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Abstract— This paper presents a sensitivity-based approach for
optimal model design and identification of the dynamics of a
state-of-the-art industrial robot considering process-related re-
strictions. The possibility of parameter excitation for subsequent
identification of the model parameters is severely limited due
to restrictions imposed by the process environment, especially
the limited available workspace. Without sufficient parameter
excitation, a satisfactory quality of the full model identification
cannot be achieved, since non-excited parameters cannot be
identified correctly. Furthermore, optimal excitation requires
time-consuming calculations and distinct experiments during
which the robot is not available for daily operation. It is
therefore of interest to use process-related trajectories instead of
dedicated excitation trajectories, which is expected to deteriorate
the identifiability of the model parameters. For this reason,
the presented method uses a sensitivity-based approach allowing
model order reduction in the identification process. The resulting
model contains only those parameters excited by the excitation
trajectory. For process-related trajectories this implies the model
being limited to parameters relevant for the process. In expe-
riments with a standard serial-link industrial robot controlled
by standard industrial programmable logic control and servo
inverters it is shown that the method produces significantly
reduced models with a good measure of identifiability and quality.

Index Terms— Model order reduction; Sensitivity; Identifica-
tion; Industrial Robot

I. INTRODUCTION

Highly dynamic handling processes such as pick and place
applications are common in industrial robotics. One of the
most important quality factors, besides the lowest possible
cycle time, is the accuracy of the performed movements.
The more dynamic a motion sequence is supposed to be, the
more demanding it is to achieve the accuracy requirements.
For this reason, there are many approaches in the field of
robotics aiming to improve the accuracy of the system under
the influence of highly dynamic movements.

One of the most widespread methods to achieve this goal is
the model-based feedforward control of the motor torque for
a given motion profile. This method is based on the complete
knowledge of the dynamics model and its parameters. In most
cases, however, this knowledge is not completely available. For
this reason the missing model parameters have to be identified
with a suitable excitation. A widely used method to perform
this excitation is the parameter excitation with Fourier-based
trajectories [1], [2]. The coefficients of the Fourier series
are optimized for minimal sensitivity of the identification to
measurement disturbances. [3] and [4] present a method in

which the identification of the parameters of industrial robots
is carried out with the aid of an additional payload with
exactly known mass. It is attached to the end-effector to
improve the identifiability and excitation of the parameters
during the identification process. The separate identification
of individual model parameters is presented in [5]. Here,
a three-step sequential routine for the isolated identification
of the friction and dynamics parameters and the values for
elasticities of an industrial robot is performed. By the indi-
vidual identification using different exitation trajectories for
each parameter an improvement of the identifiability of the
respective parameters can be achieved. Further, [6] presents
a procedure for individual identification of the additional
payload at the end-effector of the robot.

These approaches for the dynamics identification of a robot
mostly use industrial hardware, but they do not take into ac-
count the process-related restrictions that apply when dealing
with a robot that is already integrated into the production
process. In the process environment, a robot is mostly surroun-
ded by other systems such as conveyor belts or other robots
so that it can only move in a part of its actually possible
workspace. This fact strongly limits the possibility to perform
a sufficient and generally valid trajectory for a successful
parameter excitation or makes it impossible in many cases.
As a result, the model parameters cannot be identified with
sufficient accuracy and the methods mentioned above can only
be used to a very limited extent. Furthermore, an interruption
of the running process and additional working hours are ne-
cessary to perform a dedicated excitation trajectory. A separate
sequential identification with different excitation trajectories or
the use of an additional testing payload is also not applicable
in the process.

To address these limitations, we present a sensitivity-based
method that allows to identify the model parameters and/or
reduce the robot model during the robot’s designated process.
In this way the model adapts to the circumstances of the
given excitation. The model assessment is related to the
considerations in the review article [7]. It is not necessary
to optimize and run an additional excitation trajectory and the
process does not have to be stopped at any time and can be
continued unaffectedly. The presented method is demonstrated
by identifying necessary parameters of the inverse dynamics
model under process conditions of the 6-degrees-of-freedom
(dof) standard serial industrial robot CLOOS QRC 350. The
main contributions of this paper are:
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« identification of the dynamics parameters of an industrial
robot under on-site conditions with a

o scheme for reduction of parameter complexity based on
given workspace and trajectories

« using only standard industrial hardware.

