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Abstract 

Today’s mobile communication technologies have increased verbal and text-based 

communication with other humans, social robots and intelligent virtual assistants. On the 

other hand, the technologies reduce face-to-face communication. This social issue is 

critical because decreasing direct interactions may cause difficulty in reading social and 

environmental cues, thereby impeding the development of overall social skills. Recently, 

scientists have studied the importance of nonverbal interpersonal activities to social skills, 

by measuring human behavioral and neurophysiological patterns. These interdisciplinary 

approaches are in line with the European Union research project, “Socializing sensorimotor 

contingencies” (socSMCs), which aims to improve the capability of social robots and 

properly deal with autism spectrum disorder (ASD). Therefore, modelling and 

benchmarking healthy humans’ social behavior are fundamental to establish a foundation 

for research on emergence and enhancement of interpersonal coordination. In this research 

project, two different experimental settings were categorized depending on interactants’ 

distance: distal and proximal settings, where the structure of engaged cognitive systems 

changes, and the level of socSMCs differs. As a part of the project, this dissertation work 

referred to this spatial framework. Additionally, single-sensor solutions were developed to 

reduce costs and efforts in measuring human behaviors, recognizing the social behaviors, 

and enhancing interpersonal coordination. First of all, algorithms using a head worn inertial 

measurement unit (H-IMU) were developed to measure human kinematics, as a baseline 

for social behaviors. The results confirmed that the H-IMU can measure individual gait 

parameters by analyzing only head kinematics. Secondly, as a distal sensorimotor 

contingency, interpersonal relationship was considered with respect to a dynamic structure 

of three interacting components: positivity, mutual attentiveness, and coordination. The H-

IMUs monitored the social behavioral events relying on kinematics of the head orientation 

and oscillation during walk and talk, which can contribute to estimate the level of rapport. 

Finally, in a new collaborative task with the proposed IMU-based tablet application, results 

verified effects of different auditory-motor feedbacks on the enhancement of interpersonal 

coordination in a proximal setting.  
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This dissertation has an intensive interdisciplinary character: Technological 

development, in the areas of sensor and software engineering, was required to apply to or 

solve issues in direct relation to predefined behavioral scientific questions in two different 

settings (distal and proximal). The given frame served as a reference in the development 

of the methods and settings in this dissertation. The proposed IMU-based solutions are also 

promising for various future applications due to widespread wearable devices with IMUs. 

 

Keywords: Auditory-motor feedback, Kinematic analysis, Real-time monitoring, Joint 

action, Socializing sensorimotor contingency 
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Abstract 

Die heutigen mobilen Kommunikationstechnologien haben den Umfang der verbalen und 

textbasierten Kommunikation mit anderen Menschen, sozialen Robotern und künstlicher 

Intelligenz erhöht. Auf der anderen Seite reduzieren diese Technologien die nonverbale 

und die direkte persönliche Kommunikation, was zu einer gesellschaftlichen Thematik 

geworden ist, weil die Verringerung der direkten persönlichen Interaktionen eine 

angemessene Wahrnehmung sozialer und umgebungsbedingter Reizmuster erschweren 

und die Entwicklung allgemeiner sozialer Fähigkeiten bremsen könnte. Wissenschaftler 

haben aktuell die Bedeutung nonverbaler zwischenmenschlicher Aktivitäten als soziale 

Fähigkeiten untersucht, indem sie menschliche Verhaltensmuster in Zusammenhang mit 

den jeweilgen neurophysiologischen Aktivierungsmustern analzsiert haben. Solche 

Querschnittsansätze werden auch im Forschungsprojekt der Europäischen Union 

"Socializing sensori-motor contingencies" (socSMCs) verfolgt, das darauf abzielt, die 

Leistungsfähigkeit sozialer Roboter zu verbessern und Autismus-Spektrumsstörungen 

(ASD) adäquat zu behandeln. In diesem Zusammenhang ist die Modellierung und das 

Benchmarking des Sozialverhaltens gesunder Menschen eine Grundlage für 

theorieorientierte und experimentelle Studien zum weiterführenden Verständnis und zur 

Unterstützung interpersoneller Koordination. In diesem Zusammenhang wurden zwei 

verschiedene empirische Kategorien in Abhängigkeit von der Entfernung der 

Interagierenden zueinander vorgeschlagen: distale vs. proximale Interaktionssettings, da 

sich die Struktur der beteiligten kognitiven Systeme zwischen den Kategorien ändert und 

sich die Ebene der erwachsenden socSMCs verschiebt. Da diese Dissertation im Rahmen 

des socSMCs-Projekts entstanden ist, wurden Interaktionssettings für beide Kategorien 

(distal und proximal) entwickelt. Zudem wurden Ein-Sensor-Lösungen zur Reduzierung 

des Messaufwands (und auch der Kosten) entwickelt, um eine Messung ausgesuchter 

Verhaltensparameter bei einer Vielzahl von Menschen und sozialen Interaktionen zu 

ermöglichen. Zunächst wurden Algorithmen für eine kopfgetragene Trägheitsmesseinheit 

(H-IMU) zur Messung der menschlichen Kinematik als eine Ein-Sensor-Lösung entwickelt. 

Die Ergebnisse bestätigten, dass die H-IMU die eigenen Gangparameter unabhängig 

voneinander allein auf Basis der Kopfkinematik messen kann. Zweitens wurden—als ein 
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distales socSMC-Setting—die interpersonellen Kopplungen mit einem Bezug auf drei 

interagierende Merkmale von „Übereinstimmung“ (engl.: rapport) behandelt: Positivität, 

gegenseitige Aufmerksamkeit und Koordination. Die H-IMUs überwachten bestimmte 

soziale Verhaltensereignisse, die sich auf die Kinematik der Kopforientierung und 

Oszillation während des Gehens und Sprechens stützen, so dass der Grad der 

Ü bereinstimmung geschätzt werden konnte. Schließlich belegten die Ergebnisse einer 

experimentellen Studie, die zu einer kollaborativen Aufgabe mit der entwickelten IMU-

basierten Tablet-Anwendung durchgeführt wurde, unterschiedliche Wirkungen 

verschiedener audio-motorischer Feedbackformen für eine Unterstützung der 

interpersonellen Koordination in der Kategorie proximaler sensomotorischer 

Kontingenzen.  

 

Diese Dissertation hat einen intensiven interdisziplinären Charakter: Technologische 

Anforderungen in den Bereichen der Sensortechnologie und der Softwareentwicklung 

mussten in direktem Bezug auf vordefinierte verhaltenswissenschaftliche Fragestellungen 

entwickelt und angewendet bzw. gelöst werden—und dies in zwei unterschiedlichen 

Domänen (distal, proximal). Der gegebene Bezugsrahmen wurde als eine große 

Herausforderung bei der Entwicklung der beschriebenen Methoden und Settings 

wahrgenommen. Die vorgeschlagenen IMU-basierten Lösungen könnten dank der weit 

verbreiteten IMU-basierten mobilen Geräte zukünftig in verschiedene Anwendungen 

perspektiv reich integriert werden. 

 

Schlagworte: Audio-motorisches Feedback, Kinematische Analyse, Echtzeitüberwachung, 

Gemeinsame Aktion, Sozialisierung sensomotorischer Kontingenz 
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Content Explanation 

Theory of Mind An ability to attribute mental states (e.g., beliefs, desires, perspectives, 

intentions) to oneself and others, and to understand that others’ mental 

states are different from one’s own (Premack and Woodruff, 1978). This 

is important when individuals socialize and communicate with others. 

Internet of Things A concept of interconnection between everyday physical objects through 

the internet. In this idea, computing systems or devices embedded in the 

objects can transfer data and identify one another. This concept includes 

interdisciplinary technology (artificial intelligence, real time sensors, 

embedded systems, and communication) and will contribute to future 

technology (autonomous cars, smart home, and smart city).  

Frames per second (fps) A unit of the frame rate which is the frequency of refreshing images (or 

frames) in display or camera systems, also expressed in Hertz (Hz). In this 

dissertation, it is used as frame rate of a motion capture system. 

Sample Data point of discrete-time signal in data analysis. It is normally used for 

input and output of digital filters or processed sensor data. In chapter 4, 

statistical meaning of the sample is also used to refer to participants when 

using these terms: independent, dependent, across, and between samples. 

Entrainment Synchronization of organisms to perceived external cues or rhythms such 

as music or dance (Clayton, Sager, and Will, 2005), which comes from 

entrainment in biomusicology. In this dissertation, it is used for 

psychological and physical synchronization between two or more people. 

Coordination Combination of movement which comes from motor coordination. It is 

used for physical synchronization between interactants, in this dissertation. 

Complexity Degree of complexity of the algorithm in computer science, also called 

computational complexity. In this dissertation, the complexity indicates 

the worst-case complexity in time, which is expressed by a function of 

input size n (unit: bit). This term is related to the speed of algorithm in 

discrete signal processing.  

Rapport A close and harmonious relationship between two or more people. Based 

on friendliness and warmness, rapport helps people to understand others’ 

ideas and feelings and to communicate smoothly (Tickle-Degnen and 

Rosenthal, 1990).  

Molecular method An approach to analyze unit objects or behaviors, which is a start for 

analysis or science. In psychology, discrete units of activities in a complex 

chain of performances are analyzed in terms of a specific period of time or 

the number of the activities. This approach is suitable for the beginning 

stage of analysis or the short term analysis of behaviors (Baum, 2004). 

Molar method An approach to analyze objects or behaviors considering their 

environment. Whereas the same atoms have different properties in 

different structures or compositions in chemistry or ecology, the discrete 

behaviors have different meanings in different contexts in psychology. 

This approach is required in long term analysis of behaviors (Baum, 2004).  
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Content Explanation 

Dead reckoning An estimation method using previously determined data. It is widely used 

for positioning systems that find the displacement by integrating the past 

velocity or acceleration information. The integration inherently causes 

error accumulation, which is dead reckoning effect. Today, many 

algorithms have been developed to compensate for the error accumulation.  

Kinematic analysis An analysis which focuses on the geometry of motion of the body and 

systems. The kinematic analysis provides kinematic parameters, such as 

acceleration, velocity, angular velocity, and angle. Kinematic analysis 

excludes force analysis, whereas kinetic analysis includes force analysis. 

Kinesthetic system A sensory system for awareness of the position and movement of the body 

part in physiology, also called kinesthetic sense, proprioceptive sense or 

proprioception. For example, individuals are aware of where the arm is 

located and its speed, even though the eyes are closed. Kinesthetic system 

can receive feedback information about moving the arms, legs, and head.  

Likert scale A rating scale widely used in questionnaires to measure participants’ 

opinions or attitudes (Likert, 1932). In this dissertation, a 7-point Likert 

scale from 1 to 7 was used, which provides ordinal data. 

Mauchly’s sphericity test A statistical procedure for scrutinizing the sphericity in a repeated-

measures analysis of variances (ANOVA). The sphericity is met when the 

variances between the individual factor levels as well as the correlations 

between the factor levels are homogeneous (Bortz, 2005). The violation of 

sphericity results in too low p-values and thus inflates the error rate. The 

F-test of an ANOVA, therefore, might be false positive. 

Huynh-Feldt correction In case of a violation of sphericity, the Huynh-Feldt correction can be 

applied. It adjusts the degrees of freedom of the numerator and the 

denominator of the F-ratio by multiplying them with epsilon (ε). ε is 

estimated from the sample. It is < 1 if the sphericity is violated (Lane, 

2016; Davis, 2002).  

Levene’s test A test for assessing variance homogeneity across groups (Levene, 1960; 

Bortz, 2005). It tests the null hypothesis (H0) that the population variances 

are homogeneous. H0 is rejected if p < 0.05, indicating that variances differ 

between the samples.  

Tukey’s HSD test The Tukey's honestly significant difference (HSD) test is performed as a 

post hoc test if an ANOVA confirms a significant overall effect. It 

compares all possible pairs of means and corrects for the increased 

probability of Type I errors, so that it corrects for an increased probability 

of significant results (e.g., p-value) by chance due to multiple testing. 

Mann-Whitney-U-test A nonparametric test for ordinal scaled variables which compares the 

medians of two independent samples (Bortz, 2005; Mann & Whitney, 

1947). In this dissertation, this test was used for the analysis of 

questionnaire results. 

Wilcoxon test A nonparametric test for ordinal scaled variables which compares the 

medians of two dependent samples (Bortz, 2005; Wilcoxon, 1992). In this 

dissertation, this test was used for the analysis of questionnaire results. 
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Chapter 1.  Introduction 

 

Socializing and integrating into the community are important because it supports 

the sense of community-belonging, which is highly correlated with one’s happiness and 

health. Social and communication skills contribute to co-performance in group and team-

based activities, which are required by today’s collaborative societies. On the one hand, 

widespread mobile devices with up-to-date technology have recently increased indirect 

communication with others through the internet connection and social network services. 

On the other hand, face-to-face interactions have gradually decreased during last decades 

due to the mobile technology. Indirect communication with mobile devices causes users to 

have less experiences in reading nonverbal cues and environmental context, which reduces 

one’s social skills (Munoz, 2013). Today, therefore, it is much more important to study 

how to enhance nonverbal interpersonal coordination and how to learn social skills 

efficiently and effectively.  

For this topic, several attempts have been made to understand when and where 

interpersonal coordination emerges. Recent evidence suggests that interpersonal 

coordination is ubiquitous, which can emerge whenever the opportunities for interpersonal 

connections appear, such as a physical connection, visual or auditory cues, linguistic 

information, even without one’s awareness (Shockley, and Riley, 2015). In football, a ball 

can be a coupling medium as a way of interaction. In orchestra, a conductor gives musicians 

visual cues that make performance synchronized (D’Ausilio, Badino, Li, Tokay, Craighero, 

Canto, Aloimonos, and Fadiga, 2012). Auditory and visual information shared in musical 

ensembles can be media for coordination. Linguistic information can be a medium on 

conversation between two individuals and arise common understanding of audience, which 

can be a means of exchanging multiple individuals’ feelings, attitudes, and actions 

(Shockley, and Riley, 2015; Port, 1981). 

Depending on the medium, recognition of social cues can give rise to one’s 

reactions in a physical and neuropsychological manner, which can affect interpersonal 

coordination positively or negatively, acting as feedback. Researchers have studied short-
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term and long-term effects of the feedback on human cognition and behaviors during 

interaction. They have used high-end technology to scan the human brain and measure the 

whole human body movements, which can be realized usually in laboratory settings at high 

costs. On the other hand, simple solutions are also considered to measure the specific 

biological events (e.g., the heart rate, eye reaction, body gestures), which can indicate a 

response to social stimuli during interaction. In this field, mobile and wearable 

technologies are emerging and wide-spreading as the simple behavioral measurement 

devices due to the up-to-date sensor technology, such as inertial measurement unit (IMU). 

The IMU is a sensor device that measures kinematic parameters using a body’s 

inertial force, and that is embedded in positioning systems, such as motion capture and 

navigation systems. Embedded in IMU, accelerometers and gyroscopes measure the 

acceleration and the rate of turn. Magnetometers, barometers, or global positioning system 

(GPS) receivers can be added in IMU to compensate for error accumulation in positioning. 

Nowadays, the applications of IMU have been broadened to consumer electronics, such as 

smartphones, smart watches, and wireless earbuds. One of the main interests of this 

dissertation is measuring one’s independent meaningful movements with a single IMU. 

Despite the simple unit, the IMU can provide information about one’s gait and head 

gestures, as well as joint actions during a joint task.  

The analysis and enhancement of interpersonal coordination are investigated in this 

dissertation, as a part of the EU research project, “Socializing sensorimotor contingencies” 

(socSMCs). This research project aims at analyzing and stimulating sensorimotor functions 

in correlated activities, in order to initiate and enhance interpersonal coordination. In this 

project, different interaction conditions, distal and proximal settings, are considered in 

terms of the spatial factors between interactants because phenomena of action-effect 

contingencies and the level of SMCs are changed, which can be demonstrated by 

measuring brain activation and body dynamics. Another reason is that these conditions are 

regarded as a suitable experimental frame for artificial agents and autistic people. This 

dissertation is similarly categorized into three environments considering one individual 

setting, and two settings of distal and proximal interpersonal coordination. 
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Before describing main studies of this dissertation, the background knowledge of 

interpersonal coordination and IMU is described in the following subsections in Chapter 1.  

