b2
...

bs

�


c1
c2
...

cs

=


a1 +b1 · c1
a2 +b2 · c2

...
as +bs · cs

 (3.1)

The real-valued multiplication factors bs and cs as well as the accumulator as are vectors con-
taining s subwords. For the multiplication operation all subwords in bs and cs are multiplied
element by element, while the accumulator as is not used (zero). The resulting subwords are
stored in as. The multiply-accumulate-zero (PLZ) operation performs an element-wise mul-
tiplication and an addition with an accumulator as, which is set to zero. This operation is
used to reset the accumulator and the compute a multiplication with full precision. In case
of the multiply-accumulate operation the accumulator as is added to the multiplication. To
perform a sequence of multiply-accumulate operations, the result vector as is the same as the
accumulator vector as.

The same scheme can be defined for multiplication and multiply-accumulate operations with
complex-valued numbers. In this case, the vectors as, bs and cs consist of s complex num-
bers with a real and an imaginary part. The complex-valued operations CMUL, CMAC and
CMACPLZ are then given by Equation 3.2.

27

3 The KAVUAKA Hearing Aid Processor

as = as +bs� cs
a1
a2
...

as

=


a1
a2
...

as

+


b1
b2
...

bs

�


c1
c2
...

cs

=


a1 +b1 · c1
a2 +b2 · c2

...
as +bs · cs



=


ℜ(a1)+ℜ(b1)ℜ(c1)−ℑ(b1)ℑ(c1)
ℜ(a2)+ℜ(b2)ℜ(c2)−ℑ(b2)ℑ(c2)

...
ℜ(as)+ℜ(bs)ℜ(cs)−ℑ(bs)ℑ(cs)



+ j ·


ℑ(a1)+ℜ(b1)ℑ(c1)+ℑ(b1)ℜ(c1)
ℑ(a2)+ℜ(b2)ℑ(c2)+ℑ(b2)ℜ(c2)

...
ℑ(as)+ℜ(bs)ℑ(cs)+ℑ(bs)ℜ(cs)



(3.2)

Complex-valued MAC operations were proposed by [93, 102, 110, 126, 127], but these archi-
tectures do not support SIMD operations or access to single subwords is restricted.

To speed up the computation of a radix-2 fast Fourier transform, a butterfly operation can
be used. The butterfly operation consists of a complex-valued multiplication, one complex-
valued addition and a subtraction. The equation for the computation of a SIMD butterfly
operation is given in Equation 3.3 and Equation 3.4

as = as +bs� cs
a1
a2
...

as

=


a1
a2
...

as

+


b1
b2
...

bs

�


c1
c2
...

ws

=


a1 +b1 · c1
a2 +b2 · c2

...
as +bs · cs

 (3.3)

bs = as−bs� cs
b1
b2
...

bs

=


a1
a2
...

as

−


b1
b2
...

bs

�


c1
c2
...

cs

=


a1−b1 · c1
a2−b2 · c2

...
as−bs · cs

 (3.4)

where a and b represent the complex-valued signal subwords and the vector c contains the
complex-valued twiddle factors.

28

3.2 Specialization Towards Performance

Several functional units for computing a butterfly operation shown in Figure 3.8 have been
presented in related work, but none of them supports SIMD operation [93, 126, 133].

-1
c

a

b

a

b

a = a+b · c

b = a−b · c

Figure 3.8: Radix-2 decimation in time butterfly.

In the following, it is described how the given SIMD operations defined by Equation 3.1,
Equation 3.2, Equation 3.3, Equation 3.4 and Table 3.2 are implemented as a functional unit.
The proposed SIMD-CMAC unit supports four subword modes. Each input port is 64-bit
wide. The 64-bit are interpreted as subwords of equal length (s0, s1, . . . , sn) as shown in
Figure 3.9. Subwords can have either 64-bit, 32-bit, 16-bit, or 8-bit. Each subword represents
an unsigned or signed data type, that stores integer or fixed-point numbers. For complex-
valued operations, two consecutive subwords are interpreted as a complex number. The first
subwords (s1, s3, . . . , sn) represent the real part and the second subwords (s0, s2, . . . , sn−1)
represent the imaginary part of a complex-valued number. The imaginary parts are highlighted
in gray in Figure 3.9.

32-bit 32-bit

16-bit 16-bit 16-bit 16-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

real or imaginary subwords

64-bit

64-bit subword

32-bit subwords

16-bit subwords

8-bit subwords

s0

s1 s0

s2 s0

s6 s5 s4 s2 s1 s0s7 s3

s3 s1

real subwords

Figure 3.9: SIMD data format. Each word of 64-bit is composed of the subwords 64-bit,
32-bit, 16-bit or 8-bit. To compute real or complex-valued operations, the sub-
words must represent real or imaginary values. Real-valued subwords are colored
white, and subwords representing real or imaginary values are highlighted with the
color gray.

Figure 3.10 illustrates the architecture of the proposed SIMD-CMAC unit. Three input ports
and one double-width output port are used for real and complex-valued multiply (MUL),

29

3 The KAVUAKA Hearing Aid Processor

multiply-accumulate (MAC), and butterfly operations. Compared to other MAC architec-
tures [93, 102, 106, 117], the proposed architecture does not contain registers. Instead, the
register file of the processor is used to replace the additional accumulator register. This de-
sign decision provides more flexibility in implementing the butterfly operation and reduces
the number of registers used for an area-efficient implementation. Therefore, the accumulator
output port (a0 and a1) is connected to the same registers of the processor as the accumulator
input port (a0 and a1). The accumulator, using a register pair, is 128-bit wide. The input ports
(b and c) represent the product factors. These ports are 64-bit each.

b c

Partial Product Matrix

a0

Mux

a1

Subtraction
for butterfly
operation

Real part of
complex-valued

product

Imaginary part of
complex-valued

product
Real-valued

product

Mux

Figure 3.10: Real- and complex-valued MUL/MAC/CMAC/butterfly SIMD architecture.

The number of multipliers required for the implementation depends on the operation itself
and the SIMD mode. The partial product architectures presented in [99, 114, 120, 134] were
extended in this thesis to perform both real- and complex-valued multiplications with nearly
the same hardware requirements. A real-valued multiplication based on a single-stage partial
product matrix is shown in Figure 3.11.

The multiplier b and the multiplicand c are divided into subwords of equal size. The corre-
sponding subwords are multiplied and then added together to obtain the final product. This
product scheme can be applied to different subword modes and word lengths. The advantage
of this product scheme is that the same multiplier stages can be used for different subword
modes, reducing hardware costs as opposed to multiple parallel high-precision multipliers.
This scheme has been extended in this thesis for complex-valued multiplications. Figure 3.12
shows that the same multipliers can execute all products required for real- and complex-valued
multiplication operations. In this case, the subwords b1 and c1 represent the real-part and b0
and c0 represent the imaginary part of the complex-valued words b and c.

30

3.2 Specialization Towards Performance

b1 b0

c1

c0 b1 · c0

b1 · c1 b0 · c1

b0 · c0

= b · cb1 · c1 ·2
n +b0 · c1 ·2

n
2 +b1 · c0 ·2

n
2 +b0 · c0

c

b
n
2

n
2n

2

n
2

Figure 3.11: Real-valued partial products. The product b · c is formed by multiplying and
adding the subwords b0, b1 and c0, c1 according to their bit significance. b and c
are of word length n.

b1 b0

c1

c0
b1 · c0

b1 · c1 b0 · c1

b0 · c0

c

b
n
2

n
2n

2

n
2

Figure 3.12: Complex-valued partial products. Complex-valued multiplication: b · c = (b1 ·
c1− b0 · c0)+ i(b1 · c0 + b0 · c1). The complex-valued product b · c is formed by
multiplying real subwords b1 and c1 and the imaginary subwords b0 and c0.

31

3 The KAVUAKA Hearing Aid Processor

This multiplication scheme is depicted in Figure 3.13 for subwords of 8-bit, 16-bit or 32-bit
width. All 8-bit products are computed within the first stage of the product matrix. The
white colored cells, which are outlined bold on the diagonal axis, either contain the real-
valued products, parts of the complex-valued results or are used for partial products. The
gray hatched cells contain either parts of the complex-valued products or partial products. All
other cells are not used to generate partial products or results. Products that are computed
by partial products are marked with a plus sign. All other products are computed directly
by dedicated multipliers. These are marked with a multiplication sign. This implementation
scheme reduces hardware costs.

Before the products are fed to the accumulator stage, the complex-valued multiplication results
must be computed. Equation 3.5 indicates which products of the product matrix shown in
Figure 3.12 must be added and subtracted to compute the complex-valued multiplication.

b · c = (b1 · c1−b0 · c0)+ i · (b1 · c0 +b0 · c1) (3.5)

By using an additional SIMD adder and subtractor, the complex-valued multiplication can be
computed with the same multipliers used for real-valued multiplications. This is shown in
Figure 3.10. For the additional adder and subtractor stage, a ripple carry adder architecture is
used as shown in Figure 3.14. Eight 8-bit adders connected by a carry chain can compute eight
8-bit additions, four 16-bit additions, two 32-bit additions or one 64-bit addition by controlling
the propagation of the carry bit.

The last accumulator stage in Figure 3.10 adds the outputs from the product matrix or the
SIMD adder/subtractor to the accumulator inputs a0 and a1. The outputs of the partial product
matrix can be either real- or complex-valued and are multiplexed for each operation listed in
Table 3.2. The accumulator stage uses the same ripple carry SIMD adder architecture shown
in Figure 3.14. One of the adders can be configured as a subtractor to compute butterfly
operations according to Equation 3.3 and Equation 3.4.

Case Study: FFT

The fast Fourier transform (FFT) algorithm is used as a benchmark to evaluate the performance
of proposed real and complex SIMD-CMAC unit and other MAC architectures presented in
related works. The fast Fourier transform is used to compute the discrete Fourier transform
defined by Equation 3.6.

Xk =
N−1

∑
n=0

xn · e−2iπ kn
N k = 0, . . . ,N−1 (3.6)

32

3.2 Specialization Towards Performance

64-bit

64-bit

8-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit8-bit8-bit8-bit8-bit8-bit8-bit

16-bit 16-bit 16-bit 16-bit

16-bit
16-bit

16-bit
16-bit

32-bit 32-bit

32-bit

32-bit

b1b2b3b5b6b7 b0b4
c1

c2
c3

c5c6
c7

c0

c4

b1b2b3 b0

c1

c2

c3

c0

b1 b0

c1

c0

Figure 3.13: Partial product matrix. The product matrix consists of three stages. The products
are generated from the products of the previous stage. A product sign indicates
results generated by direct multiplication, while a plus sign indicates products
generated by addition of partial products. The results are used for real (white
cells) and complex-valued (white or gray cells) multiplications.

0

carry

sum

0
mode mode

0
mode

0
mode

0
mode

0
mode

0
mode

carrycarrycarrycarrycarrycarry

d e

f

Figure 3.14: Ripple carry SIMD adder architecture. Different subword modes are depicted
with either white or gray subwords.

33

3 The KAVUAKA Hearing Aid Processor

The transformation is computationally intensive. The Cooley-Tukey FFT [135] algorithm is
usually used to reduce the number of complex multiplications and additions. A decimation in
time (DIT) radix-2 FFT is shown in Figure 3.15.

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

W 0
N

W 2
N

W 0
N

W 2
N

W 0
N

W 0
N

W 0
N

W 0
N

W 0
N

W 1
N

W 2
N

W 3
N

Figure 3.15: Radix-2 decimation in time FFT. The input samples x are transformed by size-2
DFTs (butterflies) to the output signal X . The constant multiplication factors W
are twiddle factors.

In the literature, various complex-valued radix-2/4 Cooley-Tukey FFT algorithms have been
implemented on a variety of different DSPs with different MAC architectures [92, 97, 100,
119,123,126,129,131–133,136]. The processing performance of the proposed SIMD-CMAC
unit is determined by integrating the unit into the execution pipeline stage of the KAVUAKA
VLIW-SIMD processor. The SIMD-CMAC unit computes butterflies of a radix-2 decimation
in time FFT algorithm. The FFT processing performance for differently sized FFTs is listed
in Table 3.3.

Those architectures marked as programmable are flexible. Their MAC unit processes real-
and complex-valued operations and can therefore be used for algorithms other than the FFT.
The proposed SIMD-CMAC architecture requires fewer cycles to compute the FFT compared
to other programmable MAC architectures. The reason for this is the full SIMD support for
butterfly operations. In addition to the parallel execution of butterflies, no permutation and
alignment operations are required, compared an implementation with a real-valued MAC. The
performance of the FFT algorithm also depends on local memory bandwidth. In the case
of the KAVUAKA processor, the acceleration using the SIMD-CMAC instead of a standard
SIMD-MAC is about 3.7 for the same local memory interface. These architectures, marked
dedicated, are equipped with dedicated hardware architectures, such as dedicated butterfly
units and local memory banks for twiddle and sample data. These hardware mechanisms
provide higher performance compared to the more flexible programmable architectures.

34

3.2 Specialization Towards Performance
Ta

bl
e

3.
3:

R
ad

ix
2/

4
C

om
pl

ex
FF

T
Pe

rf
or

m
an

ce
of

pr
op

os
ed

an
d

re
la

te
d

A
rc

hi
te

ct
ur

es

M
A

C
N

am
e

C
lo

ck
N

um
be

r
W

or
d/

Su
bw

or
d

FF
T

Po
in

ts
A

rc
h.

fr
eq

ue
nc

y
of

M
A

C
[b

it]
32

64
12

8
25

6
51

2
10

24
[M

H
z]

U
ni

ts
cy

cl
es

an
d

pe
rc

en
ta

ge
de

vi
at

io
n

co
m

pa
re

d
to

th
e

K
AV

U
A

K
A

pr
oc

es
so

r

programmable    

Si
ng

le
M

A
C

C
FX

[1
29

]
30

0
2

24
/2

4
99

7
16

57
41

29
83

93
18

65
4

41
38

5
(6

97
%

)
(4

96
%

)
(5

03
%

)
(4

38
%

)
(4

24
%

)
(4

16
%

)

C
55

x
[9

7]
20

0
2

16
/1

6
—

—
—

47
86

—
—

(2
50

%
)

H
in

ri
ch

s
[9

2]
40

4
16

/1
6

—
—

—
—

—
14

44
0

(1
45

%
)

A
D

SP
-2

11
61

N
[1

36
]

10
0

2
32

fl
—

11
56

21
58

43
16

87
70

18
28

8
(3

46
%

)
(2

63
%

)
(2

25
%

)
(1

99
%

)
(1

84
%

)

SI
M

D
M

A
C

A
rm

[1
00

]
50

2
32

/3
2

—
—

27
00

—
—

—
(3

29
%

)

C
67

4x
[1

23
]

45
6

2
32

/3
2

25
8

54
5

95
3

22
16

46
64

10
05

5
(1

91
%

)
(1

63
%

)
(1

16
%

)
(1

16
%

)
(1

06
%

)
(1

01
%

)

N
ad

eh
ar

a
[1

19
]

20
0

1
64

/1
6

—
83

9
—

40
93

—
19

25
7

—
(2

51
%

)
—

(2
14

%
)

—
(1

93
%

)

SC
38

50
[1

31
]

10
00

4
64

/1
6

21
2

52
5

12
73

25
87

58
54

11
89

8
(1

57
%

)
(1

57
%

)
(1

55
%

)
(1

35
%

)
(1

33
%

)
(1

19
%

)

SI
M

D
C

M
A

C
K

AV
U

A
K

A
50

1
64

/3
2

13
5

33
4

82
1

19
15

43
97

99
59

(1
00

%
)

(1
00

%
)

(1
00

%
)

(1
00

%
)

(1
00

%
)

(1
00

%
)

dedicated            
Sp

ec
ia

liz
ed

C
M

A
C

A
l[

13
2]

-
1

16
/1

6
—

—
—

10
24

—
—

(5
3%

)

L
ee

[1
26

]
14

4
1

-/
-

—
—

—
15

36
—

76
80

(8
0%

)
(7

7%
)

L
iu

[1
33

]
32

0
2

32
/1

6
—

—
28

4
56

8
11

88
24

96
(3

5%
)

(3
0%

)
(2

7%
)

(2
5%

)

35

3 The KAVUAKA Hearing Aid Processor

The cell area and power consumption overhead for implementing a complex-valued SIMD-
CMAC unit is shown in Table 3.4. Three different variants of the proposed SIMD-CMAC unit
are synthesized using a 40 nm low-power technology library of TSMC [137]. No pipelining
is used, the maximum clock frequency is set to 50 MHz and the operating voltage is 1 V. This
configuration is based on a low-power design flow. The total power consumption is an estimate
based on a switching factor of 0.5. The implementation Imp1 is synthesized without complex-
valued operations and represents a standard SIMD-MAC unit. This implementation is used as
a reference. If complex-valued multiply and multiply-accumulate operations are additionally
synthesized, the area overhead is about 70 %. This overhead is 30 % smaller compared to the
duplication of MAC units as proposed in [96]. The SIMD butterfly operation, implemented in
the Imp3 variant, requires only 4 % additional cell area.

Table 3.4: Cell count, cell area and total average power of different implementations of the
proposed SIMD-CMAC architecture. Results from an ASIC synthesis with the
TSMC 40 nm HVT low-power technology at 50 MHz.

Implementation Cell count Cell Area [µm2] Est. Total Power [mW]

Imp1 7417 (100%) 12515(100%) 0.21 (100%)
Imp2 12434 (168%) 21263(170%) 0.38 (181%)
Imp3 12838 (173%) 21730 (174%) 0.39 (186%)

Imp1: Real-valued MUL and MAC operations implemented.
Imp2: Real-valued and complex-valued MUL and MAC operations implemented.

Imp3: Real-valued and complex-valued MUL and MAC operations and butterfly operation
implemented.

3.2.2 Efficient Emulation of Floating-Point Arithmetic

Rational numbers are represented as fixed-point and floating-point numbers in embedded dig-
ital signal processing systems. The hardware architecture of these systems defines whether
the floating-point number format is supported or not. It depends on many design criteria
whether floating-point hardware support is required or better suited for a specific system and
application compared to a pure fixed-point implementation. Typical design criteria include
computational accuracy, time to market, ease of use, hardware cost, power consumption, and
processing performance.

The hardware complexity of fixed-point processors is lower compared to floating-point proces-
sors. However, the development time of fixed-point applications is considerably higher [138].

36

3.2 Specialization Towards Performance

Regardless of the programming language, whether it is a high-level programming language
or low-level assembler code, the design of fixed-point code requires additional development
time. This additional development time required for a floating-point to fixed-point conversion
takes up to 30 % of the total development time [139]. Writing fixed-point code is a chal-
lenge [138–140] because fixed-point code is very susceptible to quantization effects. This
development requires a fixed-point analysis/simulation and rewriting of the code. Fixed-point
analysis is a procedure to determine the number of fractional bits and thus the range for each
fixed-point variable used in the code. These analyses, which use an analytical or simulation-
based approach, require additional development time to analytically determine the fixed-point
formats or to set up and use the simulation environment [141]. In a simulation-based ap-
proach, variable ranges are determined by creating a histogram for each variable based on a
given input to the algorithm.

There are cases where the analysis based on the fix-point simulation cannot provide reliable
results [141]. This is the case when the worst-case scenario for the input is unknown or not
representative. This leads to a faulty fixed-point implementation. Errors caused by rounding
or overflow errors can lead to unpredictable system behavior.

Therefore, in some applications or parts of them it is desirable to shorten the development
time by using floating-point emulation on low-cost fixed-point processors [142, 143]. Al-
though floating-point emulation on fixed-point processors introduces run-time penalties [144],
it is still applicable if the required processing performance and power consumption are main-
tained, which is only the case if floating-point emulation is efficient and fast. For those parts,
that use floating-point arithmetic, fixed-point analysis is not required. Another advantage of
the floating-point implementation is the reduced code size for frequently used subroutines.
Since the fixed-point code is written for a specific input range, it contains shift instructions
for scaling fixed-point values. A fixed-point subroutine must be copied and adapted for each
application and input range. In contrast, the floating-point implementation of the same sub-
routine can be used for almost any input range.

This section introduces a software library for floating-point emulation for fixed-point proces-
sors with SIMD instructions. This library uses the available fixed-point SIMD commands and
data types to increase emulation speed. The main feature of this library is that the signifi-
cand and exponent of the floating-point format can be stored in different subwords of unequal
size of the same register word. These subwords can then be processed independently with
the available multi-precision fixed-point instructions SIMD. It is not necessary to unpack or
pack the floating-point numbers before or after processing, as is done in the corresponding li-
braries. The presented floating-point emulation is therefore comparatively fast. No additional
hardware overhead is required, since only hardware features of the fixed-point microSIMD
architecture are used.

The related floating-point emulation architectures are described in Section 3.2.2, and the pro-
posed architecture is presented in Section 3.2.2. Two case studies for the proposed architecture

37

3 The KAVUAKA Hearing Aid Processor

are presented in Section 3.2.2 and Section 3.2.2.

Related Hardware and Software Floating-Point Emulation

A software floating-point implementation, called Berkeley SoftFloat, is presented in [145].
This implementation supports binary floating-point numbers that conform to the IEEE 754
standard for floating-point arithmetic for 16-bit half-precision, 32-bit single-precision and
64-bit double-precision, 80-bit double-extended-precision up to 128-bit quadruple-precision.
Proposed floating-point functions include addition, subtraction, multiplication, division, and
square root.

A floating-point emulation library for integer processors is described in [146]. This library
is derived from the SoftFloat [145] library. For an optimized implementation on a VLIW
processor, some of the rounding modes and the below-average numbers have been removed
from the standard. Other optimizations include intrinsic functions, like a count leading zeros
(CLZ) function. Compared to the SoftFloat library, an acceleration of about 2.54 is achieved.

A custom software floating-point format for RISC processors that do not have dedicated
floating-point units is described in [147]. This custom floating-point format is based on the
IEEE 754 floating-point standard. The target applications are automotive control systems. The
performance requirements for these applications are high. Features of the IEEE 754 standard
are removed or simplified in this work for performance reasons. Examples for such simpli-
fications are the unification of the positive and negative zero representation and the use of
an explicit leading bit for the significand. The average acceleration achieved by this custom
floating-point format over the IEEE 754 floating-point standard is 2.1. Due to the lower com-
plexity of the custom format, the code size is reduced by 55 %.

The Blackfin processor platform [143] is a low-power fixed-point processor. Two libraries are
available for floating-point emulation, one of which is compatible with the IEEE 754 floating-
point standard. The second one is optimized for speed by reducing the complexity of the
required computations. An essential feature of this library is the data format for handling
floating-point types. The significand and the exponent are stored in different words. This for-
mat is called two-word format. Compared to other libraries like the in [146] the computational
complexity is reduced, because no unpacking or packing operations have to be performed to
extract or merge the exponent and the significand.

In [148], numerical linear algebra algorithms are implemented on fixed-point DSPs due to
lower hardware costs. Processing speed is increased by using all available fixed-point units
and by applying application-specific code optimizations and conversion techniques for the
TMS320C6000 DSP family [149].

The HiFi4 DSP family [121] is designed for audio processing. The processor contains four
VLIW slots and can execute four 32-bit fixed-point MACs per cycle. An application-specific

38

3.2 Specialization Towards Performance

floating-point library is optimized for low processing times and also supports optimized vector
modes. Special numbers such as zero, positive, and negative infinity are represented in a
custom format.

The floating-point emulation software library introduced in [146] is optimized in [150] to
accelerate floating-point emulation. The target platform is a VLIW processor. Application-
specific numerical blocks are identified to define new non-generic floating-point operators
in the software. These operators include merged operators that combine two floating-point
operations into a single operation. Paired operators compute two operations on the same
input in parallel. These non-generic floating-point operations are then verified with a VLIW
processor. For a benchmark suite with typical DSP code an acceleration of 1.59 is achieved
compared to [146].

So-called hybrid floating-point hardware modules (HFPM) are introduced in [151]. These
modules speed up the computation of software floating-point emulation operations. The ap-
plication software is written in fixed-point format, while the HFPMs add custom floating-point
instructions to the available instruction-set. The combination of fixed-point software and hy-
brid floating-point hardware modules increase the performance of floating-point emulation.
Compared to standard hardware floating-point units, these HFPMs reduce the area by 1.08 to
12.5. The throughput of the floating-point emulation per area is increased by 1.05 to 8.5.

In [152] and [153] so-called virtual floating-point hardware units are introduced. These virtual
hardware modules are based on several existing fixed-point arithmetic units, which are com-
bined to a virtual floating-point unit. Only a few hardware extensions are required to process
floating-point numbers. This approach offers a higher floating-point emulation performance
than the pure software approach with fixed-point arithmetic. With these hardware extensions,
bit-level manipulations can be performed more efficiently. A block floating-point implemen-
tation (BFP) is used to reduce the latency of virtual floating-point units. The area of these
units is about 24 % smaller than full floating-point units. The power is reduced by 30 %.

In [154] custom floating-point hardware modules are presented. These modules support var-
ious floating-point formats that differ in bit-width. The bit-width ranges from 8-bit to 64-bit.
The IEEE 754 single (32-bit) and double (64-bit) precision floating-point formats are also
supported. The variable bit-width allows range, latency and throughput to be optimized for
a target application. Fixed-point hardware modules are also presented. A hybrid design with
fixed-point and floating-point modules in one architecture is proposed. The conversion be-
tween fixed-point and floating-point format is performed by additional conversion hardware
modules. This can increase the overall efficiency of the processing system.

An architecture for a floating-point adder is presented in [155]. This adder can either perform
two single-precision additions in parallel (SIMD) or a double-precision floating-point addi-
tion. Hardware resources such as comparator units, shift units and a leading single detector
(LOD) are shared to efficiently implement both floating-point precision modes. Based on the
results of the ASIC synthesis, a 35 % reduction of the silicon area is achieved compared to an

39

3 The KAVUAKA Hearing Aid Processor

architecture with one double-precision adder and two single-precision adders.

The work presented in [156] aims at reducing the execution latency of floating-point hardware
units. The proposed high-throughput floating-point unit and instruction scheduling techniques
allow early execution of a floating-point addition operation that depends on other floating-
point addition or multiplication operations. The latency of floating-point operations can thus
be reduced. The performance of a benchmark suite is increased by an average of 7.6 %.

Proposed SIMD-Based Software Floating-Point Format

The software floating-point emulation arithmetic for SIMD-based architectures is described
in this chapter. In these SIMD-based architectures, a register can contain subwords of dif-
ferent word lengths. These architectures are described in [157]. The subword formats used
in this thesis are shown in Figure 3.16. The register bit-width is 64-bit. Therefore, either
one 64-bit subword, two 32-bit subwords, four 16-bit subwords, or eight 8-bit subwords fit
into one register. The subwords are processed in parallel by the functional units of the pro-
cessor. The subword execution mode, which defines the number of subwords per register, is
controlled by the processor’s instruction-set. The instructions for controlling the functional
units can be defined for each subword mode. For example, there is an ADD_32 instruction
to add 32-bit subwords and an ADD_8 instruction to add 8-bit subwords. The flexibility of
these microSIMD processors is used here for efficient software floating-point emulation. The
significand, exponent and sign bit of a floating-point number are stored in one register and
processed independently with different subword modes.

32-bit 32-bit

16-bit 16-bit 16-bit 16-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

64-bit

1 × 64-bit subword

2 × 32-bit subwords

4 × 16-bit subwords

8 × 8-bit subwords

s0

s1 s0

s2 s0

s6 s5 s4 s2 s1 s0s7 s3

s3 s1

Figure 3.16: microSIMD data format. Each 64-bit word consists of either 64-bit, 32-bit, 16-bit
or 8-bit subwords.

The IEEE 754 [158] single-precision floating-point format for 32-bit data is shown in Fig-
ure 3.17. It consists of a sign-bit, a biased exponent (8-bit) and a trailing significand field

40

3.2 Specialization Towards Performance

(23-bit). The floating-point value for the base of 2 can be computed with Equation 3.7:

f = (−1)S ·2E−bias · (1+21−24 ·T) if 1≤ E ≤ 28−2 (3.7)

where S represents the sign, T is the significand and E is the exponent.

24-bit 8-bit
32-bit

significand exponent

24-bit 8-bit
32-bit

significand exponent

64-bit

23-bit8-bit
32-bit

1-bit

significandexponentS

a)

b)
1-bit

S

1-bit

S

Figure 3.17: (a) IEEE 754 single-precision floating-point [158] format and (b) proposed
floating-point format for fixed-point microSIMD processors.

In order to enable efficient emulation of floating-point signal processing in terms of processing
performance, the 754 [158] single-precision floating-point format is simplified. The proposed
format, shown in Figure 3.17, is similar to the formats presented in the related work Sec-
tion 3.2.2. Subnormal numbers were removed. Rounding to zero and infinity is possible. The
significand and the exponent are stored in the two’s complement number representation. The
sign-bit is part of the significand. The 8-bit representing the exponent is shifted to the least
significant bits, while the significand is shifted to the most significant bits. With this format,
the floating-point value can be computed with Equation 3.8:

f = T ·2E (3.8)

where T is the significand and E is the exponent.

This floating-point format is used because the significand and exponent of the floating-point
numbers are aligned with the subwords of the microSIMD register format. Therefore, the
available microSIMD instructions can be used to process floating-point numbers efficiently
without packing and unpacking the significand and exponent before and after processing, as
suggested in [146]. Two floating-point numbers are stored in a 64-bit register in the case of
the KAVUAKA processor architecture to process the floating-point numbers with SIMD and
reduce the number of registers required. In contrast, two 32-bit registers are used to store a
floating-point value in [143].

41

3 The KAVUAKA Hearing Aid Processor

The floating-point emulation operations are described below. These operations include mul-
tiplication, addition, and subtraction. The intermediate computations required for a floating-
point multiplication are shown in Figure 3.18. This figure shows the computations for only one
of the two floating-point numbers that were processed in parallel (SIMD) during a FP_MUL_-
32 operation. To compute this floating-point multiplication, the significands are multiplied
together while the exponents are added. The resulting significand is then normalized and the
exponent is updated based on this normalization to obtain the correct multiplication result.
During normalization, rounding to zero or infinity is possible.

fA · fB eA + eB

normalization eC

significand exponent
eBfB

significand exponent
eAfA

significand exponent
eCfC

24-bit 8-bit24-bit 8-bit

24-bit 8-bit

Figure 3.18: Emulated floating-point multiplication for microSIMD processors.

Assembler instructions for emulating floating-point multiplication are listed in Figure 3.19.
These instructions, combined as macro calls, compute the multiplication of two floating-point
numbers in parallel. The exponents computed in two’s complement are added together with a
ADD_8s instruction in line 7. This instruction saturates the result in 8-bit subword mode. The
significands are multiplied (32-bit) after the least significant eight bits have been set to zero by
the PERMREG instructions (lines 10–11). For normalization a CLX instruction is used, which
counts leading zeros or ones. The exponent is updated based on the normalization and moved
to the target register (line 28).

The emulation of floating-point addition and subtraction operations is shown in Figure 3.20.
For a floating-point addition or subtraction, the significands of both numbers must be trans-
formed into the same fixed-point range. For this, the absolute difference of the exponents is
computed. The significance of the smaller number is shifted to the right by the absolute differ-
ence of the exponents. The larger of the two exponents is used for the result. The significands
are then added or subtracted from each other. After normalizing the significand, the exponent
is updated and the floating-point addition or subtraction is computed.

42

3.2 Specialization Towards Performance

1 // **
2 // emulated floating -point multiplication (24:8 format)
3 // **
4 MACRO FP_MUL_32 DST , OP1 , OP2
5
6 // add exponents
7 ADD_8s TEMP0 , OP1 , OP2
8
9 // isolate and multiply significands

10 PERMREG1_8 xOP1 , OP1 , R_ZERO
11 PERMREG1_8 xOP2 , OP2 , R_ZERO
12 MACPLZ_32 MAC_H , xOP1 , xOP2
13
14 // normalize resulting significand
15 CLX_64 TEMP2 , MAC_H , MAC_H
16 SL_64 MAC_H , MAC_H , TEMP2
17
18 CLX_64 TEMP3 , MAC_L , MAC_L
19 SL_64 MAC_L , MAC_L , TEMP3
20 MIXL_32 TEMP1 , MAC_H , MAC_L
21
22 // compute new (resulting) exponent
23 MIXR_32 TEMP2 , TEMP2 , TEMP3
24 SUBI_32 TEMP2 , TEMP2 , #1
25 SUB_8s TEMP2 , TEMP0 , TEMP2
26
27 // recreate original format
28 PERMREG1_8 DST , TEMP1 , TEMP2
29
30 ENDMACRO

Figure 3.19: Assembler instructions for the emulation of a floating-point multiplication using
SIMD instructions.

The assembler instructions for emulating floating-point additions are shown in Figure 3.21.
Here the exponents are subtracted from each other (line 9). Depending on the result of this
subtraction, one of the significands is selected for the shift operation before adding the signif-
icands (line 19). The normalization is done by counting the leading zeros or ones in line 30.
The resulting register is then rebuilt from the updated exponents and the normalized signifi-
cand.

The presented software floating-point operations are part of a floating-point emulation li-
brary. This library consists of floating-point operations and conversion macros to incorporate
floating-point operations into fixed-point algorithms. To evaluate the efficiency and perfor-
mance of the proposed library, it is compared to related libraries. The library is implemented
on the KAVUAKA processor VLIW-SIMD. The KAVUAKA processor executes two instructions
per cycle. The data width of KAVUAKA is 64-bit.

For comparison the performance results shown in [121, 143, 145, 146, 148, 150] are used. The
ST231 VLIW processor is used in [150] to evaluate the libraries presented in [145] and [146].
The ST231 VLIW processor does not support hardware floating-point operations. The ST231

43

3 The KAVUAKA Hearing Aid Processor

significand exponent
eBfB

significand exponent
eAfA

|eA− eB|

fA >> x fB >> x

fA± fB

normalization eC

max(eA,eB)

significand exponent
eCfC

or

24-bit 8-bit24-bit 8-bit

24-bit 8-bit

Figure 3.20: Emulated floating-point addition and subtraction for microSIMD processors.

can execute up to four instructions per cycle, and the data width of the ST231 processor is
32 bits. The Blackfin processor [143] consists of a 16-bit fixed-point DSP and a 32-bit RISC
processor. The processor supports SIMD instructions. There are two libraries for emulat-
ing floating-point operations. A high-performance library and a library that conforms to the
IEEE 754 floating-point standard. In [148] the authors use the TMS320C6000 DSP fam-
ily. The authors developed a target-optimized DSP floating-point emulation library for the
TMS320C64x+ fixed-point processor. With VLIW, up to eight 32-bit instruction are executed
in parallel. SIMD is supported and the data width is 64-bit.

Table 3.5 shows the cycle counts for addition, subtraction, multiplication, and addition/sub-
traction software floating-point operations of the above software libraries and processors. As
can be seen from the table, the proposed software floating-point library requires fewer cycles
to compute the operations compared to the corresponding libraries. When using the pro-
posed microSIMD operations, the number of cycles per operation is halved. For example, two
floating-point additions are computed within 13 cycles.

Case Study I: Digital Filter

Two common algorithms from the field of audio processing were implemented with the pro-
posed software floating-point library as case studies. The first algorithm is a finite impulse

44

3.2 Specialization Towards Performance

1 // **
2 // emulated floating -point addition (24:8 format)
3 // **
4 MACRO FP_ADD_32 DST , OP1 , OP2
5
6 // compare exponents
7 PERMREG0_8 xOP1 , OP1 , OP2 // E0|E0|E2|E2|E1|E1|E3|E3
8 PERMREG0_8 xOP2 , OP2 , OP1 // E2|E2|E0|E0|E3|E3|E1|E1
9 SUBCS_8s TEMP0 , xOP1 , xOP2 // exponent difference

10
11 // swap significands according to magnitude of exponents
12 // (choose number with smaller exponent)
13 MV TEMP1 , OP1
14 MV TEMP4 , OP2
15 MVCR_32 TEMP1 , OP2
16 MVCR_32 TEMP4 , OP1
17
18 // remove exponent (for significand computation)
19 SRI_32 TEMP5 , TEMP1 , #8
20
21 // right shift of secondary significand operand
22 ABSADD_8 TEMP0 , R_8 , TEMP0
23 CLIPI_U8 TEMP0 , TEMP0 , #0 b11111
24 SR_32 TEMP0 , TEMP4 , TEMP0
25
26 // add significands
27 ADD_32 TEMP5 , TEMP5 , TEMP0
28
29 // normalize resulting significand
30 CLX_32 TEMP0 , TEMP5 , TEMP5
31 SL_32 TEMP5 , TEMP5 , TEMP0
32
33 // compute new exponent
34 SUB_8s TEMP0 , R_8 , TEMP0
35 ADD_8s TEMP0 , TEMP1 , TEMP0
36
37 // recreate original format
38 PERMREG1_8 DST , TEMP5 , TEMP0
39
40 ENDMACRO

Figure 3.21: Assembler instructions for emulating the floating-point addition using SIMD in-
structions.

45

3 The KAVUAKA Hearing Aid Processor

Table 3.5: Cycle count comparison of different software emulated floating-point operations.
The number within the brackets represents the number of cycles if SIMD is not
used.

Cycles addition subtraction multiplication addsub

ST231/SoftFloat [145, 150] 48 49 31 —
ST231/FLIP [146, 150] 26 26 21 —
ST231/Jean. [150, 159] 26 26 21 26
Blackfin/fast-fp [143] 76 76 71 —

C64x+ [148] 66 66 69 —
HiFi4 [121] 23 23 13 —
KAVUAKA 6.5 (13) 7.5 (15) 5 (10) 8.5 (17)

response (FIR) or infinite impulse response (IIR) filter [63] and the second algorithm is the
fast Fourier transform (FFT) [63, 135]. Both algorithms are evaluated for performance and
precision.

Digital filters are systems that perform mathematical operations on signals. Common filter
types are low-pass, band-pass, high-pass, or all-pass. The operations can be expressed by the
difference Equation 3.9:

y(n) =
M

∑
i=0

bi · x(n− i)−
N

∑
j=1

a j · y(n− j) (3.9)

where x is the input signal and y is the output signal. a and b are the filter coefficients for
implementing filters with a finite impulse response (FIR) and a infinite impulse response (IIR).
A direct implementation of these filters in form II is shown in Figure 3.22. These filters are
sensitive to quantization errors and are computationally intensive, because they repeatedly
work with the same data values [140].

∑ ym

−a1

xn b0b1bn

−an

∑z−1
∑z−1

Figure 3.22: Direct form II transposed implementation of a digital filter.

This digital filter was implemented on the KAVUAKA processor in fixed-point and emulated
floating-point. The number of cycles, code size, and instructions per cycle (IPC) of the
same IIR filter with fixed-point arithmetic and software floating-point emulation are listed

46

3.2 Specialization Towards Performance

in Table 3.6. The number of cycles is increased by a factor of 3.9× for the floating-point
implementation. Although the code size of the floating-point implementation is larger, the
floating-point code can be used as a subroutine for several different filter implementations.
The fixed-point implementation is only suitable for exactly one filter implementation, because
fixed-point arithmetic, e.g., including shifts, is fixed for a given filter. Therefore, the code size
doubles for each filter instance, unless variable shifting operations are implemented, which
reduce processing performance.

Compared to the reference implementation with double-precision floating-point (IEEE), quan-
tization errors occur when the filter is computed with single-precision floating-point (IEEE),
emulated floating-point, or fixed-point. The absolute errors compared to the double-precision
floating-point implementation are shown in Figure 3.23 for 100 random input vectors of length
1000. The mean and maximum absolute errors for the different data types are listed in Ta-
ble 3.7. The 32-bit fixed-point IIR filter implementation has a smaller quantization error than
the single-precision floating-point implementation. This is because the fixed-point data type
has more fractional bits and the range for each variable was determined by a fixed-point anal-
ysis.

Table 3.6: Cycle count, code size and instructions per cycle (IPC) for a fixed-point and a
floating-point filter

Format Cycle Count IPC Code Size

32-bit fixed-point 141 1.52 1072 byte
32-bit floating-point 550 1.69 1984 byte

Table 3.7: Precision comparison between single and double-precision IEEE floating-point,
fixed-point and emulated floating-point digital filter implementations

Format Mean Maximum
Absolute Error Absolute Error

32-bit single-precision floating-point (Matlab) 7.3141e-05 7.3491e-04

32-bit fixed-point (KAVUAKA) 2.8524e-06 1.1622e-05

32-bit floating-point (KAVUAKA) 3.1342e-04 2.1398e-03

The dynamic power consumption for a 17-tap FIR filter using emulated floating-point at
13 MHz is 0.8135 mW.

47

3 The KAVUAKA Hearing Aid Processor

ab
so

lu
te

er
ro

r
ab

so
lu

te
er

ro
r

ab
so

lu
te

er
ro

r

Absolute Error for the Single-Precision IEEE Floating-Point Filter (Matlab)

Absolute Error for the 32-bit Fix-Point Filter (KAVUAKA processor)

Absolute Error for the 32-bit Floating-Point Filter (KAVUAKA processor)

0 100 200 300 400 500
samples

600 700 800 900 1000

0 100 200 300 400 500
samples

600 700 800 900 1000

0 100 200 300 400 500
samples

600 700 800 900 1000

·10−4
8
6
4
2
0

·10−5
1.2
0.8
0.4

0

·10−3
2.5

2
1.5

1
0.5

0

Figure 3.23: Absolute errors for the digital IIR filter implementation with single-precision
IEEE floating-point, fixed-point and emulated floating-point compared to double-
precision IEEE floating-point.

Case Study II: Fast Fourier Transform

The fast Fourier transform is used to compute the discrete Fourier transform [135] defined by
Equation 3.10.

Xk =
N−1

∑
n=0

xn · e−2iπ kn
N k = 0, . . . ,N−1 (3.10)

The algorithm transforms the input signal x to the frequency domain X by computing a series
of complex-valued multiplications and additions defined in Equation 3.10.

The number of cycles, code size, and instructions per cycle (IPC) for the FFTs with fixed-
point arithmetic and user-defined floating-point emulation are listed in Table 3.8. The number
of cycles increases by a factor of 8.3× for the proposed floating-point version. The instruc-
tions per cycle (IPC) is high for both implementations, because the maximum IPC value for
the KAVUAKA processor is 2. The instruction parallelism of the processor can therefore be
used efficiently in these implementations. The code size of the floating-point emulation im-
plementation increases by a factor of 7.5× .

The mean and maximum absolute errors compared to a IEEE floating-point implementations
with double-precision in Matlab are listed in Table 3.9 and shown in Figure 3.24. With an
optimized fixed-point implementation and shifts after each stage of the FFT for scaling, the
total quantization error is smaller for the fixed-point implementation.

48

3.2 Specialization Towards Performance

Table 3.8: Cycle count, code size and instructions per cycle (IPC) for fixed-point and floating-
point FFTs

Format Cycle Count IPC Code Size

32-bit fixed-point 451 1.9 4056 byte
32-bit floating-point 3765 1.7 30592 byte

Table 3.9: Precision comparison between double-precision IEEE floating-point, fixed-point
and emulated floating-point FFT implementations

Format Mean Maximum
Absolute Error Absolute Error

32-bit single-precision floating-point (Matlab) 1.8709e-07 6.6534e-07

32-bit fixed-point (KAVUAKA) 4.0799e-08 1.3907e-07

32-bit floating-point (KAVUAKA) 7.0870e-07 4.1363e-06

·10−7

·10−7

·10−6

Absolute Error for the Single Precision IEEE Floating-Point FFT (Matlab)

Absolute Error for the 32-bit Fix-Point FFT (KAVUAKA processor)

Absolute Error for the 32-bit Floating-Point FFT (KAVUAKA processor)

ab
so

lu
te

er
ro

r

bins
0 5 10 15 20 25 30

8
6
2
0

1.5
1

0.5
0

6
4
2
0

bins
0 5 10 15 20 25 30

bins
0 5 10 15 20 25 30

ab
so

lu
te

er
ro

r
ab

so
lu

te
er

ro
r

4

Figure 3.24: Absolute errors for the FFT implementation with single-precision IEEE floating-
point, fixed-point and emulated floating-point compared to double-precision
IEEE floating-point.

49

3 The KAVUAKA Hearing Aid Processor

3.2.3 Tightly Coupled Co-Processors

Complex arithmetic functions, including trigonometric or hyperbolic functions such as the
computation of sine or cosine, require a considerable number of computing cycles on instruc-
tion-driven von Neumann central processing units [160]. A common approach is therefore to
integrate data-driven hardware accelerators in addition to the CPU.

For hardware integration, the coordinate rotation digital computer (CORDIC) [161] algorithm
and a non-restoring division algorithm are chosen. A variety of elementary functions, that
are part of the hearing aid applications, including hyperbolic and trigonometric arithmetic
functions, can be computed with these hardware accelerators. These functions include divi-
sion, sine, cosine, tangent, arctangent, hyperbolic sine, hyperbolic cosine, hyperbolic tangent,
hyperbolic arctangent, natural logarithm, exponential, and square root. A fast and accurate
calculation compared to other approximation algorithms is possible with reduced memory re-
quirements compared to lookup table (LUT) interpolation algorithms [161]. Algorithms with
high memory requirements are excluded due to limited on-chip memory for hearing aid pro-
cessors. In comparison to related iterative algorithms [162], such as Newton’s method, which
generally do not end after a given number of iterations, which is undesirable in a real-time
system, the CORDIC algorithm ends with a predictable run-time [163], where the maximum
number of iterations depends on the size of the input.

A radix-2 CORDIC [161], based on the architecture described in [164, 165], and a non-
restoring division hardware accelerator based on the architecture described in [86, 87] are
coupled as co-processors to KAVUAKA.

This chapter examines the architecture, processing performance, and silicon area requirements
of the co-processors with special emphasis on the coupling of the co-processor to KAVUAKA,
the main processor (CPU). Therefore, both algorithms are implemented as hardware acceler-
ators and as a pure software library on the KAVUAKA processor. Taking into account the data
transfer between the processor and the co-processor, the degree of acceleration using the hard-
ware co-processors is investigated. Furthermore, the silicon area and the power consumption
of the hardware co-processor are considered.

CORDIC Co-Processor Architecture

The co-processor consists of a CORDIC module, an iteration controller, an output register,
and an angle table as shown in Figure 3.25. The CORDIC module iteratively computes Equa-
tion 3.11:

50

3.2 Specialization Towards Performance

xi+1 = xi−σi ·2−i · yi

yi+1 = yi +σi ·2−i · xi

zi+1 = zi−σi · arctan ·(2−i)

(3.11)

which describes the iterative rotation of the vector (xi,yi). The rotation around the angle Θ

is represented as a linear combination of partial rotations around the selected partial angle αi
(Equation 3.12):

Θ = ∑
i

σi ·αi σi ∈ −1,1 (3.12)

where i is the iteration index and σi determines the sign change and the multiplication form
the rotation matrix is replaced by iteratively adding or subtracting values stored in a lookup
table (LUT) in each iteration (Equation 3.13):

α = arctan2−i (3.13)

The CORDIC module compute the matrix multiplications using additions and shifts. Com-
pared to [164, 165] the pre- and post-scaling of the CORDIC [161] are not part of the hard-
ware architecture. Instead, the pre- and post-scaling is computed by the KAVUAKA processor.
The co-processor computes the transformation equations. The angle table contains 32 angles,
which are written by the KAVUAKA processor before the computation. The values depend on
the fixed-point input and output format, and the coordinate system mode. The coordinate sys-
tem can be circular, linear or hyperbolic. The iteration controller selects the σi and αi values
based on the iteration i. The output and input data of the co-processor are stored in registers.

This co-processor is coupled to the KAVUAKA processor as shown in Figure 3.75. The
KAVUAKA processor uses LOAD and STORE instructions to access and control the exter-
nal bus interface, which is mapped to the global address space. The interface routing for
accessing the co-processor is specified in Figure 3.26. For the xi, yi and zi values three STORE
instructions are required and one STORE sets the coordinate system. The co-processor starts
the computation iterations when the xi value is written. The KAVUAKA processor retrieves
the result registers with LOAD instructions after a certain number of CYCLES, which depends
on the datapath width and the required computational accuracy. This number can be reduced
by computing more than one iteration per cycle by connecting several CORDIC modules in
series. To increase the throughput, SIMD co-processor configurations are designed where
multiple CORDIC modules process multiple data values in parallel.

A total of ten co-processor configurations are evaluated in this chapter. These co-processors
are part of the co-processor cluster, which is shown in Figure 3.76 and listed in Table 3.10.