The remainder of this paper is organized as follows: Sec.II
gives a short view on the used inverse dynamics model and its
minimal parameter formulation. Furthermore, the theoretical
principles of parameter identification are presented. Sec. Il
describes the performed experiments. The experiment design
is introduced and the investigated processes are presented.
Beside the consideration of the signal processing, the de-
veloped algorithm is introduced in detail. Sec.IV provides
experimental results, demonstrating the effectiveness of the
proposed method. Sec. V concludes the paper.

II. THEORETICAL BACKGROUND
A. Dynamics Model of Serial Robots

This subsection describes the dynamics model of the 6-
axis robot. The joint torques 7 of all axes required for the
feedforward control can be calculated by

T=M(q)§+c(q,q)+g(q)+h(q). )

Herein q, ¢ and ¢ represent the joint angles, velocities and
accelerations given by the motion planning. M denotes the
mass matrix, ¢ the Coriolis effects and g the gravitational
effects. The friction model is represented by h with

hi = fejsen(q;)+ fv.idjs @

where f.; represents the Coulomb friction coefficient for
joint j and fy ; the viscous friction coefficient. The gear
transmission between motor and link side is omitted for the
sake of simplifying the equations. Measured motor velocities
and estimated motor torques are transformed accordingly.

By expressing the rigid body dynamics with the inertial
parameters (drive train inertia, mass, first and second moment
of mass) and by using a linear friction model, (1) can be
expressed in a linear form [8]. This regressor form

T=X"(q,4,9)0' = X(q,4,4)0 3)

with regression matrix X and parameter vector € can be given
with a full set of parameters (on the left hand side, noted with
a dash) or in a parameter minimal form (right hand side).
Only the latter form of the parameters can be identified within
one identification cycle. The general model X'/0' uses 66
parameters for the rigid body dynamics. For each of the six
joints two additional parameters represent the Coulomb and
viscous friction.

The right hand side of (3) expresses the minimal parametric
model with 23 base inertial parameters. The chosen para-
meter vector 6 to be identified therefore contains 35 entries
and is shown in appendix I. Since some of the robot links
possess symmetries, assumptions about their center of mass
and products of inertia were made. Further, a differential gear
couples joints 5 and 6, similar to the robot example in [9]. This

prevents the use of the direct determination of the base inertial
parameters with the geometric approach from [8]. Instead, a
purely symbolic approach is chosen: the relation 8 = K6’
leads to a linear system of equations X' = X'K. It is solved
symbolically for the unknown K with the computer algebra
system MAPLE, leading to the base parameter formulation
X /6. For the implementation the regressor matrix of the
energy instead of the dynamics is used, following [8], [9].

B. Parameter Estimation

The base parameter form of the dynamics in (3) is used
to estimate the parameter vector @ € R*. Using a sufficient
number of samples in the estimation process leads to an over-
determined system of linear equations:

y=C0+e,
T(.fl) X@) , e(.tl) @
: = : + :
T(tn) X (tv) e(tn)

Here y contains the N samples of the torque vector 7, C'
denotes the design matrix and € is the vector of errors.

Equation (4) can be solved for 8 using a least squares esti-
mator. The weighted least squares (WLS) [2], [9]-[11] is used
to account for different levels of noise in the measurements:

0= argmein(y —CO)'W(y—C0)
=(Cc"woe) 'cTwy.

Matrix W contains the weights of the individual samples, see
also Sec. III-C.

®)

C. Optimal Excitation

For precise and robust parameter estimation an optimized
trajectory needs to be generated. In this paper an optimized
FOURIER series trajectory is used as a baseline for comparison.
It is optimized by minimizing the condition number x(C') of
the design matrix C' [2], [12]-[14]. The FOURIER series for
each joint j is given by:

& o
qj(t) =0 ;+ Z {’Jsm(ku)bt) +
k=1

Br.j
Foo " cos(k(nbt)} . (6)

kw
Based on the suggestions of [2], [12], the order is set to
np =5 and the base frequency is set to @y, = 21-0.1Hz. The
amplitudes oy ; and Py ; are varied by a genetic algorithm
under consideration of the given boundary conditions, see
below. To take into account the different magnitudes and
units of the individual parameters, C' is normalized during
the optimization according to [15].