In Chapter 2, to measure a basic human behavior, gait analysis is considered in a 

daily life setting. It is demonstrated how a single head-worn IMU (H-IMU) supports gait 

analysis, which is normally measured by a number of sensors or cameras. The single IMU 

solution, however, enables users to use the simple measurement system in daily life. The 

system validation was done based on a foot-worn IMU solution and manual assessments, 

which are valid methods in gait analysis. This chapter does not include the empirical study 

on interpersonal coordination; however, gait analysis using the simple H-IMU solution lays 

the groundwork for the study on group and dyadic interpersonal coordination. 

In Chapter 3, distal interpersonal coordination (i.e., with the physical distance more 

than about 1.5 m) is taken into account in a walk and talk setting, as an everyday-life setting. 

The structured measurement of rapport between interactants during walking together is 

suggested with a combined analysis of the head direction, the number of head nods, and 

gait patterns. The rapport measurement, thus, provides information of positivity, mutual 

attentiveness, and coordination. This solution analyzes discrete behaviors without a 

consideration of social context. Nevertheless, the structured measurement is valuable as a 

reference for the rapport measurement, and the H-IMU reduces time-consuming manual 

works. This chapter indicates that, combined with social context analysis from human 

examiners, the solution can provide more efficient and effective rapport measurements.  

In Chapter 4, finally, proximal interpersonal coordination (i.e., with the distance 

less than about 1.5 m) is described to investigate independent and joint actions of two 

interactants during a joint task. A tablet with an IMU measures the joint outcomes and 

synchronization with a joint task application. In this task, human behavior is not directly 

measured; however, the angular velocity and posture of the tablet are measured, which is 

manipulated by participants’ finger movements. With this setting, it is demonstrated that 

certain kinds of additional auditory feedback can affect interpersonal coordination.  

In Chapter 5, general findings, contributions, and applications are discussed, and 

also concluding remarks are given.  



 

4 

1.1. Interpersonal Coordination 

Interpersonal coordination entails physical and psychological interaction between 

two or more individuals. Interpersonal coordination is categorized depending on the 

number of agents: dyadic interpersonal coordination between two individuals, and group 

interpersonal coordination. Dyadic interpersonal coordination is researched for joint action 

(Clark, 1996), communication, and rapport, which can explain the formation of 

relationships between two individuals (Tickle-Degnen and Rosenthal, 1990; Fiske, 1992). 

Dyadic interaction was studied with a rocking chair task (Demos, Chaffin, Begosh, Daniels, 

and Marsh, 2012), a duet dance (Waterhouse, Watts, and Bläsing, 2014), a tetherball 

paradigm (Hwang, Schmitz, Klemmt, Brinkop, Ghai, and Stoica et al., 2018a), posture 

mirroring, joint attention (Tickle-Degnen and Rosenthal, 1990), as well as gaze and 

emotional coordination (Shockley, and Riley, 2015). On the other hand, group 

interpersonal coordination might be the base of group cohesiveness, groupness, group 

entitativity and social identification (Richardson, Garcia, Frank, Gergor, and Marsh, 2012). 

Those are important concepts to understand social phenomena such as social influence, 

social identity process, and intergroup conflict (Richardson, Garcia, Frank, Gergor, and 

Marsh, 2012). Examples of group interpersonal coordination are that a speaker or a movie 

arouses audience clapping (Néda, Ravasz, Brechet, Vicsek, and Barabási, 2000), or 

musicians make a harmony in quartets and orchestras (D’Ausilio et al., 2012). The 

coordination is also observed in team sporting games (e.g., football, basketball) (Duarte, 

Araújo, Correia, Davids, Marques, and Richardson, 2013), in military marching (McNeill, 

1995), and in group dancing (Ellamil, Berson, Wong, Buckley, and Margulies, 2016). 

Interpersonal coordination is also categorized by physical distance between 

interactants: distal and proximal interpersonal coordination. Distal interpersonal 

coordination is observed normally when interactants have a distance greater than around 

1.5 m, in which interactants can communicate with verbal and nonverbal social cues, such 

as gestures, facial expressions, languages, and clapping sounds. Visual and auditory 

information are used in this interaction, which is observed during conversations in work 

places, shops, and schools, as well as during group activity such as team sports, and musical 
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co-performances. On the other hand, proximal interpersonal coordination emerges when 

the distance between interactants is normally less than around 1.5 m. Interactants might 

directly touch each other or manipulate an object together. In addition to visual and 

auditory information, tactile information can be used in this interaction, which is found 

during interaction between mother and child or during cooperation to carry a table or a sofa.  

 

1.1.1. Analysis of Interpersonal Coordination 

The objective of interpersonal coordination study is not only to optimize joint 

outcomes in musical ensembles, team sports, and workplaces, but also to support 

individuals with social deficits, such as autism spectrum disorder (ASD), schizophrenia, 

and dementia. Many interventions have been developed for athletes, patients and ordinary 

people to enhance the ability to predict others’ behaviors. These interventions include 

promoting physical activity, and also enhancing the Theory of Mind (ToM), which is an 

ability to understand that mental states (e.g., beliefs, desires, perspectives, intentions) are 

caused by oneself and others, and that different persons have different mental states 

(Premack and Woodruff, 1978). Deficits of ToM are regarded as mind-blindness, which is 

a cognitive disorder resulting from impaired or delayed neural networking (Gallagher and 

Frith, 2003; Carruthers, 1996; Bird, Castelli, Malik, Frith, and Husain, 2004). In terms of 

ASD, however, some phenomena cannot be explained with the theory of mind-blindness 

because of delayed motor skills, frequent repetitive behaviors, and high functioning 

memory skills (Frith, 2001; Baron-Cohen, 2004). Nevertheless, these affected individuals 

need therapies relying on behavioral interventions (Frith, 2001; Laghi, Lonigro, Levanto, 

Ferraro, Baumgartner, and Baiocco, 2016). 

The analysis of one’s behaviors is necessary to arrange successful interventions and 

to improve outcomes. Monitoring kinematic and linguistic behaviors during interventions 

plays an important role in feedback. Long-term and real-time feedback can help to enhance 

the participants’ interpersonal skills, and to inform therapists of participants’ progress in 

the intervention. In addition, observation of different groups of participants is needed 

considering occupation, religion, gender and nationality, as well as the affected individuals. 
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By comparing data on ordinary versus affected people, therapists can decide the future 

direction of interventions. Furthermore, recent developments in the field of human-robot 

interaction have also led to a renewed interest in the research on interpersonal coordination 

because the analysis of human interactions should be a prerequisite for human-like robots 

(Scassellati, 2002; Muthugala, Munasinghe, Lakshan, Madurangi, and Jayasekara, 2013). 

The studies on human-human interactions are also helpful in social interaction studies for 

therapeutic robots (Robinson, MacDonald, Kerse, and Broadbent, 2013) and empathy 

between humans and robots (Darling, Nandy, and Breazeal, 2015).  

 

1.1.2. Assessment Methods of Interpersonal Coordination 

In social psychology, the level of interpersonal coordination has usually been 

measured by subjective methods. For example, according to meta-analysis of dyadic 

interactions, the rapport was assessed by participants’ self-reports and outside observers 

(Tickle-Degnen and Rosenthal, 1990). The degree of groupness or group entitativity was 

measured by participants’ subjective rating (Lickel, Hamilton, Wieczorkowska, Lewis, 

Sherman, and Uhles, 2000). These methods, however, allows various factors to change 

results, which causes difficulty in a comparison of two or more different studies. 

Researchers tried to realize objective psychological measurement by categorizing 

meaningful parameters during interpersonal coordination, such as the number of nodding, 

smiling, or arm crossing (Tickle-Degnen and Rosenthal, 1990). Nevertheless, the manual 

measurement is time consuming. Researchers, therefore, have found objective methods and 

standard models using computational systems. The numbers related to head gestures, facial 

expressions, and body postures are counted. The period of synchronized motion, coupled 

posture, mutual gaze or common attention is also taken into account. In data analysis phase, 

a number of computational models between two data sets have been used for quantifying 

the degree of interpersonal coordination, such as cross-correlation, and cross recurrence 

analysis, phase difference, frequency difference of coherence as well as entropy 

measurement and mutual information (Richardson, Garcia, Frank, Gergor, and Marsh, 

2012). These methods are appropriate for analyzing dyadic interpersonal coordination. For 

group interpersonal coordination, on the other hand, a few methods of analysis have been 
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reported due to a large set of data and high complexity (Ellamil, Berson, and Margulies, 

2016). One simple method is to measure the decibel of audience clapping sound, which 

estimates how many people in the audience are clapping (Néda, Ravasz, Brechet, Vicsek, 

and Barabási, 2000). A cluster phase method was reported in a study on group 

synchronization of six participants sitting on rocking chairs, which computed the average 

of each phase difference from the cluster phase, ranging from 0 to 1. The numerical results 

were regarded as indicators of the degree of group interpersonal synchronization 

(Richardson, Garcia, Frank, Gergor, and Marsh, 2012). 

Those factors are based on social behaviors, which can be measured with various 

systems, such as microphones, cameras, and inertial sensors. For instance, the auditory 

measurement using microphones was suggested when an audience is clapping (Néda et al., 

2000). The complex patterns of coordination that arise during a string quartet can also be 

analyzed based on the audio signals (Chang, Lee, Choe, and Lee, 2017; Volpe, D'Ausilio, 

Badino, Camurri, and Fadiga, 2016). Acoustic measurement, however, can be used only 

when the movement results in auditory events. Consequently, different types of 

measurement are needed to directly assess various social behaviors. For example, vision 

technology can detect head gestures (e.g., nodding, shaking) and recognize facial 

expressions (e.g., smile, frown, angry), indicating current interactants’ emotions. 

For gross motor behaviors, motion capture systems are preferred. Optical motion 

capture systems based on cameras and markers are used in tasks for spatiotemporal 

synchronization, such as hand mirroring tasks (Llobera, Charbonnier, Chagué, Preissmann, 

Antonietti, Ansermet, and Magistretti, 2016). Motion capture using inertial sensors were 

implemented for the measurement of participants’ nonverbal behaviors during verbal 

communication (Feese, Arnrich, Troster, Meyer, and Jonas, 2012). Motion capture systems 

are also suitable for monitoring human interactions in education, training and clinical 

intervention settings, which can measure behavioral expressions, such as gestures and 

postures. Compared to 2-dimensional (2-D) video analysis, a 3 dimensional (3-D) motion 

capture system can provide more movement information in terms of geometry aspects. 

Thus, researchers can visualize necessary parameters from different viewpoints. 
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1.1.3. Head and Body Kinematics for Interpersonal Coordination 

People shake hands, dance and gesture to interact with others. Audiences clapping 

(Néda et al., 2000), drummers marching (Butzin, Hochendoner, Ogle, Hill, and Mather, 

2015), and instruments’ quartets (Wing, Endo, Bradbury, and Vorberg, 2014) are also 

frequently discussed in studies on audio-visual coupling which is based on inter-personal 

entrainment. On the one hand, kinematic measurements of arm gesture (Junker, Amft, 

Lukowicz, and Tröster, 2008), gait (Sabatini, Martelloni, Scapellato, and Cavallo, 2005) 

and trunk movement (Pfau, Ferrari, Parsons, and Wilson, 2008) are promising for the 

research on multi-agent interaction. Measuring extremity movement, however, could face 

limitations because individuals derive different meanings from gestures depending on their 

cultural background and individual characteristics. The cost also increases in the body 

kinematic measurement with more individuals because the measurement systems require 

more resources in the number of professionals and facilities, as well as the measurement 

time and space. On the other hand, measurement of head movement has no comparable 

limitations because it is based much more on basic instincts rather than on cultural 

environment and individual habits. For instance, humans start to move their head by 

themselves early in their lives (Gordon and Browne, 2013) and the head responds to basic 

stimuli, such as light and sound (Land, 1999; Murray, Lillakas, Weber, Moore, and Irving, 

2007; Thurlow, and Runge, 1967). The measurement of head movements, in addition, 

needs only a few sensor devices per person, enabling a kinematic measurement of group 

behavior and entrainment. Head movement, nonetheless, is still lacking information to 

describe whole body movement. Therefore, measuring both extremity and head movement 

can compensate each other and can provide more reliable data for the research on 

interpersonal entrainment. 

 

1.1.4. Coordination between Head and Body Kinematics 

Research on intrapersonal coordination has demonstrated that the head movement 

predicts body movements in specific cases. Walking speed can be estimated from the head 

velocity, and gait parameters are analyzed by head vertical kinematics (Hwang, Reh, 
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Effenberg, and Blume, 2018b). The head kinematics can also indicate that one’s attention 

shifts because head orientation correlates to gaze position, where one’s attention lies (Land, 

1999). Several studies found that gaze position especially correlates to horizontal head 

movement (yaw, see Figure 3.1) during a gaze shifting task in front of a screen (Fang, 

Nakashima, Matsumiya, Kuriki, and Shioiri, 2015; Nakashima, Fang, Hatori, Hiratani, 

Matsumiya, Kuriki, and Shioiri, 2015). During straight and curved walking, it was reported 

that the gaze direction led the head yaw rotation and walking directions (Imai, Moore, 

Raphan, and Cohen, 2001; Grasso, Prévost, Ivanenko, and Berthoz, 1998), which means 

the walking direction is predictable from head orientation, when a person walks towards 

an interaction partner.  

In addition, eyes-head-hand coordination is researched using several visuo-motor 

tasks: making tea (Land, 1999), and a pointing task (Vercher, Magenes, Prablanc, and 

Gauthier, 1994). In these tasks, the hand movement follows the gaze direction. The authors 

showed their sequential movement; eyes are shifted to the target, the head rotated towards 

the target, and then the hand moves to the target point. This sequence was observed in the 

optimal conditions without any visual or physical restrictions. The results indicate that the 

aimed target of hand’s movement can be predicted from the head movement, which is 

applicable to interacting scenarios such as shaking hands and high five. Similarly, with 

activities for eye-foot coordination, the head orientation might support the estimation of 

foot positions, even the shooting directions in football (a.k.a. soccer) (Wood, and Wilson, 

2010; Savelsbergh, Van der Kamp, Williams, and Ward, 2005). 

 

1.1.5. Coordination between Head Pose and Emotions 

Behavioral scientists and neuropsychologists attempted to recognize emotion by 

measuring human behaviors. When subjects walk, gesticulate, and talk (Troje, 2002; 

Pollick, Paterson, Bruderlin, and Sanford, 2001; Bente, Krämer, Petersen, and de Ruiter, 

2001; Troje, Westhoff, and Lavrov, 2005), body movement and posture can be referred to 

assess the emotional states. In the last decades, research has been conducted on 

relationships between nonverbal behavior and emotion. In terms of head movement, 
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oscillating rotational movement of the head expresses agreement or disagreement. 

Interlocutors and the audience nod their heads to agree and shake to disagree. The head 

pose can indicate one’s emotion. Happiness causes people’s head up and makes the 

movement faster, whereas sadness keeps the head down and makes the movement slower 

(Troje, 2002; Pollick et al., 2001). For more information, scientists visualize inherent body 

movement and posture by utilizing 3-dimensional (3-D) animation (Bente et al., 2001), 

point-lights (Troje, 2002; Pollick, et al., 2001; Troje et al., 2005), and even sonification 

(Effenberg, 2005; Schmitz, Mohammadi, Hammer, Heldmann, Samii, Münte, and 

Effenberg, 2013). Therefore, the relationship between emotion and body movement have 

been evidenced by data from the various animation visualizations. Consequently, these 

methods can also prove the dependency between emotion and the head movement. 