51

3 The KAVUAKA Hearing Aid Processor

Iteration

angles config x,y,z

x,y,z

x,y,z

start

Angle
table

CORDIC

Register

controller

Register Register Register

xn yn zn

»n »n

αi

xn+1 yn+1 zn+1

+/- +/- +/-

δi

Module

Figure 3.25: Architecture of the CORDIC co-processor and the CORDIC module.

1 STORERCU0 HW_ADDRESS_RCU0_1 , REG_Y_IN , #1
2 STORERCU0 HW_ADDRESS_RCU0_2 , REG_Z_IN , #1
3 STORERCU0 HW_ADDRESS_RCU0_4 , MODE , #1
4 STORERCU0 HW_ADDRESS_RCU0_0 , REG_X_IN , #{ CYCLES + 1}
5
6 LOADRCU0 REG_X_OUT , HW_ADDRESS_RCU0_0
7 LOADRCU0 REG_Y_OUT , HW_ADDRESS_RCU0_1
8 LOADRCU0 REG_Z_OUT , HW_ADDRESS_RCU0_2

Figure 3.26: Assembler instructions using the CORDIC co-processor. The STORE instruc-
tions transfer xi, yi and zi. The MODE determines the coordinate system: circular,
linear of hyperbolic. The write to the address of xi starts the iteration controller
of the co-processor. The number of CYCLES determines the latency of the LOAD
instructions to retrieve the results from the output registers.

52

3.2 Specialization Towards Performance

The least complex CORDIC co-processor is called CORDIC M1, which has a single CORDIC
module and no SIMD. The number of chained CORDIC modules is increased for the co-
processors CORDIC M2 and CORDIC M4. The option for SIMD support doubles the number
of parallel processing CORDIC modules, each iterating on a subword, for the co-processors
CORDIC M1 SIMD, CORDIC M2 SIMD and CORDIC M4 SIMD.

Table 3.10: CORDIC co-processor configurations. The number of chained (M2 and M4) and
parallel CORDIC modules (SIMD) is varied.

Co-Processor Number of
Name CORDIC modules (M) SIMD

CORDIC M1 1 no (1 word)
CORDIC M2 2 no (1 word)
CORDIC M1 SIMD 1 2 words
CORDIC M2 SIMD 2 2 words
CORDIC M4 4 no (1 word)
CORDIC M4 SIMD 4 2 words

Division Co-Processor Architecture

The architecture of the generic, non-restoring signed divider co-processor [86–88] consists of
an array of controlled adder or subtractor cells (CAS). These cells add or subtract iteratively
shifted divisor bits to the dividend. The results represent the partial remainders, and the sign
of the result determines one bit of the quotient. The data width (DW) of the CAS cells corre-
sponds to the subword length of 32-bit. The rows in the CAS array are referred to as divider
levels (DL). The number of divider levels defines the processing throughput and the required
hardware resources. In this study, the divider level is varied between 1 to 8.

Processing Performance

To determine the processing performance and throughput, the number of cycles required to
compute hyperbolic and trigonometric arithmetic functions is measured. As a reference, the
number of cycles for the software implementation of the CORDIC and the non-restoring al-
gorithm on the KAVUAKA processor are given in Figure 3.27. Both implementations make
use of the VLIW and SIMD processor mechanisms. The IPC is above 1.5 and two subwords
are processed in parallel. Based on the type coordinate system, circular, hyperbolic or linear,
the software arithmetic of the innermost transformation computation differs. Additionally,
the pre- and post-scaling depend on the function type, the data and the fixed-point types. The

53

3 The KAVUAKA Hearing Aid Processor

number of cycles is the average for 100 randomly generated data values. The non-restoring di-
vision algorithm requires 62 % of cycles compared to the CORDIC algorithm for the division
function. The exponentiation (power) is computed based on the Equation 3.14:

xy = ey·lnx (3.14)

which requires two sequential calculations of the CORDIC algorithm for the exponential and
natural logarithm functions.

di
v

ex
p

at
an ln co

s

si
n

sq
rt

po
w

er

100

200

300

400

500

C
yc

le
s

pe
rf

un
ct

io
n

SW CORDIC SIMD SW NR DIVISION SIMD

Figure 3.27: Number of cycles for the computation of hyperbolic and trigonometric arithmetic
functions using the software implementation of the CORDIC and non-restoring
division algorithm on the KAVUAKA processor.

The number of cycles required for hardware accelerator configurations for the same functions
are specified in Figure 3.28. Increasing the number of modules reduces the number of cy-
cles required, but the constant cycles of pre- and post-processing are maintained. Compared
to the software implementation Figure 3.27, the order of the functions varies according to
the number of cycles, because the hardware accelerators always require the same number of
cycles. The non-restoring division accelerator requires fewer cycles compared to CORDIC
accelerator with the same degree of parallelism, since no pre- and post-processing is required.
The required number of cycles for the computation is linearly dependent on the divider level
(Equation 3.15):

N ∼ DW
DL

(3.15)

Table 3.11 presents the number of cycles, subdivided according to the different processing
steps. The cycles for initializing the angle table are not required if the same coordinate system

54

3.2 Specialization Towards Performance

at
an ln di
v

sq
rt

ex
p

co
s

si
n

po
w

er

0

20

40

60

80

100

120

C
yc

le
s

pe
rf

un
ct

io
n

CORDIC M1 CORDIC M2
CORDIC M1 SIMD CORDIC M2 SIMD
CORDIC M4 CORDIC M4 SIMD
NR DIV DL1 NR DIV DL2
NR DIV DL4 NR DIV DL8

Figure 3.28: Number of cycles for the computation of hyperbolic and trigonometric arithmetic
functions using the hardware CORDIC accelerators.

and fixed-point format is used by successive functions. The pre- and postscaling steps depend
on the function type. The number of CORDIC iterations is fixed to the maximum value of
32 iterations. In this case, the highest achievable precision is achieved with the CORDIC M1
accelerator (Section 3.2.3).

Compared to the related processors and implementations [166–168] that do not use a look-up
table approach, the number of cycles is lower for the KAVUAKA processor with a coupled
CORDIC M4 co-processor for all hyperbolic and trigonometric functions. The compared pro-
cessors are multi-issue (VLIW) SIMD instruction-set architectures (Table 3.12). The C67x
executes up to eight and the ADSP-BF533 up to three instructions per cycle. To take advan-
tage of the parallelism offered by the processor architectures, suitable algorithms are selected
and optimized. In [166], the authors present a method to implement mathematical functions
on the TMS320C67X using polynomial approximation and data dependency optimizations to
take full advantage of the multiple parallel execution units. With this method they achieve up
to 70.2 % performance improvement over the standard implementation. Polynomial approx-
imation algorithms are also used in [168]. In addition, a fast floating-point emulation format
is used to increase performance for fixed-point processor execution. The maximum reduction
of the number of cycles compared to the standard library is 85 %. Although the number of

55

3 The KAVUAKA Hearing Aid Processor

Table 3.11: Number of cycles for hyperbolic and trigonometric functions for the KAVUAKA
processor with a coupled CORDIC M1 co-processor. Cycles subdivided by: Ini-
tialization of the angle table, pre-scaling, CORDIC iterations and postscaling.

Hyperbolic and Angle table CORDIC Total
trigonometric functions initialization Prescaling iterations Postscaling

Sine 62 18 32 16 128
Cosine 62 18 32 16 128

Arc tangent 62 8 32 5 107
Divide 62 16 32 8 118

Exponential 62 29 32 9 132
Natural logarithm 62 15 32 6 115

Square root 62 21 32 8 123

issue-slots of the related processor architectures is comparatively high, the number of cycles
for computing hyperbolic and trigonometric functions is higher than on a processor with fewer
issue-slots and a co-processor. An advantage of the co-processor is that the issue-slots can be
used for other calculations. However, the silicon area, including the area of the co-processor
and the processor (Section 3.2.3), programming flexibility, and power consumption must be
considered.

Table 3.12: Comparison of the number of cycles for hyperbolic and trigonometric functions
for the KAVUAKA processor with a coupled CORDIC M4 co-processor and the TI
TMS320C6000 DSP.

Function KAVUAKA and TI Lib. [166, 167] Opt. [166] Opt. [168]
CORDIC M4 C67x (SP) C67x (SP) Blackfin ADSP-BF533

sin 43 173 69 412
cos 43 183 73 —
atan 21 265 79 —
div 30 120 — —
exp 41 213 74 331
ln 26 136 44 569

sqrt 32 112 — —

56

3.2 Specialization Towards Performance

Precision Evaluation

The precision analysis for the hyperbolic and trigonometric functions for different co-proces-
sor configurations is presented in Figure 3.29, Figure 3.30 and Figure 3.31. The precision is
measured as the maximum absolute error compared to the reference double-precision floating-
point result. The precision decreases exponentially with the number of algorithm iterations for
both, the CORDIC and the non-restoring division algorithm, since one or more fractional bits
are computed per iteration. By increasing the number of CORDIC modules, the absolute error
decreases more rapidly. The comparison between the functions shows slight differences. The
precision of the square root function is higher and increases faster than the others, because
the input values are limited to positive values and the output dynamic range is comparatively
small. Both algorithms can stop the computation at the required precision requirements to
keep the processing time as low as possible.

0 5 10 15 20 25 30 35
10−8

10−5

10−2

101

Iteration

M
ax

im
um

ab
so

lu
te

er
ro

r cos
sin
div
exp
atan
sqrt
ln

Figure 3.29: Maximum absolute error for each CORDIC iteration with one CORDIC module.
32 bit fixed-point values are used.

Area Evaluation

The silicon area of the CORDIC and the non-restoring division co-processor synthesized with
the TSMC 40 nm HVT low-power ASIC technology for a clock frequency of 50 MHz is shown
in Figure 3.32 and Figure 3.33. CORDIC accelerators with SIMD or more than one module
require more combinational logic, while the non-combinational area (sequential logic area)
remains almost constant. For the SIMD configurations, there is a small increase due to the
increased number of output buffers. Increasing the number of parallel CORDIC modules for
SIMD support requires less additional combinational logic per module than chaining the same
number of CORDIC modules (M2 and M4 configurations). The reason for this is to share

57

3 The KAVUAKA Hearing Aid Processor

0 5 10 15 20 25 30 35
10−8

10−5

10−2

101

Iteration

M
ax

im
um

ab
so

lu
te

er
ro

r cos
sin
div
exp
atan
sqrt
ln

Figure 3.30: Maximum absolute error for each CORDIC iteration with four CORDIC mod-
ules. 32 bit fixed-point values are used.

0 5 10 15 20 25 30 35

10−6

10−4

10−2

100

Iteration

M
ax

im
um

ab
so

lu
te

er
ro

r div

Figure 3.31: Maximum absolute error for the non-restoring division co-processor. 32 bit fixed-
point values are used.

58

3.2 Specialization Towards Performance

resources for SIMD CORDIC modules. However, due to the aforementioned increase in non-
combinational logic, the SIMD configurations require more total area.

48
%

52
%

59
%

67
%

71
%

78
%

CORDIC
M

1

CORDIC
M

1 SIM
D

CORDIC
M

2

CORDIC
M

2 SIM
D

CORDIC
M

4

CORDIC
M

4 SIM
D

0.00

1.00

2.00

·104

Si
lic

on
ar

ea
in

µm
2

Combinational area
Non-Combinational area

Figure 3.32: Silicon area for different CORDIC configurations. Results obtained from an
ASIC synthesis with the TSMC 40 nm HVT low-power ASIC technology at
50 MHz.

The silicon area for the non-restoring division accelerator with different numbers of CAS
rows (divider levels (DL)) is shown in Figure 3.33. The combination area increases by about
71 % per divider level. The non-combinational area decreases negligibly due to the smaller
iteration counter. The non-restoring division co-processor is about 33 % smaller compared to
the equivalent CORDIC co-processor. Both, the combinational and non-combinational area is
more than half as large.

The silicon area of the CORDIC co-processor compared to the KAVUAKA processor with
different datapath width is shown in Figure 3.34. The area requirement for the CORDIC co-
processors is 0.0068 mm2 for a 24-bit datapath width/resolution and 0.0090 mm2 for a 32-bit
datapath width. The silicon area overhead caused by attaching this co-processor to the 48-bit
and 64-bit KAVUAKA is smaller, since the processor and co-processor is implemented without
SIMD support in this case (Section 3.3.1). The co-processor area overhead is approximately
14 % for the 24-bit and 32-bit processor. Compared to the 48-bit and 64-bit processor, the area
of the co-processor is approximately 8 %.

59

3 The KAVUAKA Hearing Aid Processor

42
%

55
%

68
%

82
%

NR
DIV

DL1

NR
DIV

DL2

NR
DIV

DL4

NR
DIV

DL8
0.00

2,000.00

4,000.00

6,000.00

8,000.00
Si

lic
on

ar
ea

in
µm

2
Combinational area
Non-Combinational area

Figure 3.33: Silicon area for different non-restoring division co-processor configurations. Re-
sults obtained from an ASIC synthesis with the TSMC 40 nm HVT low-power
ASIC technology at 50 MHz.

14
%

14
%

8
%

8
%

24
-bi

t+CP

32
-bi

t+CP

48
-bi

t+CP

64
-bi

t+CP
0.00

0.05

0.10

0.15

Si
lic

on
ar

ea
in

m
m

2

KAVUAKA 64-bit
CORDIC co-processor

Figure 3.34: CORDIC (M1, no SIMD) co-processor silicon area compared to the silicon area
of the KAVUAKA 64-bit processor. The data width is changed for the processor
and the co-processor. Results obtained from an ASIC synthesis with the TSMC
40 nm HVT low-power ASIC technology at 50 MHz.

60

3.2 Specialization Towards Performance

3.2.4 Operation Merging Extensions

The baseline VLIW-SIMD architecture (Section 3.1) was introduced in [169] for video pro-
cessing applications. A mechanism for merging operations, called X2-mode, is part of this
architecture. This mechanism encodes several operations with the same command and com-
mand modifier, i.e., signed/unsigned, overflow, condition set and condition read, into one
micro-operation (MO). A merged MO differs only in one bit (X2 encoding bit) in the binary
instruction encoding compared to a single MO. In particular, the length of the encoding is
the same. The register addresses in a pair (e.g., the two target registers) must be consecutive,
starting with an even address. Thus a single bit is sufficient to signal, when addressing a pair
of registers, instead of encoding both register addresses. This one operation is decoded in
the instruction decode (DE) stage, but several micro-operations are executed on duplicated
functional units within the processor. Encoding two MOs of the same type into a single MO
doubles the maximum possible number of MOs per cycle [84]. The functional units must
be implemented in the processor as often as they are used in parallel, i.e., in this example
two arithmetic logic units (ALUs), as shown in Figure 3.75. The X2 mode allows the paral-
lel execution of up to two operations, resulting in an IPC over two on the dual-issue VLIW
architecture.

In Figure 3.35, an assembler code is shown, which presents the application and advantages
of the X2-mode. This example is part of a computation of a tapering function. The window
weights and samples are stored in memory one after the other. With one X2 move (MV)
operation, two values are loaded from memory and stored in a consecutive pair of registers
(V0R0+V0R1). This is a special case for the X2 mode, which is called memory X2 mode.
The X2-mode requires only two move (MV) operations instead of four, doubling the data rate
to main memory. The indirect address pointers (WeightPtr and SamplePtr) to main memory
are incremented twice, since a X2 operation loads two values at the same time. The MAC
operations are not merged, because the MAC functional unit is not duplicated due to its com-
paratively high silicon area requirement.

The area increase for implementing the X2-mode in the processor architecture is negligible,
but the algorithm execution is accelerated and the minimum clock frequency can be reduced.
This results in a smaller area-time (AT) product for the processor implementation, i.e., higher
efficiency. However, there are limitations when using the X2-mode. The register pair of a
X2-operations must be an even and an odd register pair. The reason for this is the hardware
implementation of the X2 mode, which modifies the last bit of the register address for the odd
register when reading or writing the register file. Another restriction applies to the memory X2
operation mode. Since there are two VLIW issue slots, each with one load and store unit, there
are two separate local memory interfaces. The memory is attached to these interfaces, which
in turn is divided into two instances. The reason for this separation is to support the memory
X2 operation, with one instance for the even and the other for the odd memory addresses.
There is no possibility to perform successive data transfers to a memory block, when using

61

3 The KAVUAKA Hearing Aid Processor

(a)
1 MV V0R0 ,(WeightPtr)+
2 MV V0R2 ,(SamplePtr)+
3 MAC_16 V0R4+V0R5 ,V0R0 ,V0R2
4
5 MV V0R1 ,(WeightPtr)+
6 MV V0R3 ,(SamplePtr)+
7 MAC_16 V0R6+V0R7 ,V0R1 ,V0R3

(b)
1 MV_X2 V0R0+V0R1 ,(WeightPtr)++
2 MV_X2 V0R2+V0R3 ,(SamplePtr)++
3
4 MAC_16 V0R4+V0R5 ,V0R0 ,V0R2
5 MAC_16 V0R6+V0R7 ,V0R1 ,V0R3

Figure 3.35: Assembler code example for the X2-mode. Data is loaded with indirect memory
access (file indirect register (FIREG)) and the X2-mode. With the X2-mode (b)
a dense execution is possible. Operations with the same opcode are merged to
_X2-operations. By using MV_X2 instructions, two 64-bit registers are loaded
with one instruction. Target and source registers of X2-operations have to have
successive addresses. MAC-operations have two destination registers by default.

either load and store X2 operations.

This section introduces two hardware modifications that remove the restrictions under certain
circumstances. The modifications are evaluated in terms of hardware overhead.

Special Register File Extension: X2 Offset Register

For the original X2-mode [16], the addressed registers must necessarily be an even and an
odd register pair. This restriction leads to a neglectable hardware overhead for the register
addressing logic, because only the least significant bit (LSB) of the register address needs to
be modified to compute the second register address based on the given register, as shown in
Figure 3.36. However, signal processing applications may require different addressing modes
for an efficient processing scheme. An example is the radix-2 decimation in time FFT algo-
rithm, shown in Figure 3.15. The data to be processed is stored in main memory sequentially.
However, after each stage is processed, the data is rearranged based on the computing scheme
of the butterfly operations. This reordering is very regular, and the difference between two
adjacent data points can be described by an offset. This offset varies with the current FFT
stage. A fast data transfer between the register file and main memory is important for the
overall processing performance of the FFT. Therefore, a hardware mechanism with an offset
addressing mode for the X2-operations is desirable for efficient processing.

62

3.2 Specialization Towards Performance

Operand 2 Target

Address Decoder +1

Operand 1

+1 +1

even odd even odd even oddRegister file (RF)/Memory

Command Command modifier

Figure 3.36: X2-mode address decoding [16]. The odd register address is computed by in-
verting the least significant bit (LSB) of the encoded operand or target register
address.

To remove the restriction that the register pairs for the X2-mode must be an even and an odd
register, a X2 offset register (Reg X2) is introduced. This register contains the offset for the
register address, which is added to the register address encoded in the operation, as shown in
Figure 3.37. The X2 offset register is located in the special register file of the processor. If
there are 64 registers in total, the bit-width of the offset register is 7-bit for storing the signed
offset value. This offset is added to the given register address. The processor can read or
overwrite the content of this register. The default value is 1, which is the default offset for
the register address. Not all combinations of values for the offset are allowed, because the
maximum read or write ports of the register file can be exceeded. An example of using the
X2 offset register is shown in Figure 3.38. The value of the offset register is set to 32 by the
special move (SMV) operation.

Command Operand 2 Target

+Reg X2 +Reg X2 +Reg X2

Command modifier

Address Decoder

Operand 1

Register file (RF)/Memory

Figure 3.37: X2-mode address decoding with the proposed X2 offset register. The second
register address is computed by adding the offset register value to the encoded
operand or target register address.

The implementation of the X2 offset register including the required adder, which adds the
offset to the given register address, increases the total area of the KAVUAKA 64-bit processor
by 0.45 %.

63

3 The KAVUAKA Hearing Aid Processor

1 STORE_STAGE_X2_FFT
2 SMVI_32 V0OFFSET_X2 , #32 //set offset to 32
3 --scheduling -off
4 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R0+V1R0
5 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R2+V1R2
6 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R4+V1R4
7 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R6+V1R6
8 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R8+V1R8
9 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R10+V1R10

10 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R12+V1R12
11 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R14+V1R14
12
13 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R1+V1R1
14 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R3+V1R3
15 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R5+V1R5
16 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R7+V1R7
17 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R9+V1R9
18 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R11+V1R11
19 :0 MV_X2 4(FIR_AUDIO_1_FIRST), V0R13+V1R13
20 :1 MV_X2 4(FIR_AUDIO_1_SECOND), V0R15+V1R15
21 --scheduling -on
22 SMVI_32 V0OFFSET_X2 , #1 //reset value to default one
23 ENDMACRO

Figure 3.38: Assembler code example for X2-mode with the X2 offset register addressing.
This function is part of the FFT algorithm and stores the data after the butterfly
operations to the main memory. The second register address is calculated by
adding the offset register value to the address of the first register. The offset is 32
in this case. This subroutine stores four registers (e.g., 4× 64-bit) per cycle to
the main memory, without any alignment or permutation operations.

64

3.2 Specialization Towards Performance

Interleaved X2 Memory Interface

In this section, an interleaved X2 memory interface is proposed. This memory interface al-
lows successive data transfers to the main memory using two X2 operations per cycle. In the
example shown in Figure 3.38, four registers are stored in local memory using two MV_X2
instructions per cycle. This is possible with X2-operation mode [169], which can also be
used to access the main memory (memory X2-operation mode). The main memory instance
is divided into two parts, a local memory instance for the even and odd positions/addresses.
Only the last bit of the consecutive even and odd addresses is flipped. As a result of this ar-
chitecture, the data to be stored is split and stored in the two memory instances. Half of the
data (even operand) is stored in the first memory block and the other data (odd operand) in
the second memory block. When sequentially reading or writing the data without memory X2
mode, the memory address gap between the two memory instances must be considered. In
this case, two file indirect registers (FIREGs) are required. Special addressing modes such as
bit reversed (Section 3.3.3) or circular indirect buffer addressing [83] are not possible because
of this memory gap.

The proposed interleaved X2 memory interface prevents the memory address gap for the X2
operation mode. To support X2 and individual load and store accesses from each of the two
load and store units, four memory modules are required, as proposed in [169]. However, all
memory modules are interleaved, as shown in Figure 3.39. The last two address bits of each
of the two address ports are used. For example, if the last two address bits are ”00”, the first
memory module is activated. Two memory modules are activated for X2 memory accesses.
One of the memory modules is determined by the address port. The second memory module
is selected in a circular manner, so there is no restriction on the use of even memory addresses
as in [169]. Structural hazards are prevented by a logic that detects and resolves the hazard.
An example of a hazard is a write after read transfer at the same location. Temporary bypass
registers are used to buffer the transfer until the memory port is free.

With the proposed architecture, both single and X2 memory accesses are possible without the
limitations mentioned above. A single file indirect register (FIREG) can be used to access local
memory. This memory hierarchy behaves like a single memory block for the programmer.
Special addressing modes such as bit reverse or ring memory addressing (Section 3.3.3) are
possible using the entire address space. The area required to implement the interleaved X2
memory interface logic is shown in Figure 3.51. Compared to the actual SRAM area, the
logic accounts for 3 % up to 6 %.

3.2.5 Issue-Slot Based Predication Encoding Technique

Very long instruction word (VLIW) processors are commonly used for embedded high per-
formance and low-power multimedia applications [170–177]. VLIW processors are designed

65

3 The KAVUAKA Hearing Aid Processor

w
r_port_a

00 01 10 11

w
r_port_a_X

2

Dual Port
DMEM 0

Dual Port
DMEM 1

Dual Port
DMEM 2

Dual Port
DMEM 3

2:4 Address Multiplexer

wr_port_a_address(1 downto 0)

w
r_port_b

00 01 10 11

w
r_port_b_X

2

wr_port_b_address(1 downto 0)

rd_port_a

00 01 10 11

rd_port_a_X
2

4:2 Address Demultiplexer

rd_port_a_address(1 downto 0) 00 01 10 11 rd_port_b_address(1 downto 0)

rd_port_b
rd_port_b_X

2

Figure 3.39: Interleaved data memory (DMEM) hierarchy. The data of the two read and write
ports (port_a and port_b) and the additional data ports (port_a_X2 and port_b_-
X2), which do not require any address, are multiplexed to one of the dual port
SRAM modules based on the two LSBs of the port address.

for instruction level parallelism (ILP), executing multiple instructions with a fixed order in
parallel. Since the order of the instructions is determined by the compiler, the hardware is less
complex compared to superscalar architectures. Therefore, to fully utilize hardware resources,
ILP compiler optimizations are required [170, 177].

One limitation for further compiler optimizations are branch instructions, which cause smaller
basic blocks (straight line microcodes (SLMs)) in the code, restricting the scope of ILP opti-
mizations [177]. These branch instructions, which are required for the control flow of an ap-
plication, are expensive in terms of processing performance [176]. The condition of a branch
cannot be evaluated at the beginning of the pipeline. Hence, the successive instructions already
fetched and decoded must be discarded, while the pipeline is flushed, or are executed whether
or not the conditional branch is taken. One alternative to conditional branches is predica-
tion [171, 177]. Predication is the conditional execution or guarded execution of instructions.
The instructions of both instruction-sequences of the conditional code are executed, but only
the instructions of one of the sequences change the state of the processor and memories, de-
pending on the value (condition flag) stored in a predication or guard register [177]. The
remaining instructions act as no operation (NOP) instructions. Branches may be replaced by
conditionally executed instructions during the if -conversion [171, 172, 178]. The control de-
pendencies are converted to data dependencies by converting multiple regions of a control
flow graph into a basic block, composed of predicated (conditional) code [170].

66

3.2 Specialization Towards Performance

The conditional executed code can be implemented in two common variants, named full and
partial predication. Most instructions have an additional predicate register, which determines
if the instruction should change the processor state. A conditional ADD instruction is shown
Figure 3.13.

Table 3.13: Instruction extension for full predication: An ADD instruction with two source,
one target operand and a predicate register (p0), holding a condition flag (true or
false). This flag determines if the instruction modifies the processor state [171].

Instruction Target Source Source Predicate
Opcode Register Register Register Register

ADD_CR V0R0 V0R1 V0R2 (p0)

The second variant for conditional code implementation is partial predication. Here, a small
set of instructions are extended to be conditional. In Figure 3.14, a conditional move and a
conditional select instruction are depicted. The move instruction overwrites the target register
based on the flag stored in the predicate register. The select instruction selects on of the two
source operands based on the predicate register.

Table 3.14: Instruction extension for partial predication: A conditional/predicated move in-
struction (MV_CR) with one source, one target operand and a predicate register
(p0), holding a condition flag. This flag determines if the content of the source
register is copied to the target register. The select instruction (SEL_CR) copies
the content of one of the two source register to the target register. Which source
register is selected is based on the condition flag [171].

Instruction Target Source Source Predicate
Opcode Register Register Register Register

MV_CR V0R0 V0R1 — (p0)

SEL_CR V0R0 V0R1 V0R2 (p0)

However, the application of a predication technique requires an extension of the instruction
set architecture (ISA) of the processor [174, 177]. Additional instruction encoding bits are
needed in order to address one of the predicate register. But adding for example six instruc-
tion encoding bits to address 64 predicate register is prohibitively too expensive for embedded
processors [177]. Studies for related embedded processors [179, 180] show the importance
of the instruction memory size on power consumption. As shown in [179], the memory sub-
system of ARM processor [181] accounts for 65.2 % of the total energy. For multi-processor
ARM systems, this proportion is 45.9 %. The instruction memory cache alone accounts for
20.6 % in this system. The ARM processors with the reduced 16-bit Thumb instruction set

67

3 The KAVUAKA Hearing Aid Processor

architecture (ISA) are more energy efficient compared to the 32-bit ARM processors, how-
ever the processing performance is lower [179]. The instruction caches of the TMS320C6000
VLIW processor family [182] account for up to 30 % of the total processor power [183, 184].
Besides the power consumption, the area requirements of the instruction memory are crucial
for embedded processors. Each additional instruction bit increases the required SRAM area
linearly, as depicted in Figure 3.40 for a 40 nm ASIC technology.

20 25 30 35 40 45 50 55 60 65

60

80

100

Number of bits per word

SR
A

M
ar

ea
in

%

Figure 3.40: Area of SRAM macro blocks of a 40 nm ASIC technology with different number
of bits per word. The area of the SRAM macro block with 64-bit per word is used
as a reference.

Additionally, the number of read and write ports of the predicate register file and the instruc-
tion fetch and decode logic are important for the resulting hardware complexity [174, 180].
The instruction fetch and decode logic of a DSP can consume up to 40 % of the total processor
logic [180, 185]. Therefore, the goal is to reduce the overhead caused by implementing the
predication technique in these processors [174].

In this section, a new scalable and low overhead predication technique for VLIW processors
is proposed. The corresponding compiler extension is described in Section 4.2.1. Instead of
encoding the address of the predicate registers with additional instruction encoding bits, each
issue-slot of the VLIW architecture includes a dedicated predicate register. With the help of
compiler optimizations, which are also presented in this thesis, instructions are scheduled on
the issue-slot with the corresponding predicate register. This technique scales with the number
of issue-slots, requires no additional instruction encoding bits, and therefore decreases the
hardware overhead for predication.

The related predication techniques are described in Section 3.2.5. The proposed technique is
presented Section 3.2.5. The three case studies, which are presented in Section 3.2.5, Sec-
tion 3.2.5 and, Section 3.2.5, show the applicability of the proposed technique.

68

3.2 Specialization Towards Performance

Related Work

An overview of the related predication techniques is given in Table 3.15. The number of
predicate registers and the required instruction encoding bits to address these registers are
compared. The number of predicate registers determines the maximum number of conditional
statements, which can be processed in parallel. The cause for these conditional statements
are parallel or nested if-else constructs. A comparatively high number of up to 64 predicate
registers is used by [171,186–188]. Consequently, these architectures require most instruction
encoding bits to address one of the predicate registers. The number of encoding bits is reduced
in [188], by splitting the registers into two sets. A special instruction is used to switch between
the two register sets. The ARMv7-A [181] architecture includes one application program status
register (APSR), which holds four different conditions: negative, zero, carry and overflow.
In order to select these conditions 4-bit are required for every instruction [177]. In [174,
182, 189] the predication technique of the TMS320C6X processor family is described. The
condition flags are stored in a restricted number of registers of the general purpose register
file. The limited number of six predicates for the TMS320C6X processor family results in a
limited control-flow nesting [177]. As every if-then-else statement requires two predicates,
only two levels of control-flow nesting are possible. The number of read and write ports of
the general purpose processor register file needs to be increased and the access and usage
patterns might influence overall performance [190]. However, no dedicated predicate register
file is required and the predicate registers can be used otherwise if they are not needed. The
authors of [174] propose to reduce the overhead of predication by restricting the number of
predicate registers to one. Consequently, only one additional read port for the predicates is
required. Four ports were previously required by the four issue-slots of the VLIW architecture
to read four predicate registers per cycle. Instead of 3-bit for the predicate operand, only 1-bit
is required. Nested and parallel if-else statements can not be fully predicated with only one
predicate register [174].

A predication technique is presented in this thesis, which does not require any instruction bits
to encode the predicate registers. The predicate registers are encoded by scheduling the condi-
tional instructions on different issue-slots. The instruction bits saved compared to the related
architectures are summarized in Table 3.15. Due to the issue-slot based predicate encoding,
the proposed technique decreases the required instruction memory size, power consumption
and the complexity of the instruction decoding stage compared to the related work. A com-
piler extension for this encoding technique is presented, which handles the predicate register
allocation automatically, without the need to manually encode the predicate register within the
instructions.

69

3 The KAVUAKA Hearing Aid Processor

Table 3.15: Comparison of related predication techniques. The required instruction encoding
bits are those that address one predicate register.

Required
Number of instruction
predicate encoding

Architecture registers bits

Itanium IA-64 processor [186, 187] 64 6-bit
Generic ILP processor [171] 32 5-bit

ARMv7-A [181] 1 4-bit
TMS320C64x/C67x VLIW [182, 189] 5 3-bit

PLX [188] 128* 3-bit
HP VLIW ST231 ISA [174] 1 1-bit

KAVUAKA [this work] 16** none
* (16 sets of 8) ** (8 per issue-slot, one for each SIMD subword)

Proposed Issue-Slot Based Predication Technique

A new predication technique is presented, which exploits the issue-slot based processing of
VLIW processors. The architecture is depicted in Figure 3.41. A conditional instruction,
which is defined by setting one instruction encoding bit to ’1’, receives or sets the condition
flags of one predicate register. Instead of selecting a predicate register using additional instruc-
tion encoding bits, the predicate register is selected by the issue-slot, on which the conditional
instruction is scheduled. Each issue-slot of the VLIW processor contains one dedicated pred-
icate register. The predicate register is selected with the issue-slot, on which the instruction
has been scheduled. No additional bits for addressing the predicate register are required in the
instruction encoding. Every conditional instruction, which reads or writes to same predicate
register, is scheduled on the same issue-slot. This technique requires that the issue-slots of the
VLIW architecture are identical/symmetric in terms of functional and data movement units
(FUs), so that the instruction scheduler can switch the instructions between the slots without
constraints.

These predicate registers contain four condition flags (overflow (O), carry (C), negative (N)
and zero (Z)) for each subword of one SIMD data word, as shown in Figure 3.41 and proposed
by [177, 190]. On the one hand, this format can be used to process conditional SIMD instruc-
tions on subword-level, with up to eight subwords in parallel depending on the condition flags
stored in the corresponding position in the predicate registers. On the other hand, each single
subword with four condition flags can be used for nested if-else statements. This use case
assumes that each subword holding the conditions can be selected and used for one of the
conditional if-else statements. The total number of predicates is therefore 16, stored in two

70

3.2 Specialization Towards Performance

FU

Pipeline

Execution Stage

Issue-Slot 0

Issue-Slot 1

predicate 0

Pipeline

predicate 1

FU

Predicate register
OCNZ OCNZ . . . OCNZ OCNZ
SW #7 SW #6 . . . SW #1 SW #0

Predicate register content: flags (32-bit) with four conditions
per SIMD subword (SW): overflow (O), carry (C), negative
(N) and zero (Z)

Figure 3.41: One dedicated predicate register is part of each issue-slot. Each functional unit
(FU) reads the condition flags for each subword from the predicate register of the
same issue-slot.

71

3 The KAVUAKA Hearing Aid Processor

predicate registers with eight subwords holding four condition flags each. Using conditional
X2 operations, as presented in [84], is also possible when duplicating the flag register for the
even and odd functional units.

The number of predicates scales with the number of issue-slots and available SIMD subwords
of the processor. The number of read and write ports of the predicate register file is one.
The area overhead for implementing one additional predicate register per issue-slot with one
read and write port is around 1 % of the total core cell area of the KAVUAKA processor for
an application-specific integrated circuit (ASIC) synthesis with a 40 nm TSMC low-power
technology [56].

Case Study: Floating-Point Emulation

In this case study, floating-point emulation code with a high number of conditionally and
independently executed operations, like overflow and sign checks, normalization operations
and bitwise comparisons, is used. The underlying floating-point emulation library is described
in detail in [191]. The computation of the addition and subtraction operations of this library
is shown in Figure 3.42. For a floating-point addition or subtraction, the exponents of both
numbers have to be adjusted to the same value. Therefore, the absolute difference of the
exponents is computed. Based on the difference, the significand of the smaller number is
shifted right by the absolute difference of the exponent and the larger exponent is selected.
The significands are then added or subtracted from each other. After normalization of the
significand, the exponent is updated and the floating-point addition or subtraction is computed.

The floating-point emulation addition assembler code macro is shown in Figure 3.43. Here
the exponents are subtracted from each other. Depending on the result of this subtraction, one
of the significands is chosen for shifting before adding the significands. The normalization is
performed by counting leading zeros or ones. The resulting register is then rebuilt from the
updated exponents and the normalized significands.

In the related work, presented in [146] and [192], processor architectures with multiple con-
ditional registers and predicated execution features are selected for floating-point emulation.
In this case study, the processing performance is evaluated based on the number of available
predicate registers. Digital filter implementations with the difference Equation 3.16 are used
as floating-point algorithms:

y(n) =
M

∑
i=0

bix(n− i)−
N

∑
j=1

a jy(n− j) (3.16)

where x is the input data and y is the output data. a and b are the filter coefficients for finite
impulse response (FIR) and infinite impulse response (IIR) filters. In this case study, a FIR and

72

3.2 Specialization Towards Performance

significand exponent
eBfB

significand exponent
eAfA

|eA− eB|

fA >> x fB >> x

fA± fB

normalization eC

max(eA,eB)

significand exponent
eCfC

or

24-bit 8-bit24-bit 8-bit

24-bit 8-bit

Figure 3.42: Optimized floating-point addition for SIMD processors.

IIR filter with an order of 17 and 7 are computed using floating-point emulation macros. Ta-
ble 3.16 lists the floating-point point emulation macros and how often these macros are called
during the computation. These macros contain up to 26 % conditional operations. The num-
ber of predicate registers determines how many operations of these floating-point emulation
macros can be scheduled in parallel.

Table 3.16: Floating-point emulation macros

Floating-Point (FP) Number of Number of
macro conditional operations macro calls

FP_ADD 5 (26 %) 8
FP_SUB 5 (26 %) 8
FP_MUL 2 (14 %) 16

The required number of processing cycles for computing one sample with one or two predicate
registers is shown in Table 3.17. The sampling frequency of the input audio signal is 16 kHz
in this case. When two predicate registers can be accessed in parallel, the number of required
processing cycles decreases by 4.4 % and the instructions per cycle (IPC) increases from 1.82
to 1.91 for the KAVUAKA processor with a maximum IPC of 2, when no operation merging is
used.

73

3 The KAVUAKA Hearing Aid Processor

1 // **
2 // emulated floating -point addition macro (Q 24.8 format)
3 // **
4 MACRO FP_ADD_32 DST , OP1 , OP2
5 // compare exponents
6 PERMREG0_8 xOP1 , OP1 , OP2 // E0|E0|E2|E2|E1|E1|E3|E3
7 PERMREG0_8 xOP2 , OP2 , OP1 // E2|E2|E0|E0|E3|E3|E1|E1
8 SUBCS_8s TEMP , xOP1 , xOP2 // exponent difference
9 // swap mantissas according to magnitude of exponents

10 // (choose number with smaller exponent)
11 MV TEMP1 , OP1
12 MV TEMP4 , OP2
13 MVCR_32 TEMP1 , OP2
14 MVCR_32 TEMP4 , OP1
15 // remove exponent (for significand computation)
16 SRI_32 TEMP5 , TEMP1 , #8
17 // right shift of secondary significand operand
18 ABSADD_8 TEMP , R_8 , TEMP
19 CLIPI_U8 TEMP , TEMP , #0 b11111
20 SR_32 TEMP , TEMP4 , TEMP
21 // add mantissas
22 ADD_32 TEMP5 , TEMP5 , TEMP
23 // normalize resulting significand
24 CLX_32 TEMP , TEMP5 , TEMP5
25 SMVI V0CONDSEL , #0 b0010
26 SLCS_32 TEMP5 , TEMP5 , TEMP
27 // compute new (resulting) exponent
28 SUB_8s TEMP , R_8 , TEMP
29 ADD_8s TEMP , TEMP1 , TEMP
30 // recreate original format
31 PERMREG1_8 DST , TEMP5 , TEMP
32 MVCR_32 DST , REG_ZERO
33 ENDMACRO

Figure 3.43: Assembler code macro for emulating the floating-point addition using SIMD in-
structions.

Table 3.17: Processing performance in number of cycles

one predicate register two predicate register

17-tap FIR 740 707 (−4.4 %)
7-tap IIR 300 287 (−4.3 %)

74

3.2 Specialization Towards Performance

Case Study: Loop Unrolling and Operation Merging

An example for an if -conversion based on partial predication is shown in Figure 3.44, Fig-
ure 3.45 and Figure 3.46. A reference code for bit-reversal permutation is given, which is
required for the radix-2 Cooley-Tukey FFT algorithms [135]. The if construct is evaluated
within the for loop for every index of the input vector.

1 function x = bit_reversal(x)
2 number_of_elements = length(x);
3 for i = 1: length(x)
4 bit_reversed_index = bit_reversed_index(i-1, number_of_elements);
5 if(0<(bit_reversed_index -(i-1)))
6 temp = x(bit_reversed_index +1);
7 x(bit_reversed_index +1) = x(i);
8 x(i)=temp;
9 end

10 end
11 end

Figure 3.44: Reference Matlab code with a conditional if construct. The example is a bit-
reversal permutation of an input vector x. The if condition is needed for swapping
elements based on their position (index) within the vector. This code is required
for the Cooley-Tukey FFT algorithm.

Taking the bit-reversal permutation code in Figure 3.44 as an example, the inner loop can be
unrolled to increase the size of the basic block. This loop including the if condition is im-
plemented on the KAVUAKA processor with conditional branches or predication with one and
two predicate registers. Different levels of loop unrolling are evaluated, measuring the dy-
namic IPC. All ILP compiler optimizations are turned on, which includes automatic operation
merging [193]. The results are depicted in Figure 3.47. The conditional branch (BR) imple-
mentation requires fewer cycles than the predicated version (CE1_PR), although the branch
requires a branch delay slot with a NOP instruction. The reason for this is that if-else statement
is unbalanced [194]. The else path does not contain any instructions in this case. Increasing
the predicate registers to two (CE_2PR) does not improve performance, since only one condi-
tion is used per loop iteration. When the loop unrolling is applied, the size of the of the basic
block and the number conditions, that can be processed in parallel, is increased. Additionally,
more operations can be merged. The achieved IPC increases from 1.53 (CE_1PR) to 2.88
(CE_2PR_2LU), when using two predicate registers, loop unrolling and operation merging.
Loop unrolling and operation merging are not as effective when using conditional branches
(BR_1LU, BR_2LU) because the basic blocks are smaller and prevent further compiler opti-
mizations.

75

3 The KAVUAKA Hearing Aid Processor

Conditional branch implementation

1 SUBCS_64 REG_Z ,REVERSED_INDEX ,INDEX
2 // Conditional branch (greater than)
3 BSR_AND NO_SWAP , #0b1001 , #0 b10000000
4 //Load two elements
5 MV_64 REG_INDEX_plus_1 , (FIR_INPUT_ELEMENT_ADDRESS)
6 MV_64 REG_i , (FIR_OUTPUT_ELEMENT_ADDRESS)
7 //Store elements in memory
8 MV_64 (FIR_INPUT_ELEMENT_ADDRESS), REG_i
9 MV_64 (FIR_OUTPUT_ELEMENT_ADDRESS), REG_INDEX_plus_1

10 :L_NO_SWAP

Scheduled code: conditional branch implementation

1 SUBCS_64 V1R30 V0R2 V0R0; NOP
2 BSR_AND NO_SWAP 0x9 0x80; NOP
3 NOP ; NOP
4 MV_64 V1R30 FIR_IND1 ; NOP
5 MV_64 FIR_IND0 V1R30 ; MV_64 V1R30 FIR_IND0
6 MV_64 FIR_IND1 V1R30 ; NOP
7 :L_NO_SWAP

Figure 3.45: Assembler implementation and scheduled code using conditional branching. Ref-
erence code is given in Figure 3.44.

Conditional execution implementation

1 //Set condition (greater than)
2 SMVI_64 V0CONDSEL , #0b0101
3 SUBCS_64 REG_Z ,REVERSED_INDEX ,INDEX
4 //Load two elements
5 MV_64 REG_INDEX_plus_1 , (FIR_INPUT_ELEMENT_ADDRESS)
6 MV_64 REG_i , (FIR_OUTPUT_ELEMENT_ADDRESS)
7 // Conditionally swap to elements
8 MV_64 REG_TEMP , REG_INDEX_plus_1
9 MVCR_64 REG_INDEX_plus_1 , REG_i

10 MVCR_64 REG_i , REG_TEMP
11 //Store elements in memory
12 MV_64 (FIR_INPUT_ELEMENT_ADDRESS), REG_i
13 MV_64 (FIR_OUTPUT_ELEMENT_ADDRESS), REG_INDEX_plus_1

Scheduled code: conditional execution implementation

1 SMVI_64 V0CONDSEL , #0b0101 ; NOP
2 MV_64 V1R0 FIR_IND1 ; SUBCS_64 V1R30 V1R1 V1R30
3 MV_64 V1R1 FIR_IND0 ; NOP
4 MV_64 V1R30 V1R1 ; MVCR_64 V1R1 V1R0
5 MV_64 FIR_IND1 V1R1 ; MVCR_64 V1R0 V1R30
6 MV_64 FIR_IND0 V1R0 ; NOP

Figure 3.46: Assembler implementation and scheduled code using conditional execution. Ref-
erence code is given in Figure 3.44.

76

3.2 Specialization Towards Performance

CE_1
PR

CE_2
PR BR

BR_1
LU

BR_2
LU

CE_1
PR_1

LU

CE_2
PR_1

LU

CE_1
PR_2

LU

CE_2
PR_2

LU
0

200
400
600
800

896 896 872 840 824
576 560 480 464

Pr
oc

es
si

ng
cy

cl
es

CE_1PR: cond. execution (1 predicate)
CE_2PR: cond. execution (2 predicates)
BR: cond. branch
BR_1LU: cond. branch (1 × loop unrolled)
BR_2LU: cond. branch (2 × loop unrolled)
CE_1PR_1LU: cond. execution (1 predicate / 1 × loop unrolled)
CE_2PR_1LU: cond. execution (2 predicates / 1 × loop unrolled)
CE_1PR_2LU: cond. execution (1 predicate / 2 × loop unrolled)
CE_2PR_2LU: cond. execution (2 predicates / 2 × loop unrolled)

Figure 3.47: Processing performance in number of cycles for the bit-reversal permutation (Fig-
ure 3.44) of 32 elements with conditional branches, predication with one and two
predicate registers with different levels of loop unrolling. Automatic operation
merging is activated.

77

3 The KAVUAKA Hearing Aid Processor

Case Study: Co-Processor Interface

This case study addresses the co-processor interface and algorithm, which require to store the
predicate for multiple cycles. The conditional code example, shown in the block diagram in
Figure 3.48, is based on the CORDIC algorithm. The quadrant correction determines quad-
rant of the input value and scales the input value for the computational demanding CORDIC
iterations. When the iterations are done, the result is scaled and the quadrant is mapped based
on the results from the input quadrant correction. This conditional output negation is based
on condition flags. If only one predicate register is available, it is blocked for the CORDIC
iterations. Multiple CORDIC computations in parallel are not possible. In this case 105 cy-
cles are required for to cosine computations, using two hardware CORDIC accelerators for
the CORDIC iterations and the KAVUAKA for the quadrant correction and mapping. If more
than one predicate register is available, the cordic computations can be parallelized. Only 66
cycles are required, using two CORDIC accelerators in parallel.

Input
Θ

In range [−2π,2π]

Quadrant correction

CORDIC iterations

Quadrant mapping and scaling

Output

O
ut

pu
tN

eg
at

io
n In range [−π/2,π/2]

Figure 3.48: Block diagram of the CORDIC algorithm for computing a cosine function [195].

3.3 Specialization Towards Low-Power

Hard- and software specialization towards low-power is required during the design of hearing
aid processors in order to meet battery life targets. In this section, new hard- and software
architecture proposals towards low-power for application-specific hearing processors are pre-
sented.

78

3.3 Specialization Towards Low-Power

3.3.1 Configurable Datapath Width

The data types for multimedia applications are derived from the sampling of continuous analog
signals in the time domain [196]. The analog-to-digital converters of current hearing aids
typically have 16-bit or 24-bit audio bit depth per sample [10, 11, 63, 197]. Due to limited
power consumption and hardware resources, fixed-point arithmetic is used in hearing aids
for digital signal processing [4, 68, 101, 104, 130]. For this reason, hearing aid algorithms
are implemented on fixed-point hardware with fixed-point data types, while the fixed-point
word length determines the rounding error, area, power, and power consumption of the target
hearing aid system [139–141, 191, 198–200]. Therefore, the optimization of the word length
is crucial for an efficient hearing aid system [196, 200].