III. EXPERIMENTS
A. Robot Testbed

For experimental evaluations and demonstration of the po-
tential the presented approach was testet on the state-of-the-art
serial industrial robot CLOOS QRC 350 designed for highly
dynamic and precise processes such as assembly or welding
tasks, see Fig.1. A payload of 10.621kg is mounted to the
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end effector. The robot is controlled by a standard industrial
PLC and servo inverters from the company LENZE. For data
processing and calculation of the implemented algorithm a
desktop computer with MATLAB software is used. However, in
the perspective all calculations can also be carried out directly
on the PLC.

Computer 5(,‘1\0 Inverters

———

Fig. 1. Experiment setup with a 6-dof CLOOS QRC 350 industrial robot,
PLC and servo inverters and a desktop computer for development.

B. Experiment Scenario

As described in Sec.I, a parameter identification in the
process environment is rarely feasible without restrictions re-
garding the available workspace. For this reason, the approach
of the method presented in this paper is based on performing
the necessary parameter identification directly in the running
process. To illustrate this situation, the proposed method
is applied to two different tasks widely used in industry.
These processes are presented in more detail in the following
paragraph.

e Process 1: The robot performs a highly dynamic pick
and place motion between two pre-defined areas in the
workspace (see Fig.2.a). To create a set of pick-and-place
cycles the points on both areas are generated randomly.

o Process 2: The end-effector of the robot has to trace the
edges of a horizontal square (see Fig.2.b).

To validate the identified parameters, different trajectories of
the same type are used for each process. For process 1 a
new set of points is randomly generated using a uniform
distribution. For process 2 the trajectory is given an offset
in the x-y-plane.

To evaluate the results of the process-based parameter
identification a classical parameter identification with three
different optimized excitation trajectories is also carried out.
The first excitation trajectory uses the full workspace of the
robot to get the best possible identification results. For the
second trajectory the available robot workspace is restrained to

simulate the identification process under practical conditions
in the industrial environment. A representation of the used
workspace is given in Fig.2.c. The complete half-sphere
represents the full workspace. The marked area denotes the
restrained workspace. The optimized excitation trajectories are
generated according to Sec. II-C. The trajectory which uses the
full workspace has a condition number of 6.76 and will be
called trajectory A. The trajectory in the restrained workspace
has a condition number of 7.71 and will be called trajectory B.
Restraining the available workspace generally leads to higher
condition numbers of the generated excitation trajectory. The
third trajectory is used to validate both models derived from
the optimal excitation and will be called trajectory C. Like
trajectory A, trajectory C is generated in the full workspace
of the robot but uses a different set of FOURIER-coefficients,
due to the heuristic nature of the genetic algorithm. The
identification was performed without model-based feedforward
control.

C. Signal Processing

All experiments described in Sec.III-B are carried out
multiple times with the same set of parameters. Over N, = 50
repetitions of each experiment the mean of the joint angular
positions q(t,) and the measured torques 7(z,) are calculated
for every time step f,.

In the case of the FOURIER series the frequency spectrum of
the excitation is known, which allows for additional filtering of
the position measurements: The discrete FOURIER transform
of the mean position measurements q is calculated and only
the first ny + 1 FOURIER coefficients are retained. These
correspond to the offset, the base frequency and the np — 1
harmonics. Utilizing this filter technique yields nearly noise-
free estimates of the joint angular positions. A possible loss
of information is tolerated in favor of reduced noise. The
same filter technique is used in [14] and [16]. Because of the
averaging of the measurement data and the additional filtering
for the FOURIER series the derivatives for the joint angular
velocities and accelerations can be calculated numerically for
all experiments.