Compared to other body parts, the measurement of head kinematics can provide various 

kinds of information about emotion because the head motion is strongly related to emotion 

itself and coordinates other body movement during psychological changes. For example, 

the balance of the head is closely related to the whole body balance and posture (Paloski, 

Wood, Feiveson, Black, Hwang, and Reschke, 2006; Clark and Iltis, 2008). The tilt of 

one’s head results from the bent spine which determines the balance of the body. The 

longitudinal axis from the head to the pelvis also indicates body balance and posture. 

Therefore, the database of physical and psychological studies might lead to various 

interpretations and analyses on human behaviors during interpersonal coordination, which 

helps people with mind blindness to be sociable. 

 

1.2. Inertial Measurement Unit 

1.2.1. Motivation of Using IMU-Based Motion Sensor 

An IMU-based motion sensor is suitable for measuring human kinematics with 

wearable applications. The IMU has been used for sensing motions of vehicles. For 

example, IMU sensors can provide trajectory information, supporting navigation system 

of aircraft, watercraft, and automobiles. Drivers can also be supported by vehicle stability 

assist (VSA) when they steer a vehicle on a curved road. The IMU is also used for safety 
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and security purposes, by detecting movements to trigger an airbag or robbery alarm 

system. Nowadays, the sensor size is reduced because of microelectromechanical systems 

(MEMS), and thereby the IMU sensors can be embedded in smartphones and wearable 

devices. This trend allows mobile applications to monitor the health status in everyday life. 

Furthermore, the motion sensors have wireless connections to other devices and systems, 

establishing the health monitoring systems with internet of things (IoT) technology. With 

these advantages of mobility, simplicity and connectivity, IMU motion sensors are 

preferable for the wearable solutions, compared to fixed camera solutions. As the growth 

of wearable sensor market leads to more technology and price competitions, consumers 

can have more high quality and low cost products. These wearable sensors also support 

easy-to-access motion and posture detectors in everyday life conditions, which is suitable 

for physical interventions and social therapies including indoor and outdoor settings. 

 

1.2.2. MEMS Sensors: Accelerometer, Gyroscope, and Magnetometer 

Microelectromechanical systems (MEMS) is a technology for micro-scale devices, 

including mechanical structures, such as springs. These devices are manufactured with 

semiconductor fabrication technology, which includes molding, plating, etching (wet and 

dry etching) and machining (electro discharging machining: EDM), and mainly focuses on 

shaping metal for MEMS. Nowadays, MEMS can be integrated with other electronic 

circuits, even motion processing units (MPU) (Seeger, Lim, and Nasiri, 2010), which leads 

to a smaller size of MEMS. During the fabrication process, the vacuum level is controlled, 

and the MEMS structures are hermetically sealed for a high quality sensor (Nasiri, 2009). 

The accelerometers of IMU measure the acceleration using inertial force. When the micro 

system accelerates or decelerates, the inertial force moves the proof mass connected by 

springs in MEMS. This movable proof mass can cause capacitance changes as shown in 

Figure 1.1. In a time invariant system, capacitive accelerometers use the relationship 

inertial force (Fi(t)) and two variable capacitors (C1(t) and C2(t)) as in equations below:  

 
𝐶1(𝑡) = 𝐶2(𝑡) = 𝜀

𝐴(𝑡)

𝑑(𝑡)
, (𝑡 = 0). 

(1.1) 
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𝐶1(𝑡) = 𝜀
𝐴(𝑡)

𝑑(𝑡) − 𝑥(𝑡)
, (𝑡 > 0). 

𝐶2(𝑡) = 𝜀
𝐴(𝑡)

𝑑(𝑡) + 𝑥(𝑡)
, (𝑡 > 0). 

(1.2) 

 

The capacitors are defined with a dielectric permittivity (ε), area (A(t)), and distance 

between electrodes (d(t)). When inertial force occurs at t > 0, the capacitance is changed 

due to the displacement (x(t)) of the proof mass. The displacement results from the inertial 

force, which is expressed by kinematics of the proof mass (m: mass, a(t): acceleration) and 

the spring (k: spring constant) (see also Figure 1.1(a)).  

 

 𝑭𝑖(𝑡) = 𝑚𝒂(𝑡) = −𝑘𝑥(𝑡). 
(1.3) 

 𝑥(𝑡) = −
𝑚

𝑘
𝒂(𝑡). (1.4) 

  

The ratio of two variable capacitances can be measured by various types of readout circuits 

(Aszkler, 2005; Liang, Xiaowei, Weiping, and Zhiping, 2011; Langfelder and Tocchio, 

2014; Qu, Yu, Zhou, Peng, Peng, and He, 2016). For example, the variable capacitances 

can be placed as an input capacitance of the charge amplifier circuit as shown Figure 1.1(b). 

The amplitude of an oscillating input voltage of the circuit can change the amplitude of 

output voltage depending on the ratio between the variable input capacitance (C1 and C2) 

and the feedback components (Rf and Cf) (Qu et al., 2016). For the high sensitivity, the 

comb structure (see Figure. 1.1(c)) is mostly used to increase A(t) because it increases C(t); 

as a result, it is easy to measure micro-scale x-displacement (Xie and Fedder, 2000). The 

variable capacitance can be differently designed. It can depend on varying A(t) instead of 

d(t). There are also piezoelectric types of accelerometers, which use changing electric 

displacement field of a piezoelectric material. When this material is under strain or stress 

due to the movable proof mass, output voltage (Aszkler, 2005) or its resistance is changed.   
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                                          (a)                                                            (b) 

 

(c) 

Figure 1.1. A capacitive accelerometer with (a) a modeling diagram of the basic concept 

(damping factor is ignored) and (b) an example readout circuit with a charge amplifier, and 

(c) an example layout with comb structure of variable capacitors.  



 

14 

A gyroscope measures the rate of turn based on the characteristics of Coriolis force. 

Currently, a vibrating structure gyroscope is broadly applied in smartphones, cameras and 

wearable devices because it is simpler and less expensive than the conventional rotating 

gyroscope structure—both structures have nearly the same level of accuracy. The vibrating 

structure involves the dual mass tuning fork design (Bernstein, Cho, King, Kourepenis, 

Maciel, and Weinberg, 1993), in which two proof masses are initially vibrating only in a 

vibrating plane along an axis (e.g., x-axis) at frequency ωr (see Figure 1.2). When the frame 

rotates at a rate of turn (Ω(t)), Coriolis force (FC(t)) affects the velocity (v(t)) of the 

vibrating proof masses, generating a vector component outside of the vibrating plane (e.g., 

y-axis component) as in equations below:  

 

 𝑭𝐶(𝑡) = −2𝑚𝜴(t) × 𝒗(𝑡) = −𝑘𝑜𝑝𝑦(𝑡). 
(1.5) 

 
(
𝑥(𝑡)

𝑣𝑥(𝑡)
) = (

𝑋𝑖𝑝𝜔𝑟sin⁡(𝜔𝑟𝑡)

𝑋𝑖𝑝𝜔𝑟cos⁡(𝜔𝑟𝑡)
). 

(1.6) 

 
𝑦(𝑡) =

2𝑚Ω(𝑡)𝑋𝑖𝑝cos⁡(𝜔𝑟𝑡)

𝑘𝑜𝑝
. (1.7) 

In (1.5), kop is the spring constant for the out-plane (along the y-axis), and in (1.6), 

Xip is the in-plane amplitude of the displacement x(t) (along the x-axis). According to (1.5), 

the direction of the Coriolis force changes, when the vibrating proof mass is moving inside 

(tin) and outside (tout) (see Figure 1.2). When the x(t) is given in (1.6), the x-velocity (vx(t)) 

is calculated by differentiation. Finally, the y-displacement y(t) is calculated as shown in 

(1.7). This y(t) causes capacitance changes, piezoelectric effects, or electromagnetic 

characteristics. These are detected by readout circuits, resulting in varying output voltage. 

Compared to the accelerometer, this gyroscope consumes more power to drive the 

vibration of proof masses. For consumer electronics, therefore, gyroscopes provide 

different modes for low power operation (e.g., ST microelectronics, 2013). Low-power 

gyroscopes also have been researched.  
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(a) 

  

(b) 

Figure 1.2. A vibrating gyroscope with (a) a modeling diagram (damping factor is ignored) 

and (b) an example layout with the dual mass tuning fork design.  
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In Figure 1.3, a magnetometer that uses Lorenz force (FL(t)) is depicted. When 

current (I(t)) flows in magnetic field (B(t)), Lorenz force occurs as in equation below: 

 𝑭𝐿(𝑡) = 𝑰(𝑡) × 𝑩(t) = −𝑘𝑥(𝑡). (1.8) 

The FL(t) pushes a movable proof mass, which changes capacitance of comb structure 

capacitors due to x-displacement x(t) in Figure 1.3 (Emmerich and Schofthaler, 2000). 

Finally, the varying capacitance is sensed by a readout circuit. 

 

1.2.3. Sensor Fusion Technology and Error Compensation 

Errors between measured and true parameters should be considered. For example, 

noise occurs when varying capacitance is measured by readout circuits (measurement noise: 

e.g., the offset of amplifier, process variations of capacitance and springs in MEMS), and 

when the analog output voltage is digitalized and filtered (processing noise: e.g., 

quantization error). In IMU, accelerometers have problems with gravity factor (g) and 

accumulated errors when positions (x) and velocities (v) are calculated by integrating 

accelerations as below:  

 𝒂𝑚𝑜𝑡𝑖𝑜𝑛 = 𝒂𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝒈. (1.9) 

 

𝒗 = ∫ 𝒂𝑚𝑜𝑡𝑖𝑜𝑛

𝑡

0

+∫ 𝒏𝒂

𝑡

0

. 

𝒙 =∬ 𝒂𝑚𝑜𝑡𝑖𝑜𝑛

𝑡

0

+∬ 𝒏𝒂.
𝑡

0

 

(1.10) 

In the equations, amotion and ameasured are the pure motion and measured acceleration, 

respectively, and na is the noise from the accelerometers. Gyroscopes also have the 

problems with accumulated error with the angular position (θ) and the earth speed (wearth): 

 𝒘𝑚𝑜𝑡𝑖𝑜𝑛 = 𝒘𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −𝒘𝑒𝑎𝑟𝑡ℎ . (1.11) 

 𝜽 = ∫ 𝒘𝑚𝑜𝑡𝑖𝑜𝑛

𝑡

0

+∫ 𝒏𝒘

𝑡

0

. (1.12) 

In the equations, wmotion and wmeasured are the pure motion and measured angular velocity, 

respectively, and nw is the noise of the gyroscopes. These accumulated errors cause drift  
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(a) 

  

(b) 

Figure 1.3. A magnetometer with (a) a modeling diagram (damping factor is ignored) and 

(b) an example layout with comb structure of variable capacitors.  
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effect or dead reckoning effect. However, fusion sensor technology can compensate for 

these errors. Usually, an IMU has accelerometers, gyroscopes, and magnetometers for the 

3-D representation. To eliminate the gravity factor, the accelerometers can be supported 

by gyroscopes and magnetometers. A rotation matrix (R) is generated by a combination of 

accelerometers and magnetometers as below: 

 

 
(

𝑎𝑥
𝑎𝑦
𝑎𝑧
) = 𝑹(

0
0
−𝑔

) 

(

𝑎𝑥
𝑎𝑦
𝑎𝑧
) = (

cos 𝜃𝑧 −sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0
0 0 1

)(

cos 𝜃𝑦 0 sin 𝜃𝑦
0 1 0

−sin 𝜃𝑦 0 cos 𝜃𝑦

)(

1 0 0
0 cos 𝜃𝑥 −sin 𝜃𝑥
0 sin 𝜃𝑥 cos 𝜃𝑥

)(
0
0
−𝑔

) 

(

𝑎𝑥
𝑎𝑦
𝑎𝑧
) = (

−𝑔 sin 𝜃𝑥
𝑔 sin 𝜃𝑥 cos 𝜃𝑦
−𝑔 cos 𝜃𝑥 cos 𝜃𝑦

) 

(1.13) 

 

where ax, ay, and az are measured accelerations along the x-, y-, and z-axis of the local 

coordinate system of the sensor, respectively. With three equations, two variables, roll (θx) 

and pitch (θy), can be obtained. Yaw (θz) can be estimated by measured magnetic fields (mx, 

my, mz) with the estimated roll and pitch as below: 

 

 
(

𝑚𝑥

𝑚𝑦

𝑚𝑧

) = 𝑹 (
𝑚0

0
0
) 

(

𝑚𝑥

𝑚𝑦

𝑚𝑧

) = (

𝑚0 cos 𝜃𝑦 cos 𝜃𝑧
𝑚0 sin 𝜃𝑧

−𝑚0 sin 𝜃𝑦 cos 𝜃𝑧

) 

(1.14) 

 

where m0 is the initial magnetic field toward the magnetic north as shown in Figure 1.4. 

However, the estimation equations are more accurate in static position of sensors than in 

moving scenario of sensors, so that gyroscopes should be combined with the estimation 

results to generate an accurate rotation matrix in both static and dynamic situations. The 

rotation matrix can eliminate the gravity factor from measured accelerations, and thereby 

accelerometers can obtain pure motion acceleration (zero-gravity). Gyroscopes also can  
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(a) 

 

(b) 

Figure 1.4. Local coordinate systems of sensors to express (a) gravity factor (g) of 

measured acceleration in the initial (as the same as the global coordinate system) and the 

rotated position, and (b) the magnetic fields measured in initial (m0) and the rotated position 

(mx, my, mz). 

 

eliminate the earth rotation speed due to the rotation matrix. Nevertheless, the rotation 

matrix can be influenced by adjacent magnetic disturbances resulting from metal or other 

electronic devices. Although these disturbances affect magnetometers, the position 

information of the magnetic object can be recorded in calibration time, which can 

compensate for the magnetometer errors near the magnetic objects. 

To improve the accuracy of the combination of devices in IMU, accumulated errors 

should be taken into account by referring noise information at the initial states (during 
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calibration). The estimation process based on Kalman filters can estimate a more accurate 

position or rotation matrix despite process and measurement noise (Li, and Wang, 2013). 

In addition, IMU can also be combined with other sensors. For instance, GPS receivers can 

help to compensate for inaccuracy of the position (Dixon, 1991; Obradovic, Lenz, and 

Schupfner, 2004), and cameras can support the correction of the direction of IMU (Hesch, 

Kottas, Bowman, and Roumeliotis, 2014). In terms of indoor positioning system, 

communication network infrastructures (e.g., wireless local area network (WLAN), ultra-

wideband (UWB)) can improve IMU-based positioning systems, using received signal 

strength, time of arrival, and other temporal properties of the signal (Wang, Lenz, Szabo, 

Bamberger, and Hanebeck, 2007). 

 

1.3. Background of Goals 

In line with the socSMCs project, this dissertation aims to contribute to the 

enhancement of interpersonal coordination in two special conditions: people with Autism 

spectrum disorder (ASD) and human-robot interaction conditions. This section will 

provide the background knowledge, issues, and possible applications in working on the 

interaction with people with ASD and robots. 

 

1.3.1. Interventions for Autism Spectrum Disorder (ASD) 

This dissertation suggests a single IMU solutions to apply to the interventions for 

people with ASD, by enhancing physical and social activities. Children and adults with 

ASD have difficulties in socializing and communication, according to the “Diagnostic and 

Statistical Manual of Mental Disorders, 5th edition (DSM-5)” released by the American 

Psychiatric Association (APA) in 2013. The symptom is inappropriate interaction, such as 

delayed reaction, repetitive or one-sided conversation, and lack of eye contact, to name a 

few. These symptoms are mainly based on works of Autism Disorder (Kanner, 1943) and 

Asperger’s disorder (Asperger, 1944), respectively. The term “Autism” firstly appeared as 

a pervasive developmental disorder in DSM-3, which is previous version of DSM issued 

in 1980. Asperger’s disorder was firstly defined as a separate disorder from autism in DSM-
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4 issued in 1994. As a majority of professionals regarded Asperger’s disorder as a mild 

form of autism, DSM-5 (2013) introduced a unified definition, ASD, which combines 

autistic disorders, Asperger’s disorders, and other pervasive developmental disorders. 