This section introduces a generic and configurable datapath implementation for fixed-point
processors. The goal of this implementation is the application-specific customization of the
datapath of the hearing aid processor architecture. This customization includes a parameteri-
zable bit-width of the datapath. The trade-off between computing power, hardware resources
and power consumption is studied with this variable datapath width. In addition to the datapath
width, the data-level parallelism (DLP) of the architecture is designed to be configurable. The
datapath can be subdivided into several SIMD subwords. This enables the parallel process-
ing of multiple configurable number of subwords per word. Multiple subwords can represent
more complex data structures, such as the real and imaginary parts of complex numbers. With
this option, the performance provided by the DLP of the architecture can be adapted to the re-
quirements of the audio algorithms. If certain subword modes are not used in an application,
the unused logic can be removed to reduce design complexity and power consumption. This
includes datapath width, flag generation, result selection, or operand masking in the functional
units.

With the generic datapath implementation, the effects of the datapath configuration on area,
performance, power consumption and rounding errors are studied.

Related Datapath Width Optimizations

A system-level datapath width optimization is presented in [201]. The goal of the presented
optimization is the minimization of the energy consumption of embedded systems by mini-
mizing the number of redundant bits for each variable of a given application. The effective
bit-width for each variable is determined by a variable size analysis. Based on the results of
this analysis, the target application is rewritten using a Valen-C language to specify the word
length of each variable in the application. The datapath width, the number of registers and
the instruction-set of the target soft-core processor is modified based on this application. As
a case study a MPEG-2 video decoder application is used and optimized with the proposed
datapath optimization, resulting in a reduced energy consumption between 10.8 % and 48.3 %
without any performance penalty.

79

3 The KAVUAKA Hearing Aid Processor

In [202], a coarse-grained power gating mechanism for integer arithmetic circuits is presented,
which is data-width-driven. The power gating mechanism is implemented in two different
extends. The unused logic of an ALU unit for narrow-data-width computations or the complete
unit is power gated in idle times. The considered units are adders and multipliers. Different
architectures and power gating switch sizes are studied with an automatic design framework.
For a 32-bit multiplier a leakage reduction of 11.6× is achieved for 8×8-bit operations.

In order to reduce the register file pressure, the authors of [203] propose to pack multiple
narrow-width data types in one sizable register of a superscalar processor architecture. Several
deterministic and predictive micro-architectural techniques for the packing of multiple narrow-
width values in one register are presented and the performance impact is studied. The applied
techniques are based on the high predictability of the data width. Two register assignment
schemes are evaluated, a conservative and a predictive one. The predictive scheme achieves
15 % IPC improvement for simulated benchmarks.

In [204], a so called Multi-Bit-Width microarchitecture is proposed, which takes the operands
of 64-bit instructions and reuses these for multiple instructions with narrow-width operands
instead. This re-partitioning of the datapath is designed for multiple instruction, multiple data
(MIMD) processing. Since the operands of the existing instructions are used, the additional
hardware resources are small. A speedup of 7.1 % for the simulated benchmarks is achieved.

Implementation of a Generic Datapath

For the implementation of the generic datapath, a set of parameters are introduced. These
parameters define the bit-width (op_data_w_c) of the datapath as well as the DLP of the
architecture (op_sub32_active_c, . . .). The complete parameter set is listed in Figure 3.49.

1 constant op_data_w_c : natural := <OP_DATA_W >; -- datapath width
2 constant op_sub32_w_c : natural := op_data_w_c /2;
3 constant op_sub16_w_c : natural := op_data_w_c /4;
4 constant op_sub8_w_c : natural := op_data_w_c /8;
5
6 constant op_sub32_active_c : boolean := <OP_SUB32_ACTIVE >; -- true or false
7 constant op_sub16_active_c : boolean := <OP_SUB16_ACTIVE >; -- true or false
8 constant op_sub8_active_c : boolean := <OP_SUB8_ACTIVE >; -- true or false

Figure 3.49: Configuration parameters for defining the data bit-width (op_data_w_c) and
available SIMD subword modes (op_sub32_active_c, . . .). [205]

With these set of parameters a similar study, as described in [201], can be performed to explore
algorithms for digital hearing aid processors. Compared to [201, 203, 204], a datapath with
the parallel processing mechanism single instruction, multiple data is investigated, since the
SIMD format is a common and approved processing technique for hearing aid processing.

80

3.3 Specialization Towards Low-Power

Table 3.18: Comparison of silicon area requirements depending on activated subword modes.
An exemplary datapath width of 48-bit was selected. [205]. Results from an ASIC
synthesis with the TSMC 40 nm HVT low-power ASIC technology at 50 MHz.

Subword modes Area in mm2 Combinational Non-Combinational

_8 _16 _32 _64 (100 %) 0.0805 0.0650 0.0155
_16 _32 _64 (94 %) 0.0756 0.0601 0.0155

_32 _64 (90 %) 0.0722 0.0566 0.0155
_64 (85 %) 0.0685 0.0530 0.0155

Furthermore, it is used in this work also for handling complex-valued numbers in Section 3.2.1
and floating-point numbers in Section 3.2.2.

Different datapath configurations are chosen for evaluation. These are shown in Figure 3.50.
The bit-width of the datapath is varied between 24-bit, 32-bit, 48-bit, and 64-bit. SIMD is
implemented depending on the datapath width. SIMD instructions with two, four or eight
subwords are enabled for the 64-bit, 48-bit and 32-bit configurations. SIMD is not enabled
for the 24-bit configuration, due to the short datapath. The width of the subwords of the
SIMD modes is half, quarter, and eighth times as long as the width of the entire datapath.
All processors are also implemented without SIMD. These processor configurations execute
scalar instructions only.

Datapath Area Evaluation

The silicon area requirement for the 48-bit processor implemented in the TSMC 40 nm HVT
low-power ASIC technology is depicted in Table 3.18. Four SIMD subword modes are eval-
uated by activating one mode at a time. It can be seen that the processor configuration with
deactivated subword modes is 12.5 % smaller than that with all subword modes activated. The
part of combinational logic decreases when fewer subword modes are implemented, while
non-combinational components (registers) remain unchanged. The largest increase in area
of 6.8 % is due to the eight subwords mode, another 3.9 % due to the four subwords mode,
and 1.8 % due to the two subwords mode. This can be explained by the fact that the separa-
tion of the datapath into subwords generally requires combinational logic for flag generation,
result selection, and operand masking. The complexity of the datapath increases with finer
separation.

The resulting silicon area for the processors with different datapath configurations is shown in
Figure 3.51. The silicon area scales with the datapath width. The smallest configuration is the
24-bit configuration without SIMD support. Increasing the datapath to 32-bit leads to 29 %
additional silicon area. The 48-bit configuration is 84 % larger then the 24-bit configuration

81

3 The KAVUAKA Hearing Aid Processor

1×64-bit
SIMDSIMD

1×64-bit 1×64-bit

2×32-bit

2×32-bit2×32-bit

4×16-bit

4×16-bit4×16-bit

SIMD
8×8-bit

8×8-bit8×8-bit

1×32-bit
SIMDSIMD

1×32-bit 1×32-bit

2×16-bit

2×16-bit2×16-bit

4×8-bit

4×8-bit4×8-bit

SIMD
8×4-bit

8×4-bit8×4-bit

1×24-bit

1×24-bit 1×24-bit

1×48-bit
SIMDSIMD

1×48-bit 1×48-bit

2×24-bit

2×24-bit2×24-bit

4×12-bit

4×12-bit4×12-bit

SIMD
8×6-bit

8×6-bit8×6-bit

Subword Modes
_64 _32 _16 _8

64-bit
Processor

with SIMD

48-bit
Processor

with SIMD

32-bit
Processor

with SIMD

24-bit
Processor

Figure 3.50: All processor configurations with a 24-bit, 32-bit, 48-bit, or 64-bit datapath bit-
width. SIMD is not enabled for the 24-bit configuration.

82

3.3 Specialization Towards Low-Power

and the 64-bit configuration is 72 % larger than the 32-bit configuration. The percentage area
increase relative to the datapath width becomes smaller for larger datapath widths because
the proportion of logic that is independent of the datapath width is almost unchanged. This
logic includes, for example, the instruction decoder of the processor. By activating all SIMD
subword modes the area increases by about 10 %, 17 % and 17 % for the 32-bit, 48-bit and
64-bit configurations. The activation of SIMD primarily increases the combinational logic.

The SRAM area and the required logic is shown in Figure 3.51. The number of addressable
words is the same for all configurations, which is 4096. If SIMD is used, the number of words
increases and the word length decreases accordingly. The area of the SRAM macros scales
linearly with the bit-width.

73%

77%

79%

77%

81%

78%

82%

24-bit 32-bit 32-bit
+SIMD

48-bit 48-bit
+SIMD

64-bit 64-bit
+SIMD

0.00

0.05

0.10

Processor data width and SIMD configuration

Si
lic

on
ar

ea
in

m
m

2

Combinational area
Non-Combinational area

94%

94%

97%

97%

24-bit 32-bit 48-bit 64-bit
0.00

0.10

0.20

0.30

SRAM data width

Si
lic

on
ar

ea
in

m
m

2

SRAM area
Combinational and Non-Combinational area

Figure 3.51: Combinational, non-combinational and SRAM silicon area for different datapath
width and SIMD configurations. Results from an ASIC synthesis with the TSMC
40 nm HVT low-power ASIC technology at 50 MHz.

83

3 The KAVUAKA Hearing Aid Processor

Datapath Performance Evaluation

The performance of different algorithm implementations on the different processor configu-
rations is shown in Table 3.19. The number of cycles for implementations with SIMD and
without SIMD are compared. For all FFT [128] variations of different sizes, the SIMD im-
plementations need on average only 58 % of the cycles. The IPC values are over 1.8 for both
implementations. The SIMD implementations of the FFT offer no advantage for the memory
accesses. The required memory accesses are not aligned. The data is accessed in bit reversed
or sequential order and the twiddle factors are accessed with varying offsets. As in [206], the
computation of digital filters are parallelized by computing multiple filter instances at once
with SIMD instructions. In this case two filters are computed concurrently using the two sub-
words (_32). The required number of cycles for the SIMD implementations is around 36 %
smaller. No speed up is achieved for the beamforming algorithms. The beamforming algo-
rithms [207] consist mainly of filter operations that are not accelerated by SIMD instructions.
One exception for the adaptive beamformers are the Lagrange fractional delay filter for both
microphone signals, which can be parallelized. The implementation of the Lagrange fractional
delay filter with and without SIMD is depicted in Figure 3.52. Therefore, the total number of
required cycles is negligibly smaller for the adaptive beamformers.

Table 3.19: Number of cycles and IPCs for the KAVUAKA processors with and without
SIMD [128, 191, 205, 207].

with SIMD (_32) without SIMD
(48-bit and 64-bit) (24-bit and 32-bit)

Cycles IPC Cycles IPC

32-point-FFT [128] 615 1.8016 1084 1.8247

64-point-FFT [128] 1544 1.8187 2691 1.8339

128-point-FFT [128] 3752 1.8166 6442 1.8378

256-point-FFT [128] 8724 1.8261 14960 1.839

512-point-FFT [128] 19880 1.8339 33998 1.8438

1024-point-FFT [128] 44628 1.8401 75772 1.8571

17-tap FIR-Filter (2 ch.) [191] 136 1.8608 202 1.901

7-tap IIR-Filter (2 ch.) [191] 56 1.8407 96 1.8958

Fixed Beamforming [207] 22 1.8605 22 1.8182

Adaptive Gain Beamforming [207] 92 1.1813 103 1.3168

Adaptive Filter Beamforming [207] 148 2.000 149 1.9252

Adaptive GSC Beamforming [207] 122 1.7902 123 1.8843

84

3.3 Specialization Towards Low-Power

1 // Filter computation with SIMD , each register contains two subwords
2 // Front and rear queue for processed in parallel (subwords)
3 MV_X2 REG_FREE_0+REG_FREE_1 , 4(FIR_LAGRANGE_FILTER_COEFFICIENTS_DMEM_ADDR)
4
5 MV REG_FREE_2 , (FIR_F1QUEUE_F_DMEM_ADDR)+ // front + rear queue in separate subwords
6 MV REG_FREE_3 , (FIR_F1QUEUE_F_DMEM_ADDR)+
7
8 MAC_32 REG_FILTER_0_L+REG_FILTER_0_H , REG_FREE_0 , REG_FREE_2
9 MAC_32 REG_FILTER_0_L+REG_FILTER_0_H , REG_FREE_1 , REG_FREE_3

1 // Filter computation without SIMD , each register contains one data word
2 // Front and rear queue for processed sequentially
3 MV_X2 REG_FREE_0+REG_FREE_1 , 4(FIR_LAGRANGE_FILTER_COEFFICIENTS_DMEM_ADDR)
4
5 MV REG_FREE_2 , (FIR_F1QUEUE_F_DMEM_ADDR)+ // front queue
6 MV REG_FREE_3 , (FIR_F1QUEUE_F_DMEM_ADDR)+
7
8 MAC_64 REG_FILTER_0_L+REG_FILTER_0_H , REG_FREE_0 , REG_FREE_2
9 MAC_64 REG_FILTER_0_L+REG_FILTER_0_H , REG_FREE_1 , REG_FREE_3

10
11 MV REG_FREE_2 , (FIR_R1QUEUE_F_DMEM_ADDR)+ // rear queue
12 MV REG_FREE_3 , (FIR_R1QUEUE_F_DMEM_ADDR)+
13
14 MAC_64 REG_FILTER_1_L+REG_FILTER_1_H , REG_FREE_0 , REG_FREE_2
15 MAC_64 REG_FILTER_1_L+REG_FILTER_1_H , REG_FREE_1 , REG_FREE_3

Figure 3.52: Assembler code excerpts from subword-based and subword-less filter implemen-
tations for beamforming algorithms [207]. The Lagrange filter coefficients must
be multiplied and accumulated with audio data from a front queue and a rear
queue. While in the example above the front and rear data can be processed
parallel to each other, this is not possible with a configurations without SIMD
(lower code block). Sequential scalar instructions are necessary, which entails
a doubling of the code, the file indirect registers (FIREGs) and the necessary
temporary and result registers. [205]

85

3 The KAVUAKA Hearing Aid Processor

Data Path Precision Evaluation

The available data types and formats for an algorithm implementation depend on the datapath
configuration of the target processor architecture. Therefore, the overall computational pre-
cision and the final accuracy of the algorithm implementation depends on the datapath. To
evaluate this precision, different algorithms with different datapath configurations are imple-
mented.

An assembler code excerpt of data movement and addition is shown in Figure 3.53 for a 48-bit
and 64-bit datapath configuration. In both cases, subwords are used (_32). These subwords
have half the word length. Compared to the 64-bit datapath, the 48-bit datapath provides fewer
most significant bits (MSBs) for integer representation and fewer least significant bits (LSBs)
for fixed-point representation.

1 // 48 bit datapath width
2 MVIL_32 V0R0 , #0x0f , #0x1234
3 MVIL_32 V0R0 , #0xf0 , #0x5678 // V0R0 <- 0x005678001234
4 ADDIL_32 V0R1 , V0R0 , #0 x90000 // V0R1 <- 0x095678091234

1 // 64 bit datapath width
2 MVIL_32 V0R0 , #0x0f , #0x1234
3 MVIL_32 V0R0 , #0xf0 , #0x5678 // V0R0 <- 0x0000567800001234
4 ADDIL_32 V0R1 , V0R0 , #0 x90000 // V0R1 <- 0x0009567800091234

Figure 3.53: Assembler code excerpt showing operations on 64 bit and 48 bit wide data reg-
isters. The SIMD operation mode (_32) uses two subwords of half word length,
24 bit and 32 bit. [205]

The precision evaluation for different datapath configurations and different algorithms is listed
in Table 3.20. The input signal is speech in noise with a word length equal to the datapath
width. The evaluated algorithms are either feedforward or feedback systems [208]. The feed-
forward algorithms that do not include a feedback loop on the data are the FFT, FIR and the
fixed beamforming algorithms. The FFT size defines the number of FFT stages, which deter-
mine the number of operations performed on the data. Larger FFT sizes therefore decrease
the overall precision [209]. Since the implementation of the FFT algorithm performs a scal-
ing procedure after each FFT stage by shifting the data by one in order to prevent overflows,
the overall computing precision increases with the datapath width. However, the precision of
algorithms with a feedback loop is significantly smaller for smaller datapath widths. Finite-
word-length effects are the cause for this behavior [140].

Current and future ADCs of hearing aids convert the analog microphone signal into up to
24-bit digital audio data [210]. In this thesis, this source audio bit-width and its effect on the
datapath configuration and the algorithms is examined in the following. In order to evaluate,
which datapath is suitable for which algorithm, the word length, which is equivalent to the

86

3.3 Specialization Towards Low-Power

Table 3.20: Maximum and average absolute error of different fixed-point hearing aid algo-
rithms compared to the reference double-precision floating-point implementation.
The input signal for this evaluation is speech in noise. [128, 191, 205, 207]

Fixed-Point Word Length
24 bit 32-bit 48-bit

max. abs. mean abs. max. abs. mean abs. max. abs. mean abs.
error error error error error error

32-point-FFT [128] 2.5614e-06 1.1859e-06 1.0143e-08 5.0515e-09 8.2634e-13 3.3303e-13

64-point-FFT [128] 3.5559e-06 1.6208e-06 1.5221e-08 6.352e-09 1.7416e-12 7.1892e-13

128-point-FFT [128] 6.1775e-06 2.2241e-06 2.5002e-08 8.7475e-09 3.4409e-12 1.449e-12

256-point-FFT [128] 8.8791e-06 3.2767e-06 4.1998e-08 1.2614e-08 8.3771e-12 3.1056e-12

512-point-FFT [128] 1.3608e-05 4.63e-06 5.1648e-08 1.8475e-08 1.7352e-11 6.2829e-12

1024-point-FFT [128] 6.5191e-04 2.1287e-04 2.3142e-06 8.3655e-07 3.4424e-11 1.2671e-11

Fixed Beamforming [207] 2.716e-07 7.171e-08 7.015e-10 2.495e-10 7.015e-10 2.495e-10

Adaptive Gain Beamforming [207] 1.020e-02 2.395e-05 2.528e-04 3.756e-07 2.711e-04 3.859e-07

Adaptive Filter Beamforming [207] 2.626e-04 1.335e-05 9.508e-07 5.265e-08 7.603e-10 2.356e-10

Adaptive GSC Beamforming [207] 1.491e-04 7.617e-06 5.705e-07 3.053e-08 1.075e-09 4.676e-10

17-tap FIR-Filter [191] 1.499e-06 9.913e-07 5.416e-09 3.871e-09 5.958e-10 2.335e-10

7-tap IIR-Filter [191] 1.995e-03 5.071e-04 8.452e-06 2.675e-06 9.526e-07 2.934e-07

DNN [24] 0.00354 0.00305 1.3828e-05 1.1921e-05 2.0373e-10 1.819e-10

87

3 The KAVUAKA Hearing Aid Processor

datapath width if no SIMD is used, is varied between 4-bit and 40-bit. The word length of the
input signals to the algorithm are limited to 24-bit. The range of the input signals is scaled
to −1 to 1. The maximum absolute error, compared to the double-precision floating-point
implementation, is measured at the algorithm output stage. The bit-width of the datapath is
varied.

In Figure 3.54 the influence of the word length on the FFT computing precision is shown.
The FFT size is varied between 32- and 1024-points. The maximum absolute error is higher
for larger FFT sizes, due to increased number of stages and butterfly operation and error
propagation. The absolute error deceases exponentially with larger datapath widths. With a
word length of larger than 36-bit, the error only decreases insignificantly. Therefore, datapath
configurations with word lengths larger than 36-bit do not increase the computing precision
for this FFT implementation, when the input signal is 24-bit wide.

5 10 15 20 25 30 35 40
10−7

10−5

10−3

10−1

101

103

Word length [bit]

M
ax

im
um

ab
so

lu
te

er
ro

r

32-point-FFT
64-point-FFT
128-point-FFT
256-point-FFT
512-point-FFT
1024-point-FFT

Figure 3.54: Maximum absolute error for the FFT algorithm with different datapath widths.
FFT sizes from 32 to 1024 are shown. The word length of the input signal is
24-bit.

The precision analysis for digital filters is shown in Figure 3.55. Although the tap size of the
FIR filter is higher, the overall absolute error is lower for the same word length, approximating
the same frequency response. One of the reasons is the feedback loop in the IIR filter. Word
lengths larger than 32-bit do not increase the overall precision significantly.

The maximum absolute error for the beamforming algorithms for different word lengths is
shown in Figure 3.56. Due to the lowest computing complexity and no feedback loop, the
fixed beamformer offers the lowest error compared the double-precision floating-point im-

88

3.3 Specialization Towards Low-Power

5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102

104

Word length [bit]

M
ax

im
um

ab
so

lu
te

er
ro

r

17-tap FIR-Filter
7-tap IIR-Filter

Figure 3.55: Maximum absolute error for digital filter algorithms, implemented with different
word lengths. The word length of the input signal is 24-bit.

plementation. The almost lowest maximum absolute error is achieved with a word length
of around 28-bit. The adaptive filter and the adaptive GSC beamformer have a similar error
characteristic. Due to the fixed-point division operation in the feedback loop, the error of the
adaptive gain beamformer is comparatively high and fluctuates. The adaptive beamforming
algorithms require around 36-bit word length in order to achieve the highest precision for a
24-bit input signal. The influence of the error induced by changing the word length is fur-
ther studied in Section 5.1.1. This chapter examines the influence of word length on speech
intelligibility, among other things.

3.3.2 Dummy Register and Register Address Isolation

The register file (RF) of the KAVUAKA processor contains two separate register files, each
with 32 register. These are accessed by four read and two write ports [16, 83]. The register
size depends on the datapath width, which is varied between 24-bit to 64-bit, as described in
Section 3.3.1. The silicon area of the register file with 64-bit accounts for 40 % the total silicon
area of the KAVUAKA processor and it accounts on average for about 45% of the KAVUAKA
processor’s power consumption. A standard cell placement of the KAVUAKA processor in-
cluding the register file is shown in Figure 3.57a. The area of the register file is composed of
combinational/logic and non-combinational/register area. The area ratio for this register file
implementation is given in Figure 3.57b.

89

3 The KAVUAKA Hearing Aid Processor

5 10 15 20 25 30 35 40

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Word length [bit]

M
ax

im
um

ab
so

lu
te

er
ro

r

Fixed Beamform.
Adaptive Filter Beamform.
Adaptive Gain Beamform.
Adaptive GSC Beamform.

Figure 3.56: Maximum absolute error for beamforming algorithms, implemented with differ-
ent word lengths. The word length of the input signal is 24-bit.

KAVUAKA
64-bit

Register
File

(a) Layout view of the register file
placement [211]

Non-Combinational

31%

Combinational

69%

(b) Area distribution of the register file

Figure 3.57: (a) Area of the register file compared to the area of the remaining KAVUAKA pro-
cessor for an unconstrained placement using the TSMC 40 nm HVT low-power
ASIC technology. [211]. (b) Combinational and non-combinational (sequential)
area of the register file. [207]

90

3.3 Specialization Towards Low-Power

Due to the high silicon area requirements of the register file compared to the other compo-
nents of the processor (Figure 3.57), the power consumption optimization of the register file
is crucial. A common optimization approach is the handling of temporary or so called short-
lived values [16, 212–215]. Transferring these temporary values within the processor, e.g.,
between the register file and the functional units, causes additional processing time, which
results in additional power consumption and silicon area requirements [215]. In order to pre-
vent these issues, register file bypass and isolation techniques are presented in the related
work [16, 85, 212–217].

The authors of [213] propose a multi-stage bypass pipeline for VLIW processors. This ap-
proach is compiler driven. Whether an instruction reads from the register file or from one of
the bypass register is determined by the compiler and encoded in the register operand bits.

The register file activity is reduced in [214] by avoiding writing the short-lived variables to the
register file and using the forwarding paths of the VLIW pipeline architecture. The compiler
encodes the writeback of those registers, which need to be stored in the register file, within the
instructions.

A bypassing method for datapath architectures is presented in [215]. A software bypassing
is proposed, where the compiler schedules data transfers between the execution units of the
datapath architecture. The results show, that software bypassing decreases the number of
required read or write accesses to the register file, which results in a reduction in the processor
energy consumption.

In [216] the short-lived variables are stored in a smaller and dedicated register file to isolate
these from the remaining variables stored in the larger multi-ported register file. The achieved
energy saving is about 20 % to 25 % in the large register file, which results in a total reduction
of 5 % for the considered processor. A similar approach is used in [217]. Here the power of
the register file accesses can be reduced by 30 %.

The approach to decrease the power consumption within the register file, which is presented
in this section, is based on the dummy register mechanism [16, 85, 212] in combination with
an multi-port address isolation technique. The architecture of the dummy register mechanism
is shown in Figure 3.58. Dummy registers are registers in the register file, whose read and
write accesses may be bypassed. This bypass is activated for temporal short-lived variables,
using the dummy register addresses.

The compiler determines which register can be dummy registers by detecting the use of short-
lived variables in the application. During optimization, the compiler tries to maximize the
allocation of dummy registers instead of physical registers, decreasing the dynamic power
consumption of the register file.

Hearing aid algorithms of single straight line microcodes (SLMs) differ with regard to the
number of short-lived variables, which can be allocated. Therefore, the number of dummy
registers and bypass options is configurable during runtime. The maximum number is four,

91

3 The KAVUAKA Hearing Aid Processor

if two X2 VLIW instructions write two target registers each. However, a constant bypassing
of four registers is not beneficial, if many registers are needed to store long-lived variables.
Therefore, a programmable configuration register is introduced, which defines the number of
dummy registers during runtime as shown in Figure 3.58.

The second proposed approach to decrease the power consumption within the register file
is the address isolation of the register file. Like other register files of current digital signal
processors, the register file of the KAVUAKA processor has many read and write ports to feed
all parallel working functional units (FUs). In this case, four read and two write ports are used
to address 32 registers in each of the two partitioned register banks. These ports account for
around 14 % of the register file silicon area. To decrease the switching activity and therefore
reduce the power consumption, the last read and write address of each port is held by an
additional register, if this port is temporarily not used. This is case if no read or write access
is performed or the addressed register is a dummy register. The address isolation mechanism
is shown in Figure 3.58.

RX - R31

RF

Register file (RF) Access

Register File (2 x 32 Register)

FU

Pipeline

R0 - RX

RX - R31

R0 - RX

Bank V0 Bank V1

8 Read

Write/Read

Address

Address
Isolation

Registers

Enable

+ 4 Write Ports

Bypass

Execution (EX)

Configurable Dummy Registers
0
0
0
1

Dummy Control Register

RF
Bypass

Address
Ports

Data
Ports

Figure 3.58: Register file (RF) implementation with address isolation and dummy regis-
ters [207].

The silicon area overhead for implementing the dummy registers and the address isolation
mechanism in addition to the register file is depicted in Figure 3.59. Compared to the un-
optimized reference register file, the silicon area increases by 2.3 % to 3.6 % for the isolation

92

3.3 Specialization Towards Low-Power

hardware. If the dummy registers are additionally added, this overhead rises to 2.4 % to 4.4 %.
The total silicon area overhead for the KAVUAKA processor is shown in Figure 3.60.

+3.6%

+3.2%

+2.3%

+2.4%

+4.4%

+3.8%

+2.7%

+2.4%

24-bit 32-bit 48-bit 64-bit
0.00

0.02

0.04

Si
lic

on
ar

ea
in

m
m

2

reference register file address-isolated register file dummy register file

Figure 3.59: Register file (RF) silicon area overhead for the unoptimized reference register
file, the address-isolated register file and the dummy register file.

+2%

+1%

+1%

+1%

+2%

+2%

+1%

+1%

24-bit 32-bit 48-bit 64-bit
0.00

0.05

0.10

Si
lic

on
ar

ea
in

m
m

2

reference register file isolated register file dummy register file

Figure 3.60: Total silicon area overhead for the unoptimized reference register file, the isolated
register file and the dummy register file.

The power consumption for these three register file configurations, including the optimiza-
tions, is evaluated with beamforming algorithms. The static and dynamic power consumption
comparison to the unoptimized reference register file is shown in Figure 3.61. The power
consumption decreases by 4 % to 10 % for the address-isolated register file. With dummy reg-
isters, the power consumption in the register file can be decreased by 6 % to 17 %. The power
consumption saving by the dummy register optimization depends on the utilization of dummy
registers for a given application.

The dynamic utilization is given in Table 3.21. These values are based on the maximum
number of addressable register read and write ports per cycle, which is 12 in case of the eight
read and four write ports. If neither a register or a dummy register is read or written by one

93

3 The KAVUAKA Hearing Aid Processor

24-bit 32-bit 48-bit 64-bit
0

50

100
100 100 100 10090 96 94 9387 93 92 91

Po
w

er
in

%

Fixed beamforming

24-bit 32-bit 48-bit 64-bit
0

50

100
100 100 100 10091 95 94 9383 90 91 90

Po
w

er
in

%

Adaptive filter beamforming

24-bit 32-bit 48-bit 64-bit
0

50

100
100 100 100 10093 96 95 9589 93 94 94

Po
w

er
in

%

Adaptive gain beamforming

reference register file address-isolated register file dummy register file

Figure 3.61: Power consumption of the address-isolated register file and dummy register file
compared to unoptimized register file for the fixed beamformer, the adaptive filter
beamformer and the adaptive gain beamformer.

94

3.3 Specialization Towards Low-Power

port, this port stays unused. If the dummy usage is high compared to the standard register
usage, which is noticeably the case for the 24-bit and 32-bit adaptive filter beamformer, the
power consumption decreases.

Table 3.21: Register and Dummy Usage for Beamforming Algorithms.

Fixed beamformer

Bit width 24-bit 32-bit 48-bit 64-bit

Register usage 24.19 % 21.22 % 23.99 % 27.03 %

Dummy usage 5.24 % 8.22 % 7.74 % 4.71 %

No usage 70.57 % 70.56 % 68.27 % 68.26 %

Adaptive filter beamformer

Bit width 24-bit 32-bit 48-bit 64-bit

Register usage 20.91 % 20.74 % 25.0 % 25.97 %

Dummy usage 17.04 % 17.37 % 11.82 % 11.52 %

No usage 62.05 % 61.89 % 63.14 % 62.51 %

Adaptive gain beamformer

Bit width 24-bit 32-bit 48-bit 64-bit

Register usage 21.31 % 20.95 % 17.58 % 16.49 %

Dummy usage 7.12 % 7.22 % 8.76 % 9.01 %

No usage 71.52 % 71.83 % 73.66 % 74.50 %

3.3.3 Low-Level Low-Power Optimization Techniques

Operand Isolation

In order to reduce the dynamic power consumption in the functional units (FUs), the com-
monly used operand isolation technique presented in [218, 219] is used. Operand isolation
reduces the dynamic power consumption of combinational logic circuits by preventing the
propagation of switching activity into the logic, when the logic is not used. The inputs of all
functional units of the KAVUAKA processor are selected for this technique. Among the FUs

95

3 The KAVUAKA Hearing Aid Processor

are two move units, two bit logic units, two arithmetic units, two shift round units, two per-
mutation units, two min/max units and a complex-valued multiply-accumulate (CMAC) unit.
The FUs account for 60 % of the silicon area of one KAVUAKA processor with the X2 mode.
The isolation technique used in this case is based on AND gates isolation. This technique is
used instead of the latch based technique due its simplicity in terms of design constraints and
the usage statistics of the FUs, which show that most of the FUs are not used for multiple
cycles regularly.

The internal, switching and leakage power estimation based on operand isolation of all inputs
of all FUs of KAVUAKA processors with different data paths is shown in Table 3.22. Four
different datapath width, ranging from 24-bit to 64-bit, of the KAVUAKA processor are evalu-
ated. The operand isolation technique decreases the total power consumption by up to 44 %.
Less power reduction is achieved for the smaller datapath widths since the ratio between the
isolated logic compared to remaining processor components becomes smaller. The leakage
power is not affected by operand isolation and does not affect the total power.

Table 3.22: Internal, switching and leakage power estimation based on operand isolation of
all inputs of the FUs of KAVUAKA processors with different data paths. Results
from an ASIC synthesis with the TSMC 40 nm HVT low-power ASIC technology
at 50 MHz.

Internal Switching Leakage Total
Datapath Power Power Power Power

64
-b

it without isolation 2.5072 mW 1.6560 mW 0.0012 mW 4.1645 mW
AND-isolation 1.6577 mW 0.8085 mW 0.0012 mW 2.4674 mW

(-44 %) (-51 %) (-0 %) (-41 %)

48
-b

it without isolation 1.7777 mW 1.0923 mW 0.0009 mW 2.8709 mW
AND-isolation 0.9364 mW 0.6725 mW 0.0009 mW 1.6099 mW

(-48 %) (-39 %) (-0 %) (-44 %)

32
-b

it without isolation 1.0831 mW 0.4844 mW 0.0005 mW 1.5680 mW
AND-isolation 0.6126 mW 0.2960 mW 0.0005 mW 0.9091 mW

(-44 %) (-39 %) (-0 %) (-43 %)

24
-b

it without isolation 0.6990 mW 0.2418 mW 0.0002 mW 0.9411 mW
AND-isolation 0.6183 mW 0.1802 mW 0.0002 mW 0.7988 mW

(-12 %) (-26 %) (-0 %) (-16 %)

The additional area requirements for the operand isolation implementation based on AND
gates is shown in Table 3.23.

96

3.3 Specialization Towards Low-Power

Table 3.23: Total area based on operand isolation of all inputs of all FUs of KAVUAKA pro-
cessors with different data paths. Results from an ASIC synthesis with the TSMC
40 nm HVT low-power ASIC technology at 50 MHz.

Total
Datapath Area

64
-b

it without isolation 135,750.20 µm2

AND-isolation 135,913.37 µm2

(+0.12 %)

48
-b

it without isolation 99,550.81 µm2

AND-isolation 101,008.40 µm2

(+1.46 %)

Total
Datapath Area

32
-b

it without isolation 59,339.90 µm2

AND-isolation 59,515.77 µm2

(+0.29 %)

24
-b

it without isolation 36,099.73 µm2

AND-isolation 36,255.84 µm2

(+0.43 %)

Pipeline Architecture

The number of required pipeline stages of an ASIP architecture depends on several require-
ments and conditions. The ability to customize the pipeline architecture of the processor
allows adaptation to the requirements of the target applications. The maximum number of
pipeline stages considered in this work are six pipeline stages, which were originally proposed
in [16]. These pipeline stages are instruction fetch (IF), instruction decode (DE), register ac-
cess (RA), execution (EX) and write back (WB), whereas the EX stage is subdivided into two
stages. The pipeline architecture of the KAVUAKA processor with the five and the minimum
number of two of pipeline stages is depicted in Figure 3.62. The EX stage may be divided
into two pipeline stages for performance purposes, since the critical path is located in the
complex functional units (FUs). For the two pipeline stage configuration, the IF, DE and the
RA pipeline stages and the EX and the WB pipeline stages are merged into one. The pipeline
registers, holding the decoded instructions, control signals or the processed data, are removed.
No forwarding paths in the EX stage are required, since the register file can be bypassed using
the WB paths.

In order to analyze the area requirements for the pipeline registers of the KAVUAKA proces-
sor, the pipeline stages are synthesized with and without the pipeline registers. The synthesis
results are shown in Figure 3.63. The ASIC synthesis are performed with the TSMC 40 nm
HVT low-power ASIC technology at the target clock frequency of 50 MHz. When pipeline
registers are used, the silicon area requirements are increased for all pipeline stages. The
increase is caused by additional non-combinational (sequential/register) area. The combina-
tional and buffer/inverter area is almost equal, which indicates that the synthesis tool did not
insert additional buffers of logic in order to meet the timing constraints. Based on the ratio
between combinational and sequential logic of the underlying pipeline architecture, the differ-

97

3 The KAVUAKA Hearing Aid Processor

MV
DMEM

PC

W
rite

back
paths

SRU

Register file (RF)

Instruction Memory / Cache

Issue 0
Instruction
Decoder

Issue 1
Instruction
Decoder

E
X

R
A

D
E

IF
W

B

Pipeline

Forw
arding

paths

Pipeline

Pipeline

Pipeline

MAC ALU

PC

W
rite

back
paths

IF
, D

E
an

d
R

A

ALUMAC SRU

E
X

an
d

W
B

Register file (RF)

Instruction Memory / Cache

Issue 0
Instruction
Decoder

Pipeline

Issue 1
Instruction
Decoder

MV
DMEM

Figure 3.62: KAVUAKA processor with two and five pipeline stages. The EX stage can be
subdivided into two pipeline stages, in order to meet timing constraints.

ence in the total area between the pipelined and non-pipelined version ranges between 3.6 %
to 31.6 %.

The estimated total power consumption for the pipeline stages with and without pipeline reg-
isters is shown in Figure 3.64. The power is estimated after ASIC synthesis using a static
probability for the signal values and a constant toggle rate for a given period. The total power
consumption is reduced for pipeline stages without pipeline registers. The deactivation of
the pipeline stages has the biggest influence on the internal power dissipation. The switching
power stays the same. The leakage power is negligible with 0.03 % of the total power. The
total reduction ranges between 26.5 % to 47.5 %.

The total silicon area and estimated total power consumption for the KAVUAKA 64-bit pro-
cessor with different pipeline register configurations and different target clock frequencies is
shown in Figure 3.65. The target clock frequencies is set to 40 MHz, 50 MHz or 60 MHz.

In the case of low-power hearing aid applications, the processing performance requirements
are less strict, compared to multimedia applications [16], and the power and area constraints
are of higher importance [83,198]. The processing performance requirements are derived from
the real-time processing constraints of the digital audio streams, generated by the analog-to-
digital converters. Commonly, two channels sampled at 16 kHz are processed per hearing
aid device [63]. Two audio stream processing schemes are present, sample/sequential- and
frame/block-based processing [220]. The minimum clock frequency for a given processor

98

3.3 Specialization Towards Low-Power

IF IFp
0.00

0.50

1.00

·10−3

Si
lic

on
ar

ea
in

m
m

2

DE DEp
0.00

2.00

4.00

·10−3

Si
lic

on
ar

ea
in

m
m

2

Combinational area Non-Combinational area Buffer/inverter area

EX EXp
0.00

2.00

4.00

·10−2

Si
lic

on
ar

ea
in

m
m

2
Figure 3.63: Combinational, non-combinational and buffer/inverter silicon area for all pipeline

stages with (IFp, DEp and EXp) and without (IF, DE and EX) pipeline registers.
Results from an ASIC synthesis with the TSMC 40 nm HVT low-power ASIC
technology at 50 MHz.

IF IFp
0.00

1.00

2.00

3.00

4.00

·10−2

E
st

im
at

ed
to

ta
lp

ow
er

in
m

W

DE DEp
0.00

0.05

0.10

E
st

im
at

ed
to

ta
lp

ow
er

in
m

W

Internal power Switching power Leakage power

EX EXp
0.00

0.10

0.20

0.30

E
st

im
at

ed
to

ta
lp

ow
er

in
m

W

Figure 3.64: Internal, switching and leakage power estimation for all pipeline stages with (IFp,
DEp and EXp) and without (IF, DE and EX) pipeline registers. Results from
an ASIC synthesis with the TSMC 40 nm HVT low-power ASIC technology at
50 MHz.

99

3 The KAVUAKA Hearing Aid Processor

+4.47%

+1.41%

+5.34%

+0.61%

+4.82%

+2.33%

+6.31%

+1.59%

+2.40%

+3.70%

+1.78%

+2.04%

+3.33%

+4.50%

IF/D
E

/E
X

IF/D
E

/E
X

p
IF/D

E
p/E

X
IF/D

E
p/E

X
p

IFp/D
E

/E
X

IFp/D
E

/E
X

p
IFp/D

E
p/E

X
IFp/D

E
p/E

X
p

0
.00

1
.00

2
.00

·10
5

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

+0.47%

+0.49%

+0.41%

+0.02%

+0.99%

+0.63%

+0.75%

Silicon area in mm2

C
om

binationalA
rea

N
on-C

om
binationalA

rea

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

40 MHz
50 MHz
60 MHz

IF/D
E

/E
X

IF/D
E

/E
X

p
IF/D

E
p/E

X
IF/D

E
p/E

X
p

IFp/D
E

/E
X

IFp/D
E

/E
X

p
IFp/D

E
p/E

X
IFp/D

E
p/E

X
p

0
.00

1
.00

2
.00

3
.00

+3.49%

+0.37%

+8.7%

+0.01%

+4.31%

+1.66%

+12.96%

+7.01%

+0.63%

+7.39%

+4.42%

+9.05%

+3.29%

+7.77%

+3.43%

+0.99%

+2.21%

+0.01%

+6.24%

+2.25%

+4.95%

Total power in mW

40
M

H
z

50
M

H
z

60
M

H
z

Figure
3.65:Total

silicon
area

and
estim

ated
total

pow
er

consum
ption

for
different

pipeline
register

configurations.
T

he
pipeline

stages
are

configured
w

ith
(IFp,D

E
p

and
E

X
p)

and
w

ithout(IF,D
E

and
E

X
)

pipeline
registers.

T
he

relative
percentage

deviation
is

given
com

pared
to

non-pipelined
version

IF/D
E

/E
X

.
R

esults
from

an
A

SIC
synthesis

w
ith

the
T

SM
C

40
nm

H
V

T
low

-pow
erA

SIC
technology

at40
M

H
z,50

M
H

z
and

60
M

H
z.

100

3.3 Specialization Towards Low-Power

and audio algorithm can be calculated based on the number of required processing cycles, the
audio sampling frequency and the frame/block size as follows:

Fminimum,Processor =
#CyclesFrame

#SamplesFrame
·FSampling (3.17)

The minimum clock frequencies for the KAVUAKA processor are depicted in Figure 3.66. The
number of required processing cycles is determined by the computing complexity of hearing
aid algorithm. The range of the clock frequencies is from 0.05 MHz to 75.125 MHz. The max-
imal value of 75.125 MHz is required spectral-subtractive noise reduction algorithm, which is
computed using the SW CORDIC approximation for hyperbolic and trigonometric functions.
When the HW CORDIC is used, a lower clock frequency is sufficient. Based on these mini-
mum required clock frequencies the target maximum clock frequency for the KAVUAKA SoC,
described in Section 3.5, is set to 50 MHz, which is enough for most of chained algorithm
combinations and represents an acceptable trade-off between performance and power con-
sumption.

Due to the comparatively low maximum clock frequency of 50 MHz, the number of pipeline
stages of the processor can be reduced to a minimum. Another advantage of reducing the
number of pipeline stages, besides the reduction of silicon area and power consumption, is an
decrease of the minimum required clock frequency. A low number of pipeline stages decreases
the number of required branch delay slots. In case of the two pipeline stage processor configu-
ration, only one branch delay slot is required. The minimum required clock frequencies for the
two and five pipeline stage processor is shown in Figure 3.66. The algorithms evaluated are:
mel-frequency cepstrum [24], gammatone filter [221], beamforming algorithms [207], local-
ization algorithm [6], DNN [24], spectral-subtractive noise reduction [60], binaural coherence
filter [222], overlapadd [222], floating-point FFT and filters [191]. The minimum required
clock frequencies of the two pipeline stage configuration are always lower. The difference be-
tween the required frequencies is based on the number of branch instructions of the algorithms
and whether the branch delay slots can be filled with other instructions than NOPs.

Hardware Bit Reversed Addressing Mode

In order to speed up the computation of the FFT algorithm, a hardware bit reserved addressing
mode is added to the file indirect register (FIREG). Once a buffer size is configured during
runtime, one sample per cycle can be loaded or stored to the data memory in the bit reserved
mode. The speedup of the FFT computation using this hardware over the software bit reserved
addressing mode is around 1.48.

101

3 The KAVUAKA Hearing Aid Processor

0 20 40 60 80

Sample loop (SIMD)
Microphone calibration (SIMD)

Frame loop (SIMD)
Gammatone filter (SIMD)

Fixed beamforming (SIMD)
Fixed beamforming (scalar)

FFT and IFFT (SIMD, butterfly operation)
FFT (SIMD)

DNN (SIMD)
IIR filter (SIMD)

Binaural coherence filter (SIMD, HW CORDIC)
Overlapadd (SIMD)

FFT (scalar)
Adaptive gain beamforming (SIMD)

IIR filter (scalar)
Adaptive gain beamforming (scalar)

Mel-frequency cepstrum (SIMD)
Adaptive GSC beamforming (scalar)
Adaptive GSC beamforming (SIMD)

Floating-point FFT (SIMD)
Adaptive filter beamforming (SIMD)

FIR filter (SIMD)
Adaptive filter beamforming (scalar)

FIR filter (scalar)
Floating-point FFT (scalar)

Floating-point IIR filter (SIMD)
Binaural coherence filter (SIMD, SW CORDIC)

Floating-point IIR filter (scalar)
Gammatone filter bank (SIMD)

Noise reduction (SIMD, HW CORDIC)
Floating-point FIR filter (SIMD)

Gammatone filter bank and synthesis (SIMD)
Floating-point FIR filter (scalar)

Localization (SIMD)
Noise reduction (SIMD, SW CORDIC)

0.046

0.085

0.166

0.282

0.396

0.405

0.454

0.802

0.922

1.04

1.039

1.263

1.368

1.656

1.766

1.858

2.025

2.208

2.217

2.444

2.677

2.512

2.705

3.717

4.257

5.042

9.404

10.083

10.069

12.087

12.494

17.243

24.987

54.052

69.381

0.074

0.101

0.111

0.282

0.396

0.405

0.464

0.802

0.922

1.04

1.059

1.272

1.364

1.932

1.877

2.079

2.471

2.374

2.263

2.444

2.613

2.512

2.765

4.011

4.252

5.042

9.445

10.083

10.069

12.925

12.503

17.299

24.987

56.294

75.125

Minimum clock frequency for real time processing in MHz

2 pipeline stages
5 pipeline stages

Figure 3.66: Minimum clock frequencies based on real time constrained processing (3.17) for
the KAVUAKA processor with two and five pipeline stages.

102

3.4 Low-Power Interfaces and Connectivity

3.4 Low-Power Interfaces and Connectivity

Hearing aid processors require external interfaces in order to communicate with other compo-
nents and integrated circuits, which are part of the enclosing hearing aid system, the second
hearing aid or other external electronic devices. Furthermore, communication interfaces are
required for the interaction with the hearing aid user [5]. The range of functions and the re-
lated technical requirements for these interfaces are manifold and depend on the application
and use cases.

The hearing aid user may want to control the volume or select the hearing aid program us-
ing hardware switches [4, 223]. A digital interface is required for the hearing aid fitting
process [224]. The fitting rules for the hearing aid user are updated using and an external
programming device by the audiologist. Firmware updates can be transferred via the same in-
terface. An audio communication interface allows audio streaming from television, telephone
or external microphones to the hearing aid or even between two hearing aids [225]. With the
help of wireless interfaces the hearing aids exchange data with each other or other wireless
communication devices like mobile phones or tablets [224, 226].

The latency of the communication interfaces is critical for the hearing aid application. Addi-
tionally, the limited power budget and the input/output (I/O) pad limitation are a major concern
for the design and use of the interfaces.

This section introduces new audio and communication interfaces for digital hearing aid pro-
cessors.

3.4.1 A Low Latency Multichannel Audio Interface

Hearing aid processors require a hardware audio interface for transferring audio data between
the processing cores or other audio components or devices. Among these devices are off- or
on-chip analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), other
processing devices of the embedded system [227, 228] or wireless communication interfaces
like Bluetooth [20] or NFMI (near field magnetic induction). In cases where digital and analog
circuits can not be implemented on the same die due to noise sensitivity of the analog front
end circuity or due to limitations caused by the manufacturing process technology [4, 229],
the hearing aid is composed of different chips. The audio stream is transferred between those
chips using audio interfaces. The communication basis for these interfaces are common stan-
dardized serialized audio streams protocols like I2S [226,230–232]. In the following important
aspects for such an audio interface are listed:

103

3 The KAVUAKA Hearing Aid Processor

Interrupt rate

One important aspect for the audio interface architecture is the coupling between the process-
ing device and audio interface. The processing device, e.g., digital signal processors (DSPs)
or application-specific instruction-set processors (ASIPs) for hearing aid devices, is highly
optimized for the actual processing task, e.g., the hearing aid algorithms. If this processing
is interrupted by the audio streaming task, the processing efficiency is decreased due the in-
terrupt handling including the required context switch. However, the audio data is required
for processing and is streamed with a high sampling frequency of at least 16 kHz in case of
modern hearing aid devices [63]. This circumstance causes high interrupt rates. Even if the
actual transfer is completely covered by a DMA, the processor has to execute the interrupt ser-
vice routine (ISR) on every new DMA interrupt, which represents a performance degrading
effect [233]. Therefore, for efficiency reasons, the aim is to minimize the interrupt frequency
for the processor with the help of new audio interface architecture.

