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Abstract

This thesis describes new results on the entanglement of atomic spins in Ramsey
interferometry, optical atomic clocks and trapped ions. It is divided into three parts:

First, we investigate improvements to conventional Ramsey interferometry with
entanglement and adding only rotations of the collective spin to adjust the signal
and measurement directions. The geometric degrees of freedom, connected to the
rotations, are analytically optimized for a large class of generalized Ramsey protocols
to allow efficient optimization of all parameters. Besides a unification of existing
approaches, the main result is that there is only one new protocol, where a previously
unused double inversion is applied. Studies of the local sensitivity show that this
protocol reaches the fundamental quantum Fisher information limit and is yet robust
against errors during preparation and measurement.

In the second section we investigate the conditions under which optical atomic
clocks exhibit increased long-term stability when applying weakly entangled, spin
squeezed states. We discuss the common case of an atomic clock with a single ensem-
ble, typical Brownian frequency noise and finite dead time. Theoretical modelling of
the servo loop allows quantitative predictions of the optimal stability for given val-
ues of dead time and laser noise, in very good agreement with numerical simulations
of the closed feedback loop. The main result is that, even with the current most
stable lasers, the clock stability can only be improved for ensembles below a critical
atom number of about one thousand in optical Sr lattice clocks. Even with a future
improvement of the laser performance by one order of magnitude, the critical atom
number still remains below 100,000. In contrast, clocks based on smaller, non-scalable
ensembles, such as ion clocks, can already benefit from squeezed states with current
clock lasers.

Thus the last section considers the robust generation of entanglement in ion traps.
An error budget including relevant experimental error sources is calculated for state-
of-the-art quantum gates, driven by oscillating microwave gradients in surface traps.
Amplitude modulation of the driving fields is shown to efficiently counteract the cur-
rent limitations from motional mode instability. The predicted increase of the gate
quality was demonstrated by the group of C. Ospelkaus at PTB Braunschweig, who
measured gates with errors as low as ∼ 10−3. In a similar approach, interactions
between spin and motion can also be generated by combining oscillating rf-fields with
a static magnetic field gradient. Penning traps designed for precision spectroscopy
already feature large magnetic field gradients at the edge of a magnetic bottle con-
figuration. We present parameters and conditions under which laser-free coupling of
spin and quantized motion for (anti-)protons is possible at these points, in a step
towards quantum logic spectroscopy for (anti-)protons.

Keywords: Quantum metrology, Entanglement, Ramsey interferometry, spin
squeezing, optical atomic clocks, trapped ions, two-qubit gates





Zusammenfassung

Diese Arbeit beschreibt neue Resultate zur Verschränkung von atomaren Spins
in Ramsey Interferometrie, optischen Atomuhren und gefangenen Ionen. Sie ist de-
mentsprechend in drei zentrale Themenbereiche aufgeteilt:

Als erstes wird untersucht wie Verschränkung konventionelle Ramsey Protokolle
verbessern kann, allein unter der Hinzunahme kollektiver Spinrotationen zur Anpas-
sung der Signal- und Messrichtungen. Es wird gezeigt, wie die geometrischen Frei-
heitsgrade der Rotationen in einer Klasse an verallgemeinerten Ramsey Protokollen
analytisch optimiert werden können, um somit eine effiziente Optimierung aller Vari-
ationsparameter zu erlauben. Neben der Vereinheitlichung bekannter Ansätze ergibt
sich als Hauptresultat, dass es nur ein neues Szenario gibt, bei dem eine zuvor un-
genutzte doppelte Inversion ausgeführt wird. Untersuchungen der Messgenauigkeit
zeigen, dass diese Protokolle die fundamentale quanten-Fisher-Informations Schranke
erreichen und zusätzlich robust gegen Fehler in der Präparation und Messung sind.

Im zweiten Abschnitt wird untersucht welche optischen Atomuhren durch leicht
verschränkte, spin gequetschte Zustände eine erhöhte Langzeitstabilität aufweisen.
Es wird der übliche Fall von Atomuhren mit einem einzelnen Ensemble, typischem
Brownschen Frequenzrauschen und endlicher Totzeit diskutiert. Die theoretische
Modellierung des Regelkreises erlaubt quantitative Vorhersagen über die optimale
Stabilität für gegebene Werte der Totzeit und des Laserrauschens zu treffen, in sehr
guter Übereinstimmung mit numerischen Simulationen des geschlossenen Regelkreises.
Als wesentliches Resultat ergibt sich, dass selbst mit den aktuell stabilsten Lasern die
Uhrenstabilität in optischen Sr Gitteruhren nur für Ensembles unterhalb einer kritis-
chen Atomzahl von etwa tausend Atomen verbessert werden kann. Selbst bei einer
zukünftigen Verbesserung des Laserrauschens um eine Größenordnung bleibt die kri-
tische Atomzahl noch immer unter 100.000. Im Gegensatz dazu können Uhren, die
auf kleineren, nicht skalierbaren Ensembles basieren, wie z.B. Ionenuhren, bereits mit
aktuellen Uhrenlasern von gequetschten Zuständen profitieren.

Somit betrachtet der letzte Abschnitt die Erzeugung von Verschränkung in Io-
nenfallen. Die Einflüsse relevanter Fehlerquellen in hochmodernen Quantengattern,
die von oszillierenden Mikrowellengradienten in Oberflächenfallen getrieben werden,
wurden quantifiziert. Modulation der Amplituden reduziert effizient die limitierenden
Störeffekte. Die verbesserte Qualität der Gatter wurde durch die Gruppe von C. Os-
pelkaus an der PTB Braunschweig demonstriert, welche Gatter mit Fehlern ∼ 10−3

messen konnten. In einem vergleichbaren Ansatz kann Verschränkung auch durch
die Kombination oszillierender rf-Felder mit einem statischen Magnetfeldgradienten
erzeugt werden. Penningfallen, die für Präzisionsspektroskopie konzipiert wurden,
weisen große Magnetfeldgradienten am Rand einer magnetischen Flasche auf. Diese
Arbeit identifiziert Parameter und Bedingungen unter denen eine laserfreie Kopplung
von Spin und quantisierter Bewegung für (anti-)Protonen an diesen Positionen real-
isierbar ist, als einen Schritt in Richtung quanten-logik Spektroskopie.

Schlagwörter: Quantenmetrologie, Verschränkung, Ramsey Interferometrie, ge-
quetschte Spinzustände, optische Atomuhren, gefangene Ionen, zwei-qubit Gatter
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1
Introduction

Currently there are fundamental aspects of physics that are still not understood.

For example, the question as to what dark matter and dark energy are, how general

relativity and quantum theory can be unified, or even the apparent asymmetry of

matter and antimatter. The Standard Model of particle physics, the most complete

and tested theory we have to date, is known to be incomplete. It has also not yet been

able to solve any of these questions. New theories have been postulated, aimed at

explaining some of the unresolved problems. However, so far there have been no direct

confirmations on the additional predictions that they make. Designing experiments

which can validate these theories, or rule them out, is thus essential for progress.

As there have been relatively few new results in this area from high energy physics,

apart from the discovery of the Higgs boson, more and more disciplines of physics have

become involved. Driven by this lack of direct observations of new physics at high

energy scales (through particle accelerators or cosmology), entirely new systems are

now considered in contrast to the established activities. Especially experiments with

atomic, molecular and optical systems, operating at much lower energies, allow for

complementary observations. In exchange these systems need extremely high accu-

racy and stability to measure any effects that might indicate new physics. When the

masses of new particles are in the TeV range, the size of effects which may be detected

in atomic systems (like electric dipole moments or changes of transition frequencies)

turn out to be very small. But luckily not so small to be considered completely out of

reach. For example, some hypothesized variations of the fine structure constant α are

expected to result roughly in a α̇/α ≈ 10−19 y−1 variation with a ∆α/α ≈ 10−20 an-

nual modulation. This is only a few orders of magnitude away from the performance

of the currently most accurate optical atomic clocks.

One impressive example for the progress in precision measurements is certainly

the first measurement of gravitational waves by the optical interferometers in the

LIGO collaboration. But also experiments based on the precision spectroscopy of

atomic systems, magnetometry, and comparisons between atomic clocks have made

significant contributions so far. In particular, new and much stricter constraints

1



2 Chapter 1. Introduction

on the masses and interaction strengths of postulated particles for dark matter and

dark energy were established. Small violations of fundamental symmetries and the

validity of the universality of free fall are tested and upper bounds to the temporal

variation of natural constants have been calculated from long-term measurements

on atomic clocks. Many more results like these are envisioned in the future. Some

of the most successful platforms are experiments that involve cold (neutral) atoms,

ultra-cold atoms in Bose-Einstein condensates or single to hundreds of trapped ions.

This selection is by no means complete, but includes cases which offer significant

advantages for precision measurements. For example, all these systems can be well

isolated from their environment and simultaneously allow a high degree of control

over electronic (internal) and motion (external) degrees of freedom.

The coherent control of individual quantum systems has been a major achieve-

ment of the last decades, acknowledged with the Nobel price for D. J. Wineland and S.

Haroche in 2012. Modern experiments allow for the creation of strong entanglement

between many particles. This also sparked more theoretical research and the general

field of quantum metrology arose early on, alongside experiments, from the idea that

entangled quantum mechanical systems can be used as sensors with even greater pre-

cision than uncorrelated particles. Often, however, highly idealized scenarios were

considered in the initial investigations, or the resulting optimizations led to protocols

that required manipulation and measurements which are extremely difficult to im-

plement. And still today, almost all high precision measurements focus either on low

systematic errors (high accuracy) or low statistical detection noise (high stability).

But applications for fundamental research will require improvements in both aspects,

which in some cases can only be reached with entanglement. The relevance of de-

signed quantum states for current metrology experiments, beyond proof-of-principle

setups, thus remains a pressing open question. This thesis reports our progress on

the issue by addressing the following guiding questions:

• Chapter 2: Can Ramsey protocols be robustly enhanced with minimal require-

ments for measurements and interactions? Are there any alternatives to the

known protocols if only specific interactions and measurements are allowed?

• Chapter 3: Under which conditions can the stability of optical atomic clocks

(in the simplest architecture) be improved by entanglement? When should

entangled states be employed? Can these limits be circumvented by alternative

architectures?

• Chapter 4: How can the necessary interactions for improved metrology be faith-

fully implemented in the case of trapped ions? Can one design readout schemes

for exotic particles without optical transitions, like single trapped antiprotons?



3

The introduction is intentionally kept short at this point. The central research

questions of the work were motivated and put into a general framework. However,

details on the individual topics are not yet given. This is due to the fact that each of

the three major chapters was written with the idea of being largely independent of

the other chapters. In this way they can also be read in isolation and hopefully still

present the main ideas in a clear and understandable way. Thus, at the beginning

of the chapters 2, 3 and 4 there is a separate introduction and motivation. At these

points we will pick up the larger framework once again, but also give more background

information, especially about the particular issue covered in that chapter.
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2
Ramsey interferometry with
generalized one-axis twisting
echoes

2.1 Motivation and research problem

Atomic sensors are currently among the most accurate measuring apparatuses in the

field of quantum metrology. They are used for precision spectroscopy, magnetometry,

or as frequency references and Ramsey interferometry is a popular measurement pro-

tocol for these applications. One particular advantage of using atoms for metrology

is that they are ideal references. All atoms are identical and their transition frequen-

cies are set by the laws of nature. In addition, comparing precision measurements

on simple atoms with ab initio theoretical calculations allows for strict tests of our

current understanding of the fundamental laws of physics [SBD+18, CSP09]. Due to

the high accuracy and precision, reached over years of progress and innovation, those

experiments are now envisioned to help detect minute effects which can be indications

of new physics [LBY+15, SBD+18]. As an example, we already stated in the intro-

duction that hypothesized variations of the fine structure constant α, having roughly

a α̇/α ≈ 10−19 y−1 variation with a ∆α/α ≈ 10−20 annual modulation [SBD+18],

could soon be investigate with optical atomic clocks.

But using atoms as sensors comes at the cost that, as they are inherently quan-

tum systems, they are also subject to the probabilistic character of measurements

in quantum mechanics. In particular, a fundamental limitation for high-precision

atomic sensors is given by the quantum projection noise (QPN). In this case, un-

avoidable quantum fluctuations of the measurement outcomes result in statistical

noise, which ultimately limits the precision of the sensor. Fortunately, entanglement

between atoms allows these fluctuations to be reduced below what is possible with un-

correlated probes [GLM06]. In the optical domain, squeezed states have already been

injected into laser interferometers to enhance the precision [BHS18, T+19, A+19b].

5



6 Chapter 2. Ramsey interferometry with generalized one-axis twisting echoes

Likewise, significant successes followed in the generation and characterization of non-

classical states in atomic physics [PSO+18]. Putting these advances to use in Ramsey

interferometry is an essential task to boost the performance of many atomic preci-

sion sensors in a similar fashion. However, the biggest problems of entangled states

are that strongly correlated systems often require demanding measurements and that

increasing sensitivity typically comes at the cost of an increased susceptibility to im-

perfections. More detailed investigations, taking these effects into account, showed

that the actual gain of some entangled states can be significantly lower than in the

ideal case [HMP+97, EdMFD11, DDKG12]. Hence the issue of practical quantum

metrology protocols arises. The key questions to be answered in this chapter are:

How well can extensions of the Ramsey protocol be robustly enhanced with minimal

requirements for the measurements and entangling interactions? Are the previous pro-

posals using either squeezed initial states or an interaction based readout complete,

or do other possibilities exist? One step towards these goals will be the introduction

of variational classes of Ramsey protocols, using entanglement as a resource. These

classes form a recurring theme throughout the thesis, in which the complexity of the

interactions is adapted at various points to suit the problem at hand.

As all applications mentioned above crucially rely on precise measurements of

the energy splitting between two electronic states of an atom or ion, we start this

chapter by collecting elementary properties of ensembles of spin-1/2 particles. Stan-

dard Ramsey interferometry is introduced in section 2.3 and we summarize some

previous results on the one-axis-twisting (OAT) interaction and general phase esti-

mation in sections 2.4.2 and 2.4.3. In the main part of this chapter we consider a

large variational class of echo protocols based on OAT operations which, by con-

struction, encompass a number of known protocols. In order to study which pro-

tocols give useful enhancements, we also include collective and individual dephasing

during the OAT interactions. However, noise during the probe time, i.e. the ap-

plication of the phase shift, is beyond the scope of this thesis. Related theoretical

works include variational optimization algorithms [KSK+19] or inversion protocols

using other spin-spin interactions, which are referred to as interaction based read-

outs [MSP16, Hai18, MNH18, APSK18, HZL+18, NKDW19]. Here we find the max-

imal amplification of the signal-to-noise ratio (SNR) by analytically optimizing geo-

metric parameters, that is, signal and measurement directions. This allows to provide

a complete overview and classification of our echo protocols in terms of the squeezing

and un-squeezing strengths at any level of dephasing and arbitrary N . We identify

one significant new scenario with a previously unused excess inversion. Such protocol

types, which we refer to as ‘over-un-twisting’ (OUT) protocols, are especially interest-
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ing as their sensitivity preserves the optimal Heisenberg scaling of entangled states,

SNR ∝ N , independent of any collective dephasing during the OAT interactions.

2.2 Spin systems

A unified theoretical description of many atomic sensors is possible when the internal

electronic structure of each atom is simplified to two energy levels only. Disregarding

the presence of other transitions is a common and valid assumption for atoms with

spectrally well separated energy levels. Such a two-level system could then constitute,

for example, a narrow transition with high stability to external perturbations, as

would be favoured for an atomic clock, a transition which allows particularly good

coherent control, or any transition with some other favourable properties. Due to

the formal equivalence in the mathematical description of a two-level system (qubit)

and a pseudospin-1/2 particle, states and operators can be expressed in the latter,

well-known form. So any pure state of an atom can be expressed as a superposition

|ψ〉 = c0|↓〉 + c1|↑〉. The basis states |↑〉 ≡ |1〉 and |↓〉 ≡ |0〉 label the two relevant

energy levels of the atom. In terms of the spin-1/2 algebra they are the eigenstates

of the Pauli matrix σz with eigenvalues +1 and −1 respectively. For atoms, | ↑〉 and

|↓〉 typically correspond to orbitals of the valence electrons with a higher and a lower

lying energy. Mixed states of a single qubit are characterized by a density matrix

ρ = (1 + r1σx + r2σy + r3σz)/2 = (1 + r · σ)/2 which is given in terms of the three

Pauli matrices σx, σy, σz and the 2 x 2 identity matrix 1. The three real coefficients

r1 = 〈σx〉, r2 = 〈σy〉, r3 = 〈σz〉 form the so called Bloch vector r = (r1, r2, r3)T , with

0 ≤ |r| ≤ 1. The Bloch vector fully characterizes the state of a single qubit and

gives a geometric interpretation to spin states and their dynamics. See Fig. 2.1 for a

picture of the Bloch sphere with markings for the locations of a few example states.

Figure 2.1: Bloch sphere visualization: The Bloch vector r represents the state
of a single qubit.
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2.2.1 Collective spin

Extending the concepts introduced above, a collection of N two-level systems is de-

scribed within the tensor product Hilbert space H =
⊗N

k=1C
2 of individual qubits.

The number of basis states of this space grows as 2N , making full numerical studies

inaccessible for more than a handful of qubits. However, when restricting to interac-

tions and measurements that are symmetric under particle exchange, the complexity

can be reduced to a polynomial scaling. Such a symmetry is present for all dynamics

considered in this chapter. Under the condition of symmetry all interactions must be

some combination of the collective spin operators

Sx,y,z =
1

2

N∑
k=1

σ(k)
x,y,z (2.1)

where σ
(k)
x,y,z is the respective Pauli matrix for particle k. The collective spin operators

fulfill the usual angular momentum commutation relations

[Sj, Sk] = i
3∑
l=1

εjklSl (2.2)

where εjkl is the fully antisymmetric tensor.

A basis in the general many-particle case is given by the states |S,M〉, which are

the joint eigenstates of S2 = S2
x+S2

y +S2
z and Sz with S2|S,M〉 = S(S+1)|S,M〉 and

Sz|S,M〉 = M |S,M〉. The labels are S ∈ {N/2, N/2 − 1, . . . , 0 or 1
2
} with the last

index depending on N being even or odd and M ∈ {−S,−S+1, . . . , S−1, S}. When

dealing with pure states which are symmetric under particle exchange, it suffices

to consider only the states with largest total spin S = N/2. In that case, the so

called Dicke states |M〉 ≡ |N/2,M〉 form a basis and thus the dimension of the

subspace is only N + 1. For arbitrary mixed states with exchange symmetry the

system can be described in terms of a basis whose number of elements scales ∝
N3 [Har16, XTH13, FSKD14, SAL+18]. The Dicke state |M〉 corresponds to the

fully symmetric linear combination of all states with M + N/2 excited qubits. For

example, the states with lowest M values are [Mes62]

| − N

2
〉 = |↓ ↓ . . . ↓〉 (2.3)

| − N

2
+ 1〉 =

1√
N

(
|↑ ↓ . . . ↓〉+ |↓ ↑ . . . ↓〉+ . . .+ |↓ ↓ . . . ↑〉

)
(2.4)

| − N

2
+ 2〉 =

1

2

(
N

2

)−1/2∑
j 6=k

|↓ . . . ↓ ↑j ↓ . . . ↓ ↑k ↓ . . . ↓〉 (2.5)
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and so on. To move between Dicke states of different M -values, the raising and

lowering operators

S± = Sx ± i Sy (2.6)

can be introduced, which obey

[S+, S−] = 2Sz, [Sz, S±] = ±S±. (2.7)

Correspondingly, we find

Sx =
1

2
(S+ + S−), Sy =

1

2i
(S+ − S−). (2.8)

These ladder operators act like

S±|M〉 =
√
S(S + 1)−M(M ± 1) |M ± 1〉 (2.9)

and thus increase or decrease the number of excitations by 1.

2.2.2 Visualization via Wigner functions

Whenever we want to gain conceptual insights to some specific measurement protocol

involving N qubits, representations of states and operators on the collective Bloch

sphere are a useful tool. Specifically, we will focus on the Wigner distribution W (θ, φ)

for this purpose. The following description is kept along the lines of Refs. [DAS94,

Aga81]. The concept is quite general and applies to pure states, mixed states, and

spin operators. We outline the construction of Wigner functions using the example

of a general mixed state.

General quasi-probability distributions for spin systems, as representations of a

quantum state ρ, are based on the decomposition

ρ =
2S∑
k=0

k∑
q=−k

ρkqT
(S)
kq (2.10)

of the density operator into spherical tensor operators T
(S)
kq . The spherical tensor

operators (also sometimes referred to as multipole operators) are defined as

T
(S)
kq =

S∑
m,m′=−S

(−1)S−m
′〈S,m;S,−m′|k, q〉|S,m〉〈S,m′| (2.11)

in terms of Clebsch-Gordan coefficients 〈S,m;S,−m′|k, q〉 or likewise in terms of the

Wigner 3-j symbols with the connection

(−1)S−m
′〈S,m;S,−m′|k, q〉 = (−1)S−m

√
2k + 1

(
S k S
−m q m′

)
. (2.12)
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The coefficients ρkq in the decomposition of Eq. (2.10) are given by

ρkq = tr
[
(T

(S)
kq )†ρ

]
(2.13)

and the Wigner function associated with ρ is then defined as [DAS94]

W (θ, φ) =
2S∑
k=0

k∑
q=−k

ρkqYkq(θ, φ) (2.14)

where Ykq(θ, φ) are the usual spherical harmonics. This form of the Wigner function

is uniquely determined by requiring the two important properties [Aga81]:

(i) Normalization:

tr [ρ] =

(
N + 1

4π

)1/2 ∫
W (θ, φ)dΩ, (2.15)

where dΩ = sin(θ) dθ dφ is the differential solid angle.

(ii) Traces of operator products become Wigner function overlap integrals:

tr [ρ1ρ2] =

∫
W1(θ, φ)W2(θ, φ)dΩ, (2.16)

where W1 and W2 are the Wigner functions for ρ1, ρ2 respectively. We highlight again

that the above description does not only hold for states ρ but for arbitrary atomic or

angular momentum operators. As examples we present a few Wigner functions for

states and operators in Fig. 2.2. A collection collection of entangled spin states is

later on shown in Fig. 2.6, when discussing one-axis-twisting, and we make further

use of the Wigner functions in section 2.8.

Figure 2.2: Example Wigner functions: Examples for different Wigner distribu-
tions which give a visual representation for states, operators, and dynamics of many
qubits (here, N = 50). On the left is the Wigner function for the coherent spin
state in x-direction, in the center the one for an entangled state generated via one-
axis-twisting, and on the right the Wigner function representing the collective spin
operator Sy.
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2.3 The conventional Ramsey protocol

After reviewing some elementary aspects of spin systems, this section will now in-

troduce the conventional Ramsey interferometry protocol. Very broadly speaking,

the core concept of any interferometer is to detect relative phase shifts between two

or more systems, caused e.g. by different propagation phases in the two paths of a

Michelson or Mach-Zehnder setup, between atoms and electromagnetic radiation in

the conventional Ramsey protocol or between atoms moving along different spatial

trajectories in atom interferometry. Historically, optical interferometers performed

the phase detection by superimposing electromagnetic fields and measuring the re-

sulting interference, hence the name. The high sensitivity of the interference signal

to small phase shifts established interferometry as a powerful tool for precision ex-

periments over the past centuries.

From an abstract point of view, quite general interferometer protocols can be

described in the following way: Consider the quantum state

ρφ = e−iφGρ0e
iφG, (2.17)

which is created by applying a phase shift via the generator G from the initial state

ρ0. The goal of an interferometer is to estimate the unknown phase φ as precisely as

possible on the basis of ρφ. Expressing interferometry in this way allows to identify

three fundamental parts of any protocol:

(i) Generation of the initial state ρ0.

(ii) Application of the phase shift, as in Eq. (2.17).

(iii) Measurement on ρφ to make an estimate of φ.

The original Ramsey interrogation is now demonstrated to be one particular case

of such a general interferometry protocol.

2.3.1 Ramsey interferometry with a single qubit

Ramsey’s method builds upon previous results regarding the Rabi oscillation of atoms,

which is a coherent manipulation of the spin state. To this end, let us first consider

the interaction of a classical electromagnetic field with the single quantized two-level

system introduced before.

Consider an electric field

E(t) = εEe−i(ωt+ϕ−π/2) + ε∗E∗ei(ωt+ϕ−π/2) (2.18)

at the position of the qubit with polarization ε, amplitude E , frequency ω, and phase

ϕ. In a rotating frame with ω, and after applying the rotating wave approximation,
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the Hamiltonian describing the dynamics is commonly of the form [GZ15]

H =
~∆ω

2
σz +

~ΩR

2
(sin(ϕ)σx − cos(ϕ)σy) (2.19)

where ∆ω := ω0 − ω is the detuning between the qubit resonance frequency ω0 and

the oscillation frequency ω of the field and

ΩR :=

∣∣∣∣2Edeg · ε~

∣∣∣∣ (2.20)

is the Rabi frequency (with the dipole moment deg), expressing the strength of the

coherent driving. We further assume that this is a strong, near-resonant drive, mean-

ing that the detuning is the smallest overall frequency, i.e. we assume the hierarchy

|∆ω| � ΩR � ω ≈ ω0. Without going into detail let us note that this interac-

tion is characteristic for atomic spectroscopy, aimed at measuring the detuning ∆ω,

which is essential to many different applications such as atomic clocks, magnetome-

ters, gravimeters and others. One way to execute spectroscopy protocols, based on

the Rabi method, uses continuous irradiation over some fixed time and a measure-

ment of the excitation probability at the end to map out a resonance profile with

respect to ∆ω. However, this has the possible drawback that the probing radia-

tion can perturb the natural transition frequency of the atom while performing the

spectroscopy. In this regard, many areas of atomic physics adapted Ramsey inter-

rogation [Ram50], which features two short interaction periods separated by a much

longer non-interacting period, due to the inherent reduction of systematic shifts and

the reduced influence of inhomogeneities. When operated with a long dark time,

Ramsey excitation also produces a narrower Fourier-limited linewidth compared to

continuous spectroscopy of the same interrogation time.

The conventional Ramsey protocol for a single qubit is depicted in Fig. 2.3a and

the approach is conceptually similar to the optical Mach-Zehnder interferometer.

Here, the three interferometer steps are:

(i) Beginning from the state |↓〉, a first atom-light interaction starts the Ramsey

interferometer sequence by generating the superposition

|ψ0〉 =
|↓〉+ |↑〉√

2
(2.21)

of the two qubit states, similar to the action of the first beamsplitter in the analogous

Mach-Zehnder interferometer. The state |ψ0〉 can be generated with the Hamiltonian

from Eq. (2.19) when ϕ = 0 as we show now. In the strong driving regime, |∆ω| � ΩR,

effects of the detuning can be neglected and the time evolution for the single qubit is

U(t) = e−iHt/~ = eiΘσy = cos(Θ) + iσy sin(Θ) (2.22)
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Figure 2.3: Single qubit Ramsey protocol: a Schematic Ramsey interferometry
with the single qubit Bloch vector. From left to right this is the preparation of the
initial superposition |ψ0〉 with the first π

2
pulse, next the phase shift φ is applied

during a free evolution time TR and last a second π
2

pulse rotates the state back into
the x-z-plane, allowing a measurement of σz to extract the information about φ. b
Sinusoidal interferometer signal 〈σz〉(φ).

with Θ = ΩRt
2

, which generates the desired superposition, Eq. (2.21), when Θ = π
4
.

(ii) Next, the phase shift results naturally during the Ramsey dark time, where

ΩR = 0. In this interval the time evolution is

U(t) = e−i
φ
2
σz (2.23)

with the phase φ = ∆ω TR, resulting in the state

|ψout〉 =
1√
2

(
|↓〉+ e−iφ|↑〉

)
(2.24)

up to a global phase. In the rotating frame adopted here, the interaction thus causes

the Bloch vector of the qubit to rotate along the equator of the Bloch sphere, as

depicted in Fig. 2.3a, based on the frequency difference ∆ω.

(iii) A measurement of the phase signal ends the interferometer sequence. In

the conventional Ramsey interferometer this is done by applying another atom-light

interaction, as in the creation of the initial state, however now with ϕ = π
2
,Θ =

π
4
. This closes the interferometer by rotating the Bloch vector around the x-axis

and subsequently a measurement of σz is performed. The final state prior to the

measurement is

|ψf〉 =
1

2
(1− ie−iφ)|↓〉+

1

2
(e−iφ − i)|↑〉 (2.25)
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so the resulting signal is simply 〈σz〉 =
∣∣〈↑|ψf〉

∣∣2 − ∣∣〈↓|ψf〉
∣∣2 = sin(φ), as shown in

Fig. 2.3b.

2.3.2 Quantum projection noise (QPN)

As mentioned in the motivation of this chapter, interferometry with atoms can not be

made with infinite precision. Let us start from the end of the Ramsey interferometry

to see what kind of limitations there are, so we first look at the measurement process.

It follows from the postulates of quantum mechanics that a measurement of e.g.

σz on a single qubit can only take two discrete outcomes: Either the particle is

measured to be in the ground state | ↓〉 or in the excited state | ↑〉. Assuming a

state |ψ〉 = c0| ↓〉 + c1| ↑〉 with complex amplitudes c0, c1 such that |c0|2 + |c1|2 = 1,

as we had it in the Ramsey interferometer after the phase shift, the measurement

detects the particle in | ↑〉 with probability p↑ = |c1|2 and in | ↓〉 with probability

p↓ = 1− p↑ = |c0|2. However, no insight on the amplitudes of any superposition can

be gained. The binary nature of the measurement outcomes means that generically

there will be noise attached to the determination of φ based on the fundamental

principles of quantum mechanics. Of course a precise knowledge of the excitation

probability p↑ would be best for interferometry. In the standard Ramsey protocol

from above, p↑ = 1+sin(φ)
2

and precise knowledge of this value would allow a perfect

resolution of φ ∈ [−π
2
, π

2
].

With each spin measurement on the qubit returning only one bit of information,

the signal that is encoded in the mean value 〈σz〉 is concluded more faithfully from

either repeating the measurement multiple times or performing it independently on

multiple atoms. One can study the measurement noise that remains for an ensemble

of N identically prepared and uncorrelated atoms by looking at a measurement of the

number of excited particles

N̂ =
N∑
i=1

|↑ 〉i i〈 ↑ | = Sz +
N

2
. (2.26)

Note that we will use the notation Â to explicitly refer to quantum mechanical

operators only when necessary to avoid confusion. By adding up all results of the

σz measurements for each individual atom, it can be seen that this observable can

only take on one of the integer values between 0 and N in each realization. With

the atoms being uncorrelated, the distribution of the outcomes follows a binomial

distribution with expectation value 〈N̂〉 = Np↑ and variance
〈
(∆N̂)2

〉
= Np↑(1−p↑),

cf. Fig. 2.4. This distribution arises from summing up the N independent Bernoulli

trials, corresponding to the measurement outcome of each individual qubit. The
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Figure 2.4: Distribution with QPN: Due to the probabilistic nature of quan-
tum mechanical measurements, the number of excited qubits can not be determined
precisely. For N = 20 uncorrelated particles with p↑ = 0.4 the distribution of mea-

surement outcomes M is a binomial distribution, centered around 〈N̂〉 = 8 and with
standard deviation ∆N̂ ≈ 2.19.

resulting variance constitutes the fundamental QPN for this state. Although QPN

was explained more intuitively in this case, using only σz measurements, we point

out that the logic remains true for general uncorrelated states and measurements

of the collective spin Sm in any direction m. Note that we will use the notation

Sn = n ·S = m1Sx +m2Sy +m3Sz. Even though the value of p↑ changes in general,

the overall conclusion remains invariant under a change of basis.

In an interferometer, one now seeks to estimate the probability p↑ according to

a particular measurement result M of N̂ . Choosing p̌↑ = M/N gives an unbiased

estimator of the excitation probability, as this has p↑ as its mean value. However,

looking at Fig. 2.4, the quality of the estimator is clearly limited by the variance of

the distribution. When K independent measurements are carried out, the variance

of the estimator around the true value scales like

〈
(∆p̌↑)

2
〉

=

〈
(∆N̂)2

〉
KN2

=
p↑(1− p↑)
KN

. (2.27)

Which reduces the overall uncertainty, but only in the same manner as more (uncor-

related) atoms would do.

More generally, the QPN can be considered a consequence of the uncertainty

relation 〈
(∆Sj)

2
〉〈

(∆Sk)
2
〉
≥ |〈Sl〉|

2

4
(2.28)

for the spin components in three orthogonal directions j, k, l. This inequality applies

to any state, correlated or not. It thus leads to lower limits on the measurement uncer-

tainties for the components of the total spin for any state with polarization |〈Sl〉| > 0.

Of course QPN in itself is not the only relevant quantity in metrology, especially as

it was introduced here for measurements of collective spin components only. Neither

higher moments, individual qubit measurement operators, or other observables were
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considered. We will follow up with more general limits to the measurement resolution

in section 2.4 when we allow for more general observables.

2.3.3 Coherent spin states

Looking back at the initial description of the Ramsey interferometer, we have now

seen that the protocol with only a single qubit is severely affected by the resulting

quantum projection noise and the use of a larger ensemble of atoms allows to cut

down on this noise. In this way we will now briefly adapt the formulation of the

Ramsey interferometer from above to the case of multiple atoms. This can be done in

a compact manner with the use of coherent spin states (CSS) [ACGT72] and collective

spin rotations.

For the study of quantum mechanical fields, such as the quantum mechanical

harmonic oscillator, coherent states give the closest analogy to classical oscillations.

In a similar way, one can define atomic spin states, which have analogous properties

to the coherent states of fields. Let us just consider the initial state of the Ramsey

interferometry to motivate this analogy. When we consider N two-level systems, the

new initial state before the start of the Ramsey protocol is simply the product state

|ψ0〉 = |↓〉⊗N with all particles in the ground state. Similarly, the results on coherent

control of atoms also generalize to the case of many spins by replacing the Pauli

matrices with the corresponding collective spin operators. Most important is that

equation

H = ~∆ωSz + ~ΩR (sin(ϕ)Sx − cos(ϕ)Sy) (2.29)

is the equivalent of Eq. (2.19) for N atoms. The unitary time evolution during such

pulses can be expressed as (again neglecting the small influence of the Sz term)

Rn(θ) := e−iθSn = e−iθ(Sx sinϕ−Sy cosϕ) (2.30)

where we again use the shorthand notation Sn = n ·S. The operator Rn(θ) describes

rotations of the collective spin vector about an axis n = (sin(ϕ),− cos(ϕ), 0) in the

Cartesian basis, with angle θ. After the rotation, the mean spin vector of the state

points along

s(ϕ, θ) =

〈Sx〉〈Sy〉
〈Sz〉

 =
N

2

cos(ϕ) sin(θ)
sin(ϕ) sin(θ)
− cos(θ)

 , (2.31)

but the spin variances in any direction orthogonal to s remain unchanged. The value

of the orthogonal variances for any rotation are the same as for the initial state

|ψ0〉 = | − N/2〉 =
⊗N

k=1 | ↓〉k, which has 〈Sz〉 = −N/2, 〈Sx〉 = 〈Sy〉 = 0, i.e. is

oriented in negative z-direction, and has fluctuations
〈
(∆Sk)

2
〉

=
〈
(Sk − 〈Sk〉)2

〉
=
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Figure 2.5: Ramsey interferometer withN atoms: a Conventional Ramsey mea-
surement where a phase φ is imprinted between two π/2-pulses by rotating the state
in the equatorial plane around the z-axis. After the second π/2-pulse, which rotates
the state around the x-axis, the signal in phase is determined from measuring the
spin component Sz. Note that alternatively one could discuss the effective observable
Sy and leave out the second pulse. Cones visualize mean spin directions and quantum
fluctuations of the CSS during the protocol. b Measurement signal 〈Sz〉(φ) where we
highlight the error propagation from detection noise ∆Sz onto a phase uncertainty
∆φ.

N/4 for all k ⊥ ez. The fact that each of these states has symmetric, minimal

variance according to the Heisenberg uncertainty relation, Eq. (2.28), suggests an

analogy to the coherent states of fields. Indeed, in further similarity to the coherent

oscillator states |α〉 = D(α)|0〉, which are generated by complex valued displacements

D(α) = eαa
†−α∗a of the vacuum state |0〉, the most general coherent spin state

|θ, ϕ〉 = Rn(θ)| −N/2〉 (2.32)

results from a rotation Rn(θ) of the atomic ground state |−N/2〉. Beyond the formal

similarity with coherent field states shown here, a more complete discussion of this

topic can be found in Ref. [ACGT72]. This work also includes many additional math-

ematical relations of the collective spin rotations Rn(θ), among them a highly useful

disentangling theorem for angular momentum operators. These relations are partic-

ularly valuable for the analytical study of generalized Ramsey protocols as discussed

in detail in appendix A.

Given these tools, the Ramsey interferometry with uncorrelated states can be

expressed in a compact form, as shown schematically in Fig. 2.5a. Picking up the

discussion on the initial state from above, we now see that the first π
2

pulse, starting

the interferometer sequence, corresponds to the controlled rotation

Rn(Φ) = e−iΦSn (2.33)

around n = ey and with Φ = π
2
. This generates the coherent spin state

|x〉 =

[
|↓〉+ |↑〉√

2

]⊗N
, (2.34)
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polarized in x-direction. This result can be verified with the property Rn(Φ) =⊗N
k=1 e

−iΦ
2
σ

(k)
n , meaning that the rotation splits into the product of single qubit rota-

tions, as Rn(Φ) is linear in the collective spin operator. In the following interaction

period, the small phase signal φ is imprinted by e−iφSz rotating the state around the

z-axis. A second π/2 rotation, with n = ex, allows to infer φ from the measurement

result of Sz as shown in Fig. 2.5b.

Even though we now include multiple atoms, any finite number N will still give

an uncertainty ∆φ from spin fluctuations of the CSS, e.g. the detection noise ∆Sz.