From observation, people with ASD are affected due to different conditions. Delayed or 

impaired development of childhood is involved. Even if one’s development is not 

problematic, isolation can cause ASD. Interventions, therefore, differ depending on causes 

of ASD. Although the symptoms are defined, there are no specific criteria to distinguish 

people with ASD. Many practitioners can, therefore, diagnose ASD by observation, which 

is usually a partially subjective assessment.  

The rapport analysis of H-IMU solution (proposed by Chapter 3, see also Hwang, 

Effenberg, and Blume, 2019a) can be helpful for the diagnosis of ASD, suggesting an 

objective reference. The reason is that the rapport monitoring solution includes the number 

of nods, and head orientations, which can support analysis of one’s verbal and nonverbal 

head reactions. Gait analysis can aid in analysis of the motor development of children. The 

single H-IMU solution is easy to access and to wear, even for young children. In walk and 

talk intervention, language development can be also analyzed with the audio recordings 

during conversation. In terms of the tetherball paradigm in Chapter 4 (see also Hwang et 

al., 2018a), an IMU-based tablet solution can monitor behaviors of people with ASD during 

a joint task. This tablet solution can measure one’s high level of interactive skills because 

it involves proximal settings and object sharing between two interactants—one of the most 

difficult conditions for individuals with ASD. Based on these analyses, the diagnosis can 

be more objective, and the progress of intervention can be monitored. The measurement 

data can be used for long-term and real-time feedback, which can lead to a successful 

intervention.  

 

1.3.2. Interaction with Robots 

Robots have been investigated and developed to communicate with humans. 

Human-robot interaction is involved in an interdisciplinary field: human-computer 

interface, robotics, artificial intelligence (AI), and social science. In the manufacturing 
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field, automation systems and software provide intuitive interfaces for technicians. 

Industrial robots should coordinate with other human workers to share the same work space 

and to enable fluent cooperation. For consumer electronics, AI technology supports 

translation and autonomous driving, as well as virtual assistant applications. Nowadays, 

consumer social robots are emerging to work for service, rehabilitation, caregiving and 

education industries (Muthugala el al., 2013). Robots can be understood as human-like 

social agents when robots are able to imitate human body shapes as well as mimic human 

facial expressions (Breazeal and Scassellati, 2002). For proper responses, the robots need 

to understand human gestures, cues and emotions. The robots are also supposed to identify 

customers and provide an individualized service. 

To support the promising applications, robots should have a database of human 

gestures and social cues, thereby developing their social intelligence. Compared to other 

body gestures, the head movements provide rich information related to agreement, 

attentions, desires, beliefs, and emotions. To be specific, the head orientation is related to 

gaze position where one’s interest lies. The head pose can also indicate that users are 

curious, happy, or sad, as well as if they agree or not. Studies on coordination with the eyes, 

the neck, the trunk, the hand and the foot would inform human-like movement (Muthugala 

et al., 2013, Kavanagh, Barrett, and Morrison, 2006, Vercher et al., 1994). Relationship 

between the head and the linguistic context can also lead robots to move like humans during 

conversation with robot users (Cabibihan, Javed, Ang, and Aljunied, 2013). With 

accumulated head kinematic data, robots can distinguish others’ mental states based on the 

emergent reactions (e.g., facial expressions, body postures, tone of voice; Cabibihan et al., 

2013). Based on these observations, robots can properly react, which can build a trustful 

relationship with human co-actors. The rapport and gait monitoring system equipped with 

IMUs can accumulate human head kinematics. When the social robots are released in the 

mass market in the future, their rapport building abilities can be also tested simply using 

H-IMU sensors during walk and talk with humans. 

In proximal settings, robots can participate in joint action-settings. Their interactive 

skills can also be tested in a joint task such as the tetherball paradigm in Chapter 4 (see 
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also Hwang et al., 2018a). During this type of joint tasks, robots can be assessed in terms 

of the high level of interactive skills. Firstly, the robot has to discriminate their own and 

partner’s effect on the ball, respectively, which is a basic interactive skill—important to 

support a high level of interactions. Secondly, the robot has to consider the movement of 

the partner and the ball, simultaneously. With the ability in handling the complicated 

situation, the robot is regarded as having the highest level of joint attention ability. Lastly, 

the robot has to understand not only the partner’s intention, but also what the partner 

predicts that the robot is going to do, which requires the second order Theory of Mind 

decoding (Mehta, Bhagyavathi, Kumar, Thirthalli, and Gangadhar, 2014; Scassellati, 

2002). The robot can accumulate the database of immediate reactions of humans in 

response to the robot movement. These nonverbal communication interactive skills can 

enable the robot to co-operate with humans at work places and at home, especially with a 

reference to physical work. 
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Chapter 2.  Measurement of Gait Parameters 

 

2.1. Introduction 

Gait analysis can inform us of the number of steps, travel trajectory, and calorie 

consumption. In everyday life, gait is a key feature in monitoring health. Gait speed is an 

important vital sign, such as blood pressure, pulse, respiration, temperature, pain, and 

heart-beat rate (Fritz and Lusardi, 2009), which is supported by the strong correlation 

between seniors’ motility and their gait speed (Studenski, Perera, Patel, Rosano, Faulkner, 

and Inzitari et al., 2011). Additionally, gait balance can contribute to the prevention of 

injuries. For instance, monitoring gait balance control can prevent seniors from fall injuries 

(Bridenbaugh and Kressig, 2011), and help to manage patients after concussion (Howell, 

Osternig, and Chou, 2015). Foot-ground contact time (CT) can be applied to the 

postoperative rehabilitation for hip replacement (Reh, Hwang, Michalke, and Effenberg, 

2016; Reh, Hwang, Schmitz, and Effenberg, 2019). The variability of gait stride time can 

aid in preventing overuse injuries of loaded and strenuous walking during military training 

(Springer, Gottlieb, and Lozin, 2016). These evidences support that a number of gait 

parameters play an important role in the prevention of injuries and the management of 

health status.  

Today, smartphones, wearable devices or internet of things (IoT) systems can 

provide gait monitoring system in global market (Brajdic, and Harle, 2013; Yamada, 

Aoyama, Mori, Nishiguchi, Okamoto, and Ito et al., 2012; Atallah, Aziz, Lo, and Yang, 

2009; Majumder, Saxena, and Ahamed, 2016). The gait monitoring systems can predict 

one’s fall (Majumder et al., 2016) and recognize a pathologic gait (Yamada et al., 2012; 

Atallah et al., 2009). A key issue is that most of the wearable devices fail to maintain long-

term engagement for consumers because of less connection to one’s behaviors and habits 

(Ledger and McCaffrey, 2014). Nevertheless, pedometers are still investigated to enhance 

the sustainability of impact on the elderly (Harris, Kerry, Victor, Ekelund, Woodcock, and 

Iliffe et al., 2015) and on the young (Inchley, Cuthbert, and Grimes, 2007; Rye, Zizzi, 

Vitullo, and Tompkins, 2005). Pedometers are appropriate for interventions that encourage 



 

25 

participants walk more because they measure habitual activity and provides daily 

motivations (Harris et al., 2015, Inchley et al., 2007; Rye et al., 2005). Furthermore, 

wireless earbuds with IMUs, which can support walking detection, are already penetrated 

to the mass market of health monitoring device (Hunn, 2016). When well-known and 

widely-used products (e.g., earbuds) serve as human health monitoring systems, the users 

can feel a seamless experience in everyday life due to their friendliness. The simple IMU-

based solutions can be combined with cameras, navigation applications, smart insoles and 

force plates, providing gait and health information with high quality and quantity. 

This chapter demonstrates that the H-IMU has the ability to provide more gait 

parameters than the pedometer. The proposed system of gait analysis works in a wireless 

communication setting and in real-time. The system can provide temporal detection of the 

heel strike (HS) and the toe off (TO). Mid-stance phase can be also estimated. Based on 

the gait events, spatiotemporal gait parameters are measured, such as the stride length, step 

time, foot-ground contact time (CT) and contact time ratio (CTR). To demonstrate the 

applicability of everyday life settings, the experiment was performed outdoors. In the 

following section, the related work is described. In the third section, biomechanical 

terminologies and the name of events are explained during a gait cycle. The detection 

methods of the gait events are described in the fourth section, followed by the computation 

method of gait parameters in the fifth section. The sixth section deals with the results, the 

limitations and contributions is discussed in the seventh, and finally the conclusion follows. 

 

2.2. Related Work 

2.2.1. Measurement of Human Movement 

Thousand years ago, Aristotle (384–322 BCE) reported anatomical theory of 

animals and humans, including human gait. Although most of the parts were proven as 

false later, the particular observation of the movement was proven as a truth, which is the 

first written reference of the assessment of human movement. In the nineteenth-century, 

measurement of human movement was developed with electrophysiology. For gait analysis, 

pressure sensors were used for the localization and force analysis of the feet (Nilsson, 



 

26 

Stokes, Thorstensson, 1985). Electromyography (EMG) is also used to analyze muscle 

kinetics (Muro-De-La-Herran, Garcia-Zapirain, and Mendez-Zorrilla, 2014). In addition, 

photography contributes to the measurement of human kinematics, being developed to 

video analysis technology (Davis, Ounpuu, Tyburski, and Gage, 1991). In film industry, 3 

dimensional (3-D) motion capture technology was developed for 3-D animation or science 

fiction (Sci-Fi) movies. This technology was adopted for study on human movement, gait 

analysis (Pfister, West, Bronner, and Noah, 2014) and rehabilitation (Brock, Schmitz, 

Baumann, and Effenberg, 2012; Schmitz, Kroeger, and Effenberg, 2014).  

 

2.2.2. Motion Capture System 

Motion capture is used to record human movement normally in 3-D space. Motion 

capture has been developed for different uses in film making, gaming, and clinical training. 

Motion capture systems are mainly divided into two types: optical and non-optical systems. 

Optical systems are utilized with vision technology. A combination of cameras and 

markers is the most well-known optical systems. The markers on the actor reflect the light 

emitted from the external optical source, or emit their own light. The light can be in 

different spectrum range of optical waves: visible light, infrared ray (IR) (Kirk, O'Brien, 

and Forsyth, 2005). In a certain distance from the actor, a multiple number of cameras, 

normally more than two, record the spatial position of the illuminating markers. Motion 

capture software computes the motion of the markers, and finally regenerates an avatar 

imitating the actor’s motion in 3-D space. Recently, motion capture systems are available 

even without markers, called the marker-less system. One of popular applications is using 

dual vision technology which provides image with depth information with only two 

cameras; however, it fails to regenerate virtual characters in full 3-D space. The simplicity 

is, nevertheless, beloved in robotics, gaming industry and a number of human movement 

research (Moeslund, Hilton, and Krüger, 2006; Wandt, Ackermann, and Rosenhahn, 2016; 

Wandt and Rosenhahn, 2019). On the other hand, straightness of light results in hidden 

places. Cameras can fail to recognize makers hidden by parts of human body, which should 

be compensated for high quality 3-D animation (Silaghi, Plänkers, Boulic, Fua, and 
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Thalmann, 1998). A multiple number of cameras causes high cost, and the actors 

movement is restricted to the stage where the cameras’ angles are reached. Marker-less 

system can reduce cost but its accuracy depends on ambient light.   

Development of sensor technology allows non-optical motion capture systems. 

Mechanical sensor systems and magnetic marker systems were developed earlier and 

contributed to the study of human movement. Mechanical sensor systems measure banding 

angles of wires associated to the joints. Disadvantage of mechanical systems is the 

limitation of human motion because of the dynamic range of wires and apparatus. Magnetic 

marker systems utilized the level of adjacent magnetic field of the actor. This system is, 

however, vulnerable to magnetic distortion that stems from metal or electromagnetic 

devices. With development of microelectromechanical systems (MEMS), IMU was 

invented (Brodie, Walmsley, and Page, 2008), which is used in motion capture. The inertial 

sensors provide linear acceleration or angular velocity, regenerating kinematic parameters 

using integration or derivation. For instance, the global and relative positions of the body 

segments are estimated from double integration of acceleration. Joint angles are also 

computed from integration of the rate of turn. Integration of inertial sensor data, however, 

causes error accumulation (dead reckoning effect), which causes drift effect. 

The IMU has recently been developed to compensate for the previous disadvantage, 

such as the drift effect. Cutting edge MEMS technology improves signal to noise ratio 

(SNR) itself. Sensor fusion technology supports the compensation for accumulated errors. 

Magnetometer (Rios and White, 2002), global positioning system (GPS) (Hellmers, 

Norrdine, Blankenbach, and Eichhorn, 2013), or camera (Hesch et al., 2014) is combined 

with inertial sensors (accelerometers, gyroscopes) and reduce drift effects. Unlike with 

optical systems, in addition, motion capture with an IMU system is free from fixed 

reference frames such as fixed stages and cameras, thereby supporting the kinematic 

measurement of human movement not only indoors (Hwang, Reh, Effenberg, and Blume, 

2016), but also outdoors (Brodie et al., 2008, Hwang el al., 2018b). Motion capture 

technology based on IMU has been quickly matured and commercialized, which is suitable 

for this study because of the accuracy, and the freedom from the spatial limitation.  
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2.2.3. Reduced Number of Sensors and Sensor Placement 

 Inertial measurement units are easily found in daily life because of the spread of 

smartphones and wearable devices. Consumers can download navigation and health 

monitoring applications. Accuracy and precision of positioning and movement tracking 

functions are improved with map applications. A pedometer function provides the number 

of steps, which leads to estimating the amount of daily activity and calorie consumption. 

With smart devices, remarkable reduction in the number of sensors is shown in gait analysis 

applications. Research on gait analysis is typically conducted with integrated sensor insoles 

of shoes or with both the camera-marker-based and sensor-based motion capture systems 

by being fixed onto the pelvis, thigh, tibia, and foot (Rueterbories, Spaich, Larsen, and 

Andersen, 2010). Lower limb joint angles and foot orientation are normally analyzed. 

Regarding a real time solution, IMU can be used with pressure sensors on the feet or ground 

that directly provides information about foot places and force during walk. These settings 

with additional sensors and wired devices are usable only within laboratory conditions, but 

not in daily life settings. Therefore, simple solutions with an IMU in mobile application 

have been developed. Advanced gait analysis with mobile applications can recognize 

pathologic gait from healthy gait and distinguish run and walk. The IMU embedded in a 

smartphone can detect the number of steps, when placed in a hand, a handback, a backpack, 

and trouser pockets (Brajdic, and Harle, 2013), which demonstrates the simplicity of a 

single sensor solution and the independency from the measurement location. 

 

2.2.4. Previous Work Using a Head-Worn Sensor 

A head-worn IMU has been researched regarding head stabilization during walking 

(Cromwell and Wellmon, 2001; Kavanagh, Morrison, and Barrett, 2005; Kavanagh et al., 

2006). Head acceleration was analyzed to measure a coordination of the neck and the truck 

in 3-D space (Cromwell and Wellmon, 2001), which found reliably regular patterns in head 

acceleration during walking. Although head acceleration is affected by the stabilizing 

effect of the trunk and neck (Cromwell and Wellmon, 2001; Kavanagh et al., 2005; 

Kavanagh et al., 2006), it still contains information of gait events, which allows the head 
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acceleration to support gait pattern analysis (Hirasaki, Kubo, Nozawa, Matano, and 

Matsunaga, 1993). A wireless ear-worn sensor was reported in the study on gait pattern 

analysis, which also recognizes whether gait patterns are pathologic or not (Atallah et al., 

2009). In another study, the ear-worn sensor can detect heel strike and toe off. Data sets of 

gait cycle are compared to classifying gait events by using singular spectrum analysis (SSA) 

and longest common subsequence (LCSS). These methods intrinsically require a several 

number of gait cycle delay because it needs to compare with kinematic data in previous 

gait cycles. Nevertheless, at least heel strike could be detected in real time by monitoring 

certain dominant oscillations of the signal (Jarchi, Wong, Kwasnicki, Heller, Tew, and 

Yang, 2014). Finally, with an advanced peak detection algorithm, it has been reported that 

a head worn IMU can detect heel strike and toe off in real time with minimal delays (Hwang 

et al., 2018b). This real time TO detection algorithm has been first reported, thereby 

allowing the real time measurement of more gait parameters, such as contact time (CT) and 

contact time ratio (CTR). 