DMA utilization

If DMA are used for audio applications, a high DMA activity serving different DMA channels
might be an issue. DMA channels are typically serviced in a sequential priority-based order.
High activity on other high priority channels may therefore delay the transferring of audio
samples and may therefore also delay the processing of these. The predictability of these
events is difficult, which leads to larger buffer sizes or more DMAs.

Audio data format

Another issue for audio processing systems is the amount of data and and how the data for-
matted and aligned. Since audio data is continuously streamed, the processors need to perform
a not inconsiderable amount of data movement and data permutation operations during pro-
cessing. Although the related audio processors [95, 104, 113, 123, 227, 234] support hardware
mechanisms like SIMD or VLIW to move and process multiple data words within one cy-
cle, none of the coupled audio interfaces support suited SIMD or VLIW vector data formats.
Therefore, permutation or alignment steps are required before and and after the efficient paral-
lel processing [75, 83, 100, 101, 104] to convert between the different formats. As a result, the
performance is decreased. This performance decrease is not negligible, since this task has to
be performed repeatedly for every single sample with typical sampling frequencies of at least
16 kHz.

104

3.4 Low-Power Interfaces and Connectivity

Audio latency

The architecture of the audio interface and its coupling to the processing device is also cru-
cial for latency. Latency is introduced by additional audio buffers, which are required by
the hardware architecture. The hardware related latency adds up to the software related la-
tency. The hardware buffers are used, among other purposes, to implement double buffer-
ing [227, 232, 235] also called ping-pong buffering. Ping-pong buffering doubles the latency
proportional to the size of the buffer. Additional latency occurs where minimum size of trans-
fers is limited or FIFO buffers are used additionally to DMAs to increase the tolerance for
DMA latencies. These effects have been studied in [236]. If the total audio delay of the hear-
ing aid delay exceeds a value of 10 ms the perception of the hearing aid user’s own voice gets
affected and audio and visual information inputs get out of synchronization [220]. Therefore,
the latency of the audio interface needs to be minimized.

Switching noise

Noise caused by periodic peak to peak variations of a dynamic current in mixed-signal hearing
aid devices is an issue [237]. In order to reduce the periodic variations of the current, the
activity of all components of the system should be kept at a constant level. The typical block
based processing in hearing aids, where the processor load rises rapidly with the processing of
a new block, may cause a tonal noise at the analog output. An audio interface, which provides
the first samples of not yet complete block, enables the processing core to start the processing
earlier. This concept spreads the load and reduces the generated noise.

Low-power mechanisms

Audio interfaces are suitable for the implementation of low-power mechanisms. The audio
interface may not only trigger transfers or processing of audio samples but also trigger a low-
power states in the case when not enough samples are present to be transferred or processed.

Based on the before mentioned considerations, a new architecture for a multi channel audio
interface is presented in this section. Compared to related audio interfaces, the presented au-
dio interface does support the SIMD suited vector data format for audio data. No permutation
or alignment operations are required by the coupled SIMD processor. The FIFO-based mech-
anism of this design does not need additional DMAs, buffers or interrupt controllers. The
audio latency and the load for the processor can therefore be decreased, because less audio
buffers are used and no interrupt routines have to be processed. The presented FIFO-based
mechanism is also used to decrease the noise and the power consumption of the processor
by activating a sleep mode, if no samples are ready to be processed. Simulations and mea-
surement case studies validate, evaluate and compare the proposed architecture to existing
hardware interfaces.

105

3 The KAVUAKA Hearing Aid Processor

This chapter is structured as follows. The related audio processor interfaces for DSPs are
presented in Section 3.4.1.1. The proposed low latency multi channel audio interface for low-
power SIMD digital signal processors is described in Section 3.4.1.2. The audio streaming
latency is evaluated in a case study in Section 3.4.1.3.

3.4.1.1 Related Audio Processor Interfaces for DSPs

This section discusses the existing architectures of related audio interfaces and their integration
into the system. The system consists of one or more processing core and an audio interface,
which is coupled to the processing core.

A multi channel audio serial port (McASP) is presented in [232, 238]. This interface is
used for the TMS320C6000 processor family, including the TMS320C6747 [95] and the
TMS320C6748 [123], which are fixed and floating-point digital signal processors optimized
for low-power applications. The interface consists of shift registers for serialization (XRSR)
of the multi-channel audio streams. When a sample is completely transferred and stored in a
XRSR register, it is copied to an additional buffer register (XRBUF). This register can than
either be accessed directly by the processor or by the DMA unit. Additional FIFO buffers
can be activated when using the DMA to increase the tolerance of DMA latencies [95]. The
synchronization takes place via interrupts or polling.

An Enhanced Serial Audio Interface (ESAI) [226] is part of the Symphony DSP56300 fam-
ily [112], which contains high performance multi-core digital signal processors. For serial-
ization of the audio data, this interface uses a transmit and a receive ESAI shift registers. If
audio sample is completely serialized, the data of these shift registers is transferred to one of
the ESAI Data Registers (RX0, RX1, RX2, RX3). The audio data, stored in the data registers,
is written and read by the processor or DMA using different interrupts.

The audio interface of the ultra-low-power CoolFlux DSP [104] provides shared FIFO memo-
ries, which have a reserved address range in the main memory. The access for all components
of the system to these FIFOs is managed by the FIFO controller. The synchronization takes
place via interrupts.

The Blackfin embedded processor family [239] is equipped with buffered serial ports (SPORT)
and DMAs for the transmission of audio data. Two DMA channels are used to send and receive
data and interrupts are generated each time a transmission is completed [240].

The Kinetis processor family [231, 234, 241] and the ADSP-21161 SIMD Sharc DSP [227]
use DMAs and interrupts for transferring audio data to and from the audio interface and the
local memory.

In [233] an environment for low latency audio processing with a BeagleBone Black board is
presented. On this BeagleBone Black board is a ARM Cortex-A8 processor with programmable
Realtime Units (PRUs) for the timing-sensitive audio tasks. The authors of [233] developed a

106

3.4 Low-Power Interfaces and Connectivity

custom driver for the audio codecs and used the RFUs as DMA controllers for the audio data
transfer.

3.4.1.2 A Low Latency multi channel Audio Interface for Low Power SIMD Digital
Signal Processors

In this section, a low latency multi channel audio interface for low-power SIMD digital signal
processors is presented. This interface transfers audio data between the serial inter-IC audio
bus and the intra-IC parallel bus interface, which is connected to the processing device.

On the inter-IC audio bus side, audio data is transferred serially. The data formats for exter-
nal inter-IC communication may be I2S, TDM or PDM [229]. Analog-to-digital converters
(ADCs) convert the analog audio signal and digital-to-analog converter (DAC) convert the
digital audio signal sample by sample. These samples have to be buffered for a frame-based
signal processing. This is the task for the audio interface, which transfers and buffers the audio
data for the audio between the processing device and the converters. Two possible hearing aid
configurations with audio interfaces are shown in Figure 3.67. Hearing aid configuration (A)
comprises a chip containing both the processor and the DACs and ADCs. In configuration (B)
the DACs and ADCs are integrated in an external chip, like proposed in [7].

Audio Data Format

The processor bus interface width varies between 24-bit, 32-bit, 48-bit and 64-bit. The under-
lying data is formatted for SIMD vector data as shown in Figure 3.68.

In case of this 64-bit bus width, each word (64-bit) is either composed of two 32-bit or four
16-bit subwords. Every subword represents one audio sample for one time slot in the time-
division multiplexing format [229]. Therefore, multiple samples can be read and written si-
multaneously by the processor within one clock cycle. This architecture reduces the number
of bus accesses needed to transfer the audio data, compared to single sample transfers. Since
the audio data is already processed in a SIMD suited format by the processor, no additional
permutations have to be performed. Samples stored within the subword of one word are of
the same channel and sequentially ordered. No additional DMA transfers are needed since the
address range of the audio interface is mapped into the address range of the processor. The
processor loads and stores audio samples from the audio interface instead from the main mem-
ory. Different audio channels can be read and written using different addresses. Compared to
other existing architectures [95,104,113,123,227,234], the presented audio interface supports
the SIMD vector data formats and interface data width (24-bit, 32-bit, 48-bit and 64-bit).

107

3 The KAVUAKA Hearing Aid Processor

24-bit data
On-chip
24-bit

ADC/DAC

Differential or
Single-EndedParallel

Processor
Interface

A) Hearing Aid System with integrated ADC/DAC

B) Hearing Aid System with external ADC/DAC

Serial
Interface

64-bit data

Parallel or Serial
Interface

1-bit data

1-bit data

Parallel
Processor
Interface

64-bit data

Analog

Differential or
Single-Ended

Analog

Digital
Signal

Processor
(SIMD)

Digital
Signal

Processor
(SIMD)

Multichannel
Audio

Interface

Multichannel
Audio

Interface

External
24-bit

ADC/DAC

Figure 3.67: Block diagram of hearing aid systems with a multi channel audio interface. (A)
The audio interface transfers audio data between the processor and on-chip DACs
and ADCs. (B) The DACs and ADCs are integrated on an external chip.

64-bit subword

32-bit subwords

16-bit subwords

8-bit subwords

s0

s1 s0

s2 s0

s6 s5 s4 s2 s1 s0s7 s3

s3 s1

32-bit 32-bit

16-bit 16-bit 16-bit 16-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

64-bit

Figure 3.68: SIMD vector data format. Each word of 64-bit is either composed of 32-bit or
16-bit subwords. Every subword s represents one audio sample or time slot.

108

3.4 Low-Power Interfaces and Connectivity

FIFO-based Architecture

FIFOs are used in this work to buffer the incoming and outgoing audio samples, since the
samples must be transferred sequentially. The FIFO based memory access is preferred to a
random memory access, as shorter access time latencies and simpler interfaces can be real-
ized [104,123]. The comparison of the audio latency, induced by the hardware architecture of
the audio interface, is shown in Figure 3.69. In case of the double buffering technique, which
is commonly used [112, 226, 227, 231, 232, 235], two buffers are used. The transfer of the
processed sample buffer starts, when the input buffer is fully filled. Therefore, the latency de-
pends on the frame size. In case of a FIFO buffering technique, the processed output samples
are transferred as they are written to the output FIFO. The audio latency depends mainly on
the processing time.

FIFOs, which are arranged and organized in an array as shown in Figure 3.70, can be used to
support 64-bit read and writes as well as sequential accesses to single audio samples.

In the left part of Figure 3.70, a SIMD processor is shown, which accesses the multi channel
audio interface. 64-bit SIMD vector audio data can be written and read every cycle, whereas
each subword represents an audio sample. Multiple audio channels are supported. The channel
is determined by the bus address. One row of the input or output FIFO array represents one
audio channel. Depending on the bus address, all FIFOs of one of these rows are addressed.
In case of a write access by the processor, 64-bit are written to four FIFOs of 16-bit data width
each. The data width of the FIFO is 16-bit, because this is the minimum supported width for
an audio sample.

The serialized data output and input of the audio interface are 1-bit signals. These are con-
nected to external devices and data is transmitted according to the I2S or TDM standard.
Synchronized with the bit clock (BCLK) and the left-right clock (LRCLK) of the I2S stan-
dard, these 1-bit data line signals are driven by the serialized audio data stored in the FIFOs.
A output control logic generates the FIFO address pointers and selects a single bit of the cor-
rect channel and sample within the FIFO data. Therefore, three multiplexer layers exist. The
first multiplexer selects the channel in a time-division manner. For each channel the samples
or time slots are sequentially select by the slot multiplexer from each FIFO in one row. The
multiplexer serializes the sample and drives directly the output data line. The same control
logic is used for the serial audio input coming from external devices. A shift register is used to
parallelize each sample or time slot. Depending on the channel and the time slot the audio data
is then stored into one of the input FIFOs. The input FIFOs can then be read by the processor
in the SIMD suited vector data format. This architecture can also be used as an interface for
on-chip DAC/ADC. In this case either the serial interface or parallel sample-based interface
can be established.

109

3 The KAVUAKA Hearing Aid Processor

Input
Frame 0

Output
Frame 0

Audio Interface
Memory

DSP Memory

Time [s]

Input
Frame 0

Output
Frame 0

Input
Frame 0

Processing
Frame 0

Output
Frame 0

Audio
Stream

DSP

Audio Interface
Memory

DSP Memory

Time [s]

Digital Audio Latency
Input - Output

Processing Time

Double Buffering

FIFO Buffering

Digital Audio Latency
Input - Output

Audio
Frame 0

Audio
Frame 0

Audio
Stream

Audio
Frame 0

Audio
Frame 0

Processing
Frame 0

DSP

Processing Time

Figure 3.69: Hardware induced audio latency comparison between double buffering and FIFO
buffering techniques.

110

3.4 Low-Power Interfaces and Connectivity

C
ha

nn
el

1

C
ha

nn
el

1

SI
M

D
Pr

oc
es

so
r

A
ud

io

C
ha

nn
el

64
-b

it
C

ha
nn

el
0

FI
FO

FI
FO

FI
FO

FI
FO

ChannelMultiplexer

SlotMultiplexer

64
-b

it

BitMultiplexer

16
-b

it
1-

bi
t

16
-b

it
FI

FO
FI

FO
FI

FO
FI

FO

M
ul

tic
ha

nn
el

A
ud

io
In

te
rf

ac
e

D
at

a

A
dd

re
ss

16
-b

it

SlotDemultiplexer

ShiftRegister

16
-b

it

ChannelDemultiplexer

C
ha

nn
el

0
A

ud
io

C
ha

nn
el

D
at

a

A
dd

re
ss

64
-b

it

O
U

T
PU

T
O

U
T

PU
T

O
U

T
PU

T
O

U
T

PU
T

IN
PU

T
IN

PU
T

IN
PU

T
IN

PU
T

16
-b

it
16

-b
it

16
-b

it
16

-b
it

16
-b

it
16

-b
it

16
-b

it
16

-b
it

C
ha

nn
el

0
C

ha
nn

el
1

I2
S

T
D

M

1-
bi

t

I2
S

T
D

M

64
-b

it

2-
bi

t

2-
bi

t

64
-b

it

Channel
Muliplexer

Channel
Muliplexer

SL
O

T
0

SL
O

T
1

SL
O

T
2

SL
O

T
3

In
pu

t/O
ut

pu
t

C
on

tr
ol

SL
O

T
0

SL
O

T
1

SL
O

T
2

SL
O

T
3

Fi
gu

re
3.

70
:A

rc
hi

te
ct

ur
e

of
th

e
FI

FO
ba

se
d

m
ul

ti
ch

an
ne

la
ud

io
in

te
rf

ac
e.

Pa
ra

lle
lt

o
se

ri
al

co
nv

er
si

on
is

re
al

iz
ed

w
ith

an
ar

ra
y

of
FI

FO
s.

O
n

th
e

le
ft

si
de

th
e

SI
M

D
pr

oc
es

so
r

in
te

rf
ac

e
fo

r
re

ad
in

g
an

d
w

ri
tin

g
pa

ra
lle

la
ud

io
da

ta
is

sh
ow

n.
T

he
au

di
o

in
te

rf
ac

e
w

ith
th

e
se

ri
al

au
di

o
bu

s
in

te
rf

ac
e

is
sh

ow
n

on
th

e
ri

gh
ts

id
e.

Tw
o

au
di

o
ch

an
ne

ls
ar

e
im

pl
em

en
te

d
in

th
is

ca
se

,r
es

ul
tin

g
in

tw
o

ro
w

s
of

th
e

FI
FO

ar
ra

y.
T

he
m

in
im

um
su

pp
or

te
d

au
di

o
sa

m
pl

e
or

tim
e

sl
ot

le
ng

th
is

16
-b

it.
T

he
re

fo
re

,t
he

FI
FO

ar
ra

y
co

ns
is

ts
of

fo
ur

co
lu

m
ns

of
16

-b
it

FI
FO

s,
w

hi
ch

to
ge

th
er

fo
rm

th
e

64
-b

it
SI

M
D

su
ite

d
da

ta
w

or
d

fo
rt

he
SI

M
D

pr
oc

es
so

r.

111

3 The KAVUAKA Hearing Aid Processor

Low-Power Mechanism

In order to implement a low-power mechanism, the available FIFO address pointers of the
FIFO-based audio interface architecture are used to check how many samples are available in
the input FIFOs to be processed. If there are none and the processor tries to read audio samples
from the audio interface, the processor is set to a low-power mode to decrease power consump-
tion. This mechanism is used for synchronization at the same time. This approach was chosen
in place of the interrupt approach of the related architectures [112, 226, 227, 231, 232]. The
goal is to avoid high interrupt rates, which are caused by a continuous audio stream transfer.
Interrupts caused by other events are still possible depending on the underlying processor ar-
chitecture. Another goal is to reduce the time the processor spends transferring audio data.
In case of the interrupt-approach, the interrupt service routine has to be processed including
multiple branches.

The architecture of the low-power mechanism is shown in Figure 3.71. An idle flag signal is
generated by the audio interface, which indicates that no audio samples are available in the
input FIFOs. This flag is evaluated in the instruction fetch stage of the processor, if an IDLE
instruction is used. This instruction is used before reading from the audio interface. If the idle
flag is active and an IDLE operation is used, no operations (NOPs) are feed into the pipeline
of the processor. By this approach, interrupts caused by other events are still possible and the
power consumption of the processor is reduced, till the switching activity within the processor
is minimized.

A clock gating mechanism is an alternative mechanism to set the processor to a low-power
state using the idle flag. This option is not used, due to expected high silicon area requirement
for routing the clock enable signal to every storage element, e.g., flip-flop, of the processor.
However, only a small amount of additional controlling logic is required with the proposed
implementation of the low-power mechanism for audio processing systems.

3.4.1.3 Case Study: Audio Streaming Latency

The main goal of this case study is the comparison of different audio interface architectures in
terms of latency and the performance impact on the processor. The latencies are determined
by simulations and measurements using an audio analyzer. The measurement setup is shown
in Figure 3.72.

The digital-to-digital latencies are determined by simulations and measurements. For the sim-
ulations on RTL level, a hardware simulator is used. The SIMD processor, the audio interface
and a virtual audio codec are part of the simulation. For the measurements an audio analyzer
is used, which is connected to the inputs and outputs of the digital serial audio interface or the
analog inputs and outputs of the audio codec chip.

112

3.4 Low-Power Interfaces and Connectivity

M
ul

tip
le

xe
r

Interrupt Address

Jump Address

+

M
ul

tip
le

xe
r

1

0

Idle Flag

Address

Instruction

Instruction
Memory

Instruction Fetch (IF)

Instruction

Increment Address

Address Control

Instruction
Decode

(DE)

Pr
og

ra
m

C
ou

nt
er

(P
C

)

Figure 3.71: A low-power mechanism for pipelined audio processor architectures. The idle
flag is set by the audio interface, if no audio samples are available in the input
FIFOs. If an IDLE instruction is used, which can be used before read audio
samples from the audio interface, and the idle flag is active, the program counter
is stalled and no operations (NOPs) are feed into the pipeline of the processor.

Buffer

Serial Digital
Interface

Measurement:
Digital to Digital

Latency

Measurement:
Analog to Analog

Latency
Analog

Interface

Audio
Codec

Audio
Interface

SIMD
Processor

Figure 3.72: Measurement setup for digital to digital and analog to analog latencies. The
SIMD processor is connected by the audio interface to an external audio codec.

113

3 The KAVUAKA Hearing Aid Processor

To determine and compare the latencies and performance influences of different audio in-
terface architectures, an audio loop application is used for each test setup. This audio loop
application transfers audio with the processor from the audio input to the audio output of the
audio interface directly without interruption. No audio processing is performed to avoid the
effects of different processor performance. The same measurement setup is used in [233]. A
comparison of the digital audio latencies of a DMA-based [233] and FIFO-based audio trans-
fers at a sampling frequency of 44.1 kHz is shown in Table 3.24. For the DMA-based audio
interface architecture the latency is given by twice the buffer size [233]. For the FIFO-based
audio interface the latency is one time the buffer size plus the latency of one or two samples,
which depends on when the sample is written to the output FIFO (Figure 3.69).

Table 3.24: Comparison of the digital audio latencies of a DMA-based and FIFO-based audio
transfers at a sampling frequency of 44.1 kHz.

Buffer size DMA-based [233] FIFO-based
BeagleRT KAVUAKA

64 2.90 ms 1.49 ms
32 1.45 ms 0.77 ms
16 0.73 ms 0.41 ms
8 0.36 ms 0.23 ms
4 0.18 ms 0.14 ms
2 0.09 ms 0.09 ms

The processor loads and latencies for the transmission of audio data are listed in Table 3.25
for the related audio interface architectures and the proposed FIFO-based architecture.

The related audio interface architectures are based on DMAs in combination with FIFOs [95,
123], only DMAs [104, 112, 113, 231, 234, 241] or a direct processor bus interface to the reg-
isters of the audio interface. Direct register access is supported by all related architectures
when the DMAs and FIFOs are bypassed. All interface architectures are available within the
TI TMS320C6747 processor [95], which is used as reference architecture in this case study.
These architectures are compared to the presented FIFO-based architecture, which is used by
the KAVUAKA processor.

Various measurements are performed based on different audio signal processing scenarios. An
important factor for a frame-based audio processing is the frame size, which determines the
audio hardware buffer size. The buffer size is varied from 16 to 512 audio samples. The buffer
size of 16 samples is the minimum supported size for DMA transfers [236]. The sampling
frequency is also varied, since higher sampling frequencies cause smaller latencies and require
a higher data throughput. The evaluated sampling frequencies range from 16 kHz to 96 kHz.
This variation affects the load for the audio processor.

114

3.4 Low-Power Interfaces and Connectivity

Ta
bl

e
3.

25
:C

om
pa

ri
so

n
of

th
e

di
gi

ta
la

ud
io

la
te

nc
ie

s
an

d
pr

oc
es

so
rl

oa
ds

fo
rd

iff
er

en
ta

ud
io

in
te

rf
ac

e
ar

ch
ite

ct
ur

es
.

Sa
m

pl
in

g
Fr

eq
ue

nc
y

16
kH

z
32

kH
z

48
kH

z
96

kH
z

D
ig

ita
l

Pr
oc

.
D

ig
ita

l
Pr

oc
.

D
ig

ita
l

Pr
oc

.
D

ig
ita

l
Pr

oc
.

A
ud

io
In

te
rf

ac
e

L
at

en
cy

L
oa

d
L

at
en

cy
L

oa
d

L
at

en
cy

L
oa

d
L

at
en

cy
L

oa
d

Pr
oc

es
so

r
D

M
A

FI
FO

m
s

%
m

s
%

m
s

%
m

s
%

AudioBufferLength
51

2

T
IC

67
47

ye
s

ye
s

68
.0

0
0.

67
34

.0
0

1.
34

22
.6

6
2.

02
11

.3
3

4.
04

T
IC

67
47

ye
s

no
64

.0
0

0.
67

32
.0

0
1.

34
16

.0
0

2.
02

10
.6

6
4.

04
T

IC
67

47
no

no
32

.0
0

2.
12

16
.0

0
4.

24
10

.6
6

6.
36

5.
33

12
.0

7
K

AV
U

A
K

A
no

ye
s

32
.1

2
0.

08
16

.0
6

0.
17

10
.7

0
0.

26
5.

35
0.

53

25
6

T
IC

67
47

ye
s

ye
s

36
.0

0
0.

89
18

.0
0

1.
78

12
.0

0
2.

67
6.

00
5.

35
T

IC
67

47
ye

s
no

32
.0

0
0.

89
16

.0
0

1.
78

10
.6

6
2.

67
5.

33
5.

35
T

IC
67

47
no

no
16

.0
0

2.
12

8.
00

4.
24

5.
33

6.
36

2.
66

12
.0

7
K

AV
U

A
K

A
no

ye
s

16
.1

2
0.

08
8.

06
0.

17
5.

37
0.

26
2.

68
0.

53

12
8

T
IC

67
47

ye
s

ye
s

20
.0

0
1.

46
10

.0
0

2.
92

6.
66

4.
38

3.
33

8.
77

T
IC

67
47

ye
s

no
16

.0
0

1.
46

8.
00

2.
92

5.
33

4.
38

2.
66

8.
77

T
IC

67
47

no
no

8.
00

2.
12

4.
00

4.
24

2.
66

6.
36

1.
33

12
.0

7
K

AV
U

A
K

A
no

ye
s

8.
12

0.
08

4.
06

0.
17

2.
70

0.
26

1.
35

0.
53

64

T
IC

67
47

ye
s

ye
s

12
.0

0
3.

14
6.

00
6.

28
4.

00
9.

42
2.

00
18

.8
5

T
IC

67
47

ye
s

no
8.

00
3.

14
4.

00
6.

28
2.

66
9.

42
1.

33
18

.8
5

T
IC

67
47

no
no

4.
00

2.
12

2.
00

4.
24

1.
33

6.
36

0.
66

12
.0

7
K

AV
U

A
K

A
no

ye
s

4.
12

0.
08

2.
06

0.
17

1.
37

0.
26

0.
68

0.
53

32

T
IC

67
47

ye
s

ye
s

8.
00

4.
82

4.
00

9.
65

2.
66

14
.4

7
1.

33
28

.9
5

T
IC

67
47

ye
s

no
4.

00
4.

82
2.

00
9.

65
1.

33
14

.4
7

0.
66

28
.9

5
T

IC
67

47
no

no
2.

00
2.

12
1.

00
4.

24
0.

66
6.

36
0.

33
12

.0
7

K
AV

U
A

K
A

no
ye

s
2.

12
0.

08
1.

06
0.

17
0.

70
0.

26
0.

35
0.

53

16

T
IC

67
47

ye
s

ye
s

6.
00

9.
17

3.
00

18
.3

5
2.

00
27

.5
3

1.
00

55
.0

7
T

IC
67

47
ye

s
no

2.
00

9.
17

1.
00

18
.3

5
0.

66
27

.5
3

0.
33

55
.0

7
T

IC
67

47
no

no
1.

00
2.

12
0.

50
4.

24
0.

33
6.

36
0.

16
12

.0
7

K
AV

U
A

K
A

no
ye

s
1.

12
0.

08
0.

56
0.

17
0.

37
0.

26
0.

18
0.

53

115

3 The KAVUAKA Hearing Aid Processor

As shown in Table 3.25, an audio interface based on DMA and FIFO buffers leads to the
highest latencies for all audio buffer sizes and sampling frequencies. Because the latencies
caused by the double buffer mechanism for DMA transfers add up to the latency of the FIFO
buffers. In case of the configuration in [236] each FIFO buffer stores 64 audio samples. These
FIFO buffers do not affect processor load but increase tolerance to DMA latencies [95].

The processor load is defined here as the number of cycles required to transmit the audio
samples at a time interval divided by the total number of cycles available at that time interval.
The clock rates of the processors were normalized for comparison. There is no difference in
processor utilization when using DMAs and FIFOs in combination, but the latencies increase
by the latencies of the FIFO buffers. Latencies can be reduced by using only DMAs transfers
or direct processor transfers instead of DMAs. The direct processor transfers cause higher
processor loads for larger audio buffers, but offer lower latencies compared to DMA transfers.
There are cases where the processor load is lower for direct transfers compared to using a
DMA with double buffering. The higher load is due to the complexity of the DMA interrupt
routine. In the case of DMA transfers, semaphores must be used to access the buffers, whereas
this is not the case for direct processor access. Therefore, the generated processor load depends
on DMA interrupt rate. The smallest processor load is caused by the proposed FIFO based
audio interface. This is because neither interrupts nor double buffering are used.

The analog-to-analog latencies are measured with an audio analyzer connected to the analog
inputs and outputs of the audio codec, as shown in Figure 3.72. A sine wave is generated at
the input and the latency is determined by measuring the delay between the input and output
of the audio codec. The measurement is displayed in Figure 3.73.

Figure 3.73: Measurement of the analog-to-analog audio latencies of audio processing sys-
tems. A audio analyzer connected to the analog in- and outputs of the external
audio codec. The first sine wave is generated by the audio analyzer and is used
as an input for the audio codec. The second sine wave is measured at the output
of the audio codec. The latency is the time delay between these waves.

116

3.4 Low-Power Interfaces and Connectivity

A comparison of audio latencies for three different audio processing systems is given in Ta-
ble 3.26. The first system consists of the DSP TMS320C6747 [123] and the audio codec
TLV320AIC3106 [242]. The audio samples are transmitted with the DMAs without FIFO
buffering, the second system [233] is based on an ARM Cortex-A8 processor on a BeagleBone
Black board with a TLV32OAIC3104 [243] audio codec and the third system consists of the
KAVUAKA processor and the ADAU1761 [244] audio codec. The sampling frequency for this
measurement is set to the fixed value of 44.1 kHz because the latency of the audio codec varies
with the change in sampling frequency. As the size of the audio buffer increases, most of the
latency is caused by the digital audio interface. The system latency is comparatively lower for
the FIFO-based architecture, since no double buffering is used.

Table 3.26: Comparison of system audio latencies of different processors equipped with dif-
ferent audio interfaces and connected to different audio codecs.

Audio System Delay in ms @44.1 kHz

Audio TI TMS320C6747 [245] ARM Cortex-A8 [233] KAVUAKA
Buffer Length + TVL320AIC3106 + TLV32OAIC3104 + ADAU1761

512 24.16 ms — 12.71 ms
256 12.51 ms — 6.91 ms
128 6.74 ms — 4.00 ms
64 3.83 ms 3.84 ms 2.55 ms
32 2.39 ms 2.38 ms 1.82 ms
16 1.65 ms 1.66 ms 1.46 ms
8 1.30 ms 1.30 ms 1.28 ms

3.4.2 A Serial Interface with Special DMA Capabilities

A hearing aid system, consisting of multiple components like the hearing aid processor, audio
converters, power management ICs or wireless chips, requires a communication bus on the
system level. Due to power consumption and silicon area constraints, the number of I/O pins
of the hearing aid ASIC is limited. A parallel bus, connecting the hearing aid processor to ex-
ternal devices, like non-volatile memory devices, is not feasible. Commonly, a serial interface
called inter-integrated circuit (I2C) [246] is used [11, 20, 80, 112]. The I2C-communication is
based on a synchronous, multi-master, multi-slave and single-ended two wire serial bus. In the
fast-mode, specified in [246], up to 400 kbit/s can be transferred between the master, which is
in this case the hearing aid processor, and the slave, which is any external chip of the hearing
aid system. At this interface speed, the hearing aid processor, which acts as the I2C master and
operates at a clock frequency of 50 MHz, needs to be stalled for 8000 cycles for transferring
one word (64-bit) of data. Stalling the hearing aid processor for such an amount of cycles is

117

3 The KAVUAKA Hearing Aid Processor

not desirable during normal signal processing operations. Therefore, the I2C interface com-
monly is controlled by a second processor and only used for debugging purposes [20, 80].
In [112] a serial host interface is introduced, which supports single-, double- or triple-word
data transfers to reduce the DSP overhead. In case of receiving data, a ten-word FIFO buffers
the data before generating an interrupt for the processor. Up to 18 interrupts are available for
handling the DMA transfers. In [11, 20] the interrupt scheme is also used.

In this section, a I2C DMA unit is introduced. This unit takes care of all data transfers in a
typical hearing aid system. This unit is controlled by the hearing aid processor, but functions
independently and handles the long-lasting serial transfers. The hearing aid processor starts
the transfer using a register configuration interface. While the I2C is on-going, controlled by
the DMA unit, the hearing aid processor goes on with other tasks. The processor only has
to wait when the data being transferred by the DMA is required for the next processing task.
With the DMA functionality of the I2C unit, the processing time of the hearing aid processor
is increased. Another advantage of the proposed architecture is that it does not require any
interrupts. A single configurable IDLE flag signal is used instead, which set the processor in a
low-power state until the requested data by the processor becomes available after the transfer.
Interrupts are not used in order to prevent the overhead of the interrupt service routines (ISRs).

An overview of the hearing aid system with all components, either equipped with a register
or a memory interface, is shown in Figure 3.74. The DMA of the I2C unit can access the
whole memory address space of all components. The I2C unit uses the parallel on-chip bus
on the one hand and the I2C bus on the other hand. The integrated DMA controller manages
the actual data transfer between the components. The transfer is initiated by the hearing aid
processor, which is not depicted in the figure. The hearing aid processor sets the source and
target addresses, which include the internal on-chip bus addresses and the device and slave
address in case of a I2C transfer, using a register interface. Instead of interrupts, a simple
IDLE flag approach is used. The processor receives the IDLE from the I2C unit. The IDLE
flag is set active as long the transfer is in progress. The processor is halted by the flag if an
IDLE instruction is scheduled, which is configured to wait for the I2C flag beforehand using a
configurable register. The IDLE flag is evaluated before accessing the transferred data in order
to maximize the processing time and keep the idle time short.

Figure 3.74 shows the different data formats and types, which need to be transferred within the
hearing aid system. The I2C DMA unit supports different data words, ranging form a single
Byte (I2C devices) up to complete memory blocks of different word lengths, and converts
data between the different formats and types. The operating and I2C speed is controlled by a
configurable clock divider.

The proposed DMA functionality is used for the boot process of the hearing aid. During the
power-on sequence, after the global reset is released, the DMA unit starts to transfer the binary
program form the external non-volatile memory to the internal on-chip instruction SRAMs
(IMEM). In addition, during normal hearing aid operation, while the hearing aid algorithms

118

3.4 Low-Power Interfaces and Connectivity

IMEM

IMEM
In

te
r-

in
te

gr
at

ed
ci

rc
ui

t(
I2 C

)

Audio Codec Config.

Audio Codec Config.

External
Non-volatile

Memory

DMA

C
o-

pr
oc

es
so

rs
C

O
R

D
IC

Audio
Codecs

External

Wireless
Device

External

CORDIC Config.

CORDIC Config.

Pa
ra

lle
lO

n-
C

hi
p

B
us

DMEM Data Segment

IMEM Program Segment

8-bit64-bit

64/48-bit

32-bit

IMEM

IMEMDMEM

Power
Supply

External

I2C

Processor
KAVUAKA

ID
LE

Fl
ag

Figure 3.74: The I2C DMA unit transfers data between the hearing aid components, which
are the instruction memory (IMEM), data memory (DMEM), coordinate rotation
digital computer (CORDIC), external audio codecs, power supplies and wireless
devices as well as a non-volatile external memory.

119

3 The KAVUAKA Hearing Aid Processor

are running, program code or complete algorithms can be replaced in the IMEM by the DMA.
This requires that the processor is in idle state and does not use the global bus to access the
IMEM. An alternative is the use of a dual port SRAMs for the IMEM in order to allow two
accesses simultaneously, by the processor and the DMA. The purpose of replacing program
code instructions during normal operation is to reduce the size requirements for the on-chip
instruction memory. The whole program does not have to fit in the memory at once, when
parts are being replaced. Applications are for example the replacement of user or algorithm
parameters received by the wireless interface or the replacement of adaptive noise reduction
algorithms, which are selected based on the detected noise sources [247].

In addition, the DMA unit can access the CORDIC co-processors (Section 3.2.3) in order to
initialize their lookup tables with data stored in separate sections in the external non-volatile
memory. The same applies for the external audio codecs, however the configuration is stored
to byte-addressed registers in this case. The LUT size of the CORDIC co-processors is 32
words of 32-bit each. When using the processor for initializing one of these LUTs, 32 move
instructions with 32-bit (MVIL_32) and 32 STORE instructions are required. These instruc-
tions are not required using the I2C DMA. The required instruction memory size decreases
from 1792 Byte to 1688 Byte, a reduction of 5.8 %, when computing a 32-bit cosine with one
hardware CORDIC accelerator.

The complexity of the DMA architecture is low. Only 344 flip-flops are required for the con-
figuration registers and the finite state machine. The complete I2C unit is synthesized with
the TSMC 40 nm HVT low-power ASIC technology at 50 MHz. The placed and routed archi-
tecture consists of 1882 standard cells and requires an area of 3109.9 µm2, which is around
2.31 % of the area of the KAVUAKA 64-bit processor.

3.5 Hearing Aid System-on-Chip ASIC

In order to evaluate and compare multiple hearing aid processor and co-processor configura-
tions on one chip, a research system-on-chip (SoC) is proposed. The system consists of four
different configurations of the KAVUAKA processor (Section 3.1), ten different co-processors
(Section 3.2.3), a multiple channel audio interface (Section 3.4.1) and a serial data interface
(Section 3.4.2). The processors differ from each other by their computing performance, power
consumption, chip area and computing precision. Figure 3.75 shows one vector unit of the
KAVUAKA processor with two pipeline stages. This is the baseline configuration of the pro-
cessor.

The main differences between the processors, which are part of the SoC, are the width of the
datapaths, which is varied between 64-bit down to 24-bit, the MAC architecture [128] and
the presence of the operation merging feature called X2 mode [83, 84, 193]. The overview of
the proposed hearing aid system-on-chip is shown in Figure 3.76. The hearing aid system is

120

3.5 Hearing Aid System-on-Chip ASIC

PC

(IF - DE - RA)

Address
Register

(FIR)

Decoder

Decoder

Issue 0

X2 Mode

X2 Mode

Issue 1

ALU1

ALU2

FU

FU

Pipeline registers

Write back

FU

CMAC

Execution - Write back
(EX - WB)

Memory

Register

Instruction

Instruction Fetch - Instruction Decode - Register Access

Instruction

Instruction

Partitioned

KAVUAKA

paths

32

(XX-bit)
Registers

V1

Co-Processors
and Peripherals

File

32

(XX-bit)
Registers

V0
MV

DMEM

MV
DMEM

Figure 3.75: Baseline KAVUAKA processor architecture [56]. The processor is divided into
two pipeline stages. Two instructions are decoded and executed by the specialized
functional units, like a complex-valued MAC unit [128]. External CORDIC co-
processors and peripherals are tightly attached.

121

3 The KAVUAKA Hearing Aid Processor

divided into two processor clusters. Each cluster consists of one big processor core (64-bit
or 48-bit) and one little processor core (32-bit or 24-bit). Furthermore, each cluster contains
a dedicated data memory instance and a shared instruction memory. The sizes of the shared
instruction and data memories are determined by the memory requirements of the hearing
aid algorithms. A subset of these algorithms and their memory requirements are listed in
Table 3.27. Based on these values, the total data memory size is fixed at 4096 words or
2048 words for each cluster. The total instruction memory size is 8192 words. With this
configuration, most algorithm can be chained and the required SRAM instances fit on the die
with an area of 3.6 mm2. The Localization algorithm [6] is not considered for the ASIC this
configuration due to the comparatively high data memory requirement.

BIG KAVUAKA (64-bit)
X2 + CMAC

little KAVUAKA (32-bit)
MAC

BIG KAVUAKA (48-bit)
X2 + CMAC

little KAVUAKA (24-bit)
MAC

Shared Data Memory
4096x64-bit

Shared Data Memory
4096x48-bit

Shared Instruction Memory
8192x64-bit

Audio Interface

BIG Cluster little Cluster

Co-Processor Cluster Serial Interface

Multichannel
FIFO
Buffer

DMA

KAVUAKA SoC

External
Memory

M=1
Co-Processor

M=2
Co-Processor

M=1, SIMD
Co-Processor

M=2, SIMD
Co-Processor

M=4
Co-Processor

M=4, SIMD
Co-Processor

External
ADC
DAC

External
ADC
DAC

Figure 3.76: The hearing aid system-on-chip includes four processor cores, organized in two
clusters, a co-processor array, one audio interface and a serial interface.

Each of the memory instances incorporates four dual port SRAM memories, in total 4×
1024× 64-bit and 4×1024×48-bit. In case the little cores access the data memory, the mem-
ory interface switches to 32-bit or 24-bit word access, whereas the word access is switched
to 64-bit or 48-bit in case of the big cores. The memory interface supports four words per
access for the X2 mode (Section 3.2.4) with up to 256-bit per cycle for the 64-bit processor
core configuration and 192-bit per cycle for the 48-bit processor core configuration.

Data can be copied between the data memories of each cluster using a global bus interface.
Since the processor architecture does not support interrupts to guarantee an uninterrupted au-
dio processing, a idle flag synchronization approach with low complexity is implemented.
Each processor can activate a wait state for itself or other processors. The wait state is only

122

3.5 Hearing Aid System-on-Chip ASIC

Table 3.27: Data and instruction memory requirements for a subset of hearing aid algorithms.

Data memory size Instruction memory size
Algorithm (words (24-bit to 64-bit)) (VLIW words (64-bit))

Localization 52592 1463
FFT and IFFT (1024-point) 3072 655
Binaural coherence filter 2184 941
Overlapadd 1250 347
Mel-frequency cepstrum 722 1593
Frame loop (512-samples) 512 106
Spectral-subtractive noise reduction 424 2622
Gammatone filter bank 334 254
Adaptive gain beamforming 113 371
IIR filter (17-tap) 103 118
FFT (scalar) (32-point) 80 581
Floating-point FFT (32-point) 80 4809
Microphone calibration 50 96
Adaptive filter beamforming 42 304
Fixed beamforming 16 140
Sample loop 0 57

123

3 The KAVUAKA Hearing Aid Processor

triggered by the processor itself, usually when the pending processing depends on data pro-
vided by another processor or when all processing tasks are completed. During the wait state
the processor’s pipeline is filled with NOP instructions until the other processor completes
its work and reactivates the waiting core. With this ping-pong based approach the processor
are synchronized without the need for interrupt-based processing that requires more complex
interrupt handlers and results in a less predictable processing time.

The instruction memory, consisting of four SRAM instances, each with 2048 × 64-bit, is
shared between the processor cores. If one core is active, the whole instruction memory size is
accessible by this core. If more than one core is active, the address range and thus the memory
space is divided among the cores.

Different co-processor configurations (Section 3.2.3) are implemented for evaluation. In total,
ten co-processors are part of the co-processor cluster (Figure 3.76). The co-processors imple-
ment the kernel equation of the coordinate rotation digital computer (CORDIC) algorithm to
compute hyperbolic and trigonometric functions. Their architecture is presented in [164]. The
parameter M, which indicates the number of CORDIC kernel units in the processing stage,
is varied between one and four. When set to four, the co-processor computes four fractional
digits per cycle. The SIMD parameter indicates whether the co-processor performs single
instruction, multiple data (SIMD) operations. Each co-processor can be used by each of the
processor. Each co-processor can be deactivated by clock gating.

The audio interface (Section 3.4.1), proposed in [248], enables a multi channel audio data
transfer to external digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
converters. This inter-IC audio transfer is required, if the analog components and digital
processing systems are integrated on separate chips using different ASIC process technologies,
as proposed in [7]. The inter-IC sound I2S bus interface standard is used here. Each processor
accesses the first in first out (FIFO) memories (16 × 512×16-bit) of the audio interface based
on the processor’s data width and format. The interface can be configured to work with SIMD
formatted data or single words.

The serial interface inter-integrated circuit (I2C) (Section 3.4.2) is used for booting the sys-
tem and, during normal operation, for accessing external devices like non-volatile memory or
DACs and ADCs. The integrated DMAs manages the transfer of large amounts of data, e.g.,
initializes the look-up tables of the co-processors with the coefficients stored in the external
memories.

Each of the processor, co-processor, interface modules and memory instances can be activated
separately or simultaneously. As presented in [19], clock gating is used for this purpose.
The clock gates can be configured during runtime and the default settings may be overwritten
during the boot process by the DMA unit. The clock gates reduce dynamic power consumption
of the deactivated processors and co-processors for the power measurements.

The pinout diagram of the package for the KAVUAKA system-on-chip is shown in Figure 3.77a.
Besides the power pins for the I/Os (IO_VSS and IO_VDD) and for the core (CORE_VSS and

124

3.5 Hearing Aid System-on-Chip ASIC

CORE_VDD) there are pins for the audio interface (serial data (SDATA), left-right clock (LR-
CLK) and bit clock (BCLK)), pins for the data interface (serial data (SDA) and serial clock
(SCL)), the reset pin (RESET) and clock (CLK) pin. An on scale bonding diagram of the
package is depicted in Figure 3.77e. The 32 quad flat no leads package (QFN) package pins
are connected to the KAVUAKA chip pins. The dimensions of the package are 5×5mm (Fig-
ure 3.77f).

The complete hearing aid system (Figure 3.77) is synthesized using a 40 nm low-power stan-
dard cell ASIC library. The target clock frequency is set to 50 MHz. The layout view of the
complete system is shown in Figure 3.77c. In total, 0.8 million standard cells, 0.4 million
nets, 28 SRAM memories and 24 I/O cells are integrated. The die size is 1920 µm×1920 µm,
which is equal to 3.61 mm2. The floorplan and the placement of the SoC is shown in Fig-
ure 3.77b. The biggest colored areas are the four KAVUAKA cores, whereas the smaller ones
are the co-processors. The rectangular blocks are the SRAM instances. The core area is sur-
rounded by the I/O ring. The total standard cell gate count of this system-on-chip is 825,284.
Eight metal layers are used for routing. The power consumption is estimated based on the
static and dynamic power consumption of the gates, memories and pads. The voltage drop (IR
drop analysis) across the wires is color coded. The red color indicates higher drop in voltage
(Figure 3.77d). It is verified that the voltage drop is within the 10 % constraint.

The die micrograph of the fabricated KAVUAKA application-specific integrated circuit (ASIC)
is shown in Figure 3.78. This application-specific integrated circuit (ASIC) is placed in socket
on the printed circuit board (PCB). Further components of a hearing aid device, like power
regulators, ADCs and DACs and a wireless communication module, are available on the PCB.
Test pins and a connection to a FPGA board are available for test and verification purposes.

125

3 The KAVUAKA Hearing Aid Processor

IO_VSS 1
IO_VDD 2

SDATA_O 3
SDATA_I 4

LRCLK 5
BCLK 6

CORE_VSS 7
CORE_VDD 8

13
IO

_V
SS

14
SC

L
15

C
O

R
E

_V
D

D
16

C
O

R
E

_V
SS

9
IO

_V
SS

10
IO

_V
D

D
11

IO
_V

SS
12

SD
A

17 IO_VSS
18 IO_VDD
19 IO_VSS
20 CLK
21 IO_VSS
22 RESET_N
23 CORE_VDD
24 CORE_VSS

IO
_V

SS
25

IO
_V

SS
26

IO
_V

D
D

272829
C

O
R

E
_V

SS
30

C
O

R
E

_V
D

D
31

IO
_V

SS
32QFN32

(a) Pinout diagram. (b) Placement of KAVUAKA cores,
co-processors and SRAM blocks
and the I/O ring.

Co-Processor Cluster

Audio Interface

little Cluster

BIG Cluster

(c) Routed design. (d) Result of the IR drop analysis.

(e) Bonding diagram. (f) Photo of the bonded ASIC.

Figure 3.77: Pinout diagram, floorplan, routing, IR analysis, bonding diagram and photo of
the fabricated KAVUAKA system-on-chip.

126

3.5 Hearing Aid System-on-Chip ASIC

1900 µm

1900
µm

Chip Carrier Dummy Filling

Test PCB

Test pins

Test socket
KAVUAKA Chip

FPGA connection
Gold Wire Bonding

Bond Pads

Oscilloscope

Analog and digital probes

FPGA

Test PCB

Clock generator

Figure 3.78: Photo of the chip socket on the printed circuit board and die micrograph of the
KAVUAKA ASIC.

127

4 Operation Merging, Instruction
Scheduling and Register Allocation

An efficient mapping of the algorithms to the custom and application-specific target hardware
architecture is of high importance. The goal is to achieve a high utilization of the available
hardware resources. The result is a high processing performance and low-power consump-
tion [193]. This chapter describes how evolutionary algorithms are used for optimizations
during operation merging, instruction scheduling, and register allocation. An overview of the
code generator, which is consists of several optimization problems such as instruction merg-
ing, scheduling, and register allocation, is given in Figure 4.1.

The hearing aid algorithms, a subset is listed in Figure 3.66, for the target VLIW KAVUAKA
processor are written in a custom assembly language. The human-readable instructions are
mapped directly to micro-operations (MOs), which is defined in the instruction set architec-
ture (ISA). The proposed code generation process [193,249] translates these MOs into sched-
uled micro-instructions (MIs) taking into account the processor configuration, the associated
control and data dependencies, and the optimization goals.