Note that we will generally make use of the notations

(∆Â)2 := 〈Â2〉 − 〈Â〉2 (2.35)

and

∆Â :=

√
(∆Â)2 ≡

√
〈Â2〉 − 〈Â〉2 (2.36)

for the variance and standard deviation of any quantum mechanical operator Â. A

natural question at this point is how to progress beyond the QPN limit. Entangling

the atoms was proposed as a possible way to reduce the measurement uncertainty.

But, given that the entire protocol can be expressed by collective rotations of the

uncorrelated initial state and the fact that product states will remain product states

under these rotations (as they decompose into individual qubit rotations), no entan-

glement can be generated in this sequence. In this sense one can regard the standard

Ramsey interferometer described here as the most ‘classical’ case. It will be useful to

compare the sensitivity of entangled states extending the Ramsey protocol against the

uncorrelated coherent spin states. In this way, an advantage over ‘classical’ strategies

can be quantified. We will look at some known extensions to the Ramsey protocol in

the next section.

2.4 Previous extensions to Ramsey interferometry

Understanding how entanglement has been used so far to enhance the precision of

Ramsey interferometry is essential to the results of this chapter. So at this point, we

give a short review on advances in quantum metrology which are relevant to Ramsey

interferometry. This is intended to help place the upcoming results in the broader

context of the field. We will not be able to give a complete discussion of quantum

metrology here, but instead rather focus on those results which form a direct basis

for our techniques, or those which address closely related research questions.

Extending the conventional Ramsey interferometry means allowing more degrees

of freedom in one of the interferometer steps (i)-(iii). As a repeating class of protocols

in this thesis, we define extensions of the following form:
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(i) Preparation of an initial state |ψ0〉 = Uen|x〉. Let the general initial state be

some non-classical state, where an entangling interaction Uen is applied on |x〉.

(ii) Imprint of the signal by a phase-dependent rotation of the initial state around

the z-axis. This results in e−iφSz |ψ0〉 where φ is the accumulated phase.

(iii) We allow for an additional decoding operation Ude to be applied before measur-

ing some component of the collective spin. For more direct correspondence to

the classical Ramsey interferometry, let us choose Sy to be the observable.

At the end of the sequence, the average signal is

〈Sy〉(φ) = 〈x|U †en R
†
z(φ)U †de Sy Ude Rz(φ)Uen|x〉. (2.37)

Note that the choice of the observable may pose no restriction, depending on the

generality of Ude. In principle, one could just as well include the application of Ude

into the notion of some new effective measurement operator S̃y = U †deSyUde. This can

alter the direction of the collective spin measurement when a collective spin rotation

is taken as the last interaction in Ude.

In the remainder of this section, special cases of the extended protocols are dis-

cussed. Adjusting the state preparation only, we will first review the characterisation

of sensitivity for collective spin measurement with different initial states in terms

of the squeezing parameter. Accompanying that section is a discussion of one-axis-

twisted states, which are the relevant entangled states within this thesis. While the

phase shift, i.e. step (ii) of a general interferometer, could in principle be adjusted to

some nonlinear dynamics, we will consider only collective spin rotations around some

axis throughout this entire thesis. Finally, very general optimizations over the mea-

surement, step (iii), are discussed in the section on fundamental metrology bounds.

2.4.1 Spin squeezing parameter

Historically, the quality of an atomic interferometer was first characterized through

properties of the applied measurement operator. Either in terms of the spread of

the outcomes, as we used it before with
〈
(∆Sz)

2
〉

in the discussion of QPN, or as a

signal-to-noise ratio around a fixed working point. The latter corresponding to the

inverse phase variance ∆φ−1 depicted in Fig. 2.5b. For the spin ensembles introduced

above, different forms of so-called squeezing parameters were introduced [MWSN11].

One of the most important definitions goes back to the works of Wineland and col-

leagues [WBIH94, WBI+92]. They considered an initial state with polarization 〈Ss〉
in s-direction, which is rotated on the collective Bloch sphere around a perpendicular

axis n ⊥ s before the spin projection Sm is measured in the direction m ⊥ n and
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m ⊥ s, i.e. orthogonal to both. With s = ex,n = ez and m = ey, this scenario is

exactly the standard Ramsey interrogation, as described above. The spin squeezing

parameter

ξ2 =
N
〈
(∆Sm)2

〉
〈Ss〉2

, (2.38)

introduced by Wineland et al., describes the ratio of QPN relative to the mean length

〈Ss〉 of the spin vector in polarization direction. Note that 〈Ss〉 captures the con-

trast of the measurement in this context. A ratio of ξ2 < 1 denotes spin squeezing,

which indicates an improvement in sensitivity compared to the classical coherent spin

states. More generally, it can be shown that ξ < 1 is a sufficient condition for entan-

glement [SDCZ01]. Therefore, states with ξ < 1 can only be generated by spin-spin

interactions which entangle the atoms. For the states that are typically regarded

as spin squeezed (ξ < 1), the variance of
〈
(∆Sm)2

〉
is reduced without violating

the uncertainty relation (2.28) by simultaneously increasing the variance
〈
(∆Sn)2

〉
.

However, there are also many other entangled states that can be useful for metrology

and for which ξ < 1 is not fulfill. Over time, more interactions have been proposed

to prepare such metrologically useful states. A comprehensive description of all pro-

cesses would lead too far and we refer to Ref. [PSO+18] for a collection of the most

frequent approaches. Many of these methods have already been tested in experiments

and further references to those works can be found in the same review. In this thesis

we exclusively make use of the one-axis twisting interaction.

2.4.2 One-axis-twisting

The one-axis-twisting interaction for effective two-level systems allows a uniform de-

scription of many setups [KU93]. The necessary Hamiltonian H = χS2
z can be engi-

neered in a variety of metrologically relevant systems. It can be generated through

cavity induced spin squeezing of cold atoms [SSLVac10, PSO+18], via laser or mi-

crowave driven quantum gates for trapped ions [BW08] and from spin-changing colli-

sions in spinor Bose-Einstein condensates [PSO+18]. In the case of one-axis-twisting,

the unitary time evolution

Tµ := e−iχtS
2
z = e−i

µ
2
S2
z (2.39)

with µ = 2χt generates a large variety of spin squeezed states, see Fig. 2.6. For

small squeezing strengths, µ < 4/
√
N , the generated entanglement is reflected by

reduced fluctuations of the mean spin [KU93, PSO+18] (see top row). With increas-

ing µ, greater levels of multi-particle entanglement are generated. At µ = π, ro-

tated versions of the N -particle correlated Greenberger-Horne-Zeilinger (GHZ) state[
|↓〉⊗N + |↑〉⊗N

]
/
√

2, aligned along the x axis if N is even or along the y axis if N

is odd, are created and the dynamic reverses afterwards [PSO+18] (see last panel).
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Figure 2.6: Overview of one-axis-twisting states: States generated via the one-
axis-twisting interaction for increasing squeezing strength µ = 2χt. In this visual-
ization the interaction has the form of a shearing force around the z-axis (see first
panel). Starting from the coherent spin state (µ = 0), one finds first the generation
of weakly squeezed spin states with the noise ellipse rotated depending on the value
of µ. For increasing µ, the states transform to oversqueezed states, superpositions of
multiple coherent spin states and finally to a GHZ state in the x or y basis. We used
N = 50 for all Wigner functions except for the last panel where N = 51 to represent
the difference between even and odd particle number which is relevant for this state.
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A few specific Ramsey protocols using such states are already known. Among them

is the use of maximally entangled GHZ states [BIWH96] and optimized moderately

squeezed states [ASL04]. Recently, experiments in which simple but well-controlled

interactions were used several times, in the form of an ‘echo’, achieved excellent

results in a range of precision measurements [HKEK16, LBS+04, LSM+16, BSB+19].

By applying the inverse OAT interaction before measuring a spin projection, even

stronger squeezed states can be used without the typical limitation from the loss of

contrast. These echo protocols, also called ‘interaction based readout’, attracted great

interest not only because they allow amplified sensitivity for simple measurements,

but also as they can ease the required resolution in the detection. A variety of

such protocols has been proposed, see for example Refs. [DBSS16, FSD16, NSH17,

APSK18, MSP16, HZL+18, NKDW19]. Notably, Haine [Hai18] identified optimal

interaction based readout strategies which maximize the classical Fisher information

(see below) under the influence of detection noise.

2.4.3 Fundamental bounds from quantum metrology

Apart from these specific protocols, much more universal statements can be made

about the resolution of phase shifts when optimizing over all measurements that could

be performed in step (iii). In this way limits to the uncertainty of phase estimation

were obtained by applying results from classical parameter estimation theory and

quantum information theory. For example, the Cramér-Rao bound〈
(∆φ̌)2

〉
≥
〈
(∆φ̌CR)2

〉
=

1

F (φ)
, (2.40)

for unbiased estimators φ̌, can be considered as a quantum mechanical restriction

when the conditional probabilities p(M |φ) in the Fisher information

F (φ) =
∑
M

1

p(M |φ)

(
∂p(M |φ)

∂φ

)2

(2.41)

reflect the measurement statistics of a quantum mechanical observable. Meaning

p(M |φ) = tr [ρφE(M)] is the probability to obtain result M for the observable E(M).

Generalized measurements We have applied here the concept of positive operator-

valued measures (POVMs) to describe generic observables [NC09]. With this notion

any measurement outcome M of a detector is identified with a positive, Hermitian

operator E(M). A POVM is then given by the complete set {E(M),M ∈ M} with

the defining properties E(M) ≥ 0 and
∑

M E(M) = 1, so they resolve the identity
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operator. They constitute the most general measurements possible in quantum me-

chanics, extending the usual projective measurements and also allowing for indirect

measurements in which a system interacts first with another probe system before

the measurement is performed on the probe. POVMs are motivated based on gen-

eral statistical theories and the Born rule so that the defining properties from above

ensures positive probabilities p(M |φ) ≥ 0 with proper normalization
∑

M p(M |φ) = 1.

It should be noted that the classical Cramér-Rao limit, Eq. (2.40), includes an

optimization over all unbiased estimators but still depends on the selected observable.

In a second step, the bound can be lowered by maximizing the Fisher information

over all observables. This results in the so-called quantum Cramér-Rao bound [Hel69]〈
(∆φCR)2

〉
≥
〈
(∆φQCR)2

〉
=

1

FQ[ρφ]
, (2.42)

where the quantum Fisher information (QFI) FQ[ρφ] = maxE F (φ) is the maximiza-

tion of Eq. (2.41) over all generalized measurements E. For some reviews on the topic,

see e.g. Refs. [GLM11, Par09]. The QFI, and thus the quantum Cramér-Rao limit,

are completely characterized by the final state ρφ. Thus, one obtains with Eq. (2.42) a

limit that only depends on the initial state ρ0 and the interferometer transformation,

as e.g. in Eq. (2.17).

2.4.4 Heisenberg limit

The largest QFI for any generator G = Sn, linear in the collective spin operators, and

arbitrary N -qubit states ρ is [PS09]

FQ[ρ, Sn] ≤ N2. (2.43)

In combination with Eq. (2.42) this defines the Heisenberg limit [GLM06]〈
(∆φH)2

〉
=

1

KN2
(2.44)

as the lowest value to the estimation variance. Here we allowed for K independent

repetitions of the measurement process. The name ‘Heisenberg limit’ originates from

the heuristic phase-number uncertainty relation ∆φ∆N ≥ 1 and was termed by Hol-

land and Burnett [HB93]. We will refer to Heisenberg scaling whenever ∆φ ∝ N−1.

Note that the Heisenberg limit presented in Eq. (2.44) can still be outperformed

by non-linear interactions [Lui04, BFCG07, RB08, BDF+08] or multi-pass proto-

cols [HBB+07].
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2.4.5 Results on the quantum Fisher information

Interestingly, it has also been shown that the QFI is connected to the separation of

states under the interferometer transformation [BC94]. Looking at the Bures dis-

tance [Bur69, Hüb92]

d2
B(ρ0, ρφ) = 1−F (ρ0, ρφ), (2.45)

where F (ρ0, ρφ) = tr
[√√

ρφρ0
√
ρφ
]

is the general quantum fidelity [Uhl76, Joz94]

between two states, a Taylor expansion around small values of φ gives [PSO+18]

d2
B(ρ0, ρφ) =

FQ[ρ0]

8
φ2 +O(φ3). (2.46)

Thus the QFI corresponds to the speed at which the transformed state ρφ separates

from ρ0. Not only does this give a geometric perspective to the QFI, but it also

allows the derivation of useful ways to calculate the QFI in particular instances. Es-

sential for this work is the case of a general mixed state with spectral decomposition

ρφ =
∑

κ qκ|κ〉〈κ|, which can result from a mixed initial state after the unitary in-

terferometer transformation with generator G. Here, the spectral decomposition has

qκ ≥ 0 for the eigenvalues and |κ〉 denote the associated eigenvectors. In this case the

QFI is [BC94, PSO+18]

FQ[ρ0, G] = 2
∑
κ,κ′

qκ+qκ′>0

(qκ − qκ′)2

qκ + qκ′
|〈κ′|G|κ〉|2. (2.47)

An important simplification of equation (2.47) follows for pure states ρ0 = |ψ〉〈ψ|. In

that case

FQ[ρ0, G] = 4
〈
(∆G)2

〉
, (2.48)

causing the QFI to depend entirely on the variance of the generating Hamiltonian.

Although the optimal measurements can be determined in principle [BC94], this

often results in complicated solutions, which generally depend on the true value of

the parameter φ. So reaching the full QFI is often impossible or very complicated at

best. Nonetheless, it is important as a useful limit to compare to. Thus the QFI has

been studied on its own for a variety of states and interferometer interactions. For

states created by one-axis twisting and transformed by collective spin rotations, one

has [PS09]

max
n
FQ[ρ0, Sn] = max

{
N +

N(N − 1)

4

(
A+
√
A2 +B2

)
, (2.49)

N2
(
1− cos2N−2(µ/2)

)
− N(N − 1)A

2

}
with A = 1− cosN−2(µ) and B = 4 sin(µ/2) cosN−2(µ/2).
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2.4.6 Estimation from statistical moments

A relation between the general bounds introduced above and the standard phase res-

olution or the well-known squeezing parameter ξ can be established by the method

of moments [PSO+18]. In this approach, the change of collective properties of the

measurement statistics, such as the mean value M(φ) or the variance
〈
(∆M)2

〉
(φ), is

used to detect the phase φ. The method is briefly explained here, using the example of

the mean value. Consider an observable for which the outcomes M1, . . . ,MK are ob-

tained in K independent repetitions with the true phase value φ0. The experimentally

determined mean value is M ex = 1
K

∑K
j=1Mj. If the functional relation M = f(φ)

between the phase and the mean value is known, then the value φ̌ = f−1(M ex) is

chosen as the estimator. In this way, φ̌ corresponds to that value of φ which would

give the measured mean value M ex. In a small region around a fixed value φ0, the

variance of this estimator is calculated by error propagation to be

∆φmom =
∆M(φ0)√

K|dM/dφ|
∣∣
φ0

. (2.50)

Since the Fisher information is bounded from below by the variation of the mean

value [PS09], i.e.

F (φ) ≥ 1〈
(∆M)2

〉
(φ0)

(
∂M

∂φ

∣∣
φ0

)2

, (2.51)

it follows that

∆φmom ≥
1√

K
√
F (φ)

≥ 1√
K
√
FQ[ρ,G]

. (2.52)

Finally, in the case of spin squeezing, one has

N

FQ[ρ0, Sn]
≤ ξ2. (2.53)

The method of moments is often favoured, due to its simplicity in determining the

phase sensitivity of interferometers. Note, however, that it is generally not optimal,

since ∆φmom < ∆φCR. Furthermore, the procedure can only be applied in a range of

parameters, for which the relationship M = f(φ) is unambiguous and the inversion

of f(φ) is possible. In section 2.7, we will make use of the bounds (2.52) and (2.53)

as a benchmark for the generalized echo protocols developed hereafter.
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2.5 Generalized Ramsey protocols

Motivated by the conventional Ramsey scheme, introduced in section 2.3 and dis-

played for comparison in Fig. 2.7a, we now consider the generalized echo protocols,

shown schematically in Fig. 2.7b. Starting again from the coherent spin state |x〉,
present after the first π/2 pulse, a squeezed spin state is initiated via the non-linear

OAT interaction Tµ = e−i
µ
2
S2
z , with strength µ. For the following signal imprint we

now consider the more general case of a rotation of the collective spin around an arbi-

trary axis n. Note that the physical rotation around the z-axis may be converted to a

rotation around n by appropriate single qubit rotations R (in the form of Eq. (2.33))

before and after the phase imprint such that Rn(φ) = e−iφSn = R−1e−iφSzR, meaning

that Sn = R−1SzR. Prior to the measurement, we allow for another OAT interaction

with strength ν − µ. With this definition, ν describes the deviation from an exact

inversion of the initial OAT. This choice is based on an appearing symmetry around

exact echo protocols at ν = 0, cf. Fig. 2.7c. We assume inversion of the OAT is

possible by reversing the sign of the interaction strength, as already demonstrated

for cold atoms [HKEK16], spinor Bose-Einstein condensates [LSM+16] and trapped

ions [LBS+04, GBSN+17]. At the end of our protocols, the collective spin Sm in an

arbitrary direction m is measured. Again, this can be implemented with a measure-

ment of Sz by preceding an appropriate rotation of the collective spin. Overall, the

generalized echo protocols have a measurement signal

〈Sm〉(φ) = 〈x|T †µ R†n(φ)T †ν−µ Sm Tν−µRn(φ)Tµ|x〉, (2.54)

characterized by parameters µ, ν for squeezing and un-squeezing, and directions n,m

for signal and measurement. This is now one particular refinement of the general

extensions which were introduced in section 2.4. We highlight that the generalized

echo protocols include some common squeezing protocols as limiting cases: For ν = µ,

i.e. no un-twisting, we find standard Ramsey interrogation with a spin squeezed initial

state [ASL04]. In this case, the SNR is enhanced by reducing projection noise at a

constant signal. More recently, protocols with exact inversion, i.e. ν = 0, were

suggested for application in quantum metrology [DBSS16, FSD16, NSH17]. There,

amplification of the signal at constant measurement noise occurs.

2.6 Geometric optimization

In the following we quantify metrological sensitivity by the inferred phase deviation

∆φ(µ, ν,n,m) = ∆Sm|φ=0

/∣∣∣∣∂〈Sm〉∂φ

∣∣
φ=0

∣∣∣∣ (2.55)
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around the working point φ = 0. As motivated before, this is a useful measure for

atomic sensors limited by quantum projection noise. For ν = µ, i.e. no interaction

preceding the measurement, the phase deviation is connected to the squeezing pa-

rameter as ∆φ = ξ√
N

when n ⊥ m and both are in the y-z plane. However, for

ν 6= µ, ∆φ is a true extension of ξ by also considering effectively nonlinear spin

observables. We will now show that the essential optimization with respect to the

signal and measurement directions can be solved analytically. The method described

here corresponds exactly to the method first described in a related work by Gessner

et al. in Ref. [GSP19]. While in that case the authors were able to systematically

Figure 2.7: Generalized Ramsey protocols: a Conventional Ramsey interfer-
ometry. b Generalized Ramsey protocols with additional one-axis twisting Tµ and
un-twisting Tν−µ dynamics, as well as arbitrary directions n, m for the signal and
measurement respectively. Optimizing over n, m allows to extract the largest sensi-
tivity, characterized by the initial squeezing strength µ and the inversion ν only. c
Example of an optimized sensitivity landscape for the inverse phase variance ∆φ−1

around φ = 0 with N = 32. The boxes (dashed lines) highlight three distinct types
of protocols we identified. At small µ the ‘squeezing protocols’ (blue), and at large
squeezing strength the ‘GHZ protocols’ (black), which are known in the literature.
In between, at an unusual double inversion of squeezing for ν = −µ, we find a new
class of ‘over-un-twisting protocols’ (red). Colored symbols denote the local maxima
in each class, the squeezing protocols (square), the OUT protocols (circle), and the
GHZ protocols (triangle). Figure adapted from Schulte et al. [SMLSH20].
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optimize general nonlinear measurement operators, we use the method in our work

to find the optimal geometric factors for generalized echo protocols. It is interesting

to note that only by this means the metrological gain of strongly entangled states,

such as non-Gaussian states, could be shown in both works.

First, we re-express the two contributions, signal and noise, separately. For the

signal strength we find ∣∣∣∣∂〈Sm〉∂φ

∣∣
φ=0

∣∣∣∣ = nTMm (2.56)

with Mkl = i〈[Sk(µ), Sl(ν)]〉|φ=0
, where we denoted transformed spin operators by

Sk(µ) = T †µSkTµ. Taking the absolute value in Eq. (2.56) comes with no loss of

generality when optimizing the directions, as the sign of the slope can always be

flipped by changing either n → −n or m → −m. Likewise, the measurement

variance can be expressed as〈
(∆Sm)2

〉∣∣
φ=0

= 〈S2
m(ν)− 〈Sm(ν)〉2〉

∣∣
φ=0

= mTQm (2.57)

with Qkl =
〈

1
2
(Sk(ν)Sl(ν) + Sl(ν)Sk(ν))− 〈Sk(ν)〉〈Sl(ν)〉

〉∣∣
φ=0

. The matrices M and

Q can be obtained analytically. The calculations in Appendix A give

M =

1
2
(n1 + n2) 0 0

0 1
2
(n1 − n2) n3

0 n4 0

 (2.58)

with

n1 =
N(N − 1)

2
sin

(
µ− ν

2

)
cosN−2

(
µ− ν

2

)
, (2.59)

n2 = −N(N − 1)

2
sin

(
µ− ν

2

)
cosN−2

(
µ+ ν

2

)
, (2.60)

n3 = −N
2

cosN−1
(µ

2

)
, n4 =

N

2
cosN−1

(ν
2

)
. (2.61)

For the spin covariances, the respective matrix is

Q =

1
2
(q1 + q2)− q2

0 0 0
0 1

2
(q1 − q2) q3

0 q3 q4

 (2.62)

with

q0 =
N

2
cosN−1

(ν
2

)
, q1 =

N(N + 1)

4
, q2 =

N(N − 1)

4
cosN−2 (ν) , (2.63)

q3 =
N(N − 1)

4
sin
(ν

2

)
cosN−2

(ν
2

)
, q4 =

N

4
(2.64)
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While seemingly a rather technical point, the fact that M and Q can be calculated

exactly is crucial to an efficient optimization for arbitrary particle number N .

For a minimization of ∆φ we instead aim to maximize the inverse phase deviation,

i.e. the SNR, which is expressed as

∆φ−1 =
nTMm√
mTQm

. (2.65)

Because Q is a positive semi-definite spin co-variance matrix, we can define the vector

v = Q1/2m with ||v|| =
√
mTQm and correspondingly m = Q−1/2v. Note that Q

is singular for ν = 0 only. In this case, the optimization of rotation and measurement

directions can be restricted to the plane perpendicular to the initial spin polarization.

With the unit vector u = v/||v||, the sensitivity is

∆φ−1 = nT M Q−1/2 u. (2.66)

The right hand side of Eq. (2.66) can be optimized over all signal directions n and

measurement directions m by a singular value decomposition M Q−1/2 = USV †,
where U and V are orthogonal matrices and S = diag(s1, s2, s3) is the diagonal ma-

trix containing the singular values. After this step, the optimized sensitivity depends

exclusively on the initial squeezing strength µ and excess inversion ν. The maximal

SNR is just the largest singular value and the ideal directions for signal and measure-

ment, at each point (µ, ν), can be inferred from the two orthogonal matrices U and

V . An example landscape of the optimal SNR

∆φ−1(µ, ν) = max
n,m

∆φ−1(µ, ν,n,m) (2.67)

is shown in Fig. 2.7c. We point out that the relatively small particle number, N = 32,

is motivated to easily highlight important features of the landscape. With the analytic

expressions, computational time is independent of N and we show the landscapes for

different values of N , up to N = 1024, in Fig. 2.8.

In view of Fig. 2.7c mainly three separate regions exist in which an amplified SNR

is achieved: (i) The first region (blue box) includes protocols with small squeezing

strengths |µ|, |ν| . 4/
√
N . We refer to such cases as ‘squeezing protocols’, because

this is the only region that contains initial states exhibiting reduced spin fluctuations

while still maintaining significant polarization (see section 2.4.2). Note however that

this usual intuition is no longer exclusive for all states contained in the ‘squeezing

protocols’. Already at µ & 2/
√
N the states generated by OAT enter the regime of

so called oversqueezed states, which wrap around the Bloch sphere. From this point

on spin squeezing is lost according to the Wineland squeezing parameter, i.e. ξ >

1 [WBI+92, WBIH94]. Again, ξ is connected to our figure of merit without any echo
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Figure 2.8: Landscapes for larger N : Generalized Ramsey protocols for N =
2− 1024.

(ν = µ) by ξ2 = N∆φ2(µ, µ). While the original classification, based on the squeezing

parameter ξ, fails with the application of echoes, we find that the characteristic scaling

µ ∼ 1/
√
N of the squeezing region remains valid for the generalized protocols. Note

that the failure of the usual argument is also visible in the µ-ν-landscapes we show.

Compare for example the position of maximum sensitivity along the ν = µ line with

the local maximum over all squeezing protocols (blue square) in Fig. 2.7 c. The

additional factor of two in the condition |µ|, |ν| . 4/
√
N was introduced here to

place the cutoff close to the minimum that lies between the local maximum at small

squeezing strength and the broad maximum around µ = π/2.

As a special case of ‘squeezing protocols’ we recover the classic Ramsey protocols

with squeezed initial states and no un-squeezing (ν = µ) along with their known

optimal signal and measurement directions [KU93]. We also find optimized exact echo

protocols, on the horizontal line at ν = 0, for initial squeezing strengths µ ∼ 2/
√
N .
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The optimal directions converge to n = ey and m = ey for N � 1.1 This proves

optimality for the choices of signals and measurements made by Davis et al. [DBSS16].

Interestingly, we find that within the class of squeezing protocols the local maximum

in sensitivity is reached at values of ν which do not correspond to either of these

known protocols. It rather lies at an intermediate value of ν. (ii) The second region

(black box) exhibiting enhanced sensitivity exists at large squeezing strength, π −
4/
√
N ≤ µ ≤ π. It contains highly entangled states, close to the GHZ state, so that we

refer to these as ‘GHZ protocols’. Note that the enhancement of GHZ states is ideally

obtained with parity measurements. Recently, approaches using the measurement of

spin projections and an additional squeezing interaction were discussed by Leibfried

et al. [LBS+04, L+05b]. (iii) Finally, we find exactly one more region (red box,

with 4/
√
N < µ < π − 4/

√
N), corresponding to a new type of protocols that are

characterized by a double inversion of the OAT, at ν = −µ. We refer to these as

‘over-un-twisting’ (OUT) protocols. The enhancing mechanism there is conceptually

different from the squeezing protocols and is discussed further below. The initial

states in this class are regarded as oversqueezed or non-Gaussian states [SML+14].

So far, the entanglement in this region was first captured by the quantum Fisher

information [PS09] or later in terms of nonlinear squeezing parameters [GSP19].

Closing the discussion of special cases we note that one does not see the standard

GHZ interferometry at µ = π, ν = 0 in Fig. 2.7 c. This is due to the fact that within

our variational class the signals of these protocols, oscillating as 〈Sm〉(φ) ∝ cos(Nφ),

have a local maximum at φ = 0. The standard GHZ interferometry can, on paper,

compensate for the vanishing slope with an also vanishing QPN such that the SNR

in the limit φ → 0 is still a finite value. However, for numerical stability of the

singular value decomposition, we have prohibited 0 variance by adding a tiny offset

to the variance of any spin projection. This also makes sense from a practical point

of view as a vanishing projection noise would require perfect measurement contrast.

In experiments, this problem is bypassed by placing the observed signal at mid fringe

with an additional controlled rotation, causing φ→ φ− π
2N

. But such a static phase

shift lies beyond the possibilities of the variational class defined here. However, it can

be done with even further generalization of the protocols (see section 2.10.3).

2.7 Dephasing noise

To see which protocols actually correspond to a robust enhancement, we now add

dephasing during the OAT. In the presence of collective dephasing, at a rate γC > 0,

1Deviations from these directions are basically insignificant, even at low particle numbers N .
They are, for example, on the order of n = (0, 0.93, 0.37)T and m = (0, 0.98,−0.22)T at N = 16.
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the dynamics of the system will be governed by the master equation

ρ̇ = −i[H, ρ] + γCLC [ρ] (2.68)

with H = χS2
z and LC [ρ] = SzρSz− 1

2
S2
zρ− 1

2
ρS2

z . The noise strength is quantified by

the dimensionless parameter σ = |γC |/|χ|. In cavity induced squeezing of atoms, de-

phasing of this kind happens due to photon shot noise [DBSS16], causing fluctuations

in the direction of the states’ collective spin vector. For quantum gates with trapped

ions, dephasing occurs through random variations of the transition frequency from

stray fields or from frequency noise of the driving fields. When uniform over the ex-

tend of the ion string, both result in collective dephasing [KMR+01, RCK+06]. With

spinor Bose-Einstein condensates, collective dephasing may also arise from magnetic

field fluctuations [PSO+18].

The geometrical optimization with respect to n and m can still be performed

analytically, also when including dephasing. See appendix A.2 for the technical de-

tails. Figure 2.9 a shows the sensitivity including collective dephasing with σ = 0.1.

Compared to the ideal case, shown in Fig. 2.7 c, we see that any enhancement of

the GHZ protocols is strongly suppressed by the noise. Furthermore, within the

squeezing protocols a bias towards ν ≈ µ is developing, as protocols with reduced

additional inversion suffer less from dephasing. Surprisingly, the large maximum of

OUT protocols remains only weakly affected by preparation noise and still offers large

enhancement. To emphasize this, Fig. 2.9 b displays the measurement-optimized sen-

sitivity, maxν (∆φ−2(µ, ν)/N), as a function of the initial squeezing for various levels

of dephasing. Performing the optimization over all measurements within our pro-

tocols also allows to compare the obtained SNR to fundamental limits of quantum

metrology (see section 2.4.3). Most notably, Eq. (2.52) implies

max
ν

∆φ−2(µ, ν) ≤ FQ, (2.69)

following from the quantum Cramér-Rao bound. The upper limit FQ is the quantum

Fisher information, which quantifies the maximum information about the phase φ that

can possibly be inferred from the initial state and the interferometer transformation

with Sn. The quantum Fisher information thereby includes an optimization over all

measurements, containing weak measurements, individual operations on each particle,

parity and others, which go beyond what is possible with the resources considered

here. The black, solid line in Fig. 2.9 b shows the quantum Fisher information limit,

given by Eq. (2.49) for OAT, in comparison to the SNR. As a function of the squeezing

strength, FQ increases from the standard quantum limit FQ = N of uncorrelated

particles, at µ = 0, up to the Heisenberg limit FQ = N2, at µ = π. Even though the

quantum Fisher information constitutes a true extension over the capabilities of the
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Figure 2.9: Sensitivity with dephasing: a Sensitivity ∆φ−1 for N = 32 with
σ = 0.1 collective dephasing noise during the state preparation and inversion. As
compared to Fig. 2.7 c, changes in the positions of optimal protocols (symbols) as well
as an overall reduction in sensitivity can be observed. b SNR with optimized inversion,
maxν ∆φ−2(µ, ν)/N , for different levels of collective dephasing noise σ = 0, 0.1, 0.5.
Colored areas mark the squeezing, OUT and GHZ protocol types. The black line
is the scaled quantum Fisher information FQ/N of the ideal initial squeezed state,
i.e. σ = 0. We find three peaks corresponding to the optimal squeezing, over-un-
twisting and GHZ protocols. Symbols on the green dashed line represent the optimal
protocols of Fig. 2.7 c while symbols on the magenta dash-dotted line correspond to
part a. Figure adapted from Schulte et al. [SMLSH20].

protocols considered here, we nevertheless find that the OUT protocols actually reach

the quantum Fisher information bound with increasing N . This feature persists for

small collective dephasing as well. The only other case where this holds true is for

µ� 1. However, at extreme levels of noise also the OUT protocols fall short compared

to the quantum Fisher information limit. Figure 2.10 illustrates the comparison to

fundamental limits for different N , adding also the QFI for an initial state with some

collective dephasing. In the case of collective qubit dephasing, in the form of the

master equation (2.68), the density matrix can be expressed in the Dicke basis as

ρ =

N/2∑
m,m′=−N/2

e−i(m
2−m′2)µ/2−σ(m−m′)2|µ|/4 cm(θ, ϕ)c∗m′(θ, ϕ) |m〉〈m′| (2.70)

with the coefficients [ACGT72]

cm(θ, ϕ) =

(
N

N/2 +m

)1/2

sinN/2+m(θ/2) cosN/2−m(θ/2)e−i(N/2+m)ϕ (2.71)

of the coherent spin state |θ, ϕ〉. Now the quantum Fisher information for the

dephased initial state can be evaluated by numerically diagonalizing ρ based on
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Figure 2.10: Overview of sensitivity with collective dephasing: The solid
black line is the quantum Fisher information for an ideal OAT state, while the thin
magenta line is the quantum Fisher information of the state with collective dephasing
σ = 0.1 in the initial state preparation. This shows that the noisy quantum Fisher
information limit is reached for stronger dephasing only at µ� 1. Vertical lines mark
the transitions from the squeezing region to the OUT region and to the GHZ region.

Eq. (2.70) and optimizing the right hand side of Eq. (2.47), with H = Sn, over

all directions n.

Due to the exact optimization, established in section 2.6, we are also able to

efficiently examine the influence of dephasing on the particle number scaling of the

sensitivity. Figure 2.11 a-c show the scalings for σ = 0, 0.01, 0.5. Symbols mark

the best sensitivity within each protocol type, while lines show numerical fits to an

asymptotic scaling ∆φ−1 = cNα with fitting parameters c and α. The green region

reflects sensitivity beyond the Heisenberg limit ∆φ−2 > N2 and the grey region

sensitivity below the standard quantum limit ∆φ−2 < N . We find that, remarkably,

the OUT protocols always exhibit Heisenberg scaling, ∆φ−1 ∝ N , independent of

the dephasing. On the other hand the GHZ protocols quickly drop to the classical

scaling, showcasing their increased susceptibility in this regard. The dependence

of the exponent α on the noise strength is shown in Fig. 2.11d, highlighting the

characteristic differences regarding the influence of collective dephasing. Although

the squeezing protocols have a reduced scaling exponent compared to OUT protocols,

they may still be the overall best protocols when limited to small ensembles and larger
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Figure 2.11: Scaling of the sensitivity with N : a-c Sensitivity under collective
dephasing, with σ = 0, 0.01, 0.5, for squeezing (blue), OUT (red) and GHZ (black)
protocols as a function of the particle number N . The green region shows sensitivity
beyond the Heisenberg limit, ∆φ−2 > N2, and the grey region sensitivity below
the standard quantum limit, ∆φ−2 < N . Lines are fits of the local optima to an
asymptotic scalings ∆φ−1 = cNα at large N . Note that a flat line thus still means
improvement with N , however, only at the classical scaling ∆φ−2 ∝ N . d Scaling
exponent α as a function of noise strength. Figure adapted from Ref. [SMLSH20].

dephasing, cf. Fig. 2.11c. Our findings also show that initially the scaling may deviate

significantly from the asymptotic case, even up to ensembles of considerable size.

In addition to collective dephasing, we further study individual dephasing during

the OAT interactions. Compared to Eq. (2.68), the master equation is

ρ̇ = −i[H, ρ] + γILI [ρ], (2.72)

where LI [ρ] =
∑N

k=1 σ
(k)
z ρσ

(k)
z − ρ. This describes individual, but symmetric, dephas-

ing of each atom at a rate γI > 0, and we likewise define Σ = |γI |/|χ|. It turns out

that individual dephasing results in a less stringent restriction on sensitivity than

collective dephasing of the same strength. The sensitivity for all protocol types scales
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asymptotically linearly in N , independent of the value of Σ, as shown in Fig. 2.12.

In this case, the squeezing protocols are optimal, as the prefactor to their scaling is

least affected by the individual dephasing.

Figure 2.12: Effects of individual dephasing: Sensitivity versus particle number
for individual dephasing during the OAT interactions with strength Σ = 0.5 and
extreme dephasing at Σ = 2. Figure reproduced from Schulte et al. [SMLSH20].

2.8 Over-un-twisting enhancement

In this last section we give an explanation of the mechanism underlying the OUT

protocols. To visualize the sensitivity enhancement we split the protocols into a state

evolution and an effective measurement part. As shown in the schematic of Fig. 2.13,

we group one half of the double inversion to the state evolution and the other half

to the measurement. Now, for the optimal OUT protocol, first a superposition of

four coherent spin states along the equator of the collective Bloch sphere is generated

by Tµ with µ = π
2

[APS97]. The corresponding Wigner function is shown in the top

row of Fig. 2.13. A small rotation around the y-axis perturbs the following exact

inversion of OAT in such a way that interference patterns remain on the sides of a

large polarization contribution in x-direction. The absolute values of these patterns

increase for larger rotation angles φ, or with increasing N , when keeping φ� 1 fixed.

The signs of the interference patterns change only when rotating in the opposite di-

rection, i.e. Ry(−φ) instead of Ry(φ). The second part of the OUT protocols can be

viewed as a transformation of the applied measurement. The bottom row in Fig. 2.13

shows that the twisting dynamics on Sy leads to a Wigner function for the operator

P := T †π/2SyTπ/2 with rapid sign changes, wrapping around the Bloch sphere. Larger

values of N have narrower spacing of the interference patterns with increased maxi-

mal and minimal values of the Wigner function, thus giving an enhanced signal, cf.
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Figure 2.13: Illustration of over-un-twisting protocols: Wigner function rep-
resentation for the optimal over-un-twisting protocol at µ = π

2
, ν = −π

2
, here with

N = 32. Half the OAT inversion is assigned to the state evolution, the other half
to the measurement operator. State evolution (top): Starting from the superposi-
tion of four coherent states along the equator, a small rotation around n = ey (here
φ = −0.02), followed by exact OAT inversion, leads to the state |ψ〉 with large polar-
ization in x-direction and residual interference patterns due to the disturbance of the
rotation. Effective measurement (bottom): OAT of the optimal measurement direc-
tion Sm ≈ Sy creates dense sequences of positive and negative values in its Wigner
function. These match exactly the pattern on |ψ〉, so that in the overlap of the
two Wigner functions the interference patterns are either all positive or all negative,
depending on the sign of φ. Integrating the overlap over the sphere results in the
measurement signal 〈Sy〉(φ). Figure adapted from Schulte et al. [SMLSH20].