 

2.3. Gait Events in Gait Cycle 

Gait events were detected by head worn IMU (H-IMU). For better understanding, 

terminology of gait analysis is introduced. A gait cycle is a repetitive sequence of specific 

events during walking. The gait cycle is mainly divided into two phases (stance phase, 

swing phase) by two gait events (heel strike (HS), toe off (TO)). The stance phase is a 

period after the heel strikes the ground before the toe gets off. During the stance phase, a 

leg supports the upper body and applies forces for locomotion. Swing phase is the other 

period when a foot swings in the air moving forward after the toe gets off the ground. The 

swing phase starts at TO and ends at HS, whereas the stance phase starts at HS and ends at 

TO. Other spatiotemporal gait parameters are defined by the time points of two gait events. 

A gait cycle is illustrated in Figure 2.1 with exemplary gait motions and the time diagram. 

The gait motions are depicted in the right side view, being projected on the sagittal plane. 

The time points of gait events, the period of gait phases, and gait parameters are described 

in Figure 2.1. The gait cycle in Figure 2.1 starts at the time point of a right HS, which is  
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the start of the right stance phase. Directly after the first right HS, the right foot flat comes, 

which means the whole foot from heel to toe lies on the ground. Then a left TO follows, 

terminating the left stance phase, and initiating the left swing phase. This   is the beginning 

of the mid-stance phase for the right foot, which includes the mid- and terminal swing 

phase for the left foot. When right heel gets off the ground, the terminal stance phase of 

right foot starts. The left HS follows and the left stance phase starts. Before the right TO, 

both legs support the body, which is defined as a double support phase. The time period 

between a right HS and the next left HS is a left step time. At the left HS, a right step starts 

with the same sequence as described before, but with the contralateral foot. At the right 

TO, the right stance phase is finished. The stance phase is from an HS of one foot to the 

next TO of the same foot, also called the foot-ground contact time (CT) which corresponds 

to the sum of a step time and the following double support time. The CT also depends on 

the gait velocity, but the ground contact time ratio (CTR), defined as a ratio of the CT to 

the stride time, is approximately 60%. For the left foot, foot flat follows, heel off appears 

at the end of the left stance phase, and at the followed right HS a gait cycle is finished. The 

right step time is defined between a left HS and the next right HS. The period from an HS 

of one foot to the next HS of the same foot is a stride time. This gait cycle is continuously 

repeated during walking. 

 

2.4. Methodology of Gait Event Detection Using H-IMU 

2.4.1. System Overview 

A single H-IMU facilitates gait analysis with a peak detection algorithm. Peak 

detection is applicable to gait analysis, when IMU modules are attached on various body 

parts, such as the feet, tibia, thigh, hip, and pelvis (Yamada et al., 2012). In smartphone 

applications as a single IMU solution, a peak detection showed the highest accuracy in step 

counting (Brajdic and Harle, 2013). The peak detection is, furthermore, given with a high 

reliability for different smartphone placement such as being held in hand, placed in the 

pockets, and even located in the handbag and the backpack (Brajdic and Harle, 2013).  
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(a) 

 

 

 

(b) 

 

Figure 2.2. Comparison of two peak detection algorithms: (a) the windowed peak detection 

(WPD) which analyzes every 1 step time (optimally 700 ms), and (b) the proposed peak 

detection which analyzes every frame (16.7 ms at 60 Hz).  
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Table 2.1. Comparison of Single IMU Methods for Gait Analysis 

Comparison 
H-IMU 

(XSENS; head) 
E-AR  Smartphones 

Reference Hwang et al. 2018b Jarchi et al. 2014 Brajdic et al. 2013 

Number 1 1 1 

Type IMU Accelerometers IMU 

Degree of freedom 9 3 9 

Update rate at 

sensor output (Hz) 
60 100 60 

Place The head The head Various 

Algorithm 
aRLF, aPD & 

thresholding 
aSSA, aLCSS & aPD aWPD 

Delay 

HS 
Real time 

(30 ms + be1) 
Real time 

1 gait cycle 

(optimally 0.7 s) 

TO 
Real time 

(30 ms + be2) 

N-gait cycle 

(> 0.7 s) 
- 

a: RLF= Real time low pass filter; PD= Peak detection; SSA= Singular spectrum analysis; LCSS= Longest common subsequence; 
WPD= Windowed peak detection. 

b: e1, e2 = temporal errors (10–55 ms); in section 2.6.3, it was calculated between data from foot worn IMUs and the H-IMU. 

 

The proposed H-IMU system should be supported by several error canceling 

technologies which are applied in IMU-based motion capture systems or smart devices. 

For instance, with sensor fusion technology, accurate kinematic data can be generated by 

reducing error accumulation resulted from integration. The gravity and earth rotating 

velocity are eliminated from measured data due to the rotation matrix, which results in pure 

motion data. Various types of Kalman filters play an important role in combining two or 

more sensors and reducing offset and white noise for more accurate results in sensor 

positioning systems. Different kinds of FIR filters are also applied to reduce different kinds 

of noise. Nevertheless, unwanted peaks are detected during walking because of movements 

of the walkers such as head shakes, nods, and direction changes.  

Windowed peak detection (WPD) can be one of the solutions to handle unwanted 

actions. In a study of step counting (Brajdic and Harle, 2013; see also Figure 2.2(a)) using 

a smartphone with an IMU placed in the hand, handbag, backpack, and pockets of trousers 
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during different activities, the WPD demonstrated the most accurate results, compared to 

other methods on time domain (Mean Crossings Counts, MCC; Normalized 

Autocorrelation Step Counting, NASC), on frequency domain (Short Term Fourier 

Transform, STFT; Continuous/Discrete Wavelet Transform, CWT/DWT), and of feature 

clustering (Hidden Markov Models, HMMs; K-Means Clustering, KMC). In WPD, the 

highest peak is detected even though other activities occur in a period of window size 

(walkers’ average step time, optimally 700 ms). This window size, however, becomes the 

time delay of the step counting, which is problematic for real time solutions because a step 

is detected at the next step, and also it takes time to measure the average step time in the 

beginning of the step counting. Therefore, in this dissertation, a peak detection algorithm 

is used with real time low-pass filter (RLF) for the real time solutions. The system diagram 

is shown in Figure 2.2(b). The algorithm detects peaks on vertical head acceleration (z-

axis; see Figure 2.3) to recognize the influence of the foot on the head. The impacts are 

transmitted from the foot along the longitudinal body axis, some of which are regarded as 

HS or TO. Table 2.1 shows the comparison between H-IMU system, E-AR (Jarchi et al. 

2014), and smartphone methods (Barjdic and Harle 2013). In a comparison of systems, H-

IMU has a delay at 30 ms, resulted from the XSENS MVN system. Temporal errors (e1 

and e2) are added on it because the detection results of H-IMU is temporally different from 

the ground truth. In the section 2.6.3, the temporal errors are calculated between results 

from foot worn IMUs and the H-IMU. For E-AR, most of the gait parameters take several 

gait-cycle time, except for HS which is detected in real time and delay is not reported by 

Jarchi et al. Various methods with smartphones are tested and WPD is reported as the most 

optimal solution in terms of simplicity and accuracy, which needs 1 gait cycle (optimally 

700 ms). So far, TO detection with WPD was not reported in the research literature.  

 

2.4.2. Peak Detection 

A peak in sensor signals is detected from the comparison between differential 

values near the sample of interest. When two signs of differential values before and after 

the sample are different, the sample is the peak. Sensor signals, however, include many 
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positive or negative peaks, which might be the signals of interest or noise. To eliminate 

unwanted peaks or noise, the signals are filtered and windowed as shown in Figure 2.2(a) 

(Brajdic and Harle, 2013). For the gait event detection in this dissertation, peaks of interest 

were distinguished by using peak detection with real time low-pass filter (RLF) and 

thresholding algorithm. Whereas the WPD (Figure 2.2(a)) detects several peaks and 

recognizes an HS with the highest peak in a window (around 700 ms), the RLF (Figure 

2.2(b)) detects one high peak after smoothing all other small peaks in smaller temporal 

window (16 samples, 267 ms at 60 fps). As a random signal processing, RLF runs at every 

frame. The details of the operation will be explained in the next subsections. In this 

subsection, the peak detection on the head accelerometer is explained and the comparison 

with acceleration data in other body parts are described.   

Vertical head accelerations (z-axis) of four body parts are depicted in Figure 2.3, 

which are measured by an IMU-based motion capture system, named XSENS MVN 

system. From the top, the four graphs are arranged in order for the left foot, right foot, 

pelvis, and head. These four body parts provide different evidence of gait event detection 

at HS and TO. In the first and the second graph for the feet acceleration shown in Figure 

2.3, the highest peak appears at HS. During a stance phase, the acceleration keeps stable 

without oscillation, and then several peaks occur again before TO. The last negative peak 

before a dramatic acceleration drop is the time point at TO. In this dissertation, data from 

foot-worn IMU were regarded as reference because feet are the nearest to detect the impact 

between the foot and ground, and foot-worn IMU-based methods were used and validated 

by previous studies (Reh et al., 2019; Bailey and Harle, 2015; Mariani, Hoskovec, Rochat, 

Büla, Penders, and Aminian, 2010). In the third graph for the acceleration of the pelvis, 

normally several large positive peaks appear, which can cause confusion to detect the peak 

for the HS. Near HS, double peaks can appear. In this case, the center of mass is gradually 

higher until the terminal swing phase, and goes lower at HS, which forces the pelvis down 

as well. After HS, the grounded leg supports the trunk, which forces the pelvis to shift up 

again, which was observed in this study when walkers had a long step length or a fast step 

time. On the other hand, a single peak can also appear at HS. In this case, the acceleration  
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Figure 2.3. Vertical acceleration of body segments of the left foot, right foot, pelvis and 

head which are measured by an XSENS MVN system at 60 Hz. 
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stops increasing or a small negative peak appears at HS, and then pelvis moves up, which 

appears on the pelvis acceleration one or two frames later than HS. The HS detection based 

on the pelvis acceleration is, as a result, difficult because the two cases are varied 

depending on the individual physical condition and the gait styles. When it comes to a TO, 

another large peak appears, following a large negative peak at the TO. The negative peak 

appears because the knee bends to generate the propulsion force, during which the pelvis 

position is down just before the TO. After TO, the propulsion force pushes up the pelvis 

and a high positive peak appears. With pelvis acceleration, labeling HS and TO is not 

simple because the amplitude of their peaks are similar, and thereby it is hard to define an 

optimal threshold value. In the last graph for the head acceleration, the first large peak 

appears at HS. This large peak is easier to detect because it is usually the maximum value 

in a gait cycle, so that the threshold value can be optimized easily. For the TO, a positive 

peak appearing after HS and the foot flat peak is regarded as TO. With head acceleration, 

the variation of the waveforms is smaller than the pelvis acceleration because the head is 

stabilized by the trunk and neck (Cromwell and Wellmon, 2001; Kavanagh et al., 2005; 

Kavanagh et al., 2006). 

Regarding the foot acceleration in Figure 2.3, the relatively high peaks appear at 

the moment of gait events, and the peak values are over 30 m/s2 at HS and around 10 m/s2 

at TO, which are the distinguishable level of values. At HS and TO, however, other high 

peaks appear, and could create confusion about which is the peak of interest. During the 

terminal swing phase, high peaks appear, which negatively affects the accuracy in detecting 

gait events. Moreover, at least two IMUs are needed to detect two feet’s gait events, which 

can be a disadvantage, compared to a single IMU on the head or the pelvis that can detect 

two feet’s gait events as shown in Figure 2.3. Concerning peak detection for gait event 

recognition, head acceleration has a higher accuracy than the pelvic acceleration (Hwang 

et al. 2018b) because head acceleration shows less double peaks compared to pelvic 

acceleration, which is less confusing in detecting HS and TO. Although the pelvis is 

localized closer to the foot, the head peak acceleration is temporally the same or closer to 

that of the foot, compared to the pelvis peak acceleration as shown in Figure 2.3. 
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Figure 2.4. A block diagram of the general digital filter, where x[n] and y[n] are the input 

and output signal, respectively. As integer numbers, N and M are the filter orders. The 

values, ai and bj, are the impulse response for i-th and j-th components.  

 

2.4.3. Digital Filters 

As a positioning system, IMU-based systems need to reduce noise and estimate the 

accurate position. These systems implement two types of digital filters: a finite impulse 

response (FIR) (Bialkowski, 1988a) and an infinite impulse response (IIR) filter 

(Bialkowski, 1988b). An FIR filter responds to the recent finite length input, whereas an 

IIR filter indefinitely responds to the input, utilizing feedback loops. Figure 2.4 

demonstrates the block diagram of the general digital filter (Oppenheim, Buck, and Schafer, 

2001). The output signal is computed as below: 

 

𝑋 =∑𝑎𝑖𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

, 𝑌 = ⁡∑𝑏𝑗𝑦[𝑛 − 𝑗]

𝑀

𝑗=1

. 

𝑦[𝑛] = 𝑋 + 𝑌 =⁡∑𝑎𝑖𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

+⁡∑𝑏𝑗𝑦[𝑛 − 𝑗]

𝑀

𝑗=1

 

(2.1) 

where X is the weighted sum of the current and past input values and Y is the weighted 

sum of the past output values. Output signal, y[n], is sum of X and Y. The integer numbers, 

N and M, are the order of the filter for intermediate results, X and Y, respectively. For the 
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coefficients, ai is the impulse response of an i-th component of the resulting X, whereas bj 

is the j-th component of the resulting Y. If only X exists, it is an FIR filter because the 

output, y[n], results from the finite number of past input signals. With FIR filters, the output 

is inherently stable, and has no phase shift due to the linear phase property, which is 

suitable for phase-sensitive applications. In the case of an IIR filter, y[n] includes sum of 

the past output signals, Y. As Y includes a series of input signals, y[n] is finally a result of 

the infinite series of input signals. Due to the feedback structure, the IIR filter is sometimes 

unstable, but it has a higher efficiency than FIR filters for the same results. 

In this dissertation, the RLF was designed based on an FIR filter, which takes 16 

samples at every frame. In (2.1), N is 15, so that the range of n is from 0 to 15 (16 samples), 

and the feedback result Y is 0 because it is an FIR filter. The number of samples was 

decided to correspond to about half of a step time for optimization. 

As the proposed H-IMU uses the sensor output data of an IMU-based motion 

capture system (Xsens MVN BioMech System), the input data of RLF are already filtered 

by the motion capture system including Kalman filters, which are one well-known type of 

IIR filters. These filters use statistical information of input signals, which is desirable when 

uncertainty exists in measurements, even in non-linear systems, thereby reducing the drift 

effect and statistical noise in measurements (e.g., white noise). The Kalman filters are 

designed with a system modeling based on state equations expressing a set of differential 

equations, which is suitable for positioning systems because of the relationships of 

acceleration, velocity, and displacement. Various Kalman filters have been developed and 

used to navigate and to control the movement of aircrafts, watercrafts, and automobiles. 

As shown in Figure 2.5(a), the output of the IMU sensor module is the input data 

of RLF. For the 3-D rendering animation of the motion capture system, the frame update 

rate is 60 Hz, which is the update rate of RLF input data. The convolution of the RLF input 

signal and the impulse response of a low pass filter is computed in the frequency domain. 