The presented code generator for the KAVUAKA processor supports different target processor
architecture configurations. The processor configuration is specified in an extensible markup
language (XML) file, which describes architectural parameters such as the pipeline and regis-
ter file configuration, names of special registers, memory configuration, etc. It also describes
the functional units, which implement the processor’s instruction set architecture (ISA). For
each operation, the syntax, the number of available units for parallel execution, the number and
types of arguments, the available modes, the latency, and the binary encoding are specified.
From the configuration, the code generator builds an internal model of the target processor,
which is used for the syntactic and semantic analysis of the input programs and for binary
writing.

When the code generator reads an input program for a given target processor architecture,
it divides the sequence of MOs of the input code/algorithm into basic blocks (straight line
microcodes (SLMs)), which are linear sequences of MOs. SLMs have only one entry point
at the beginning and no branches, except possibly at the end. The code generator performs
optimizations during operation merging (Section 4.1), instruction scheduling (Section 4.2),
and register allocation (Section 4.3) locally for each of the SLMs, using static heuristics and
evolutionary algorithms for multi-target optimizations (Section 4.2.2 and Section 4.3.1).

129

4 Operation Merging, Instruction Scheduling and Register Allocation

Operation merging (X2)

Processor Confg.

Heuristic-Based Code Generator

Heuristic

App. Input Code

Instruction Scheduling

Register Allocation EA

EA

EA

Objectives

Genetic Algorithm-Based Code Generator

Heuristic

Merged Code

Parallel Code

Binary

Heuristic

Figure 4.1: Structure of the code generator presented in [193,249]. The operations are merged,
the instructions are scheduled and the registers are allocated for the input applica-
tion code for a given processor configuration and objectives using a combination
of static heuristics and evolutionary algorithm algorithms.

130

4.1 Operation Merging

4.1 Operation Merging

The merging of operations, also called operation merging [84], is an optimization feature
that merges several micro-operations (MOs) into one [193]. An assembler example for the
operation merging is given in Figure 3.35. This feature is a kind of code selection, since it
modifies the sequence of MOs from the input program before instruction scheduling. The
MOs must be of the same type and use the same operation modes in order to be merged. For
automatic merging, the code generator can search the basic block for mergeable MOs and
replace them with functionally equivalent X2-MOs.

The first approach in [84] processes the MOs in a basic block sequentially. For each MO,
the algorithm searches the operation sequence for a MO of the same type that can be merged.
The first candidate found is used to create a new merged MO. This approach aims at an effi-
cient merging of repetitive operation patterns, which are created, e.g., during loop unrolling.
However, if the regular structure of repetitive patterns is interrupted by other operations or
dependencies, more sophisticated merge decisions may be required. A merge of two MOs
changes the data dependencies and also restricts the register allocation. The added dependen-
cies could prevent subsequent MOs from merging and affect the overall code compaction.

The operation merging (X2) optimization uses evolutionary algorithms (EAs) to improve code
compaction. The automatic operation merging based on EA first determines all possible
merges, i.e., pairs of MOs, in a straight line microcode (SLM). In a second step the popu-
lation is initialized with chromosomes for the merging, as shown in an example in Figure 4.2.
To initialize the first generation, a chromosome without merging is added. All merging can-
didates are set to the stop entry, which is denoted by ‘X’. A second chromosome is added,
which results in the same sequential merging sequence as the static heuristic described above.
Therefore, the first generation contains two individuals with chromosomes which are prede-
fined. The rest of the population is filled with random individuals, where the candidate lists in
each gene are permuted randomly.

The next generations of individuals are generated from the individuals of the previous gener-
ations by copying the best three (elitism), using crossover, mutation (about 90 %) and genera-
tion of new random chromosomes. The population size remains constant for all generations.
Crossover generates two child individuals from two parents selected by tournament selection.
With this selection method, a subset (tournament set, by default three individuals) is selected
from the individuals and the fittest of them is returned. Each gene in the first child is ran-
domly selected from one of the parent’s gene (i.e., the order of the MOs in the candidate list
is copied). For the second child, the gene from the other parent is selected. With a default
mutation rate of m = 1 %, the individual genes in the children are mutated by mixing their
merge candidate lists.

In order to evaluate the fitness of an individual, the merged SLM is passed on to the instruction
scheduler and register allocation. Both can use the heuristic-based techniques described above

131

4 Operation Merging, Instruction Scheduling and Register Allocation

1 ADD VxR0 , V0R2 , V0R0
2 SRI VxR1 , VxR0 , #1
3 MAX VxR2 , VxR1 , V0R2
4 PERMREG0 VxR2 , VxR0 , VxR2
5 MAX VxR0 , V1R0 , V1R1
6 ADD VxR2 , VxR0 , V0R0
7 ADD VxR2 , VxR0 , V0R1
8 PERMREG0 VxR4 , VxR0 , VxR2
9 PERMREG1 VxR8 , VxR0 , V0R2

MOs Mergeable MOs candidates
1

2

3

4

5

6

7

8

9

6

X

X

X

X

7

X

X

X

7 X

9

X

Figure 4.2: Exemplary assembler code and corresponding chromosome for the X2 instruction
merging [193]. The chromosome for X2 merging lists all possible merging candi-
dates for each MO. A stop entry, denoted by ‘X’, stops the candidate search and
prevents merging of the corresponding MO.

or the evolutionary algorithms explained in the following sections. For example, the fitness
value is the number of MIs in the scheduled program. The fitness value is computed to divide
the population into different sections: The first section contains all individuals for whom
a valid instruction scheduling and register allocation has been found. The second section
contains all individuals for whom a scheduling was performed but no register allocation could
be found. The third section contains individuals for whom a register allocation was found to
be impossible. If instruction scheduling was not possible for the merged code of an individual,
it is placed in the fourth section, where the individuals are sorted by the number of MOs, with
merged MOs counting as one.

The population size in each generation is based on the number of possible operation merges in
a SLM, which can be derived from the lists of merge candidates for operations. A command
line parameter allows the user to specify the merge level of the compiler backend that affects
the population size. If n is the number of possible merges and x is the merge level, then the
population size S is computed as S = n ·2x−2. Merge level 0 disables automatic merging, while
merge level one uses static heuristic. The assembler code can contain pragmas to override the
merge level for individual SLMs, so that the programmer can influence the distribution of
the computational effort over the SLMs. The EA-based merging uses a dynamic stop crite-
rion. The algorithm stops, if a certain number of generations has not improved over the best
solution.

To speed up the code generation, the instruction scheduling and register allocation steps for
a chromosome can be skipped, if the SLM including the candidate list cannot be scheduled
smaller than the best solution so far. From the data dependency graph of the merged SLM the

132

4.2 Instruction Scheduling

critical path can be computed. Also, dividing the number of MOs by the number of issue slots
gives a lower limit for the number of MIs after scheduling. If this minimum size is greater than
an user-defined offset from the current best solution, the instruction scheduling is skipped.

4.2 Instruction Scheduling

Instruction scheduling performs parallelization of the code by converting the sequence of MOs
written by the programmer into a sequence of micro-instructions (MIs), where each MI con-
tains one MO for each issue-slot [193]. The heuristic-based instruction scheduler [84] uses
list scheduling [250] to address this optimization problem.

The list scheduling constructs the MIs one after the other. The algorithm contains a set of all
MOs whose data dependencies are satisfied and selects one from this list for placement in the
current MI. Instead of exhaustively testing every possible MO and thereby creating a tree with
different solutions, the selection is based on a heuristic function that assigns a weight to each
MO. The static heuristic derives weights for the operations in the input program from data
dependency graphs (DDGs) to influence the order in which they are picked for scheduling.
An example for the weights and the instruction selection order for list scheduling is shown
in Figure 4.3. If a SLM contains a branch or jump operation, that operation is handled after
all other operations have been placed. According to the number of delay slots for branches,
the last scheduled MIs are removed, the branch is placed, and the removed operations are
rescheduled to fill the delay slots. The heuristic has a strong influence on code compaction.
Static heuristics, e.g., the solution in [251], which derives the weight for a MO from the data
dependency graph, can lead to suboptimal results, because scheduling decisions cannot be
easily reversed if they turn out to prevent better scheduling later. A more flexible dynamic
heuristic based on evolutionary algorithms (EAs) is proposed.

The EA-based instruction scheduler is an extension of the heuristic-based scheduler. The list
scheduling uses weights to select MOs during scheduling. Instead of statically deriving the
weights from the input program (the data dependency graph (DDG)), an EA is used to find
a set of weights that results in an optimized scheduling. The chromosome for the EA-based
scheduling algorithm contains one gene for each MO in the SLM. The gene assigns a weight
to the corresponding MO.

The EA-based scheduling always includes the static heuristic-based solution. For the other
chromosomes in the population, the weights are randomly chosen between 1 and the highest
weight from the DDG.

The population size S for the EA-based instruction scheduling is derived from the number
n of MOs in the SLMs and can be influenced by an optimization level o. It is computed as
S = n · 2o−2/5 [249], but a minimum population size of 10 individuals is always used. The
value o = 0 disables scheduling and o = 1 enables only static heuristic-based list scheduling.

133

4 Operation Merging, Instruction Scheduling and Register Allocation

1 ADD VxR0 , V0R2 , V0R0
2 SRI VxR1 , VxR0 , #1
3 MAX VxR2 , VxR1 , V0R2
4 PERMREG0 VxR2 , VxR0 , VxR2
5 MAX VxR0 , V1R0 , V1R1
6 ADD VxR2 , VxR0 , V0R0
7 ADD VxR2 , VxR0 , V0R1
8 PERMREG0 VxR4 , VxR0 , VxR2
9 PERMREG1 VxR8 , VxR0 , V0R2

1
2

1

1

1

1

2

2

5

3

3

3

4

4

6
7

8

9

Figure 4.3: Exemplary assembler code and corresponding data dependency graph
(DDG) [193]. Nodes represent MOs corresponding to code lines. Weights
are shown as small numbers.

The number of MOs in a SLM allows the estimation of the compaction complexity and is
therefore used to concentrate the computational effort on the larger SLMs. The assembler
code may contain pragmas to override the global optimization level for individual SLMs.

For the next generation, the three fittest individuals from the previous generation are copied
(elitism). Approximately 1 % of the new population is randomly generated to introduce new
material into the gene pool and thereby cover a wider range of the search space. The remaining
part of the new generation is formed by recombination (i.e., crossover followed by mutation).
These distributions have been determined empirically. For recombination, two parent indi-
viduals from the previous generation are selected by tournament selection with a tournament
size of three individuals and their genes are combined to form a new individual. Each gene in
the child individual is selected independently from the others with equal probability from one
parent. The individuals from the crossover are subject to a mutation that randomly overwrites
the weights in one gene with a small probability of 0.8 %.

The evaluation of the individuals in the population is done by sorting the individuals to allow
tournament selection for the generation of the next generation. First, instruction scheduling
is performed using the parameters from chromosome. After that the registers are allocated.
Then the population is divided into different sections. The first section contains all individuals
for which a register allocation of the compacted code could be found. The individuals in this
section are sorted by fitness values, which represents the size of the compacted program (i.e.,
number MIs). The second section contains all individuals for which a register allocation was
not attempted or was not successful. In this section, the individuals are sorted by the size of the
compacted program or, if identical for two individuals, by the fitness of the register allocation,
where the EA-based register allocation takes precedence over the heuristic register allocation.

134

4.2 Instruction Scheduling

From the DDG of the SLM and the number of MOs the theoretical minimum number of MIs
in the compacted SLM is derived. If this size is reached during scheduling, the EA stops.
Otherwise, the algorithm stops after a certain number of generations without improving the
fitness of the best individual. If the size of the best individual changes, the stop counter is also
reset. This stop criterion is started when the first valid solution is found. If no valid solution
can be found, the algorithm stops after a specified number of rounds. The register allocation
(REGA) step for a compacted SLM can be skipped completely, if the number of MIs after
scheduling of the current chromosome is more than a given offset of the current skip size,
which corresponds to the size of the worst individual in the elite set. In this case, a penalty
is added to the fitness of the chromosomes. Skipping the register allocation helps to speed up
the scheduling algorithm. If a EA-based register allocation is used, a heuristic-based register
allocation is performed first. Only if this is not successful, the EA-based register allocation is
performed. To speed up the evaluation of scheduled individuals a maximum number of EA-
based register allocation can be specified. After the heuristic register allocation the individuals
are sorted by fitness as described above. For all individuals with the same size as the smallest
individual and the specified number of larger individuals the EA-based register allocation is
performed.

4.2.1 Issue-Slot Based Predication Register Allocation

The issue-slot based predication technique presented in Section 3.2.5 requires the instruction
scheduler to schedule conditional operations on a predefined issue-slot. If multiple predicate
registers are used, the issue-slot of conditional micro-operations (MOs) has to be bound to the
issue-slot of the corresponding predicate register. Therefore, the predicate register is allocated
during instruction scheduling. The instruction scheduler determines the issue-slot for every
instruction for a given application. The predicate register resource dependencies are checked
during instruction scheduling using data dependency graphs (DDGs). The DDGs indicate,
which conditional instructions are interdependent due to the data in the condition flags and
must therefore be scheduled before other conditional instructions can be scheduled. A DDG
representation for a code with two conditionally executed addition (ADD_CR) (condition read
(CR)) instructions with conditional flags set by two subtraction (SUB_CS) (condition set (CS))
instructions is shown in Figure 4.4. There is no dependency between these two instructions,
because there is no connection between the subtrees in the DDG. These can be scheduled
in parallel on two issue-slots, using two different predicate registers set by the subtraction
(SUB_CS) (condition set (CS)) instructions.

Due to the issue-slot constraint for conditional instructions, the scheduling process may fail
for a SLM under certain circumstances. This may the case if no further conditional opera-
tions can be scheduled due to the scheduling order and resulting dependency conflicts. This
happens if a set of conditional instructions of two subtrees of the DDG is scheduled on both
issue-slots, but the remaining conditional operations of these subtrees cannot be scheduled due

135

4 Operation Merging, Instruction Scheduling and Register Allocation

Sequential assembler code with two conditions
1 SUBCS_64 V0R0 , V0R1 , V1R2
2 ADDCR_64 V0R3 , V0R4 , V1R5
3
4 SUBCS_64 V0R6 , V0R7 , V1R8
5 ADDCR_64 V0R9 , V0R10 , V1R1

Corresponding data dependency graph (DDG)

(line 4)
SUBCS_64

(line 2)
ADDCR_64

(line 5)
ADDCR_64

(line 1)
SUBCS_64

Scheduled code on two issue-slots

Issue-Slot 0 Issue-Slot 1

1 SUBCS_64 V0R6 V0R7 V1R8; SUBCS_64 V0R0 V0R1 V1R2
2 ADDCR_64 V0R9 V0R10 V1R1; ADDCR_64 V0R3 V0R4 V1R5

Figure 4.4: Exemplary assembler code with two independent conditions. The corresponding
DDG representing the condition flag data dependency is depicted. The condition
set (CS) and condition read (CR) instructions are scheduled on two issue-slots in
parallel, using a separate predicate register.

136

4.2 Instruction Scheduling

to register dependencies on other not yet scheduled conditional operations of other subtrees.
The conditional instruction of these other subtrees cannot be scheduled because the condi-
tional flag registers are still in use. The scheduler detects this conflict and aborts scheduling
and marks these SLMs as not schedulable. To resolve this issue, evolutionary algorithms for
instruction scheduling are used. If a SLM cannot be scheduled due to imposed constraints of
the conditional operations, its fitness value is set to a high constant value and the number of
conditional operations, which could not be scheduled, is added to this constant. Therefore,
individuals with more conditional instructions, which cannot be scheduled, have a lower fit-
ness value. Their chance to be selected for the next generation is slightly reduced if no valid
solution is found at that time. Compared to a heuristic-based scheduler, which may fail to
find a valid scheduling, the EA-based scheduler is able to find scheduling solutions for the
proposed issue-slot based predication technique if the number of trials is large enough. Fur-
thermore, it can optimize the issue-slot and predicate register allocation for an overall efficient
scheduling [193].

4.2.2 Towards Power-Aware Instruction Scheduling

The KAVUAKA system-on-chip (SoC) of Section 3.5 is designed and implemented as a re-
search application-specific integrated circuit (ASIC). In this case study, different hearing aid
hardware configurations and power optimization techniques are evaluated based on-chip power
measurements. These optimizations affect different architecture and software implementation
levels. Additionally, the potential of different power-aware compiler and scheduler techniques
for application-specific hearing aid processors is evaluated. The goal is to reduce the power
consumption of ASIP architectures by exploiting the flexibility offered by these programmable
hardware architectures. In this case, the instruction set architecture (ISA) is analyzed in order
to create an accurate power model of the underlying processor architecture.

The first step for generating an instruction-set power consumption model requires the measure-
ment of the base power of the instruction set of the KAVUAKA processor. The technique used
here is described in [252]. The base power for every instruction is measured while the proces-
sor executes a loop containing only the target instruction at a clock frequency of 50 MHz. The
measurement results of the base power consumption for a subset of arithmetic and load/store
instructions is depicted in Figure 4.5.

For these measurements, all registers of the processor were initialized with zeros. The opcodes
of the instructions are varied by using different condition flags and SIMD subword modes.
Results of the measurements show, that the maximum deviation of power consumption for
different instructions is about 35 %.

With the data from the base power measurements, the power consumption of any program
can be estimated for each cycle. A measurement of the total chip power consumption over
time for a simple test program is shown in Figure 4.6. The program consists of a sequence

137

4 Operation Merging, Instruction Scheduling and Register Allocation

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

1

2

3

Instruction ID

Po
w

er
[m

W
]

NOP LOAD + STORE OR AND XOR XNOR ADD MAX MIN SUB SR SL

Figure 4.5: Base power consumption for a set of arithmetic instructions

of ADD statements followed by a sequence of NOP instructions. The clock frequency is
10 MHz and the 32-bit KAVUAKA32 core is used. The simulated, measured and estimated
(model-based) power consumption values are compared. The measured power consumption is
the total system-on-chip (SoC) power, which includes all components shown in Figure 3.76.
The simulated power is given for the SoC and the KAVUAKA32 core for worst case operating
conditions (−40°), whereas the measurement is performed under typical conditions (25°). The
developed model estimates the power consumption with a maximum error of 2 %.

4.3 Register Allocation

The presented compiler backend allows using variables in the form of virtual registers [193].
Their scope is limited to a basic block and they are allocated to physical registers after in-
struction scheduling. When the parser detects a MO writing to a virtual register, the register
is renamed to an unused register for this and all subsequent MOs, in order to remove artificial
data dependencies (e.g., write-after-read).

Register allocation has to consider constraints, e.g., register pairs for merged MOs and number
of read and write ports per register file partition, and is therefore split in two steps. First,
the virtual register is assigned to a register file partition. A heuristic function balances the
distribution of registers between the available partitions, as proposed in [251]. Then, in the
selected partition, a free register is allocated. When allocating single registers, the allocation
subroutine tries to keep pairs of consecutive registers free, in order to support allocation of
register pairs from merged operations. No spill code is generated in case the number of live
variables is higher than the number of free registers.

Similar to the heuristic-based register allocation, a evolutionary algorithm (EA)-based allo-
cation is proposed, which first assigns the virtual registers to the available register files and
selects the one of the registers in a second step. Instead of deriving this distribution from static
properties of the compiled program, the EA encodes and evolves the distribution in the chro-

138

4.3 Register Allocation

×104

Time (ps)
0 2 4 6 8 10 12

Po
w

er
(m

W
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 SoC (Simulation)

SoC (Measurement)

KAVUAKA32 (Simulation)

KAVUAKA32 (Model)

SoC (Simulation)
SoC (Measurement)
KAVUAKA32 (Simulation)
KAVUAKA32 (Model)

ADD NOP ADD NOP

Figure 4.6: Measured, simulated and estimated dynamic power consumption over time for a
sequence of ADD and NOP instructions.

139

4 Operation Merging, Instruction Scheduling and Register Allocation

mosomes. Due to operation merging and register file configuration, dependencies between
registers can arise, which are analyzed in a register dependency graph (RDG) for the sched-
uled SLM. This helps reducing the search space and allocation complexity, as for each cluster
of interdependent registers only one representative has to be encoded in the chromosome. An
example RDG for a scheduled assembler code is shown in Figure 4.7. Due to the X2 operation
merging constraints, registers in a pair (like VxR3+VxR7) have to be allocated in the same
register file, denoted in the graph by an edge with an equal sign. These two target registers
require two write ports in one register file. Therefore, the target register VxR5 of the parallel
operation has to be scheduled in the other register file, denoted by the edge with the unequal
sign.

1 5 MAX VxR4 , V1R0 , V1R1; 1 ADD VxR0 , V0R2 , V0R0
2 8 PERMREG0 VxR8 , VxR0 , VxR2; 2 SRI VxR1 , VxR0 , #1
3 3 MAX VxR2 , VxR1 , V0R2; 7 ADD VxR6 , VxR4 , V0R1
4 8 PERMREG0_X2 VxR3+VxR7 , VxR0+VxR4 , VxR2+VxR6; 6 ADD VxR5 , VxR4 , V0R0

VxR3

VxR5

VxR0

VxR4

VxR1 VxR2

VxR6

VxR8

VxR7

root nodes

Figure 4.7: Exemplary scheduled assembler code and corresponding register dependency
graph (RDG) [193]

The chromosome contains a gene for each independent virtual register in a SLM, which stores
the associated register file for that register. During initialization, the registers are distributed
randomly on the available register files. In contrast to EA-based scheduling and merging, no
individual with information from the static heuristic is created for register allocation, as the
overhead for computing such an individual is not justified. However, the EA-based register
allocation (REGA) is only performed, when the static heuristic-based register allocation failed
and can therefore only improve the results. The recombination of two parent chromosomes
picks each gene randomly from one of the parents and mutates a gene in the child chromosome
with a default probability of 1 %, by choosing a random register file for the register. Parents
are selected by tournament selection from the previous generation.

The population size S is derived from the number of independent registers n and an opti-
mization level P as S = n · 2P/8−5 with a minimum population size of five individuals. To
generate the next generation of individuals, the best individual is copied (elitism), about 10 %
of the new population is generated randomly and the remainder of the population is filled by
recombination.

If a valid register allocation is found, the EA stops. For invalid register allocations, a fitness

140

4.3 Register Allocation

value is computed by considering the different possible reasons for invalid register allocations
with decreasing priority: (1) The number of extra registers needed, when the number of live
variables exceeds the number of registers. (2) Unbalanced use of register file partitions. (3)
The number of read and write port conflicts after register allocation. This fitness value is used
in tournament selection, the stopping criterion, and also evaluated in the EA-based instruction
scheduling.

The EA stops after a certain number of generations without any improvement in the fitness of
the fittest individual, or as soon as a valid register allocation is found. If the scheduling ob-
jective is performance, this stopping criterion is sufficient, but if other objectives (e.g., power
consumption) are considered, the algorithm should not stop on the first valid register allocation
as other allocations might improve the objective function.

4.3.1 Power-Aware Register Allocation

A fitness function is computed by the evolutionary algorithm for the register allocation. It is
used to optimize the power consumption of the application-specific instruction-set processors
(ASIPs) during compile time. Besides the instruction opcodes [253–255], the addresses of
the source and target registers cause switching activity in the address decoder of the multi port
register file [207]. A power model of the underlying processor architecture is required in order
to make necessary and substantiated decisions during the power optimization process.

In order to verify, that the register allocation has a significand influence on the total power con-
sumption of the processor, synthetic benchmarks, comparing the best and worst case register
addressing in terms of Hamming distance of two consecutive instructions, are used. In the best
case, the source and target registers of two consecutive instructions are the same. Therefore,
the resulting Hamming distance between each register address of the consecutive instructions
is zero. A code example for evaluating the best case register allocation is given in Figure 4.8.
For the worst case, every bit of the source and target register address is toggled. The worst case
register allocation is given in Figure 4.9, which results in the maximum Hamming distance.
This effect was verified by gate-level power simulations, as shown in Table 4.1, Figure 4.10
and Figure 4.11. Table 4.1 lists a detailed summary of the causes of power consumption and
their occurrence in the processor architecture for the different tests. Leakage power consump-
tion is small compared to the dynamic power consumption. The power consumption of the
register file accounts for up to 19.2 % of the total system-on-chip (SoC) power. The total
power of the KAVUAKA processor is depicted for each of the register allocation test programs
in Figure 4.10. The comparison between the tests with registers, which were initialized with
constant or random data, shows a similar pattern, where the influence of the register allocation
on the total processor power consumption is visible.

To further study the influence of the register allocation on the power consumption, six addi-
tional synthetic benchmarks with random registers and instructions are evaluated. The sum of

141

4 Operation Merging, Instruction Scheduling and Register Allocation

1 #repeat 100
2 :0 ADD V0R0 , V0R0 , V0R0 :1 OR V1R0 , V1R0 , V1R0
3 :0 ADD V0R0 , V0R0 , V0R0 :1 OR V1R0 , V1R0 , V1R0
4 #endrepeat

Figure 4.8: Best case register allocation. Test program for power consumption evaluation.

1 #repeat 100
2 :0 ADD V0R0 , V0R0 , V0R0 :1 OR V1R0 , V1R0 , V1R0
3 :0 ADD V0R31 , V0R31 , V0R31 :1 OR V1R31 , V1R31 , V1R31
4 #endrepeat

Figure 4.9: Worst case register allocation. Test program for power consumption evaluation.

best
allo-

cation

random
allo-

cation

worst
allo-

cation

0.00

1.00

2.00

·10−3

+2
0.

9%

+3
4.

8%

Po
w

er
in

m
W

Constant zero register data

best
allo-

cation

random
allo-

cation

worst
allo-

cation

0.00

1.00

2.00

·10−3
+4

7.
1%

+5
5.

1%

Po
w

er
in

m
W

Random register data

Figure 4.10: Average power consumption of the KAVUAKA 64-bit processor for best (min.
Hamming distance), random and worst (max. Hamming distance) case register
allocation. The average power consumption values are given for the case where
registers are initialized with constant zeros (left figure) and the registers are ini-
tialized with random data (right figure).

142

4.3 Register Allocation

Table 4.1: Internal, switching and leakage power consumption for a register addressing test.
Results from an ASIC gate-level simulation with the TSMC 40 nm HVT low-power
technology at 50 MHz.

Internal Switching Leakage Total Percentage
Hierarchy Power Power Power Power of SoC Power

Register allocation: best case; Register data:random

KAVUAKA 64-bit 1.35e-03 3.81e-04 2.02e-06 1.74e-03 16.8 %
Register file 9.84e-04 2.37e-04 6.62e-07 1.22e-03 11.8 %

Register allocation: best case; Register data:zeros

KAVUAKA 64-bit 1.35e-03 3.69e-04 2.05e-06 1.72e-03 16.7 %
Register file 9.82e-04 2.32e-04 6.80e-07 1.22e-03 11.8 %

Register allocation: random case; Register data:random

KAVUAKA 64-bit 1.85e-03 1.53e-03 2.00e-06 3.39e-03 28.1 %
Register file 1.29e-03 1.03e-03 6.49e-07 2.32e-03 19.2 %

Register allocation: random case; Register data:zeros

KAVUAKA 64-bit 1.49e-03 8.05e-04 2.05e-06 2.29e-03 20.9 %
Register file 1.04e-03 4.73e-04 6.80e-07 1.52e-03 13.9 %

Register allocation: worst case; Register data:random

KAVUAKA 64-bit 1.62e-03 1.08e-03 2.02e-06 2.70e-03 23.6 %
Register file 1.07e-03 5.34e-04 6.62e-07 1.61e-03 14.1 %

Register allocation: worst case; Register data:zeros

KAVUAKA 64-bit 11.50e-03 8.14e-04 2.05e-06 2.32e-03 21.0 %
Register file 1.02e-03 3.70e-04 6.79e-07 1.39e-03 12.6 %

143

4 Operation Merging, Instruction Scheduling and Register Allocation

all Hamming distances of all consecutively addressed registers are compared to the simulated
power consumption in the register file read and write ports. A linear relation between the
Hamming distance and the power consumption in the read and write ports of the register file
can be observed in Figure 4.11.

Sum Read and Write Ports

Read Ports

Write Ports

Hamming Distance

Po
w

er
(µ

W
)

4,5

4
3,5

3

2,5

2
1,5

1
0,5

0
0 100 200 300 400 500 600

T0

T1T2

T3

T4 T5

Figure 4.11: Simulated power consumption for read and write ports of the register file based
on the cumulative Hamming distance of the register addresses for six different
benchmarks. [56]

In order to predict the power consumption caused by the register allocation, the model pre-
sented in [256] is applied. A linear regression approach is used to estimate the power con-
sumption based on the Hamming distance of consecutive register addresses. The comparison
between the model and the simulated power consumption is shown in Figure 4.12 for switch-
ing between different target and source registers.

In order to optimize the power consumption of a particular program, a heuristic for power
aware register allocation is developed. During register allocation, the heuristic selects the
next free register based on the minimal Hamming distance of its address compared to the last
register address at the same port. If the heuristic power aware register allocation is compared
to the standard register allocation, which selects registers one after another during allocation,
the register file power consumption can be reduced for each synthetic benchmark with random
instructions and virtual registers (Figure 4.13).

144

4.3 Register Allocation
V

1R
0_

s2
V

1R
1_

s2
V

1R
3_

s2
V

1R
7_

s2
V

1R
15

_s
2

V
0R

1_
s2

V
0R

3_
s2

V
1R

31
_s

2
V

1R
0_

s1
V

0R
7_

s2
V

1R
0_

ta
r

V
0R

1_
ta

r
V

1R
1_

s1
V

1R
1_

ta
r

V
0R

3_
ta

r
V

0R
1_

s1
V

1R
3_

s1
V

1R
3_

ta
r

V
0R

15
_s

2
V

1R
7_

s1
V

1R
15

_s
1

V
0R

7_
ta

r
V

1R
31

_s
1

V
0R

3_
s1

V
1R

7_
ta

r
V

0R
15

_t
ar

V
1R

15
_t

ar
V

0R
7_

s1
V

0R
31

_s
2

V
0R

31
_t

ar
V

0R
15

_s
1

V
1R

31
_t

ar
V

0R
31

_s
1

2

2.05

2.1

Target (tar) and source (s1 or s2) register used

Po
w

er
[m

W
] Simulated Power Consumption

Estimated Power Consumption

Figure 4.12: Simulated and estimated power consumption for a switch from register V0R0 to
the listed target (tar) and source (s1 or s2) registers. [56]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Hamming Distance

680 880 1080 1280 1480 1680 1880 2080

Po
w

er
(µ

W
)

All ports
Write ports
Read ports

All ports
Write ports
Read ports

Standard AllocationPower-aware
Allocation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T0
T1

T2
T3

T4
T5 T0

T1 T2
T3

T4
T5

Figure 4.13: Simulated register file port power consumption for the power-aware and stan-
dard register allocation. The Hamming distance between register addresses was
summed for each of the six synthetic benchmarks (T0-T5).

145

5 Evaluation and Design Space
Exploration

In this chapter, the implementations of representative hearing aid algorithms are analyzed to
evaluate the hardware extensions presented in Chapter 3. The increase in performance and
the associated reduction in power consumption are evaluated. Additionally, it is analyzed how
optimizations of the hardware architectures influence the algorithm performance and the audio
quality.

5.1 Case Study: Beamforming Algorithms

In this section, different beamforming algorithms are studied to evaluate the application-spe-
cific hardware extensions described in Section 3.2 and Section 3.3.

Hearing impaired people suffer from reduced speech intelligibility. As a result, these people
have difficulties with communication and social interaction. This is especially the case in
complex acoustic scenarios in which several people speak simultaneously or other undesired
noise sources exit. This so-called cocktail-party effect [257] leads to a considerable reduc-
tion of speech intelligibility, so that communication with other people is a serious challenge.
Hence, in addition to standard hearing aid processing algorithms, such as frequency-dependent
amplification and dynamic range compression, noise reduction algorithms in hearing aids are
crucial to improve speech intelligibility [23, 63].

Modern digital hearing aids are equipped with two or more microphones [5, 23], enabling
multi-channel digital signal processing [258, 259]. In order to increase speech intelligibil-
ity for the hearing impaired, beamforming algorithms [63, 223, 259, 260] are frequently used
to suppress undesired components and to increase the signal-to-noise ratio (SNR) of the tar-
get speech signal. Fixed beamformers, also denoted as data-independent beamformers, are
typically designed such that the signals arriving from a certain direction are passed through
without any distortion. In contrast to fixed (data-independent) beamformers, adaptive (data-
dependent) beamformers also exploit the signal statistics of the noise component in order to
adapt to changing noise fields. The achieved algorithm performance in terms of improve-
ment in signal-to-noise ratio (SNR) and in speech intelligibility (STOI) for hearing aid users
depends on the implementation of the algorithm and the acoustic scenario.

147

5 Evaluation and Design Space Exploration

Besides the performance of the algorithms, the battery life of digital hearing aids is an impor-
tant aspect for user acceptance. Battery life depends on power consumption, which is partially
consumed by the hearing aid’s digital processor. The power consumption of the processor
depends on its architecture, its utilization, its operating clock frequency, and other factors.
Specializing a processor architecture for a target application by customizing its instruction-set
architecture is a common technique used to reduce power consumption while keeping the re-
quired processing performance. The KAVUAKA ASIP and its application-specific extensions
are evaluated based on selected beamforming algorithms and their performance.

The focus of this section is the power consumption evaluation of hearing aid ASIP optimiza-
tions based on the performance of different beamforming algorithms. Compared to the related
work and [4, 10, 68, 104], which only mention the average or maximum power consump-
tion of the processing hardware, this work provides a detailed and application-specific power
consumption evaluation. The power consumption evaluation includes the description of sev-
eral ASIP optimizations and their impact on the power consumption during the processing
of different exchangeable beamforming algorithms. Furthermore, the performance of differ-
ent beamforming algorithms using objective measures is evaluated in this section. The per-
formance of these algorithms is then compared to the power consumption, which enables a
trade-off analysis between the algorithm performance and power consumption. The proposed
hardware optimizations are not only evaluated in terms of the average power consumption, sil-
icon area overhead, and processing performance, but also in terms of the application-specific
power consumption.

This section is structured as follows. The evaluated beamforming algorithms are listed in
Section 5.1.1. The objective performance evaluation and the power consumption evaluation
are presented in Section 5.1.2 and Section 5.1.3. At the end of the case study, the overall
evaluation including the algorithm performance is given in Section 5.1.4 and the processing
performance is compared with related architectures in Section 5.1.5.

5.1.1 Evaluated Beamforming Algorithms

The following three dual-microphone monaural beamforming algorithms have been used for
the evaluation:

• Fixed Beamformer [63, 260]

• Adaptive Gain Beamformer [55, 63, 260]

• Adaptive Filter Beamformer [63, 260, 261]

The fixed differential beamformer, which is described in [63], is shown in Figure 5.1. This
beamformer uses two omnidirectional microphones, which are closely spaced at a distance
d. Due to this distance, sound waves arriving from different angles reach the microphones at

148

5.1 Case Study: Beamforming Algorithms

different times. The rear microphone signal of the hearing aid is delayed by a constant time
value τ and subtracted from the front microphone signal, resulting in a directional pattern.
A common assumption for the use of this directional pattern is that the desired speaker is
located in front of the hearing aid user, whereas the interfering sounds are located behind the
hearing aid user. The resulting directional patterns, which indicate the sensitivity for different
sound source angles, are shown in Figure 5.2 for three different constant delays. The resulting
directional patterns are called cardioid, supercardioid, and hypercardioid.

Delay τ

∑+
−

Mic

Mic

d

Figure 5.1: Fixed differential beamformer according to [63]. One of the microphone signals
is delayed by a constant time value τ and subtracted from the other microphone
signal.

90°

−90°
−60°

−30°

0°

30°

60°120°

150°

±180°

−150°

−120°

-10dB

-20dB
90°

−90°
−60°

−30°

0°

30°

60°120°

±180°

−150°

−120°

90°

−90°
−60°

−30°

0°

30°

60°120°

±180°

−150°

−120°

150°150°

τ = d
c τ = 2d

3c τ = d
3c

Cardioid HypercardioidSupercardioid

-10dB

-20dB

-10dB
-20dB

Figure 5.2: Fixed beamformer patterns for different constant delays τ: Cardioid (τ = d
c), su-

percardioid (τ = 2d
3c) and hypercardioid (τ = d

3c), where d is the distance between
the microphones and c is the speed of sound.

Contrary to fixed beamformers, adaptive beamformers are able to adapt to the changing spatial
characteristics of the interfering sounds. Two adaptive beamforming algorithms are shown in
Figure 5.3 and Figure 5.4. The microphone inputs are first used to generate a front- and a
back-facing cardioid response. For the adaptive gain beamformer (Figure 5.3) the back-facing
response c2(n) is weighted with a time-varying scalar W (n) and subtracted from the front-
facing response c1(n), such that the output of the adaptive gain beamformer is defined by

149

5 Evaluation and Design Space Exploration

Equation 5.1:

y(n) = c1(n)−W (n) · c2(n) (5.1)

∑
+
−Delay

d/c sec

Delay
d/c sec

∑
+
−

∑+
−

Mic

Mic

d

y(n)c1(n)

c2(n) Gain
W(n)

Figure 5.3: Adaptive gain beamformer according to [55, 260]. The output is the subtraction
of the front-facing cardioid and the adaptively weighted back-facing cardioid re-
sponse.

Assuming a frame-by-frame processing with frame index m and the frame length M = 64, the
following adaptation for the gain factor W (m) is used [55] (Equation 5.2):

W (m) =
R̂c1c2(m)

R̂c2c2(m)

R̂c1c2(m) =
α

M

M

∑
n=1

c1(n)c2(n)+(1−α)R̂c1c2(m−1)

R̂c2c2(m) =
α

M

M

∑
n=1

c2(n)
2 +(1−α)R̂c2c2(m−1)

(5.2)

where α = 0.5 is an adjustable recursive smoothing parameter.

The adaptive filter beamformer, presented in [63] and shown in Figure 5.4, uses an adaptive
finite impulse response (FIR) filter with a compensation delay in order to allow for acausal
filter taps. The filter coefficients are updated using the following least mean squares (LMS)
adaptation based on Equation 5.3:

wk(n+1) = β ·wk(n)+µ · c2(n) · y(n) (5.3)

with β = 1.0 and µ = 0.3 as adjustable parameters to control the adaptation speed.

150

5.1 Case Study: Beamforming Algorithms

Delay
∑+

−
d/c sec

Delay
d/c sec

∑
+
−

∑
+
−

Adaptive
Filter

Mic

Mic

d

Delay
Comp. y(n)c1(n)

c2(n)

Figure 5.4: Adaptive filter beamformer according to [63]. The output is the subtraction of the
front-facing cardioid and the adaptively filtered back-facing cardioid response.

5.1.2 Objective Performance Evaluation of the Beamforming
Algorithms

Objective instrumental measures are used to compare the performance of different beamform-
ing algorithms. In Section 5.1.3, the results of this evaluation are used to compare the algo-
rithm performance obtained with hardware related requirements, such as static and dynamic
power consumption for running these algorithms on the hearing aid processor.

The algorithm evaluation is based on the setup described in [262] for binaural pre-processing
strategies. An acoustic test scenario is created using a database of behind-the-ear impulse re-
sponses [263]. Each of the behind-the-ear hearing aid is equipped with two microphones at a
distance of about 7.6 mm and is mounted on an artificial head. From this database, the ane-
choic impulse responses1 have been used to generate the hearing aid microphone signals for an
acoustic scenario comprising one target and one interfering sound source. The target signal is
a male speaker (male.wav) and the interfering signal is babble noise (babble_olsa.wav), both
recorded from the Oldenburger Satztest (OLSA) [264] at a sampling frequency of 16 kHz.
The target source is always at 0◦ in front of the head, while different interfering source angles
ranging from 0◦ to 180◦ around the head are considered. To evaluate the performance of the
fixed and the adaptive beamforming algorithms, the following instrumental measures are used:

• perceptual evaluation of speech quality (PESQ) [265]

• short-time objective intelligibility (STOI) [266]

• intelligibility-weighted signal-to-noise ratio (ISNR) [267]

The results of this evaluation, i.e., the PESQ, STOI and ISNR scores for all considered angles
of the interfering source, are shown in Figure 5.5. The fixed beamformer is configured to
generate either a cardioid, a supercardioid, or a hypercardioid response with a constant spatial

1Although in practice obviously also reverberation is present and more robust versions of the discussed (adap-
tive) beamforming algorithms should be considered [258, 259], it is assumed that the considered anechoic
scenario suffices for the trade-off analysis in this work.

151

5 Evaluation and Design Space Exploration

null in its directional pattern (Figure 5.2). Based on the PESQ, STOI, and ISNR scores, it
can be observed that the adaptive beamformers yield a better performance on average for
interfering sound source angles larger than 90° compared to the fixed beamformers. The
reason for this performance difference is the adaptation to the angle of the interfering sound
source.

The data type used for the algorithm implementation and for the results shown in Figure 5.5
is double-precision floating-point. For power consumption reasons, fixed-point processors are
used in hearing aids. Therefore, the influence of the quantization and rounding errors of the
fixed-point beamforming algorithm implementations on the algorithm performance are stud-
ied. Four different implementations with floating-point and three fixed-point data types with
different word lengths are compared. The average PESQ, STOI, and ISNR scores for interfer-
ing source angels larger than 90° are given in Table 5.1. The 32-bit fixed-point implementation
offers about the same algorithm performance compared to the double-precision implementa-
tion (maximum of 1 % deviation). The 24-bit and the 16-bit implementations have the same
fixed-point formats as the 32-bit implementation with a reduced fraction length. The algo-
rithm performance of the 24-bit adaptive filter beamformer is slightly decreased whereas both
16-bit adaptive beamformers become unstable and do not converge due to reduced fixed-point
word length [268], resulting in a not working adaptation.

In addition to the simulated performance of the beamforming algorithms, measurements were
performed in an anechoic chamber as shown in Figure 5.6. The loudspeakers generate the
input signal for the hearing aid, which is located on a rotating base. The microphone signals
are processed by the 64-bit KAVUAKA processor with a sampling frequency of 16 kHz and a
sample width of 16-bit. The generated output of the KAVUAKA processor is feed into an audio
analyzer, which processes the signal and stores the results [269]. The results of sensitivity
measurements of the fixed and adaptive gain beamformer for three different frequencies are
depicted in Figure 5.7. The measured sound pressure level (SPL) shows the supercardioid
pattern for the fixed beamformer and the pattern of the adaptive gain beamformer. These
patterns match the simulated results.

5.1.3 Power Consumption Evaluation

The static and dynamic power consumption of KAVUAKA running the beamforming algo-
rithms is estimated using ASIC gate-level switching activity and sign-off power analysis. The
minimum required clock frequency is determined and applied separately for each of the ap-
plications and processor configurations. The switching activity is recorded after all internal
registers are filled with realistic data for the time taken to process 700 audio samples.

The total average power consumption of four KAVUAKA configurations with four different
datapath width (24-bit to 64-bit) running the beamforming algorithms are shown in Figure 5.8.
The minimum required clock frequencies for processing the beamforming algorithms, which

152

5.1 Case Study: Beamforming Algorithms

0 20 40 60 80 100 120 140 160 180
Azimuth (degree)

1

1.5

2

2.5

3

3.5

PE
SQ

No processing
Fixed (cardiod)
Fixed (supercardiod)
Fixed (hypercardiod)
Adaptive gain
Adaptive filter

0 20 40 60 80 100 120 140 160 180
Azimuth (degree)

0.4

0.5

0.6

0.7

0.8

0.9

1

ST
O

I

No processing
Fixed (cardiod)
Fixed (supercardiod)
Fixed (hypercardiod)
Adaptive gain
Adaptive filter

0 20 40 60 80 100 120 140 160 180
-10

-5

0

5

10

15

20

iS
N

R

Azimuth (degree)

No processing
Fixed (cardiod)
Fixed (supercardiod)
Fixed (hypercardiod)
Adaptive gain
Adaptive filter

Figure 5.5: PESQ, STOI, and ISNR scores for the different fixed and adaptive beamforming
algorithms as a function of the azimuth angle of the interfering sound source. Dou-
ble precision floating-point is used in this case.

153

5 Evaluation and Design Space Exploration

Table 5.1: Performance of beamforming algorithms: Average PESQ, STOI and ISNR scores
for interfering source angles larger than 90°. Deviations of fixed-point implementa-
tions compared to double-precision floating-point (FP) implementations are given
in percent.

Double Precision Floating-Point

PESQ STOI ISNR

No processing 1.60 0.50 -5.92
Fixed (cardioid) 2.19 0.83 7.29
Fixed (supercardioid) 2.26 0.85 8.03
Fixed (hypercardioid) 2.10 0.80 5.19
Adaptive gain 2.48 0.90 10.61
Adaptive filter 2.49 0.91 10.73

32-bit Fixed-Point

PESQ (% FP) STOI (% FP) ISNR (% FP)

No processing 1.60 (0%) 0.50 (0%) -5.92 (0%)
Fixed (cardioid) 2.19 (0%) 0.83 (0%) 7.29 (0%)
Fixed (supercardioid) 2.26 (0%) 0.85 (0%) 8.03 (0%)
Fixed (hypercardioid) 2.10 (0%) 0.80 (0%) 5.19 (0%)
Adaptive gain 2.48 (0%) 0.90 (0%) 10.61 (-1%)
Adaptive filter 2.49 (0%) 0.90 (-1%) 10.72 (-1%)

24-bit Fixed-Point

PESQ (% FP) STOI (% FP) ISNR (% FP)

No processing 1.60 (0%) 0.50 (0%) -5.92 (0%)
Fixed (cardioid) 2.19 (-1%) 0.83 (0%) 7.29 (0%)
Fixed (supercardioid) 2.26 (0%) 0.85 (0%) 8.03 (0%)
Fixed (hypercardioid) 2.10 (0%) 0.80 (0%) 5.19 (0%)
Adaptive gain 2.47 (-1%) 0.90 (-1%) 10.61 (-1%)
Adaptive filter 2.38 (-5%) 0.89 (-2%) 10.07 (-7%)

16-bit Fixed-Point

PESQ (% FP) STOI (% FP) ISNR (% FP)

No processing 1.60 (0%) 0.50 (-1%) -5.92 (-1%)
Fixed (cardioid) 2.18 (-1%) 0.83 (0%) 7.27 (-1%)
Fixed (supercardioid) 2.26 (-1%) 0.85 (0%) 8.01 (-1%)
Fixed (hypercardioid) 2.10 (0%) 0.80 (0%) 5.17 (-1%)
Adaptive gain 2.18 (-12%) 0.90 (-8%) 7.21 (-23%)
Adaptive filter 0.58 (-77%) 0.34 (-63%) -12.4 (-216%)

154

5.1 Case Study: Beamforming Algorithms

Hearing Aid
Dummy

Rotary plate1100 mm

Loudspeaker

Figure 5.6: Measurement setup in an anechoic chamber.

0◦ 20◦
40◦

60◦

80◦

100◦

120◦

140◦
160◦180◦200◦

220◦
240◦

260◦

280◦

300◦
320◦

340◦

−50 dB
−40 dB
−30 dB
−20 dB
−10 dB

0◦ 20◦
40◦

60◦

80◦

100◦

120◦

140◦
160◦180◦200◦

220◦
240◦

260◦

280◦

300◦
320◦

340◦

−50 dB
−40 dB
−30 dB
−20 dB
−10 dB

500 Hz
1 kHz
2 kHz

Figure 5.7: Polar pattern of the fixed and adaptive gain beamformer for 500 Hz, 1 kHz and
2 kHz single sine source. The adaptation is set to continuous adaptation. The
adaption rate is set to 0.01.

155

5 Evaluation and Design Space Exploration

are listed in Table 5.2, are used. Due to its comparatively low computing complexity, the fixed
beamformer offers the lowest power consumption with a minimum value of 0.014 mW for the
24-bit configuration. The adaptive gain beamformer with a division computed by software
library requires up to 0.624 mW, running on the 64-bit SIMD processor configuration. The
power consumption of all beamforming algorithms scales linearly with the silicon area.

24
-bi

t
32

-bi
t

48
-bi

t

+SIM
D 64

-bi
t

+SIM
D

0.00

0.20

0.40

0.60

Po
w

er
C

on
su

m
pt

io
n

in
m

W Fixed Beamformer
Adaptive Filter Beamformer
Adaptive Gain Beamformer

Figure 5.8: Total average power consumption for different datapath widths and SIMD modes.