To take into account the different signal-to-noise ratios in
each joint, the WLS method is used for parameter estimation.
The measurement points are weighted using the inverse of the
covariance matrix of the measured torque. The noise of the
torque measurements in all joints j in every time step #, can
be estimated using the equation for the sample variance

N

1 _
lp = N1 k; (Ta.(0p) = T(1p))?, )

where k refers to the repetitions of the experiment. The matrix
W is then defined as:

W =diag(W,; ', W, ',... W) (8)
with
W; = diag(c7,,67,,...,07,). 9)
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a) Process 1 in the robot workspace

Fig. 2.

Since the measurements are assumed to be independent, W is
a diagonal matrix. All measurements used for this evaluation
were taken when the robot was in the controlled state.

D. Model Reduction Algorithm

A parameter identification in a process not optimized for
this purpose leads to a significantly worse identifiability com-
pared to an optimized excitation trajectory due to the sub-
optimal excitation of the individual parameters. In order to
still perform a parameter estimation directly on a process the
robot model has to be reduced. According to [17] two factors
can be distinguished that lead to poor identifiability and a
high condition number: sensitivity problems and collinearity
problems. Sensitivity can differ between parameters so that
some parameters affect the output only negligibly while others
dominate. Collinearity means that the effect of one parameter
is compensated by the interplay of other parameters.

Many model order reduction techniques strive to establish
a new basis without multi-collinearities, which is possibly
even orthogonal. Here these approaches are prohibited by the
fact that the interpretability of the base parameters should be
preserved in the sense of the linear combination of physical
parameters in (16). A different approach is to delete parameters
that are involved in collinearity problems [18], but this could
change the prediction of the model considerably if the re-
spective parameter is important. Therefore, only the sensitivity
problem is addressed here. As the model can be written linear
in the parameters, see (3), it is possible to remove those
parameters with a low sensitivity on a per-parameter basis.
The parameter sensitivities depend on the excitation but not on
the parameter values. For a particular excitation the sensitivity
matrix is given by the design matrix C. To characterize the
sensitivity of a parameter i with a single value the mean of
the respective column ¢; of C over all joints is used:

C

”Ci”l WithC:(C],C2,...,Ci). (10)

1
" 6N
The model error that is introduced by removing a particular
parameter is evaluated using the error between the measured
data 7 and the model prediction 7. The mean absolute error

N
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b) Process 2 in the robot workspace
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¢) Workspace used during optimization

Representation of process 1 and 2 and the workspace used for optimization.

and the relative error

* Ck,j

&= (12)
% )y ’Tj(tp)|
p=1

2]

are calculated in every step k for all joints j. If removing a
parameter would lead to a large model error, this parameter is
retained.

The following is a detailed description of the proposed
approach, explained along the pseudo code in algorithm 1. It
can be characterized as a backward stepwise selection [19]
because starting from the full model parameters are removed
successively.

The algorithm begins with calculating the initial design
matrix Cy for the full model (line 1). It is checked if the
design matrix is of full rank, so that all parameters are
identifiable. Given that the parameter estimation is to be
performed directly on a process and not with an optimized
trajectory, some parameters may not be identifiable. In such a
case the parameters in question must be removed prior to the
model reduction.

If the design matrix is of full rank, a first parameter
estimation with the full model needs to be carried out (line 2).
Based on that the absolute and relative model errors eq ; and
ea j are calculated (line 3). These values will be the reference
to determine if a parameter is negligible for the model.

Algorithm 1 Pseudo code of the model reduction algorithm.
1: Examine rank of design matrix Cy (initially Cp)

2: Calculate éo using WLS
3: Calculate eg ;, 58,,/
4: Initialize I and E
5: for k=1,2,...,n; do
6: Calculate argmin;(¢;) with i € INi ¢ E
7: Remove parameter i
8: Calculate 6 using WLS
9: Calculate ey ;, eZy ;
10:if > ey Vj then
0.j
11: Add parameter i to E
12: else
13: Remove parameter i from /
14: end if
15: end for
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Sets I (included) and E (essential) are initialized (line 4):
Set I represents the parameters which are still included in the
model in a given iteration and is initialized to contain all para-
meters. Set E contains all parameters which are indispensable
for the model. The friction may be indispensable for the model
if all joints perform a sufficient motion during the observed
process. In this case E will include the friction parameters,
otherwise set E is initialized empty.