Fig. 2.14 a. The density of patterns increases in the same way with N for both the

state |ψ〉 and the measurement operator P . So, importantly, the interference patterns

of the two Wigner functions match exactly. It is interesting to note that the Wigner

functions show similarities to a Moiré pattern as well as Gottesman-Kitaev-Preskill

states [GKP01, DTW17]. Due to the matching Wigner functions, in the product all

oscillations contribute with either a positive or a negative sign, depending on the

sign of the rotation. The mean value 〈Sy〉 =
∫ π

0
dθ
∫ 2π

0
dϕ sin(θ)W|ψ〉(θ, ϕ)WP (θ, ϕ)

then corresponds to the integral over the sphere for the product of the Wigner func-

tions [Aga81, DAS94]. This shows N times faster oscillations, compared to uncor-

related atoms, for even N . For odd N , the signal has a sharp initial incline, before

vanishing after a few oscillations, see Fig. 2.14 b. Although this distinction is relevant

for larger phases, away from φ = 0, the sensitivity ∆φ, the optimal signal direction,

and the optimal measurement direction all remain a continuous function of N . Thus,

for the OUT protocols no additional information about the particle number is neces-

sary. This is a consequence of the fact that we study and optimize the sensitivity at

φ = 0.
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Figure 2.14: Over-un-twisting signal: a Finer features appear on the Wigner
functions for the state |ψ〉 = T †π/2Ry(φ)Tπ/2|x〉 (always left) and the measurement

operator T †−π/2SyT−π/2 (always right) when increasing N . b OUT signals beyond
φ� 1. Even particle numbers show anN -fold increased oscillation frequency, whereas
odd particle numbers experience a large slope at φ = 0 and subsequent attenuation.

2.9 Summary

In conclusion, we presented an analytic theory for the geometric optimization of

generalized echo protocols at any particle number and dephasing. The method of op-

timization was already treated in Ref. [GSP19] by Gessner, Smerzi and Pezzè. Using

these results, we are able to give a comprehensive overview and characterization of

the variational class of echo protocols in terms of the (un-)squeezing strengths. We

find that only one new protocol exists. This protocol, the over-un-twisting protocol,

stands out as it exhibits Heisenberg scaling in the sensitivity even for strong de-

phasings during the OAT interaction. Remarkably, the effectively nonlinear readout

performs almost as well as the quantum Fisher information limit in this case. This

can be considered one of the most important findings of this chapter. In a broader
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context, our results provide a route towards quantum enhanced measurements away

from the typical squeezing regime or GHZ states, while still using measurements of

spin projections only.

2.10 Outlook

2.10.1 Comments on imperfections

Beyond the scope of this thesis, non-ideal signal and measurement directions or the

impact of other imperfections, such as noise during the phase imprint, can be stud-

ied. The former is not expected to reduce sensitivity much for directions close to the

optimal ones, due to the predominant contribution of the largest singular value. The

exact consequences of the latter often depend on a number of other factors and would

require additional modelling. For example, a more precise modelling of the physi-

cal system at hand, the duration of the Ramsey dark time, as well as the type and

strength of the noise. It is known that beyond some critical ensemble size, noise dur-

ing the signal acquisition reduces the scaling of quantum metrological amplification

to the standard (classical) scaling of independent particles [EdMFD11, DDKG12].

This behavior is also expected for our protocols, most notably for the highly entan-

gled states beyond the squeezing regime. In most cases, however, it is the absolute

performance at a given N which matters and not the scaling. We therefore believe

that the trade-off between quantum projection noise and technical noise, specific to

each sensor, must be studied to understand in which cases entanglement is actually

useful for metrological improvements [SLS+19]. One example of this is the detailed

modelling of noise sources and limitations in optical atomic clocks, which we discuss

in chapter 3.

2.10.2 G-asymmetry and information content

A key assumption of the measures of sensitivity considered so far is locality in the

sense that only variances and derivatives at φ = 0 are evaluated. This is true for

the squeezing parameter ξ, the phase variance ∆φ, and the (quantum) Fisher infor-

mation. They all result from an analysis of the estimation process around a fixed

working point. This closely relates to a scenario with an unknown but constant phase

φ. For such a static estimation problem it is possible to get prior information about

the approximate value of φ, for example through previous measurements with lower

resolution. Using that prior information allows to perform the final measurement with

highest accuracy always under the assumption of locality. The ultimate precision in

this scenario would therefore be indeed well represented by the squeezing parameter
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or the (quantum) Fisher information. However, there are often cases where the phase

cannot be considered stationary. Important applications of this are phase tracking

and waveform estimation in optical interferometers [Y+12, TWC11, BHW13], which

is used in the detection of gravitational waves, or the closed feedback loop in atomic

clocks. In these cases the trade-off between measurement precision and bandwidth

has to be considered. Nevertheless, general limits have been developed for fluctuating

parameters in analogy to the quantum Cramér-Rao limit. With methods from (quan-

tum) information theory, it can be shown that the average estimation error is limited

by a combination of (i) an entropic measure of the degree to which the probe state

ρφ can encode a phase value, called the G-asymmetry, and (ii) any prior information

about the phase shift [HW12]. We briefly recapitulate the logic presented in that

work.

Let Φ be a shift parameter which for a specific value φ generates the state ρφ =

e−iφGρ0e
iφG, as given by the general interferometer transformation (2.17). For any

estimate Φ̌, the average estimation error is defined as

εav =

√
E[(Φ̌− Φ)2], (2.73)

where the expectation value is

E[(Φ̌− Φ)2] :=

∫ ∞
−∞

dφ dφ̌ (φ̌− φ)2 p(φ̌|φ) P(φ). (2.74)

Here p(φ̌|φ) is the conditional probability of the estimate φ̌ for a specific phase shift

Φ = φ, and P(φ) denotes the prior distribution of the phase shift parameter. Concep-

tually εav is related to an average of the local sensitivity ∆φ over the prior distribution.

A quantum information bound on the resolution of phase shifts is given by [HW12]

εav ≥ (2πe)−1/2eH [Φ]e−AG[ρ0], (2.75)

where H [Φ] = −
∫∞
−∞P(φ) ln (P(φ)) dφ denotes the differential entropy of the prior

distribution and AG[ρ0] is the asymmetry of the state ρ0 with respect to the unitary

group G. Explicitly, the G-asymmetry is defined as

AG[ρ0] := S

(∑
g

Πgρ0Πg

)
− S (ρ0) , (2.76)

where S (ρ) = −tr [ρ ln(ρ)] denotes the von Neumann entropy, and Πg is the projection

operator onto the eigenspace corresponding to eigenvalue g of G. Using the Holevo

bound [NC09] and properties of the von Neumann entropy, it can be shown that the
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Figure 2.15: G-asymmetry: Comparison of the G-asymmetry for the OUT protocol,
a coherent spin state (CSS) and the GHZ state. As an additional reference value
ln(N + 1) is shown. This is the largest possible asymmetry, as AG[ρ0] ≤ ln(N + 1)
for any state ρ0.

G-asymmetry is an upper bound to the mutual information H(Φ̌ : Φ) between the

phase shift parameter and its estimate, i.e.

H(Φ̌ : Φ) ≤ AG[ρ0]. (2.77)

This bound holds for any generator G with a discrete spectrum [HW12]. It is this step

where an implicit optimization over all estimation strategies and all POVM elements,

describing generalized measurements, is done. Note the similarity to the two-step

optimization of the quantum Cramér-Rao bound combined with the quantum Fisher

information, described in section 2.4.3, for local estimation. Equation (2.77) also

gives an interpretation to the G-asymmetry by being an upper bound to the average

information gained per estimate, as quantified by the mutual information H(Φ̌ : Φ).

Looking at Eq. (2.75), one can see that a small average estimation error is only

attainable with both a narrow prior and a large G-asymmetry. The bound also

nicely shows the exchange between the average information obtained per estimate

and the required prior information. For example if one considers the GHZ state

|ψ0〉 = |−N/2〉+|N/2〉√
2

under a transformation with G = Sz, the asymmetry AG[ρ0] =

ln (2) results [HW12], or AG[ρ0] = log2(2) bits = 1 bit in units of information. So

in this case, only one classical bit of information is gained per measurement. The

only possibility to achieve an uncertainty ∼ N−1 in Eq. (2.75) for the GHZ state is

then if −H [Φ] ∼ lnN , i.e. the known prior already determines the parameter to N

bits. In contrast, the quantum Cramér-Rao bound in Eq. (2.42) only implies that

the phase can be estimated around a fixed point with high precision due to the large

QFI, FQ = N2 for the GHZ state. Note, however, that Eq. (2.75) has no immediate

implication for the case of a fixed phase, i.e when looking at the limit of very narrow
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priors. This can be seen by considering a Gaussian prior P(φ) = 1√
2πs2

e−
φ2

2s2 with

variance s. In this case, the differential entropy H [Φ] = ln(s)+ 1
2
(ln(2π)+1) tends to

−∞ for s→ 0 and gives the trivial bound εav ≥ 0 in Eq. (2.75), independent of what

AG[ρ0] is. This is why large G-asymmetry is not a necessary requirement for good

local precision and even the low information content of a single bit of information of

the GHZ state still suffices for local measurements.

Having seen that the OUT protocols achieve a similar N -fold increase in the

oscillation frequency of the measurement signal as GHZ-state-based protocols, but

without requiring parity measurements, suggests that the state conveys much more

information than a single bit. To quantify this conjecture, the upper bound AG[ρ0]

is evaluated for OUT protocols with G = Sy, which is close to the optimal direction

for increased N . The results can be seen in Fig. 2.15. We find that the information

content is similar to what is achieved with coherent spin states and in stark contrast

to GHZ states, which return only a single bit of information. The fact that we find

an increased information gain, as well as a large local sensitivity, is a compelling

property of this novel type of protocol. Interestingly, AG[ρ0] depends on even and

odd particle number for the OUT protocol, similar to the oscillating features of the

full measurement signal. Even though the optimal directions do not change this

drastically between even and odd N . Compared to the upper limit maxρ0 AG[ρ0] =

ln(N + 1) that the G-asymmetry can take, all states compared here still fall short.

2.10.3 Larger variational class

The selected variational class, presented first in section 2.5, proved to be quite general

and convenient, due to the fully analytical optimization. But it still allows to add

more degrees of freedom, which we explore briefly at this point. This can be viewed

again as a broader specification for the general encoding and decoding operations

Uen,Ude, introduced in section 2.4. Sticking to the usual OAT initial states, one has

e.g. the option of adding another collective spin rotation before or after the phase

imprint. This would generate signals with

〈Sm〉(φ) = 〈x|T †µ R†v R†n(φ)T †µ2
Sm Tµ2 Rn(φ)Rv Tµ|x〉 (2.78)

or

〈Sm〉(φ) = 〈x|T †µ R†n(φ)R†v T
†
µ2
Sm Tµ2 Rv Rn(φ)Tµ|x〉 (2.79)

with some additional rotation Rv (see Fig. 2.16a). Coming back to the typical GHZ

protocols, we remark that these extensions now enable the required shifts of the

working point φ → φ̃, by choosing v = n and the correct rotation angle. Both

scenarios, Eq. (2.78) and Eq. (2.79), are mathematically equivalent to a rotation
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Figure 2.16: Extended Protocols: a Schematics of the protocols. Adding an ad-
ditional collective spin rotation Rv (the two choices on the left), is equivalent to a
rotated basis for the second OAT interaction (shown on the right). b Overview of the
achieved sensitivity for N = 32. Here Tµ2,k = e−i

µ2
2

(cosϑSz+sinϑSy)2
with the axis ro-

tated in the z-y-plane (as indicated by the arrows). The Heisenberg limit ∆φ−1 = N
is reached for the top right and bottom right panel.
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of the basis for the second OAT interaction and adjusted signal and measurement

directions. In light of the geometric optimization, the changes of the signal and

measurement directions are irrelevant. So one may resort to studying

〈Sm〉(φ) = 〈x|T †µ R†n(φ)T †µ2,k
Sm Tµ2,kRn(φ)Tµ|x〉 (2.80)

with the OAT interaction Tµ2,k = e−i
µ2
2
S2
k around an axis k. Note that we have also

removed the symmetry around exact inversion, as there is no more reason to assume

that such a symmetry exists in the extended class. Unfortunately, we have not found

a way to solve this case analytically, so numerical evaluation of the matrix elements in

M and Q is needed, which makes this study less efficient. Looking at the landscapes

of Fig. 2.16b, rich but complex structures appear when moving away from the usual

Tµ2,ez OAT (top left panel). Also, with the typical GHZ protocols included, it is not

surprising to find that the exact Heisenberg limit is reached for some directions k.

But, again, the susceptibility of the different protocols achieving the Heisenberg limit

without noise needs to be taken into account. In preliminary results, a constant offset

from the Heisenberg limit was found when including collective dephasing during OAT

interactions. However, a complete study of these protocols is beyond the scope of this

thesis. At last, note that there is still more room to adjust the protocols. Another

possible diversification is with the use of sequential variational protocols, which have

so far been explored for state preparation, by applying nen ∈ N stages of entangling

interactions and collective rotations onto the initial state, i.e. giving more layers to

Uen [KSK+19]. In accord with the interaction based readouts, one could also include

nde ∈ N stages in Ude to decode the phase information into some simple observable.

All protocols considered here remain in a subclass with overall low order, specifically

nen = 1 and nde = 1. Using more layers would be a promising approach to optimize

interrogation protocols specifically when considering more complicated cost functions,

in contrast to the standard phase uncertainty ∆φ studied here.
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Prospects and limits of
entanglement-enhanced
optical atomic clocks

3.1 Motivation and research problem

In recent years, atomic clocks based on optical transitions [LBY+15] have achieved

unprecedented levels in accuracy and stability as frequency references [N+15, M+19,

HSL+16, BCH+19]. Apart from a redefinition of the SI second, this also facilitates

new tests of physics beyond the Standard Model [D+17, SHL+19, R+20, SBD+18] and

opens up the field of relativistic geodesy [DL13, G+18, MGL+18]. For these applica-

tions, high clock stability is vital in order to reach a given frequency uncertainty in the

shortest possible time. Accordingly, approaches from quantum metrology [PSO+18]

are being pursued which promise to achieve an improvement through the use of entan-

gled atoms. In particular, spin squeezed states [WBI+92, KU93, WBIH94] received

much attention due to their practicability and noise resilience [MWSN11, PSO+18].

As already mentioned in chapter 2, spin squeezed states can be generated with trapped

ions [MRK+01, LBS+04] or in cold atomic gases [TFNT09, LSSVac10a, CGWT16],

and have already been used in proof-of-principle experiments to demonstrate a reduc-

tion of QPN in measurements of small phases on microwave transitions [LSSVac10b,

BCN+14, HEKK16, B+19b]. The realization of such tailored entangled states on

optical clock transitions is a major challenge for experiment [VBE+17, B+19b] and

theory [MYH08, WBD10, GMB+14, MSP16, LSNC+18, HPM+19]. At the time of

writing this thesis, there is only one work reporting entanglement enhanced phase

measurements on an optical transition with weakly squeezed spin states [P+20], as it

would be relevant for an optical atomic clock. So understanding the prospects and

limitations of entangled states in typical architectures for an optical atomic clock is

an important current ambition.

45
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In view of these advances, it is important to note that under practical condi-

tions, optical atomic clocks are not exclusively limited by QPN. Indeed, the oper-

ating point of a clock at which maximum stability is achieved is determined by a

balance of QPN and other noise processes, such as laser phase noise and dead time

effects [HMP+97, LSH+17, BKV18, LWL+11]. While the instability due to dead time

can be considered a merely technical problem, we emphasize that laser phase noise

must not be treated as such. Indeed, the suppression of laser noise by locking on

an atomic reference is the central objective of an optical atomic clock. To dismiss

this noise as a technical imperfection would render the problem trivial. Laser noise

arises fundamentally in optical atomic clocks due to thermal noise [NKC04] or quan-

tum noise [ST58]. On the other hand, atomic spontaneous decay can be neglected

for the most advanced clocks which employ clock transitions with upper state life-

times way beyond the laser coherence times [LBY+15]. In this chapter we assess

the prospects for improving the stability of optical atomic clocks using spin squeez-

ing under these conditions. Our main result is that at a given level of dead time

and laser phase noise, spin squeezing can only offer an advantage for atomic ensem-

bles below a certain critical number of clock atoms. For state-of-the-art high-quality

clock lasers, this critical atomic number is smaller than the size that can realisti-

cally be reached in optical lattice clocks without being limited by density effects.

Thus, in lattice clocks spin squeezing can only provide an advantage with significant

improvements in dead time and phase noise of next generation clock lasers. In con-

trast, in atomic clocks based on platforms whose atomic number cannot be easily

scaled, such as multi-ion traps [KKB+19, KBK+19, SMS+18, TKA+19] or tweezer

arrays [L+19, NYE+19, MCS+19, SWGT19], spin squeezing can offer a relevant ad-

vantage. We would like to stress that this limitation applies to single atomic clocks

with conventional (Ramsey) interrogation sequences with squeezed input states. The

limitation could be avoided with schemes achieving dead-time-free interrogation or

overcoming laser phase noise [BS13a, RL13, KKB+14, HL16, TTK11, S+16, CHT+11].

We briefly discuss the case of cascaded ensembles in the outlook of this chapter. The

potential gain from entanglement should then be assessed by an appropriate analysis,

incorporating the trade-offs discussed here. In the following, we will first introduce

some elementary concepts underlying the model of an optical atomic clock. After-

wards, we describe our main result more quantitatively, highlighting the key findings,

before presenting the details of the model. We conclude by looking at some possible

future directions, extending this work.



3.2. Essential elements of atomic clocks 47

3.2 Essential elements of atomic clocks

In optical atomic clocks a laser of very high but finite coherence time is stabilized by a

control loop to an atomic transition of frequency ν0, see Fig. 3.1 a. The laser frequency

is compared to the atomic transition in a sequence of interrogation cycles, each of

duration TC. In the following we consider Ramsey interrogations with interrogation

time TR, and cycles with a dead time TD = TC − TR, see Fig. 3.1 b. At the end

of an interrogation cycle, the collective atomic spin is measured along a projection,

which we take as Sy, providing information about the deviation of the laser from the

atomic transition frequency, see Fig. 3.1 c. The measurement result is converted into

an error signal that is used to correct the laser frequency. Finally, the clock signal

is obtained from the stabilized laser with the help of a frequency comb. The clock

instability achieved in this way after averaging over a time τ � TC is measured in

terms of the Allan deviation σy(τ) for fractional frequency fluctuations [LBY+15]. A

detailed discussion of the essential components of an atomic clock and measures of

the stability is provided in the remainder of this section. We will look in particular

Figure 3.1: Setup and noise processes: a Measurement and feedback loop to
stabilize the laser frequency to an atomic transition. b Periodic measurements with
Ramsey time TR and dead time TD in each cycle of total time TC lead to increased
instability from the Dick effect. c Quantum projection noise ∆Sy limits the clock
stability for short interrogation times but can be decreased with squeezed states thus
reducing the inferred phase uncertainty ζ = ξ/

√
N where ξ is the Wineland spin

squeezing parameter. d For longer TR the distribution of phases broadens substan-
tially due the laser’s decoherence. Inefficient feedback for phases outside the [−π

2
, π

2
]

interval gives the coherence time limit.
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at the local oscillator, the atomic reference, and the servo. A combined treatment of

all three components, analyzing the full feedback process is presented in section 3.4.

3.2.1 The local oscillator

Any atomic clock we consider in this work has two oscillators at their core. One

oscillation is provided by two electronic energy levels within an atom or ion which,

without external perturbations, provides an ideal frequency reference at the natural

transition frequency ν0. The other is an electromagnetic field

E(x, t) = E0(x, t) cos
(
φ(x, t)

)
, (3.1)

with amplitude E0(x, t) and phase φ(x, t) which interacts with the atoms. This field

constitutes the local oscillator which is required to count the atomic oscillations, a

task that can not be done directly from the atoms. It also allows to further distribute

the frequency standard. We had seen in chapter 2 how the atom-light interaction

can be used to measure the frequency difference between the local oscillator and

ν0. Repeated applications of Ramsey interferometry can thus be used to stabilize the

local oscillator to the reference frequency. With the invention of the optical frequency

comb, even oscillations of a local oscillator in the optical (THz) regime can be counted

to derive the frequency signal. Overall, the stabilized local oscillator signal allows for

the comparison of different clocks, relativistic geodesy, contributing to the universal

coordinated time, and applications in fundamental science.

To model the operation of atomic clocks it is thus essential that we take a closer

look at the local oscillator and its properties. At first, we have that the (angular)

frequency of an oscillator at time t is defined as the rate of change of its phase,

meaning

ω(t) =
∂φ

∂t
. (3.2)

In turn this leads to the explicit expression

φ(t) =

∫ t

t0

ω(t′)dt′ + φ(t0) (3.3)

for the accumulated phase between t0 and t, starting from φ(t0).

A phase analysis like this is useful when studying frequency differences between

oscillators. To see this, we assume two oscillators with the same initial phase at

t0 = 0 but with different frequencies ω1(t) and ω2(t). This condition is fulfilled, either

if both oscillators are initialized identically or if one oscillator determines the induces
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the phase of the other, as was the case for standard Ramsey interrogation. Under

these assumptions, the phases of the oscillators after a time T are

φ1(T ) =

∫ T

0

ω1(t′)dt′ + φ(0) ,

φ2(T ) =

∫ T

0

ω2(t′)dt′ + φ(0).

So in general the phase difference

∆φ(T ) = φ1(T )− φ2(T ) =

∫ T

0

[ω1(t′)− ω2(t′)] dt′ (3.4)

is independent of the initial phase value and can be used to infer frequency deviations

between the two oscillators. For example, with constant frequencies ω1(t′) = ω1 and

ω2(t′) = ω2 over the timescale T one finds ω1 − ω2 = ∆φ
T

for the frequency difference.

At this point we can clearly see the connection to Ramsey protocols as introduced

in section 2.3. When one of the frequencies corresponds to the noisy laser frequency

and the other to the ideal (thus time independent) transition frequency ω0 = 2πν0,

we see that

∆φ(TR) =

∫ TR

0

[ωLO(t′)− ω0] dt′ (3.5)

is exactly the phase around which a state is rotated in the Ramsey protocol. While

previously we were interested in optimizing sensitivity, at φ = 0 only, a discussion

of optical atomic clocks necessarily involves phases away from this point as they

arise from the fluctuations of the local oscillator frequency. This point becomes more

pressing when we try to predict the overall stability of an atomic clock. For now

we will restrict this study to a free-running local oscillator, on the basis of which we

introduce measures of stability and describe the relevant frequency noise. In doing so

we disregard any measurement of the frequency deviation using the atomic ensemble

as well as any feedback control.

Atomic clocks in the optical regime feature an ultra-stable laser as their local os-

cillator. The frequency noise of these lasers is largely dependent on their realization.

Most clock lasers achieve a high stability by locking the light to an ultra-stable refer-

ence cavity. For a Fabry-Pérot cavity the resonant frequencies to which the laser can

be locked are νq = q c
2L

with the mode number q and L the length between the cavity

mirrors. In this way small frequency fluctuations ∆ν around one of the resonances

(denoted simply as ν) directly connect to changes of L. As

∆ν

ν
= −∆L

L
(3.6)
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applies for small variations ∆L of the cavity length, one can see that a major effort

must be put into keeping the length as stable as possible. Among today’s best de-

signs are room-temperature glass cavities based on ultra-low-expansion materials or

single-crystal silicon cavities in a cryostat. Despite the tremendous level of stability

achieved in this way, residual technical imperfections can limit the resulting laser

coherence [A+19a] and at some point even fundamental noise processes may give the

overall limit [NKC04, ST58]. Taking a more abstract point of view, this thesis will

only consider three types of laser noise. They are distinguished by their contribution

to the spectral noise density of the laser. In other words, by the temporal correlations

of the frequency fluctuations they cause. We consider white frequency noise, flicker

(or 1/f -noise) frequency noise and random walk frequency noise. These are the most

relevant contributions in many ultra-stable clock lasers. Especially flicker frequency

noise due to thermal fluctuations is a notorious limit to the stability. The next section

presents methods how to characterize and quantify the laser noise.

Stability measure To compare the quality of oscillators across a variety of fre-

quencies one considers relative frequency differences rather than absolute differences.

We therefore introduce the fractional frequency deviation

y(t) =
ωLO(t)− ω0

ω0

(3.7)

of an oscillator with frequency ωLO(t) with respect to an ideal reference at ω0. We

express the definition in this way in anticipation of later studying the frequency

deviation of the clock laser against the atomic reference. There, we will be interested

in the resulting phase fluctuations of the laser when close to ν0. In principle, however,

the relative frequency deviation can be calculated for any nominal laser frequency and

reference value. One advantage of the relative deviations is exactly that the absolute

noise level at any frequency can be inferred from them. For example, this is useful

when the short term fractional frequency stability of the clock laser, interrogating

the atoms, is transferred by a frequency locking scheme from some other ultra-stable

laser at a different frequency.

Phase differences and absolute frequency deviations are linked as well, via

∆φ(T ) = T ∆ω = ω0 T y. (3.8)

This connects both to the time averaged fractional frequency deviation

y =
1

T

∫ T

0

ωLO(t)− ω0

ω0

dt . (3.9)
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Figure 3.2: A typical noisy signal: Fluctuating frequency deviations ∆ν(t) over
the course of 104 measurement cycles. The signal has contributions from white, flicker
and random walk frequency noise.

The time averaged frequency deviations are defined analogously, as

∆ω =
1

T

∫ T

0

[ωLO(t)− ω0] dt and ∆ν =
∆ω

2π
. (3.10)

Note that all these equations are exact and no approximations regarding the noise

were needed.

Every laser we consider will produce a noisy signal y(t) such as the one shown

in Fig. 3.2. A priori the fractional frequency deviation will be a time continuous

stochastic process. But for a typical measurement record, e.g. as measured by a

frequency counter, a discrete sequence of frequency readings would be returned. Also

in the case of continuous feedback control the sequence of averaged values

yk =
1

T

∫ kT

(k−1)T

y(t) dt (3.11)

during measurement interval k (this is the frequency reading at the end of the kth

cycle) will be what is relevant. Here we divided time into equal intervals of length

T as in the cyclic feedback loop. When including dead time one would make the

grid finer and have consecutive averages with TD and TR repeatedly. Note that the

series yk can again be regarded as a time continuous process after many cycles, i.e.

k � 1. We will make use of this feature in section 3.4.2, when presenting a stochastic

differential equation model for the clock stability.

To study the accuracy and stability of an oscillator, with respect to the reference,

one would now typically study first and second statistical moments of yk. However,
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simply looking at the variance is not sufficient here as it is non-convergent for some

noise types [Ril08]. Since the typical noise is correlated, additional statistical tools

are needed to identify the different features of the external perturbations. To this end

a number of N-sample variances were introduced [Rie06, Rut78]. In the context of

atomic clocks the agreed upon convention is to use the 2-sample variance, also called

Allan variance. The Allan variance [All66, Ril08]

σ2
y(τ) =

1

2

〈
(yj+1 − yj)2

〉
=

1

2

〈(
1

τ

∫ (j+1)τ

jτ

y(t) dt− 1

τ

∫ jτ

(j−1)τ

y(t) dt

)2〉
(3.12)

is based on the difference of two averages yj, yj+1 with integration time τ = nτ0,

n ∈ N. When evaluated in the context of atomic clocks the base integration time τ0

will always be the cycle time, i.e. τ0 = TC. The brackets 〈·〉 in Eq. (3.12) denote a

statistical average. This can be either over many independent clock runs or (as done

in this thesis) over subsets of a single realization which then needs sufficiently many

cycles of operation.

For a numerical calculation of the Allan variance from a finite data set we assume

that the mean fractional frequency deviation yk (with T ≡ TC and k = 1, . . . ,Mtot)

was measured in a total of Mtot observation cycles. If the Allan variance is then to

be evaluated at the averaging times τ = nTC, the entire data set contains exactly

Mn =
⌊
Mtot

n

⌋
consecutive intervals of length n (see e.g. Fig. 3.3). The averaging

factor n thus serves to determine the time averages

yj =
1

n

jn∑
k=(j−1)n

yk =
1

nTC

jn∑
k=(j−1)n

∫ kTC

(k−1)TC

y(t)dt (3.13)

in Eq. (3.12) for each interval j = 1, . . . ,Mn of length τ . The number Mn on the

other hand indicates with how many samples the statistical average 〈·〉 in Eq. (3.12)

can be calculated. In this way

σ2
y(τ) =

1

2(Mn − 1)

Mn−1∑
j=1

(yj+1 − yj)2 (3.14)

is a finite size estimate to the Allan variance [Ril08].

In contrast to the original definition of the Allan variance, Eq. (3.14), there also

exists a more robust version, the overlapping Allan variance. Though the two are

equal for large samples, the overlapping Allan variance is more efficient by utilizing

all possible combinations of the data set [Ril08]. In this way, more precise values are

obtained at the same sample size and error bars are reduced at a faster rate. Because

of the fact that in the end both values are the same we refrain from stating the
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Figure 3.3: Stability analysis: a-c Time traces simulated over 104 cycles of oper-
ation for the three noise classes that are considered in this thesis. In each part the
dark blue trace is the noise in each cycle. Colors denote averages over multiple cycles
with τ = 20TC (red), τ = 100TC (cyan) and τ = 500TC (yellow). These averages
are used to characterize noise in the time domain. The Allan deviation calculates the
fluctuations between sequential averages, e.g. ∆ν6 −∆ν5 or ∆ν12 −∆ν11 as marked
in c when τ = 500TC. The variance is small at shorter averaging times (red and
cyan) compared to the longer averaging times (yellow) due to temporal correlations
in the random walk noise. This is in contrast to the white noise shown in a, where
the variance for long averaging is so small that it is hardly visible. The statistical
averaging contained in σ2

y(τ) is obtained by averaging the fluctuations between all

pairs ∆νi+1 and ∆νi, always shifting the index by one. In d we show the resulting
time domain stability in terms of the Allan deviation. Symbols mark the averaging
duration of the correspondingly colored averages in a-c. For example, the yellow star
results from using all 20 pairs of averages with length τ = 500TC. Error bars arise
from the finite size of the sample and resulting finite averaging. In addition to the
numerically computed Allan deviations we show the analytic τ -scaling by the dashed
lines. Part e shows the frequency domain stability in terms of the noise spectrum
S∆ν(f), highlighting the characteristic frequency scaling of the three noise processes.
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explicit definition of the overlapping Allan deviation here. It can be found in suitable

references, such as the ‘Handbook of frequency stability analysis’ by Riley [Ril08].

Frequent use of the overlapping Allan deviation is made in the numerical simulations.

Evaluating fluctuations in the time domain, via the Allan variance, is a practical

way to differentiate several noise types. As mentioned before, in this work we consider

white frequency noise, flicker frequency noise and random walk frequency noise. Each

of those has a power-law scaling σ2
y(τ) ∝ τ γ in the Allan variance with a characteristic

exponent γ and a related power-law scaling in its spectral density Sy(f) ∝ fα. The

specific scaling laws will be derived later, see e.g. Eq. (3.24). Specifically white, flicker,

and random walk frequency noise are treated here as they are the most common noise

types for current day laboratory clock lasers and will likely remain so in the near

future. This is because they are the typical consequences for many relevant physical

causes of cavity length fluctuations [NKC04].

For the sake of completeness we note that a detailed characterization of ultra-

stable lasers often includes other noise sources beyond the ones introduced so far.

Those are white phase noise, flicker phase noise, and a slow frequency drift. These

effects are neglected in this thesis because on the one hand the contributions of white

phase noise and flicker phase noise are only relevant on very short time scales and on

the other hand we assume that a deterministic drift can be corrected out. Thus, for

our investigation concerning optimal interrogations of non-classical ensembles with

time scales ∼ 100µs - 10 s, they generally have no influence. Stochastic noise with

even longer correlation times than the random walk noise is of no concern for the

same reason. The timescales where this would become relevant are so long that it is

typically referred to as an ‘aging’ effect.

Although the Allan variance already provides a good overview of the various noise

components, the averaging process it contains can cause small details of the noise to

be lost. A more detailed picture is given by the spectral noise density Sy(f). For

most ‘well-behaved’ noise types the spectral noise density (single-sided power spectral

density) can be calculated as

Sy(f) = 2 lim
T →∞

1

T

∣∣∣∣∫ T
0

y(t)e−i 2πft dt

∣∣∣∣2 (3.15)

where T is the length of the signal y(t). Alternatively, representations using the

auto-correlation function

Ry(τ) = 〈y(t+ τ)y(t)〉 = lim
T →∞

1

2T

∫ T
−T

y(t+ τ)y(t) dt (3.16)

of the noise exist. From the Wiener-Khinchin theorem follows

Sy(f) = 2

∫ ∞
−∞

Ry(τ)e−i 2πfτdτ. (3.17)
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The spectral noise density Sy(f) for the fractional frequency fluctuation y(t) is par-

ticularly instructive, since it allows oscillators with different carrier frequencies νc to

be compared very easily. Spectral noise densities of related quantities can also be

derived from Sy(f). In particular,

S∆ν(f) = ν2
c Sy(f) (3.18)

holds for absolute frequency deviations, in which [S∆ν(f)] = Hz2 Hz−1. For phase

noise,

S∆φ(f) =

(
νc
f

)2

Sy(f) (3.19)

applies, where we used that 2π∆ν(t) = d∆φ(t)
dt

.

From frequency domain to time domain Let us assume that we would like

to infer the time domain description of the noise, in terms of the Allan deviation

σ2
y(τ), from a known spectral density Sy(f). Since the spectral density contains

more information we know that this conversion should always be possible. One way

of deriving the relation between the two domains is by first expressing the Allan

variance from Eq. (3.12) as

σ2
y(τ) =

〈(∫ ∞
−∞

y(t′)hτ (τ − t′) dt′
)2
〉

(3.20)

with

hτ (t) =


− 1√

2τ
−τ < t < 0

1√
2τ

0 ≤ t < τ

0 else

(3.21)

as a filter function. Equation (3.20) is recognized as a convolution between y(t)

and hτ (t). This motivates to express the Allan deviation in terms of the Fourier

representations of the two constituents. So the desired relation is

σ2
y(τ) =

∫ ∞
0

Sy(f)|Hτ (f)|2 df (3.22)

where Sy(f) is again the power spectral density and Hτ (f) is the Fourier transform

of hτ (t), namely

|Hτ (f)|2 = 2
sin4(πτf)

(πτf)2
. (3.23)

A detailed proof of this relation was given by Barnes et al. [B+71]. Using Eq. (3.22)

one can directly compute the characteristic scalings

σ2
y(τ) ∝ τ γ (3.24)
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of the Allan variance. For spectral noise densities Sy(f) ∝ fα the scaling exponent

is γ = −α − 1. So for white, flicker and random walk noise, with α = 0,−1,−2

respectively, the scaling exponents are γ = −1, 0, 1. More precisely, a spectral noise

density Sy(f) = b0f
0 + b−1f

−1 + b−2f
−2 results in

σ2
y(τ) =

b0

2

1

τ
+ 2 ln(2) b−1 + b−2

(2π)2

6
τ.

The pre-factors bα specify the bandwidth of the noise. We summarize the transfor-

mation properties in Table 3.1.

Type of noise Sy(f) σ2
y(τ)

white frequency noise b0f
0 b0

2
τ−1

flicker frequency noise b−1f
−1 2 ln(2) b−1

random walk frequency
noise

b−2f
−2 b−2

(2π)2

6
τ

Table 3.1: Noise contributions to the Allan variance: For a given power law
scaling in the Fourier frequency f of the one-sided spectral density Sy(f) one finds
the corresponding contributions to the τ scaling of the Allan variance σ2

y(τ).

Laser coherence time With the characterization of laser noise as introduced

above, a single timescale expressing the coherence of the laser can be given. There

are multiple ways how to introduce such a notion, typically motivated by the desired

application in different fields of physics [TMS17, M+17]. Within this thesis we chose

σy,LO(Zc)2πν0Z = 1 rad (3.25)

as the implicit definition for the laser coherence time Z, following [LSH+17]. Here

σy,LO(Zc) is the local oscillator Allan deviation at the cycle time Zc = Z + TD. See

Fig. 3.4 for an illustration of this definition. Introducing Z allows to compare the

performance of clocks with a variety of underlying local oscillators in terms of the

dimensionless ratio T/Z of the probe time T and the laser coherence time Z. Note,

however, that while the noise characteristic σy,LO uniquely defines Z, the inverse is

not true. In particular, two lasers limited by different noise types may still give rise

to the same coherence time. As an intuitive description, the laser coherence time

is the interrogation time at which the Allan deviation of the laser coincides with

the quantum projection noise limited stability σy(Z) = 1
ω0Z

√
Zc
Z

of a single atom,

following Eq. (3.43). A related definition [M+17, A+19a], up to a factor of
√

2, has

also connected Z to the root-mean-square phase deviations in a two-pulse Ramsey
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Figure 3.4: Example clock laser stability: Allan deviation σy,LO(τ) for state-of-
the-art laboratory clock lasers (cL). Dashed lines show the individual noise contri-
butions σW, σFF and σRW. Intersecting the dotted line with σy,LO(τ) determines the
laser coherence time Z. We use ν0 = 429.228 THz.

interrogation of atoms but will not be applied here. With current laser technology,

where σy,LO ∼ 10−16, the coherence time is limited to a few seconds (see the following

paragraph and Table 3.2 for specific parameters).

Example laser parameters To give an intuition into what the current state-of-

the-art technology for clock lasers is, we now present a small collection of example

parameters. Four kinds of lasers are considered in this thesis, as summarized in Ta-

ble 3.2: The first kind (second row) is the currently best laboratory clock laser (cL),

which is limited on the relevant timescales by flicker frequency noise at an Allan devi-

ation of σFF = 4.9×10−17 [M+17]. We also consider two future generation clock lasers

with projected improved noise spectra limited by σFF = 10−17 and σFF = 3 × 10−18

respectively, which we refer to as pL1 and pL2. Such lasers require vast improvements

over state-of-the-art systems. They could possibly be achieved in a combination of low

temperature cryogenic systems with pure crystalline components of the cavity, which

are envisioned of achieving a fundamental noise limit in the low 10−18 range [A+19a].