The parallelizability of the beamforming algorithms is evaluated using the dynamic count of
the instructions per cycle (IPC) and the minimum required clock frequencies, which are listed
in Table 5.2. The instruction level parallelism is high, since the IPC values reach almost the
maximum achievable value of two on the two issue-slot processor. The data level parallelism
provided by the SIMD mechanism is not beneficial. The filter structures of the beamformers
can not be packed efficiently into the SIMD subwords due to data dependencies and data flows.
This leads to higher minimum clock frequencies, due to the extra required operations to repack
the subwords. The repacking task requires more cycles than the reduction of cycles by SIMD
processing. New permutation or rotation operations are required to reduce the cycles required
for repackaging.

5.1.4 Overall Evaluation Including Algorithm Performance

The performance of the beamforming algorithms is compared to the hardware-related require-
ments, i.e., the silicon area and the static and dynamic power consumption. All register file
(RF) implementations, the reference, dummy and isolation and different datapath configura-
tions, which are described in Section 3.3, are evaluated, resulting in 24 different configurations
of the KAVUAKA processor. The total average power consumption of these configurations,

156

5.1 Case Study: Beamforming Algorithms

Table 5.2: Dynamic instructions per cycle (IPC) and minimum required clock frequencies

Algorithm Fixed Adaptive Filter Adaptive Gain

non- non- non-
SIMD SIMD SIMD SIMD SIMD SIMD

IPC 1.86 1.80 1.93 1.94 1.87 1.95
min. MHz 0.41 0.42 2.55 2.91 7.89 10.09

running the beamforming algorithms from Section 5.1.1, is compared with the silicon area
requirements. The results are shown in Figure 5.9. The fixed beamformer (marker style: ?)
consumes the lowest power, even when implemented on the 64-bit configuration. The hard-
ware accelerated adaptive gain beamformer (marker style: +) consumes less power than the
adaptive filter beamformer (marker style: x) and the software-based adaptive gain beamformer.
The silicon area scales with the datapath width and increases with the configurations equipped
with the hardware division co-processor (CP). The most efficient hardware and algorithm com-
bination with the minimum area-power product is the 24-bit processor without a co-processor
and without SIMD support running the fixed beamformer.

In order to evaluate the algorithm performance, the PESQ, STOI, and ISNR scores are plot-
ted over the total power consumption in Figure 5.10. The fixed beamformer offers the lowest
power consumption, but the algorithm performance is lower compared to the adaptive beam-
formers. Besides the 24-bit adaptive filter beamformer, both adaptive beamformers offer al-
most identical performance. When prioritizing the performance against the silicon area, the
best combination is the 24-bit adaptive gain beamformer with the hardware co-processor and
the dummy register file.

Due to the hardware acceleration using the CORDIC co-processor, the minimum clock fre-
quency required for the adaptive gain beamformer can be decreased by up to 81 %, as shown
in Table 5.3. The resulting static and dynamic power consumption with and without the co-
processor is given in Figure 5.11. Despite the increased silicon area of the co-processor, the
total power consumption drops by 62 % to 79 %, when using the hardware acceleration instead
of the software computation of the division operation for the adaptive gain beamformer.

5.1.5 Comparison of the Processing Performance with related ASIPs

In this design space exploration, the processing performance and the estimated power con-
sumption of the Cadence Tensilica LX7 [270], the HiFi4 [121], the Fusion F1 [122], the
Fusion G3 [271], the Fusion G6 [271] and the Texas Instruments C6748 [123, 272] digital
signal processors (DSPs) are evaluated. The Cadence Tensilica LX7 is a high-level software
programmable application-specific base processor architecture for digital signal processing.

157

5 Evaluation and Design Space Exploration

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.04

0.06

0.08

0.10

0.12

24-bit

32-bit

48-bit

64-bit

SW CORDIC

H
W

C
O

R
D

IC

Total power Consumption in mW

Si
lic

on
ar

ea
in

m
m

2

Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 24-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 32-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 48-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 64-bit

Figure 5.9: Total average power consumption compared to silicon area requirement. The col-
ored ellipses hold all processor configurations with 24-bit, 32-bit, 48-bit and 64-bit
with the reference, dummy and isolation register file implementation. Results from
an ASIC synthesis with the TSMC 40 nm HVT low-power ASIC technology. The
minimum required clock frequencies are used.

Table 5.3: Minimum operating clock frequencies in MHz for the adaptive gain beamformer
for hardware configurations with and without a co-processor (CP)

24-bit 24-bit 32-bit 32-bit 48-bit 48-bit 64-bit 64-bit
+CP +CP +CP +CP

6.2 MHz 1.9 MHz 7.9 MHz 2.0 MHz 7.9 MHz 1.7 MHz 10.1 MHz 1.9 MHz
-69% -74% -78% -81%

158

5.1 Case Study: Beamforming Algorithms

0.00 0.10 0.20 0.30 0.40 0.50 0.60

2.20

2.40

Power Consumption in mW

PE
SQ

0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.80

0.85

0.90

Power Consumption in mW

ST
O

I

0.00 0.10 0.20 0.30 0.40 0.50 0.60

6.00

8.00

10.00

Power Consumption in mW

IS
N

R

Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 24-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 32-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 48-bit
Adaptive Filter Beamformer Adaptive Gain Beamformer Fixed Beamformer 64-bit

Figure 5.10: Total average power consumption compared to the average values of perceptual
evaluation of speech quality (PESQ), short-time objective intelligibility (STOI)
and intelligibility-weighted signal-to-noise ratio (ISNR) for interfering source an-
gles larger than 90°.

159

5 Evaluation and Design Space Exploration

-62%

-68%

-76%

-79%

24
-bi

t

24
-bi

t+CP
32

-bi
t

32
-bi

t+CP
48

-bi
t

48
-bi

t+CP
64

-bi
t

64
-bi

t+CP
0.00

0.20

0.40

0.60

Po
w

er
C

on
su

m
pt

io
n

in
m

W

KAVUAKA
CORDIC co-processor

Figure 5.11: Total power consumption with and without a co-processor (CP).

It features a 32-bit reduced instruction-set computer (RISC) architecture. This base instruc-
tion set architecture (ISA) is extended by the instruction set extensions (co-processors) called
HiFi4, Fusion F1, Fusion G3 and Fusion G6. The C6748 is a 32-bit fixed- and floating-point
DSP for a wide range of low-power applications. The architectural features of the related
processors are listed in Table 5.4. The number of load and store units is important for the pro-
cessing performance, because the RFs of the processors can not hold all data for processing
the beamforming algorithms. The required digital filter processing requires MAC operations.
To a certain extent, the processing of the beamforming algorithms can be parallelized with
SIMD instructions and a VLIW architecture. The Tensilica processors have two separated
RFs, one for the LX7 base processor and one for the co-processors.

Table 5.4: Architectural features of the related and evaluated ASIPs.

LX7 Fusion F1 HiFi 4 Fusion G3 Fusion G6 TI C6748

Load (bits) 1×32 1×32 2×32 2×128 2×256 4×32
Store (bits) 1×32 1×32 1×32 1×128 1×256 4×32

Instructions per Cycle* 1 2 4 4 4 8
MACs per Cycle* 0 1 4 4 8 2

Issue Slots 1 2 4 4 4 8
SIMD subwords* 0 0 2 4 8 4
Pipeline Stages 5 5 5 7 7 11

General-Purpose Register 64 64 64 64 64 64
CP Register 0 24×32-bit 32×32-bit 32×128-bit 32×256-bit 0

* (32-bit operands)

The beamforming algorithms were implemented on all processors according to the proposed

160

5.1 Case Study: Beamforming Algorithms

framework presented in [273]. Application- and processor-specific fixed-point C-code is used.
The number of processing cycles required and the minimum required clock frequencies for a
sampling frequency of 16 kHz for each beamforming algorithm is listed for each associated
processor in Table 5.5. The LX7 processor, without a hardware multiplier and only one opera-
tion per cycle, requires significantly more instructions than the Fusion F1 with two operations
per cycle and one hardware multiplier. The Fusion, HiFi and C6748 processors do not need
significantly fewer cycles for the computation. The additional parallelism of the architectures
cannot be used to speed up the computation of the beamforming algorithms. Due to a missing
hardware divider of the C6748 processor, the implementation of the beamformer with adaptive
gain requires an iterative conditional subtraction algorithm for the division operation [274],
resulting in a comparatively high number of cycles required for this particular beamformer.
Although the KAVUAKA processor can perform only two instructions and two 32-bit MACs
operations per cycle, the required number of processing cycles is lower compared to all other
related processors. The reason for this is the indirect addressing mode [83], the CORDIC
co-processor (Section 3.2.3), the short pipeline architecture (Section 3.3.3) and the low-level
assembler implementation and optimization.

Table 5.5: Number of required processing cycles and minimum required clock frequencies
16 kHz for beamforming algorithms on different processors.

Processor Fixed Adaptive Gain Adaptive Filter

LX7 536 (8.576 MHz) 1582 (25.312 MHz) 3822 (61.152 MHz)

Fusion F1 61 (0.976 MHz) 325 (5.200 MHz) 385 (6.160 MHz)

HiFi4 40 (0.640 MHz) 292 (4.672 MHz) 254 (4.064 MHz)

HiFi4+mul 40 (0.640 MHz) 245 (3.920 MHz) 254 (4.064 MHz)

Fusion G3 49 (0.784 MHz) 226 (3.636 MHz) 287 (4.592 MHz)

Fusion G6 54 (0.864 MHz) 231 (3.696 MHz) 258 (4.128 MHz)

C6748 54 (0.864 MHz) 1889 (30.224 MHz) 281 (4.496 MHz)

KAVUAKA 24 (0.390 MHz) 103 (1.650 MHz) 167 (2.670 MHz)

The comparison in terms of silicon area and estimated power consumption is shown in Fig-
ure 5.12. The power consumption is estimated based on the minimum required clock frequen-
cies listed in Table 5.5. The processors are synthesized with the TSMC 40 nm HVT low-power
technology. The KAVUAKA processor requires the least amount of silicon area. The power
consumption is lower than all other processors. This is a result of the smaller register file (RF)
and the presented application-specific optimizations, which lead to an overall less complex
processor architecture. Since the capabilities of the HiFi4, Fusion G3 and Fusion G6 proces-
sors cannot be fully utilized with the beamforming algorithms, more silicon area is required

161

5 Evaluation and Design Space Exploration

and higher average power consumption is caused. The same applies to the C6748 processor,
whose power consumption is estimated with the model presented in [275]. Its average power
consumption is in the range between 0.864 mW for the fixed beamformer and 29.51 mW for
the beamformer with the adaptive filter.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.00

0.50

1.00

1.50

2.00

Power Consumption in mW

A
re

a
in

m
m

2

LX7 HiFi4 HiFi4+mul F1 G3 G6 KAVUAKA (Fixed Beamforming)
LX7 HiFi4 HiFi4+mul F1 G3 G6 KAVUAKA (Adaptive Gain Beamforming)
LX7 HiFi4 HiFi4+mul F1 G3 G6 KAVUAKA (Adaptive Filter Beamforming)

Figure 5.12: Average power consumption compared to the processor area for different beam-
forming algorithms.

5.2 Case Study: Speech Enhancement

The aim of speech enhancement algorithms is to improve speech intelligibility of degraded
speech [60, 276]. These algorithms attempt to reduce or suppress the additive broadband
noise component of the speech signal. Noise reduction algorithms are a major component
of a hearing aid processing chain as shown in Figure 2.4. One of first proposed and most
commonly used noise reduction algorithm is the spectral-subtractive noise reduction. It is
based on the assumption that an existing noisy speech signal Y (ω) is composed of two parts,
the pure speech component X(ω) and an additive noise component D(ω) (Equation 5.4):

Y (ω) = X(ω)+D(ω) (5.4)

162

5.2 Case Study: Speech Enhancement

The noise signal is measured, when no speech is present. The magnitude of the noise spectrum
|D(ω)| noise signal is subtracted from the input signal to obtain an estimated clean signal
spectrum (Equation 5.5):

X̂(ω) = [|Y (ω)|− |D̂(ω)|]e jφy(ω) (5.5)

The phase of the noisy speech signal Y (ω) is copied. The complete algorithm is shown in
Figure 5.13. The spectrum of the input speech signal is calculated with a windowed fast
Fourier transform. This spectrum is used to measure and estimate the noise power, when the
signal-to-noise ratio is below a defined threshold. The amplified speech signal is recovered
with a IFFT. It is composed of the phase information of the speech input and the calculated
magnitude from the difference between the input speech and the estimated noise signal.

∑

Speech
Input

Window

FFT

Phase

Magn.

| |2

α β

Threshold

Noise
Power

Estimate

y(t)

PS(w)

a≥ 1 β � 1

√

Real/Imag.

IFFT

Enhanced
Speech

βPN(w)αPN(w)

PN(w)

+
-

x(t)

Figure 5.13: Block diagram of the nonlinear spectral subtraction speech enhancement algo-
rithm. [276]

The application-specific hardware and software implementation and optimization of this al-
gorithm is described below. Focus and goal is the evaluation of the hardware architectures
presented in Chapter 3. In particular, the performance increase due to specialization and par-
allelization techniques is examined. The metric for measuring performance is the number of
processing cycles required per frame, as described in Section 3.3.3.

The implementation of this noise reduction algorithm is comprised of several subroutines, such
as computation of the absolute value (ABS_LOOP), vector summation (VEC_SUM), phase
angle (PHASE_ANGLE), sine, cosine and square root computations (SIN_COS_PHASE and

163

5 Evaluation and Design Space Exploration

SQRT_PHASE). In order to generate a dense and compacted code, the compiler backend pre-
sented in Chapter 4 is used for code generation. The extent to which evolutionary optimization
algorithms improve the overall code quality in terms of code compaction and instructions per
cycle is evaluated. The code composition in the form of straight line microcode sizes for the
mentioned subroutines is analyzed for two different implementations of the noise reduction
algorithm. These differ whether the trigonometric and square root function are computed with
software CORDIC libraries or with co-processors (Section 3.2.3). As a result, the two imple-
mentations use different kernels for the trigonometric and square root function computation.
The number of micro-operations (MOs) and straight line microcodes (SLMs) are listed in
Table 5.6.

Table 5.6: Number of micro-operations (MOs) and straight line microcodes (SLMs) for two
noise reduction algorithm implementations.

Noise reduction algorithm Number of SLMs Number of MOs

with software CORDIC libraries 136 1887
with CORDIC co-processors 118 1745

The number of SLMs and MOs differ by 15.2 % and 7.6 %. The distribution in terms of
MO count per SLM is also different, which is depicted in Figure 5.14 and Figure 5.15 for
the two implementations. The SLM distribution of the implementation with CORDIC co-
processors contains more MOs on average. Therefore, less small sized SLMs are part of the
implementation. Fewer branches increase the optimization capability of the compiler backend.

The minimum clock frequencies and the compile time for the two implementations are shown
in Figure 5.16 and Figure 5.17. The minimum clock frequency varies between 67.0 MHz and
70.6 MHz for the implementation with CORDIC software libraries and between 12.4 MHz
and 14.3 MHz for the implementation with CORDIC co-processors. In addition to the in-
struction scheduling optimization level, the automatic operating merging optimization (X2),
which is described in Section 4.1, is used. Furthermore, the influence on the performance is
also depicted for both implementations. The optimization level for the instruction scheduling
(o2− o16, Section 4.2) and the operation merging (x0− x2, Section 4.1) is varied. Opti-
mization levels below o2 fail to schedule the instructions, due to the conditional set and read
instruction scheduling (Section 4.2.1). As described in Section 3.2.3, the co-processors de-
crease the required cycles per computation. Therefore, the minimum required frequency is
decreased for this implementation, as the noise reduction algorithm contains multiple of these
operations (Figure 5.13). In order to use more than one co-processor in parallel, as proposed in
Section 3.5, software (SW) pipelining is applied for the computation of the angle of a complex
number (z = x+ iy) with the arctangent computation of x/y. The performance improvement
with software pipelining is shown in Figure 5.17. The minimum required frequency is even
further decreased due to greater compiler optimizations. The larger SLM sizes of the imple-

164

5.2 Case Study: Speech Enhancement

0 20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

FF
T

_I
FF

T

A
B

S_
L

O
O

P

V
E

C
_S

U
M

PH
A

SE
_A

N
G

L
E

SI
N

_C
O

S_
PH

A
SE

SQ
R

T
_P

H
A

SE

Number of MOs

N
um

be
ro

fS
L

M
s

Figure 5.14: Number of straight line microcodes (SLMs) and micro-operations (MOs) for the
noise reduction algorithm. Hyperbolic and trigonometric functions are computed
with CORDIC software libraries in this implementation.

0 20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

SQ
R

T
_P

H
A

SE

FF
T

_I
FF

T
V

E
C

_S
U

M

PH
A

SE
_L

O
O

P

A
B

S_
L

O
O

P

SI
N

_C
O

S_
PH

A
SE

Number of MOs

N
um

be
ro

fS
L

M
s

Figure 5.15: Number of straight line microcodes (SLMs) and micro-operations (MOs) for the
noise reduction algorithm. Hyperbolic and trigonometric functions are computed
with CORDIC co-processors in this implementation.

165

5 Evaluation and Design Space Exploration

mentation with hardware co-processors lead to more merged X2 operations. The processing
performance is increased by about 13.6 % compared to 2.9 % in case of software CORDIC
libraries implementation. Optimization levels below o9 fail to schedule the instructions, due
to the conditional set and read instruction scheduling (Section 4.2.1).

0 5 ·10−2 0.1 0.15 0.2 0.25 0.3 0.35
66

68

70

72

74

o2
o3
o4
o5

o6 o7 o8

o2
o3

o4 o5 o6 o7 o8

Compile Time in Hours

M
in

im
um

C
lo

ck
Fr

eq
ue

nc
y

in
M

H
z

x0
x2

Figure 5.16: Compile time versus minimum required clock frequencies for the noise reduction
algorithm for different optimization levels (o≤ 8). Hyperbolic and trigonometric
functions are computed with CORDIC software libraries.

The minimum required operating frequency of 12.54 MHz is required with the KAVUAKA pro-
cessor for real-time processing with a frame size of 128 samples at a sampling frequency of
16 kHz. The same algorithm is implemented on a TMS320VC5509A fixed-point DSP in [277].
The DSP includes two MAC units, two ALUs and three read and two write buses. The min-
imum required operating frequency for this general purpose DSP is 95.4 MHz with a frame
size of 128 samples at a sampling frequency of 16 kHz. This processing performance is com-
parable to the KAVUAKA processor without a HW co-processor (Figure 5.16). The estimated
average power consumption is 26.1 mW based on [278].

5.3 Case Study: Speaker Localization

In this section, the evaluation of the sound source localization algorithm originally proposed
in [279, 280] is presented. This localization algorithm uses two binaural cues to estimate
the azimuth of sound sources. These cues are interaural level difference (ILD) and interau-
ral time difference (ITD) features, which are motivated by human auditory processing. The
azimuth-dependent patterns of these cues are used by a probabilistic model (gaussian mixture

166

5.3 Case Study: Speaker Localization

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

13

14

15
o9

o10
o11

o12

o13
o14

o15

o9 o10

o11

o12

o13

o14 o15

o16

o7

o8 o9
o10

o11
o8

o9

o10

Compile Time in HoursM
in

im
um

C
lo

ck
Fr

eq
ue

nc
y

in
M

H
z

x0
x0 + SW pipelining
x2
x2 + SW pipelining

Figure 5.17: Compile time versus minimum required clock frequencies for the noise reduction
algorithm for different optimization (o≤ 16) and merging levels (x≤ 2). Hyper-
bolic and trigonometric functions are computed with CORDIC co-processors.

model (GMM)) for sound source localization. A block diagram of the signal flow is shown in
Figure 5.18.

ILD

r f

l f

gr f

gl f

ar f

al f

ADC

ADC

GTFB

GTFB

NT

NT

ITD X Y=

 P(Φ−90◦)

...
P(Φ+90◦)

GMM

Figure 5.18: Signal flow diagram of the GMM-based binaural localization algorithm.

The binaural cues are extracted from a 16 ms window of B = 256 audio samples. The sam-
pling frequency is 16 kHz. The auditory processing of the human system is modelled with
a front end consisting of a gammatone filter bank (GTFB) and a neural transduction com-
putation [279]. The gammatone filter bank with 32 auditory channels f and fourth-order
phase-compensated filters models the frequency selectivity of the human cochlea. Channel
dependent gains are applied to simulate the middle ear transfer function. Half-wave rectifica-
tion and square root compression are used for neural transduction (NT) of inner hair cells and
are specified in Equation 5.6:

r f (t) =
{ √

gr f (t), gr f (t)≥ 0
0, else

(5.6)

167

5 Evaluation and Design Space Exploration

The interaural time difference (ITD) between the binaural auditory signals is calculated for
each channel of the GTFB using a normalized cross-correlation for each frame index t. This
correlation is also called interaural cross correlation [281] and is defined by Equation 5.7:

C f (t,τ) =
∑

B−1
b=0

(
l f (t ·B/2−b)− l̄ f

)(
r f (t ·B/2−b− τ)− r̄ f

)√
∑

B−1
b=0

(
l f (t ·B/2−b)− l̄ f

)2
√

∑
B−1
b=0

(
r f (t ·B/2−b− τ)− r̄ f

)2
(5.7)

where l f and r f are the output signals of the neural transduction (NT) processing and l̄ f and r̄ f
are the mean values of these signals, respectively. τ is the time lag, whose range is determined
by the maximum expected time difference of −1 ms to 1 ms. The maximum of this cross-
correlation for every τ is given in samples (Equation 5.8):

τ̂ f (t) = argmax
τ

C f (t,τ) (5.8)

The resolution of the ITD value is limited by the sampling frequency fs, e.g., for a sampling
frequency of 16 kHz the resolution is limited to 7.321° due to the delay of two successive audio
samples [280]. To improve the resolution, an exponential interpolation can be applied (Equa-
tion 5.9) to interpolate the the peak position relative to the estimated integer peak position
τ̂ f (t):

δi(t) =
logC f (t, τ̂ f (t)+1)− logC f (t, τ̂ f (t)−1)

4logC f (t, τ̂ f (t))−2logC f (t, τ̂ f (t)−1)−2logC f (t, τ̂ f (t)+1)
(5.9)

The estimate of the ITD in seconds is than computed by combining the integer and fractional
value (Equation 5.10):

ÎT Di(t) =
τ̂ f (t)+δi(t)

fs
(5.10)

The second feature that is used is the ILD. This feature is computed for every channel i of the
gammatone filter bank by comparing the integrated energy over the frame of length B of the
two signals (Equation 5.11):

ÎLDi(t) = 20 · log10

(
∑

B−1
b=0 ri(t ·B/2−b)2

∑
B−1
b=0 li(t ·B/2−b)2

)
(5.11)

Therefore, the binaural feature space is two dimensional (Equation 5.12):

X f = {(ÎLD f (1), ÎT D f (1)), . . . ,(ÎLD f (T), ÎT D f (T))} (5.12)

168

5.3 Case Study: Speaker Localization

where T represents the number of observations for every gammatone channel.

Gaussian mixture models (GMMs) are used to recognize the azimuth-dependent pattern of
the binaural cues by computing the directional probability distribution of the two-dimensional
feature space consisting of ITD and ILD features. The GMM is computed for each sound
source direction λ with the weighted feature vector~x (Equation 5.13):

p(~x|λ) =
K

∑
j=1

w j p j(~x) (5.13)

where w j are the trained weights for the K Gaussian components. The Gaussian function is
given by (Equation 5.14):

p j(~x) =
1

(2π)D/2|Σ j|1/2
exp
[
−1

2
(~x− ~µ j)

t
Σ
−1
j (~x− ~µ j)

]
(5.14)

with the mean value ~µ j and the covariance matrix Σ j for each mixture component j. The
estimated sound source direction φ is determined by the maximum of the log-likelihood of the
current observation~x f ,t for the gammatone channels F (Equation 5.15):

φ̂(t) = argmax
1≤k≤K

F

∑
f=1

log p(~x f ,t |λ f ,ϕk)︸ ︷︷ ︸
log likelihood︸ ︷︷ ︸

across frequency integration

(5.15)

The directional estimation of the sound source is calculated for each frame of the input signals.
The resolution of the model is 5° in the range of −90° to 90°. This results in 37 spatial posi-
tions, each classified by 15 Gaussian components. For all 32 filter bands this results in a model
with 32∗37∗15 = 17,760 components. For the two-dimensional case, each of the Gaussian
components λϕ is described with the five parameters w j,µ j,1,Σ j,1,µ j,2,Σ j,2 according to the
Equation 5.16. This results in 17760×5 = 88,800 trained parameters.

λϕ = (w j,µ j,1,Σ j,1,µ j,2,Σ j,2) ∀ j = 1, · · · (5.16)

5.3.1 Implementation and Application-Specific Optimizations

The implementation and evaluation of the localization algorithm on the KAVUAKA processor
is presented in this section. To achieve real-time processing with a clock frequency below
50 MHz, several of the proposed application-specific hardware and software features (Chap-
ter 3) are applied and evaluated. The total number of cycles per audio frame of 256 samples

169

5 Evaluation and Design Space Exploration

for each optimization step is shown in Figure 5.19. Each optimization step is described in
this section. Starting from the initial baseline implementation with a required minimum clock
frequency of 524.15 MHz, a real-time processing with a clock frequency of 30.08 MHz is
possible with all optimizations.

-69.7%

-81.5%

-88.5%

-92.4%

-93.3%

-94.2%

Base
lin

e

Hard
ware

CP

FFT-ba
sed

Corr
ela

tio
n

HW
-S

IM
D-C

P

GM
M

-L
oo

ku
p-T

ab
le

Iss
ue

-sl
ot

Pred
ica

tio
n

Com
ple

x-v
alu

ed
GTFB

0.00

0.50

1.00

1.50

·107

Pr
oc

es
si

ng
cy

cl
es

GTFB
NT
ITD
ILD
GMM

Figure 5.19: Required processing cycles after each optimization phase.

Gammatone filter bank

The feature extraction phase of the localization algorithm [279, 280] includes a gammatone
filter bank (GTFB) with 32 channels for each microphone channel. There are different GTFB
implementations presented in the literature [221, 279, 282–285]. These are approximations of
the analog gammatone filters originally presented in [286] and differ in their implementations.
There are impulse- or frequency-invariant implementations with multi-zero, one-zero or all-
pole with complex or real filter output [221]. The frequency responses of a nonlinear one-zero
and all-pole gammatone filter [283], the linear with complex-valued coefficients and complex-
conjugated pole pairs [279] and the linear all-pole gammatone filter with complex output [221]
are shown in Figure 5.20. In this case study, the performance of these GTFB implementations
is compared using application-specific hardware extensions.

170

5.3 Case Study: Speaker Localization

GTFB May [279]
GTFB Hohmann [221]

GTFB Pflueger [283]

0

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50

M
ag

ni
tu

de
(d

B
)

Frequency (Hz)
7000 80005000 60003000200010000 4000

Figure 5.20: Frequency response of the gammatone filter banks (GTFBs) presented in [221,
279, 283].

Nonlinear One-Zero and All-Pole Gammatone Filter

The nonlinear one-zero and all-pole gammatone filter is proposed in [283]. The implemen-
tation of a single channel is shown in Figure 5.21. Each gammatone filter consists of four
second-order IIR filters. The coefficients b1 and a1,1, . . . ,a2,4, the input x(b) and the out-
put y(b) are real-valued. The gammatone filter is implemented on the KAVUAKA proces-
sor with multiply-accumulate (MAC) instructions and hardware indirect circular addressing
modes [83, 280].

+ + + +

+ + + +

z−1z−1z−1z−1

z−1z−1z−1z−1

a1,1 a2,1 a3,1 a4,1

a2,1 a2,2 a2,3

y(n)

a2,4

x(n)

b1

Figure 5.21: Nonlinear all-pole and one-zero gammatone filter [283].

171

5 Evaluation and Design Space Exploration

Linear All-Pole Gammatone Filter with Complex-Valued Output

The linear all-pole design of the 4th-order linear gammatone filter is presented in [221]. The
implementation of the filter bank is shown in Figure 5.22. The analyzer and the synthesizer
stage for K channels are shown. The filter coefficients a0, . . . ,d3, and the phase and gain fac-
tors n0, . . . ,mK are complex-valued. For the gammatone calculation, complex-valued multi-
plications, additions and subtractions are required. The complex-valued multiply-accumulate
(CMAC) functional unit described in Section 3.2.1 is used for these computations. Addition-
ally, the circular indirect address calculation is used for the filter implementation [83].

x(n) y(n)

a0 a1 a2 a3
z−1 z−1 z−1 z−1

b0 b1 b2 b3

z−1 z−1 z−1 z−1

c0 c1 c2 c3
z−1 z−1 z−1 z−1

d0 d1 d2 d3
z−1 z−1 z−1 z−1

z−1

z−1 z−1

z−1 z−1 z−1

m0

m1

mK−2

mK−1

n0

n1

nK−2

nK−1

Filter Bank SynthesisFilter Bank Analysis

Figure 5.22: An impulse-invariant, all-pole gammatone filter with complex output [221]. The
normalized inputs x(b) ·nk are filtered by cascading first-order complex band pass
filters and are synthesized using a delay line with phase and gain correction fac-
tors.

Fast Fourier Transform

A short-time frequency analysis method such as a windowed fast Fourier transform (FFT)
is also suitable for use as a filter bank in hearing aids [221]. However, the bands in the
frequency domain are linearly distributed, whereas the bands in the human auditory system
are distributed almost logarithmically. In addition, the audio delay for FFT-based processing
is higher compared to the GTFB-based processing when the same resolution is applied in the
lower bands. An advantage of the FFT implementation is the lower processing performance
requirement. The implementation of the FFT on the KAVUAKA processor with the complex-
valued multiply-accumulate (CMAC) functional unit (FU) is described in Section 3.2.1.

172

5.3 Case Study: Speaker Localization

Comparison of the GTFB Implementations

Table 5.7 shows a comparison between the GTFB filter bank implementations. The following
parameter set is used for the comparison:

1. Center frequencies of the gammatone filters: 1000 Hz

2. Number of filters used for the filter bank: 32

3. Lower cutoff frequency: 80 Hz

4. Upper cutoff frequency: 5000 Hz

The FFT-based implementation is added for comparison. 256 bins are used. The results
show that the processing performance and the audio delay is significantly different based on
the implementations. The lowest number of processing cycles is required for the FFT-based
implementation. However, the resulting delay is the greatest. The delay of GTFB imple-
mentations depends on the filter order and the number of cascaded filters. The linear all-pole
gammatone filter with complex output [221] needs less cycles due to the complex-valued
multiply-accumulate (CMAC) functional unit of the KAVUAKA processor, which calculates
the required complex-valued filter operations within a single cycle. Therefore, fewer cycles
are required compared to the higher order nonlinear one-zero and all-pole gammatone filter
implementation [283].

Table 5.7: Comparison of gammatone filter bank (GTFB) and FFT implementations on the
KAVUAKA processor.

Gammatone Nonlinear one-zero Linear all-pole FFT-based
filter bank and all-pole [283] with complex output [221] [221]

Cycles per sample 981 362 7.48
IPC 1.92 2.33 2.17

Audio delay 10.70 ms 3.75 ms 16.00 ms

Neural Transduction

The most processing demanding operation of the neural transduction is the square root com-
pression. The square root operation is computed with the software CORDIC libraries for the
baseline implementation (Figure 5.19). In order to speed up the computation, two CORDIC
co-processors (CPs) with SIMD and four CORDIC modules are used (Section 3.2.3) [280].
The achieved speedup is around 55.8.

173

5 Evaluation and Design Space Exploration

Interaural Level and Time Difference

The ITD and ILD computation requires around 18.3 % of the total cycles of the baseline
implementation (Figure 5.19). The number of cycles is decreased by computing the cross-
correlation in the frequency-domain based on the convolution theorem. The convolution of
the signals is replaced by the pointwise product of their Fourier transforms. The proposed
complex-valued MAC (Section 3.2.1) is used to compute a complex-valued FFT. The fast
Fourier transform of both input signals are computed with one FFT computation with 512
bins [280]. The speed up compared to the baseline implementation with a time-domain con-
volution is 4.87. The computation of the ILD (Table 5.11) is by far less demanding and is
excluded from further optimizations.

Gaussian Mixture Model

Although the required processing time for the computation of the gaussian mixture model
(GMM) is reduced by a factor of 6.72 with SIMD CORDIC co-processors. However, the
GMM computation still requires around 43 % of the total processing time. To further improve
the speed, a LUT-based log-add algorithm is used [280, 287]. With this algorithm, the com-
putation of exponential function (Equation 5.14) is replaced with summation of logarithmic
terms. In this implementation, the table size is set to 214 16-bit elements, resulting in a max-
imum accuracy of 2−14. The required number of cycles for the computation of the GMM are
reduced from 910k to 296k cycles. However, 212 additional 64-bit memory words are required
for the LUT.

5.3.2 Processing Performance Comparison to a Related Architecture

The same localization algorithm is evaluated on the transport triggered architecture (TTA)
in [288]. The TTA is a customized C programmable processor design, which supports register
file bypassing and offers a scalable instruction level parallelism. By extending the applica-
tion-specific instruction set architecture (ISA), a speed-up of 151× compared to the baseline
general purpose implementation of the processor is achieved. SIMD instructions are imple-
mented with 32 subwords for each gammatone channel, resulting in 1024-bit vector opera-
tions. Among these vector operations are ABS, ADD, AND, EQ, GT, LT, MAX, MIN, OR, SHL,
SHR, SUB, and XOR, which are added to the architecture as custom operations. Specialized
operations are added to speed up the computation of the CORDIC algorithm, i.e., an element-
wise conditional addition and subtraction instruction, a count leading zeros instruction and a
combined multiply shift operation. Two equally sized register files with 16 1024-bit registers
and one write port and up to two read ports are part of the proposed TTA architecture. The
data memory is connected with a dedicated load and store unit.

174

5.4 Case Study: Speech Recognition

The comparison between the TTA and KAVUAKA 64-bit implementation is shown in Table 5.8.
The required core area and minimum clock frequencies are listed. The TTA processor requires
around 3.94× more silicon area than the KAVUAKA 64-bit processor. The vector register file
requires 43.2 % of the core cell area, compared to 40 % in case of the KAVUAKA processor
(Section 3.3.2). The higher area requirement is based on the datapath architecture of the TTA,
which is by far more complex compared to the VLIW architecture of the KAVUAKA processor.
Due to the lower operating clock frequency of the KAVUAKA processor and the smaller chip
size, the estimated average power consumption is almost nine times lower.

Table 5.8: Comparison of processor core area, minimum required clock frequencies, and the
estimated average power consumption. Results from an ASIC synthesis with the
TSMC 40 nm HVT low-power ASIC technology at 50 MHz.

TTA KAVUAKA 64-bit

Core cell area in 743,016 µm2 188,511 µm2

Minimum clock frequency 47 MHz 30.08 MHz
Estimated Average Power Consumption 11.9 mW 1.35 mW

5.4 Case Study: Speech Recognition

In this section, the application of DNN-based performance measures for predicting error rates
in automatic speech recognition on hearing aid processors is discussed [24, 289, 290]. The
goal is to predict the word error rate in automatic speech recognition and to use it for the opti-
mization of hearing aid parameters, such as the beamforming angle in a spatial scene. In order
to evaluate the feasibility of this algorithm for hearing aids, the hardware processing perfor-
mance and the processing delay are evaluated. The processing performance is determined in
cycle counts per frame. A suitable clock frequency of 50 MHz was selected for the hearing
aid processor to meet the real-time processing requirements, taking into account the resulting
constraints on power consumption, silicon area and processing delay [8, 104].

The features for the DNN-based performance measures are 40-dimensional log-Mel-spectral
coefficients. Ten frames of these features are fed to the input layer of the DNN for temporal
information. The frame size in this case is 10 ms and the sampling frequency is 16 kHz. The
feature extraction includes fast Fourier transforms (FFTs), logarithmic functions and discrete
cosine transformations. The computation of feature extraction requires 32,958 cycles on the
KAVUAKA 64-bit processor for one frame. At a processor clock frequency (fC) of 50 MHz

175

5 Evaluation and Design Space Exploration

this part requires a processing time (TP) of 0.659 ms (Equation 5.17):

TP =
cycles

fC
(5.17)

The KAVUAKA 64-bit processor is equipped with specialized functional hardware units, like
a complex-valued MAC unit described in Section 3.2.1 for speeding up the computation of
a fast Fourier transform. The requirements for the computing performance of the feature
extraction part are low compared to the processing of the forward path of the DNN. The tech-
nical feasibility depends on the computational complexity of the used DNNs. The complexity
is determined by the number of parameters of the acoustic model. Therefore 20 different
feed-forward networks are trained and evaluated, i.e., each combination of two to six hidden
layers (HL) with 256, 512, 1024 and 2048 hidden units (HU). An extrapolated estimate of the
number of processing cycles required for a forward path for each evaluated DNN is given in
Figure 5.23. These results are based on a hand optimized implementation on the processor
architecture shown in Figure 3.75.

The processing of the forward path of the network are mainly matrix multiplications. The acti-
vation functions are sigmoid for the hidden units and softmax for the output layer. Arithmetic
operations such as exponential and division operations are required to compute the activation
functions. The required cycle counts for these operations are considered by summing the pro-
cessing cycle counts when using the coordinate rotation digital computer (CORDIC) hardware
accelerator (Section 3.2.3) as suggested in [291]. Despite the high number of 32 cycles per
operation for exponential and division computation, the required number of cycles for the for-
ward path with matrix multiplications and additions is far greater. Therefore, the computation
of the forward path dominates the total cycle count. Even if the exponential and division oper-
ations could be computed within one cycle, the total number of cycles would only be reduced
by 1.8 % on average. The forward path matrix multiplications are calculated as follows:

v1
...

vm

=


w1,1 w1,2 · · · w1,n
w2,1 w2,2 · · · w2,n

...
...

wm,1 wm,2 · · · wm,n

×


u1
u2
...

un

+

b1
...

bm

 (5.18)

where v and u represent the values of the neurons, w is the weight matrix and b is the bias
vector. The processing complexity in terms of number of required operations depends on the
parameters m and n.

To meet the performance requirements for real-time processing, the required processing cy-
cles must be processed at a given clock frequency (fC) of 50 MHz. To achieve this, the avail-
able specialized hardware units, instruction-level parallelism and data-level parallelism of the

176

5.4 Case Study: Speech Recognition

2H
L_2

56
HU

2H
L_5

12
HU

2H
L_1

02
4H

U

2H
L_2

04
8H

U

3H
L_2

56
HU

3H
L_5

12
HU

3H
L_1

02
4H

U

3H
L_2

04
8H

U

4H
L_2

56
HU

4H
L_5

12
HU

4H
L_1

02
4H

U

4H
L_2

04
8H

U

5H
L_2

56
HU

5H
L_5

12
HU

5H
L_1

02
4H

U

5H
L_2

04
8H

U

6H
L_2

56
HU

6H
L_5

12
HU

6H
L_1

02
4H

U

6H
L_2

04
8H

U

Pr
oc

es
si

ng
C

yc
le

C
ou

nt
E

st
im

at
io

n

w/o SIMD + MUL
w/o SIMD + MAC
w/o SIMD + 2xMAC

2xSW SIMD + 2xMAC
4xSW SIMD + 2xMAC
8xSW SIMD + 2xMAC108

107

106

Figure 5.23: Extrapolated estimate of the required cycle count for the forward path for all
DNNs with 256 up to 1024 hidden units (HU) and two to six hidden layers (HL).
The number of cycles are estimated for processor architecture with and without
single instruction, multiple data on two to eight data points or subwords, and
either a MUL or multiple MAC units. The black dashed line represents the max-
imum cycle count for online processing with 50 MHz.

177

5 Evaluation and Design Space Exploration

processor architecture are exploited. A commonly used hardware unit for neural network ac-
celeration is the multiply-accumulate (MAC) unit [7, 25, 100], which performs a product of
two numbers and adds the result to the accumulator. This hardware unit can be used directly
for these matrix multiplications (Section 3.2.1). Instruction level parallelism is typically ex-
ploited by using a very long instruction word instruction set architecture (ISA) [8, 83, 133].
This enables the execution of two or more instructions in parallel per cycle. As an example,
two MAC units can be used by processor architectures [7,25,100], which execute two or more
instructions in parallel. A well-known and applied data level parallelism mechanism is sin-
gle instruction, multiple data (SIMD), which is applicable in hearing aids [75, 207]. Typical
SIMD mechanisms perform the same operation in parallel on multiple input data organized in
various subwords (SW) of equal size (2xSW, 4xSW, . . .).

Due to low data or control dependencies in the calculation of the DNN forward path, the
computation for the KAVUAKA architecture can be almost completely parallelized on the in-
struction and data level. The scheduled code of the inner loop of the handwritten assembler
code for the calculation of the matrix multiplications defined in Equation 5.18 is shown in
Figure 5.24. The KAVUAKA 64-bit processor architecture supports instruction level paral-
lelism, by processing two instructions per cycle on the issue-slot 0 and issue-slot 1. The
specialized MAC operations (MAC_32 instructions) are SIMD instructions, processing two
subwords (SW) with 32-bit each in parallel. These MAC_32 instructions are scheduled in par-
allel to memory accesses (move (MV) instructions). The MAC_32 instruction writes the result
in two target registers, which together have twice the data width, to avoid overflows during
fixed-point operations. Loop unrolling was used to achieve 1.88 instructions per cycle (IPC)
on average. As a result, ten vector elements can be multiplied and added in nine cycles.

Using the model 2HL_512HU with the best performance regarding the prediction error [24]
and the model with the least number of parameters 2HL_256HU, the number of required cycles
can be reduced by a factor of about 30 (Figure 5.23) with the mentioned hardware architecture
extensions compared to the sequential implementation without SIMD instructions and a single
multiplication instruction (w/o SIMD + MUL). Based on these results, the lowest achievable
processing time (Equation 5.17) for the complete DNN is 7.69 ms with 384634 cycles and a
clock frequency of 50 MHz.

According to the M-measure [289], the temporal distance between two propagated frames sep-
arated by 100 ms can be calculated as soon as the latter frame is processed. The M-measure
calculation includes several independent division and logarithmic operations. If these oper-
ations were also calculated with the CORDIC hardware accelerator within 32 cycles, 88000
estimated cycles are required in addition to the forward path of the second frame. If two hard-
ware accelerators (Section 3.2.3) are used in parallel, the processing time is about 0.88 ms at
a processor/co-processor clock rate of 50 MHz.

The estimated total processing time of this algorithm depends on the temporal distance of the
frames to be averaged. In order to find an optimal observation window, a detailed memory

178

5.5 Comparison to Other Related Hearing Aids

1 //Issue -slot #0 ; Issue -slot #1
2 :LOOP
3 MV V1R0 , FIR0+ ; MV V1R1 , FIR1+
4 MV V1R2 , FIR0+ ; MV V1R3 , FIR1+
5 MV V1R0 , FIR0+ ; MAC_32 V0R2+V0R3 , V1R0 , V1R1
6 MV V1R1 , FIR0+ ; MAC_32 V0R2+V0R3 , V1R2 , V1R3
7 MV V1R2 , FIR1+ ; MV V1R3 , FIR0+
8 MV V1R0 , FIR1+ ; MAC_32 V0R2+V0R3 , V1R0 , V1R2
9 MV V1R2 , FIR1+ ; MAC_32 V0R2+V0R3 , V1R1 , V1R0

10 LOOPR V0R1 , LOOP ; NOP
11 NOP ; MAC_32 V0R2+V0R3 , V1R3 , V1R2

Figure 5.24: Scheduled assembler code of the inner loop for the matrix multiplications. Two
statements are processed in parallel. Up to three registers (V0R0-V1R31) are
addressed per instruction, the first register being the target register. Move (MV)
instructions copy data from main memory using pointers stored in file indirect
registers (FIREGs). Multiply-accumulate (MAC) instructions are executed in
parallel with the MV instructions. The MAC results are stored in two destination
registers to get full precision. The suffix _32 specifies the subword mode for
SIMD operations.

analysis of the particular structure, on which the implementation is to be performed, is neces-
sary. However, managing up to 20 frames in memory does not result in a considerable number
of processing cycles. Considering a reduced fixed-point data width, the accuracy of the DNN,
and the M-measure algorithm performance, the implementation of the M-measure on hearing
aid hardware with sufficient parallelization capability is feasible under real-time constraints
and the overall audio latency is less than the frame shift of 10 ms.

5.5 Comparison to Other Related Hearing Aids

This section compares hardware characteristics of ASIP-based hearing systems from the lit-
erature with the ASIP hearing system presented in this thesis. The characteristics include
the ASIC technology (Section 5.5.1), power consumption (Section 5.5.2), circuit area (Sec-
tion 5.5.3), operating clock frequency (Section 5.5.4), audio datapath width (Section 5.5.5),
and memory sizes (Section 5.5.6).

5.5.1 ASIC Technology and Supply Voltage

The advantages of the steadily decreasing feature sizes of CMOS semiconductor technology
are exploited in commercial and research hearing aids. The feature sizes of modern hearing
aids from 1996 to 2020 are shown in Figure 5.25. Hearing aids with an analog front end

179

5 Evaluation and Design Space Exploration

(AFE), including analog-to-digital converters (ADCs), programmable gain amplifiers (PGAs),
or digital-to-analog converters (DACs), are marked. These hearing aids are either mixed-
signal or analog hearing aid designs, which have on average larger feature sizes due to more
restrictive design rules and greater sensitivity to noise [4]. To overcome these limitations, the
authors of [7, 56, 72, 73] propose a chip-level integration with two separate chips. Each chip
is integrated with a different ASIC technology, to independently utilize the more appropriate
feature size for both, the digital and the analog components of the hearing aid. The rate,
at which the feature size shrinks, decreased significantly for hearing aid implementations in
recent years. This is due to the higher costs for the design and manufacturing with smaller
feature sizes [4]. The KAVUAKA system-on-chip (SoC) is manufactured with a 40 nm ASIC
technology. This value is among the lowest reported in the literature. Only the chip for smart
hearables is manufactured with a smaller feature size of 28 nm [7,12]. The supply voltages of
hearing aid implementations are shown in Figure 5.26. Since the feature size remained almost
constant over the last years (Figure 5.25), the supply voltage also remains almost constant.
This is especially noticeable for hearing aids with analog components (Figure 5.26). The
lowest supply voltages of 0.55 V to 0.8 V are used in digital hearing aid designs. Those hearing
aid implementations, that employ undervoltage techniques through dynamic voltage scaling
and use voltages close to the threshold voltage, are listed in Table 5.9. Dynamic voltage scaling
is not used for the KAVUAKA processor. Therefore, the supply voltage of 1.10 V is relatively
high compared to the recently presented commercial and research hearing aids.

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

0

200

400

600

800

1,000

1,200

[53]

[47]
[75] [20]

[12]

[43]

K
[41][33]

[67] [70]

[13]

[14]

[45]
[49][48][15]

[62]

[39]
[76]

[68]

[71]

[72]

[8]

[74]

[9]
[19][10] [11]

[25]

Year

Fe
at

ur
e

Si
ze

(n
m

)

Hard-wired w/ an analog front end
ASIP w/ an analog front end
ASIP+accelerators w/ an analog front end
Hard-wired w/o an analog front end
ASIP w/o an analog front end
ASIP+accelerators w/o an analog front end

Figure 5.25: Feature sizes of commercial and research hearing aids. KAVUAKA is marked
with the letter K.

180

5.5 Comparison to Other Related Hearing Aids

Table 5.9: Operating voltages of commercial and research hearing aids.

Operating Default ASIC
Work Voltage Voltage Technology

[8] 0.80 V 1.00 V 65 nm CMOS
[33] 0.70 V 0.90 V 40 nm CMOS
[62] 0.60 V 1.00 V 90 nm CMOS
[53] 0.60 V 1.00 V 90 nm CMOS
[25] 0.60 V 0.90 V 40 nm CMOS
[12] 0.55 V 1.05 V 28 nm CMOS

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

0.6

0.8

1

1.2

1.4

[47]

[76]

[67]

[70]

[13]

[14]

[45]

[49][48][15]

[62]

[39]

[53]

[68]

[71]
[72]

[8]

[75][74]

[9]

[43][19][10]

[20]

[11]

[12]

[41]

KAVUAKA

[25]

[33]

Year

Su
pp

ly
Vo

lta
ge

(V
)

Hard-wired w/ an analog front end
ASIP w/ an analog front end
ASIP+accelerators w/ an analog front end
Hard-wired w/o an analog front end
ASIP w/o an analog front end
ASIP+accelerators w/o an analog front end

Figure 5.26: Supply voltages of commercial and research hearing aids.