The model reduction is then performed in a loop which
iterates over all n; = 35 parameters in the model. First the
design matrix needs to be constructed with the parameters
defined by 7 and E (line 6). Then the parameter with the lowest
sensitivity is determined using ¢; from (10) and removed
from the model (line 7). With the resulting reduced model
a parameter estimation is carried out using the WLS method
and the absolute and relative model errors ¢, ; and ez’ ; are
calculated (line 8 and 9).

In a final step it needs to be determined if the removed
parameter is negligible for the model (line 10). The parameter
can be considered negligible if the relative model error ez’ j
in step k is within a pre-defined tolerance margin ey, with
respect to the reference value ea ; for all joints j.

The advantage of the algorithm is that it removes unimport-
ant parameters so that the model error keeps low, but since the
condition number is not optimized directly its improvement
may be small. Nevertheless, it has been found in several
experiments that the condition number is also improved.

IV. EXPERIMENTAL RESULTS
A. Optimal Excitation

In consideration of the optimized trajectories from Sec. III-
B the robot parameters are estimated using the WLS method
according to (5). The filtering of the respective measurement
data in the frequency domain yields nearly noise free estimates
of the joint angular positions, velocities and accelerations.
According to [8] it is possible to estimate the relative standard
deviation o} of the identified parameters for the LS method
under the assumption of a deterministic design matrix and
the error e as zero-mean additive independent Gaussian noise.
Applying this to the WLS method with var(y) = N%W’l
yields the covariance matrix

var(8) =var((CTWC)'CTWy)
=c"woe)y 'C"Wvar(y)wTec( c™we) T
_ Lo -1
13)

and the relative standard deviation of the identified parame-
ters

o; A
ol = — with 67 = var(0);;.

i

(14)

The estimated parameters and standard deviations for trajec-
tories A and B are given in Tab. I. For convenience the derived
models will now be called model A and B respectively. It

TABLE 1
ESTIMATED PARAMETERS FOR MODEL A AND B.
Model A Model B

i 0; o] (%) 0; G! (%)
1 19.763 0.074 16.174 0.113
2 23.798 0.096 28.312 0.069
3 -0.850 0.980 -1.076 0.570
4 17.162 0.075 12.657 0.083
5 37.957 0.008 38.748 0.008
6 11.684 0.142 10.435 0.162
7 0.768 0.502 0.973 0.506
8 1.785 0.463 2.284 0.423
9 8.666 0.064 9.451 0.061
10 0.266 1.743 -1.272 0.452
11 5913 0.027 5.537 0.034
12 12.163 0.010 12.203 0.007
13 4.249 0.176 5.555 0.056
14 0.108 0.681 0.027 4.308
15 0.162 0.295 -0.002 23.001
16 -0.058 0.799 0.122 0.396
17 0.200 0.080 0.224 0.070
18 0.225 0.092 0.280 0.079
19 1.254 0.007 1.265 0.006
20 0.074 0.362 0.065 0.377
21 0.043 0.199 0.027 0.266
22 0.037 0.104 0.036 0.112
23 0.135 0.034 0.137 0.044
24 76.809 0.040 75.944 0.028
25 117.258 0.022 104.977 0.021
26 47.677 0.027 43.214 0.025
27 4.125 0.025 3.292 0.030
28 1.454 0.061 1.245 0.051
29 0.834 0.054 0.753 0.043
30 62.856 0.066 65.058 0.051
31 36.423 0.079 45.561 0.057
32 17.903 0.078 16.107 0.058
33 1.039 0.049 1.314 0.040
34 0.434 0.193 0.647 0.099
35 0.426 0.036 0.538 0.029

can be seen that parameters with a relatively high standard
deviation have small identified values compared to other
parameters with a lower standard deviation. These parameters
could either not be sufficiently excited or their contribution to
the model is negligible [8].