For comparison, we also include a laser for transportable atomic clocks (tL) whose

stability is reduced due to shorter cavities and stronger environmental perturbations

compared to the laboratory setting [HHV+20]. We consider here an ambitious de-

sign, limited by flicker frequency noise at σFF = 10−16. See Table 3.2 for the detailed

characterizations of all lasers. When projecting laser parameters based on the cur-

rent record laboratory laser we choose to always scale the entire noise spectrum (or
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Laser type Abbr. σW(τ = 1 s) σFF(τ = 1 s) σRW(τ = 1 s) Z [s]

projected transportable
clock laser

tL 5.2× 10−17 1.0× 10−16 2.6× 10−18 3.6

current record labora-
tory clock laser

cL 2.5× 10−17 4.9× 10−17 1.3× 10−18 7.5

projected laboratory pL1 5.2× 10−18 1.0× 10−17 2.6× 10−19 36.5

clock laser 1

projected laboratory pL2 1.6× 10−18 3.0× 10−18 7.8× 10−20 118.8

clock laser 2

Table 3.2: Laser parameters: Specification of the four types of clock lasers consid-
ered in this thesis. Stability is given in terms of white (σW), flicker (σFF) and random
walk (σRW) frequency noise at an averaging time τ = 1 s. Then with ν0 = 429.228 THz
the coherence time Z is determined as defined in the main text.

consequently the entire Allan deviation). Thus the form of the example laser stability

shown in Fig. 3.4 is valid for all kinds of lasers we consider here and the curve would

simply move up or down with the overall stability being reduced or improved.

Numerical simulation of noise traces At many places in this chapter will we

refer to the results of numerical Monte Carlo simulations of an atomic clock. To

simulate the underlying laser, traces of the noise signal have to be generated. Since

only fixed protocols are considered in this thesis, where the interrogation times are

not changed throughout the stabilization process, the average frequency deviation

in each cycle can be simulated separately in advance. The noise in each cycle, con-

sisting of the mean differential frequency noise ∆ν in an interval of length TD and

subsequent interval of duration TR, is generated by the discrete stochastic processes

described in the following. After the free-running noise traces are generated, the

complete feedback cycle can be performed by simulating the atomic error signal and

adding the servo corrections to the previously calculated frequency trace of the laser.

Time traces of correlated noise with arbitrary spectral noise density Sy ∝ 1/fα can

generally be obtained by simulating uncorrelated noise in frequency space at the given

Fourier frequencies and subsequent Fourier transformation. However, for long traces

this method can lead to lengthy runtimes due to the application of the fast Fourier

transformation algorithm. In the simulations of the laser applied in this thesis, a

different method is used to generate the three characteristic noise types introduced

above. The original implementation for the simulations was set up by I.D. Leroux

and was first utilized in Ref. [LSH+17]:
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(i) White frequency noise corresponds to independent Gaussian distributed ran-

dom numbers ∆νk = N (0, s2) with a variance s2 = sW
∆tk

, which scales inversely with

the length ∆tk of the k-th time interval. As expected, the auto-correlation function

is
〈
∆νk,∆νj

〉
= s2δkj so that the spectral density S∆ν(f) = sW is white.

(ii) random walk frequency noise is described as integrated white noise. The

frequency deviation at the end of each simulated time interval is calculated as a

running sum of all previous values of normally distributed random numbers with

variance s2 = sRW∆tk. Formally, the frequency deviation at the end of the i-th interval

is recursively defined as ∆ν(tk+1) = ∆ν(tk)+N (0, s2). The mean frequency deviation

in one time step is then the average deviation between its value at the start and end

of the interval, i.e. ∆νk = ∆ν(tk)+∆ν(tk+1)

2
. An additional white noise component

describes deviations of the noise from this mean value due to fast components of the

random walk.

(iii) Flicker frequency noise is approximated by a sum of damped random walks.

If the damping rates are chosen correctly, noise with a 1/f spectrum over all relevant

time scales of the simulation is obtained [Kae90]. The final implementation, which

was build by I. D. Leroux [LSH+17], is lengthy and complex, so therefore no exact

representation will be given here.

3.2.2 Atomic reference

Looking back at the schematics of an atomic clock, presented in Fig. 3.1a, we have

so far explored one of the two essential components of an optical atomic clock in

detail, namely the local oscillator, in the form of ultra-stable clock lasers. Let us now

turn our attention to the atomic reference, constituting the other essential part of the

clock.

Requirements for clock transitions The first point to discuss is the selection of

atoms and clock transitions. This choice should be motivated by the central goals

of atomic clocks, which are to provide precise and stable frequency references. In

this context, ‘precise’ means that one really exploits the fact that, in complete iso-

lation, all atoms of the same species are exactly alike and have the same electronic

structure. One of these unperturbed transition frequencies should be the output of

the clock. Errors to the precision of a realistic reference then, of course, come from

the practical impossibility of perfect isolation. Typical atomic clock experiments fea-

ture a number of external perturbations, which can cause systematic shifts of the

transition frequency [LBY+15]. For example, motion of the atoms, relative to the

interrogation laser, results in Doppler shifts. To diminish this effect, the atoms are

trapped spatially and their motion is cooled to near the ground state, both of which
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typically requires the application of external electric and magnetic fields. However,

these fields can induce Stark shifts and Zeeman shifts on the transition. The same

shifts are caused by the interaction with the clock laser and with blackbody radiation

from the surrounding apparatus. Employing larger ensembles with many atoms can

cause frequency shifts from collisions among the atoms and even single atoms may

be disturbed by collisions with background gas particles. This list is just a short

illustration of the possible systematic shifts in optical atomic clocks. One could now

naively argue that the best clock transitions are those, for which the frequency is

least disturbed by any perturbation. In the end, however, the selection of atoms

and transitions, based on their achievable precision, is not quite as simple. Mainly

because not all shifts contribute equally to the overall systematic shift. Some of them

may be determined very well, by precise calibration, so that their influence on the

inferred natural transition frequency is negligible, even though the atomic transition

may react strongly to that particular perturbation. In this sense, there are often

many technical details to consider, which may lead to favoring a particular atomic

species and transition [A+19a]. For the theoretical study of stability improvements,

performed in this thesis, we neglect any systematic shifts and assume ideal atomic ref-

erences. Nevertheless, a more complete description on systematic shifts can be found

e.g. in the review [LBY+15], including the most common atomic clock species and

showcasing recent achievements of both, lattice clocks and single ion clocks, reaching

fractional frequency uncertainties ∼ 10−18 or below.

In contrast to the precision, which relates to measurements of the absolute fre-

quency, the notion of stability for an optical atomic clock relates to fluctuations of the

stabilized frequency. Within each cycle of the feedback process, errors remain, when

estimating the frequency differences ∆ν between the laser and the atomic transition

from a noisy signal. The fluctuations of this estimate then transfer to the stabilized

frequency trace, causing the output of the clock to fluctuate over time around the

true atomic resonance frequency.

Before going into a detailed discussion of the overall clock stability, as we will

do in section 3.3, let us briefly connect the notion of clock stability to the quantum

projection noise (QPN), as treated intensely in chapter 2, and identify what are some

key parameters that modify the stability. In general, there are different methods to

construct the interrogation scheme, which links the laser and the atoms. Within this

thesis we consider only Ramsey interferometry in each cycle, although other protocols,

such as Rabi interrogation, are also commonly applied [LBY+15]. To later on allow

the construction of the analytic model, underlying the results of this chapter, another

restriction to the general entangled interferometer protocols, presented in chapter 2,

is made. Only squeezed initial states are considered, such that Uen = Rx(θ0)Tµ,
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and no additional inversion before the measurement shall be applied for now, i.e.

Ude = 1. The additional spin rotation Rx(θ0) after the entangling one-axis-twisting

interaction in Uen is there to align the reduced spin variance with the measurement

direction Sy [KU93]. Reviewing results of chapter 2, the Ramsey sequence proceeds

as follows: (i) Preparation of the initial coherent spin state |ψ0〉 = Uen|x〉. (ii) Imprint

of the signal by a rotation e−iφkSz |ψ0〉 where φk ≡ ∆φk is the accumulated phase in

cycle k. (iii) Measurement of Sy. Note that the signal of this protocol is 〈Sy〉(φ) =

〈ψ0|Sx|ψ0〉 sin(φ), which is in close resemblance to the Ramsey interferometer with

uncorrelated atoms as long as µ . 2√
N

.

At this point, conceptual insight into the stability of an atomic clock can be gained

by looking at the residual error in a single feedback cycle. Assuming cancellation of

the local oscillator noise, by completely subtracting ∆̌ν in the feedback, the residual

fractional frequency error can be expressed as

y1 =
∆ν1 − ∆̌ν1

ν0

=
φ1 − φ̌1

2πν0TR

. (3.26)

Based on the sinusoidal Ramsey signal 〈Sy〉(φ), the phase estimate in cycle k can be

expressed as

φ̌k =
1

2πTR

Sy,k(φk)
d〈Sy〉

dφ

∣∣
φ=0

(3.27)

where Sy,k(φk) is the random outcome of the Sy measurement in cycle k. Thus the

frequency estimate has ∆̌νk = φ̌k
2πTR

as long as φk � 1 for all k. Under this condition,

the estimate also satisfies
〈

∆̌νk

〉
= ∆νk and the standard deviation for yk is

〈∆yk〉 =
1

2πν0TR

〈∆Sy〉(φk)
d〈Sy〉

dφ

∣∣
φ=0

. (3.28)

With φk � 1 as above, this clearly shows the appearance of the standard phase

variance ∆φ = 〈∆Sy〉
d〈Sy〉

dφ

∣∣
φ=0

, expressing QPN, as defined in chapter 2. Assuming that

the residual noise is dominated by the white atomic projection noise, the fractional

frequency deviations are uncorrelated from cycle to cycle, i.e. 〈∆yk∆yn〉 = δkn. In

this case, performing τ/TC repeated independent measurements over an averaging

time τ gives

σy(τ) =
1

2πν0TR

√
TC

τ

∫ ∞
−∞

dφ (φ− φ̌)2P(φ) ≈ ∆φ

2πν0TR

√
TC

τ
(3.29)

for the long-term clock stability, i.e. when τ � TC. We have assumed that the

phases are identically distributed in each cycle, following the distribution P(φ), and
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the final approximation holds for narrow phase distributions. Note that Eq. (3.29)

reflects only the instability contribution from projection noise. Other contributions

need to be considered as well to obtain the full instability of the clock.

Equation (3.29) provides several important insights: First, it motivates the use

of high-frequency transitions, e.g. in the optical regime, as the stability of the clock

improves with ν−1
0 . While σy ∝ ν−1

0 was derived here specifically for Ramsey interroga-

tion, the statement remains true for general signals [Rie06, LBY+15]. Looking towards

the future, even transitions in the ultraviolet and beyond can be envisioned [LBY+15].

However, clocks in this frequency regime are currently limited by the lack of suitable

spectrally narrow local oscillators and means to count the fast oscillations, which was

enabled for optical clocks by the optical frequency comb. Apart from the high atomic

oscillation frequency, one also needs to consider the coherence properties of the two

oscillators, the laser and the atoms, involved in the clock. In general, dephasing will

eventually reduce the validity for the derivation of Eq. (3.29) and, as the condition of

small phases is broken, cause a loss of stability. Since the measurement determines

only differential phases, at which point this trade-off sets in depends on which oscilla-

tor dephases first and thus limits the stability. Narrow optical transitions, which reach

long coherence times due to particularly long lifetimes of the two clock states, have

been identified from precision spectroscopy [CHT+11, MHG+18, NYE+19]. Those

are some of the transitions that are commonly aimed for as clock transitions. The

long atomic coherence time, however, means that for clocks of the highest quality, it

is actually the laser phase noise, which is limiting. Giving even more emphasis to the

discussion of section 3.2.1.

Modeling and simulating measurement noise Looking further at Eq. (3.29)

we can see that knowing quantities like the mean signal 〈Sy〉(φ) and the variance

(∆Sy)
2(φ) of the measurement, as functions of the phase, will be important to model

the stability of an atomic clock. However, if we aim to describe the actual pro-

cess that takes place in each clock cycle, it is not enough to know only these two

statistical moments. In each cycle the detection process will return one particular

realization out of the spectrum of measurement outcomes. Therefore the full distri-

butions are relevant. Calculating the distributions and sampling the outcomes can

be expressed even for the general extended protocols with expectation values in the

form of Eq. (2.37) and not just under the restriction to weakly squeezed states. As

we feel that such a description is instructive for future simulations of extended clock

protocols, that notation will be used in the following. In the case of a measurement of

Sy the outcomes M ∈
{
−N

2
,−N

2
+ 1, . . . , N

2
− 2, N

2
− 1, N

2

}
can occur and we denote
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Figure 3.5: Measurement distributions and sampling: a Probability distribu-
tion pM for measurement outcome M given an optimally squeezed state (orange) or
uncorrelated atoms (blue). In both cases N = 32. Each initial state is rotated by
φ = π

8
to show the impact of a phase signal. Full lines are Gaussian normal distribu-

tions with mean and variance according to Eq. (3.36) and Eq. (3.37). b Distribution
for an over-squeezed state at µ = π

2
, again with φ = π

8
. c Cumulative distribution

function FX(x) for the two distributions displayed in a. When sampling random
uniform numbers u1, u2, random measurement results with the correct statistics are
obtained by calculating F−1

X (u1,2).

the corresponding eigenstates (Dicke state in the y-basis) by |M〉y. The probability

of detecting measurement result M at the end of cycle k is then by the Born rule

pM =
∣∣
y〈M |ψ(φk)〉

∣∣2, (3.30)

where |ψ(φk)〉 = Ude Rz(φk)Uen|x〉. Collecting the results for each M value will give

distributions like the one shown in Fig. 3.5a-b. We have already encountered such

distributions for uncorrelated atoms when first discussing quantum projection noise.

Depending on the acquired phase φk, the statistics will then change. In the simplest

case, the mean value M of the distribution bears the dependence of φk. This means

that an estimate about the phase difference can be derived from a single measure-

ment result of Sy, see also Ref. [PSO+18] and the method of moments introduced in
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section 2.4.6. If the dependency of the phase is contained solely in higher moments of

the distribution, nonlinear measurements of the spin components or a reconstruction

of the statistics from many repetitions of identical measurements are necessary. The

first option is technically demanding and the latter option is difficult to perform reli-

ably in atomic clocks due to the fluctuating nature of φk. It is therefore desirable to

keep the dependence on φk on the mean of the distribution and ideally the functional

dependence is simple.

During the numerical simulation of quantum mechanical states in the clock cycle,

a random result is sampled in each cycle according to the distribution which results

for the simulated differential phase φk = 2π∆νk TR of the free-running laser. For the

purpose of generating random outcomes, inverse transform sampling [Dev86] can be

used: Let

FX(x) = Pr[X ≤ x] (3.31)

be the cumulative distribution function for the random variable X. This function

takes as input a value x of the outcomes for X and returns the probability Px =

Pr[X ≤ x] that a random variable of the distribution takes a value X ≤ x. For

example, when X is the discrete random measurement outcome of Sy, then x ∈{
−N

2
,−N

2
+ 1, . . . , N

2
− 1, N

2

}
and Px is the probability to detect at most x excited

qubits in the y-basis. Of course 0 ≤ FX ≤ 1. Expressed in terms of the probability

density fX(x) (or pM for discrete outcomes), the cumulative distribution function is

FX(x) =

∫ x

−∞
fX(t) dt or FX(x) =

x∑
k=−N

2

pk (3.32)

for continuous or discrete random variables, respectively. The domain of the discrete

distribution are the eigenvalues of the observable. Now the inverse function to the

cumulative distribution function can be defined as

F−1
X (u) = inf {x | FX(x) ≥ u} . (3.33)

If Unif[0, 1] is the uniform distribution on the interval [0, 1], then F−1
X (Unif[0, 1]) has

FX as its cumulative distribution function [Dev86]. Thus, when generating a random

number u of Unif[0, 1], one obtains directly, via F−1
X (u), a realization of the quantum

mechanical measurement according to its corresponding distribution. The procedure

is illustrated in Fig. 3.5c. This method can be used for the general distributions,

which we are concerned with here. Note that for the particular case of uncorrelated

atoms the sampling can also be simplified. In that case, one can do sampling on the

individual particle: For atom j (where each atom has excitation probability p in the

specific basis), draw a random number uj with uniform distribution and assign the
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value vj = 0 when u < p or vj = 1 when u ≥ p. Calculating
∑N

j=1 vj gives a random

sample for measuring the number of excited qubits in that basis.

While the procedure outlined above enables a complete numerical treatment, using

the full quantum statistics is not practical for making analytic estimations of the long

term stability. However, this can be achieved when assuming weakly squeezed states

only. With Ude = 1, one can include the signal rotation as part of the measurement

step to simplify the description. Formally, the expectation value in this case is

〈Sy〉(φ) = 〈x|U †en R
†
z(φ)Sy Rz(φ)Uen|x〉

= 〈x|U †en (Sy cosφ+ Sx sinφ) Uen|x〉
= 〈Sy〉 cos(φ) + 〈Sx〉 sin(φ) . (3.34)

Similarly, the variance is

〈(∆Sy)2〉(φ) = cos2(φ)〈(∆Sy)2〉+ sin2(φ)〈(∆Sx)2〉 (3.35)

+ cos(φ) sin(φ) (〈SySx + SxSy〉 − 2〈Sy〉〈Sx〉) .

The above transformations are useful, as now all expectation values and variances are

in relation to the initial state |ψ0〉 only. With |ψ0〉 = Uen|x〉 ≡ Rx(θ0)Tµ|x〉, Eq. (3.34)

and Eq. (3.35) simplify to

〈Sy〉(φ) = 〈ψ0|Sx|ψ0〉 sin(φ) (3.36)

and

〈(∆Sy)2〉(φ) = cos2(φ) 〈ψ0|(∆Sy)2|ψ0〉+ sin2(φ) 〈ψ0|(∆Sx)2|ψ0〉 . (3.37)

Here we used that 〈ψ0|Sy|ψ0〉 = 〈ψ0|Sz|ψ0〉 = 0 and

〈ψ0|SySx + SxSy|ψ0〉 = 〈ψ0|SzSx + SxSz|ψ0〉 = 0, (3.38)

as can be directly inferred from Eq. (A.31) and Eq. (2.58). With the reduced variance

aligned along the measurement direction Sy, the exact expressions for the variances

are [KU93]

〈(∆Sy)2〉 =
N

4

(
1 +

1

4
(N − 1)(A−

√
A2 +B2)

)
(3.39)

and

〈(∆Sx)2〉 =
N

4

(
N
(

1− cos2N−2
(µ

2

))
−
(
N

2
− 1

2

)
A

)
(3.40)

with A = 1 − cosN−2(µ), B = 4 sin(µ
2
) cosN−2(µ

2
). The measurement contrast decays

as

〈Sx〉 =
N

2
cosN−1

(µ
2

)
. (3.41)
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Working in the small squeezing strength regime, we are able to approximate the

stochastic measurement outcomes for N � 1 by Gaussian random variables. This

means that we neglect any cumulants of order three or higher in the probability distri-

butions for measurement results of Sx,y,z. Already in Fig. 3.5a the close resemblance

of the distributions pM with the Gaussian distributions is visible. Due to the vanish-

ing correlations between Sx and Sy for OAT states, see Eq. (3.38), the measurement

outcomes can be further separated as a linear combination of two independent Gaus-

sian random variables, describing the results of Sx and Sy respectively. The random

measurement outcome for the weakly squeezed state in cycle k is then approximated

by the continuous random variable

Sy,k = 〈Sx〉
[(

1 +
∆Sx
〈Sx〉
N
)

sin(φk) +
∆Sy
〈Sx〉
N cos(φk)

]
(3.42)

where N are standard-normally distributed random variables with expectation value

0 and variance 1. Standard deviations ∆Sy :=
√
〈(∆Sy)2〉 and ∆Sx :=

√
〈(∆Sx)2〉

can be inferred from Eqs. (3.39)-(3.40). The outcomes in the numerical simulation

are constrained by the fact that their value range may not exceed −N/2 to N/2

and each result is statistically independent from all others. Making the Gaussian

approximation is vital to formulate the stochastic differential equation and finally

obtain an analytic estimation on the stability, see section 3.4.2.

3.2.3 Servo and feedback application

Apart from the phase measurement, the servo is the other part which connects the

atomic reference with the laser by performing the feedback corrections in each cycle.

Different modes of feedback are available for atomic clocks and a more complete

theoretical treatment falls in the category of control theory. It turns out that the

particular choice of the servo has an impact on the short term stability and can affect

the long term stability as well. The former has been studied e.g. by comparing a

simple integrator and a generalized linear integrator [LSH+17], so we will not dwell

on it here. In regard to the latter, one important point is that in order to cancel out

the strongly correlated random walk noise or correcting deterministic frequency drifts,

the feedback of the servo must be adapted. If an integrator is used as the servo, then

a second stage of the integrator must be included for the strongly correlated noise.

The necessity will be shown directly in the analytic model developed in section 3.4.

This thesis does not consider general feedback strategies but rather focuses on an

integrating servo only. Therefore more in-depth studies of other control schemes

remain an open problem. Also for all numerical simulations presented in this chapter

an integrating servo was used.
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3.3 Limits to the clock stability

Having introduced the basic components of an optical atomic clock, we will now

continue by evaluating which processes constitute the most relevant limitation to the

long term stability in simple architectures. Under the assumption of ideal atoms,

without systematic errors on ν0, this becomes a study at the interplay of quantum

mechanical measurement noise and quantum metrological phase estimation as well as

classical control theory and laser phase noise.

For an atomic clock whose stability is exclusively limited by the QPN of the spin

measurements ∆Sy, the Allan deviation would asymptotically be [WBI+92]

σQPN(τ) =
1

2πν0TR

√
TC

τ

ξ√
N
, (3.43)

as motivated before. Here N is the number of clock atoms and ξ =
√
N∆Sy/〈Sx〉

is the Wineland spin squeezing parameter [WBI+92]. For uncorrelated atoms in a

coherent spin state with mean spin polarization 〈Sx〉 ≈ N/2, 〈Sy〉 = 〈Sz〉 = 0, where

ξ = 1, the QPN limited phase uncertainty ∆φ = ξ/
√
N scales as ∆φ = 1/

√
N , the

standard quantum limit. Correlated states of atoms with ξ < 1 can optimally change

this scaling up to 1/N [PSO+18]. In particular spin squeezed states can reduce the

QPN while maintaining a strong spin polarization, thus lowering ξ and ultimately

σQPN. This was demonstrated explicitly for OAT states in chapter 2.

As Eq. (3.43) suggests, the stability can also be improved by increasing the in-

terrogation time TR, provided the QPN still remains the dominant noise process.

Obviously, it will be beneficial to increase TR to a point where this is no longer the

case, and the QPN is reduced to a level where other processes contributing to the

clock instability become comparable. Which other noise processes become relevant

first depends on the type of atomic clock. For the extremely narrow-band transitions

that can be used in optical atomic clocks it is the finite coherence time of the clock

laser rather than that of the atoms that is the limiting factor. Laser phase noise

affects clock stability in two ways: Firstly, by phase diffusion during dead time (see

Fig. 3.1 b), the so-called Dick effect [Dic88] whose contribution to the Allan devia-

tion σDick is well known and summarized in section 3.4.1. Second, by phase diffusion

during the interrogation, causing the distribution of phases prior to the measurement

to become wider. When the Ramsey dark time TR becomes comparable to the laser

coherence time, the differential phase noise between laser and atomic reference can

exceed the invertible domain of the Ramsey signal and thus no unambiguous estimate

based on the measurement result is possible, as illustrated in Fig. 3.1 d. At this point,

the feedback loop becomes ineffective, compromising stability in two ways: First, the
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finite laser coherence time contributes to the Allan deviation in the form of an ad-

ditional diffusion process, which we refer to in the following as the laser coherence

time limit (CTL). Building on previous work by Leroux et al. [LSH+17] and André

et al. [ASL04, And05], we develop in section 3.4.2 a detailed stochastic model of the

CTL from which we can infer its contribution to the Allan deviation σCTL. Second,

laser phase noise can also result in an abrupt loss of clock stability when the stabi-

lization passes to an adjacent fringe, causing the clock to run permanently wrong.

We will show that the resulting limitation of the Ramsey time can be understood

quantitatively in the framework of our stochastic model as a first escape time, giving

good agreement with previous phenomenological estimates [LSH+17]. We find that

in the regime of a good atomic clock, i.e. long laser coherence time and small dead

time, fringe-hops and the CTL contribute either at a similar level or the diffusive

process σCTL constitutes the more stringent limitation for the Ramsey interrogation,

so that we concentrate the discussion on the diffusive process.

Incorporating these additional effects, the optimal operating point of the control

loop has to be determined from a trade-off between QPN, Dick effect, and CTL, by

minimizing the combined instability

σy(τ) =
√
σ2

QPN(τ) + σ2
Dick(τ) + σ2

CTL(τ). (3.44)

At this point a remark on the asymptotic stability is in order: Throughout this

chapter, we will typically refer to Allan deviations at τ = 1 s only. What is meant

by this is that we look for the pre-factor to the asymptotic σy(τ) ∝ 1/
√
τ scaling,

found e.g. by extrapolating the Allan deviation from a regime with τ � TC back to

τ = 1 s, (see Fig. 3.6).1 Even though the actual stability of the clock at τ = 1 s may

be different, e.g. due to the transient response of the feedback loop, this quantity

still provides us with a useful measure to compare the long term stability of different

clocks without limitations based on their specific mode of operation. In particular as

the long term stability is largely independent of the level of laser noise.

Now without already going into the specific functional dependence of σDick and

σCTL on the parameters that characterize the atomic clock, we can highlight the most

important features of Eq. (3.44), most of which are intuitive to understand: Just as

the QPN, the Dick noise is monotonically decreasing with longer Ramsey time as the

relative weight of the dead time TD goes down (we assume here that TD and TR are

not dependent on each other). However, the CTL will increase with TR, as explained

above from the spread of the phase distribution. In contrast to QPN, both Dick and

CTL noise do not depend on the size of the atomic ensemble N . This should be clear

1The asymptotic scaling is reached typically after a few thousand cycles of clock operations in
simulations with a total of 8× 105 cycles.
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Figure 3.6: Asymptotic stability: Clock stability σy(τ) compared to the underlying
local oscillator stability σy,FF. For long averaging times τ � 1 s the clock stability
reaches an asymptotic scaling ∝ τ−1/2 (dashed lines). This can correspond to white
atomic measurement noise or to the Dick effect (see section 3.4.1). Given this scaling,
the long term stability is thus entirely determined by the pre-factor, i.e. the stability
at τ = 1 s. For simplicity we choose the parameters such that Z = 1 s.

for the Dick effect, which is determined by the laser noise, TD and TR only. The fact

that the CTL does not depend on N is not so obvious, and will be shown below. For

the weakly squeezed states this is related to the fact that the form of the Ramsey

signal is most important for the CTL and this is independent of N . These scalings

are visible in Fig. 3.7 which shows the combined Allan deviation, Eq. (3.44), and all

three contributing noise processes versus Ramsey time for a small ensemble (N = 10,

blue solid line) and a larger ensemble of atoms (N = 2000, red solid line) in a coherent

spin state. Solid lines in Fig. 3.7 correspond to the analytical models, symbols show

the results of numerical simulations of the closed feedback loop in excellent agreement

with the theoretical curves. For all simulation results presented in this section we used

moderate feedback with g = 0.4 and the squeezing strength was optimized beforehand

for each N to give the lowest instability without dead time.

In view of Fig. 3.7, which concerns uncorrelated atoms in coherent spin states,

several observations can be made: First, the instability will attain a minimum for

a certain interrogation time Topt. We assume for now that the clock can operate at

this optimal time without running into technical problems such as optical path length

fluctuations and others. Second, an important distinction has to be made with regard

to the particle number N . For small ensembles, where QPN dominates over the Dick

effect, the minimal instability is set by a trade-off between QPN and the CTL (cf.

blue line in Fig. 3.7). This minimum depends on N . However, for large ensembles,
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Figure 3.7: A lower bound to the clock stability: Allan deviation of an optical
atomic clock at averaging time τ = 1 s as a function of Ramsey dark time TR assuming
a dead time TD = 0.5 s and laser noise corresponding to the currently best ultra-stable
clock lasers (cL) as characterized in Table 3.2. Solid lines are instabilities from the full
noise model, Eq. (3.44), with N = 10 (blue) and N = 2000 (red) uncorrelated clock
atoms. Dashed lines show the three contributing noise processes: QPN (blue and
red), CTL (green), and the Dick noise (black). Symbols are numerical simulations
of the closed feedback loop in agreement with the analytic model until the onset of
fringe-hops leads to a sudden, strong increase in instability.

where the Dick effect dominates over QPN, the minimal instability is set by a trade-off

between the Dick effect and the CTL (cf. red line in Fig. 3.7). This minimum does not

depend on N and is determined only by laser noise and dead time. Minor deviations

result from details of the feedback loop, gain factor and measurement contrast. In

particular there exists a time T ∗R where both of these processes contribute equally,

i.e. σDick|T ∗R = σCTL|T ∗R ≡ σmin, cf. green circle in Fig. 3.7. This sets a lower bound

for the combined Allan deviation σy(τ = 1 s) ≥ σmin which is independent of the

size N of the ensemble. How closely this bound can be saturated depends on the

exact scaling of σDick and σCTL with TR. However, in the worst case σmin lies only

a factor
√

2 below the true minimum if both terms contribute equally. In Fig. 3.8

we show the minimal instability σmin as a function of dead time TD for four types

of lasers, as summarized in Table 3.2: Again, one is the currently best laboratory

clock laser (cL) which is limited by flicker frequency noise at an Allan deviation

σFF = 4.9 × 10−17 [M+17]. The others are two future generation clock lasers, pL1

and pL2, with projected improved noise spectra and last is a laser for transportable

atomic clocks (tL) whose stability is reduced compared to the laboratory clock lasers.

For all types of lasers an almost universal behaviour emerges, as shown in the inset
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Figure 3.8: Minimal clock stability: Lower bound σmin to the minimal instability
as a function of dead time for four different types of clock lasers (tL, cL, pL1, pL2) as
defined in Table 3.2. Inset: Normalizing by the laser coherence time Z (as defined in
section 3.2 and given in Table 3.2) reveals an almost universal scaling with

√
Zσmin =

3.0 10−16 (TD/Z)0.7 at longer dead times. We use the transition frequency ν0 ≈
429.228 THz of 87Sr for calculations.

of Fig. 3.8, upon re-scaling TD and σmin by the laser coherence time Z. Deviations

from this behaviour are likely due to the complicated dependence of σDick on the

duty factor TR/TC. Note also that at TD < 10−3 s contributions to the Dick effect

from neglected technical high frequency noise, at Fourier frequencies f ≥ 1 kHz, can

become significant compared to the noise sources considered in this thesis. The laser

coherence time Z is as introduced in section 3.2, see also Table 3.2 for the values

corresponding to the lasers compared here.

So far, all statements referred to uncorrelated atoms. Provided we perform Ram-

sey interrogation of a single ensemble of atoms, under which conditions can the clock

stability be improved by employing squeezed spin states? First, it is clear that the

limitation due to dead time in form of the Dick effect will not be reduced by atomic

correlations. On the contrary, additional preparation time may even lead to an in-

crease in instability there. Strongly squeezed or other highly entangled states will

result in a more restrictive CTL and are unfavorable also for several other reasons

(stronger decoherence, unfeasible requirements on measurements etc.). We had ob-

served the steep incline of the signals at φ = 0 in chapter 2. With a reduced range of

unambiguous phase estimation these protocols will suffer from an increased CTL and

earlier fringe-hops. Therefore we consider here only moderately squeezed states which

maintain the fringe width and contrast, leaving the CTL largely at the level of coher-

ent states [ASL04]. Specifically, we assume states generated via the unitary one-axis
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twisting interaction e−i(µ/2)S2
z for which the squeezing strength, µ ≈ 1.1N−2/3, was

independently optimized beforehand to give the lowest instability for a given particle

number N in the dead time free case. Compared to chapter 2, this choice corresponds

to squeezing protocols without the additional echo. Also the scaling of the optimal

values for µ is the same as for the local minima along the ν = µ line in the landscapes

calculated there. Since a new preparation of the initial state is the only necessary

requirement, this reduced variational class is comparatively easy to implement and

robust against errors in the squeezing interactions. The resulting optimal spin squeez-

ing parameter in this case is ξ2 = O(N−2/3). Further improvements to the squeezing

parameter using the one-axis twisting interaction would need modifications of the

protocols with additional control interactions. For example with more elaborate in-

teractions Uen,Ude in the very general Ramsey interferometry of chapter 2 or some

nonlinear measurements [GSP19]. Comments on the use of more complex variational

Ramsey protocols for optical atomic clocks will be provided in section 3.6.2.

Considering the weakly squeezed initial states, we thus arrive at the important

conclusion that – with CTL and Dick noise being unchanged – the combined in-

stability is limited by σmin, independently of the degree of squeezing. This limit

will eventually be met when the QPN is reduced below σmin, either by means of spin

squeezing (reducing ξ) or using a larger ensemble of atoms. Figure 3.9 shows the Allan

deviation versus particle number for various levels of dead time when using coherent

spin states (CSS) or optimized spin squeezed states (SSS). This reflects precisely the

aforementioned approach to the limit σmin in both cases. For sufficiently large ensem-

bles, CSS and SSS approach the same limit given by σmin. From the illustration of the

crossover between the two regimes, with N below and above Nmin, one can infer on

the one hand the gain that squeezing provides at small ensemble sizes while it is clear

that nothing can be gained by squeezing ensembles with N > Nmin. Additionally,

Fig. 3.9 shows that Nmin cannot represent a sharp threshold value, but should rather

be understood in the context of the asymptotic approach to σmin depicted there.

We infer that, especially for large ensembles, squeezing can provide a gain in sta-

bility only for quite challenging levels of dead time. These conclusions also imply that

the asymptotic (large N) scaling of phase sensitivity in quantum metrology is largely

irrelevant in the setting considered here. As a caveat we again note that our state-

ments are based on the assumption of Ramsey or similar conventional interrogations

of a single ensemble and spin projection measurements. More exotic protocols may

be subject to different limitations (for better or worse). Of course the asymptotic

scaling would also be relevant again in the special case TD = 0. The critical number

of particles Nmin, which is required to achieve the minimal instability for a given dead
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Figure 3.9: Approaching the optimal stability: Particle number scaling towards
the lower bound σmin for TD = 1 s, 0.1 s, 0.01 s. The stability for each N is optimized
over the Ramsey time. Compared are uncorrelated atoms in a coherent spin state
(CSS, full lines and symbols) and squeezed spin states (SSS, dashed lines and empty
symbols).

time, laser stability, and degree of squeezing ξ, is set by the condition that the QPN

dives below σmin, that is

Nmin = min
N
{σQPN|N,T ∗R ≤ σmin} . (3.45)

Note that for TD = 0, the Dick effects contribution in Eq. (3.44), being the only

one that cannot be reduced by larger N , vanishes and the definition of Nmin is no

longer meaningful. In that case also σmin → 0, and the stability of a clock with a

finite ensemble size would depend on N and Z only [ASL04, LSH+17]. For TD = 0

one should employ weakly squeezed states for any particle number as the trade-off

in Eq. (3.44) is between QPN and CTL only. The definition in Eq. (3.45) is equally

valid for uncorrelated as well as squeezed spin states. In Fig. 3.10 a we show Nmin

for uncorrelated particles (full lines) and squeezed states (dashed) versus TD. At

small dead times this shows the expected significant reduction N
(SSS)
min < N

(CSS)
min for

squeezed states, which results from the reduction of the squeezing parameter. We

conclude that an increased stability using spin squeezed states is only possible in

small ensembles with particle numbers N < N
(CSS)
min for a given TD and laser noise.

This result highlights how the envisioned improvements in the laser coherence time

will eventually make larger ensembles or squeezed states in lattice clocks necessary. In

order to assess the long-term perspectives of squeezed states, we show in Fig. 3.10 b

the critical particle number Nmin as a function of laser instability. In this case we
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Figure 3.10: Scaling of the critical particle number: a Minimal required particle
number for reaching the stability limit with uncorrelated particles (full lines) or spin
squeezed initial states (dashed lines). b Increase of the critical particle number Nmin

with improved laser stability for coherent spin states and squeezed spin states. Verti-
cal lines show the four highlighted laser types described in the main text. The labels
(tL, cL, pL1, pL2) denote the respective laser phase noise, as specified in Table 3.2,
in all parts of the figure.

considered lasers which are dominantly limited by flicker frequency noise and then

scale the entire noise spectrum. The respective value for σFF serves as an indicator

for the stability. Comparing the two curves shows a slowly increasing separation with

reduced instability. The results predict a significant reduction of the required particle

numbers when using squeezed states, compared to reaching the same stability with

uncorrelated particles, only at high laser quality. Thus, the model allows to identify

concrete conditions of laser stability, from which point on squeezing becomes relevant

even for relatively larger ensembles as used in lattice clocks. However, the required

laser stability goes far beyond the currently best technical achievements (vertical

solid line) and requires considerable improvement of the clock lasers (corresponding

to green or blue dashed lines).

Finally, the results presented above may be altered if there exists some additional

process which places an upper bound Tmax to the Ramsey time. This could occur due

to coherence losses from collisions, photon scattering, a limited natural lifetime or

others. Of course, in the case T ∗R ≤ Tmax, i.e. where Tmax is larger than the optimal

interrogation time T ∗R identified above, our results are unchanged. In this case the

additional constraint Tmax would only be relevant after the optimal interrogation time

is already reached. When T ∗R ≥ Tmax one can define the new critical particle number

Ñmin(Tmax) = min
N
{σQPN|N,Tmax

≤ σDick|Tmax} . (3.46)

For example, at TD = 0.1 s and assuming the laser cL, we find that the critical
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particle number changes only from Nmin = 1244 to Ñmin(Tmax = 0.1 s) = 3504,

Ñmin(Tmax = 1 s) = 1475 and remains unchanged if Tmax > 2.6 s. T ∗R is on the order

of a few seconds for cL, see App. B and is expected to increase by a factor of 5 and

16 for the improved laser parameters pL1 and pL2 respectively.