181

5 Evaluation and Design Space Exploration

5.5.2 Power Consumption

The average power consumption determines the battery life for the hearing aids. During nor-
mal operation, all components of the hearing aid processing system are usually constantly
active. The average power consumption for the hearing aid implementations is shown in Fig-
ure 5.27. The computational complexity of the algorithms determines, among other things,
the power consumption. The lowest achieved average power consumption for the given im-
plementations is 10 µW. The hearing aids [49] and [74] consume this power for an adaptive
signal-to-noise ratio (SNR) monitor based on an envelope detection and adaptive FIR and IIR
filter calculations. On the other hand, when targeting hearables or smart headphones instead of
hearing aid devices, deep-learning based noise reduction techniques require an average power
consumption up to 4 mW [12]. Hard-wired architectures offer a comparatively low-power
consumption compared to the ASIP architectures. The power distribution for the components
of the mixed-signal hearing aid [11] is 36 % for the analog front end, 39 % for the digital signal
processor (DSP), 11 % for the power on reset circuit and 13 % for the remaining components.
The digital signal processor of the hearing aid presented in [19], on the other hand, consumes
up to 71 %, while the analog parts consume the remaining 29 %. The comparatively low aver-
age power consumption of 0.6 mW of the KAVUAKA 64-bit processor is measured during the
computation of adaptive beamforming algorithms [207].

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

0

1

2

3

4

[49]

[47] [20]

[67]

[70]
[13][14]

[45] [48][15]

[62]

[39][53]

[76]

[68]

[71]
[72]

[8] [75]

[74]

[9]

[43]

[19][10] [11]

[12]

[41]

K

[25]

[33]

Year

Po
w

er
C

on
su

m
pt

io
n

(m
W

)

Hard-wired w/ an analog front end
ASIP w/ an analog front end
ASIP+accelerators w/ an analog front end
Hard-wired w/o an analog front end
ASIP w/o an analog front end
ASIP+accelerators w/o an analog front end

Figure 5.27: Power consumption of commercial and research hearing aids. KAVUAKA is
marked with the letter K.

182

5.5 Comparison to Other Related Hearing Aids

5.5.3 Circuit Area

The silicon area for each hearing aid is shown in Figure 5.28. The analog front end or wireless
connection modules, which are not part of every hearing aid, require additional silicon area,
which must be considered when comparing implementations. The area distribution for the
mixed-signal hearing aid, which is presented in [19, 43], is 30 % for the analog and 70 %
for the digital part. The digital part consists of a 24-bit application-specific instruction-set
processor and five dedicated accelerators. The analog part consists of an audio front end with
a programmable gain amplifier (PGA), an analog-to-digital converter (ADC) and a class-D
amplifier for the pulse density modulation (PDM) output. The total size is 9.50 mm2 and this
is the maximum chip size since 2004. The analog hearing aid presented in [76], which is
manufactured using a 0.13 µm and a 0.35 µm technology, requires 66 % of the area for the
AGC, 15 % for the driver and 20 % for the filter circuit. The wireless control part of the analog
hearing aid, which presented in [67], is based on a dual tone multi frequency (DTMF) receiver,
occupies 1.16×4.6mm, which is 16 % of the total chip size of 5.7×4.9mm. The silicon area
of a hearing aid may be pad limited. As a result, the total area is larger than effectively required
for the digital or analog core parts. This is the case for the second largest ASIP-based hearing
aid system in this comparison, which does not include an analog front end [72]. Its size is
20 mm2. Although the KAVUAKA hearing aid system-on-chip contains four ASIPs on a single
chip, the silicon area of 3.6 mm2 is relatively small.

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

0

10

20

30

[49]

[76]
[12]

[41]

[67]

[70]

[13]

[14]

[45]
[47][48][15] [62]

[39]
[53]

[68]

[71]

[72]

[8]

[74]
[9]

[43][19][10] [11]

K [25]

[33]

Year

Si
lic

on
A

re
a

(m
m

2)

Hard-wired w/ an analog front end
ASIP w/ an analog front end
ASIP+accelerators w/ an analog front end
Hard-wired w/o an analog front end
ASIP w/o an analog front end
ASIP+accelerators w/o an analog front end

Figure 5.28: Silicon area of commercial and research hearing aids. KAVUAKA is marked with
the letter K.

183

5 Evaluation and Design Space Exploration

5.5.4 Operating Clock Frequency

The required operating clock frequency depends on the computing complexity of the hearing
aid algorithms and the architecture-dependent processing power of the digital signal process-
ing system (Figure 5.29). Most hard-wired hearing aids operate at comparatively low oper-
ating clock frequencies around 0.032 MHz to 8.000 MHz. The processing is sample-based,
i.e., each processing unit or component like a digital filter or amplifier processes one sam-
ple per clock cycle. In [53, 62], a more computationally intensive sample-based processing
is applied, using a noise reduction algorithm based on multiband spectral subtraction and
an enhanced entropy voice activity detection. The audio samples are stored in local ping-
pong buffer and processed sequentially for each sub-band at a clock frequency of 3 MHz to
8 MHz for the various processing blocks. Digital hearing aids with an application-specific
instruction-set processor as the central processing unit require somewhere in the region of
a thousand instructions to process the algorithms. An implementation of a related noise re-
duction algorithms (mband) on an ASIP with hardware accelerators [41] needs 2176 cycles
for computation. Parallelism at data or instruction level, or customized application-specific
instructions [8, 9, 11, 19, 41, 43, 56, 71, 74, 75] can reduce the clock frequency requirement.
Accelerators are used for intensive tasks, where the pure software implementation on an ASIP
is not feasible.

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

0

10

20

30

40

50

[70] [49]
[53]

[71]
[41]

[67]
[13]

[14] [47][48][15]

[62]

[39][68]
[72]

[8]
[75]

[74]

[9]
[43][19][10]

[20]

[11]

[12]

K

[25]

[33]

Year

O
pe

ra
tin

g
C

lo
ck

Fr
eq

ue
nc

y
(M

H
z) Hard-wired w/ an analog front end

ASIP w/ an analog front end
ASIP+accelerators w/ an analog front end
Hard-wired w/o an analog front end
ASIP w/o an analog front end
ASIP+accelerators w/o an analog front end

Figure 5.29: Operating clock frequency of commercial and research hearing aids. KAVUAKA
is marked with the letter K.

184

5.5 Comparison to Other Related Hearing Aids

5.5.5 Audio Datapath Width

All digital hearing aids presented in this comparison use fixed-point hardware architectures
for signal processing, due to lower hardware cost in terms of area and power requirements
compared to floating-point hardware [75]. The audio datapath width of the fixed-point data,
i.e., the number of bits per audio sample, is a crucial parameter for the design and implemen-
tation of hearing aids, as it determines the maximum achievable signal-to-noise ratio (SNR).
A high SNR value is a strict requirement for hearing aids [11, 48]. Each additional datapath
bit increases the SNR by about 6 dB. However, this parameter also affects the area, power
consumption, and processing performance of all components in the processing chain, digital
processing blocks, memories, ADCs, and DACs [8, 9, 43, 56, 80]. The authors of [33] present
a word length optimization to reduce the area and power of their MAC unit accelerator. They
propose to optimize the number of bits based on the results of short-time objective intelligibil-
ity (STOI) measurements. Alternatively, signal-to-noise ratio (SNR) measurements are used
in [41]. In [8], a 16-bit processor is extended with specific functional units that use 32-bit
and 40-bit intermediate results to improve the fixed-point accuracy. Two separate processors
are used in [80]. The 32-bit Arm Cortex M3 processor is used for debugging and wireless
connectivity and the 24-bit ASIP processes the audio samples. In Table 5.10, a comparison of
architectures implementing an audio datapath with fixed width is given. Most designs have a
datapath width of 16-bit, for the digital and analog parts. The datapath width can be switched
in some ASIP based architectures, which are listed in Table 5.11. This is possible by us-
ing different execution units with different datapath width, microSIMD subword modes [292]
or specialized accelerators. To take advantage of the increased dynamic range of floating-
point data types, the architectures listed in Table 5.12 add hardware support for floating-point
processing. The approaches used are block floating-point, static floating-point, or emulated
floating-point. The maximum operation frequency of KAVUAKA processor is 50 MHz. For
the beamforming algorithms, 10 MHz are required (Section 5.1).

5.5.6 On-Chip Memory

Due to strict power and area restrictions, on-chip memory is the only implementation option
for the hearing aids listed in Table 5.13. On-chip area is limited and memory size is critical to
the overall size of the chip. The area for the SRAM macros for the mixed-signal hearing aid
presented in [19] is 1.35 mm2. Compared to the logic size of 5.39 mm2 and the analog size of
2.77 mm2 the area of the SRAM is 14 % of the total chip size for a 130 nm ASIC technology.
The memory size depends on the complexity and type of the audio processing algorithms.
Algorithms with a comparably high memory requirements are those based on trained models
or data. Among those are localization algorithms [6,27], deep learning based speech enhance-
ment and speech recognition algorithms [24–26, 66]. As an example, the gaussian mixture
model (GMM) of the localization algorithm requires about 90 % of the total memory require-

185

5 Evaluation and Design Space Exploration

Table 5.10: Fixed audio datapath width architectures of commercial and research hearing aids.

Analog Digital
data data Sampling Processor

Work path path Frequency Architecture

[62] — 16-bit 24 kHz hard-wired
[9, 25] — 16-bit — ASIP+accelerator
[25] — 16-bit 16 kHz ASIP+accelerator
[47] 16-bit 16-bit 16 kHz hard-wired

[8, 71] — 16-bit — ASIP
[53, 62] — 16-bit 24 kHz hard-wired

[75] — 16-bit 20 kHz ASIP
[72] — 22-bit — ASIP

[10, 11, 19, 43, 80] 16-bit 24-bit 16 kHz ASIP+accelerator

Table 5.11: Variable audio datapath width architectures of commercial and research hearing
aids.

Analog Digital
data data Sampling Processor

Work path path Frequency Architecture

[68, 69] 13-bit 13 to 24-bit 16 kHz ASIP
[74] — 12 to 25-bit 16 kHz ASIP+accelerator
[33] 16-bit 6 to 32-bit 16 kHz ASIP+accelerator
[41] 16-bit 24 to 32-bit 16 kHz ASIP+accelerator
[8] — 24 to 40-bit 16 kHz ASIP

KAVUAKA — 8 to 64-bit 16 kHz ASIP+accelerator

Table 5.12: Optional floating-point audio datapaths of commercial and research hearing aids.

Processor
Work Digital datapath Architecture

[20, 71, 80] block floating-point ASIP+accelerator
[9] static floating-point ASIP+accelerator

KAVUAKA emulated floating-point ASIP+accelerator

186

5.5 Comparison to Other Related Hearing Aids

ment of this algorithm [6, 27]. In this case 44,400 of 48,816 words are required only for
the trained model. Another example is the hearing aid with the highest amount of on-chip
memory, which is designed for computing intensive task as neural networks for speech en-
hancement [25]. The hearing aid with the least amount of on-chip memory is designed for IIR
filters [68, 69].

Table 5.13: On-chip memory sizes of commercial and research hearing aids.

Work Total Details

[68, 69] 0.85 kB 0.368 kB instruction RAM, 0.096 kB data RAM and 0.384 kB
coefficient RAM

[74] 1.23 kB 0.62 kB data memory for mini-cores, 0.438 kB instruction mem-
ory and 0.172 kB coefficient memory

[9] 5.00 kB Four processing elements (PEs) with 512 B instruction memory,
512 B shared memory for inter-PE communication and 2.5 kB
local memory

[43] 6.00 kB 6 kB data memory

[71] 22.50 kB 6.125 kB RAM and 16.375 kB ROM

[72] 68.00 kB 4 kB instruction ROM and 64 kB DSP parameter RAM

[20, 78, 80] 110.00 kB Six separate logical memory banks, 24-bit data memory, 32-bit
DSP instruction memory

KAVUAKA 140.00 kB 28 SRAMs, 65 kB instruction memory, 57 kB data memory and
16 kB audio interface memory

[25] 327.00 kB Four processing cluster, each with 64 kB for the CNNs and 2 kB
for the FFT accelerators

187

6 Conclusion

Digital signal processing in hearing aids is continuously being developed and is becoming
more and more computationally intensive. This results in challenges for the development of
suitable, powerful, and efficient hardware architectures for hearing aids, especially with regard
to the small physical size of hearing aids and the battery operation. These challenges motivate
this thesis. A new low-power application-specific instruction-set processor for digital hearing
aids is proposed, which is called KAVUAKA. The architecture of KAVUAKA is customized
for the low-power hearing aid application and is optimized for the processing performance
requirements of hearing aid applications. The basis for these optimizations are benchmarks
based on state-of-the-art reference hearing aid algorithms. The goal is to design, evaluate, and
optimize the hearing aid processor architecture in terms of power consumption, silicon area,
and processing performance requirements.

One hardware specialization proposal for hearing aid application-specific instruction-set pro-
cessors is a real- and complex-valued SIMD multiply-accumulate (MAC) unit. A com-
monly used partial product multiplier architecture for SIMD multiplications is extended to
also support complex-valued multiply-accumulate and butterfly operations. Since the same
multiplier structure can be used for both operation modes, the silicon area overhead is about
30 % and the estimated average power consumption is about 19 % smaller compared to dupli-
cating MAC-units, as proposed in the related work. A fast Fourier transform (FFT) benchmark
demonstrates that the proposed complex-valued SIMD-MAC unit outperforms MAC architec-
tures of related digital signal processors by integrating a SIMD butterfly operation into the
complex-valued MAC architecture. The KAVUAKA processor is at least 16 % faster in the
computation of 128-point FFT compared to the related programmable digital signal proces-
sors.

Another proposed hardware specialization is the efficient emulation of floating-point arith-
metic for fixed-point SIMD processors. The emulated floating-point operations are opti-
mized for commonly available microSIMD architecture mechanisms. Based on a custom
floating-point format and arithmetic, which include the independent processing of the signifi-
cand and the exponent in different subwords, a comparatively fast emulation speed is achieved
reducing the required cycles by a factor of 3 on average. The proposed floating-point emu-
lation is faster than any related software floating-point emulation framework implemented on
comparable digital signal processors. The proposed library can decrease the development time
for signal processing algorithms on fixed-point processors.

189

6 Conclusion

With regard to parallelization, a new issue-slot based predication technique for VLIW pro-
cessors is presented. This technique does not require additional instruction encoding bits to
address a predicate register. The predicate registers are addressed based on the issue-slot, on
which the conditional instructions are scheduled. Multiple predicate registers can be accessed
simultaneously. The core area overhead for multiple predicate registers is about 1 %. Two case
studies show a performance increase by about 4 % when using two instead of one predicate
register in parallel, reaching almost the maximum possible instructions per cycle.

An evolutionary algorithm-based code generator is presented, which maps the application
input code, i.e., the hearing aid applications, on the KAVUAKA processor. Evolutionary algo-
rithm are used for operation merging, instruction scheduling, and register allocation in order to
adapt the code generation to different target architecture configurations and constraints and to
find an optimal mapping. This code generator is extended to schedule the conditional instruc-
tions for issue-slot based predication technique automatically. Additional extensions include
techniques for a power-aware instruction scheduling and register allocation. Results show
a possible power consumption reduction of up to 55 %. These initial results and concepts
for energy aware compiler techniques are studied in an on-going project called ‘Compari-
son of Evolutionary and Machine Learning-Based Algorithms for Energy-Aware Instruction
Scheduling’ (Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — PA
2762/2—1).

A low latency multichannel audio interface for low-power SIMD digital signal proces-
sors is presented. The architecture is FIFO-based and supports commonly used SIMD vector
data formats. Compared to related architectures, which make use of a direct memory access
(DMA), no double buffering and interrupts are used. Since no processing overhead is required
to perform data permutations, no interrupt routine is required, and no additional buffers are
needed, the load, required for handling the audio samples, of the coupled KAVUAKA processor
is small. For the highest investigated interrupt rate, the average processor load is around 50 %
lower for the KAVUAKA processor compared to the related processor. The hardware-induced
audio latency is 34 % lower compared to related audio interfaces for frame size of 64 samples.
A low-power mechanism based on the FIFO-based architecture is presented, which can set the
processor to a low-power mode, if no audio samples are ready to be processed.

Finally, four case studies with representative hearing aid algorithms are used to evaluate the
proposed ASIP optimizations. In case of the beamforming algorithms, 24 different opti-
mized processor configurations and three beamforming algorithm combinations are studied.
The results show that one of the best combinations in terms of the algorithm performance is
the adaptive gain beamformer running on a 24-bit processor without SIMD, with a division co-
processor and optimized register file, including address isolation and dummy registers. This
combination offers the highest possible algorithm performance, while the power consumption
is by a factor of 11 smaller than using the unoptimized 64-bit processor with SIMD and the
same algorithm. The smallest possible combination, with reduced performance (i.e., fixed
beamformer with −2 dB ISNR), requires 2.2 times less silicon area than the largest combi-

190

nation. The M-measure implementation for automatic speech recognition in hearing aids
is deemed feasible with more hardware parallelization and model weights quantization. The
lowest achievable processing time of the full forward pass is 7.69 ms with a clock frequency
of 50 MHz. The optimized M-measure computation would add 0.88 ms when using 10 frames
as temporal separation. The speaker localization algorithm requires a minimum clock fre-
quency of 30 MHz and the estimated average power is 1.35 mW, which is almost 10× less
than the related transport-triggered architecture. The minimum operating frequency for the
speech enhancement is reduced by a factor of 6 with co-processors and compiler optimiza-
tions.

In order to verify the power consumption simulations and estimations, four different configu-
rations of the KAVUAKA processor were integrated as a system-on-chip using a 40 nm ASIC
technology. The SoC also includes ten co-processors for trigonometric and hyperbolic com-
putations, the multi-channel audio interface and a serial interface. The die size is 3.6 mm2

and the core area for the 64-bit processor configuration is 0.134 mm2. The average power
consumption is 2.4 mW for the complete SoC and 0.6 mW for the 64-bit KAVUAKA core
at a clock frequency of 10 MHz. An comparison with state-of-the-art hearing aid ASICs is
presented. Analog, mixed-signal and digital processors are part of the comparison, with em-
phasis on ASIPs, which are compared to dedicated hardware architectures. Trends in ASIC
technologies, average power consumption, silicon area, and operating clock frequencies are
presented. The average power consumption of 0.6 mW as well as the silicon area of 3.6 mm2

of the KAVUAKA ASIP are among the lowest compared to related ASIPs. Due to new sophis-
ticated algorithms like deep neural network based noise reduction and binaural sound source
localization, there is a definite trend towards more flexibility and computing performance re-
quirements. With maximum operating frequency of 50 MHz and the proposed specialized
hardware enhancements for the KAVUAKA processor, a comparatively high flexibility and
processing performance is achieved.

191

References

[1] World Health Organization and others, “Addressing the rising prevalence of hearing
loss,” 2018. https://apps.who.int/iris/handle/10665/260336. License: CC BY-NC-SA
3.0 IGO.

[2] National Institute on Deafness and Other Communication Disorders,
“Quick statistics about hearing,” National Institutes of Health, 2016.
https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing.

[3] World Health Organization and others, “Deafness and Hearing Loss,” 2020.
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.

[4] Semiconductor Components Industries, LLC, “Solving the Hearing Aid Platform Puz-
zle,” Tech. Rep., 2014. https://www.onsemi.com/pub/Collateral/TND6092-D.PDF.

[5] H. Puder, “Hearing aids: an overview of the state-of-the-art, challenges, and future
trends of an interesting audio signal processing application,” in Image and Signal Pro-
cessing and Analysis, 2009. ISPA 2009. Proceedings of 6th International Symposium
on, pp. 1–6, IEEE, 2009.

[6] C. Seifert, J. Thiemann, L. Gerlach, T. Volkmar, G. Payá-Vayá, H. Blume, and S. van de
Par, “Real-time implementation of a GMM-based binaural localization algorithm on a
VLIW-SIMD processor,” in Multimedia and Expo (ICME), 2017 IEEE International
Conference on, pp. 145–150, IEEE, 2017.

[7] Y. Pu, D. Butterfield, J. Garcia, J. Xie, M. Lin, R. Sauhta, R. Farley, S. Shellhammer,
M. Derkalousdian, A. Newham, et al., “An Ultra-low-power 28nm CMOS Dual-die
ASIC Platform for Smart Hearables,” in 2018 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 1–4, IEEE, 2018.

[8] P. Qiao, H. Corporaal, and M. Lindwer, “A 0.964 mW digital hearing aid system,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, pp. 1–4,
IEEE, 2011.

[9] K.-C. Chang, Y.-W. Chen, Y.-T. Kuo, and C.-W. Liu, “A Low Power Hearing Aid Com-
puting Platform Using Lightweight Processing Elements,” in Circuits and Systems (IS-
CAS), 2012 IEEE International Symposium on, pp. 2785–2788, IEEE, 2012.

[10] C. Chen, L. Chen, J. Fan, Z. Yu, J. Yang, X. Hu, Y. Hei, and F. Zhang, “A 1V, 1.1
mW mixed-signal hearing aid SoC in 0.13 um CMOS process,” in Circuits and Systems
(ISCAS), 2016 IEEE International Symposium on, pp. 225–228, IEEE, 2016.

193

References

[11] C. Chen and L. Chen, “A 79-dB SNR 1.1-mW Fully Integrated Hearing Aid SoC,”
Circuits, Systems, and Signal Processing, pp. 1–17, 2018.

[12] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R. Beraha, A. Newham, M. Lin, V. Ran-
gan, K. Chatha, et al., “A 9-mm2 ultra-low-power highly integrated 28-nm CMOS SoC
for Internet of Things,” IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 936–
948, 2018.

[13] D. Gata, W. Sjursen, J. Hochschild, J. Fattaruso, L. Fang, G. Iannelli, Z. Jiang,
C. Branch, J. Holmes, M. Skorez, et al., “A 1.1-V 270-µA Mixed-Signal Hearing Aid
Chip,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38, no. 4, pp. 683–683,
2003.

[14] Serra-Graells, Francisco and Gomez, Lluís and Huertas, José L, “A True-1-V 300-
µW CMOS-Subthreshold Log-Domain Hearing-Aid-On-Chip,” IEEE Journal of Solid-
State Circuits, vol. 39, no. 8, pp. 1271–1281, 2004.

[15] S. Kim, S. J. Lee, N. Cho, S.-J. Song, and H.-J. Yoo, “A fully integrated digital hear-
ing aid chip with human factors considerations,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 1, pp. 266–274, 2008.

[16] G. Payá-Vayá, Design and Analysis of a Generic VLIW Processor for Multimedia Ap-
plications. PhD thesis, Leibniz Universität Hannover, 2011.

[17] H. Strass, “Digital processors aid hearing devices,” 2009. Embedded Computing De-
sign, http://embedded-computing.com/articles/digital-aid-hearing-devices/.

[18] S. Doclo, “Distributed Microphone Array Signal Distributed Microphone Array Sig-
nal Processing for Hearing Aids,” tech. rep., Signal Processing Group, University of
Oldenburg, 2010.

[19] L.-M. Chen, Z.-H. Yu, C.-Y. Chen, X.-Y. Hu, J. Fan, J. Yang, and Y. Hei, “A 1-V, 1.2-
mA fully integrated SoC for digital hearing aids,” Microelectronics Journal, vol. 46,
no. 1, pp. 12–19, 2015.

[20] Semiconductor Components Industries, LLC, Wireless-Enabled Audio Processor for
Hearing Aids, 2018. https://www.onsemi.com/pub/Collateral/E7150-D.PDF.

[21] M. Kock, S. Hesselbarth, M. Pfitzner, and H. Blume, “Hardware-accelerated design
space exploration framework for communication systems,” Analog Integrated Circuits
and Signal Processing, vol. 78, no. 3, pp. 557–571, 2014.

[22] K. Kąkol and B. Kostek, “A study on signal processing methods applied to hearing
aids,” in 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Appli-
cations (SPA), pp. 219–224, IEEE, 2016.

[23] V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass,
“Signal Processing in High-End Hearing Aids: State of the Art, Challenges, and Future

194

References

Trends,” EURASIP Journal on Applied Signal Processing, vol. 2005, pp. 2915–2929,
2005.

[24] A. M. C. Martinez, L. Gerlach, G. Payá-Vayá, H. Hermansky, J. Ooster, and B. T.
Meyer, “DNN-based performance measures for predicting error rates in automatic
speech recognition and optimizing hearing aid parameters,” Speech Communication,
vol. 106, pp. 44–56, 2019.

[25] Y.-C. Lee, T.-S. Chi, and C.-H. Yang, “A 2.17-mW Acoustic DSP Processor With CNN-
FFT Accelerators for Intelligent Hearing Assistive Devices,” IEEE Journal of Solid-
State Circuits, 2020.

[26] S. R. Park and J. Lee, “A fully convolutional neural network for speech enhancement,”
arXiv preprint arXiv:1609.07132, 2016.

[27] T. May, S. Van De Par, and A. Kohlrausch, “A probabilistic model for robust localiza-
tion based on a binaural auditory front-end,” IEEE Transactions on audio, speech, and
language processing, vol. 19, no. 1, pp. 1–13, 2011.

[28] R. Rehr and T. Gerkmann, “SNR-Based Features and Diverse Training Data for Robust
DNN-Based Speech Enhancement,” arXiv preprint arXiv:2004.03512, 2020.

[29] M. Tammen, D. Fischer, B. T. Meyer, and S. Doclo, “DNN-Based Speech Presence
Probability Estimation for Multi-Frame Single-Microphone Speech Enhancement,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 191–195, IEEE, 2020.

[30] R. Varzandeh, K. Adiloğlu, S. Doclo, and V. Hohmann, “Exploiting Periodicity Fea-
tures for Joint Detection and DOA Estimation of Speech Sources Using Convolutional
Neural Networks,” in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 566–570, IEEE, 2020.

[31] V. Hamacher, E. Fischer, U. Kornagel, and H. Puder, “Applications of adaptive sig-
nal processing methods in high-end hearing aids,” Topics in Acoustic Echo and Noise
Control, edited by E. Hansler and G. Schmidt (Springer, Berlin), pp. 599–636, 2006.

[32] L. Griffiths and C. Jim, “An alternative approach to linearly constrained adaptive beam-
forming,” IEEE Transactions on antennas and propagation, vol. 30, no. 1, pp. 27–34,
1982.

[33] Y.-J. Lin, Y.-C. Lee, H.-M. Liu, H. Chiueh, T.-S. Chi, and C.-H. Yang, “A 1.5 mW
Programmable Acoustic Signal Processor for Hearing Assistive Devices With Speech
Intelligibility Enhancement,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2020.

[34] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error
short-time spectral amplitude estimator,” IEEE Transactions on acoustics, speech, and
signal processing, vol. 32, no. 6, pp. 1109–1121, 1984.

195

References

[35] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error
log-spectral amplitude estimator,” IEEE transactions on acoustics, speech, and signal
processing, vol. 33, no. 2, pp. 443–445, 1985.

[36] H.-G. Hirsch and C. Ehrlicher, “Noise estimation techniques for robust speech recog-
nition,” in 1995 International conference on acoustics, speech, and signal processing,
vol. 1, pp. 153–156, IEEE, 1995.

[37] P. Scalart et al., “Speech enhancement based on a priori signal to noise estimation,”
in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing
Conference Proceedings, vol. 2, pp. 629–632, IEEE, 1996.

[38] K. El-Maleh and P. Kabal, “Comparison of voice activity detection algorithms for wire-
less personal communications systems,” in CCECE’97. Canadian Conference on Elec-
trical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Con-
ference Proceedings, vol. 2, pp. 470–473, IEEE, 1997.

[39] L. Shaer, I. Nahlus, J. Merhi, A. Kayssi, and A. Chehab, “Low-power digital signal
processor design for a hearing aid,” in 2013 4th Annual International Conference on
Energy Aware Computing Systems and Applications (ICEAC), pp. 40–44, IEEE, 2013.

[40] B. Farhang-Boroujeny and Z. Wang, “Adaptive filtering in subbands: Design issues and
experimental results for acoustic echo cancellation,” Signal Processing, vol. 61, no. 3,
pp. 213–223, 1997.

[41] S.-W. Kim, M.-J. Kim, and J.-S. Kim, “High-performance DSP platform for digital
hearing aid SoC with flexible noise estimation,” IET Circuits, Devices & Systems,
vol. 13, no. 5, pp. 717–722, 2019.

[42] H.-F. Chi, S. X. Gao, and S. D. Soli, “A novel approach of adaptive feedback cancella-
tion for hearing aids,” in 1999 IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 3, pp. 195–198, IEEE, 1999.

[43] Y. Jia, C. Liming, Y. Zenghui, and H. Yong, “A sub-milliwatt audio-processing platform
for digital hearing aids,” Journal of Semiconductors, vol. 35, no. 7, p. 075008, 2014.

[44] H. Teutsch and G. W. Elko, “First-and second-order adaptive differential microphone
arrays,” in Proc. IWAENC, vol. 1, Citeseer, 2001.

[45] F. Carbognani, F. Burgin, L. Henzen, H. Koch, H. Magdassian, C. Pedretti, H. Kaes-
lin, N. Felber, and W. Fichtner, “A 0.67-mm2 45-µW DSP VLSI Implementation of an
Adaptive Directional Microphone for Hearing Aids,” in Proceedings of the 2005 Euro-
pean Conference on Circuit Theory and Design, 2005., vol. 3, pp. III/141–III/144 vol.
3, 2005.

[46] W. P. Sjursen, “Hearing aid digital filter,” Sept. 18 2001. US Patent 6,292,571.

196

References

[47] S. Kim, N. Cho, S. . Song, D. Kim, K. Kim, and H. . Yoo, “A 0.9-V 96-µW Digital
Hearing Aid Chip with Heterogeneous Σ-∆ DAC,” in 2006 Symposium on VLSI Circuits,
2006. Digest of Technical Papers., pp. 55–56, 2006.

[48] S. Kim, N. Cho, S.-J. Song, and H.-J. Yoo, “A 0.9 V 96 µW Fully Operational Digital
Hearing Aid Chip,” IEEE journal of solid-state circuits, vol. 42, no. 11, pp. 2432–2440,
2007.

[49] J. Yoo, S. Kim, N. Cho, S.-J. Song, and H.-J. Yoo, “A 10-µW digital signal processor
with adaptive-SNR monitoring for a sub-1 V digital hearing aid,” in IEEE International
Symposium on Circuits and Systems, 2006.

[50] C. Ris and S. Dupont, “Assessing local noise level estimation methods: Application to
noise robust ASR,” Speech communication, vol. 34, no. 1-2, pp. 141–158, 2001.

[51] J. Lee, J. Kim, and G. Yoon, “Digital envelope detector for blood pressure measurement
using an oscillometric method,” Journal of medical engineering & technology, vol. 26,
no. 3, pp. 117–122, 2002.

[52] C. Jia and B. Xu, “An improved entropy-based endpoint detection algorithm,” in Inter-
national Symposium on Chinese Spoken Language Processing, 2002.

[53] C.-W. Wei, C.-C. Tsai, Y. FanJiang, T.-S. Chang, and S.-J. Jou, “Analysis and im-
plementation of low-power perceptual multiband noise reduction for the hearing aids
application,” IET Circuits, Devices & Systems, vol. 8, no. 6, pp. 516–525, 2014.

[54] S. Kamath and P. Loizou, “A multi-band spectral subtraction method for enhancing
speech corrupted by colored noise,” in ICASSP, vol. 4, pp. 44164–44164, Citeseer,
2002.

[55] F.-L. Luo, J. Yang, C. Pavlovic, and A. Nehorai, “Adaptive Null-Forming Scheme
in Digital Hearing Aids,” Signal Processing, IEEE Transactions on, vol. 50, no. 7,
pp. 1583–1590, 2002.

[56] L. Gerlach, G. Payá-Vayá, and H. Blume, “KAVUAKA: A Low Power Application
Specific Hearing Aid Processor,” in 2019 IFIP/IEEE 27th International Conference on
Very Large Scale Integration (VLSI-SoC), pp. 99–104, Oct 2019.

[57] J. M. Kates, “Principles of digital dynamic-range compression,” Trends in amplifica-
tion, vol. 9, no. 2, pp. 45–76, 2005.

[58] N. Westerlund, M. Dahl, and I. Claesson, “Speech enhancement for personal commu-
nication using an adaptive gain equalizer,” Signal Processing, vol. 85, no. 6, pp. 1089–
1101, 2005.

[59] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction
Wiener filter,” IEEE Transactions on audio, speech, and language processing, vol. 14,
no. 4, pp. 1218–1234, 2006.

197

References

[60] P. Loizou, Speech Enhancement: Theory and Practice, Second Edition. Taylor & Fran-
cis, 2013.

[61] Y.-T. Kuo, T.-J. Lin, W.-H. Chang, Y.-T. Li, C.-W. Liu, and S.-T. Young, “Complexity-
effective auditory compensation for digital hearing aids,” in 2008 IEEE International
Symposium on Circuits and Systems, pp. 1472–1475, IEEE, 2008.

[62] C.-W. Wei, Y.-T. Kuo, K.-C. Chang, C.-C. Tsai, J.-Y. Lin, Y. FanJiang, M.-H. Tu, C.-W.
Liu, T.-S. Chang, and S.-J. Jou, “A low-power Mandarin-specific hearing aid chip,” in
2010 IEEE Asian Solid-State Circuits Conference, pp. 1–4, IEEE, 2010.

[63] J. Kates, Digital Hearing Aids. Plural Publishing, Incorporated, 2008.

[64] J. Chen and B. C. Moore, “Effect of individually tailored spectral change enhancement
on speech intelligibility and quality for hearing-impaired listeners,” in 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pp. 8643–8647,
IEEE, 2013.

[65] J. Benesty and Y. Huang, Adaptive Signal Processing: Applications to Real-World
Problems. Signals and Communication Technology, Springer Berlin Heidelberg, 2013.

[66] C.-Y. Lai, Y.-W. Lo, Y.-L. Shen, and T.-S. Chi, “Plastic multi-resolution auditory
model based neural network for speech enhancement,” in 2017 Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference (APSIPA ASC),
pp. 605–609, IEEE, 2017.

[67] J. F. Duque-Carrillo, P. Malcovati, F. Maloberti, R. Pérez-Aloe, A. H. Reyes,
E. Sánchez-Sinencio, G. Torelli, and J. M. Valverde, “VERDI: An acoustically pro-
grammable and adjustable CMOS mixed-mode signal processor for hearing aid appli-
cations,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 634–645, 1996.

[68] H. Neuteboom, B. M. Kup, and M. Janssens, “A DSP-Based Hearing Instrument IC,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 11, pp. 1790–1806, 1997.

[69] H. Neuteboom, M. Janssens, J. Leenen, B. Kup, E. Dijkmans, B. De Koning, V. Frow-
ijn, R. De Bleecker, E. Van der Zwan, S. Note, et al., “A single battery, 0.9 V oper-
ated digital sound processing IC including AD/DA and IR receiver with 2 mW power
consumption,” in 1997 IEEE International Solids-State Circuits Conference. Digest of
Technical Papers, pp. 98–99, IEEE, 1997.

[70] J. S. Martinez, S. S. Bustos, J. S. Suñer, R. R. Hernández, and M. Schellenberg, “A
CMOS Hearing Aid Device,” Analog Integrated Circuits and Signal Processing, no. 21,
pp. 163–172, 1999.

[71] F. Moller, N. Bisgaard, and J. Melanson, “Algorithm and architecture of a 1 V low
power hearing instrument DSP,” in Proceedings. 1999 International Symposium on Low
Power Electronics and Design (Cat. No. 99TH8477), pp. 7–11, IEEE, 1999.

198

References

[72] P. Mosch, G. van Oerle, S. Menzl, N. Rougnon-Glasson, K. Van Nieuwenhove, and
M. Wezelenburg, “A 660-µW 50-Mops 1-V DSP for a Hearing Aid Chip Set,” IEEE
Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1705–1712, 2000.

[73] R. Klootsema, O. Nys, E. Vandel, D. Aebischer, P. Vaucher, O. Hautier, P. Bratschi,
F. Bauduin, G. Van Oerle, A. Jakob, et al., “Battery supplied low power analog-digital
front-end for audio applications,” in Proceedings of the 26th European solid-state cir-
cuits conference, pp. 118–121, IEEE, 2000.

[74] O. Paker, J. Sparso, N. Haandbæk, M. Isager, and L. S. Nielsen, “A heterogeneous mul-
tiprocessor architecture for low-power audio signal processing applications,” in VLSI,
2001. Proceedings. IEEE Computer Society Workshop on, pp. 47–53, IEEE, 2001.

[75] Y. Ku, J. Sohn, J. Han, Y. Baek, and D. Kim, “A High Performance Hearing Aid System
with Fully Programmable Ultra Low Power DSP,” in Consumer Electronics (ICCE),
2013 IEEE International Conference on, pp. 352–353, 2013.

[76] X. Wang, H. Yang, F. Li, T. Yin, G. Huang, and F. Liu, “A programmable analog
hearing aid system-on-chip with frequency compensation,” Analog Integrated Circuits
and Signal Processing, vol. 79, no. 2, pp. 227–236, 2014.

[77] N. Werner, G. Payá-Vayá, and H. Blume, “Case study: Using the xtensa LX4 config-
urable processor for hearing aid applications,” Proceedings of the ICT. OPEN, 2013.

[78] Berkeley Design Technology, Inc., “ON Semiconductor’s Hearing Aid SoCs: Dis-
tributed Performance That’s Easy on Batteries,” 2014.

[79] Semiconductor Components Industries, LLC, “NXP puts CoolFlux DSP in to
hearing aids,” 2008. https://www.electronicsweekly.com/market-sectors/embedded-
systems/nxp-puts-coolflux-dsp-in-to-hearing-aids-2008-11/.

[80] Semiconductor Components Industries, LLC, EZAIRO 7111 HYBRID: Audio Proces-
sor for Digital Hearing Aids, 2018. https://www.onsemi.com/pub/Collateral/E7111-
D.PDF.

[81] K. Samtani, J. Thomas, S. Deepu, and S. S. David, “Area and power optimised ASIC
implementation of adaptive beamformer for hearing aids,” in Biomedical Circuits and
Systems Conference (BioCAS), 2017 IEEE, pp. 1–4, IEEE, 2017.

[82] Semiconductor Components Industries, LLC, “WOLA Filterbank Coprocessor: Intro-
ductory Concepts and Techniques.”

[83] J. Hartig, L. Gerlach, G. Payá-Vayá, and H. Blume, “Customizing a VLIW-SIMD
Application-Specific Instruction-Set Processor for Hearing Aid Devices,” in Signal Pro-
cess. Syst. (SiPS), 2014 IEEE Workshop on, pp. 1–6, IEEE, 2014.

[84] G. Payá-Vayá, J. Martín-Langerwerf, F. Giesemann, H. Blume, and P. Pirsch, “Instruc-
tion Merging to Increase Parallelism in VLIW Architectures,” in System-on-Chip, 2009.
SOC 2009. International Symposium on, pp. 143–146, IEEE, 2009.

199

References

[85] G. Payá-Vayá, J. Martín-Langerwerf, and P. Pirsch, “A multi-shared register file struc-
ture for VLIW processors,” Journal of Signal Processing Systems, vol. 58, no. 2,
pp. 215–231, 2010.

[86] D. Patterson and J. Hennessy, Computer Organization and Design MIPS Edition: The
Hardware/Software Interface. ISSN, Elsevier Science, 2020.

[87] J. Squire, “CMSC 411 Computer Architecture,” tech. rep., University of Maryland Bal-
timore County, 2019.

[88] M. Lu et al., Arithmetic and logic in computer systems, vol. 169. Wiley Online Library,
2004.

[89] B. Venkataramani and M. Bhaskar, Digital Signal Processors: Architecture, Program-
ming and Applications. McGraw-Hill Education (India) Pvt Limited, 2002.

[90] L. L. Corporation, LSI403LP Digital Signal Processor. LSI Logic Corporation, 2002.
www.lsi.com.

[91] B. Ackland, A. Anesko, D. Brinthaupt, S. Daubert, A. Kalavade, J. Knobloch, E. Micca,
M. Moturi, C. Nicol, J. O’Neill, et al., “A single-chip, 1.6-billion, 16-b MAC/s mul-
tiprocessor DSP,” Solid-State Circuits, IEEE Journal of, vol. 35, no. 3, pp. 412–424,
2000.

[92] W. Hinrichs, J. P. Wittenburg, H. Lieske, H. Kloos, M. Ohmacht, and P. Pirsch, “A 1.3-
GOPS parallel DSP for high-performance image-processing applications,” Solid-State
Circuits, IEEE Journal of, vol. 35, no. 7, pp. 946–952, 2000.

[93] Y.-H. Huang, H.-P. Ma, M.-L. Liou, and T.-D. Chiueh, “A 1.1 G MAC/s sub-word-
parallel digital signal processor for wireless communication applications,” Solid-State
Circuits, IEEE Journal of, vol. 39, no. 1, pp. 169–183, 2004.

[94] S.-R. Kuang and J.-P. Wang, “Design of power-efficient pipelined truncated multipliers
with various output precision,” Computers & Digital Techniques, IET, vol. 1, no. 2,
pp. 129–136, 2007.

[95] Texas Instruments Inc., TMS320C6747 Fixed- and Floating-Point DSP. Texas Instru-
ments Inc., www.ti.com, 2014.

[96] Y. Luo, Z. Zhang, X. Huang, J. Wu, and X. Chen, “Architecture and implementation of
a vector MAC unit for complex number,” in Communications and Networking in China
(CHINACOM), 2014 9th International Conference on, pp. 589–594, IEEE, 2014.

[97] Texas Instruments Inc., TMS320C5517 Fixed-Point Digital Signal Processor. Texas
Instruments Inc., www.ti.com, 2014.

[98] J. Hartig, “Implementation and Evaluation of a VLIW-SIMD Application-Specific
Instruction-Set Processor for Hearing Aid Systems,” Master’s thesis, Leibniz Univer-
sität Hannover, 2013.

200

References

[99] S. Krithivasan and M. J. Schulte, “Multiplier architectures for media processing,” in
Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilo-
mar Conference on, vol. 2, pp. 2193–2197, IEEE, 2003.

[100] C. Arm, S. Gyger, J.-M. Masgonty, M. Morgan, J.-L. Nagel, C. Piguet, F. Rampogna,
and P. Volet, “Low-Power 32-bit Dual-MAC 120 µW/MHz 1.0 V icyflex1 DSP/MCU
Core,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 7, pp. 2055–2064, 2009.

[101] C. Arm, J.-M. Masgonty, M. Morgan, C. Piguet, F. Rampogna, P. Volet, et al., “Low-
Power Quad-MAC 170 uW/MHz 1.0 V MACGIC DSP Core,” in Solid-State Circuits
Conference, 2006. ESSCIRC 2006. Proc. of the 32nd European, pp. 223–226, IEEE,
2006.

[102] C.-K. Chen, P.-C. Tseng, Y.-C. Chang, and L.-G. Chen, “A digital signal processor
with programmable correlator array architecture for third generation wireless commu-
nication system,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, vol. 48, no. 12, pp. 1110–1120, 2001.

[103] Y.-H. Huang and T.-D. Chiueh, “A sub-word parallel digital signal processor for wire-
less communication systems,” in ASIC, 2002. Proceedings. 2002 IEEE Asia-Pacific
Conference on, pp. 287–290, IEEE, 2002.

[104] H. Roeven, J. Coninx, and M. Ade, “CoolFlux DSP-The embedded ultra low power
C-programmable DSP core,” in Proc. Intl. Signal Proc. Conf. (GSPx), Citeseer, 2004.

[105] S. Ong, M. H. Sunwoo, and M. Hong, “A fixed-point multimedia DSP chip for portable
multimedia services,” in Signal Processing Systems, 1998. SIPS 98. 1998 IEEE Work-
shop on, pp. 94–102, IEEE, 1998.

[106] B.-W. Kim, J.-H. Yang, C.-S. Hwang, Y.-S. Kwon, K.-M. Lee, I.-H. Kim, Y.-H. Lee,
and C.-M. Kyung, “MDSP-II: A 16-bit DSP with mobile communication accelerator,”
Solid-State Circuits, IEEE Journal of, vol. 34, no. 3, pp. 397–404, 1999.

[107] K. Tatas, G. Koutroumpezis, D. Soudris, and A. Thanailakis, “Architecture design of a
coarse-grain reconfigurable multiply-accumulate unit for data-intensive applications,”
INTEGRATION, the VLSI journal, vol. 40, no. 2, pp. 74–93, 2007.

[108] Freescale Semiconductor, Inc., Software Optimization of DFTs and IDFTs Using
the StarCore SC3850 DSP Core. Freescale Semiconductor Inc., 2010, Available:
www.freescale.com/.

[109] S. Agarwala, T. Anderson, A. Hill, M. D. Ales, R. Damodaran, P. Wiley, S. Mullinnix,
J. Leach, A. Lell, M. Gill, et al., “A 600-MHZ VLIW DSP,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 11, pp. 1532–1544, 2002.

[110] Y.-L. Tsao, W.-H. Chen, M. H. Tan, M.-C. Lin, and S.-J. Jou, “Low-power embedded
DSP core for communication systems,” EURASIP Journal on Applied Signal Process-
ing, vol. 2003, pp. 1355–1370, 2003.

201

References

[111] C. Rowen, P. Nuth, and S. Fiske, “A DSP architecture optimized for wireless baseband,”
in System-on-Chip, 2009. SOC 2009. International Symposium on, pp. 151–156, IEEE,
2009.

[112] I. Freescale Semiconductor, Symphony DSP56724/DSP56725 Multi-Core Audio Pro-
cessors Reference Manual, 2009.

[113] Analog Devices Inc., “Blackfin Embedded Processor: ADSP-BF531,” tech. rep.,
ADSP-BF532/ADSP-BF533 Datasheet. Januray, 2011.

[114] A. Danysh and D. Tan, “Architecture and implementation of a vector/SIMD multiply-
accumulate unit,” Computers, IEEE Transactions on, vol. 54, no. 3, pp. 284–293, 2005.

[115] M. Basiri and N. M. Sk, “An efficient hardware based MAC design in digital filters
with complex numbers,” in Signal Processing and Integrated Networks (SPIN), 2014
International Conference on, pp. 475–480, IEEE, 2014.

[116] M. S. Schmookler, J. Tyler, H. Nguyen, M. Putrino, A. Mather, J. Lent, C. Roth, M. N.
Pham, and M. Sharma, “A low-power, high-speed implementation of a PowerPC (tm)
microprocessor vector extension,” in 14th IEEE Symposium on Computer Arithmetic
(ARITH-14’99), p. 12, IEEE Computer Society, 1999.

[117] L. Huang, N. Xiao, Z. Wang, Y. Wang, and M. Lai, “Efficient multimedia coproces-
sor with enhanced SIMD engines for exploiting ILP and DLP,” Parallel Computing,
vol. 39, no. 10, pp. 586–602, 2013.

[118] C.-L. Wey and J.-F. Li, “Design of reconfigurable array multipliers and multiplier-
accumulators,” in Circuits and Systems, 2004. Proceedings. The 2004 IEEE Asia-Pacific
Conference on, vol. 1, pp. 37–40, IEEE, 2004.

[119] K. Nadehara, T. Miyazaki, and I. Kuroda, “Radix-4 FFT implementation using SIMD
multimedia instructions,” in Acoustics, Speech, and Signal Processing, 1999. Proceed-
ings., 1999 IEEE International Conference on, vol. 4, pp. 2131–2134, IEEE, 1999.

[120] L.-D. Van and J.-H. Tu, “Power-efficient pipelined reconfigurable fixed-width Baugh-
Wooley multipliers,” Computers, IEEE Transactions on, vol. 58, no. 10, pp. 1346–1355,
2009.

[121] Cadence Design Systems, Inc., Tensilica HiFi DSP Family - Configurable processors
for audio, voice, and speech processing, 2017.

[122] Cadence Design Systems, Inc., Tensilica Fusion F1 DSP - Configurable processor for
Internet of Things applications, 2016.

[123] T. Instruments, “TMS320C6748 Fixed-and Floating-Point DSP,” Data Sheet, SPRS591,
Texas Instruments Inc, 2011.

[124] U. Zölzer, Digital Audio Signal Processing. Wiley, 2008.

202

References

[125] E. Hänsler and G. Schmidt, Speech and Audio Processing in Adverse Environments.
Springer Publishing Company, Incorporated, 1st ed., 2010.

[126] J. S. Lee and M. H. Sunwoo, “Design of new DSP instructions and their hardware
architecture for high-speed FFT,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 33, no. 3, pp. 247–254, 2003.