The absolute and relative model errors ¢; and e for models
A and B according to (11) and (12) are given in Tab.II and
Tab.IIT respectively. Greater deviations between the model
predictions and the measured torques result from the noise
on the measured torques and the dynamic behavior of the
controlled system like the characteristics of the controller and
the compensation of overshoots. It can be seen that both
models produce approximately the same model prediction
error for all trajectories. This leads to the conclusion that
the model parameters were sufficiently excited during the
experiments and both models can be used as reference for
the process-based parameter estimation.

B. Process-Based Excitation

One of the main advantages of the process-based approach
is that both data collection and processing can be automa-
ted. Additionally, no special excitation trajectory has to be
generated. The parameter estimation is done as described in
algorithm 1 using the WLS method. The estimated parameters
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TABLE II
PREDICTION ERROR FOR MODEL A.
joint Trajectory A Trajectory C
j ej (Nm) ej (%) e; (Nm) e;(%)
1 23.298 15.172 16.974 15.218
2 44.518 12.507 49.945 13.734
3 16.607 12.699 18.592 17.442
4 1.083 12.732 1.149 16.312
5 1.202 15.857 1.082 14.261
6 0.282 11.850 0.286 12.521
TABLE III
PREDICTION ERROR FOR MODEL B.
joint Trajectory B Trajectory C
j ej Nm) [ &f (%) ej (Nm) e;‘»(%)
1 21.439 15.081 16.846 15.104
2 48.997 16.175 50.935 14.007
3 18.451 16.852 17.985 16.873
4 1.182 19.174 1.209 17.169
5 0.964 12.734 1.069 14.088
6 0.208 12.561 0.404 17.733

for process 1 and 2 are given in Tab.IV. Here 0y denotes
the estimated parameters for the full model and 6, denotes
the estimated parameters for the reduced model. For both
processes an error-tolerance ey, of 5% was chosen.

For process 1 15 parameters were removed during the
model reduction. The condition number of the full model
for the excitation of process 1 is 61.7. As a result of the
model reduction, the condition number for the reduced design
matrix was decreased to 8.46. Because of the significantly
lower condition number the parameter estimation becomes
more robust. For process 1 the friction parameters can not be
neglected since all joints perform a sufficient motion. During
the model reduction of process 2 16 dynamics parameters and
3 friction parameters were removed. A peculiarity of process 2
is that there is little to no movement in the joints 4 and 6. This
results in a significantly higher condition number of 1632 for
the full model compared to process 1. This was reduced to
2.73 during the model reduction. Since some joints perform
little to no movement the respective friction parameters can be
neglected and are removed by the model reduction algorithm.
The model prediction errors for the process-models applied to
the respective process are given in Tab. V. Both models A and
B yield similar model prediction errors for for process 1 and
2. Therefore only the model prediction errors for model A are
displayed in Tab. VI to have a comparison to the model which
was derived from the best possible excitation.

The removed model parameters are negligible for the ob-
served process since without them the model error did not
increase by more than 5%. The parameters 5, 12, 19 and
22 had relatively low changes in their values throughout the
model reduction and were estimated with similar values for
all models. Removing them from the model also yields a
significantly higher prediction error when compared to the
other parameters.

It is only possible to evaluate the physical consistency (see
e.g. [10]) of the parameters 8, 10, 13, 15, 16, 20, 22 and
23 since not all of the model parameters are independently