The logic presented above so far neglected the effects of fringe hops, which might

preclude a stable clock operation at the optimal Ramsey time T ∗R for a clock comprised

of Nmin atoms. To assure the validity of our results we therefore compare T ∗R with the

Ramsey time TFH at which fringe-hops appear with probability 1 per total number

of clock cycles (∼ 106 in the numerical simulations performed here). We are able

to determine TFH by extending the stochastic differential equation formalism to an

equivalent Fokker-Planck equation (see section 3.4.2). From this, a mean first escape

time for the phase of the stabilized laser can be calculated. We find that fringe-hops

set in once the escape time from the interval [−π, π] reaches the total number of

clock cycles. Our results are in agreement with a previous phenomenological guide

TFH = (0.4−0.15N−1/3)Z [LSH+17]. In this way we found that the minimal instability

can be achieved prior to being limited by fringe-hops, i.e. T ∗R < TFH, with exceptions

only in regimes of short laser coherence times and long dead times, as will be shown

later in Fig. 3.12.

3.4 Models for noise processes and instability

In this section we will provide more technical background for the description of the

different instability contributions: The Dick effect as well as QPN and the CTL with

the latter two being inferred by the study of a stochastic differential equation model

for the clock feedback cycle.

3.4.1 Instability related to the Dick effect

For typical atomic clocks with cyclic operation, there is a contribution to the overall

instability resulting from any dead time in which the frequency deviation from the

atomic reference is not probed. Dead time commonly occurs in atomic frequency

standards, e.g. when loading and preparing atoms or from the detection process.

While shorter dead times are usually possible in ion based clocks, optical lattice

clocks relying on destructive imaging techniques for state detection often operate

with longer dead times in which the atomic sample has to be reloaded. The resulting

instability can be understood conceptually from the fact that dead time leads to a loss

of information about the fluctuating laser frequency and an aliasing effect of the laser

noise. The discrete sampling process during clock operation converts high-frequency

noise of the laser to additional noise at the frequency of the clock cycle. This so called
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Dick effect has been known in atomic clocks since the earlier microwave frequency

standards through the seminal works of G. J. Dick [Dic88]. It remains relevant for

optical atomic clocks and has been a major practical limitation especially for current

optical lattice clocks. Thorough evaluations of the Dick effect and its effect on clock

stability for different schemes of operation has been developed before [DPGM90,

SAM+98]. The resulting instability can be stated in terms of the noise spectral density

of the laser and a function characterizing the sensitivity to phase shifts during the

clock cycle, which includes the dead time and the applied measurement protocol. For

example, in the case of Ramsey interrogation with infinitely short π/2 pulses, the

sensitivity function is simply [Dic88]

w(t) =

{
0 0 ≤ t < TD

1 TD ≤ t ≤ TC

. (3.47)

Evaluating the low frequency component of the locked oscillator spectrum translates

to an instability contribution [Dic88]

σ2
y,Dick(τ) =

1

τ

∞∑
k=1

Sy,LO

(
k

TC

) ∣∣∣∣gkg0

∣∣∣∣2 (3.48)

for τ � TC and where

gk =
1

TC

∫ TC

0

w(t)e−2πikt/TC dt (3.49)

are the Fourier components of the sensitivity function and Sy,LO(f) is the laser’s single-

sided fractional frequency noise power spectral density. For the idealized Ramsey

pulse we thus find

σ2
y,Dick(τ) =

1

τ

T 2
C

T 2
R

∞∑
k=1

Sy,LO

(
k

TC

)
sin2(πkTR/TC)

π2k2
. (3.50)

Within this thesis we assume Sy,LO(f) =
∑0

k=−2 bkf
k with b−2 = 2.4 × 10−37 Hz,

b−1 = 1.7×10−33, b0 = 1.3×10−33 Hz−1 for the state-of-the-art laboratory clock laser

cL (see Table 3.2). To represent the other lasers of varying quality, the entire spectral

density is scaled accordingly. For calculations we use ν0 ≈ 429.228 THz based on the

clock transition in 87Sr.

As emphasized in the above study of squeezing in clocks with finite dead time

(see section 3.3), the Dick effect depends on parameter values of the clock operation:

Increasing the portion of the clock cycle during which the atoms are probed, i.e.

increasing the duty factor TR/TC, reduces the efficiency of the down-sampling. To

harness this gain, one possibility for optical lattice clocks would be the implementation

of non-destructive readout schemes [VBE+17]. Similarly, better lasers reduce the
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impact of the Dick effect when the spectral noise density is reduced. These two

aspects can be directly inferred from Eq. (3.50).

Beyond the standard clock setup we considered in this study, there are also ways to

reduce the Dick effect by increasing the complexity of the setup. Using two ensembles

of atoms with anti-synchronized interrogation of the same laser enables a dead time

free tracking of the noisy clock frequency. In this way, the composite setup constitutes

an atomic clock which is basically free of the Dick effect noise. Though technically

challenging, these techniques will need to be implemented, and extensions including

correlated quantum states need to be developed, when operating with large ensembles,

where the Dick noise is otherwise limiting. First proof of principle demonstrations

have been shown, however without any quantum correlations. There, a high quality

clock laser enabled interrogation times which were long enough to cover the dead time

of the second ensemble [S+16].

3.4.2 Stochastic differential equation approach

For modeling the CTL we build on Refs. [ASL04, And05, LSH+17], and infer the

instability due to measurement noise and ineffective feedback based on a stochastic

differential equation (SDE). In a nutshell, the SDE describes the evolution of the

stabilized laser frequency, driven by noise from the free-running laser but cyclically

corrected using information from the measurements which includes quantum projec-

tion noise. The perturbative solution of the SDE, in powers of the laser phase variance,

allows to describe the effects of finite laser coherence in lowest order. The CTL re-

sults as a contribution in third order of the laser phase variance. If the free-running

laser stability is dominated by power-law noise, i.e. σ2
LO(τ) ∝ τ γ with γ = −1, 0, 1

corresponding to white frequency, flicker frequency and random walk frequency noise

respectively, the laser phase variance

Vφ = χ(γ) (TR/Z)2+γ (3.51)

scales at specific powers of TR/Z and with χ(γ) of order unity. As a main result, the

SDE gives

σ2
m+d(τ) = Vm+dTC/(2πν0TR

√
τ)2 (3.52)

where Vm+d is the variance of measurement outcomes when the dynamics is affected

by laser phase diffusion. As this is a combined effect of measurement noise, leading

to QPN, and phase diffusion, leading to the CTL, both contributions are inferred

from Vm+d as we show in this section. Based on the SDE model, we will see that

Vm+d = V0 + V1 +O(V 4
φ ) with [And05]

V0 =
∆S2

y

〈Sx〉2
+

∆S2
x

〈Sx〉2
Vφ +

3(1− c)2

8

∆S2
y

〈Sx〉2
V 2
φ (3.53)
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and

V1 = (1/6− c/2 + 4c2/9)V 3
φ . (3.54)

Here c = g〈Sx〉/N and g is the gain factor of an integrating servo in the feedback loop.

This result holds for Ramsey interrogation with weakly squeezed initial states, where

measurement statistics are approximated by Gaussian distributions (as introduced in

section 3.2.2). Now, σ2
m+d can be separated in the following way: All terms in V0

contain spin variances and V0 = ξ2/N for TR � Z. In this limit they reproduce the

QPN, so

σ2
QPN(τ) = V0TC/(2πν0TR

√
τ)2. (3.55)

The CTL is

σ2
CTL(τ) = V1TC/(2πν0TR

√
τ)2 (3.56)

as V1 is the lowest order with an N -independent contribution. This term results con-

ceptually from the lowest order (cubic) non-linearity of the sinusoidal Ramsey signal.

In the remainder of this section we will review the previous model for the clock dy-

namics, along with new results regarding the necessary feedback and ways to include

fringe-hops. Most notably we discuss the effects of using a two-stage integrating servo

to correct out local oscillator fluctuations in particular for more strongly correlated

laser noise. Afterwards, we review how the nonlinear SDE can be solved approxi-

mately to generate the expression σm+d for the resulting clock instability in orders

of the phase variances. Finally, we discuss the onset of fringe-hops and motivate a

possible description via the mean first passage time.

Modeling the closed feedback loop In the following we consider an optical

atomic clock which operates in repeated, identical cycles of duration TC as introduced

in section 3.2. Again, each cycle contains a Ramsey dark time TR ≡ T as well as

some dead time TD = TC − TR. Three frequencies are relevant to describe the clock

operation:

(i) The ideal atomic transition frequency ν0, which we assume is constant for all

times.

(ii) The free-running laser frequency νLO(t) as introduced in section 3.2. The

stochastic fractional frequency noise has a noise power spectral density Sy,LO(f) =

bαf
α with α = −2,−1, 0.

(iii) The stabilized laser frequency ν(t) which results from the periodic feedback

corrections on the free running laser. The error signal for the feedback application is

derived from probing the atomic ensemble within each cycle via Ramsey interferom-

etry with a weakly squeezed state, cf. section 3.2.2.
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In order to derive the long term stability of the clock, we start by discussing the

evolution of the stabilized frequency ν(t) between successive interrogation intervals.

Let us review from section 3.2 that the average stabilized frequency difference during

the Ramsey dark time of cycle k is

∆νk =
1

T

∫ (k−1)TC+T

(k−1)TC

(ν(t)− ν0) dt. (3.57)

This gives rise to a differential phase

φk = 2π

∫ (k−1)TC+T

(k−1)TC

(ν(t)− ν0) dt = 2π∆νk T (3.58)

before the measurement at time (k − 1)TC + T . Using the information about φk−1,

and accordingly also ∆νk−1, a feedback correction is applied to the free-running laser

frequency at the end of each cycle. Due to the recursive nature of the feedback, the

stabilized frequency difference in the following cycle can then be expressed as

∆νk = ∆νLO,k − pk−1. (3.59)

The first term on the right hand side, ∆νLO,k, is the average frequency difference con-

tributed by the free-running laser in cycle k, whereas pk−1 is the frequency correction

of the servo applied at the end of the previous cycle. Likewise, for the differential

phase

φk = 2π∆νk T = 2π T ∆νLO,k − 2π T pk−1 (3.60)

applies. The specific form of the servo correction pk−1 depends on the design of the

control loop. A frequently used method of feedback is to have an integrator as the

servo. In this case, the correction is constructed as

pk−1 =
g

2πT

(
φ̌k−1 +

2πT

g
pk−2

)
=

g

2πT
φ̌k−1 + pk−2. (3.61)

Here g is the gain factor and φ̌k−1 an estimator for the accumulated phase during

the Ramsey interrogation in the previous cycle. The phase estimate is based on

the outcome of the measurement, e.g. in the simplest case the estimator is just the

measurement result itself. Combining Eq. (3.61) with Eq. (3.60) gives the coupled

stochastic difference equations

∆νk −∆νk−1 = ∆νLO,k −∆νLO,k−1 −
g

2πT
φ̌k−1 (3.62)

φk − φk−1 = φLO,k − φLO,k−1 − gφ̌k−1 (3.63)

for the average frequency difference and the phase. We now focus on the phase

evolution, Eq. (3.63). Before we are able to treat these stochastic difference equations

in detail we will need to again take a look at the atomic measurements which are

contained within the phase estimates φ̌k.
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Atomic noise Let us just briefly refresh the relevant results from section 3.2.2. In

the case of Ramsey interferometry with weakly squeezed initial states it was found

that the random measurement outcome in each cycle k can be approximated by the

continuous random variable

Sy,k = 〈Sx〉
[(

1 +
∆Sx
〈Sx〉
N
)

sin(φk) +
∆Sy
〈Sx〉
N cos(φk)

]
(3.64)

whereN are standard-normally distributed random variables with expectation value 0

and variance 1. The standard deviations ∆Sy :=
√
〈(∆Sy)2〉 and ∆Sx :=

√
〈(∆Sx)2〉

can be inferred from Eqs. (3.39)-(3.40).

Phase estimation to servo the laser frequency In the stochastic difference

equation for the phase of the stabilized laser, Eq. (3.63), information about the fre-

quency deviations of previous steps comes in via the estimate φ̌k−1. The fact that

〈Sy〉(φ) = 〈Sx〉 sin(φ) shows that, on average, the measurement outcome of Sy is

simply linear in φ as long as φ� 1. So

φ̌k−1 =
Sy,k−1

S
(3.65)

is an unbiased estimator in this regime. We denote by Sy,k−1 the particular mea-

surement outcome at the end of cycle k − 1, see Eq. (3.64). Note that here the

full measurement contrast S = N/2 was used for the phase estimation rather than

the reduced contrast, which may not be precisely known beforehand. The linear

estimation strategy, Eq. (3.65), is conceptually easy and well suited for analytic cal-

culations. In the regime of small particle numbers it gives results which are basically

indistinguishable from other non-linear estimation strategies. However, to reach the

optimal scaling of the long-term stability with N for large particle numbers, N & 104,

non-linear estimation strategies such as

φ̌k−1 = arcsin

(
Sy,k−1

S

)
(3.66)

are necessary [ASL04]. The non-linear estimation strategy would ensure an unbiased

estimation of the phase everywhere between −π
2

and π
2
. Instead of classical post-

processing of the measurement results in the form of non-linear estimation, the same

result could also be achieved with an appropriate choice of Ude. In the case of weakly

squeezed states, where the measurement outcomes Sy,k−1 are Gaussian, the phase

estimate reduces to

φ̌k−1 =
κ

T
sin(φk−1)dt+

κ√
T

∆Sx
〈Sx〉

sin(φk−1) dWx,k

+
κ√
T

∆Sy
〈Sx〉

cos(φk−1) dWy,k (3.67)
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Figure 3.11: Stability with and without a double integrator: Rescaled long-
term clock instability as a function of normalized Ramsey time TR/Z. The underlying
laser has random walk frequency noise only. a No double integrator (see main text)
was used for the numerical simulations (symbols). Full lines are the stability limit
according to Eq. (3.69), based on Fraas [Fra16]. b Stability with a double integrator
for the numerical simulations. The predicted stability based on the stochastic differ-
ential equation is shown as dotted lines. Solid lines are the same as in a for better
comparison.

where κ = 〈Sx〉/S quantifies the measurement contrast and at this stage dW〈x,y〉,k are

random numbers with a normal distribution, such that

〈dWα,k〉 = 0, 〈dWα,j dWβ,k〉 = T δαβ δjk (3.68)

with δij being the Kronecker-Delta for both, the spin projections α, β ∈ {x, y} and

the cycle indices j, k. The elements dW(x,y),k thus represent fluctuations of the kth

measurement outcome for S(x,y) around their mean values. The differential time

increment dt = T in the first term on the RHS corresponds to the Ramsey duration as

we are interested in studying the phase evolution over the course of many interrogation

cycles. When going to time continuous stochastic differential equations, W(x,y) will

become standard Wiener processes, adding measurement noise, hence the notation.

For the same reason we also did not cancel the factors T in the first term on the

RHS in order to highlight the correspondence to the continuous stochastic differential

equation.

As a first result we now show that the single integrator described above is not

sufficient to suppress all relevant laser noise types, even under otherwise ideal condi-

tions. Especially for stronger temporal correlations, as is the case for random walk

frequency noise, this particular choice of the servo can not fully correct out all fluc-

tuations of the laser frequency. Thus the design of the servo control can influence the
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overall stability of the clock and, importantly, it must be considered when deriving

fundamental limits to the stability. A previous - mathematically more rigorous - ap-

proach by Fraas [Fra16] was able to to identify lower bounds on the stability which

are expected to hold for white frequency and flicker frequency noise. However, as that

theory is based on a regular integrating servo, the bounds should not be expected to

hold for random walk or more strongly correlated noise of the local oscillator. We

show here that, for lasers with those noise characteristics, the limits can be overcome

with a different choice of servo. Figure 3.11a displays the long-term stability for un-

correlated atoms as a function of Ramsey time in the case of a standard integrating

servo according to Eq. (3.61). If TR/Z is increased, it can be seen that the stabilized

signal contains a white noise term which represents a stricter limitation than the

QPN. In this case the fundamental limit

σy(τ) 2πν0

√
Zτ =

√
Z

TR

√
1

N
+ 3

(
Z

TR

)3

(3.69)

from Ref. [Fra16] (full lines in Fig. 3.11a) accurately describes the simulated stability

(symbols), up to the emergence of fringe hops, which are not included in the analytical

model. Note that we set g = 1 as the gain factor and used that the Fisher information

is 1
N

for uncorrelated atoms (explicitly FT = T 2

N
in Ref. [Fra16]). The comparison with

Fig. 3.11b shows that the additional white noise is not due to the coherence properties

of the laser. Here, the laser noise can be further suppressed by adding a second stage

of the servo which operates at a lower gain g2 � g. It is only the CTL, evaluated

from the SDE, or the onset of fringe-hops which ultimately limits the stability in that

case.

For a quantitative analysis of the argument given above, we will have to change the

way that the feedback corrections are applied. Modifying the servo is easily possible

in the recursive relations of Eq. (3.59) and Eq. (3.60) by adapting the corrections

pk−1. Instead of the regular integrator, Eq. (3.61), consider now a double-integrator

with

pk−1 = pk−2 +
g

2πT
φ̌k−1 +

g2

2πT

k∑
n=1

φ̌k−n (3.70)

including longer averages of estimates φ̌ with the secondary gain factor g2 � g.

Such secondary integrator stages already find applications in the operation of atomic

clocks to also counteract slow deterministic drifts of the laser frequency [PST05].

Alternatively, servos employing optimized general linear predictors have also been

considered in the literature [SJA+16, LSH+17]. The effect on the stochastic difference
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equation is straightforward, changing Eq. (3.63) to

φk − φk−1 =
(
φLO,k − φLO,k−1

)
−

(
gφ̌k−1 + g2

k∑
n=1

φ̌k−n

)
. (3.71)

This fully determines the evolution of phase differences between the stabilized laser

and the atomic reference during a clock run. To evaluate the suppression of laser noise

via the double integrator we transform this finite stochastic difference equation into

a system of two coupled stochastic differential equations (note that this disregards

dead times):

dφ = dφLO − g
κ

T
φ(t) dt− g κ

T 1/2

∆Sy
〈Sx〉

dWy(t)−
g2

T
ψ dt , (3.72)

dψ =
κ

T
φ(t) dt+

κ

T 1/2

∆Sy
〈Sx〉

dWy(t) . (3.73)

Here the additional variable ψ(t) was introduced, which in general is defined as

ψ(t) =

∫ t

0

[
κ

T
sin(φ(t′))dt′ +

κ√
T

∆Sx
〈Sx〉

sin(φ(t′)) dWx(t
′) +

κ√
T

∆Sy
〈Sx〉

cos(φ(t′)) dWy(t
′)

]
.

(3.74)

Equations (3.72) and (3.73) are derived from Eq. (3.71) in the long time limit where an

individual interrogation cycle gives the differential time step dt = T . Thus the finite

differences φk − φk−1 approach the differential dφ(t), so we define φ̇(t) = dφ(t)
dt

and

likewise φ̇LO(t) = φLO(t)
dt

. On the other hand, the finite differences dW(x,y),k become

the differential Wiener elements dW(x,y)(t) with the analogous properties

〈dWα(t)〉 = 0, 〈dWα(t) dWβ(t′)〉 = δαβ δ(t− t′) dt. (3.75)

To simplify the coupled stochastic differential equations, Eq. (3.72) and Eq. (3.73),

all functions of φ in the phase estimation, Eq. (3.67) were expanded up to linear

order only. Furthermore, terms involving products of different variables, such as

φ(t) dWx(t
′) are also neglected. Of course, these assumptions can only be justified for

small phase variations φ� 1. If the instability of the atomic clock is to be optimized

over the Ramsey time TR ≡ T , these terms must be considered, as we will do again

after evaluating the effect of the double integrator.

For now, the linearized system of stochastic differential equations can be expressed

more compactly as

dw = Mwdt+ df(t) (3.76)

with

w(t) =

(
φ(t)
ψ(t)

)
, M =

(
−g κ

T
−g2

T
κ
T

0

)
, df(t) =

(
dφLO(t)− g κ

T 1/2

∆Sy
〈Sx〉dWy(t)

κ
T 1/2

∆Sy
〈Sx〉dWy(t)

)
.

(3.77)
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An equivalent equation stochastic differential equation for ẇ = dw
dt

could be formu-

lated from this as well. Equation (3.76) can be solved formally via Fourier transform

resulting in

w(ω) = (iω1−M)−1g (3.78)

where

g =

(
iωφLO(ω)− g κ

T 3/2

∆Sy
〈Sx〉 dWy(ω)

κ
T 3/2

∆Sy
〈Sx〉 dWy(ω)

)
. (3.79)

Based on the solution w(ω) we calculate the spectrum matrix

Sw(ω) = 〈w(ω)w†(ω)〉 = (iω1−M)−1g g†(−iω1−M †)−1. (3.80)

As one element of the matrix we find the spectrum of the stabilized phase

Sφ(ω) =
SLO(ω) +

[
g2
2κ

2

ω4T 5 + g2κ2

ω2T 3

]
∆S2

y

〈Sx〉2SdWy(ω)

1 + (g2κ2 − 2g2κ)/(ωT )2 + g2
2κ

2/(ωT )4
, (3.81)

where we used that the laser noise φLO is independent from the atomic noise dWy.

As we are interested in the long term stability of atomic clocks, at τ � TC, we thus

expand Sφ(ω) in lowest orders of ω. In the limit ωT/g2 � 1, which can be reached at

some sufficiently low Fourier frequencies ω for any given values of T and g2, Eq. (3.81)

reduces in an intermediate step to

Sφ(ω) =
(ωT )4

g2
2κ

2
SLO(ω) +

[
1 +

g2

g2
2

(ωT )2

]
1

T

∆S2
y

〈Sx〉2
. (3.82)

This expression was further simplified by inserting the white spectrum SdWy(ω) = ω0

of the measurement noise. The intermediate result of Eq. (3.82) is presented, as it

highlights that the local oscillator noise SLO(ω) is now suppressed for all correlations

considered in this thesis. This includes a scaling of the spectral density with SLO(ω) ∝
1, SLO(ω) ∝ 1/ω and SLO(ω) ∝ 1/ω2. Especially in the case of random walk frequency

noise the same would not hold for a servo without the second integration stage. This

can be seen by first setting g2 = 0 in Eq. (3.81), which then reads

Sφ(ω) =
SLO(ω) + g2κ2

ω2T 3

∆S2
y

〈Sx〉2SdWy(ω)

1 + g2κ2/(ωT )2
. (3.83)

With this, the corresponding low frequency limit

Sφ(ω) =
(ωT )2

g2κ2
SLO(ω) +

1

T

∆S2
y

〈Sx〉2
(3.84)

has an additional white noise contribution b2T 2

g2κ2 when SLO(ω) = b2ω
−2 from the first

term on the right hand side. This is local oscillator noise which is not fully corrected
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out by the servo and the remaining instability contribution competes with the atomic

noise, i.e. the QPN. For small Ramsey times T , QPN dominates but with increasing

T the uncorrected laser noise takes over. Looking again at Fig. 3.11, the features we

derived are precisely what was observed there. Only with g2 6= 0 will the dominant

contribution at long averaging times be the white atomic noise. In the results pre-

sented here, this is made evident as the stabilized noise in the low frequency limit

is

lim
ω→0

Sφ(ω) =
∆S2

y

T 〈Sx〉2
. (3.85)

This remains true for any T until the onset of fringe-hops at long interrogations times.

In the derivation so far this effect is however not captured as we disregarded any non-

linear contribution to the phase estimates which cause the fringe hops. We will drop

that approximation in the following part, showing the emergence of the CTL and

discuss fringe-hops as a first escape time problem. To capture these features in the

numerical treatment as well, all numerical results we refer to (symbols in Fig. 3.7,

Fig. 3.9 and Fig. 3.13) come from simulations of the stochastic difference equations

∆νk −∆νk−1 = ∆νLO,k −∆νk−1 −
g

2πT
φ̌k−1 (3.86)

φk − φk−1 = φLO,k − φLO,k−1 − gφ̌k−1 (3.87)

with the true (non-Markovian) local oscillator noise and with the full (non-linear)

phase estimation as given in Eq. (3.67). The only difference between Eq. (3.86)-

(3.87) and Eq. (3.62)-(3.63) are the terms proportional to g2 from applying the double

integrator, as stated in Eq. (3.70).

How the analytic expression for the CTL follows from the stochastic differential

equation without the linear approximation is discussed next.

Approximate solution to the SDE - determining the CTL Based on the re-

sults of the previous paragraph, we infer that the double integrating servo completely

corrects frequency errors and removes correlations between phases in different mea-

surement cycles. Therefore, we approximate from now on the local oscillator driven

phases dφLO in each cycle as uncorrelated Wiener increments. The variance

Vφ = χ(γ)

(
TR

Z

)2+γ

(3.88)

of dφLO within each interrogation cycle scales at characteristic powers with TR/Z,

given the specific noise type, and has χ = 1, 1.8, 2 for γ = −1, 0, 1. Note that for

small ensembles and short Ramsey times Vφ may be increased due to the influence of

quantum projection noise [LSH+17]. For this paragraph we neglect the influence of
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the second integrator, given that g2 � g, and we are only interested in evaluating the

consequences of the non-linear terms in the phase estimate. Thus, using the full phase

estimate φ̌k−1 of Eq. (3.67), the stochastic difference equation, Eq. (3.63), becomes

the single stochastic differential equation

dφ =
√
VφdφLO−g

κ

T
sin(φ)dt−g κ√

T

∆Sx
〈Sx〉

sin(φ)dWx−g
κ√
T

cos(φ)
∆Sy
〈Sx〉

dWy (3.89)

in the continuum limit over many clock cycles. An approximate solution to this

non-linear SDE can be constructed from a power series ansatz [And05]

φ(t) =
∞∑
n=1

εn1φ1,n(t) + ε2

∞∑
n=0

εn1φ2,n(t) + ε3

∞∑
n=0

εn1φ3,n(t), (3.90)

assuming small perturbation parameters ε1 =
√
Vφ, ε2 = ∆Sy

〈Sx〉 and ε3 = ∆Sx
〈Sx〉 . Here

the variance Vφ quantifies again the width of the phase distribution prior to each

measurement. The greater the correlations in the laser noise, the faster the width Vφ

of the phase distribution increases with the Ramsey time. For details on the further

steps we refer to Ref. [And05], which provides a specific calculation of the Allan

variance resulting from the approximate solution φ(t) when restricting to terms of

at most first order in ε2, ε3 and at most third order in ε1. Note, however, that the

result stated here also includes a term proportional to ε2ε
2
1 which was not treated in

the original work. The resulting Allan variance, to lowest orders in the perturbation

parameters, is

σ2
m+d(τ) =

1

(2πν0TR)2

TC

τ
Vm+d (3.91)

with

Vm+d =
∆S2

y

〈Sx〉2
+

∆S2
x

〈Sx〉2
Vφ +

3(1− c)2

8

∆S2
y

〈Sx〉2
V 2
φ +

1− 3c+ 8c2/3

6
V 3
φ +O(V 4

φ ) (3.92)

and

c =
1

2

〈Sx〉
S

g (3.93)

as applied in section 3.3.

Fringe-hops as a first passage time problem Finally, it is worth noting that

just evaluating the Allan variance often does not correctly reflect the appearance of

fringe-hops. While we find that the minimal stability is not affected by fringe-hops in

the case of small dead times and long coherence times, as we will see, there may still

be parameter regimes where fringe-hops are the relevant constraint. Upper limits for

safe Ramsey times, within which less than 1 fringe-hop per 106 clock cycles occurs,
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Figure 3.12: Fringe-hops and interrogation time: Comparison between the safe
interrogation times TFH (without fringe-hops) and the time T ∗R for minimal instability
as a function of laser coherence time Z and dead time TD. Based on this study we can
identify regions in which the minimum between Dick effect and CTL can be safely
reached (blue) and regions in which additionally the occurrence of fringe-hops has to
be investigated in detail (red). By comparing N = 10, 100 and 1000 one finds that
the red region is largest for small ensembles, short coherence times and larger dead
times and decreases in size with increased particle numbers.

have so far only been determined phenomenological by numerical simulations of the

full stochastic process for uncorrelated atoms [LSH+17]. According to that study,

TFH = (0.4− 0.15N−1/3)Z (3.94)

and

TFH = (0.4− 0.25N−1/3)Z (3.95)

were suggested as guides for safe interrogation times in the case of flicker frequency

and random walk frequency noise respectively. As described in section 3.3, this guide

can be used to estimate for which parameters fringe-hops may occur before reaching

the intersection of Dick effect and CTL. Figure 3.12 shows corresponding parameter

landscapes illustrating the relation of the two time scales, TFH and the optimal Ram-

sey time T ∗R, against laser coherence time Z and dead time TD. By evalutating the

landscapes for different N , it can also be seen that the region with TFH < T ∗R reduces

for increasing particle numbers.

In contrast to the numerically motivated guides above, the onset of fringe-hops

can also be predicted by further investigation of the SDE. This may also allow a

better understanding of the underlying processes in the future. First, we observe that

the SDE in Eq. (3.89) may be expressed more compactly as

dφ = A(φ)dt+ b(φ) · dW (t) (3.96)

with

A(φ) = −g κ
T

sin(φ), (3.97)
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and the coefficients

b(φ) =


√
Vφ

−g κ√
T

∆Sx
〈Sx〉 sin(φ)

−g κ√
T

cos(φ)∆Sy
〈Sx〉

 (3.98)

to the three independent Wiener processes

dW =

dφLO

dWx

dWy

 . (3.99)

Generally, a stochastic differential equation in the form of Eq. (3.96) can be re-

expressed in an equivalent Fokker-Planck equation [Gar09] for the probability distri-

bution P (φ, t) of the stabilized phase at time t, which in this case reads

∂P (φ, t)

∂t
=

[
−∂A(φ)

∂φ
+

1

2

∂2B(φ)

∂φ2

]
P (φ, t). (3.100)

Again, we remind that time is in multiples of the interrogation time T here. The drift

and diffusion coefficient are

A(φ) = −q sinφ, B(φ) = b bT = r + s cos2 φ (3.101)

respectively, where

q = −gκ
T
, (3.102)

r = Vφ +
g2κ2

T

∆S2
x

〈Sx〉2
, (3.103)

s =
g2κ2

T

(
∆S2

y

〈Sx〉2
− ∆S2

x

〈Sx〉2

)
. (3.104)

The idea for connecting this to fringe-hops is to consider the so-called mean first

passage time (mfpt). The mean first passage time describes the average duration

over which a random variable (here the stabilized phase) remains within an interval

[a, b]. Note that the passage time in this cases is again to be regarded as a multiple of

the feedback cycle duration. In order to calculate the mfpt we use established tools

within the field of stochastic methods [Gar09]. A useful function in the context of

the mfpt is

Ψ(x) = exp

{∫ x

0

dx′
2A(x′)

B(x′)

}
= exp

{
2q√
r s

[
arctan

(√
s

r
cos(x)

)
− arctan

(√
s

r

)]}
.
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Figure 3.13: Modeling fringe-hops: Numerically simulated clock instability (sym-
bols) for a comparison to the predicted onset of fringe-hops, based on a mean first
escape time (solid bars) as well as the safe interrogation times (dashed bars) suggested
by Eq. (3.94) and (3.95). For both, flicker frequency noise and random walk frequency
noise, we find that the predictions based on the mean first escape time reproduce the
observed sudden increase in instability well. To include different noise strengths, we
normalized all time scales to the laser coherence time Z (see main text).

From Ψ(x) the mean first time to escape the symmetric interval [−a, a], assuming the

laser phase starts with φ = 0 at t = 0, is given by [Gar09]

Tmfpt =
2
[(∫ 0

−a
dz

Ψ(z)

) ∫ a
0

dx
Ψ(x)

∫ x
−a dyΨ(y)

B(y)
−
(∫ a

0
dz

Ψ(z)

) ∫ 0

−a
dx

Ψ(x)

∫ x
−a dyΨ(y)

B(y)

]
∫ a
−a

dz
Ψ(z)

.

Which can be further simplified to the double integral

Tmfpt =

∫ a

−a
dx

∫ x

−a
dy [2Θ(x)− 1]

Ψ(y)

Ψ(x)

1

B(y)
(3.105)

where Θ(x) is the Heaviside function, by using the symmetry Ψ(x) = Ψ(−x).

A maximum Ramsey time TFH without fringe-hops can be specified by requesting

that the stabilized phase should not leave the interval [−π, π], in which it is corrected

back to the original reference point φ = 0, within the simulated ∼ 106 cycles of

clock operation. So Tmfpt(TR) ≤ 106 for TR ≤ TFH, where the functional dependence

Tmfpt(TR) in terms of the Ramsey duration is implicit through the parameters q, r and

s, which depend on TR. In the case of flicker frequency noise this procedure led to a

good agreement with the onset of fringe-hops observed in numerical simulations. For

random walk noise we achieved slightly better agreements when assuming the interval

[−π
2
, π

2
] for the calculation of the mean first passage time. We found that this stronger

requirement is more applicable here due to the increased temporal correlations which

already cause fringe-hops in a regime where the feedback, though insufficient, is not
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on paper stabilizing the frequency to a different fringe. Figure 3.13 compares TFH as

based on the mfpt with results from numerical simulations of the full clock operation

as well as the phenomenological guides in Eq. (3.94) and Eq. (3.95) in the case of

uncorrelated atoms. For both flicker frequency and random walk frequency noise the

prediction of the mfpt exhibits an almost constant cutoff for large N and reduced

TFH for smaller ensembles which is in qualitative and quantitative agreement with

the phaenomenological guides as well as the numerical results. Except the escape

interval, as mentioned above, all calculations are without free parameters. For very

small ensembles, e.g. N = 1, our theory falls short in accurately predicting TFH as it

uses the assumption of phases with variance Vφ for each interrogation, which in this

regime is assumed to break down.

3.5 Conclusion

In conclusion, we would like to emphasize that the theoretical and experimental

progress in manipulating the QPN in quantum metrological measurements with entan-

gled states represents an important and exciting challenge. In the context of atomic

clocks, however, a reduction in the QPN does not automatically mean an improvement

in statistical uncertainty. A possible gain through entangled states therefore requires

an evaluation that is detailed to the specific conditions of an atomic clock. Frequency

estimation using GHZ states which is limited by QPN and atomic decoherence was

already considered quite some time ago by Huelga et al. [HMP+97]. Here, we have ex-

tended this idea to discuss the stability of optical atomic clocks with squeezed states.

The model we developed allows a comprehensive and quantitative investigation of

limitations to the overall clock stability. It thus shows in which parameter regimes

laser noise is not the most stringent limitation, so squeezing can improve the stabil-

ity, and in which cases laser noise is dominant and needs to be overcome by other

means before squeezing provides an advantage. Although we showed that current

improvements are limited to small systems only, our results also indicate that after

challenging improvements in laser stability and dead time reduction, spin squeezing

will become relevant for optical lattice clocks as well. In order to promote the use

of entanglement in optical clocks, a number of further aspects should be considered

in a similar way: Excess anti-squeezing due to imperfect state preparation has been

considered in Ref. [BKV18], and shown to reduce clock stability for white frequency

noise. It would be desirable to incorporate excess anti-squeezing to our model which

deals with realistic colored laser noise. To what extent other measurement methods

besides Ramsey interrogation are subject to similar restrictions or in which cases they
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can be circumvented remains open. Rabi interrogation is not expected to give im-

provements over the limits presented here due to its increased QPN and enhanced

Dick effect [WLL10], even though it allows for slightly longer interrogation times

than Ramsey protocols. The limitations described here, valid for single ensemble

clocks with cyclic Ramsey interrogation and dead time, may be overcome with more

sophisticated clock architectures: The laser coherence limit can be tackled with adap-

tive measurement schemes [BS13b] or cascaded systems with multiple ensembles of

atoms [BS13a, RL13, KKB+14] (see also the outlook). However, we suspect at least

for the adaptive scheme that including dead time to these studies would still show

the existence of a critical ensemble size, limiting the useful regime of squeezed states,

similar to what was presented here. Although one should note that the overall sta-

bility would improve on what we have presented. Dead time free laser stabilization,

basically eliminating the Dick effect, was constructed by anti-synchronized interroga-

tions of two atomic clocks [S+16]. It is then expected that spin squeezing will again

increase the stability for any N but comes at the cost of keeping low systematic shifts

for two ensembles. While the underlying method has been demonstrated, showing

an improvement through squeezed states remains an open challenge in this setting.

Conceptually different approaches that may evade the presented limitations when

applied without dead time are based on continuously tracking the atomic phase via

weak measurements [ST12, SGW+19, KBC+15].

3.6 Outlook: Further directions for designed quan-

tum states in optical atomic clocks

The detailed model for an optical atomic clock, described in this chapter, has shown

that the overall stability transitions between two different limitations, depending on

the operating parameters and especially the number of reference atoms. For large

ensembles, no gain through quantum correlations between the atoms can be expected.

While small ensembles will necessarily require quantum correlations to reduce QPN.

Separate strategies are in order to improve atomic clocks in the two regimes. We

will comment on future perspectives in both cases, accompanied with our own novel

results:

Composite clocks, consisting of cascaded interrogation with multiple atomic en-

sembles, are envisioned to overcome the coherence time limited operation. We review

previous results in this direction in section 3.6.1 and show that even asymmetric de-

signs featuring ensembles of different atom numbers will result in an atomic clock

with improved stability under more realistic conditions.
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Interrogation protocols with entangled quantum states and observables are the

only way to operate small atomic clocks with a sensitivity beyond the standard quan-

tum limit. However, finding the right interactions and controls becomes a non-trivial

problem. In section 3.6.2 we motivate an easy to optimize quantity, which extends

the conventional squeezing parameter, for an improved description of phase estima-

tion protocols within the feedback process of an atomic clock. Applying this quantity

as a cost function then allows the treatment of clock protocols with well-established

quantum gates as a variational optimization problem. New insights in this direction

have resulted from a collaboration with R. Kaubruegger, D. Vasilyev and P. Zoller.