By using fast Fourier transform (FFT), the convolution is computed as a multiplication of 

X[nfr][k] and H[nfr][k], and the inverse fast Fourier transform (IFFT) results in y[nfr] [ns] 

(Figure 2.5(b)). The method using FFT and IFFT can reduce the computational complexity 



 

40 

of the convolution from O (Ns
2) to O (Ns log Ns), thereby reducing the load of processors 

(Ns: the number of samples of RLF input). Despite the small number of samples, it is 

important because the filter has to be computed at every frame in the limited frame time 

(e.g., in 16.7 ms at 60 Hz). 

The RLF runs when the 3-D rendering frame is updated at 60 Hz. At every frame, 

16 samples (x[nfr][ns]; ns = 0–15) of the latest input (Figure 2.6(b)) result in 16 samples of 

output (y[nfr][ns]; Figure 2.6(c)). To be specific, Figure 2.6(a) shows the head z-

acceleration at frames nfr = 35–80. At frame 56 (nfr = 56), acceleration data, a[41] – a[56], 

are taken as input data of RLF (x[56][ns]; ns = 0–15) as shown in Figure 2.6(b). For the 

next step, after RLF, the output has 16 samples (y[56][ns]; ns = 0–15) as the results of the 

circular convolution (x[56][ns] * h[56][ns]). The low pass filter eliminates small peaks as 

shown in Figure 2.6(c). Figure 2.7 shows the increasing amplitude of the output signals, 

when the frame is closer to HS. When the peak is higher than the threshold, the frame 

number nfr = 54 is timestamped as an HS. Although the head peak appears at Frame 55, 

HS is detected at Frame 54 because threshold value is lowered considering the foot-head 

delay at HS.  

 

 

(a) 

 

 

(b) 

Figure 2.5. Block diagram of (a) the overall system with an IMU sensor module, and (b) 

the real time low pass filter at one frame (x[nfr][ns]; ns = 0–15), which implements FFT and 

IFFT with 16 samples. 
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(a) 

 

(b) 

 

(c) 

Figure 2.6. Head vertical acceleration, a[nfr], is shown with (a) 46 frames (nfr = 35–80) 

near an HS and depicted with the filtering area at Frame 56 (nfr = 41–56; frame rate: 60 

Hz). With the 16 samples, (b) the input of the real time low pass filter (RLF), x[56][ns], 

and (c) the output of RLF, y[56][ns], are depicted where ns = 0–15. 
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2.4.4. Thresholding 

In data processing, thresholding is usually used to eliminate unwanted data. A 

threshold value can be decided to determine whether the signal is of interest or not. In the 

proposed H-IMU system, thresholding was implemented after RLF to recognize the peak 

at HS. In Figure 2.7, a growing peak is depicted over time, and it crosses the threshold 

value at frame nfr = 54, which is one frame earlier than the peak of the head acceleration 

(nfr = 55; see Figure 2.6(a)); however, it is controllable to report a HS at the same frame of 

the peak of foot acceleration (nfr = 54; see Figure 2.3). The level of threshold values can 

also be altered depending on gait speed because faster gait speed might result in higher 

overall acceleration including both meaningful and noisy peaks. It is more effective to 

apply a thresholding method using the head acceleration than both the foot and pelvis. This 

is because outstanding peaks on head acceleration appear only at HS, whereas several high 

peaks on foot and pelvis acceleration appear, causing a confusion in detecting the HS 

exactly (see Figure 2.3). Therefore, threshold values can be easily found with head 

acceleration, which can minimize the confusion and improve accuracy in detecting HS. 

 

Figure 2.7. Waveforms of the head acceleration after real time low pass filter (RLF) 

between frames nfr = 51–56, demonstrating that the peak is over the threshold value (2.0 

m/s2) at frame nfr = 54. 
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2.5. Gait Parameters with H-IMU 

Gait parameters include spatial and temporal (also called spatiotemporal) gait 

parameters, angles of joints, and pressure of the foot. As a simple solution, a single H-IMU 

can provide spatiotemporal gait parameters, such as stride length, stride time, cadence, 

velocity, and CT. These parameters can be computed by a certain period between gait 

events (HS or TO). Time accuracy of gait event detection is, therefore, strongly related to 

the accuracy of the gait parameters. The exact time point of HS can provide step time, 

stride time, and the number of steps. Foot-ground contact time needs also the time point of 

TO. Spatial gait parameters can be calculated by displacement of the head at HS and TO. 

 

2.5.1. Temporal Gait Parameters 

Temporal gait parameters are related to the gait velocity (m/s) and the cadence 

(steps/min). Step time and stride time are also temporal gait parameters. These parameters 

are obtained by the timing of gait events. The H-IMU can detect the time point of two gait 

events, such as HS and TO, which can provide temporal gait parameters. 

First of all, head vertical acceleration is collected from the IMU sensor module to 

detect the impact at HS as shown in Figure 2.5. A real time low pass filter is applied to the 

head acceleration. Peak detection and thresholding are implemented to recognize HS. In 

Figure 2.3, head’s peak acceleration at HS has one frame delay (16.7 ms at 60 Hz), 

compared to foot’s peak acceleration, which is the transmission time of the impact from 

the foot to the head at HS.  

Secondly, a reliable TO detection is needed for computation of temporal gait 

parameters because it divides the stance phase (foot-ground contact time) and swing phase. 

As no previous research has investigated the use of IMU for real time TO detection, this 

dissertation provides new insights into the real time TO detection using H-IMU, which is 

related to the propulsion motion of gait. After HS peak, named Peak 1, other peaks appear 

when a foot is getting off the ground because the propulsion force pushes the body to move 

forward. The propulsion motion results from movements of joints: the ankles, 

metatarsophalangeal joints of toes, knees, and hips as shown in Figure 2.8. The angular 
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movements of the joints push the body forward and upward. Right after HS peak, three 

peaks appear on the vertical head acceleration at the foot flat (Peak 2), toe off (Peak 3), and 

the beginning of the stance phase (Peak 4; see Figure 2.8 and 2.9). At Peak 2, while one 

foot (the right foot in Figure 2.8) makes the foot flat, the ankle of the contralateral foot (the 

left foot in Figure 2.8) mainly makes plantarflexion, pushing down on the ground. This 

propulsion force moves up the heel, and pushes the body and head forward and upward. At 

Peak 3, plantarflexions of the left toes are made, where the toes push the ground backward 

and downward, and the reaction force pushes the body and head forward and upward again, 

which helps the mass of the body move forward. At Peak 4, finally, extensions of the right 

knee and hip are made to move the mass of the body forward over the right leg, pushing 

the body and head, which also causes the outstanding peak on the pelvic acceleration as 

shown in Figure 2.3. However, it is harder to identify the TO peak with the same method 

as an HS peak because the amplitude of the three peaks after HS are similar. For detection 

of TO, therefore, the number of peaks is counted as shown in Figure 2.9. The peak at HS 

is labeled as the first peak, the foot flat as the second peak, the TO as the third peak, and 

the knee extension as the fourth peak. In TO detection, this algorithm deals with other two  

 

       

 (a) (b) (c) 

Figure 2.8. The sequence of propulsion motions during walking, which causes head vertical 

acceleration peaks (a) at foot flat (Peak 2), (b) toe off (Peak 3), and (c) the beginning of the 

stance phase (Peak 4).  
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Figure 2.9. Acceleration of the right foot and the head (frames nfr = 50–69) and peak count 

data with before and after real-time low-pass filter (RLF). After HS detection, Peak 3 is 

labeled as TO. The velocity of the head is also depicted as another evidence for TO 

detection, which can prevent skipping TO detection.  
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different cases. First, one more peak can appear between the foot flat and TO, which 

normally happens in the five frames (83.3 ms) after HS. The additional peak is ignored, 

and the next one is recognized as a TO. Second, when the TO peak does not appear at right 

timing, the head velocity is analyzed as other evidence of TO. The negative peak of head 

velocity is monitored, as the time point when the head starts to move upward after the foot 

pushes off the ground, which prevents skipping and delaying TO detection. This algorithm 

detecting HS and TO is finally implemented with an analysis software. The pseudo code 

of the algorithm is described below (Hwang, Reh, Effenberg, and Blume, 2019b): 
 

 

Algorithm Gait_analysis_using_a_head_worn_IMU is 
 

    input: z-axis acceleration at 60 Hz (a[nfr][ns]): acc[16] 

                 z-axis velocity at 60 Hz : vel[3] 

                 FILTER = 1100 0000 0000 0011                             /* 0 to 15/16 * 2π rad  */  

 

    while true: 

        acc = get acceleration data array (ns: 0 to 15) at a frame (nfs) 

        acc_fft = Fast Fourier Transform of acc 

        acc_fft_filtered = acc_fft * FILTER                     /* real and imaginary numbers */ 

        acc_filtered = Inverse Fast Fourier transform of acc_fft_filtered 

        call function heel_strike_finder(acc_filtered.Real)      /* only real numbers */ 

        call function toe_off_finder(acc, vel) 

 

function heel_strike_finder(acc_filtered) 

    if a positive peak of acc_filtered is detected and the peak of acc_filtered >= 2 

            and peak_counter_after_RLF is 0, 

        step_counter = step_counter + 1 

        print step_counter 

        peak_counter_after_RLF = 1 

        peak_counter_before_RLF = 0 

        print timestamp for heel strike 

    else if (a positive peak of acc_filtered is not detected 

            or the peak of acc_filtered < 2) and peak_counter_after_RLF is 1, 

        peak_counter_after_RLF = 0 
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function toe_off_finder(acc, vel) 

    if a positive peak of acc is detected, 

        peak_counter_before_RLF = peak_counter_before_RLF + 1 

        if peak counter_before_RLF is 3,  

            print timestamp for toe off 

    else if peak counter_before_RLF >= 2 and a negative peak of vel is detected, 

        print timestamp for toe off 
 

In this algorithm, the filter in the frequency domain, FILTER, is 1100 0000 0000 0011. 

The first coefficient, FILTER[0], corresponds to the mean value of the input signal. 

Although FILTER is asymmetric, it yields the same results as a symmetric filter (e.g., [1, 

1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 1]) because a convolution with FFT and IFFT is 

computed as a circular convolution. In other words, the filtering results in frequency 

domain are treated as a periodic function, so that negative and positive frequency 

components are added up. These filtered signals are used for HS detection, whereas TO 

detection uses the raw signals before filtering as shown in Figure 2.9. 

Accurate temporal parameters are computed by accurate time points of gait events. 

The stance phase is defined from an HS of a foot to the next TO of the same foot, whereas 

the swing phase is from a TO of a foot to the next HS of the same foot again. The step time 

is defined from an HS of one foot to the following HS of the opposite foot. A stride time 

can be calculated from an HS of one foot to the following HS of the same foot. The cadence 

is obtained when counted step numbers which are identical to the number of HSs is divided 

by walking time in minute. The walking time is easily measured by a timer embedded in 

an IMU system. 

 

2.5.2. Spatial Gait Parameters 

Spatial gait parameters are related to the distance and position, such as step length 

(SL) and stride length. An IMU can estimate the displacement in 3-D space, which can 

generate a global and relative position of the body segments during walking. Related to the 

gait events, the gait parameters are obtained as shown in Figure 2.10. The step length and 

stride length are typically computed as a distance between foot prints. In Figure 2.10(a), 
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the sequence of steps is projected to the sagittal plane, and the distance is calculated 

between the HS positions of one foot and the other foot along with the walking vector (Vd). 

Although H-IMU provides head position instead of foot position, it can compute the 

average step length that is obtained when the walking distance is divided by the number of 

steps. Each step length is not correctly obtained by H-IMU; however, the average distance 

between two head positions at HS would be similar to the distance between heel positions, 

which is called pseudo step length (PSL; Hwang et al., 2018b) in this dissertation. The head 

is located between two feet, which divides the step length into two parts: SLn.a and SLn.b 

where the n-th step length is SLn (n = 1, 2, 3, …) as shown in Figure 2.10(b) and (c). A step 

length is defined as (2.1). The PSL is defined as the summation of the second part of an SL 

(SLn.b) and the first part of the next SL (SLn+1.a) as shown in Figure 2.10 and (2.2). 

 

 𝑆𝐿𝑛 = 𝑆𝐿𝑛. 𝑎 + 𝑆𝐿𝑛. 𝑏. (2.1) 

 𝑃𝑆𝐿𝑛 = 𝑆𝐿𝑛. 𝑏 + 𝑆𝐿𝑛+1. 𝑎. (2.2) 

 

Between the SL and PSL, an error should occur, which can be found from the differences 

of the average of SL and PSL as below:  

 

𝐸[𝑆𝐿] =
1

𝑁
∑𝑆𝐿𝑘

𝑁

𝑘=1

 

=
1

𝑁
(𝑆𝐿1. 𝑎 + 𝑆𝐿1. 𝑏 + 𝑆𝐿2. 𝑎+⋯+ 𝑆𝐿𝑁−1. 𝑏 + 𝑆𝐿𝑁 . 𝑎 + 𝑆𝐿𝑁 . 𝑏) 

=
1

𝑁
(𝑆𝐿1. 𝑎 + ∑ 𝑃𝑆𝐿𝑘 + 𝑆𝐿𝑁 . 𝑏

𝑁−1

𝑘=1

) 

=
1

𝑁 − 1
∑ 𝑃𝑆𝐿𝑘

𝑁−1

𝑘=1

+
1

𝑁
(𝑆𝐿1. 𝑎 + 𝑆𝐿𝑁 . 𝑏 −

1

𝑁 − 1
∑ 𝑃𝑆𝐿𝑘

𝑁−1

𝑘=1

) 

= 𝐸[𝑃𝑆𝐿] +⁡
1

𝑁
{(𝑆𝐿1. 𝑎 + 𝑆𝐿𝑁 . 𝑏) − 𝐸[𝑃𝑆𝐿]} 

= 𝐸[𝑃𝑆𝐿] + 𝜀𝑃 

(2.3) 
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where E[*] is the expectation of * that computes the average value, N is the number of 

steps, and εP is the difference between E[SL] and E[PSL]. As N increases, εP decreases, 

finally reaches zero as shown (2.4). 

 𝜀𝑃 = lim
𝑁→∞

1

𝑁
{(𝑆𝐿1. 𝑎 + 𝑆𝐿𝑁 . 𝑏) − 𝐸[𝑃𝑆𝐿]} = 0. (2.4) 

Although N is not infinite, the error can be nearly zero when a user has a constant step 

length and all the first parts, SLn.a, are nearly the same. Imagine SLN+1 and PSLN exist, then  

 𝑆𝐿1. 𝑎 + 𝑆𝐿𝑁 . 𝑏 ≈ 𝑆𝐿𝑁+1. 𝑎 + 𝑆𝐿𝑁 . 𝑏 = 𝑃𝑆𝐿𝑁 ≈ 𝐸[𝑃𝑆𝐿]. (2.5) 

With regular gait, a single PSLN and E[PSL] would be similar. The εP is nearly zero because 

 𝑆𝐿1. 𝑎 + 𝑆𝐿𝑁 . 𝑏 − 𝐸[𝑃𝑆𝐿] ⁡≈ 0⁡. (2.6) 

For another approach of the step length estimation, the distance between head 

horizontal positions at every vertical peak position of the head in the mid-stance phase is 

measured as demonstrated in Figure 2.10(c), called the estimated step length (ESL) in this 

dissertation (Hwang et al., 2018b). When the leg is straight and orthogonal to the ground, 

the head vertical position has the peak value. This time point is when the head position 

would be directly above a foot position in the side view on the sagittal plane as shown in 

Figure 2.10(c). Therefore, the distance between the head horizontal positions can be used 

for the estimation of the distance between every foot position which is the SL. The equation 

below shows the relationship between the n-th step length, SLn, and the n-th estimated step 

length, ESLn (n = 1, 2, 3, …): 

 

𝑆𝐿𝑛 = 𝑤𝑓𝑜𝑜𝑡.𝑛+1 − 𝑤𝑓𝑜𝑜𝑡.𝑛 

= (𝑤ℎ𝑒𝑎𝑑.𝑛+1 − 𝜉𝑛+1) − (𝑤ℎ𝑒𝑎𝑑.𝑛 − 𝜉𝑛) 

= (𝑤ℎ𝑒𝑎𝑑.𝑛+1 − 𝑤ℎ𝑒𝑎𝑑.𝑛) + (𝜉𝑛 − 𝜉𝑛+1) = 𝐸𝑆𝐿𝑛 + 𝜀𝑛 

(2.7) 

where wfoot.n is foot position on the walking vector (Vd) at HS as shown in Figure 2.10(c), 

whead.n is head position on Vd at the mid stance, and ξn is the error between each wfoot.n and 
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whead.n. The estimation error between SLn and ESLn is εn. The average of εn can be the 

representative estimation error εE, which is expressed by the average of errors of one foot, 

E[ξ2n], and the other foot, E[ξ2n-1] as below: 

 𝜀𝐸 = 𝐸[𝜀𝑛] = 𝐸[𝜉2𝑛−1] − 𝐸[𝜉2𝑛]. (2.8) 

When an H-IMU user has symmetric gait, εE would converge to zero. Otherwise, εE is not 

zero. When one’s gait is biased a certain direction, the average error of left and right step 

lengths can be regularly different. From (2.7) and (2.8), two equations for the right and left 

step length can be defined as below: 

 

 𝑆𝐿2𝑛−1 ≈ 𝐸𝑆𝐿2𝑛−1 + 𝜀𝐸 . (2.9) 

 𝑆𝐿2𝑛 ≈ 𝐸𝑆𝐿2𝑛 − 𝜀𝐸 (2.10) 

 

where SL2n-1 is the right step length and SL2n is the left step length, which is measured by 

foot-worn IMU. The right and left step lengths estimated by head position are defined as 

ESL2n-1 and ESL2n. With difference between odd and even values of ESLn and εE, it can be 

found which is the right step or the left step. The estimated step length error, εE, also can 

be used as an indicator of symmetric gait. 