TABLE IV
ESTIMATED PARAMETERS FOR PROCESS 1 AND 2.
Process 1 Process 2

i 09, O 09, O

1 9.952 - -437.335 48.044

2 33.558 45.321 35.387 -

3 1.541 - 3.090 -

4 -13.419 - 11.982 -

5 43.786 43.928 40.110 43.342

6 2.154 - 443.672 -

7 1.686 - -2.062 -

8 5.073 1.163 -106.802 -

9 -1.067 - 2.602 14.090
10 6.866 - -4.599 -
11 3.132 3.446 6.693 -
12 12.541 12.432 11.725 14.315
13 6.232 - 7.899 -
14 -1.156 - 1.804 -
15 2.215 - 3.139 2.998
16 -2.247 - -3.576 -
17 0.233 0.336 0.259 -
18 0.088 - 0.189 -
19 1.322 1.323 1.334 1.326
20 0.126 - 0.093 -
21 -0.133 - 0.097 -
22 0.049 0.072 0.084 0.111
23 0.039 - 0.040 -
24 82.388 82.415 67.167 66.071
25 124.553 124.452 92.337 94.886
26 47.021 47.102 47.073 47.594
27 4.360 4.325 4.364 -
28 1.151 1.150 0.849 0.945
29 0.664 0.665 0.718 0.719
30 73.001 72.674 128.156 132.694
31 90.762 87.536 84.485 79.244
32 45.309 45.794 27.302 26.225
33 2.007 1.973 -4340.924 -
34 1.072 1.140 3.247 -
35 1.748 1.749 1.183 1.181

TABLE V

PREDICTION ERROR FOR THE PROCESS BASED MODELS ON THEIR
RESPECTIVE PROCESS.

joint Process 1 Process 2
j e; (Nm) e;‘- (%) e;j (Nm) e;(%)
1 21.563 23.231 17.937 22.569
2 25.332 8.919 30.617 14.605
3 9.423 7.134 15.359 12.422
4 2.037 31.543 0.892 102.439
5 0.384 12.336 0.464 52.539
6 0.239 31.973 0.213 27.173

identifiable. The mentioned parameters are inertia values and
therefore must be positive. For the reduced models of process
1 and 2 this is the case for all mentioned parameters which
were kept in the model.

For the validation trajectories of both processes the design
matrix was calculated using the desired values of the joint
angular positions, accelerations and velocities. This was done
because the models are expected to be used in a model-based
feedforward control scheme which also uses the desired va-
lues. As already explained in Sec.IV-A, the greater deviations
between the model predictions and the measured torques result
from the noise on the measured torques and the dynamic
behavior of the controlled system. This effect is the strongest
in joints 4 and 5 for process 2 where nearly no motion is
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TABLE VI
PREDICTION ERROR FOR MODEL A ON PROCESS 1 AND 2.
joint Process 1 Process 2

J |l e Nm) | e (%) || e Nm) | }(%)

1 23.164 24.955 19.000 23.908
2 33.788 11.897 35.443 16.907
3 11.215 8.490 16.642 13.459
4 2.295 35.531 0.994 114.172
5 0.452 14.522 0.640 72.497
6 0.327 43.626 0.221 28.249

Fig. 3.

Control loop of the robot.

performed which results in a high signal-to-noise ratio.

It should be noted that the model reduction only keeps
parameters which are needed to describe the joint torques
of the observed process. Therefore the resulting models may
not be generally applicable. The process based identification
has to be repeated for every new process the robot has to
perform, and the resulting model can only be applied to that
process. The parameter estimation is done through the robot
application, which has to be implemented on the controller
regardless. Therefore no additional expenditure arises.

Despite the restraints applied on the workspace, the para-
meter estimation with an optimized trajectory could still be
performed. However, restricting the robot workspace hampers
the excitation of all parameters, as can be seen in Tab.I.
Applying the model reduction algorithm to models A and
B for their respective excitation trajectory showed that some
parameters in model B had significantly less influence on
the model output when compared to model A. Compared by
the model errors, both process-based models can predict the
measured torque data with a similar accuracy as the models
A and B. Depending on the restrictions placed on the robot
workspace optimal excitation of all parameters may not always
be possible. Therefore the process-based parameter estimation
can be used as an alternative if the optimal excitation of all
parameters is not possible.

C. Experimental Model Application

After the parameter identification the process-based models
are tested in a classical model-based feedforward control sche-
me to ensure that the identified process-models are suitable
for practical use. The utilized control scheme of the robot is
given by Fig. 3. The individual joints are controlled using an
independent joint control loop. Here qq, ¢q4 and gq represent
the desired trajectory and 7 is the model prediction.