In the end it is shown that new protocols, which were determined beforehand by vari-

ational minimisation of the average variance for a phase estimator, provide a stable

improvement even in simulations of the full clock operation at constant variational

complexity.

3.6.1 Composite clocks

One idea to beat the CTL is to cascade several atomic ensembles in the stabiliza-

tion process [BS13a, RL13]. Borregaard and Sørensen [BS13a] have shown that m

ensembles, each of size N , can stabilize a noisy local oscillator to

σy(τ) ∝ 1

2πν0

√
τ

1

Nm/2
(3.106)

with an exponential improvement in the number of ensembles. The basic principle

is that the first ensemble, operating at a relatively short Ramsey time T1 � Z, will

pre-stabilize the laser noise seen by the second ensemble, which operates at longer

Ramsey time T2 = nT1 (n ∈ N), this further reduces the laser noise seen by the

third ensemble, operating with T3 = ñT2, and so forth for all further ensembles (see

Fig. 3.14b). In addition, before each measurement is applied in later ensembles, a

reference phase value is provided from the previous ensembles in the cascade. This

reference value is basically the (roughly) estimated phase difference determined from

measurements of the previous ensembles. It is needed to place the later, finer Ramsey

measurement on the correct fringe. Forwarding this information about the expected

phase is crucial to the correct operation of the clock and provides a means to beat

the CTL.

In our study we find that also an asymmetric setting can be used to improve the

stability assuming state-of-the-art laser parameters. By combining a large ensemble,

where N1 � 1, for the initial stabilization with a single atom clock, where N2 = 1, we

found that a combined clock operating at roughly the stability of the first ensemble is

possible. Previous studies of a similar setup discussed the measurement of frequency
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Figure 3.14: Mixed composite clocks: a Schematic setup for a composite clock
using multiple ensembles, following [BS13a]. b Clock cycles for the two ensembles
show phase stabilization of the laser seen by ensemble 2 over several cycles of feedback
operation from ensemble 1 and its servo. Each Ramsey measurement on ensemble 2
needs the phase estimates of ensemble 1 made during the longer Ramsey dark times
T2, e.g. φ̌

(1)
j for j = 1, 2, . . . , n in the first cycle. In that way only the small residual

phase has to be determined for further stabilization. c Performance of a composite
clock with N1 = 100 and N2 = 1 (orange marks). All values of T2 are multiples of
the Ramsey time T1 = 0.32×Z, used for the first ensemble. We assumed T1,D = 0 so
that T1 ≡ T1,c. Red triangles and black dots show clocks with a single ensemble.

ratios only [HL16]. Figure 3.14c shows such an idealized setting where the stability

of a single atom clock is pushed way beyond its coherence time limit almost down

to the level of the large first ensemble. In this way the composite clock is limited by

the QPN of the single atom over a large range of interrogation times. The difference

between the minimum of the single ensemble clock and the composite clock is due

to the fact that the relevant last ensemble sees different temporal correlations of the

noise in the two cases. While the single ensemble clock corrects errors from a flicker

frequency noise limited laser, the single atom of the composite clock effectively sees

the white atomic noise of the first ensemble. Now for the correlated flicker noise

the stability can be reduced more than it is possible for the uncorrelated white noise.

When imagining the combination of an optical lattice clock and an ion clock with only

few ions but high accuracy the result we show would mean operating the ion clock at

its QPN limit, however, below the CTL restriction due to the increased interrogation

time. This can push the Ramsey times up to the point where spontaneous decay of the
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Figure 3.15: A more realistic composite clock simulation: Long term stability
when including considerable dead-time in the first ensemble and finite excited state
lifetime for the second ensemble. Symbols are the result of numerical simulations
while lines show the analytic theory of the SDE. For the composite clock we also
show the expected performance without spontaneous emission (dashed line). The
table summarizes the parameter values for the numerical simulations.

excited energy level can no longer be neglected and again reduces the stability. Also

in the regime of very long interrogation times other practical limitations may set in

which we neglect in this thesis. Nevertheless, we find that the combined stabilization

works well even when considering a more realistic example with a 87Sr optical lattice

clock and an 27Al+ ion clock. As can bee seen in Fig. 3.15, the stabilization works even

with significant dead time in the first ensemble. In that case, the overall stability of

the composite clock is limited by the finite lifetime of the 27Al+ ion at τ2 = 20.6 s. For

Ramsey times longer than τ2, a significant loss of stability can be observed compared

to the expected stability without any spontaneous decay (dashed line). Recently

it was also shown that using coherent dynamic decoupling interactions, instead of

measurements of the phase difference, is a way to prevent much of the dead time

in such a composite clock setup [DAB+19]. Applying this method may improve the

stability even further than shown here.

Realistically, one should now also think about dropping the assumption of ideal

references we made throughout this thesis. Because, if one of the advantages of such

a composite atomic clock is to use the high stability of a lattice clock combined with

the high accuracy of an ion clock, then the laser frequency that comes out of the
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stabilization done by the lattice clock will include the systematic shifts of the atoms

therein. Although temporal correlations of the systematic shifts may be typically

very small, this type of noise would still constitute to the output. It would give rise

to new flicker frequency or random walk frequency noise in addition to the white

measurement noise and will be seen by the ion clock. However, as this is only an

outlook, the impact of limited systematic accuracy in a cascaded clock remains to be

studied in detail.

Another point to note is that, as the additional ensembles in such a ‘scaling down’

setting will typically be QPN limited, entangled states will be more relevant here

as well. In this direction of research, cascaded versions of the maximally entangled

GHZ states have been proposed to build up a highly stable atomic clock [KKB+14,

PS07]. While maybe most efficiently using its atomic resources, many drawbacks

can be connected to GHZ states. Such as an enhanced susceptibility to external

noise (environmental dephasing or spontaneous emission) which need to be considered

carefully. Therefore recently also spin squeezed states have been considered in a

composite clock setup [PS20]. Although not cascaded in the way presented here

(the interrogation time remains the same for all ensembles), the protocol also heavily

relies on forwarding the measured phase information from one ensemble to the next.

This is in close similarity to the earlier work of Borregaard and Sørensen [BS13b]

where an adaptive measurement scheme with weak measurements on a single ensemble

effectively fulfilled the same purpose. Both studies reported stability with Heisenberg

scaling, i.e. σ2
y ∝ 1

TRN2 .

3.6.2 Beating quantum projection noise in atomic clocks

For this last part we will now assume optical atomic clocks operating with negli-

gibly small dead time or small ensemble sizes, so that they are limited entirely by

the trade-off between QPN and CTL. In a coherent atomic interferometer, like the

Ramsey interrogation, improved measurement sensitivity compared to the QPN have

typically been expressed in terms of the squeezing parameter or a signal-to-noise ratio

only (see chapter 2). This figure of merit however assumes a specific working point

and characterizes the sensitivity only locally around exactly that point. As seen all

throughout this chapter, such a strong assumption does simply not hold up for the

optical atomic clocks in general. The servo cycle in which the feedback corrections

are applied is a dynamical problem for which a broader range of phases needs to be

estimated correctly due to the fluctuating frequency of the underlying laser. In the

following, the phases in each interrogation cycle will be described as random samples
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from a single normal distribution

P(φ) =
1√

2πVφ
e
− φ2

2Vφ , (3.107)

centered around 0 and with variance Vφ = χ(γ)
(
TR

Z

)2+γ
as in Eq. (3.88). Note that

modeling the phases by this single, simple distribution is a strong assumption. In

principle the distribution could vary over different clock cycles contained in the long

averaging times of the clock. Including higher moments could be relevant or the

connection between the variance and the laser coherence time could be different.

However, when the clock is faithfully locking the laser it is reasonable to assume

that the phase distributions will be stationary and higher moments like the skewness

are suppressed. This has been observed for uncorrelated atoms already [LSH+17]

and is confirmed for variationally optimized protocols as well. In further agreement

with Ref. [LSH+17], the variance Vφ of servo prediction errors at short TR is slightly

increased in the numerical simulations where servos with a gain 0 < g < 1 lead to

an effective averaging over many measurements. Nevertheless the normal distributed

phases are a good approximation for many relevant values of TR and N .

Let us now introduce the weighted phase uncertainty

u(TR) =

∫ ∞
−∞

dφP(φ)Vφ (3.108)

with the variance

Vφ =

N/2∑
M=−N/2

[
φ− φ̌(M)

]2
P (M |φ) (3.109)

of the phase estimator

φ̌(M) =

(
∂〈M〉
∂φ

∣∣
φ=0

)−1

M, (3.110)

given a measurement outcome M . In this way Vφ is the variance of the linear esti-

mator, defined in the same way as in the treatment of the SDE, given that the true

phase value was φ. The conditional probabilities P (M |φ) are the phase dependent

measurement statistics of a spin projection, as before. When optimizing variational

protocols the direction can be fixed such that only measurements of e.g. Sy need

to be considered, given that the control operations of the class allow for appropriate

alignment of the state before the measurement. Note that all protocols are assumed

to be designed such that 〈M〉
∣∣
φ=0

= 0, to assure 〈φ̌〉
∣∣
φ=0

= 0 at the center of the

prior, which removes any bias of the estimator at that point. When the new local
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oscillator noise is uncorrelated between different cycles of the feedback loop the Allan

deviation is connected to the weighted phase uncertainty as [PS20, B+19b]

σy(τ) =
1

2πν0

u(TR)

TR

√
TR

τ
. (3.111)

This is in accord to what we had motivated in section 3.2.2. The absence of corre-

lations has been confirmed numerically in many studies ([ASL04, BS13b, KKB+14,

LSH+17]) and is implied by the Gaussian assumption from above. One can also check

that the weighted phase uncertainty reproduces essential features of the previous sta-

bility analysis: To this end we first express the estimator variance as

Vφ =

(
φ−

(
∂〈M〉
∂φ

∣∣
φ=0

)−1

〈M〉φ

)2

+

(
∂〈M〉
∂φ

∣∣
φ=0

)−2

(∆M)2
φ. (3.112)

At lowest order of Vφ → 0, the Gaussian reduces to a Dirac delta function P(φ) →
δ(φ) and as limφ→0〈φ̌〉 = 0 the weighted phase uncertainty

u(TR → 0) = Vφ=0 = ξ (3.113)

reduced simply to the Wineland squeezing parameter. On the other hand one can

extract the lowest order N independent contribution as well. For protocols without

decoding, i.e Ude = 1, it turns out that 〈φ̌〉 = sin(φ). Plugging this into Eq. (3.108)

and evaluating the Gaussian integral shows that

lim
N→∞

u(TR) =
5

12
V 3
φ +O(Vφ)4 (3.114)

to lowest order in the width of the phase prior. This reproduces the scaling law of

the CTL derived in Eq. (3.92) from the stochastic differential equation up to the

pre-factor.

With the weighted phase uncertainty replacing the squeezing parameter ξ in the

Allan deviation it becomes clear that, rather than optimizing the squeezing parameter

only, an atomic clock works best when the weighted estimator variance u(TR)
TR

per

interrogation time is minimized. Following the approach of section 2.4 a large class

of protocols can be constructed from OAT and collective rotations. In contrast to

the main results of chapter 2, which extensively explored optimal scenarios with very

few interactions, minimizing the weighted estimator variance can also be considered

as a variational problem which allows more layers of interactions for encoding and

decoding the state. Thus general strategies, like the ones introduced in section 2.4,

can be introduced by

Uen = Rx(αnen)Ry(θnen)T (µnen) . . . Rx(α1)Ry(θ1)T (µ1) (3.115)
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Figure 3.16: Variationally Optimized Stability: Long-term clock stability as a
function of the width Vφ of the phase prior for N = 256 atoms. The comparison
shows the standard Ramsey protocol with uncorrelated atoms, where nen = nde = 0,
and protocols that result from the variational optimization when nen = nde = 2. The
local oscillator experiences flicker frequency noise only. Solid lines are the prediction of
Eq. (3.111) for the optimized protocols, while symbols are full numerical simulations
of the clock. The optimized variational parameters of the protocols were determined
by R. Kaubruegger, D. Vasilyev and P. Zoller (private communication).

with nen layers encoding the initial state onto |ψ0〉 = |x〉, where T (µ) ≡ Tµ is the

OAT interaction (see 2.4.2), and

Ude = Rx(βnde
)Ry(ϑnde

)T (νnde
) . . . Rx(β1)Ry(ϑ1)T (ν1) (3.116)

to decode the phase information before the measurement. The full protocol is then

described in terms of the set of variational parameters α,θ,µ,β,ϑ,ν. The variational

protocols stated here were designed by R. Kaubruegger, D. Vasilyev and P. Zoller.

We note that a method for the full minimization of the weighted phase uncertainty

u(TR) in Eq. (3.108) was developed by K. Macieszczak et al. [MFDD14], including an

analytic optimization of the measurement operators. Beyond the scope of this thesis

it would be interesting to compare the performance of the variational protocols with

the optimal protocols.

Even at relatively small variational cost significant improvements in the QPN lim-

ited regime, and also on the overall stability, can be achieved. In most cases the gain

from the model-based optimization of the weighted phase uncertainty transfers nicely

to simulations of the full feedback loop without requiring any further assumptions.

Comparing to the simulated clock stability, no additional drawbacks due to fringe

hops were found in the most optimal protocols down to N = 4 particles. Figure 3.16
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shows one example, highlighting the achievable enhancement in stability for varia-

tionally optimized clock protocols. The optimal parameters for the protocols were

provided by R. Kaubruegger in a private communication. The results presented in

Figure 3.16 show excellent agreement between the theoretical predictions of the sim-

plified stability in Eq. (3.111) and the simulated instabilities, proving the applicability

of the model in this case. For the CSS it can be seen that the predicted instability

is a slightly too pessimistic prediction. This is due to assuming unity gain in the

estimator, Eq. (3.110), which can degrade the stability compared to the numerics

which typically run with a smaller gain factor for improved stability of the feedback

loop. One way to circumvent this problem is to replace the weighted phase variance

by e.g. the posterior variance of an optimized linear estimator, as considered by Ler-

oux et al. [LSH+17], which should then rather be a lower bound on the numerical

data. Nonetheless, looking at the improved instability of the simulated clock we find

an overall gain of 5.8 dB or a factor of 3.8 at the optimal interrogation time. The

results presented in this outlook establish the variational protocols as a promising

new component of entanglement enhanced optical atomic clocks.
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4
Designed interactions for
quantum metrology with
trapped ions

Summarizing the results of the two preceding chapters we found that on the one hand

weak spin squeezing is useful for optical atomic clocks with small particle numbers

and on the other hand static phase estimation can be enhanced with generalized echo

protocols even for strong one-axis-twisting strengths. Both results have in common

that they rely on an implementation of the one-axis-twisting interaction to generate

spin-spin interactions. As emphasized before, generating such interactions is possible

with trapped ions, one of the leading experimental platforms for optical atomic clocks

and precision measurements. This section focuses in the first part on driving a high

fidelity entangling gate between two ions using oscillating magnetic field gradients in

the near-field regime of a microwave conductor embedded in a surface-electrode ion

trap. We will see that the resulting gate dynamics can be designed in the form of the

one-axis-twisting interaction.

The main result that this section then features, is the calculation of an error

budget, establishing what are the limiting factors to the fidelity of such two-qubit

gates in a state-of-the-art system. Instabilities of the motional mode are found to be

the largest cause of errors. Building on this first result we then show the theoretical

improvement in fidelity when employing amplitude modulation, which allows for an

efficient suppression of errors caused by mode instabilities. Both results are theory

complements to experimental work done by H. Hahn, G. Zarantonello, J. Morgner, A.

Bautista-Salvador and C. Ospelkaus at the Physikalisch Technische Bundesanstalt in

Braunschweig (PTB). Part of the results presented in this chapter, along with results

from the experiment, are contained in Ref. [HZS+19] and Ref. [ZHM+19], paving

way to entangling gates with demonstrated infidelity around 10−3, performed at PTB

(see [ZHM+19]).

The same type of sideband interaction which drives the quantum gate is also

101
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useful for detection schemes with single particles in Penning traps. For the rather

exotic (anti-)proton, the spin degree can not be detected directly due to the lack of

any electronic transitions. However, coupling the spin of the (anti-)proton with its

motion can then allow to facilitate an effective measurement of the spin state via a

measurement of the axial motion of the ion. In the end, precision spectroscopy of the

Larmor frequency can be envisioned in this way, testing fundamental symmetries of

matter and antimatter. Thus the possibility to drive resonant sideband interactions

with low errors is discussed in section 4.2, by using the existing feature of precision

Penning traps to have regions with a strong magnetic field gradient and by adding a rf-

driving field. The scheme we put forward in Nitzschke et al. [NSN+20] was motivated

by a similar proposal for ions in a Paul trap by Mintert and Wunderlich [MW01].

4.1 Analysis of error sources in a microwave near-

field entangling gate

4.1.1 Setup and Hamiltonian

To start the discussion of ion based quantum gates, a review of some classic results

regarding the degrees of freedom of trapped ions as well as their interaction with

oscillating electric or magnetic fields is given first. Parts of this discussion share

an approach similar to the one of Sepiol [Sep16]. The results presented next form

the basis to discuss sideband interactions, connecting the spin and motional degrees

of freedom of a trapped ion, which are used in the Mølmer-Sørensen gate (see sec-

tion 4.1.2).

Ion motion Consider a string of ions trapped in the electromagnetic field of a

conventional Paul trap [MGW05, WMI+98]. In general, Paul traps produce a static

electric quadrupole field, providing confinement of the ions along one spatial direction,

along with another oscillating electric quadrupole field, at radio-frequencies, which

traps the ions in the transverse (radial) direction. They have been constructed in a

large variety of designs but at the level of abstraction needed here, all we are con-

cerned with is the general feature of these traps: The ions perform small oscillations

with extension rj (for ion j) around their equilibrium positions Rj, which are the

local potential minima for the sum of the electromagnetic potential generated by the

Paul trap and the Coulomb potential of all other ions in the trap [Jam98a]. A typical

configuration is the linear ion crystal, where a strong radial confinement of the trap-

ping fields causes all ions to align along one particular axis of the trap (the y-direction

in this section), so that Rj = Yjey. As each ions position determines the potential
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felt by the other ions, it is clear that their motion will be coupled. Indeed, in a stan-

dard harmonic approximation of the potential it turns out that N ions exhibit 3N

collective normal modes with angular oscillation frequencies ωl,k. Here l = {x, y, z}
denotes the spatial orientation of the relevant trap axis and k = 1, 2, . . . , N labels

the N normal modes within each direction. Note that the basis referred to by l may

differ from the basis x̃, ỹ, z̃ that comes natural from the geometry of the ion trap and

the static magnetic field, setting the quantization axis. Especially for surface traps,

which will be considered in this section, the two radial modes will generically not be

parallel and perpendicular to the chip surface. However, a transformation between

the two bases can always be obtained by simply rotating the coordinate system so

we are not too concerned about the specific directions here. For future reference it is

only noted that the weak axial direction has ỹ = y in this study. The corresponding

eigenvectors b(l,k) of the potential energy give the normalized amplitudes for each ion

and thus the shape of the collective oscillation. For example in a two-ion crystal they

are

b(l,1) =
1√
2

(
1
1

)
, b(l,2) =

1√
2

(
1
−1

)
(4.1)

along each trap axis l. These vectors describe center-of-mass motion and an out-

of-phase oscillating mode (also called stretch-mode). The projections of any small

oscillation r of the entire crystal onto the normal modes are ql,k = b(l,k) · r. In turn,

the displacement of ion n in direction l can be expressed as r
(l)
n =

∑
p ql,pb

(l,p)
n via the

normal modes. In a standard treatment of quantum mechanical harmonic oscillators,

introducing creation and annihilation operators a†l,k, al,k allows to express position

and momentum for the normal modes as

ql,k =
1√
2
`l,k(a

†
l,k + al,k), (4.2)

pl,k =
i√
2

~
`l,k

(a†l,k − al,k), (4.3)

where `l,k =
√

~
mωl,k

with the ions mass m and (secular) oscillation frequencies ωl,k.

These creation and annihilation operators diagonalize the Hamiltonian for the ion

motion, which is then given by

Hmot =
∑

l={x,y,z}

N∑
k=1

~ωl,k a†l,kal,k, (4.4)

neglecting the constant zero point energy contribution.
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The two-level system Reducing the complex electronic structure of atoms to only

two relevant energy levels is commonly possible for many trapped ion species. Be it

two states connected by a narrow quadrupole E2-transitions in the optical regime

(e.g. 40Ca+), or two hyperfine ground states for which coherent interactions have

been achieved either via Raman lasers (e.g. in 171Yb+) and oscillating magnetic

fields (e.g with 9Be+ or 43Ca+). All these systems have in common that they can be

described analogously to a pseudospin-1/2 particle, so in terms of Pauli matrices or

collective spins operators in the case of many ions. The basic Hamiltonian is

Hs =
N∑
j=1

~ω0

2
σ(j)
z = ~ω0Sz (4.5)

with the qubit transition frequency ω0 and collective spin operator Sz (cf. 2.2.1). The

special case we consider in this section is the transition between the two hyperfine

states |F = 2,mF = 1〉 ≡ |↓〉 ≡ |0〉 ↔ |F = 1,mF = 1〉 ≡ |↑〉 ≡ |1〉 in the 2S1/2 man-

ifold of 9Be+. At a particular static magnetic field strength, this transition frequency

becomes in lowest order insensitive to the strength of the magnetic field [L+05a],

meaning that

〈1|µz|1〉 − 〈0|µz|0〉 = 0 (4.6)

with µz the magnetic dipole moment in z-direction. So in this case the magnetic

field induced shifts of the two states are identical around |B0| = 22.3 mT [Wah16].

This ensures long coherence times [L+05a], as required for many tasks in quantum

computation, quantum simulation, or quantum metrology. Note the similarity to the

concept of magical wavelengths for the light shifts caused by optical lattices in atomic

clocks.

Interaction with an oscillating field If one adds an oscillating magnetic field

B(R, t) = B(R) cos (ωt− φ) at the position of the ion, the ion-field interaction for

the hyperfine qubits is given by the magnetic dipole Hamiltonian

Hint = −
N∑
j=1

µ ·B(Rj) cos(ωt− φ), (4.7)

where µ is the vector of magnetic dipole moments and Rj the position of ion j.

Expressing Hint by the spin algebra gives

Hint = −
N∑
j=1

[
H11|1〉〈1|+H01|0〉〈1|+H10|1〉〈0|+H00|0〉〈0|

]
= −

N∑
j=1

H01 σ
(j)
x +

1

2
(H11 −H00)σ(j)

z (4.8)
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in terms of the matrix elements Hab = 〈a|µ ·B(Rj, t)|b〉. In the derivation of Eq. (4.8)

it is assumed that H01 = H10 is real and in going to the second line a constant energy

offset 1
2
(H11 + H00)1 was dropped. When addressing transitions with ∆m = 0, such

as |0〉 ↔ |1〉 introduced above, the only relevant matrix elements are 〈a|µz̃|b〉. So the

transition is driven by the component Bz̃, which is the projection of the oscillating

field along the quantization axis z̃, thus ideally requiring linear polarization in that

direction. In this case the term proportional to σ
(j)
z in Hint vanishes for the field

insensitive qubit, where H11 − H00 = 0 following from Eq. (4.6). Additionally, the

selection rules give

H01 = −µBz̃ cos(ωt− φ) (4.9)

where µ ≡ 〈0|µz̃|1〉. Overall, the interaction Hamiltonian is thus

Hint = µ cos(ωt− φ)
N∑
j=1

Bz̃(Rj)σ
(j)
x . (4.10)

As emphasized above, entangling the ions works when the spin-spin interaction is

mediated by the collective ion motion. So in order to see motional sideband transitions

in Hint one expands Bz̃ in a Taylor series around the ion positions. Up to linear order

in the small displacement the Hamiltonian is

Hint = µ cos(ωt− φ)
N∑
j=1

Bz̃(Rj) +
∑

l={x,z}

∂Bz̃

∂l

∣∣
Rj

N∑
k=1

b
(l,k)
j

1√
2
`l,k(a

†
l,k + al,k)

σ(j)
x

(4.11)

where the magnetic field and the gradient are evaluated at the equilibrium position

Rj of the ions. In this result we used the approximation that the gradient ∂Bz̃

∂y
of the

magnetic field in y-direction, i.e along the ion string, vanishes to a high degree, due to

the geometry of the trap. This is because for the experiments we aim to describe the

weak trapping axis (y-direction) runs along the microwave conductor generating the

oscillating field, which eliminates coupling to modes in that spatial direction. Only

couplings to the radial modes remain for that setup.

Sideband interactions The full Hamiltonian of the system at this point is

H = Hs +Hmot +Hint, (4.12)

combining Eq. (4.4), Eq. (4.5) and Eq. (4.11). In the end we will be interested in

oscillating fields with ω = ω0 ± (ωl′,k′ + δ), detuned close to one of the motional

sidebands. We assume the frequency hierarchy |δ| � ωl′,k′ � ω0. Going to the
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interaction picture with respect to Hs+Hmot (denoting the transformed Hamiltonian

with a tilde) gives

H̃ =
N∑
j=1

{~ΩC
j

2
e−i[(ω−ω0)t−φ]σ

(j)
+

+
∑

l={x,z}

N∑
k=1

~Ωj,l,k

2

(
σ

(j)
+ al,ke

−i[(ω−ω0+ωl,k)t−φ] + σ
(j)
+ a†l,ke

−i[(ω−ω0−ωl,k)t−φ]
)}

+ h.c.

(4.13)

where terms oscillating with frequencies ≈ 2ω0 are neglected in the standard rotating

wave approximation. We define the Rabi frequencies

ΩC
j ≡

1

~
µBz̃(Rj), (4.14)

Ωj,l,k ≡
1

~
1√
2
µ b

(l,k)
j `l,k

∂Bz̃

∂l

∣∣
Rj
. (4.15)

The term in the first line of Eq. (4.13) and its Hermitian conjugate correspond to

carrier transitions which become resonant for ω = ω0. For the operation of the

quantum gate, where ω = ω0 ± (ωl′,k′ + δ), these would be unwanted contributions

to the dynamics. Carrier transitions will be neglected in the subsequent theoretical

model due to the fact that they are far off-resonant and, by design, the ion trap

generates a large magnetic field gradient with simultaneously low residual field am-

plitude [WHZ+17]. At ω = ω0 − ωl,k one finds the red sideband, containing terms

with σ
(j)
+ al,k or σ

(j)
− a

†
l,k, to be resonant. This creates (removes) motional excitation

while simultaneously flipping the spin state to (from) the state |0〉. At ω = ω0 + ωl,k

the blue sideband is resonant, which has σ
(j)
+ a†l,k and σ

(j)
− al,k interactions, thus creat-

ing (removing) simultaneously spin and motional excitations. Counter-rotating terms

from the off-resonantly driven other sideband will be neglected in both cases as they

are oscillating on a fast timescale when |2ωl,k| � δ.

4.1.2 The Mølmer-Sørensen gate

The interaction proposed by Mølmer and Sørensen [SM99, SM00] is based on a bichro-

matic drive detuned close to the red and blue sidebands of one motional mode, say

l′, k′. These weakly off-resonant interactions with a mode of the collective motion of

the ion Coulomb crystal can mediate long range spin-spin interactions. In the com-

bination of one red and one blue sideband, the entangling gate described here will

then only drive collective spin flips of any two ions resonantly. The resulting gate

operations were first introduced as an essential component in quantum information

processing [CZ95], but can also be used to create metrologically useful entangled spin
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states [PSO+18]. Spin squeezed states are among them, as we will see. The original

idea for gates using microwave near-field gradients was put forward by D. J. Wineland

et al. [WMI+98] and later on in more detail by C. Ospelkaus et al. [OLA+08].

With two driving fields, one at ω = ω0 + (ωl′,k′ + δB) and the other at ω =

ω0 − (ωl′,k′ + δR), the full Hamiltonian can be written as

HMS(t) =
1

2

N∑
j,k=1

∑
l={x,z}

{
~ΩB

j,l,k(t)
(
σ

(j)
+ a†l,ke

−i(δBl,kt−φ
B) + σ

(j)
− al,ke

i(δBl,kt−φ
B)
)

+ ~ΩR
j,l,k(t)

(
σ

(j)
+ al,ke

i(δRl,kt+φ
R) + σ

(j)
− a

†
l,ke
−i(δRl,kt+φ

R)
)}

.

(4.16)

Here δ
(R,B)
l,k ≡ ω−(ω0±ωl,k) = ±(ωl′,k′−ωl,k+δ(R,B)) gives the detuning of the driving

field to any motional mode l, k. Equation (4.16) is quite general. It allows for the

(possibly different) Rabi frequencies Ω
(R,B)
j,l,k (t) to be time-dependent and also still con-

sider all motional modes. It is worth highlighting that a Hamiltonian in the form of

Eq. (4.16) can also be obtained for other types of qubits and driving fields, not only the

special case of near-field microwave gates in 9Be+ motivated in this section. The same

sideband interactions can be obtained with direct laser driving of quadrupole transi-

tions [Jam98a, SKHR+03] or via Raman coupling [MMK+95b, MMK+95a, LBD+05].

Note, however, that the noise effects treated in section 4.1.3 are chosen specifically for

the near-field microwave gates performed at PTB [HZS+19, ZHM+19]. Other imple-

mentations may be limited by different physical processes. For example spontaneous

photon scattering is relevant for gates with Raman coupling [O+07] but not for the

microwave near-field approach. We also add that in principle a time-dependence of

the phases φR, φB is possible. However, an exact analytic treatment is no longer pos-

sible in that case, as spin projections at different times no longer commute (generally

causing the Magnus expansion in Eq. (4.20) to not terminate at second order), which

makes a discussion of such control techniques difficult.

To reduce the complexity of Eq. (4.16) and reveal the desired spin-spin interactions

of the gate more easily, some assumptions can be made. First of all, when the detuning

is close to a single motional mode, all other modes may be neglected for now. Thus

the sums over l and k reduce to a single sum for which we drop mode labels, so

a†l,k, al,k → a†, a and δ
(R,B)
l,k → δ(R,B). Assuming equal coupling of the two driving

fields gives the additional replacements ΩB
j,l,k(t) = ΩR

j,l,k(t) ≡ Ωj(t) and δR = δB ≡ δ.

Under these assumptions the resulting Hamiltonian

HMS(t) =
N∑
j=1

~Ωj(t)σ
(j)

φ

(
aeiδte−i

∆φ
2 + a†e−iδtei

∆φ
2

)
(4.17)
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is simplified considerably. The basis of the spin projection

σ
(j)

φ
=

1

2

(
σ(j)
x cos(φ)− σ(j)

y sin(φ)
)

(4.18)

is determined by the mean phase φ = 1
2
(φB+φR). Note that we include the factor 1/2

in the definition of σ
(j)

φ
so that (σ

(j)

φ
, σ

(j)

φ−π/2,
1
2
σ

(j)
z ) fulfill the commutation relations of

angular momentum. Other conventions, where the spin operators do not fulfill this

property, are, however, also used in the literature. The phase difference ∆φ = φB−φR

affects the initial direction of the spin-dependent displacement in phase space. In the

following we will assume ∆φ = 0 due to the high level of control over the phase of

the microwave driving fields, which gives

HMS(t) =
N∑
j=1

~Ωj(t)σ
(j)

φ

(
aeiδt + a†e−iδt

)
. (4.19)

Equation (4.19) can be identified as the dynamics of a driven harmonic oscillator

with a spin-dependent force. When driving closed curves in the oscillators phase

space, effective spin-spin interactions are induced by the geometric (Berry) phase.

For completeness we note that related concepts for geometric phase gates have been

proposed [L+03, MSJ00, SdMFZ99].

The effect of HMS(t) can be nicely seen from the unitary time evolution. The

exact propagator U(t) for the ideal gate with the Hamiltonian in Eq. (4.19) can be

derived analytically: Expressing U(t) in terms of the Magnus expansion [Mag54]

U(t) = exp

(
∞∑
k=1

(−i/~)kζk(t)

)
, (4.20)

where

ζ1(t) =

∫ t

0

dt1HMS(t1), (4.21)

ζ2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2
[
HMS(t1), HMS(t2)

]
, (4.22)

ζ3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

([
HMS(t1), [HMS(t2), HMS(t3)]

]
+[

HMS(t3), [HMS(t2), HMS(t1)]
])
, (4.23)

...

one can use the very convenient fact that for the interaction Hamiltonian in Eq. (4.19)

the series terminates after the second order. The resulting propagator is

U(t) = e
∑N
j=1 σ

(j)

φ
(αj(t)a†−α∗j (t)a) e

−i
∑N
j,n=1 Φjn(t)σ

(j)

φ
σ

(n)

φ (4.24)
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with the time-dependent displacement

αj(t) = −i
∫ t

0

dt1 Ωj(t1)eiδt1 (4.25)

and geometric phases

Φjn(t) =
−i
2

∫ t

0

dt1

∫ t1

0

dt2 Ωj(t1)Ωn(t2)
{
eiδ(t1−t2) − e−iδ(t1−t2)

}
=

∫ t

0

dt1

∫ t1

0

dt2 Ωj(t1)Ωn(t2) sin
(
δ(t1 − t2)

)
. (4.26)

In order to have pure spin-spin interactions in U(t), the displacement of the motional

mode needs to be zero at the end of the gate. When tg is the duration for which the

gate drive is applied, the requirement is αj(tg) = 0. On the other hand, the geometric

phases Φjn(tg) should take on stable, nonzero values. In that way when driving the

gate with one of the center-of-mass modes, which have bj = 1√
N

for all j so that

Ωj ≡ Ω, and assuming for simplicity φ = 0, one finds the propagator

U(t) = e−iΦ(tg)S2
x (4.27)

which is exactly the one-axis-twisting dynamics we introduced in section 2.4.2. Here

in the x-basis, i.e. with the collective spin operator Sx = 1
2

∑N
j=1 σ

(j)
x instead of the

z-basis we considered before, but this is equivalent up to a collective spin rotation or

a rotation of the Bloch sphere.

Instead of the center-of-mass mode, the gate that was realized in Ref. [HZS+19]

operated with a radial stretch mode of the two-ion crystal, where bl
′,k′ = 1√

2
(1,−1)T .

Nevertheless, it can be shown that at an appropriate gate time, such that Φ(tg) = π
2
,

the maximally entangled state

|Ψ〉 = U(tg)|00〉 =
eiπ/4√

2

(
|11〉 − i|00〉

)
(4.28)

is generated [HZS+19, Hah19]. The state |Ψ〉 can be used as a benchmark to test

the quality of the gate operation. Looking at the fidelity F = 〈Ψ|ρ(tg)|Ψ〉 between

the state ρ(tg), which is generated at time tg, and the ideal entangled state |Ψ〉
provides a measure of how well the ideal dynamics is applied [S+00]. Respectively,

the infidelity 1 − F quantifies the impact of parasitic interactions. For details on

the measurements of the fidelity which we will refer to later, the reader is referred

to Refs. [HZS+19, Hah19]. A comparison of different methods to infer F from the

measurement data can be found in Ref. [Zar20].
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4.1.3 Error budget from experimental parameters

For actual gate operations many kinds of perturbations need to be considered. Espe-

cially in the regime of small infidelities the selection can become very diverse, with

each noise source contributing some fraction to the overall low error. In order to iden-

tify the current infidelity contributions when producing the maximally entangled state

|Ψ〉, we simulate the dynamics of the system using a master equation which includes

one of the noise terms and feed it with experimentally determined input parameters.

The treatment of a master equation becomes necessary as the exact propagator can

no longer be obtained analytically in the presence of some of the error sources. The

selection of error sources presented below is certainly not complete. It is based on

the most relevant effects observed in the characterization of the specific experimental

setup and is thus aimed at capturing the largest limitations of the measured gate in-

fidelity. Each perturbation is evaluated in isolation, allowing to clearly identify which

physical causes need to be addressed in order to improve the quality of the gate.

The full master equation is given by

ρ̇ = −i[H, ρ] + Lhρ+ Ldρ, (4.29)

where the Hamiltonian is H = HMS +Hm +Hz +Hspec. With

HMS =
~
2

N∑
j=1

(ΩB(t)σ+
j a
†
x,2e

−iδt + ΩR(t)σ−j ax,2e
iδt) + H.c. (4.30)

being a particular case of the light matter interaction in Eq. (4.16) and an extension

to the ideal gate interaction presented in Eq. (4.19). This Hamiltonian is adjusted

to include the most relevant measured error sources only. The gate operates on one

of the radial stretch modes at ωx,2. This mode was chosen as it exhibits the largest

coupling to the field gradient and is expected to show a lower heating rate than the

center-of-mass oscillation [Jam98b, KWM+98]. Further,

Hm = ~δε(t)a†x,2ax,2 (4.31)

describes shifts of the motional mode frequency addressed by the gate drive and

Hz =
~∆ε(t)

2

∑
j

σ(j)
z (4.32)

gives the uncompensated A.C. Zeeman shift of the transition frequency. Couplings

to other off-resonant motional modes in the radial plane are included by the term

Hspec =
∑

(l,k)6=(l′,k′)

N∑
j=1

~Ωl,k

2
(σ+

j + σ−j )(al,ke
iδl,kt + a†l,ke

−iδl,kt). (4.33)
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In addition to the unitary dynamics of the Hamiltonian H, incoherent processes also

disturb the gate operation. Anomalous heating of the secular motion and loss of

coherence for the qubit are characteristic for quantum gates with trapped ion. The

exact mechanisms of heating is complex, but fluctuating electric fields, originating

from the surface of the trap electrodes, are suspected to drive the noise, making

this process challenging to eliminate [HCW+13, BKRB15]. In the theoretical model,

heating of the motional mode to a thermal state with nth � 1 and decoherence of

the qubit are considered by the Lindblad terms [SM00]

Lhρ = ~γh(D[ax,2]ρ+D[a†x,2]ρ) (4.34)

with the heating rate γh and

Ldρ =
~γd
2

∑
j

D[σ(j)
z ]ρ (4.35)

with the decoherence rate γd respectively, where

D[Ô]ρ = ÔρÔ† − 1

2
Ô†Ôρ− 1

2
ρÔ†Ô. (4.36)

Table 4.1 lists all contributions to the infidelity 1−F for the different error sources

considered in this thesis. With the exception of the off-resonant carrier excitation, all

are contained in the dynamics of Eq. (4.29). The largest infidelity contribution at 1.3×
10−2, due to motional mode instabilities, is in good agreement with the experimentally

measured infidelity of 1.8% ± 1.2%. The remainder of this section is dedicated to a

more detailed discussion of the evaluation of the infidelity contributions.