The stride length is normally defined as the distance between a foot position at an 

HS and the same foot at the next HS. For example, the measurement of the left stride length 

starts at the left HS and ends at the next left HS, which is the summation of right SL and 

left SL. The right stride length is measured in the opposite order. Twice of the average step 

length is approximately the average stride length. A stride length can be estimated by head 

position by referring to the sum of the right and left ESL.  

In terms of calculating the travel distance, two methods are utilized. The first 

method is to integrate acceleration twice, which can provide the total travel distance at 

every sample point. The second method is to sum the step lengths, which updates the travel 

distance at every HS. Between HS points, the former method records horizontal oscillation 

of head movement, whereas the latter one considers the straight distance. Although a 
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Kalman filter of the IMU (XSENS MVN System) compensated for the accumulated error 

in positioning, both methods would contain errors resulting from the unexpected head 

movement during walking. They need compensation by projecting the trajectory onto the 

walking vector. 

 

2.6. Results 

Measurement of gait was implemented using IMUs (MVN MTw) and an MVN 

Awinda station (router) for wireless communication (base frequency: 2.4 GHz), which is a 

part of the MVN Awinda system. The whole package of MVN XSENS Biomech includes 

a hardware and software solution for whole body motion capture. Seventeen wireless IMUs 

measure the whole body kinematics, such as local and global parameters of acceleration, 

velocity, position, and orientation of IMUs. Through Awinda station, data are transmitted 

to the host computer. The sensor movement data are reaching the computer after about 30 

ms, and are immediately processed by the software so that the real-time motion capture in 

3-D space can be realized with this system. With the parameters, gait analysis was 

implemented by using Python 2.7. Head kinematic data in this study refer to the head sensor 

of this motion capture system. Data update rate is 60 Hz for the analysis. Gait patterns of 

seven participants were analyzed in total; however, data of a male participant (M4) who 

walked without a pedometer was eliminated in the step counting analysis (Table 2.2). 

 

 Table 2.2. Comparison of Three Methods in Step Counting 

Participant 

(Age; year) 
Manual count 

Pedometer H-IMU 

Steps SCER (%) Steps SCER (%) 

M1 (30) 1,105 1,117 1.09 1,100 -0.45 

M2 (24) 1,866 1,851 -0.80 1,857 -0.48 

M3 (34) 1,799 1,801 0.11 1,796 -0.17 

F1 (30) 2,699 2,697 -0.07 2,697 -0.07 

F2 (35) 1,221 1,223 0.16 1,221 -0.00 

F3 (28) 1,868 1,866 -0.11 1,862 -0.32 

Total 10,558 10,555 -0.03 10,533 -0.24 

Mean absolute error (MAE) 35 0.33 25 0.24 
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2.6.1. Step Counting 

The number of HSs was counted for step counting by the H-IMU. Kinematic data 

of physiological gait patterns were collected with six participants (male: 3; female: 3; age: 

30.2 ±3.7 years; height: 174.3 ±9.0 cm). For the comparison with the H-IMU, a commercial 

pedometer fixed onto the waist was used, and steps were manually counted for ground truth. 

In this work, a trial is defined as walking a lap of the third lane of a whole 400 m track and 

another 25 m. Participants were asked to walk four trials with constant speed; however, 

some trials provided invalid data because sensors on other body parts were out of the initial 

places or dropped down, especially on the tibia or thigh, affecting head kinematic data. The 

results of step counting with manual counting, a pedometer, and an H-IMU are compared 

in Table 2.1. As the ground truth, total 10,558 steps were manually counted referring to 3-

D motion capture recordings. The pedometer and H-IMU counted 10,555 and 10,533 steps, 

respectively. The step counting error ratio (SCER; Brajdic and Harle, 2013) is calculated 

with estimated steps (cest) and manually counted ground truth (cgt) as below: 

 

𝑆𝐶𝐸𝑅⁡(%) = ⁡
𝐶𝑒𝑠𝑡 − 𝐶𝑔𝑡

𝐶𝑔𝑡
× 100⁡(%). (2.11) 

The SCER of both devices are very small, resulting in -0.33% for the pedometer and -0.24% 

for the H-IMU, where the constant error of the step counting is applied. However, SCER 

with the constant error is unable to represent the accuracy of a device because it might 

include over-counting and skip-counting. In terms of mean absolute error (MAE) for all 

participants, the SCER of the H-IMU was 0.24% (25 steps), whereas that of the pedometer 

was higher, 0.33% (35 steps). This result suggested that the H-IMU was normally more 

accurate than the pedometer in step counting. In Table 2.2, the first female participant (F1) 

walked 2,699 steps in four trials. Both pedometer and H-IMU counted 2,697 steps (-0.07% 

SCER), which is the most accurate results over all participants. In male participants, M3 

who walked 1,799 steps in three trials provided the most accurate results with both the 

pedometer (1,801 steps, 0.11% SCER) and H-IMU (1,796 steps, -0.17% SCER).  
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2.6.2. Spatiotemporal Parameters 

Table 2.2 shows temporal gait parameters of seven participants (age: 29.6 ±3.7 

years; height: 175.7 ±9.0 cm). Total 10,454 steps were analyzed for temporal gait 

parameters. Data at the beginning and the end of walking were excluded for analysis 

because of relatively low accuracy in temporal parameters, which negatively affects the 

spatial parameters. In the case of participant M1 and M3, several hundred samples were 

excluded because one of the sensors slipped down too much, and motion capture recording 

is distorted, which makes it difficult to compare it with other participants’ data. The highest 

cadence was 124.4 steps per minute, recorded with the participant M2. The shortest CT as 

579.8 ±26.4 ms has been also recorded from M2. The lowest cadence was 106.8 steps per 

minute measured on F2; however, F2 showed the longest CT as 676.6 ±33.7 ms. The range 

of participants’ cadence varied from 112.9 to 124.4 steps per minute. The highest CTR was 

60.9% (M4), whereas the lowest CTR was 60.0% (M1).  

Regarding spatial gait parameters, two estimation methods of step length were 

implemented: PSL and ESL. All participants’ average PSLs were higher than their average 

ESL, except for M1. Compared to the PSL, the ESL mostly showed large standard 

deviations. The possible explanation is that ESL contains information of differences 

between left and right step length, whereas PSL focusses on the average step length. 

For the measurement of the travel distance, participants walked along the third lane 

of the standard 400 m track. This lane allows the deviation from 415.33 m to 423.0 m 

because of the differences of the inner and outer line, according to the standard of 

international association of athletics federations (IAAF). Participants walked another 25 m 

for one trial, which means the walking distance can be 440.33–448 m for one trial, 880.66–

896 m for two, 1,320.99–1344 m for three, and 1,761.32–1,792 m for four trials. If the 

measured distance lies out of these ranges, it would indicate a measurement error, such as 

the accumulated error of IMUs. Total distance in Table 2.2 was calculated by multiplying 

the total number of steps and the ESL. Although ESLs of participant M1 and M3 were 

obtained from the part of their trials, we used the ESLs to estimate the total travel distance 

during the whole trials because they walked in constant manner. The distance error per trial 
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of F1 is in the range of the ground truth as 1.4 m, the results of M3 and F2 lie approximately 

in the range of -2.2 m and -2.3 m, respectively. Other participants show less than 20.8 m 

of the distance error per trial. 

 

2.6.3. System Validity 

The spatial and temporal analysis were respectively validated. With data from 

Table 2.3, the spatial reliability was validated. Table 2.4 describes error rates of the PSL 

(P = 6), ESL (P = 6), and distance error (P = 7). The average of the SL was calculated as 

below: 

 

𝑆𝐿 = ⁡
(𝑊𝑎𝑙𝑘𝑖𝑛𝑔⁡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

(𝑀𝑎𝑛𝑢𝑎𝑙⁡𝑐𝑜𝑢𝑛𝑡⁡𝑜𝑓⁡𝑠𝑡𝑒𝑝𝑠)
. (2.12) 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑒𝑟𝑟𝑜𝑟⁡(%) =
(𝐷𝑖𝑠𝑡𝑛𝑎𝑐𝑒⁡𝑒𝑟𝑟𝑜𝑟⁡𝑝𝑒𝑟⁡𝑡𝑟𝑖𝑎𝑙)

(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑝𝑒𝑟⁡𝑡𝑟𝑖𝑎𝑙)
. (2.13) 

 

For SL in Table 2.4, the walking distance results from the multiplication of the number of 

trials and the distance per trial (440.33 m). The number of trials and the distance error per  

 

Table 2.4. Spatial Parameters in Different Methods and Conditions 

Parameters 
SL 

Avg. 

PSL ESL Distance 

error (%) 
 

 Avg. (m)  Error (%)   Avg. (m)  Error (%)  

M1 (30) 797.0 763.7 -4.18 768.5 -3.57 -3.13 

M2 (24) 707.9 729.5 3.05 727.9 2.82 2.32 

M3 (34) 740.7 754.4 1.85 754.2 1.83 -0.50 

M4 (26) - 715.2 - 713.6 - -4.72 

F1 (30) 652.6 658.4 0.89 655.2 0.40 0.32 

F2 (35) 721.3 720.9 -0.05 717.6 -0.51 -0.52 

F3 (28) 707.2 686.6 -2.91 684.1 -3.26 -3.57 

Mean absolute percentage error (MAPE) 2.15  2.07 2.15 
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trial are shown in Table 2.3. For participant M4, the average of SL was not calculated 

because his steps were not counted. The mean absolute percentage error (MAPE) of ESL 

and PSL were similar, at 2.07% and 2.15%, respectively. For distance error, MAPE was 

also similar, at 2.15% (without M4: 1.73%).  

The conditions of the ground can influence the spatial accuracy. Thirteen 

participants (female: 6, male: 7; age: 29.8 ± 6.5 years; height: 174.2 ± 8.7 cm) were asked 

to walk 100 steps on the track (cadence: 109.8 ± 4.92) and grass (cadence: 108.0 ± 5.29). 

Two outliers were, however, removed in the dataset. Table 2.5 displays real numbers for 

the manual assessment and MAPE for PSL and ESL in each condition. For step counting, 

MAPE is lower on the track, at 1.09%, than the grass, at 1.37%. Both are higher than the 

results of the 6 participants in Table 2.2 because error occurs normally at the start and end 

points, so that when the number of steps increases, the error rate decreases. For the step 

length and total distance, MAPEs are also higher on the grass. In a comparison of PSL and 

ESL, MAPE of PSL is normally higher than ESL on the track and grass with exception of 

the step length on the track. Their MAPEs are normally less than data in Table 2.4 because 

spatial errors might be accumulated for a long pathway.   

The temporal analysis was validated with gait patterns of the same 13 participants. 

In Figure 2.11 (Hwang et al., 2019b), Block and Whisker diagrams are depicted about the 

constant errors (including positive and negative differences between the measured and the 

reference data; c.f., absolute errors) in a comparison between H-IMU data and the foot-

worn IMU data at each point of HS and TO on different ground floors. Figure 2.11(a) 

shows the constant errors of both HS and TO, whereas Figure 2.11(b) shows a comparison 

of CT. On the track, the median temporal errors of HS and TO are 1 frame and 2.5 frames, 

respectively. The 95% confidence interval of mean absolute errors (MAE-95CI) of HS and 

TO are 12.32 ± 1.34 ms and 43.77 ± 1.94 ms, respectively. On the grass, the temporal 

median errors are 1 frame for HS and 3 frames for TO. The MAE-95CI is 26.43 ± 1.66 ms 

for HS and 51.33 ± 2.07 ms for TO. Figure 2.11(b) displays the constant errors of CT on 

the track (median error: 1 frame; MAE-95I: 31.23 ± 2.37 ms) and on the grass (median 

error: 2 frames; MAE-95I: 41.23 ± 2.68 ms). 
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Table 2.5. MAPE of Spatial Parameters of PSL and ESL in Different Conditions 

Parameters 

Track Grass 

Manual 

assessment 

MAPEa (%) Manual 

assessment 

MAPEa (%) 

PSL ESL  PSL ESL 

Steps 99.8 ± 4.7 1.09  1.09 98.5 ± 3.4  1.37 1.37 

SL (cm) 807.1 ± 66.5 0.99 0.38 824.7 ± 60.5 1.14 1.40 

Walking 

distance (m) 
80.8 ± 5.7 0.71 1.42 81.3 ± 7.7 2.38 2.85 

a: MAPE = mean absolute percentage error 

 

  

(a) 

 
(b) 

 

Figure 2.11. Constant errors between H-IMU and foot worn IMU data (reference) with 

Block and Whisker diagrams in terms of (a) timestamp of gait events HS and TO as well 

as (b) CT (Hwang et al., 2019b). 
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In terms of SCER of the median error, the H-IMU system made 0.25% (P = 6 participants, 

N = 10,558 steps, MAE = 0.24%), whereas smartphones made less than 1.3 % (P = 27; 

Brajdic and Harle, 2013), which is shown in Table 2.6 (Hwang et al., 2019b). For CT 

(stance phase), 95% confidence interval (CI) of MAEs are compared with E-AR (Jarchi et 

al. 2014), which are 31.2 ± 2.37 with H-IMU (P = 13, N = 1,316; track) and 36.9 ±3.84 ms 

with E-AR (see Table 2.6). Considering the validity of each ground truth system, the IMU-

based 3-D motion capture system has the time delay of around 30 ms. In previous research, 

the time delays of IMU-based gait analysis were compared to opto-electric systems and 

foot switches, resulting in 40–50 ms online (Taborri, Palermo, Rossi, and Cappa, 2016) 

and under 10 ms offline (Kotiadis, Hermens, and Veltink, 2010). On the other hand, the 

force plate has the average time delay of 3 ms (< 8 ms; Taborri et al., 2016). 