[127] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A. In-
gle, C. Tabony, and R. Maule, “Hexagon DSP: An Architecture Optimized for Mobile
Multimedia and Communications,” Micro, IEEE, vol. 34, no. 2, pp. 34–43, 2014.

[128] L. Gerlach, G. Payá-Vayá, and H. Blume, “An Area Efficient Real- and Complex-
Valued Multiply-Accumulate SIMD Unit for Digital Signal Processors,” in Signal Pro-
cess. Systems (SiPS), 2015 IEEE Workshop on, pp. 1–6, IEEE, 2015.

[129] P. D. S. Labs, CoolFlux DSP. NXP, www.coolfluxdsp.com, 2004.

[130] T. Stetzler, N. Magotra, P. Gelabert, P. Kasthuri, and S. Bangalore, “Low Power Real-
Time Programmable DSP Development Platform for Digital Hearing Aids,” in Acous-
tics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Con-
ference on, vol. 4, pp. 2339–2342, IEEE, 1999.

[131] Freescale Semiconductor, Inc., Six-Core Digital Signal Processor. Freescale Semi-
conductor Inc., www.freescale.com, 2013.

[132] A. A. Al Sallab, H. Fahmy, and M. Rashwan, “Optimized hardware implementation
of fft processor,” in Design and Test Workshop (IDT), 2009 4th International, pp. 1–5,
IEEE, 2009.

[133] L. Liu, Z. Yang, S. Li, and M. Yan, “Implementation of high-throughput FFT processing
on an application-specific reconfigurable processor,” in Computer Science and Network
Technology (ICCSNT), 2012 2nd International Conference on, pp. 1284–1288, IEEE,
2012.

[134] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers for digital
signal processing applications,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol. 43, no. 2, pp. 90–95, 1996.

[135] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[136] Analog Devices Inc., SHARC Processor: ADSP-21161N. Analog Devices Inc.,
www.analog.com, 2013.

[137] TSMC, “40nm Technology,” tech. rep., Taiwan Semiconductor Manufacturing Com-
pany Limited, 2018.

[138] C. Inacio and D. Ombres, “The DSP decision: Fixed point or floating?,” IEEE Spec-
trum, vol. 33, no. 9, pp. 72–74, 1996.

203

References

[139] D. Menard, D. Chillet, and O. Sentieys, “Floating-to-fixed-point conversion for digital
signal processors,” EURASIP journal on applied signal processing, vol. 2006, pp. 77–
77, 2006.

[140] M. Christensen and F. J. Taylor, “Fixed-point-IIR-filter challenges,” EDN Netw, vol. 51,
no. 23, pp. 111–122, 2006.

[141] T. Hilaire, A. Volkova, and M. Ravoson, “Reliable fixed-point implementation of lin-
ear data-flows,” in 2016 IEEE International Workshop on Signal Processing Systems
(SiPS), pp. 92–97, IEEE, 2016.

[142] R. Oshana, DSP for Embedded and Real-Time Systems. Expert guide, Elsevier Science,
2012.

[143] Analog Devices Inc., “Fast Floating-Point Arithmetic Emulation on Blackfin® Proces-
sors,” Anlog Devices, 2007.

[144] M. Sarkar, “A Floating-Point to Fixed-Point Conversion Methodology for Audio Algo-
rithms,” tech. rep., Citeseer, 2004.

[145] J. Hauser, “SoftFloat,” available from http://www. jhauser. us/arithmetic/SoftFloat.
html, 2002.

[146] S. K. Raina, FLIP: a floating-point library for integer processors. PhD thesis, École
Normale Supérieure de Lyon, 2006.

[147] D. Connors, Y. Yamada, and W. Hwuy, “A Software-Oriented Floating-Point Format for
Enhancing Automotive Control Systems,” in Workshop on Compiler and Architecture
Support for Embedded Computing Systems (CASES98), 1998.

[148] Z. Nikolić, H. T. Nguyen, and G. Frantz, “Design and implementation of numerical lin-
ear algebra algorithms on fixed point DSPs,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, no. 1, p. 087046, 2007.

[149] T. Instruments, “TMS320C6000 Technical Brief,” Literatür No: SPRU197D, Texas,
ABD, 1999.

[150] C.-P. Jeannerod, J. Jourdan-Lu, and C. Monat, “Non-generic floating-point software
support for embedded media processing,” in Industrial Embedded Systems (SIES), 2012
7th IEEE International Symposium on, pp. 283–286, IEEE, 2012.

[151] J. J. Pimentel and B. M. Baas, “Hybrid floating-point modules with low area over-
head on a fine-grained processing core,” in Signals, Systems and Computers, 2014 48th
Asilomar Conference on, pp. 1829–1833, IEEE, 2014.

[152] S. Z. Gilani, N. S. Kim, and M. Schulte, “Virtual floating-point units for low-power
embedded processors,” in Application-Specific Systems, Architectures and Processors
(ASAP), 2012 IEEE 23rd International Conference on, pp. 61–68, IEEE, 2012.

204

References

[153] S. Z. Gilani, N. S. Kim, and M. Schulte, “Energy-efficient floating-point arithmetic
for digital signal processors,” in Signals, Systems and Computers (ASILOMAR), 2011
Conference Record of the Forty Fifth Asilomar Conference on, pp. 1823–1827, IEEE,
2011.

[154] X. Wang and M. Leeser, “VFloat: a variable precision fixed-and floating-point library
for reconfigurable hardware,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 3, no. 3, p. 16, 2010.

[155] M. K. Jaiswal, R. C. Cheung, M. Balakrishnan, and K. Paul, “Unified architecture
for double/two-parallel single precision floating point adder,” Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 61, no. 7, pp. 521–525, 2014.

[156] V. Reddy, S. Z. Gilani, E. Gunadi, N. S. Kim, M. J. Schulte, and M. H. Lipasti, “REEL:
Reducing effective execution latency of floating point operations,” in Proceedings of
the 2013 International Symposium on Low Power Electronics and Design, pp. 187–
192, IEEE Press, 2013.

[157] R. B. Lee, “Subword parallelism with MAX-2,” IEEE micro, vol. 16, no. 4, pp. 51–59,
1996.

[158] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, D. Bhandarkar,
M. Bhat, D. Bindel, S. Boldo, et al., “IEEE Standard for Floating-Point Arithmetic,”
IEEE Std 754-2008, pp. 1–70, 2008.

[159] C.-P. Jeannerod, C. Mouilleron, J.-M. Muller, G. Revy, C. Bertin, J. Jourdan-Lu,
H. Knochel, and C. Monat, “Techniques and tools for implementing IEEE 754 floating-
point arithmetic on VLIW integer processors,” in Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation, pp. 1–9, ACM, 2010.

[160] T. Hon and M. Marsono, “Hardware Design Space Exploration of CORDIC Algo-
rithm for Run-Time Reconfigurable Platform,” in The First International Conference
on Green Computing, pp. 1–7, 2013.

[161] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the
May 18-20, 1971, spring joint computer conference, pp. 379–385, 1971.

[162] M. Andrews, S. McCormick, and G. Taylor, “Evaluation of functions on microcomput-
ers: square root,” Computers & Mathematics with Applications, vol. 4, no. 4, pp. 359–
367, 1978.

[163] J. Crenshaw, Math toolkit for real-time programming. CRC Press, 2000.

[164] S. Nolting, G. Payá-Vayá, I. Schmädecke, and H. Blume, “Evaluation of a Generic
Radix-4 CORDIC Coprocessor Tightly Coupled with a Generic VLIW-SIMD ASIP
Architecture,” Proceedings of the ICT. OPEN, 2012.

[165] L. Gerlach, S. Nolting, H. Blume, G. Payá-Vayá, H. Stolberg, and C. Reuter, “A Highly
Optimized Arithmetic Software Library and Hardware Co-processor IP for Fixed-Point

205

References

VLIW-SIMD Processor Architectures,” in Technology Transfer in Computing Systems
(TETRACOM Technology Transfer Project (TTP), 2016), Prague, Czech Republic,
2016.

[166] M. Yang, J. Wang, Y. Wang, and S. Zheng, “Optimized parallel implementation of
polynomial approximation math functions on a DSP processor,” in Proceedings of the
44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat.
No. 01CH37257), vol. 1, pp. 344–347, IEEE, 2001.

[167] T. Instruments, “Texas Instruments Test Results MATHLIB 3.1.2.1 c674x,” tech. rep.,
Texas Instruments, 2019.

[168] K. G. Lenzi and O. Saotome, “Optimized math functions for a fixed-point DSP archi-
tecture,” in 19th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD’07), pp. 125–132, IEEE, 2007.

[169] G. Payá-Vayá, J. Martín-Langerwerf, C. Banz, F. Giesemann, P. Pirsch, and H. Blume,
“VLIW Architecture Optimization for an Efficient Computation of Stereoscopic Video
Applications,” in Green Circuits and Systems (ICGCS), 2010 International Conference
on, pp. 457–462, IEEE, 2010.

[170] P. Faraboschi, J. A. Fisher, and C. Young, “Instruction scheduling for instruction level
parallel processors,” Proceedings of the IEEE, vol. 89, no. 11, pp. 1638–1659, 2001.

[171] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W. Hwu, “A
comparison of full and partial predicated execution support for ILP processors,” ACM
SIGARCH Computer Architecture News, vol. 23, no. 2, pp. 138–150, 1995.

[172] B. R. Rau and J. A. Fisher, Instruction-Level Parallelism, p. 883–887. GBR: John Wiley
and Sons Ltd., 2003.

[173] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger, S. W. Keckler,
and K. S. McKinley, “Dataflow predication,” in 2006 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’06), pp. 89–102, IEEE, 2006.

[174] R. A. Starke, A. Carminati, and R. S. de Oliveira, “Evaluation of a low overhead pred-
ication system for a deterministic VLIW architecture targeting real-time applications,”
Microprocessors and Microsystems, vol. 49, pp. 1–8, 2017.

[175] D. N. Pnevmatikatos and G. S. Sohi, Guarded execution and branch prediction in dy-
namic ILP processors, vol. 22. IEEE Computer Society Press, 1994.

[176] C. W. Kesseler, “Compiling for VLIW DSPs,” in Handbook of Signal Processing Sys-
tems, ch. 3, Springer, 2018.

[177] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: a VLIW approach to
architecture, compilers and tools. Elsevier, 2005.

206

References

[178] J. Crawford and F. J. Huck, “Next Generation Instruction Set Architecture,” in Micro-
processor Forum, 1997.

[179] M. Verma and P. Marwedel, “Memory wall problem,” in Advanced memory optimiza-
tion techniques for low-power embedded processors, vol. 1, ch. 1.1.1, Springer, 2007.

[180] A. Artes, J. L. Ayala, J. Huisken, and F. Catthoor, “Survey of low-energy techniques for
instruction memory organisations in embedded systems,” Journal of Signal Processing
Systems, vol. 70, no. 1, pp. 1–19, 2013.

[181] D. Jaggar and D. Seal, ARM architecture reference manual. Prentice Hall, 2018.

[182] T. Instruments, “TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide,
November 2006,” Literature Number: SPRU733A, 2006.

[183] M. Jayapala, F. Barat, P. O. De Beeck, F. Catthoor, G. Deconinck, and H. Corporaal,
“A low energy clustered instruction memory hierarchy for long instruction word pro-
cessors,” in International Workshop on Power and Timing Modeling, Optimization and
Simulation, pp. 258–267, Springer, 2002.

[184] T. Instruments, “TMS320C62x/C67x Power Consumption Summary,” 2004.

[185] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar, K. Seki, and
K. Sasaki, “Instruction buffering to reduce power in processors for signal processing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, pp. 417–
424, Dec 1997.

[186] R. Chen, “The Itanium Processor,” tech. rep., Microsoft, 2015.

[187] Intel, Intel Itanium Architecture: Software Developer’s Manual Volume 3: Intel Itanium
Instruction Set Reference. Intel.

[188] R. B. Lee and A. M. Fiskiran, “PLX: A fully subword-parallel instruction set archi-
tecture for fast scalable multimedia processing,” in Proceedings. IEEE International
Conference on Multimedia and Expo, vol. 2, pp. 117–120, IEEE, 2002.

[189] B. Valentine and O. Sohm, “Optimizing the JPEG2000 binary arithmetic encoder for
VLIW architectures,” in 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 5, pp. V–117, IEEE, 2004.

[190] C. J. Hughes, “Single-instruction multiple-data execution,” Synthesis Lectures on Com-
puter Architecture, vol. 10, no. 1, pp. 1–121, 2015.

[191] L. Gerlach, G. Payá-Vayá, and H. Blume, “Efficient Emulation of Floating-Point Arith-
metic on Fixed-Point SIMD Processors,” in Signal Processing Systems (SiPS), 2016
IEEE International Workshop on, pp. 254–259, IEEE, 2016.

[192] C. Iordache and P. T. P. Tang, “An Overview of Floating-point Support and Math
Library on the Intel/spl reg/XScale/spl trade/architecture,” in Proceedings 2003 16th
IEEE Symposium on Computer Arithmetic, pp. 122–128, IEEE, 2003.

207

References

[193] F. Giesemann, L. Gerlach, and G. Payá-Vayá, “Evolutionary Algorithms for Instruction
Scheduling, Operation Merging, and Register Allocation in VLIW Compilers,” Journal
of Signal Processing Systems, 2020.

[194] K. Han, J. Ahn, and K. Choi, “Power-Efficient Predication Techniques for Acceleration
of Control Flow Execution on CGRA,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 10, no. 2, p. 8, 2013.

[195] MATLAB, CORDIC-based approximation of cosine. The MathWorks Inc.

[196] K. Diefendorff and P. K. Dubey, “How multimedia workloads will change processor
design,” Computer, vol. 30, no. 9, pp. 43–45, 1997.

[197] G. Popelka, B. Moore, R. Fay, and A. Popper, Hearing Aids. Springer Handbook of
Auditory Research, Springer International Publishing, 2016.

[198] M. Pedram and J. M. Rabaey, Power aware design methodologies. Springer Science &
Business Media, 2002.

[199] W. T. Padgett and D. V. Anderson, “Fixed-point signal processing,” Synthesis Lectures
on Signal Processing, vol. 4, no. 1, pp. 1–133, 2009.

[200] B. Wu, J. Zhu, and F. N. Najm, “Dynamic-range estimation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1618–
1636, 2006.

[201] Y. Cao and H. Yasuura, “A system-level energy minimization approach using datapath
width optimization,” in ISLPED’01: Proceedings of the 2001 International Symposium
on Low Power Electronics and Design (IEEE Cat. No. 01TH8581), pp. 231–236, IEEE,
2001.

[202] T. T. Hoang and P. Larsson-Edefors, “Data-width-driven power gating of integer arith-
metic circuits,” in 2012 IEEE Computer Society Annual Symposium on VLSI, pp. 237–
242, IEEE, 2012.

[203] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, “Register packing: Exploiting
narrow-width operands for reducing register file pressure,” in 37th International Sym-
posium on Microarchitecture (MICRO-37’04), pp. 304–315, IEEE, 2004.

[204] G. H. Loh, “Exploiting data-width locality to increase superscalar execution band-
width,” in 35th Annual IEEE/ACM International Symposium on Microarchitecture,
2002.(MICRO-35). Proceedings., pp. 395–405, IEEE, 2002.

[205] M. Weißbrich, “Implementierung und Evaluierung eines generischen Datenpfades für
einen VLIW-SIMD Hörgeräteprozessor,” Master’s thesis, Leibniz Universität Han-
nover, 2016.

[206] J. Tomarakos and C. Duggan, “32-Bit SIMD SHARC architecture digital audio sig-
nal processing applications,” Journal of the Audio Engineering Society, vol. 48, no. 3,
pp. 220–229, 2000.

208

References

[207] L. Gerlach, G. Payá-Vayá, S. Liu, M. Weißbrich, H. Blume, D. Marquardt, and S. Do-
clo, “Analyzing the Trade-Off between Power Consumption and Beamforming Algo-
rithm Performance using a Hearing Aid ASIP,” in Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS), 2017 International Conference on,
pp. 88–96, IEEE, 2017.

[208] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate static analysis for fixed-point
finite-precision effects in DSP designs,” in Proceedings of the 2003 IEEE/ACM inter-
national conference on Computer-aided design, p. 275, IEEE Computer Society, 2003.

[209] A. V. Oppenheim and C. J. Weinstein, “Effects of finite register length in digital filtering
and the fast Fourier transform,” Proceedings of the IEEE, vol. 60, no. 8, pp. 957–976,
1972.

[210] N. S. Hockley, F. Bahlmann, and B. Fulton, “Analog-to-digital conversion to accom-
modate the dynamics of live music in hearing instruments,” Trends in Amplification,
vol. 16, no. 3, pp. 146–158, 2012.

[211] A. Belov, “Layout Implementation and Evaluation of an ASIP-Based Hearing Aid Sys-
tem,” Master’s thesis, Leibniz Universität Hannover, 2015.

[212] G. Payá-Vayá, J. Martín-Langerwerf, H. Blume, and P. Pirsch, “A Forwarding-sensitive
Instruction Scheduling Approach to Reduce Register File Constraints in VLIW Archi-
tectures,” in Application-specific Systems Architectures and Processors (ASAP), 2010
21st IEEE International Conference on, pp. 151–158, IEEE, 2010.

[213] N. Goel, A. Kumar, and P. R. Panda, “Power reduction in VLIW processor with com-
piler driven bypass network,” in 20th International Conference on VLSI Design held
jointly with 6th International Conference on Embedded Systems (VLSID’07), pp. 233–
238, IEEE, 2007.

[214] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon, “Low-power data for-
warding for VLIW embedded architectures,” IEEE transactions on very large scale
integration (VLSI) systems, vol. 10, no. 5, pp. 614–622, 2002.

[215] V. Guzma, T. Pitkänen, and J. Takala, “Use of compiler optimization of software by-
passing as a method to improve energy efficiency of exposed data path architectures,”
EURASIP Journal on Embedded Systems, vol. 2013, no. 1, p. 9, 2013.

[216] D. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose, “Reducing Datapath Energy
Through the Isolation of Short–Lived Operands,” in 2003 12th International Confer-
ence on Parallel Architectures and Compilation Techniques, pp. 258–268, IEEE, 2003.

[217] Z. Hu and M. Martonosi, “Reduing Register File Power Consumption by Exploiting
Value Lifetime Charateristis,” in in Workshop on Complexity-Effective Design (WCED,
Citeseer, 2000.

209

References

[218] M. Munch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn, “Automating RT-level operand
isolation to minimize power consumption in datapaths,” in Proceedings Design, Au-
tomation and Test in Europe Conference and Exhibition 2000 (Cat. No. PR00537),
pp. 624–631, IEEE, 2000.

[219] A. Correale Jr, “Overview of the power minimization techniques employed in the IBM
PowerPC 4xx embedded controllers,” in Proceedings of the 1995 international sympo-
sium on Low power design, pp. 75–80, ACM, 1995.

[220] H. Dillon, Hearing aids. Hodder Arnold, 2008.

[221] V. Hohmann, “Frequency analysis and synthesis using a Gammatone filterbank,” Acta
Acustica united with Acustica, vol. 88, no. 3, pp. 433–442, 2002.

[222] T. Herzke, H. Kayser, F. Loshaj, G. Grimm, and V. Hohmann, “Open signal processing
software platform for hearing aid research (openMHA),” in Proceedings of the Linux
Audio Conference, pp. 35–42, 2017.

[223] J. Kießling, “Achievements and limitations of modern hearing instruments,” tech. rep.,
Justus-Liebig-Universität Gießen, 2014.

[224] Oticon, Oticon Product Guide 2016/2017.

[225] J. DiCristina, “Introduction to hearing aids and important design considerations,”
Maxim Integrated, AppNote-4691, 2010.

[226] Freescale Semiconductor, Inc., Enhanced Serial Audio Interface (ESAI) , 2004.

[227] J. Tomarakos, “Interfacing the ADSP-21161 SIMD SHARC DSP to the AD1836 (24-
bit/96kHz) Multichannel Codec,” Analog Devices, 2001.

[228] E. Van Tuijl, J. van den Homberg, D. Reefman, C. Bastiaansen, and L. van der Dussen,
“A 128fs Multi-bit Sigma Delta CMOS audio DAC with real-time DEM and 115dB
SFDR,” in 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.
04CH37519), pp. 368–369, IEEE, 2004.

[229] J. Lewis, “Common inter-IC digital interfaces for audio data transfer,” EDN-Electronic
Design News, vol. 57, no. 16, p. 46, 2012.

[230] Philips Semiconductors, “I2S Bus Specification [S/OL]. 1996.”

[231] G. Jia, “An I2S (Inter-IC Sound Bus) Application on Kinetis,” Automotive and Indus-
trial Solutions Group, 2012.

[232] D. TMS320C6000, Multichannel Audio Serial Port (McASP) Reference Guide.
www.ti.com, 2005.

[233] A. McPherson and V. Zappi, “An environment for submillisecond-latency audio and
sensor processing on BeagleBone Black,” in Audio Engineering Society Convention
138, Audio Engineering Society, 2015.

210

References

[234] Freescale Semiconductor, Inc., K61 Sub-Family. Freescale Semiconductor, Inc.,
https://www.freescale.com, 2015.

[235] M. Galda and C. Ro
vznov, “Audio Output Options for Kinetis,” Freescale Semiconductor Document Num-
ber: AN4369 Application Note, 2012.

[236] Texas Instruments Inc., Tuning Audio Latency on C6747. http://processors.wiki.ti.com,
2014.

[237] X. Aragones, J. L. Gonzalez, and A. Rubio, Analysis and solutions for switching noise
coupling in mixed-signal ICs. Springer Science & Business Media, 2013.

[238] T. Instruments, TMS320C642x DSP Multichannel Buffered Serial Port (McBSP) Inter-
face. www.ti.com, 2007.

[239] Analog Devices Inc., “Blackfin Embedded Processor: ADSP-BF516,” tech. rep.,
ADSP-BF516 Datasheet. Januray, 2014.

[240] I. K. Chayleva, M. A. Botev, V. P. Dobreva, and B. B. Petrov, “Methods and Tech-
niques for real-time audio data streaming to and from high capacity local DSP SDRAM
memory,” E-University TU Sofia, 2012.

[241] L. Jingjiao, R. Chaoqun, and D. Lifang, “Audio Interface Based on eDMA and I2S of
Kinetis,” Microcontrollers and Embedded Systems, vol. 1, p. 014, 2013.

[242] T. Instruments, “TLV320AIC3106 Low-Power Stereo Audio CODEC for Portable Au-
dio/Telephony,” Rev. F, vol. 24, 2014.

[243] T. Instruments, “TLV320AIC3104 Low-Power Stereo Audio CODEC for Portable Au-
dio/Telephony,” Rev. F, vol. 24, 2016.

[244] Analog Devices Inc., “SigmaDSP Stereo, Low Power, 96 kHz, 24-Bit Audio Codec
with Integrated PLL,” ADAU1761, Data Sheet.

[245] D. S. Reay, Digital signal processing and applications with the OMAP-L138 eXperi-
menter. John Wiley & Sons, 2012.

[246] NXP Semiconductors N.V., “UM10204 I2C-bus specification and user manual,” User
Manual, vol. 4, 2014.

[247] J. J. Digiovanni, Hearing Aid Handbook. Cengage Learning, 2010.

[248] L. Gerlach, G. Payá-Vayá, and H. Blume, “A Low Latency Multichannel Audio In-
terface for Low Power SIMD Digital Signal Processors,” in ICT.OPEN 2016, ISBN:
978-90-73461-932, 2016.

[249] F. Giesemann, G. Payá-Vayá, L. Gerlach, H. Blume, F. Pflug, and G. von Voigt, “Us-
ing a Genetic Algorithm Approach to Reduce Register File Pressure during Instruction
Scheduling,” in Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS), 2017 International Conference on, pp. 179–187, IEEE, 2017.

211

References

[250] J. A. Fisher, The Optimization of Horizontal Microcode within and beyond Basic
Blocks: An Application of Processor Scheduling with Resources. PhD thesis, Courant
Mathematics and Computing Laboratory U.S. Department of Energy, USA, 1979.
AAI8010348.

[251] G. Paya-Vaya, J. Martin-Langerwerf, P. Taptimthong, and P. Pirsch, “Design Space
Exploration of Media Processors: A Parameterized Scheduler,” in 2007 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation,
pp. 41–49, July 2007.

[252] L. Zhang, X. Wu, and Y. Zhao, “Instruction-Level Instantaneous Power Modeling for
VLIW Processor,” in Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable
Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
2015 IEEE 12th Intl Conf on, pp. 1451–1456, IEEE, 2015.

[253] H. Blume and S. Hesselbarth, “Methoden zur applikationsspezifischen Verlustleitung-
soptimierung für eingebettete Prozessoren,” 15. ITG-Fachtagung für Elektronische Me-
dien, 26.-27. Februar, Dortmund, 2013.

[254] M. Wendt, M. Grumer, C. Steger, R. Weiss, U. Neffe, and A. Muehlberger, “Tool for
automated instruction set characterization for software power estimation,” IEEE trans-
actions on instrumentation and measurement, vol. 59, no. 1, pp. 84–91, 2010.

[255] M. Wendt, M. Grumer, C. Steger, R. Weiss, U. Neffe, and A. Muhlberger, “Energy
consumption measurement technique for automatic instruction set characterization of
embedded processors,” in Instrumentation and Measurement Technology Conference
Proceedings, 2007. IMTC 2007. IEEE, pp. 1–4, IEEE, 2007.

[256] W. Wang, An improved instruction-level power and energy model for RISC micropro-
cessors. PhD thesis, University of Southampton, 2017.

[257] J. Blauert, The technology of binaural listening. Springer, 2013.

[258] S. Doclo, W. Kellermann, S. Makino, and S. E. Nordholm, “Multichannel signal en-
hancement algorithms for assisted listening devices: Exploiting spatial diversity using
multiple microphones,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 18–30,
2015.

[259] S. Doclo, S. Gannot, M. Moonen, and A. Spriet, “Acoustic beamforming for hearing
aid applications,” Handbook on Array Processing and Sensor Networks, Wiley IEEE
Press, 2010.

[260] G. W. Elko, “Differential microphone arrays,” in Audio signal processing for next-
generation multimedia communication systems, pp. 11–65, Springer, 2004.

[261] S. Haykin, Adaptive Filter Theory. Always learning, Pearson, 2014.

212

References

[262] R. Baumgartel, M. Krawczyk-Becker, D. Marquardt, C. Volker, H. Hu, T. Herzke, and
M. Dietz, “Comparing binaural pre-processing strategies I: Instrumental evaluation,”
Trends in Hearing, vol. 19, pp. 1–16, 2015.

[263] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, and B. Kollmeier,
“Database of Multichannel In-Ear and Behind-the-Ear Head-Related and Binaural
Room Impulse Responses,” EURASIP J. on Advances in Signal Processing, vol. 2009,
p. 6, 2009.

[264] K. Wagener, T. Brand, and B. Kollmeier, “Entwicklung und Evaluation eines Satztests
für die deutsche Sprache III: Evaluation des Oldenburger Satztests [Development and
Evaluation of a Sentence Test for the German Language III: Evaluation of the Olden-
burg Sentence Test],” Zeitschrift für Audiologie 1999c; 38: 86, vol. 95, 1999.

[265] R. P. ITU-T, “862-perceptual evaluation of speech quality (PESQ): an objective
method for end-to-end speech quality assessment of narrow-band telephone networks
and speech codecs,” International Telecommunication Union-Telecommunication Stan-
dardisation Sector, 2001.

[266] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An evaluation of objective
measures for intelligibility prediction of time-frequency weighted noisy speech,” The J.
of the Acoustical Society of America, vol. 130, no. 5, pp. 3013–3027, 2011.

[267] J. Greenberg, P. Peterson, and P. Zurek, “Intelligibility-weighted measures of speech-
to-interference ratio and speech system performance,” The J. of the Acoustical Society
of America, vol. 94, no. 5, pp. 3009–3010, 1993.

[268] A. Frias Velazquez, R. d. J. Romero-Troncoso, A. Pizurica, and W. Philips, “Exact
LMS learning curve analysis under finite word length effects,” in 20th Annual Work-
shop on Circuits, Systems and Signal Processing (ProRISC 2009), pp. 218–222, STW
Technology Foundation, 2009.

[269] R. . SCHWARZ, AUDIO ANALYZER R&S UPL/UPL16/UPL66. RHODE &
SCHWARZ, 2011.

[270] Cadence Design Systems, Inc., Xtensa LX7 Processor High-performance, configurable,
and extensible controllers and DSPs, 2016.

[271] Cadence Design Systems, Inc., Tensilica Fusion G DSP Family Multi-purpose, fixed-
and floating-point DSP with exceptional out-of-the-box performance, 2017.

[272] Texas Instruments Inc., Introduction to TMS320C6000 DSP Optimization. Texas In-
struments Inc., www.ti.com, 2011.

[273] J. Karrenbauer, L. Gerlach, G. Payá-Vayá, and H. Blume, “Design Space Exploration
Framework for Tensilica-Based Digital Audio Processors in Hearing Aids,” in 2020 9th
International Conference on Modern Circuits and Systems Technologies (MOCAST),
pp. 1–6, IEEE, 2020.

213

References

[274] Texas Instruments Inc., TMS320C6000 Integer Division. Texas Instruments Inc.,
www.ti.com, 2000.

[275] Texas Instruments Inc., C6748/46/42 power consumption summary. Texas Instruments
Inc., www.ti.com, 2019.

[276] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech corrupted by acous-
tic noise,” in ICASSP’79. IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 4, pp. 208–211, IEEE, 1979.

[277] Y. Cai, J. Yuan, X. Ma, and C. Hou, “Low power embedded speech enhancement sys-
tem based on a fixed-point DSP,” in 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing, pp. 132–136, IEEE, 2009.

[278] Texas Instruments Inc., TMS320VC5503/C5506/C5507/C5509A Power Consumption
Summary. Texas Instruments Inc., www.ti.com, 2008.

[279] T. May, Binaural Scene Analysis: Localization, Detection and Recognition of Speakers
in Complex Acoustic Scenes. PhD thesis, Technical University of Denmark, 2012. PhD
thesis.

[280] T. Volkmar, “Analyse und Evaluation eines binauralen Lokalisationsalgorithmus auf
einem VLIW-SIMD Prozessor,” Master’s thesis, Leibniz Universität Hannover, 2016.

[281] J. Blauert and S. Hearing, “The psychophysics of human sound localization,” in Spatial
Hearing, MIT Press, 1997.

[282] R. F. Lyon, “The All-Pole Gammatone Filter and Auditory Models,” in Acustica, Cite-
seer, 1996.

[283] M. Pflueger, R. Hoeldrich, and W. Riedler, “Nonlinear all-pole and one-zero gamma-
tone filters,” Acta Acustica united with Acustica, vol. 84, no. 3, pp. 513–519, 1998.

[284] M. Slaney et al., “An efficient implementation of the Patterson-Holdsworth auditory
filter bank,” Apple Computer, Perception Group, Tech. Rep, vol. 35, no. 8, 1993.

[285] L. Solbach, R. Wöhrmann, and J. Kliewer, “The complex-valued continuous wavelet
transform as a preprocessor for auditory scene analysis,” Computational auditory scene
analysis, pp. 273–292, 1998.

[286] P. Johannesma, “The pre-response stimulus ensemble of neurons in the cochlear nu-
cleus,” in Symposium on Hearing Theory, 1972, IPO, 1972.

[287] P. EhKan, T. Allen, and S. F. Quigley, “FPGA Implementation for GMM-BasedSpeaker
Identification,” International Journal of Reconfigurable Computing, vol. 2011, 2011.

[288] N. Behmann, C. Seifert, G. Paya-Vaya, H. Blume, P. Jääskeläinen, J. Multanen, H. Kul-
tala, J. Takala, J. Thiemann, and S. van de Par, “Customized high performance low
power processor for binaural speaker localization,” in 2016 IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS), pp. 392–395, IEEE, 2016.

214

References

[289] H. Hermansky, E. Variani, and V. Peddinti, “Mean temporal distance: Predicting ASR
error from temporal properties of speech signal,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pp. 7423–7426, IEEE, 2013.

[290] B. T. Meyer, S. H. Mallidi, A. M. C. Martinez, G. Payá-Vayá, H. Kayser, and H. Her-
mansky, “Performance monitoring for automatic speech recognition in noisy multi-
channel environments,” in 2016 IEEE Spoken Language Technology Workshop (SLT),
pp. 50–56, IEEE, 2016.

[291] V. Tiwari and N. Khare, “Hardware implementation of neural network with Sigmoidal
activation functions using CORDIC,” Microprocessors and Microsystems, vol. 39,
no. 6, pp. 373–381, 2015.

[292] R. B. Lee, “Efficiency of microSIMD architectures and index-mapped data for media
processors,” in Electronic Imaging’99, pp. 34–46, International Society for Optics and
Photonics, 1998.

[293] L. Gerlach, G. Payá-Vayá, and H. Blume, “A Survey on Application Specific Processor
Architectures for Digital Hearing Aids,” Journal of Signal Processing Systems, 2020.

[294] M. Weißbrich, L. Gerlach, H. Blume, A. Najafi, A. García-Ortiz, and G. Payá-Vayá,
“FLINT+: A runtime-configurable emulation-based stochastic timing analysis frame-
work,” Integration, 2019.

[295] L. Gerlach, F. Stuckmann, H. Blume, and G. Payá-Vayá, “Issue-Slot Based Predication
Encoding Technique for VLIW Processors,” in 2020 9th International Conference on
Modern Circuits and Systems Technologies (MOCAST), pp. 1–6, IEEE, 2020.

[296] M. Weißbrich, G. Payá-Vayá, L. Gerlach, H. Blume, A. Najafi, and A. García-Ortiz,
“FLINT+: A runtime-configurable emulation-based stochastic timing analysis frame-
work,” in 2017 27th International Symposium on Power and Timing Modeling, Opti-
mization and Simulation (PATMOS), pp. 1–8, IEEE, 2017.

[297] R. Nowosielski, L. Gerlach, S. Bieband, G. Payá-Vayá, and H. Blume, “FLINT: Layout-
oriented FPGA-based methodology for fault tolerant ASIC design,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2015, pp. 297–300, IEEE,
2015.

[298] R. Nowosielski, L. Gerlach, G. Payá-Vayá, S. Hesselbarth, and H. Blume, “Method-
ology for Observation and Evaluation of Fault Tolerance Implementations inside High
Temperature ASICs,” in ICT.OPEN 2013, 11 2013.

[299] H. Blume, G. Payá Vayá, and L. Gerlach, “KAVUAKA : Chip Design für digitale
Hörhilfen,” Unimagazin 1/2 (2020), 2020.

[300] L. Gerlach, G. Payá-Vayá, and H. Blume, “Europractice Activity Report 2018-2019:
The KAVUAKA Hearing Aid Processor,” tech. rep., Europractice, 7 Mrz 2019.

215

References

[301] J. Karrenbauer, L. Gerlach, G. Payá-Vayá, and H. Blume, “Automated Design Space
Exploration of Digital Audio Processors for Hearing Aids,” 2019.

[302] L. Gerlach, G. Payá-Vayá, and H. Blume, “High-Performance, Low Power digital hear-
ing aid ASIP/ASIC,” 2019. Tensilica Day—Trends in Modern Design of Configurable
Processors 2019, Hannover, Germany.

[303] L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Wirtschaftsempfang der UVN und der Leibniz Universität Hannover.

[304] L. Gerlach, G. Payá-Vayá, and H. Blume, “Analyzing the Trade-Off between Power
Consumption and Beamforming Algorithm Performance using a Hearing Aid ASIP,”
2018. Tensilica Day—Trends in Modern Design of Configurable Processors 2018.

[305] L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Wirtschaftsempfang der UVN und der Leibniz Universität Hannover.

[306] L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Tag der Fakultät - Die akademische Jahresfeier.

[307] L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Leibniz-Symposium “Maschinelles Lernen – Intelligente Digitalisierung”.

[308] G. Payá-Vayá, L. Gerlach, and H. Blume, “The KAVUAKA Hearing Aid Processor,”
2018. Tensilica Day—Trends in Modern Design of Configurable Processors 2018, Han-
nover, Germany.

[309] L. Gerlach, G. Payá-Vayá, and H. Blume, “Low-Power Optimization of a VLIW-SIMD
ASIP for Hearing Aid Devices,” 2017. Tensilica Day—Trends in Modern Design of
Configurable Processors 2017, Hannover, Germany.

[310] L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Instruction-Set Extension based
on a 2D Sound Source Localization Algorithm on a Low Power Hearing Aid System,”
2016. Tensilica Day—Trends in Modern Design of Configurable Processors 2016, Han-
nover, Germany.

[311] L. Gerlach, G. Payá-Vayá, and H. Blume, “FPGA Based Rapid Prototyping for Ex-
ploring and Optimizing Hearing Aid Processors,” in 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC 2015), 2015.

[312] G. Payá-Vayá, L. Gerlach, R. Nowosielski, and H. Blume, “FLINT: Layout-Oriented
FPGA-Based Methodology for Fault Tolerant ASIC Design,” in 10th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC
2015), Bremen, Germany, 2015.

216

References

List of the Author’s Publications

Journal Publications

• L. Gerlach, G. Payá-Vayá, and H. Blume, “A Survey on Application Specific Processor
Architectures for Digital Hearing Aids,” Journal of Signal Processing Systems, 2020

• A. M. C. Martinez, L. Gerlach, G. Payá-Vayá, H. Hermansky, J. Ooster, and B. T. Meyer,
“DNN-based performance measures for predicting error rates in automatic speech recog-
nition and optimizing hearing aid parameters,” Speech Communication, vol. 106, pp. 44–
56, 2019

• M. Weißbrich, L. Gerlach, H. Blume, A. Najafi, A. García-Ortiz, and G. Payá-Vayá,
“FLINT+: A runtime-configurable emulation-based stochastic timing analysis frame-
work,” Integration, 2019

• F. Giesemann, L. Gerlach, and G. Payá-Vayá, “Evolutionary Algorithms for Instruction
Scheduling, Operation Merging, and Register Allocation in VLIW Compilers,” Journal
of Signal Processing Systems, 2020

Conference Publications

• L. Gerlach, F. Stuckmann, H. Blume, and G. Payá-Vayá, “Issue-Slot Based Predication
Encoding Technique for VLIW Processors,” in 2020 9th International Conference on
Modern Circuits and Systems Technologies (MOCAST), pp. 1–6, IEEE, 2020

• J. Karrenbauer, L. Gerlach, G. Payá-Vayá, and H. Blume, “Design Space Exploration
Framework for Tensilica-Based Digital Audio Processors in Hearing Aids,” in 2020 9th
International Conference on Modern Circuits and Systems Technologies (MOCAST),
pp. 1–6, IEEE, 2020

• L. Gerlach, G. Payá-Vayá, and H. Blume, “KAVUAKA: A Low Power Application Spe-
cific Hearing Aid Processor,” in 2019 IFIP/IEEE 27th International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 99–104, Oct 2019

• L. Gerlach, G. Payá-Vayá, S. Liu, M. Weißbrich, H. Blume, D. Marquardt, and S. Doclo,
“Analyzing the Trade-Off between Power Consumption and Beamforming Algorithm
Performance using a Hearing Aid ASIP,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), 2017 International Conference on, pp. 88–
96, IEEE, 2017

• C. Seifert, J. Thiemann, L. Gerlach, T. Volkmar, G. Payá-Vayá, H. Blume, and S. van de
Par, “Real-time implementation of a GMM-based binaural localization algorithm on a
VLIW-SIMD processor,” in Multimedia and Expo (ICME), 2017 IEEE International
Conference on, pp. 145–150, IEEE, 2017

217

References

• F. Giesemann, G. Payá-Vayá, L. Gerlach, H. Blume, F. Pflug, and G. von Voigt, “Us-
ing a Genetic Algorithm Approach to Reduce Register File Pressure during Instruction
Scheduling,” in Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2017 International Conference on, pp. 179–187, IEEE, 2017

• M. Weißbrich, G. Payá-Vayá, L. Gerlach, H. Blume, A. Najafi, and A. García-Ortiz,
“FLINT+: A runtime-configurable emulation-based stochastic timing analysis frame-
work,” in 2017 27th International Symposium on Power and Timing Modeling, Opti-
mization and Simulation (PATMOS), pp. 1–8, IEEE, 2017

• L. Gerlach, G. Payá-Vayá, and H. Blume, “Efficient Emulation of Floating-Point Arith-
metic on Fixed-Point SIMD Processors,” in Signal Processing Systems (SiPS), 2016
IEEE International Workshop on, pp. 254–259, IEEE, 2016

• L. Gerlach, G. Payá-Vayá, and H. Blume, “A Low Latency Multichannel Audio In-
terface for Low Power SIMD Digital Signal Processors,” in ICT.OPEN 2016, ISBN:
978-90-73461-932, 2016

• L. Gerlach, G. Payá-Vayá, and H. Blume, “An Area Efficient Real- and Complex-Valued
Multiply-Accumulate SIMD Unit for Digital Signal Processors,” in Signal Process. Sys-
tems (SiPS), 2015 IEEE Workshop on, pp. 1–6, IEEE, 2015

• R. Nowosielski, L. Gerlach, S. Bieband, G. Payá-Vayá, and H. Blume, “FLINT: Layout-
oriented FPGA-based methodology for fault tolerant ASIC design,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2015, pp. 297–300, IEEE, 2015

• J. Hartig, L. Gerlach, G. Payá-Vayá, and H. Blume, “Customizing a VLIW-SIMD Application-
Specific Instruction-Set Processor for Hearing Aid Devices,” in Signal Process. Syst.
(SiPS), 2014 IEEE Workshop on, pp. 1–6, IEEE, 2014

• R. Nowosielski, L. Gerlach, G. Payá-Vayá, S. Hesselbarth, and H. Blume, “Method-
ology for Observation and Evaluation of Fault Tolerance Implementations inside High
Temperature ASICs,” in ICT.OPEN 2013, 11 2013

Further Publications

• H. Blume, G. Payá Vayá, and L. Gerlach, “KAVUAKA : Chip Design für digitale
Hörhilfen,” Unimagazin 1/2 (2020), 2020

• L. Gerlach, G. Payá-Vayá, and H. Blume, “Europractice Activity Report 2018-2019:
The KAVUAKA Hearing Aid Processor,” tech. rep., Europractice, 7 Mrz 2019

• J. Karrenbauer, L. Gerlach, G. Payá-Vayá, and H. Blume, “Automated Design Space
Exploration of Digital Audio Processors for Hearing Aids,” 2019

218

References

• L. Gerlach, G. Payá-Vayá, and H. Blume, “High-Performance, Low Power digital hear-
ing aid ASIP/ASIC,” 2019. Tensilica Day—Trends in Modern Design of Configurable
Processors 2019, Hannover, Germany

• L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Wirtschaftsempfang der UVN und der Leibniz Universität Hannover

• L. Gerlach, G. Payá-Vayá, and H. Blume, “Analyzing the Trade-Off between Power
Consumption and Beamforming Algorithm Performance using a Hearing Aid ASIP,”
2018. Tensilica Day—Trends in Modern Design of Configurable Processors 2018

• L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Wirtschaftsempfang der UVN und der Leibniz Universität Hannover

• L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Tag der Fakultät - Die akademische Jahresfeier

• L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Real-Time Implementation of a
GMM-Based Binaural Localization Algorithm on a Low Power Hearing Aid System,”
2018. Leibniz-Symposium “Maschinelles Lernen – Intelligente Digitalisierung”

• G. Payá-Vayá, L. Gerlach, and H. Blume, “The KAVUAKA Hearing Aid Processor,”
2018. Tensilica Day—Trends in Modern Design of Configurable Processors 2018, Han-
nover, Germany

• L. Gerlach, G. Payá-Vayá, and H. Blume, “Low-Power Optimization of a VLIW-SIMD
ASIP for Hearing Aid Devices,” 2017. Tensilica Day—Trends in Modern Design of
Configurable Processors 2017, Hannover, Germany

• L. Gerlach, S. Nolting, H. Blume, G. Payá-Vayá, H. Stolberg, and C. Reuter, “A Highly
Optimized Arithmetic Software Library and Hardware Co-processor IP for Fixed-Point
VLIW-SIMD Processor Architectures,” in Technology Transfer in Computing Systems
(TETRACOM Technology Transfer Project (TTP), 2016), Prague, Czech Republic, 2016

• L. Gerlach, C. Seifert, G. Payá-Vayá, and H. Blume, “Instruction-Set Extension based
on a 2D Sound Source Localization Algorithm on a Low Power Hearing Aid System,”
2016. Tensilica Day—Trends in Modern Design of Configurable Processors 2016, Han-
nover, Germany

• L. Gerlach, G. Payá-Vayá, and H. Blume, “FPGA Based Rapid Prototyping for Ex-
ploring and Optimizing Hearing Aid Processors,” in 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC 2015), 2015

• G. Payá-Vayá, L. Gerlach, R. Nowosielski, and H. Blume, “FLINT: Layout-Oriented
FPGA-Based Methodology for Fault Tolerant ASIC Design,” in 10th International Sym-

219

References

posium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC 2015),
Bremen, Germany, 2015

220

Lebenslauf

Persönliche Angaben:

Name: Lukas Gerlach
Geburtsdatum, -ort: 12.01.1988, Duisburg

Wissenschaftlicher Werdegang:

2008 – 2013 Studium der Elektrotechnik (Diplom) an der Leibniz Universität Hannover

2010 – 2012 Hilfswissenschaftliche Tätigkeit, Institut für Grundlagen der Elektro- und
Informationstechnik (GEM), Leibniz Universität Hannover

2012 Studienarbeit: Erweiterung einer Datenstruktur zur Verwaltung von 3D-
Floorplans und eines Optimierungsalgorithmus um die Berücksichtigung
von Softmodules

2013 Diplomarbeit: Konzipierung einer Designmethodologie für fehlertolerante
Hochtemperatur-ASICs

2013 – 2020 Wissenschaftlicher Mitarbeiter und Promotionsstudium, Institut für
Mikroelektronische Systeme (IMS), Leibniz Universität Hannover

221

	Preface
	Abstract
	Kurzfassung
	Contents
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Overview

	2 State-of-the-Art: Application-Specific Processor Architectures for Hearing Aids
	2.1 State-of-the-Art Algorithms for Hearing Aid Devices
	2.2 State-of-the-Art Hearing Aid Processor Architectures
	2.2.1 Hard-Wired Architectures
	2.2.2 Application-Specific Instruction-Set Processors
	2.2.3 ASIPs with Hardware Accelerators

	3 The KAVUAKA Hearing Aid Processor
	3.1 Baseline Processor Architecture
	3.1.1 Related ASIP Architectures
	3.1.2 Baseline Instruction-Set Architecture

	3.2 Specialization Towards Performance
	3.2.1 Real- and Complex-Valued Multiply-Accumulate Functional Unit
	3.2.2 Efficient Emulation of Floating-Point Arithmetic
	3.2.3 Tightly Coupled Co-Processors
	3.2.4 Operation Merging Extensions
	3.2.5 Issue-Slot Based Predication Encoding Technique

	3.3 Specialization Towards Low-Power
	3.3.1 Configurable Datapath Width
	3.3.2 Dummy Register and Register Address Isolation
	3.3.3 Low-Level Low-Power Optimization Techniques

	3.4 Low-Power Interfaces and Connectivity
	3.4.1 A Low Latency Multichannel Audio Interface
	3.4.2 A Serial Interface with Special DMA Capabilities

	3.5 Hearing Aid System-on-Chip ASIC

	4 Operation Merging, Instruction Scheduling and Register Allocation
	4.1 Operation Merging
	4.2 Instruction Scheduling
	4.2.1 Issue-Slot Based Predication Register Allocation
	4.2.2 Towards Power-Aware Instruction Scheduling

	4.3 Register Allocation
	4.3.1 Power-Aware Register Allocation

	5 Evaluation and Design Space Exploration
	5.1 Case Study: Beamforming Algorithms
	5.2 Case Study: Speech Enhancement
	5.3 Case Study: Speaker Localization
	5.4 Case Study: Speech Recognition
	5.5 Comparison to Other Related Hearing Aids
	5.5.1 ASIC Technology and Supply Voltage
	5.5.2 Power Consumption
	5.5.3 Circuit Area
	5.5.4 Operating Clock Frequency
	5.5.5 Audio Datapath Width
	5.5.6 On-Chip Memory

	6 Conclusion
	References
	List of the Author's Publications