Gate parameters First we specify the fixed parameters of the gate reported in

Ref. [HZS+19]. As this was performed in an N = 2 ion crystal with an approximately

rectangular pulse, where ideally

ΩR(t) = ΩB(t) =

{
Ωg 0 ≤ t < tg

0 else
, (4.37)

the time-dependent displacement and phase (see Eq. (4.25) and Eq. (4.26)) are

α(t) =
Ωg

δ

(
e−iδt − 1

)
, (4.38)

Φ(t) =
Ω2
g

δ2
(δt− sin(δt)) . (4.39)

Consequently, the displacement vanishes at gate times and detunings with

δ tg = L 2π, (4.40)
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Effect Parameter Infidelity

mode instability
√
〈(δε/δ)2〉 = 1.1× 10−2 1.3× 10−2

0.3 Hz/µs chirp for 600µs

spectator mode ∆ν = 2π × 42.5 kHz 5.2× 10−3

with n̄z,2 = 0.27

motional heating γh = ˙̄nx,2 = 28 ph/s 3.8× 10−3

off-resonant carrier excitation - (measured infidelity) < 2.3× 10−3

qubit decoherence τd = 1/γd > 0.5 s < 9.3× 10−4

pulse shape see main text 6.3× 10−4

ACZS fluctuations
√
〈(∆ε/∆z)2〉 = 8× 10−4 1.1× 10−4

Rabi frequency imbalance
ΩR − ΩB

ΩB

= 2.33× 10−2 4.1× 10−6

Table 4.1: Error budget: Infidelity contributions from different sources of imperfec-
tions. All infidelity values, except for the off-resonant carrier excitation, result from
numerical simulations of the quantum dynamics, according to Eq. (4.29). In each
case, the respective noise effect is included with a strength given by the measured
parameter specified in the second column.

where the integer L ∈ N counts the number of loops that are covered in phase space.

With Eq. (4.40), the requirement on the geometric phase, Φ(tg) = π
2
, can be expressed

as

Φ(tg) =
Ω2
g

δ2
L 2π =

π

2
⇔ δ = 2Ωg

√
L. (4.41)

The relations presented above have three free parameters (tg, δ,Ωg) for two equations,

so one can be chosen freely, which then determines the other two from Eq. (4.40) and

Eq. (4.41) for each L. Typically it is the Rabi frequency which is fixed and cho-

sen as large as possible to apply the gate as fast as possible. Limitations can come

either from the available laser power, undesired broadening effects or through the

energy that is dissipated into the small conducting structures on the surface elec-

trode trap, as in the setup at PTB. There, the Rabi frequency was measured to be

Ωg = 2π × 1.071 kHz, resulting in δ = 2π × 3.71 kHz and tg = 808µs. A deviation

to the experimentally determined optimal detuning δexp = 2π × 3.4 kHz is likely due

to a systematic offset in the measurement of motional frequencies and the reported

motional instability. Sideband cooling of the motional mode driving the gate was

performed. The final state after cooling was close to the motional ground state with

a residual mean phonon number n̄ = 0.11. While the gate is under ideal conditions
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independent of n̄, we will soon see that the susceptibility of the fidelity to other im-

perfections is, however, increased for larger values of n̄. See Eq. (4.43) for a particular

example.

The infidelity values in the error budget of Table 4.1 result from analytic cal-

culations or numerical simulations of the quantum dynamics according to Eq. (4.29)

considering the ideal gate parameters described so far with addition of the correspond-

ing noise in the form stated above. All simulations were done with QuTiP [QuT16]

and used a truncated Hilbert space for the motional mode. For our analysis, including

the first 25 Fock states was sufficient, given the low initial thermal distribution with

a measured mean occupation of n̄ = 0.11 and the small motional displacement during

the dynamics. In the following, the error sources are presented in the order of their

respective contribution to the overall infidelity.

Motional instability The largest error according to our investigation results from

frequency instability of the two-ion rocking mode, which establishes the gate dy-

namics1. This effect consists of two parts: On the one hand, normally distributed

variations of the frequency with a standard deviation of
√
〈(δε/δ)2〉 = 1.1 × 10−2,

inferred from a full width at half maximum (FWHM) linewidth of 2π × 101 Hz in a

calibration scan directly before the gate measurement. On the other hand, there is a

frequency chirp within each gate. We model this effect by a linear increase of the sec-

ular frequency ωl,k(t) of 0.3 Hz/µs within the first 600µs and a constant frequency af-

terwards, based on an observed saturation behaviour [Hah19]. Such frequency chirps

have also been observed in other experiments using near-field gradients [HSA+16]

and are presumed to be inherent to warm-up processes in the microwave-generating

structures.

The infidelity for the shot-to-shot fluctuations of the mode frequency can be stud-

ied exactly. Considering the propagator

U(α,Φ) = exp
(
Sφ(αa† − α∗a)− iΦS2

φ

)
(4.42)

with Sφ =
∑N

j=1 σ
(j)

φ
for general displacement α and phase Φ. The corresponding

fidelity is

F (α,Φ) =
1

8

{
3 + e−4|α|2(n+ 1

2
) + 4 sin(Φ)e−|α|

2(n+ 1
2

)
}
. (4.43)

This shows how the fidelity is reduced when the conditions |α(tg)| = 0 and Φ(tg) = π
2

are not met exactly. When going to another interaction picture with respect to

Hm = ~δεa†x,2ax,2 it becomes clear that the effect of shot-to-shot fluctuations of the

1Referred to as the ‘high-frequency rocking mode’ in the original publication.
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mode frequency is equivalent to changes of the detuning δ → δ + δε. So making this

replacement in Eq. (4.38) and Eq. (4.39) and using the two expression in Eq. (4.43)

produces an exact result for the fidelity with respect to the dimensionless parameter

δε/δ. Assuming some distribution P (δε/δ) for the relative deviation from the nominal

mode frequency allows to calculate the average fidelity

〈F 〉 =

∫ ∞
−∞

d(δε/δ)P (δε/δ)F (δε/δ). (4.44)

The FWHM for the Lorentzian lineshape in a calibration frequency scans reveals

the strength of fluctuations on the timescale of the gate duration. The distribution

P (δε/δ) is approximated here by a Gaussian with standard deviation s = FWHM
2
√

2 ln 2
of

the measured FWHM to calculate the average fidelity2.

For the time-dependent frequency chirp, numerical simulations are required to

calculate the infidelity. In this process the gate detuning is numerically optimized to

give the lowest infidelity for the combination of frequency chirp and mode fluctuations.

A change of the optimal detuning occurs because the chirp will favour a detuning

which is lower than the theory value so that over the course of the gate duration

the effective detuning moves closer to the theory value due to the chirp. Combining

the two effects (again with
√
〈(δε/δ)2〉 = 1.1 × 10−2) the expected infidelity of both

processes is evaluated to 1.3 × 10−2. This turned out to be the dominant noise

contribution to the gate. Addressing this issue via pulse shaping techniques is briefly

discussed in section 4.1.4. Figure 4.1 shows the combination of the average infidelity

1 − 〈F 〉 and the contribution of a frequency chirp as a function of the width s =√
〈(δε/δ)2〉 of the distribution P (δε/δ) and for varying duration Tchirp of the linear

frequency chirp.

Coupling to the nearest motional mode Another error is caused by driving

the identical spin-spin interaction via other motional modes of the two-ion crystal, as

shown in the derivation of the Mølmer-Sørensen Hamiltonian. As both the displace-

ment of these other modes as well as the additional geometric phases depend inversely

on their detuning with respect to the driving fields, the discussion is limited here to

the closest mode only, which contributes the largest error of this kind. It turns out

that the relevant mode is the additional (‘low-frequency’) rocking mode az,2, oscil-

lating in the second radial normal mode direction. This was measured to have an

almost identical Rabi frequency, which is why Ωz,2 = Ωg is used for the simulations.

The relevant contribution to the Hamiltonian is

Hspec = ~Ωz,2Sx(az,2e
i(∆ν+δ)t + a†z,2e

−i(∆ν+δ)t). (4.45)

2Statistical moments for a Lorentzian distribution are not well defined and the approximation as
a Gaussian is quite good.
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Figure 4.1: Infidelity from mode instability: Combined contribution for shot-to-
shot fluctuations of the motional mode frequency with standard deviation

√
〈(δε/δ)2〉

and a time-dependent frequency chirp of duration Tchirp within each gate. The inset
gives a visual of the assumed shape for the frequency chirp over the gate time tg. The
instability reported in the error budget, Table 4.1, is given by the intersection of the
blue solid line with the vertical dashed line. Figure taken from Hahn et al. [HZS+19].

where the measured frequency spacing was ∆ν = ωz,2−ωx,2 = 2π×42.5 kHz. Ground

state cooling to nx,2 = 0.27 was applied for this mode as well, resulting in an infidelity

of 5.2× 10−3 due to the competing gate dynamics.

Heating of the driven motional mode and qubit decoherence Heating of

the motion and decoherence of the spin qubits contribute an infidelity of 0.38% and

≈ 0.1% respectively. This was inferred from simulations with the heating rate γh =

˙̄nx,2 ' 28 ph/s and the lower limit τd = 1/γd > 0.5 s to the qubit coherence time.

Off-resonant carrier excitation The infidelity contribution due to off-resonant

excitation of the carrier transition is included in the error budget of this thesis for

completeness only. Due to the large frequency differences between the detuning of

the gate and the carrier frequency, no direct simulation of this effect was possible as

in that case two very different timescales need to both be included. On the one hand

the extremely fast timescale of the off-resonant oscillations from the excitation of the

carrier transition and on the other hand the much slower gate duration of almost

1 ms. Following the procedure developed in Ref. [HSA+16, Sep16], the error for a

single qubit was estimated to be below 2.3× 10−3 in Refs. [HZS+19, Hah19].
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Pulse shape and Rabi frequency imbalance In the Hamiltonian, Eq. (4.30),

equal Rabi frequencies and phases for both ions were assumed, which is true in the

experiment as far as measurements could tell. The relative strength of the red and

blue sideband, however, may differ because of an imbalance in the pulse envelope

amplitude of the two driving fields. Treating general ΩB and ΩR allows to include an

imbalance in the two sideband Rabi frequencies, which is treated here as a static mis-

calibration. For a relative error
ΩR − ΩB

ΩB

= 2.33× 10−2 the infidelity is calculated to

be 4.1× 10−6, which is by far the lowest contribution in the error budget. Similarly,

distortions of the pulse shape for the microwave drive, affecting the temporal profiles

ΩR(t),ΩB(t), result in errors when the gate time and detuning are calculated based

on an ideal pulse shape (e.g. assuming a rectangular pulse as was done here). Small

infidelities below 6.3×10−4 were found in the simulations including such distortions of

the pulse shape. In these distortions we combined the influence of adiabatic switching,

ramping the driving field on and off over 2µs following an error function profile, as

well as small changes of the Rabi frequency Ωg(t) and the A.C. Zeeman shift ∆ε(t)

during the pulses, which result from power transients on the ideally rectangular signal.

Residual A.C. Zeeman shift Shifts of the qubit transition frequency due to the

driving oscillating fields, the A.C. Zeeman shifts, are an effect that is specific to

microwave near-field gates. Although conceptually similar A.C. Stark shifts can occur

for laser driven gates. As the shifts of the red and blue detuned fields generally do not

cancel each other, the gates are typically operated with some set value for this shift.

In the implementation discussed here this was measured to be ∆z = 2π × 4.37 kHz

prior to the gate operation. When calibrated exactly and kept constant over a full

experimental run the shifted qubit frequency poses no limitation. The only change

is that the driving rf-frequencies ω(R,B) = ω0 + ∆z ± (ωl′,k′ + δ) must include a

correction to the A.C. Zeeman shift of the qubits. Note that also the Hamiltonian H

in Eq. (4.29) is in an interaction picture with respect to Hs = (ω0 +∆z)Sz, containing

the shifted natural transition frequency. However, residual shifts from fluctuations

in the power of the applied driving fields is a cause of error. To account for this

perturbation, a term proportional to ∆ε is included (see Eq. (4.32)), which allows

the simulation of shot-to-shot fluctuations of the residual A.C. Zeeman shift. The

average infidelity in this case was determined by sampling 650 independent runs, each

with a shift ∆ε which is drawn from a normal distribution with standard deviation√
〈(∆ε/∆z)2〉 = 8× 10−4, measured from the actual experiment. Fluctuations of the

residual A.C. Zeeman shift had been a limitation in previous microwave near-field

entangling gates [HSA+16], requiring the additional use of dynamic decoupling to

suppress this noise. In the experiments referred to in this thesis, stabilization of the
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microwave power allowed to reduce the shot-to-shot fluctuations of the A.C. Zeeman

shift to such an extent that the simulated infidelity of 1.1 × 10−4 contributes only

insignificantly.

4.1.4 Pulse shaping to reduce infidelity

With the motional instability identified as the main limitation of the standard en-

tangling gate, one can now look for ways to specifically counteract this class of per-

turbations. Of course improving the physical stability of the radial modes in the

experiment is one way to diminish the impact, but may prove to be technically chal-

lenging at the required level of accuracy. On the other hand, a collection of approaches

using coherent quantum control have been proposed and demonstrated in the past

which also address fluctuations of the motional frequencies [HCD+12, HM16, SSM+18,

WWC+18, GB15, FOL+19]. The underlying idea for many of these schemes is to keep

the displacement of the motional state close to the initial state at the end of the gate

application. From an optimization point of view the additional control techniques

would try to achieve
∂α(tg)

∂δ
= 0,

∂Φ(tg)

∂δ
= 0 (4.46)

while simultaneously keeping α(tg) = 0 and Φ(tg) = π
2

over a broad range of detun-

ings. Consequently, the final displacement and geometric phase would be only weakly

affected by changes of the detuning.

One special feature of the microwave driving fields is the high degree of control

over amplitude and phase that comes with this established technology. So techniques

involving the modulation of amplitudes or phases as a resource are well fitted. A

practical limitation is, however, set by the energy that can be dissipated into the

electrodes generating the trapping fields. This is directly related to constraints on

the power and duration of the microwave fields, making a resource efficient approach

highly desirable.

As shown in the following, modulation of the amplitudes turns out to be very

successful in both regards. Consider for example an adjustment of the pulse envelope

to the rf-fields in such a way that the Rabi frequency of the gate is

Ωg(t) = Ω sin2

(
πt

tg

)
. (4.47)

In principle there is a lot of room for variations of this simple pulse shape alone.

The exponent could be changed or the argument could be replaced by mπ/tg, so that

m ∈ {1, 2, 3, . . . } oscillations are performed in one gate pulse. Only the conditions

Ω(0) = Ω(tg) = 0 must be met, due to the technical necessity of turning the microwave
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drive on and off. Despite this great diversity, in this thesis we only follow results for

the pulse shape in Eq. (4.47). Further variations were investigated in the thesis

of G. Zarantonello [Zar20]. Starting from the sin2 pulse shape of Eq. (4.47), the

displacement and geometric phase

α(t) = −Ω

δ

2π2(eiδt − 1)

4π2 − (δt)2
, (4.48)

Φ(t) =
Ω2

δ2

32π4δt− 20π2(δt)3 + 3(δt)5 − 32π2 sin(δt)

8
(
4π2 − (δt)2

)2 (4.49)

can be calculated directly from Eq. (4.25) and Eq. (4.26). The relations α(tg) = 0

and Φ(tg) = π
2

for generating a GHZ state are fulfilled when

tg =
2π (k + 1)

δ
, (4.50)

δ = Ω

√
(k + 1)(3k(k + 2) + 1)

2k(k + 2)
, (4.51)

where k = 1, 2, 3, . . . characterizes the order of the modulated gate, similar to the way

L described the number of loops for a rectangular pulse shape (see Gate parameters

in 4.1.3). In the second line we used the connection between δ and tg given in

Eq. (4.50) to simplify the geometric phase Φ(t) and thus the relation between δ

and Ω.

To see how the amplitude modulation influences the fidelity, one can first evaluate

the residual phase-space displacement, generated from a detuning δ + δε which has

an error δε to the ideal value. Let us consider the lowest order in δε/δ only, which

quantifies the relative mode frequency deviations. For the rectangular pulse (with

Ωg ≡ Ω) this is

|α(tg)|2 = π2L

(
δε
δ

)2

+O
(
δε
δ

)3

, (4.52)

based on Eq. (4.38) and the relations (4.40), (4.41). In contrast, the sin2 pulse has

|α(tg)|2 =
π2(k + 1)2(k + 1)(3k(k + 2) + 1)

2k3(k + 2)3

(
δε
δ

)2

+O
(
δε
δ

)3

. (4.53)

From the two equations it can be concluded that the sin2 pulse efficiently suppresses

parasitical displacements for higher orders k, as |α(tg)|2 ∼ 1
k
. In contrast the usual

multi-loop rectangular pulse has |α(tg)|2 ∼ L. The residual displacement as a function

of the order k or L, respectively, is shown in Fig. 4.2a. Combined with the result of

Eq. (4.43) for the fidelity, it becomes evident that the reduced parasitic displacement

also corresponds directly to a higher fidelity, assuming the same values for n and Φ.
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Figure 4.2: Residual displacement: Pre-factor to the lowest order residual dis-
placement for relative detuning errors δε/δ (part a) or δε/Ω (part b). For gates using
a rectangular pulse shape (blue dashed) this is given as a function of the number of
loops L and for sin2-modulation (orange solid) in terms of the order k.

While the above discussion is valuable for a study of the infidelity when the detuning

is kept constant and the Rabi frequency is adjusted, this does not necessarily have to

be the case. Instead, Ω can be kept constant and δ changes with the order k or L,

as it would be e.g. when the maximal Rabi frequency is constraint. In this case we

should alter the analysis from above, as now the scales δε/δ change with the order k

or L. Looking at the pre-factor to this can then be misleading when comparing gates

with different k, L. For a fair comparison one should rather consider the residual

displacement in orders of δε/Ω which is then a fixed scale, quantifying the error in

the motional frequency. If we do so, the residual displacement is

|α(tg)|2 =
π2

4

(
δε
Ω

)2

+O
(
δε
Ω

)3

, (4.54)

for the rectangular pulse and

|α(tg)|2 =
π2(k + 1)2

k2(k + 2)2

(
δε
Ω

)2

+O
(
δε
Ω

)3

. (4.55)

for the sin2-modulation. From this the respective scaling |α(tg)|2 ∼ 1 and |α(tg)|2 ∼ 1
k2

for higher orders L, k can be inferred. The lowest order displacement when Ω is fixed

is shown in Fig. 4.2b.
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Considering the average fidelity over normal distributed fluctuations, Eq. (4.44),

produces the results of Fig. 4.3, using the same methods introduced in Motional

instability (see 4.1.3) but with the displacement and phase from Eq. (4.48) and

Eq. (4.49) for the sin2 amplitude modulation. For comparison, another coherent

control method which is specifically designed to reduce errors from mode frequency

fluctuations is included in that figure. The Walsh-modulation technique [HCD+12] di-

vides the gate time into multiple intervals where the Rabi frequency is constant (each

interval with a specific duration) and then features appropriate sign changes to cancel

out residual displacements. The modulation functions will always perform 2k loops in

phase space so that the integer k can be used to label the order. Changes of the sign

of the Rabi frequency are applied when a loop closes and spin and motion disentangle.

For the lowest orders (k = 1, 2, 3) of Walsh modulation Ω(t) = ΩW (2k, t/tg), with3

W (2, t/tg) =

{
1 0 ≤ t/tg < 1/2

−1 1/2 ≤ t/tg ≤ 1
, (4.56)

W (4, t/tg) =


1 0 ≤ t/tg < 1/4

−1 1/4 ≤ t/tg < 3/4

1 3/4 ≤ t/tg ≤ 1

, (4.57)

W (8, t/tg) =



1 0 ≤ t/tg < 1/8

−1 1/8 ≤ t/tg < 3/8

1 3/8 ≤ t/tg < 4/8

−1 4/8 ≤ t/tg < 5/8

1 5/8 ≤ t/tg < 7/8

−1 7/8 ≤ t/tg ≤ 1

, (4.58)

the displacement and geometric phase are

α2(t) =
Ω

δ

(
e
iδt
2 − 1

)
, (4.59)

α4(t) =
Ω

δ

(
1− e

iδt
4

)3 (
1 + e

iδt
4

)
, (4.60)

α8(t) =
Ω

δ

(
e
iδt
8 − 1

)4 (
1 + e

iδt
8

)2 (
e
iδt
4 + 1

)
(4.61)

and

Φ2(t) =
Ω2

δ2

(
δt− 4 sin

(
δt

2

)
+ sin(δt)

)
, (4.62)

Φ4(t) =
Ω2

δ2

(
δt− 4 sin

(
δt

4

)
− 4 sin

(
δt

2

)
+ 4 sin

(
3δt

4

)
− sin(δt)

)
, (4.63)

3The Walsh functions in [HCD+12] are labeled by 2k−1 instead of 2k but are the same otherwise.
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Figure 4.3: Infidelity with modulation: Average infidelity for shot-to-shot mode
frequency fluctuations as a function of the full width at half maximum ∆ωr of the dis-
tribution for secular frequency deviations. The comparison features a sin2 amplitude
modulated gate (black, solid line), a standard rectangular Rabi frequency with L = 8
loops (blue, dashed) and Walsh-modulation onto a gate which also performs in total
8 loops (magenta, dash-dotted). The inset shows the infidelity as a function of a fixed
frequency error δε. This gives an explanation for why the simple rectangular gate is
superior to the Walsh-modulation when the FWHM becomes larger than a few kHz.
While Walsh-modulation is designed to reduce the infidelity for small values of δε it
performs worse at rather large deviations. The model applied here considers mode
frequency fluctuations with the free parameters Ω = 2π × 1.18 kHz and n = 0.4; no
other error sources are included.

Φ8(t) =
Ω2

δ2

(
δt+

8∑
n=1

an sin

(
nδt

8

))
, (4.64)

with an = (−12,−4, 12,−12, 4, 4,−4, 1). The exact form of these results is not too

important. What is to note is that, at tg = 2k 2π
δk

and δk = Ω 2
k+2

2 , any residual

displacement caused by small perturbations δε as above is largely suppressed. This

feature is also seen in the inset of Fig. 4.3.

What makes the sin2 pulse shape extremely interesting is that it is not only easy

to implement in the microwave setting, but also very efficient in terms of the energy

dissipated into the microwave conductor. Figure 4.3 provides a comparison where

the dissipated energy was chosen to be practically equal for all schemes. This shows

that under an additional relevant resource constraint the sin2 amplitude modulation

is the most useful between the control techniques considered here. An even larger

collection of schemes is considered in Ref. [Zar20], using the same theoretical methods

presented here. Interestingly, the result of the larger comparison is the same. The
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gain in fidelity which was quantified here has been confirmed qualitatively by the

experimental implementation presented in Ref. [ZHM+19]. There, an increased gate

fidelity using the sin2 amplitude modulation technique was observed over a large range

of motional instabilities. A newly included stabilization of the secular mode frequency,

set up by J. Morgner and G. Zarantonello, along with the sin2 modulation allowed for

the measurement of a two-qubit gate infidelity in the range of 10−3. The remaining

infidelity for the gate is now expected to be limited by uncontrolled AC Zeeman shifts.

For details on the experimental side we again refer to Refs. [ZHM+19, Zar20].

4.2 Laser-less quantum logic for (anti-)protons in

Penning traps

Single tapped (anti-)protons are an exciting but also challenging subject for precision

metrology. In particular, they allow tests of the fundamental charge, parity, time

reversal (CPT) invariance through precise determination of their respective g-factors.

To determine the g-factor for an ion in a Penning trap, measurements of the cyclotron

and Larmor frequency are required. Especially for the Larmor frequency this has

proven to be difficult. In parallel to the progress in trapping single (anti-)protons in

Penning traps, laser based manipulation and state readout has become the standard

method for trapped ions over the last decades. With the development of quantum

logic spectroscopy [SRL+05, WBB+02] even unconventional ions, for which a direct

measurement of the spin state is not possible, could be investigated by adding a

second, well controllable logic ion. Among the major successes of this method is the

use of 27Al+ as a high accuracy optical atomic clock [R+07, CHK+10, BCH+19] and

the precision spectroscopy of individual highly charged ions like 40Ar13+ [MLK+20].

However, single (anti-)protons do not possess any electronic structure, which makes

direct measurements of the Larmor frequency inaccessible. While the laser-driven

implementation of quantum-logic spectroscopy fails, the general idea still applies. As

long as a SWAP operation of the form(
c↑| ↑ 〉+ c↓| ↓ 〉

)
⊗ |0〉z → | ↓ 〉 ⊗

(
c↑|1〉z + c↓|0〉z

)
, (4.65)

between the spin of the (anti-)proton and e.g. the axial motion can be performed

faithfully, the motional state can be read out via a 9Be+ logic ion. For this purpose a

motional sideband on the (anti-)proton and subsequent measurement of the motional

state on the 9Be+ ion has to be performed. Instead of utilizing lasers for the SWAP

gate, radio frequency and microwave fields are a suitable alternative for (anti-)protons.

This method has recently gained renewed attention for trapped ions (see also the

entangling gate discussed in section 4.1). For example, proposals have been made for
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conventional ions in Paul traps to induce the relevant Jaynes-Cummings interaction by

static magnetic field gradients and rf-fields [MW01]. However, due to the low mass of

the (anti-)proton and the relatively small magnetic moment, it is not a priori clear that

this strategy can be easily transferred. In particular, it was unclear what distortions

of the motional modes would go along with such a scheme. In this sense it was an

open question which kind of restrictions need to be placed on the system parameters

and quantum states for a faithful SWAP operation. These aspects are described in

the following, according to the published work by Nitzschke et al. [NSN+20].

4.2.1 Penning trap with longitudinal magnetic field gradient
and transverse oscillating field

Conventional Penning trap The quantum mechanical treatment of a particle

in a standard Penning trap is well-known [BG86, CGV17]. Compared to the Paul

trap that was discussed in the previous section, the Penning trap features only static

electric fields and a static magnetic field for radial confinement. While the electric

quadrupole potential

V (r) = VRC2(z2 − x2

2
− y2

2
), (4.66)

specified in terms of the voltage VR and a geometric factor C2, confines the particle

in z-direction. A constant magnetic field

B0(r) = B0

 0
0
−1

 , (4.67)

with vector potential

A0(r) =
B0

2

 y
−x
0

 (4.68)

keeps the ion from escaping in the radial-direction, i.e. the x-y-plane. The minimal

coupling Hamiltonian

Hmot =
(p− qA0)2

2m
+ qV,

of a particle with charge q and mass m describes the motion of the ion. Here p is

the usual canonical momentum operator. Under this field configuration the motion

in Cartesian coordinates rk (k = x, y, z) is coupled, but diagonalizing the Hamil-

tonian reveals that the motion actually decouples into three independent harmonic

oscillators. The resulting Hamiltonian

Hmot = ~ωz
(
a†zaz +

1

2

)
+ ~ω+

(
a†cac +

1

2

)
− ~ω−

(
a†mam +

1

2

)
(4.69)
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thus describes one harmonic oscillation along z (axial direction) and two in the radial

direction. The oscillation frequencies for the axial, modified cyclotron and magnetron

motion are

ωz =

√
2VRC2

q

m
, ω+ =

ωc
2

+ Ωc, ω− =
ωc
2
− Ωc, (4.70)

where ωc = −qB0/m is the cyclotron frequency and Ωc > 0 is defined by Ω2
c = ω2

c/4−
ω2
z/2. For common Penning trap parameters these frequencies obey the hierarchy

ω+ � ωz � ω−. The creation and annihilation operators obey the standard relation

[ak, a
†
l ] = δkl for k, l = z, c,m. Explicitly ac = (ax + iay)/

√
2 and am = (ax− iay)/

√
2

so they are constructed as linear combinations of the Cartesian operators (k = x, y, z)

ak =
1√
2

(
1

`k
rk +

i`k
~
pk

)
, (4.71)

where `z =
√

~/mωz and `x = `y ≡
√

~/mΩc are the zero point fluctuations.

The magnetic dipole energy for a spin-1/2 particle with magnetic moment µ and

gyromagnetic factor g is

Hspin = −µ ·B0 =
~
2
ωLσz, ωL =

g

2
ωc, (4.72)

which also establishes the determination of g = 2ωL

ωc
from the Larmor frequency ωL and

cyclotron frequency ωc. Combining the spin and motion gives the full Hamiltonian

H0 = Hmot +Hspin,

of a particle in the conventional Penning trap.

Longitudinal gradient and transverse oscillating field If there is an additional

gradient present in the static magnetic field, such that B(r) = B0 +B1 with

B1(r) = b

x/2y/2
−z

 , (4.73)

this will lead primarily to a Stern-Gerlach splitting of the two spin states | ↑ 〉, | ↓ 〉.
Looking at all additional terms (with 2Ωc ≈ ωc)

H1 = ~ωcε
(
az + a†z

) (g
2
σz + 1 + 2a†cac + acam + a†ca

†
m

)
− ~ωc

gε

2

√
ωz
ωc

(
σ+
(
am + a†c

)
+ σ−

(
ac + a†m

))
+ ~ωcε2

(
az + a†z

)2
(a†c + am)(a†m + ac), (4.74)
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which add to H0 when includingB1 (and the corresponding vector potentialA1), this

splitting is identified as the spin-dependent displacement ∝ (az+z
†
z)σz in the first line.

The size of the spin-dependent displacement and an additional mean displacement,

which is still present in this form, are characterized by

η =
εgωc
ωz

, α =
ωcε

ωz
. (4.75)

The dimensionless parameter

ε =
b`z

2
√

2B0

(4.76)

generally characterizes the relative change of the magnetic field per zero point fluctu-

ation. While the overall separation of the two spin states for current magnetic field

gradients is likely too small to measure the spin state directly (see Table 4.2), this

still constitutes a first interaction between spin and ion motion. Adding an oscillating

field

B2(t) = B2

 − cos (ωt)
− sin (ωt)

0

 (4.77)

to this setting can produce resonant interactions between spin and the axial harmonic

oscillation: Under a suitable unitary transformation and in a rotating frame with the

frequency ω of the oscillating field we find the most relevant terms of the overall

Hamiltonian to be [NSN+20]

H̄ =
~∆

2
σz + ~ωza†zaz +

~Ω

2
(σ+ + σ−) +

~Ωη

2
(σ+ − σ−)(a†z − az) + H̄rest, (4.78)

where

∆ = ωL − 2gεαωc − ω, (4.79)

is the detuning of the transverse oscillating field from the effective spin transition

frequency and the Rabi frequency was defined as

Ω =
−qgB2

2m
. (4.80)

Looking at Eq. (4.78), many of the terms underlying the controlled phase gate of

section 4.1 can be identified here as well. The carrier drive (third term on the RHS)

becomes resonant at ∆ = 0 while the red and blue sideband interactions in the form

of the Jaynes-Cummings Hamiltonian (fourth term on the RHS) become resonant for

∆ = ±ωz respectively. One can also see the motivation of η being a Lamb-Dicke

parameter as the sidebands are driven with an effective Rabi frequency ηΩ. While

for the quantum gate the trap was designed specifically to create strong sideband
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transitions with a small residual carrier drive, this is commonly not the case with

Penning traps used for precision measurements. On the one hand, all terms in

H̄rest = ~(ω+ + ω)a†cac − ~(ω− + ω)a†mam + ~ωzη2J2
z − ~ωcε

{
gηJzσz

+
g

2

√
ωz
ωc

(
σ−(ac + a†m) + h.c.

)
−
(
az + a†z − 2ηJz − 2α

)(
2a†cac + acam + a†ca

†
m

)
+ g
(
a†mam − a†cac

)(
a†z + az

)}
+ ~ωcε2

(
az + a†z − 2ηJz − 2α)2(a†c + am)(a†m + ac).

(4.81)

disturb the dynamics at different levels. The notion of total angular momentum

Jz = (Lz +Sz)/~ = a†mam−a†cac+σz/2, which is a conserved quantity in the Penning

trap, was used here to shorten the equation. These perturbation terms indicate that

increasing the effective sideband Rabi frequency by an increased gradient (raising

the value of η and ε) comes at the cost of mode mixing and non-linearity terms

scaling also with the strength of the gradient. On the other hand there is a trade-off

between unwanted carrier excitation and increased speed of the sideband dynamics

with larger Rabi frequency. When driving sidebands at |∆| = ωz the carrier drive

should still be well off-resonant, meaning that Ω/ωz � 1 must be fulfilled. In this

sense there are clearly compromises to be made regarding the free parameters. To

identify the relevant parameter regimes we perform numerical case studies, simulating

the dynamics of a single (anti-)proton in this field configuration.

4.2.2 Numerical case studies

The numerical case studies presented here will first examine what is possible with

currently achievable parameter values and then look at extensions of the parameter

regime. We show that the sideband transitions introduced above can be implemented

faithfully and with only small errors due to the perturbation terms for attainable

parameter values. This analysis employs the numerical values for the antiproton

(q = −e0 = −1.6 · 10−19 C, mp = 1.67 · 10−27 kg, g = 5.5857), but our conclusions

remain valid for the proton as well [NSN+20].

As a first step the time evolution of the spin state and axial motion are studied:

Assume the (anti-)proton is prepared in the spin state | ↑ 〉 and in its overall ground

state of motion |0, 0, 0〉, expressing the number of excitations in the z, cyclotron and

magnetron mode. Ideally, a pulse in the transverse direction of duration

τ =
π

Ωη
(4.82)

and oscillating at a detuning ∆ = ωz from the shifted spin resonance frequency will

effectively convert the spin excitation into z motion without affecting the other modes,
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Figure 4.4: Red sideband SWAP dynamics: Time traces for the spin polarization
〈σz〉 (black) and average quanta in the axial mode 〈nz〉 (red) when driving a red
sideband, i.e. ∆ = ωz. At the start of the dynamics, all motional modes are in
their ground state. We show the dynamics starting from | ↑ 〉 ⊗ |0〉z in parts a-b and
| ↓ 〉⊗|0〉z in parts c-d. The parameters are as shown in Table 4.2. Figure reproduced
from Nitzschke et al. [NSN+20].

| ↑ 〉 ⊗ |0, 0, 0〉 → | ↓ 〉 ⊗ |1, 0, 0〉. At the same time, if the spin was initially in state

| ↓ 〉, no coupling to motion occurs, i.e. | ↓ 〉 ⊗ |0, 0, 0〉 → | ↓ 〉 ⊗ |0, 0, 0〉, as here the

red sideband requires to remove a phonon, which is not possible in the ground state.

Given the parameters presented in Table 4.2 we find that it is possible to exploit

sideband transitions, as described by the Hamiltonian in Eq. (4.78), without having

significant contributions from the coupling to cyclotron and magnetron mode from

the terms in the Hamiltonian given by Eq. (4.81).

To illustrate this point, Fig. 4.4 shows the result of a numerical solution of the

Schrödinger equation for the complete Hamiltonian in Eq. (4.78), including even the

terms of second order in the Lamb-Dicke parameter, that is (~Ωη2/4)(a†z − az)2(σ+ +

σ−). This is a precautionary measure, since with an effective Lamb thickness param-

eter η = 0.13 the higher order terms may not be simply neglected. However, we did

not find a significant influence of these terms here. Within the simulations we trun-

cate the Hilbert space of each motional mode at Fock state 5. This was found to be

sufficient as the dynamics is limited to the lowest Fock states only and convergence of

the simulation was reached already at this low cutoff. Figure 4.4 shows the spin po-
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larization 〈σz(t)〉 and the average number of quanta 〈nz(t)〉 in the axial mode versus

time for the initial state | ↑ 〉⊗ |0, 0, 0〉 (in parts a and b) and | ↓ 〉⊗ |0, 0, 0〉 (in parts

c and d), respectively. Figure 4.4a and Figure 4.4b clearly show the spin excitation

oscillating over to the motional degree of freedom within a time π/ηΩ = 2 ms for

the pulse parameters given in Table 4.2. Up to very small errors (see the zoom-ins

around t = 2 ms) this corresponds exactly to the expected sideband dynamics. The

population of excited states in the cyclotron and magnetron mode were found to be

insignificantly small and are therefore not shown. In contrast, the other initial state,

| ↓ 〉 ⊗ |0, 0, 0〉, has no resonant transitions that can be driven. This state should

ideally remain unchanged. Figure 4.4c and Figure 4.4d thus illustrate the effects of

spurious dynamics from coupling to cyclotron and magnetron motion. The errors con-

sist of small residual excitation of spin and axial motion, on the order of ε, with rapid

oscillations on a timescale ∼ 2π/ωz, so roughly on the order of the axial frequency.

Figure 4.5: Extended parameter scan: Error probability for a spin measurement
based on the sideband SWAP as a function of the duration τ and axial frequency ωz.
The non-linear color scale shows two major regimes of operation. In the bottom right,
the red region signals unfeasible SWAP operations with errors beyond 50%. In the
top left, the yellow region corresponds to SWAP interactions with error probabilities
at most 1%. This should be viewed as an upper bound to the readout error as for
this figure the numerical simulations considered the spin and axial motion only. We
are thus not calculating the exact error but only an upper bound. Figure reproduced
from Nitzschke et al. [NSN+20].

When using the SWAP gate to effectively perform spin measurements, as in

Eq. (4.65), one can quantify the intrinsic imperfections of the SWAP gate by studying

the error probability of the readout. Specifically, readout errors occur with probabil-

ity P (nz = 0|↑) when starting with the spin in the excited state and with probability
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P (nz 6= 0|↓) when starting in the ground state. The two cases describe, respectively,

the absence of state transfer from the excited spin state or the faulty measurement of

an excitation in the z mode by off-resonant driving. We define the total error proba-

bility as Perror =
(
P (nz = 0|↑) +P (nz 6= 0|↓)

)
/2, where an equal a priori probability

for both spin states was assumed. Figure 4.5 shows the total error probability versus

pulse duration τ and longitudinal confinement ωz. The Rabi frequency is scaled such

that ηΩτ = π, to always assure a proper state swap. So in this case reducing the

SWAP duration τ also means increasing the Rabi frequency, which of course finds its

limitations when the condition Ω/ωz � 1 for off-resonant carrier driving is weakened.