The process-based models are used for their respective
process and are then compared with the models A and B.
For friction feed-forward instead of sgn(q;) the practically
more stable version tanh(10004;) is used. To quantify the

TABLE VII
RMS VALUES OF THE REFERENCE ERROR FOR PROCESS 1 IN ALL JOINTS.
joint no Model Model A Model B Process Model
J | qgerms,j ) | germs,j ) | germs.j (©) germs,j (°)
1 0.0039 0.0021 0.0022 0.0023
2 0.0041 0.0022 0.0022 0.0024
3 0.0070 0.0050 0.0049 0.0053
4 0.0200 0.0128 0.0127 0.0135
5 0.0099 0.0049 0.0048 0.0049
6 0.0162 0.0103 0.0096 0.0093

)
=
>

y-axis (mm)

)
=
S

reference trajectory
without model
process model

235
1341
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Fig. 4. Reference and actual trajectory of the end-effector in Cartesian space.

controller performance the root mean square value (RMS) of
the reference error is calculated over all measurement points
for each joint. For process 1 the RMS values of the reference
errors for the different models are given in Tab. VIL.

The application of all models for process 2 yields similar
RMS values to process 1 and are omitted here. Fig.4 shows
the trajectory of the robot end-effector in Cartesian space
focused on one of the corners of the square. It can be seen,
that the end-effector performs an overshoot which is typical
for such a rectangular trajectory. The utilization of the model
approximately halves the size of the overshoot. Fig.4 only
shows the process model as a representative example, since
all models yield a similar performance.

In general both process-based models perform similar to the
models A and B which were derived from a classical parameter
identification. This shows that the process based-models are
suitable for practical application.

V. CONCLUSION

When a robot is installed in its industrial environment the
working area is highly restricted and parameter identification
of robot’s inverse dynamic models is a challenge. Satisfactory
parameter identifiability can still be expected from optimized
trajectories, but the optimization procedure is time-consuming
and difficult to integrate into the software of the industrial
controller. Therefore, in this paper identification during the
final operation of the robot with in-process trajectories is inves-
tigated, which eliminates the need for dedicated identification
experiments. Identifiability of the model parameters is now
ensured by optimizing the composition of the model rather
than the trajectory. A reduced-order model results including
only those parameters that are relevant for the given in-process
trajectory and parameter drift due to insufficient excitation is
avoided.
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In validation experiments with a serial robot it is shown
that even with optimal excitation not all parameters can be
identified if the workspace is restricted. For a simple in
process trajectory only a few model parameters are relevant
and accordingly the reduced order model is clearly simpler but
approximately equally good.

The procedure is easy to use and requires no prior know-
ledge on the parameters. It can readily be integrated into the
process control and requires no preparatory experiments. This
makes it suitable for an industrial context.

ACKNOWLEDGMENT AND REMARK

We wish to thank Jonas Diekmeyer for creating the robot
model. MATLAB code to reproduce the results is available at
github.com/SchapplM/robotics-paper_icma2020.

APPENDIX I
MINIMAL DYNAMICS PARAMETER VECTOR

The used Parameters are the mass m;, the center of mass
r; in the coordinate system (CS);, the inertia ( j)J](j ) in the
coordinate system (CS); and referring to the frame origin, the
motor and gear inertia J, ; as well as the Coulomb and viscous
friction f;; and fy; for the joints j=1,...,6 respectively. The
combined masses m123456, 123456, M3456 and myse are defined
in (17). The notation for r; and ( j)Jj(-] ) is defined by

rjx 0 i Iy Iz
Ti=|"Tj and (j)Jj = ]jxy ijy -,jyz (15)
Tjz Jixz Ijpyz Jjzz

Jiyy + 2y i+ Bmiozase +Ja1 +Jayy — Bmozase + I3z — maase
Bmpzase + Joxx — Joyy
—lzmyry, + l3m3r3y +Joxy
—Bmazase +Joz: +JIa
l3ma3as6 +marax
Jaxx — Jaze + 13m3 + Jazg + 2Usmaray + (12 + 12)mase
—lamzrsy + Jaxy
J3xz
J3yy = B3m3ase + Jazz + 2Usmaray +12myse
J3_vz
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l(%ms + 216’"6r62 + JS)'y + sz).
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Joxx — Joyy
Jozz
a6

fc‘]

fc..ﬁ
fv,l

f\;.é
(16)

6
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