This can be clearly seen in Fig. 4.5 by the drastic increase of the readout error in

the lower right half of the plot. Nevertheless we identify also large regions where low

readout errors are possible, which highlights the prospects of this method.

4.3 Conclusion and outlook

Over the course of this section we have presented promising results on the laser-less

control of trapped ions. The spin-spin and spin-motion interactions established here

form a basis for quantum computation, quantum simulation and quantum metrology.

Concerning the microwave driven phase gates we were able to calculate the error

budget for a state-of-the-art system with integrated control electrodes in a surface

electrode ion trap. In a combination of analytical modelling and numerical simula-

tions of the gate dynamics, we evaluated the infidelity contributions for a variety of

noise processes based on experimentally determined input values. Instability of the

radial mode, mediating the interaction, was identified as the main source of error. We

found good agreement between the calculated errors and the measured infidelity. To

improve the gates, a comparison of different coherent control methods was made. In

particular, modulation of the amplitude according to a sin2 function allows to dras-

tically reduce errors originating from fluctuations of the secular oscillation frequency.

This approach, which fits particularly well to the capabilities of microwave controls,

also turns out to be efficient with respect to the input energy of the driving field.

Given the high quality of gate operations that were finally achieved, applications in

quantum computation or quantum simulation can now be envisioned. One challenge

is certainly the scaling to larger ion crystals while maintaining the high quality of the

interactions. To study the relevant sources of errors for larger numbers of ions the

methods presented here are generally still appropriate. However, they may need to be

re-evaluated for what kind of perturbations can be characterized in the measurements.

Further applications of the phase gates are in quantum metrology, as discussed in

previous chapters of this thesis. Unfortunately, the special case of 9Be+ is less
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relevant as an atomic clock. Although a high stability can be expected due to the

magnetic field-insensitive qubit, at ω0 = 1082.55 MHz it is still a microwave transition.

Therefore it will be difficult for an atomic clock based on 9Be+ to compete with

the relative frequency stability of optical atomic clocks, where ω0 ∼ 1015 Hz. More

interesting would then be the question whether measurements on the 9Be+ hyperfine

qubit can provide information about new physics in some other respect.

As the theoretical model of the gate dynamics is quite general, the methods de-

scribed here can still be used for the investigation of quantum gates on other transi-

tions. For example to study the generation of entanglement on optical qubits, where

an improved stability of high-precision atomic clocks can actually be expected (see

chapter 3). Finally, with regard to the last chapter, it should be noted that accu-

rate control of 9Be+ ions is also extremely important for hybrid systems in which
9Be+ is used as logic ions.

In the last section, the quantum mechanical dynamics of a single (anti-)proton in

a Penning trap with a magnetic field gradient and an oscillating field in transverse

direction was investigated. From the theoretical analysis, the Jaynes-Cummings dy-

namic between the spin and the axial oscillation mode of the ion results on the one

hand, and on the other hand a multitude of further interactions between spin and

motion as well as among the different modes of motion is found. Using case studies it

was shown that the sidebands for the axial motion can be specifically addressed with-

out being limited by spurious terms. In particular, the trap parameters and strength

of the magnetic field gradient are compatible with the design of Penning traps for

precision measurements, where high magnetic field gradients are already present when

a magnetic bottle is created. The laser-less sideband interactions we have analyzed

could enable quantum-logic based readout for the spin state of single (anti-)protons

in the future.

In a step towards the realisation of this protocol further aspects need to be con-

sidered. In this thesis only the overall ground state of motion was considered at the

start of the sideband interaction. Continuing in this direction, we have seen that

weak thermal excitations in the motional modes can have a considerable influence on

the dynamics. While a small population in the first excited state of the axial motion

did not reduce the quality of an effective spin readout, population of excited states of

the cyclotron and magnetron mode had a drastic effect [NSN+20]. Achieving ground

state cooling for all motional modes is certainly a challenging task. Nevertheless, key

methods of cooling all motional modes in a Penning trap have been shown. The over-

all cooling process may be achieved through sympathetic cooling to the ground state

on the axial mode [GSTS16] and mode coupling between the radial and axial modes

[CWBP90]. Note that only axial cooling to near the ground state is strictly necessary
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for the quantum logic scheme. However, changes of the total angular momentum,

which come with cyclotron and magneton excitation, cause significant shifts of the

effective transition frequency. In this sense the scheme could still be possible if the

angular momentum is kept sufficiently stable. Another point to address is preparing

the ion at the position of the strong magnetic field gradient. Only a minimal model

for ion transport was discussed in Nitzschke et al. [NSN+20]. More detailed studies

of the ion transport in a Penning trap would certainly be required to understand the

possibilities and restrictions it poses on the presented scheme. Finally, we note that

the relatively long SWAP duration may at some point be problematic if there are

competing noise sources, like anomalous heating of the modes. So far extremely low

heating rates were measured in state-of-the-art Penning traps [B+19a], so the SWAP

gate may actually not be limited by heating. However, a detailed study including

heating remains an open task.



5
Summary and closing
statements

This thesis was motivated by the quest to explore new theoretical concepts for en-

tanglement enhanced quantum metrology, contributing to improved optical atomic

clocks and similar precision measurements with atoms. Progress in this direction is

envisioned to guide our understanding of fundamental physical principles as a long

term goal. The three main parts of this thesis considered entanglement enhanced

Ramsey interferometry, the trade-off between laser noise and quantum projection

noise for entanglement enhanced strategies in optical atomic clocks, and the robust

generation of spin-spin and spin-motion interactions with trapped ions.

The first part treated atomic phase measurements, a task which is ubiquitous

in precision metrology and often carried out via Ramsey interferometry. The appli-

cations of this method range from spectroscopy to magnetometry, gravimetry and

frequency metrology (atomic clocks), making Ramsey interferometry an interesting

case study. Prior to the results of this thesis, some entangled states were known to

enhance the sensitivity beyond the quantum projection noise limit of uncorrelated

atoms [KU93]. Even fundamental limits to the sensitivity of Ramsey interferome-

try were developed [GLM11, PSO+18], showing that in principle large sensitivity is

possible. However, generating the required optimal states and complex measurement

operations may be difficult to implement and thus prohibit the use of such proto-

cols. Any noise, which perturbs the spin-spin interaction, is troublesome as well,

reducing the achievable sensitivity, especially for highly entangled states. With ex-

periments in quantum metrology approaching a ‘NISQ-like’ [Pre18] era, where noisy

entangling interactions on up to hundreds of ions or ∼ 104 neutral atoms comes into

reach [PSO+18], it becomes ever more important to look for classes of robust pro-

tocols which still provide significant enhancement. The guiding research questions

identified for chapter 2 were thus: Can Ramsey protocols be robustly enhanced with

133
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minimal requirements for measurements and interactions? Are there any alternatives

to the known protocols if only specific controls are allowed?

The answers to these questions, and the core results of Chapter 2, can be sum-

marized as follows. First, extensions to standard Ramsey interferometry were con-

structed by altering the initial interferometer state and also allowing another entan-

gling interaction before applying the final spin measurement. Particular cases of this

class have been considered frequently throughout this thesis. With regard to practical

interactions, we focused on protocols which make use of one-axis-twisting, which has

already been demonstrated in experiments with trapped ions [LBS+04, GBSN+17],

cold atoms [HKEK16] and spinor Bose-Einstein condensates [LSM+16]. We demon-

strated in chapter 2 that an exact evaluation of the variational class with one squeezing

interaction before and one after the signal imprint and otherwise only rotations of

the collective spin is possible. Within this class of generalized Ramsey protocols we

discovered only one previously unknown protocol, which features an unusual double

inversion of the dynamics. This was found by analytic calculation of the sensitivity,

combined with an optimization of the geometric degrees of freedom, related to the

signal and measurement direction. The new over-un-twisting protocols exhibit Heisen-

berg scaling of the sensitivity and stand out by reaching the fundamental quantum

Fisher information limit as well. Interestingly, the Heisenberg scaling persists when

adding collective or individual dephasing noise during the one-axis-twisting interac-

tions. So the new protocols identified here are also robust to relevant experimental

imperfections, one of the goals set above. The presented theory can be viewed as a

step to approach the elusive Heisenberg limit, despite noise and imperfections.

While we explored the generalized Ramsey protocols with any interaction strength,

the optimal points can be difficult to reach in some experiments. In cases where there

is a constraint to the strength or duration of the one-axis-twisting, e.g. from the way

that the interactions are generated, restrictions on the parameter regimes need to be

taken into account. It would then be interesting to increase the complexity of the

entangling or decoding interactions to see if there exist different protocol types with

only small levels of interaction in a larger variational class. Rather than a restric-

tion of the parameter space, the constraint may instead be incorporated into the cost

function of the optimization, based on the physical origin of the constraint. Similarly,

bringing the protocols closer to a specific application, it seems interesting to see how

the landscapes which were derived here change for different cost functions, which then

include distinctive features of that application.

After identifying generalized Ramsey protocols which improve over quantum pro-

jection noise, chapter 3 considered a specific application of phase measurements,
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namely the optical atomic clock. At the start of our research it was already known

that ideal optical atomic clocks are mainly limited between quantum projection noise

and phase noise from the fluctuating laser frequency. It had further been shown that

weakly squeezed states, reducing quantum projection noise without affecting the effec-

tive laser coherence time, can improve the stability [ASL04] just as extended designs

with multiple cascaded ensembles can, by sequentially prolonging the laser coherence

time [BS13a]. Another limitation due to finite dead time and the resulting Dick effect

had been characterised long ago [Dic88] but remains a relevant practical limitation

for current optical lattice clocks. Building on known stability models we aimed at

establishing a minimal theoretical model which captures the essential features of an

atomic clock. Given this model we then answer the guiding research question: Under

which conditions can the stability of realistic optical atomic clocks, in the simplest

architecture, be improved by weakly entangled squeezed states? This directly relates

to the question if entangled states should be employed in a given atomic clock.

As the main result of this study a particle number independent bound to the long

term stability was identified. This means that for ensembles larger than some critical

atom number the stability can no longer be increased with squeezed states. Our

newly developed model provides an investigation, in which parameter regimes laser

noise is not the most stringent limitation, so squeezing can improve the stability, and

in which cases laser noise is dominant and needs to be overcome by other means before

squeezing provides an advantage. With current clock parameters the critical number

is around 1000 atoms and improved lasers would raise the number to around 10.000

for the next generation of clocks. In the process of these results we also developed

a novel analysis of fringe hops from the stochastic differential equation. Looking

towards the future it is found that the known cascaded clock setup is compatible

with an asymmetric setup of one large atomic ensemble and one single atom clock,

even under practical assumptions. This can allow to push interrogation times of the

single atom to a regime where limitations from the finite excited state lifetime need

to be considered. The results we have presented in that direction provide answers to

how much extended clock architectures can circumvent the limits we established for

a conventional setup. In cases with insignificant dead time we report first hints of an

improved stability from variationally optimised interrogation protocols, in the spirit

of the generalized Ramsey protocols developed in chapter 2.

Of course we have made some basic assumptions when modelling the clock in-

stability. Subsequent studies may explore the consequence of e.g. limited atomic

coherence, limited excited state lifetime or constraints to the Ramsey time. With the

stability bounds established in chapter 3, it would now be interesting to consider the

consequences for some of the potential applications of optical atomic clocks. Under
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which circumstances can entanglement enhanced protocols improve task in naviga-

tion, communication or geodesy? Or are the main applications in laboratory settings

only, such as tests of fundamental physics and in the definition of the SI second? It

is intriguing to wonder if other architectures of clocks would have advantages in that

regard. Proceeding the idea of cascaded operation with multiple ensembles, it would

be curious to see at which point systematic shifts of the transition frequency in one

ensemble lead to limitations on the final stability of the composite system.

With small scale systems identified as promising candidates for entanglement en-

hanced metrology, chapter 4 explores the robust generation of spin-spin and spin-

motion interactions for trapped ions. We have aimed in particular at answering the

question: How can the necessary interactions for improved metrology be faithfully

implemented in the case of trapped ions? Entanglement of ions following the classic

Mølmer-Sørensen gate [SM00] has long been demonstrated [S+00]. Scaling up the

number of ions, however, remains a challenging task. Surface-electrode ion traps

provide a feasible solution to this problem, especially when adding integrated mi-

crowave control to drive the quantum gates. A state-of-the-art setup of this type is

considered in chapter 4, where the corresponding experimental goal was to perform a

maximally entangled state with high-fidelity. Conventional gates with the microwave

near-field gradient had been performed previously [OLA+08, HSA+16], but little had

been known on coherent quantum control, exploiting the particular benefits of a mi-

crowave drive. In the theory contribution of chapter 4 we first calculated an error

budget based on experimentally measured imperfections to predict the gate infidelity

and find the limiting noise sources. The results nicely reproduced the observed in-

fidelity of the gate and show instabilities of the motional mode as the largest error

source. Extending this first work, different methods of coherent quantum control

were studied to further reduce errors. As a core result amplitude modulation of the

driving fields stood out as an effective and resource efficient method allowing gates

with infidelity in the ∼ 10−3 range.

High fidelity gates, like the ones analysed in chapter 4, are also relevant to perform

tasks in quantum information and quantum simulation. Given the unique scaling op-

portunities of micro-fabricated traps, studies of more complicated many-body dynam-

ics, dissipative (open) dynamics, or small scale quantum algorithms can be envisioned.

The last part of the thesis established a new method of laser-less spin-motion

coupling, focusing in particular on the application for single (anti-)protons in Penning

traps. This is a direct answer to the guiding research question: Can one design
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readout schemes for exotic particles without optical transitions, like single trapped

(anti-)protons?

Measuring key properties, like the g-factor of protons and antiprotons, provides

insights into fundamental symmetries between matter and antimatter. However, the

fact that the (anti-)proton can not be manipulated by using some internal electronic

structure, as would be conventional for other ions, but only by the spin degree of free-

dom makes the system challenging to study on its own. Methods of quantum logic

spectroscopy [SRL+05] are applicable, so long as coherent interactions between the

spin and one motional mode can be carried out. To this end, we successfully identified

parameter regimes for which a sideband SWAP, in the form of the Jaynes-Cummings

interaction, can be applied faithfully using an in-build magnetic field gradient and

rf-fields. The approach bears similarities to the microwave near field entangling gates

and found inspiration in a comparable proposal for quantum information processing

by Mintert and Wunderlich [MW01]. Our results provide a step towards quantum

logic spectroscopy in yet another exotic system with high relevance to searches for

violations of CPT symmetry and Lorentz symmetry. One pressing open question is,

if there exist more resilient designs to induce the same interaction, which are e.g. less

prone to the initial motion of the ion.

Overall, we hope that the results of this thesis will eventually contribute to the

larger goal of establishing quantum mechanical entanglement in a variety of preci-

sion measurements. It would be a great success of this branch of research to see an

entanglement enhanced atomic physics experiment detect some trace of extensions

to our current model of physics. Until now, entanglement enhanced protocols with

atomic systems have mostly been shown as proof-of-principle experiments, far from

the parameter regimes of the best detectors of this kind. However, given the contin-

uous improvement and the steady removal of technical limitations in this discipline,

a growing number of experiments will soon be limited by the influence of quantum

mechanical measurement noise. We were able to show this explicitly in chapter 3

for optical atomic clocks. While typical optical lattice clocks are not yet limited by

quantum projection noise, the situation is different for smaller ensembles. Especially

for the well-established ion clocks, which are now evolving from a complicated, large-

scale laboratory system to user-oriented instruments. When aiming at an improved

stability with a handful of atoms, methods to reduce the quantum projection noise

are essential. The same applies to the newly emerging clocks of neutral atoms in op-

tical tweezers and also for lattice clocks once the clock lasers and dead times improve

further. It is therefore encouraging to see that robust Ramsey interferometry can be

achieved with reasonable expenditure of established resources (cf. Chapter 2). We
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believe that the results of this thesis promote the use of entangled states in state-of-

the-art precision measurements already in the near future and not only as a long-term

goal. Besides the more or less passive adaptation of protocols, an extended view of

our results should also include active methods of noise suppression. Decoherence-

free subspaces, dynamic decoupling or coherent control can be used to realize robust

interactions and prolong the coherence of transitions despite external error sources.

The transfer of these control mechanisms to the highly stable optical clock transi-

tions is an open goal and the demonstration of entanglement enhanced protocols a

milestone even for a few ions. One of the links between the three parts of this the-

sis would indeed be the study of robust entanglement generation, as in chapter 4,

in the particular case of the highly stable optical clock transitions, cf. chapters 2

and 3. Understanding what the unique challenges and limitations are in that case

is an important next step. From the theoretical side, this would require to combine

a detailed description of e.g. ion traps, lattice clocks, atoms in tweezer arrays or

others, including their systematic shifts and relevant imperfections, with the desired

spin-spin interactions. In the end, we placed a lot of emphasis on the search for new

physics when motivating the results of this thesis. Entanglement enhanced atomic

sensors are certainly envisioned to establish even tighter constraints on parameters

involved in some of the models which aim at extending our current understanding of

the laws of physics. It would therefore be interesting to quantify more precisely to

which level effects of e.g. dark matter or dark energy could be excluded or possibly

even detected when using entanglement.



A
Signal and noise from spin
characteristic functions

The matrices M and Q, introduced in section 2.6 can be conveniently evaluated when

transforming to the spherical basis S+, Sz, S− and using the characteristic function

approach of Arecchi et al. [ACGT72]. The first part of this appendix shows a detailed

derivation of the expectation values contained in M and Q for the noiseless case,

while in the rest of this appendix we extend the calculations to include collective and

individual dephasing.

A.1 Without dephasing

The spherical basis S+, Sz, S− for a collective spin of length S = N/2 includes the

angular momentum ladder operators S± = Sx±i Sy, introduced in section 2.2.1. In the

following, we aim at calculating expectation values with respect to the spin coherent

states |θ, ϕ〉 = e−iθ(Sx sinϕ−Sy cosϕ)| − S〉z, where the special case ϕ = 0, θ = π/2 is the

initial state |x〉 of a standard Ramsey protocol after the first π/2-pulse. Anti-normally

ordered expectation values in the spherical basis, meaning that S− is always left of Sz

and both to the left of S+, of the general form 〈θ, ϕ|Sc−ecS−SbzebSzSa+eaS+|θ, ϕ〉, with

integers a, b, c as well as arbitrary coefficients a, b, c, can be calculated via derivatives

of a spin characteristic function [ACGT72]. Explicitly,

〈θ, ϕ|Sc−ecS−SbzebSzSa+eaS+|θ, ϕ〉 = ∂aα ∂
b
β ∂

c
γ XA(α, β, γ)

∣∣
α=a,β=b,γ=c

(A.1)

with the anti-normally ordered spin characteristic function [ACGT72]

XA(α, β, γ) = 〈θ, ϕ|eγS−eβSzeαS+|θ, ϕ〉 (A.2)

=
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Using the transformation matrix

A =

 1
2

0 1
2

1
2i

0 − 1
2i

0 1 0

 (A.3)

and

Ms = i

〈[S+(µ), S+(ν)]〉 〈[S+(µ), Sz(ν)]〉 〈[S+(µ), S−(ν)]〉
〈[Sz(µ), S+(ν)]〉 〈[Sz(µ), Sz(ν)]〉 〈[Sz(µ), S−(ν)]〉
〈[S−(µ), S+(ν)]〉 〈[S−(µ), Sz(ν)]〉 〈[S−(µ), S−(ν)]〉

 , (A.4)

the matrixM is related to its counterpartMs -in the spherical basis- viaM = AMsA
T .

In the same way the covariance variance Q can be expressed as Q = AQsA
T with

Qs =
1

2

〈[S+(ν), S+(ν)]+〉 〈[S+(ν), Sz(ν)]+〉 〈[S+(ν), S−(ν)]+〉
〈[Sz(ν), S+(ν)]+〉 〈[Sz(ν), Sz(ν)]+〉 〈[Sz(ν), S−(ν)]+〉
〈[S−(ν), S+(ν)]+〉 〈[S−(ν), Sz(ν)]+〉 〈[S−(ν), S−(ν)]+〉

− j jT ,
where j =

(
〈S+(ν)〉, 〈Sz(ν)〉, 〈S−(ν)〉

)T
and [·, ·]+ denotes the anti-commutator.

To calculate the expectation values therein, the spin operators must be brought

into anti-normal order before applying Eq. (A.1). For this we use that the transformed

operators S(+,z,−)(µ) = T †µS(+,z,−)Tµ are

Sz(µ) = Sz (A.5)

and

S±(µ) = eiµ/2S±e
±iµSz = e−iµ/2e±iµSzS±. (A.6)

Furthermore, the transformations

eiµSzS±e
−iµSz = e±iµS±, e−iµSzS±e

iµSz = e∓iµS± (A.7)

⇒ S+e
±iµSz = e∓iµ e±iµSzS+, e±iµSzS− = e∓iµ S−e

±iµSz (A.8)

are applied to obtain anti-normal ordering. With these transformations, we find for

the first order moments

〈S+(ν)〉 = e−iν/2〈eiνSzS+〉 = e−iν/2∂αXA

∣∣
α=γ=0,β=iν

, (A.9)

〈Sz(ν)〉 = 〈Sz〉 = ∂βXA

∣∣
α=β=γ=0

, (A.10)

〈S−(ν)〉 = eiν/2〈S−e−iνSz〉 = eiν/2∂γXA

∣∣
α=γ=0,β=−iν , (A.11)
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where all expectation values are with respect to the coherent spin state |θ, ϕ〉. For

the symmetric second order moments:

〈[S+(ν), S+(ν)]+〉 = 2〈S+(ν)S+(ν)〉
= 2e−i2ν〈ei2νSzS2

+〉
= 2e−i2ν∂α∂αXA

∣∣
α=γ=0,β=i2ν

, (A.12)

〈[S+(ν), Sz(ν)]+〉 = 〈S+(ν)Sz + SzS+(ν)〉
= e−iν/2〈2SzeiνSzS+ − eiνSzS+〉

= e−iν/2
{

2∂β∂αXA

∣∣
α=γ=0,β=iν

− ∂αXA

∣∣
α=γ=0,β=iν

}
, (A.13)

〈[S+(ν), S−(ν)]+〉 = 〈[S+, S−]+(ν)〉
= 2〈S−S+ + Sz〉

= 2
{
∂γ∂αXA

∣∣
α=β=γ=0

+ ∂βXA

∣∣
α=β=γ=0

}
, (A.14)

〈[Sz(ν), S+(ν)]+〉 = 〈[S+(ν), Sz(ν)]+〉, (A.15)

〈[Sz(ν), Sz(ν)]+〉 = 2〈S2
z 〉

= 2∂β∂βXA

∣∣
α=β=γ=0

, (A.16)

〈[Sz(ν), S−(ν)]+〉 = 〈SzS−(ν) + S−(ν)Sz〉
= eiν/2〈2S−Sze−iνSz − S−e−iνSz〉

= eiν/2
{

2∂β∂γXA

∣∣
α=γ=0,β=−iν − ∂γXA

∣∣
α=γ=0,β=−iν

}
, (A.17)

〈[S−(ν), S+(ν)]+〉 = 〈[S+(ν), S−(ν)]+〉, (A.18)

〈[S−(ν), Sz(ν)]+〉 = 〈[Sz(ν), S−(ν)]+〉, (A.19)

〈[S−(ν), S−(ν)]+〉 = 2〈S−(ν)S−(ν)〉
= 2ei2ν〈S2

−e
−i2νSz〉

= 2ei2ν∂γ∂γXA

∣∣
α=γ=0,β=−i2ν . (A.20)

Finally, the moments for the commutators are:

〈[S+(µ), S+(ν)]〉 = 〈S+(µ)S+(ν)− S+(ν)S+(µ)〉
= e−i(µ+ν)/2(e−iν − e−iµ)〈ei(µ+ν)SzS2

+〉
= e−i(µ+ν)/2(e−iν − e−iµ)∂α∂αXA

∣∣
α=γ=0,β=i(µ+ν)

(A.21)

〈[S+(µ), Sz(ν)]〉 = 〈S+(µ)Sz − SzS+(µ)〉
= −e−iµ/2〈eiµSzS+〉
= −e−iµ/2∂αXA

∣∣
α=γ=0,β=iµ

(A.22)
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〈[S+(µ), S−(ν)]〉 = 〈S+(µ)S−(ν)− S−(ν)S+(µ)〉
= e−i(µ−ν)/2〈2Szei(µ−ν)Sz + (e−i(µ−ν) − 1)S−e

i(µ−ν)SzS+〉

= e−i(µ−ν)/2
{

2∂βXA

∣∣
α=γ=0,β=i(µ−ν)

+ (e−i(µ−ν) − 1)∂γ∂αXA

∣∣
α=γ=0,β=i(µ−ν)

}
(A.23)

〈[Sz(µ), S+(ν)]〉 = 〈SzS+(ν)− S+(ν)Sz〉
= −〈[S+(ν), Sz]〉
= e−iν/2∂αXA

∣∣
α=γ=0,β=iν

(A.24)

〈[Sz(µ), Sz(ν)]〉 = 〈[Sz, Sz]〉 = 0 (A.25)

〈[Sz(µ), S−(ν)]〉 = 〈SzS−(ν)− S−(ν)Sz〉
= −eiν/2〈S−e−iνSz〉
= −eiν/2∂γXA

∣∣
α=γ=0,β=−iν (A.26)

〈[S−(µ), S+(ν)]〉 = 〈S−(µ)S+(ν)− S+(ν)S−(µ)〉
= ei(µ−ν)/2〈(1− ei(µ−ν))S−e

−i(µ−ν)SzS+ − 2Sze
−i(µ−ν)Sz〉

= ei(µ−ν)/2
{

(1− ei(µ−ν))∂α∂γXA

∣∣
α=γ=0,β=−i(µ−ν)

− 2∂βXA

∣∣
α=γ=0,β=−i(µ−ν)

}
(A.27)

〈[S−(µ), Sz(ν)]〉 = −〈[Sz, S−(µ)]〉
= eiµ/2〈S−e−iµSz〉
= eiµ/2∂γXA

∣∣
α=γ=0,β=−iµ (A.28)

〈[S−(µ), S−(ν)]〉 = 〈S−(µ)S−(ν)− S−(ν)S−(µ)〉
= ei(µ+ν)/2(eiµ − eiν)〈S2

−e
−i(µ+ν)Sz〉

= ei(µ+ν)/2(eiµ − eiν)∂γ∂γXA

∣∣
α=γ=0,β=−i(µ+ν)

(A.29)

With the characteristic function

XA(0, π/2) =
[1

2
e−β/2 +

1

2
eβ/2

(
1 + α

)(
1 + γ

)]2S

(A.30)

we then find 〈S+(ν)〉
〈Sz(ν)〉
〈S−(ν)〉

 =

q0

0
q0

 (A.31)

with q0 = S cos2S−1(ν
2
). Likewise one finds

Qs =

 q2 i q3 q1

i q3 q4 −i q3

q1 −i q3 q2

−
q0

0
q0

(q0, 0, q0

)
(A.32)
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and thus

Q = AQsA
T =

1
2
(q1 + q2)− q2

0 0 0
0 1

2
(q1 − q2) q3

0 q3 q4

 (A.33)

as well as

Ms =

 n2 i n3 n1

i n4 0 −i n4

n1 −i n3 n2

 (A.34)

and

M = AMsA
T =

1
2
(n1 + n2) 0 0

0 1
2
(n1 − n2) n3

0 n4 0

 . (A.35)

The components are

q0 =
N

2
cosN−1

(ν
2

)
,

q1 =
N(N + 1)

4
,

q2 =
N(N − 1)

4
cosN−2 (ν) ,

q3 =
N(N − 1)

4
sin
(ν

2

)
cosN−2

(ν
2

)
,

q4 =
N

4
.

and

n1 =
N(N − 1)

2
sin

(
µ− ν

2

)
cosN−2

(
µ− ν

2

)
,

n2 = −N(N − 1)

2
sin

(
µ− ν

2

)
cosN−2

(
µ+ ν

2

)
,

n3 = −N
2

cosN−1
(µ

2

)
,

n4 =
N

2
cosN−1

(ν
2

)
.

A.2 Expectation values with dephasing

This section contains details on calculating spin expectation values with dephasing

noise. The OAT dynamics in the case of collective dephasing is given by the master

equation

ρ̇ = −i[H, ρ] + γCLC [ρ] (A.36)
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with H = χS2
z , LC [ρ] = SzρSz − 1

2
S2
zρ − 1

2
ρS2

z and the dephasing rate γC . Likewise,

individual dephasing is described by the master equation

ρ̇ = −i[H, ρ] + γILI [ρ] (A.37)

withH = χS2
z and LI [ρ] =

∑N
k=1 σ

(k)
z ρσ

(k)
z −ρ where γI > 0 is the individual dephasing

rate, equal for all particles. The formal solution for collective dephasing is

ρ(t) = Tµe
σ
|µ|
2
LC [ρ0]T †µ = eσ

|µ|
2
LC [Tµρ0T

†
µ] (A.38)

from an initial state ρ0 and with σ = |γC |/|χ|. For individual dephasing we find

ρ(t) = Tµe
Σ
|µ|
2
LI [ρ0]T †µ = eΣ

|µ|
2
LI [Tµρ0T

†
µ], (A.39)

where Σ = |γI |/|χ|. Expectation values of any operator A are then

〈A〉 = tr [Aρ(t)] = tr
[
Aeσ

|µ|
2
LC [Tµρ0T

†
µ]
]

= tr
[
T †µe

σ
|µ|
2
L†C [A]Tµ ρ0

]
(A.40)

or the same expression with σ → Σ and LC → LI for individual dephasing. Here, L†

is the adjoint Lindblad operator, defined via

tr [AL[B]] = tr
[
L†[A]B

]
(A.41)

so that

L†[A] = L†AL− 1

2
L†LA− 1

2
AL†L (A.42)

given

L[A] = LAL† − 1

2
L†LA− 1

2
AL†L. (A.43)

For both, collective and individual dephasing, this simplifies to L†C = LC and L†I = LI .
For the protocols of chapter 2, this allows to evaluate the expectation values

〈Sk−− Skzz S
k+

+ 〉
∣∣
φ=0

= tr
[
T †ν e

σ
|µ|
2
LC
[
eσ
|ν−µ|

2
LC
[
S
k−
− Skzz S

k+

+

]]
Tν ρ0

]
(A.44)

required for the spin covariance matrix as well as the slope

∂〈Sm〉
∂φ

∣∣
φ=0

=
∂

∂φ

(∑
k

tr
[
mkSke

σ
|ν−µ|

2
LC
[
Tν−µe

−iφ
∑
l nlSleσ

|µ|
2
LC
[
Tµρ0T

†
µ

]
eiφ

∑
l nlSlT †ν−µ

]])∣∣
φ=0

= i
∑
l,k

nlMlkmk

with

Ml,k = tr
[
T †µe

σ
|µ|
2
LC
[
[Sl, T

†
ν−µe

σ
|ν−µ|

2
LC [Sk]Tν−µ]

]
Tµρ
]
. (A.45)
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The same applies for individual dephasing with σ ↔ Σ and LC ↔ LI . The expecta-

tion values presented here can now be reduced to their noiseless version by explicitly

evaluating the transformed operators. At this point however we have to separate col-

lective and individual dephasing. For collective dephasing the following holds: First,

it is clear that eσ
|µ|
2
LC [Sz] = Sz and from the commutation relations (2.7) it follows

that eσ
|µ|
2
LC [S±] = e−σ

|µ|
4 S±. Repeated application of the commutation relations then

also gives

eσ
|µ|
2
LC [S2

±] = e−σ|µ|S2
±, (A.46)

eσ
|µ|
2
LC [S±Sz] = e−σ

|µ|
4 S±Sz, (A.47)

eσ
|µ|
2
LC [SzS±] = e−σ

|µ|
4 SzS±, (A.48)

eσ
|µ|
2
LC [S±S∓] = S±S∓, (A.49)

which allows to express all expectation values to the ones with σ = 0 and appropriate

exponential damping factors. With this, we find〈S+(ν)〉
〈Sz(ν)〉
〈S−(ν)〉

 =

q̃0

0
q̃0

 (A.50)

with, again, q̃0 = e−σ
|ν−µ|+|µ|

4 S cos2S−1(ν
2
).

Likewise one finds

Q̃s =

 q̃2 i q̃3 q̃1

i q̃3 q̃4 −i q̃3

q̃1 −i q̃3 q̃2

−
q̃0

0
q̃0

(q̃0, 0, q̃0

)
(A.51)

and thus

Q̃ = AQ̃sA
T =

1
2
(q̃1 + q̃2)− q̃2

0 0 0
0 1

2
(q̃1 − q̃2) q̃3

0 q̃3 q̃4

 (A.52)

with

q̃1 = q1 = S2 +
S

2
, q̃2 = e−σ(|ν−µ|+|µ|)S

2
(2S − 1) cos(ν)2S−2,

q̃3 = e−σ
|ν−µ|+|µ|

4
S

2
(2S − 1) cos(

ν

2
)2S−2 sin(

ν

2
) and q̃4 = q4 =

S

2
. (A.53)

Finally,

M̃s =

 ñ2 i ñ3 ñ1

i ñ4 0 −i ñ4

ñ1 −i ñ3 ñ2

 (A.54)

and

M̃ = AM̃sA
T =

1
2
(ñ1 + ñ2) 0 0

0 1
2
(ñ1 − ñ2) ñ3

0 ñ4 0

 (A.55)



146 Appendix A. Signal and noise from spin characteristic functions

with

ñ1 = e−σ
|ν−µ|

4 S(2S − 1) sin(
µ− ν

2
) cos(

µ− ν
2

)2S−2, (A.56)

ñ2 = −e−σ(
|ν−µ|

4
+|µ|)S(2S − 1) sin(

µ− ν
2

) cos(
µ+ ν

2
)2S−2, (A.57)

ñ3 = −e−σ
|µ|
4 S cos(

µ

2
)2S−1, (A.58)

ñ4 = e−σ
|ν−µ|+|µ|

4 S cos(
ν

2
)2S−1. (A.59)

A similar study shows that for individual dephasing the operators transform as

eΣ
|µ|
2
LI [Sz] = Sz, (A.60)

eΣ
|µ|
2
LI [S±] = e−Σ|µ|S±, (A.61)

eΣ
|µ|
2
LI [S2

±] = e−2Σ|µ|S2
±, (A.62)

eΣ
|µ|
2
LI [S±Sz] = e−Σ|µ|S±Sz, (A.63)

eΣ
|µ|
2
LI [SzS±] = e−Σ|µ|SzS±, (A.64)

eΣ
|µ|
2
LI [S±S∓] = e−2Σ|µ|

[
S±S∓ +

(
N

2
± Sz

)(
e2Σ|µ| − 1

)]
. (A.65)

With this, we find 〈S+(ν)〉
〈Sz(ν)〉
〈S−(ν)〉

 =

q′00
q′0

 (A.66)

with q′0 = e−Σ(|ν−µ|+|µ|)q0.

Further

Q′s =

 q′2 i q′3 q′1
i q′3 q′4 −i q′3
q′1 −i q′3 q′2

−
q′00
q′0

(q′0, 0, q′0) (A.67)

and thus

Q′ = AQ′sA
T =

1
2
(q′1 + q′2)− q′ 20 0 0

0 1
2
(q′1 − q′2) q′3

0 q′3 q′4

 (A.68)

with

q′1 = e−2Σ(|ν−µ|+|µ|)q1 +N/2(1− e−2Σ(|ν−µ|+|µ|)), (A.69)

q′2 = e−2Σ(|ν−µ|+|µ|)q2, (A.70)

q′3 = e−Σ(|ν−µ|+|µ|)q3, (A.71)

q′4 = q4. (A.72)

Finally,

M ′
s =

 n′2 i n′3 n′1
i n′4 0 −i n′4
n′1 −i n′3 n′2

 (A.73)



A.2. Expectation values with dephasing 147

and

M ′ = AM ′
sA

T =

1
2
(n′1 + n′2) 0 0

0 1
2
(n′1 − n′2) n′3

0 n′4 0

 (A.74)

with

n′1 = e−Σ(|ν−µ|+2|µ|) n1, (A.75)

n′2 = e−Σ(|ν−µ|+2|µ|) n2, (A.76)

n′3 = e−Σ|µ| n3, (A.77)

n′4 = e−Σ(|ν−µ|+|µ|) n4. (A.78)
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B
Optimal interrogation time

In this appendix we additionally show the optimal Ramsey times corresponding to

Fig. 3.9 in section 3.3. These are the interrogation times which minimize the overall

instability, modelled in our work according to Eq. (3.44), for each N . The results

are shown in Fig. B.1. Overall they follow the same general trend as the instabilities

presented in section 3.3. This is again due to the fact that in the regime of large

particle number and long dead times the instability is limited by the trade-off between

Dick effect and CTL which reaches its minimum at an N -independent interrogation

time. For smaller particle numbers the optimal interrogation time actually depends

on N . There, spin squeezed states require reduced Ramsey times compared to the

Figure B.1: Optimal interrogation times: Optimal Ramsey times which are re-
quired for the results on dead time limited clocks in Figure 3.9. Based on the logic
of section 3.3 the optimal interrogation times follow the same overall trend as the
instability. For the chosen laser noise parameters (see Table 3.2) they are all on the
order of a few seconds.
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uncorrelated states as the minimum between QPN and CTL shifts to smaller values

of TR when the projection noise is reduced. Considering a fixed particle number one

finds that as the dead time increases, a longer optimal Ramsey time is required. This

is because the observed fraction of the interrogation cycle is increased in order to

reduce the Dick effect. In the same way, a shorter dead time is accompanied by a

reduced TR,opt. A reduction of the dead time therefore also reduces the relevance of

fringe-hops. Looking at Fig. 3.12 of the main text, the lowered TR,opt means moving

further left into the blue region of fringe-hop-free clock operation. However, fringe-

hops remain relevant for very small ensembles, N < 10, even at TD = 0 because of

the strong influence of the quantum projection noise [LSH+17].
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