 

Table 2.6. Comparison of Single IMU Methods for Step Counting Accuracy 

 H-IMU E-AR Smartphones 

Step count error 

SCER (%) 

0.25 (Median) 

0.24 (MAE) 
- < 1.3 (Median) 

aCT error 
bMAE-95CI (ms) 

31.2 ± 2.37  36.9 ±3.84 - 

Speed Constant Increasing various 

Floor 400 m track Treadmill various 

Ground truth 
3-D motion capture 

recording (XSENS) 

Force plate 

in treadmill 
Video recording 

a: CT = foot-ground contact time 

b: MAE-95CI = 95% confidence interval (95CI) of the mean absolute error (MAE) 

 

The lower accuracy on the grass stems from the reduction of the impact from a foot 

to the head along the vertical direction (z-axis). The grass is softer than the track, thereby 

absorbing the impact, especially at HS. For the improvement of accuracy, the threshold 

values for the grass condition should be lower than the track condition because the 
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amplitude of the sinusoidal signal after RLF is lower. In addition, compared to the track, 

the grass is also uneven, and thereby the impact occurs in a more diagonal direction, so 

that less force is transferred in the vertical direction compared to walking on the track. 

Therefore, it is difficult to detect an HS with a single threshold value, so that the threshold 

values should be adaptable to more varied situations, referring to more parameters. 

 

2.7. Discussion 

This Chapter described the measurement of individual gait patterns using a single 

IMU. Prior studies have noted the importance of gait analysis in monitoring one’s physical 

health (Fritz and Lusardi, 2009; Studenski et al., 2011) and in preventing injuries 

(Bridenbaugh and Kressig, 2011; Howell et al., 2015), as well as in rehabilitation (Reh et 

al., 2016; Reh et al., 2019). An initial objective of this work was to reduce cost and to 

simplify the human gait measurement system. This measurement system enables gait 

rehabilitation with artificial auditory-motor feedback, which can enhance motor learning 

and relearning process of walking. Previous studies revealed that the real time auditory 

feedback is also applicable to gait rehabilitation of patients after hip or knee replacement 

surgery (Reh et al., 2016; Reh et al., 2019) and Parkinson’s patients (Ghai, Ghai, Schmitz, 

and Effenberg, 2018). The real time auditory feedback can even support learning or 

relearning on healthy young people obviously based on multisensory integration effects 

(Effenberg, Fehse, Schmitz, Krueger and Mechling, 2016). In other words, this work 

initially aims at providing real time gait parameters with H-IMU, especially CT, which is 

measured by foot IMUs in previous study (Reh et al., 2019). 

As a result, this study finally shows that foot-ground contact time (i.e., period 

between HS and TO) can be measured with an H-IMU in real time. Previous studies 

implementing a device with an IMU demonstrated that real time HS detection is possible, 

but not real time TO detection. Therefore, real time TO detection using H-IMU has been 

first reported in this work. As enabling HS and TO detection, H-IMU can measure most of 

the spatiotemporal gait parameters, whereas a device with only HS detection is restricted 

to counting steps and measuring step/stride time and length. These single IMU solutions 

are inherently unable to measure angular parameters, such as knee and hip angles. 
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Nevertheless, the proposed H-IMU solution can provide foot-ground contact time (the 

stance phase) and contact time ratio in real time, which is applicable to online rehabilitation 

methods using sensorimotor feedback. For instance, the proposed H-IMU solution with 

earbuds or an HMD can measure the foot-ground contact time and immediately provide 

users with auditory feedback of the parameters, enhancing the motor learning and 

relearning process. In addition, if H-IMU can distinguish the left and right step based on 

the accurate definition of gait phases, it can support gait balance analysis. These gait 

parameters are helpful for seniors’ fall prevention, post-concussion management, and post-

operational rehabilitation. Furthermore, H-IMU can be applied to group interpersonal 

coordination studies in marching scenario, and also dyadic interaction studies as shown in 

Chapter 3. These are applicable to walking interventions for various purposes. 

 

2.7.1. Advantages of Using Head Kinematics in Real Time Gait Event Detection  

One of the advantages is that the head acceleration correlates to gait events and it 

is easy to detect the outstanding peaks appearing right after HS. The peak on head 

acceleration appears normally the same timing as on the pelvis because of head-trunk 

coordination in oscillation during walking (Cromwell and Wellmon, 2001; Kavanagh et al., 

2005; Kavanagh et al., 2006). Interestingly, the peaks on head acceleration at HS is often 

faster than on pelvis, even though the head is further than the pelvis from the foot. A 

possible explanation is the principle of Newton’s cradle, which is invented to explain the 

conservation of momentum. The cradle is a series of balls as rigid bodies hung on by strings, 

and when the first ball swings and hits the second ball, then the last ball swings out. The 

rest of balls stay at the same position, which indicates that momentum is transmitted 

through the balls; however, their kinematic changes are limited by each other. Compared 

to the series of pure rigid bodies, the human body structure can differentiate the kinematic 

properties because human body is a series of dampers, springs and rigid bodies in terms of 

biomechanical modeling. Nevertheless, the results in this study found that the measurement 

of head kinematics can be free from interference from other body parts than that of pelvic 
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kinematics, by showing the stable time lag between peaks on the head and feet at gait 

events. 

When it comes to a question whether the head-feet time lag is acceptable to the real 

time solution, the results demonstrated that head-feet time delay of peaks was 10–55 ms at 

around 0.7 s of the step time (see section 2.6.3). A previous study also reported the head-

feet time lag of oscillations is 30–200 ms at 1.0–5.0 s of step time (De Nunzio, Nardone, 

and Schieppati, 2005). According to recommendation from telecommunication 

standardization sector of international telecommunication union (ITU-T, R. G., 1997), 

these time delays can be regarded as “real time” solution in fields of telecommunication, 

which is 300 ms; however, these are longer than the threshold for audio and video (A/V) 

synchronization, which is 22 ms (Kudrle, Proulx, Carrieres, and Lopez, 2010). Furthermore, 

additional system delays, such as wireless communication delay (around 30 ms for XSENS 

system) and algorithm delay (16.7 ms for peak detection at 60 Hz of update rate), are 

already higher than the recommended delay for a real time solution of the A/V systems, 

which indicates that real time auditory-motor feedback for motor learning seems 

unavailable with H-IMU. However, embedding the H-IMU, head-worn hearable products, 

such as earbuds and HMDs, can measure the gait events and generate sound simultaneously 

without the wireless communication delays. In addition, the H-IMU using RLF and 

thresholding can detect HSs before HS peaks actually appear on head acceleration as shown 

in Figure 2.9. This early detection indicates that the HS is predictable with head 

acceleration because outstanding peaks on head acceleration appear normally once at HS, 

whereas other high peaks appear more times on foot and pelvic acceleration in a gait cycle. 

If accumulated individual gait data and artificial intelligence support the proposed 

algorithm with H-IMU, more accurate early detection is available in the near future. Thus, 

H-IMU can reduce not only head-foot delay at HS, but also the algorithm delay of peak 

detection. 

In terms of another advantage in hardware system, the proposed H-IMU solution 

minimizes the calibration routines, compared to other wearables fixed onto the thigh, tibia 

or feet with bands. With earbuds or HMDs, the IMU can be fixed onto nearly the same 
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place on the ears or head. The H-IMU, consequently, has less risk of slipping down and 

moving from the initial place, which can reduce recalibration routines during use, and 

thereby provides seamless experience of the wearable devices.  

 

2.7.2. Limitation of H-IMU in Gait Analysis 

Regarding the range of the gait parameters, joint angular parameters cannot be 

measured by using a single IMU because they need at least two sensors for one angle. Thus, 

H-IMU is not able to measure angles of knees and hips.  

In this dissertation, the reported accuracy of the gait analysis is based on a relatively 

small number of participants (7 for step counting for long distance; 13 for the system 

validation), so there is still the need of validating the H-IMU solution with a larger sample 

of participants. To enhance the accuracy of the gait detection, larger sample size can be 

used to optimize threshold values and the real time low pass filter depending on personal 

gait patterns. For example, threshold values can be reduced to detect smaller peak values 

on the soft floors or while walking slowly. The low pass filter can set the higher cut-off 

frequency, so that raw information is not lost. Machine learning technology can detect if 

the users walk on the soft or hard floor, and faster or slower. The modification of detection 

algorithm can also refer to measurement history of different walkers and the optimal values 

can be found depending on the individualized gait patterns. 

Another limitation of this work is that H-IMU was tested normally on the flat and 

hard floor. Although steps on the hard floor are compared to that on the grass-covered floor, 

a limited number of steps were analyzed. In addition, jogging and sprinting are not 

considered. Therefore, more test in different conditions are required in the future. Jogging 

and sprinting would be analyzed considering lofting time in the air and stronger impact 

during landing, which can be different points in data analysis. Gait analyses on various 

environments (e.g., inclines, stairs) and surfaces (e.g., the grass, sand), can be taken into 

account as well. The accuracy of peak detection would decrease because the acceleration 

peaks would be weaker and smoother, compared to walking on the hard floor. 
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2.7.3. Technical Issues of H-IMU in Gait Analysis  

One issue of H-IMU for gait analysis is the power consumption. For the zero gravity 

technology, the proposed H-IMU solution relies on not only accelerometers (using several 

hundred μA), but also the gyroscopes that cause high power consumption (using several 

mA; Zhu, Anderson, and Wang, 2012). However, it was reported that gyroscopes 

embedded in smartphones can consume power levels similar to that of accelerometers, if 

the gyroscopes are not running as the fastest mode (Brajdic and Harle, 2013). In other 

words, H-IMU can reduce the gyroscope power consumption when it uses the same IMU 

modules as mobile applications and when it does not use the fastest mode in a special 

condition. The proposed algorithm with the H-IMU does not need the fastest mode, which 

indicates that the proposed method is applicable to consumer electronics market 

immediately. Although the optimization for smart devices was not dealt within this work, 

the power consumption of this H-IMU solution can be further optimized. 

Frame drop is also one of the reasons for decreasing accuracy. Data are not always 

received at the right timing because of network congestion, which stems from limited 

network bandwidth or heavy data traffic. The network congestion causes queuing delay 

because a receiver system would wait for the missed data. In media data transmission, 

however, the receiver would drop the delayed frames because the regular interval is 

required for video or audio data streaming. Real time 3-D rendering animation in motion 

capture is also affected by frame drop, especially linear and angular positioning errors, 

which result from integration of sensor data. The single IMU solution has the advantage to 

reduce the data traffic, compared to the whole body system—17 sensors are used for 

XSENS MVN Awinda system. Nevertheless, if the data are transmitted on 2.4 GHz carrier 

frequency, the accuracy would decrease at places where high Wi-Fi or Bluetooth traffic 

occurs. In contrast, this issue would hardly occur, when the H-IMU is applied to earbuds 

or HMD. 
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2.8. Conclusion 

The proposed method with H-IMU provides a real time measurement solution for 

spatiotemporal gait parameters, such as foot-ground contact time, contact time ratio, and 

step length. This real time kinematic data are not only used for monitoring health and 

preventing injuries, but also for the enhancement of rehabilitation. Current health 

monitoring systems have issues, such as battery life, sustainable engagement for users. The 

proposed simple H-IMU can, nevertheless, improve sustainability of engagement for end-

users, by guaranteeing a seamless experience, thereby encouraging users to walk. With 

IMU-based wearable applications, such as earbuds, smart glasses and HMDs, H-IMU 

method can easily reach the mass market of the health monitoring and home-based 

rehabilitation systems. In future, movement analysis with H-IMU also would cover not 

only running and jumping, but also swimming and skating. In addition, gait analysis with 

H-IMU is applicable to study on group interpersonal coordination during marching in 

military or a band. In a combination of head gesture recognition, H-IMU is applicable on 

dyadic interpersonal interactions in walking interventions, which will be discussed more 

comprehensively in Chapter 3.  
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Chapter 3.  Rapport Monitoring System During Walk and Talk 

 

3.1. Introduction 

When there is some distance between individuals in verbal or nonverbal 

communication, it is called distal interpersonal coordination. This type of interpersonal 

coordination is realized with physical distance between the interactants. For instance, there 

is a social distance in verbal conversation, gesture, and facial expressions. Distal 

interaction can be found manifold in sports games. Football or basketball players give a 

sign between players to pass each other. Auditory cues are, in addition, used in musical 

ensembles such as duets, quartets, and orchestras. To assess the quality of interaction, it is 

necessary to evaluate the degree of interpersonal coordination. The evaluation can be 

different depending on different cases. In sports, the number of completed passes can be 

an example to indicate the level of collaboration. In musical ensemble, aligned onset and 

keeping the tempo and rhythm during the performance can be evidences of well 

synchronized performance.  

In daily communication, how many times and how long interactants nod, contact 

eyes, and imitate postures can be a standard of the measurement of interaction (Tickle-

Degnen and Rosenthal, 1990). These factors indicate the level of rapport that is one’s 

friendliness and warmth to each other, which is a familiar term in clinics, education and 

business, improving satisfaction and overall outcomes. One’s ability to build good rapport 

supports better relationship in schools, occupations, and parties. The rapport, however, 

have been measured by participants’ self-reports and external observers, which are usually 

subjective and unstructured. One of the greatest challenges is the proof of the research 

validity of their own methods because such approaches have limitations to compare results 

of each study. Therefore, for structured rapport measurement, three concepts were 

suggested to measure rapport: positivity, mutual attentiveness, and coordination (Tickle-

Degnen and Rosenthal, 1990), which can be standardized in rapport measurement. When 

rapport is built between interactants, positivity is observed, which is one’s agreement or 

approval to each other. Mutual attentiveness is established when individuals have a 
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cohesiveness and a unified feeling. Interactants also have coordination which stands for 

harmony, balance, and synchronization between individuals. 

Another challenge is that the manual work for measuring the number and duration 

of behaviors is exhausting and time consuming. For reducing manual efforts, a combination 

of vision and machine learning technology has recently supported to detect nod and shake 

for agreement (Brunelli and Poggio, 1993; Rowley, Baluja, and Kanade, 1998; Kapoor and 

Picard, 2001). Motion capture has been used to measure participants’ meaningful gesture 

or position.  

In this chapter, the molecular measurement of rapport using H-IMU is 

demonstrated. The proposed H-IMU solution would enhance the efficiency in rapport 

measurement during walk and talk interventions and should lead to better outcomes in 

educational, clinical and social contexts. The related work is described in the next session, 

followed by methods and results. The discussion and conclusion appears in the last sections.  

 

3.2. Related Work 

3.2.1. Molecular and Molar Measurement of the Three Rapport Components 

For rapport measurement, molecular and molar methods are described by Tickle-

Degnen and Rosenthal (1990) (see also Baum, 2004). In molecular methods, specific 

behaviors are counted and timed during interacts. For instance, positivity is measured with 

the numbers of head nodding or smiling to one another, as well as judged with and 

durations of body orientation toward talking partners. In terms of mutual attentiveness, the 

number and duration of eye contacts and crossed arms are measured. Durations of posture 

and gesture mirroring also can be factors of coordination. These factors are easily 

conceptualized and immediately reported. On the other hand, molar methods more focus 

on contextual information to judge the development of rapport. Fake smiles, for example, 

cannot be counted as an evidence of good rapport. A seamless conversation between two 

individuals would be highly regarded as a signal of developed rapport, even though the 

individuals are crossing their own arms. For high level of rapport, therefore, individual 

imagination, impression or perception under social context should be measured rather than 
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counting the number of smiles, eye contacts, or crossed arms (Tickle-Degnen and 

Rosenthal, 1990). This measurement relies on the participants’ self-reports and impressions 

of outside observers, and thereby the judgement can be subjective and time consuming. It 

is reported that the molecular method is more appropriate to assess positivity and mutual 

attentiveness, whereas the molar method is more suitable for the measurement of 

coordination. Both methods are, nevertheless, important to all three rapport components.  

The importance of both methods varies over time during an interaction. The 

molecular method weighs more strongly in the initial stage of interaction when they interact 

with new acquaintances or strangers (Tickle-Degnen and Rosenthal, 1990) because 

individuals would behave politely and circumspectly with unfamiliar interactants under 

awkward conditions. They also tend to follow basic norms of social propriety, which leads 

to circumscribed and stereotypical behavior. These structured behaviors can be measured 

by molecular methods (Tickle-Degnen and Rosenthal, 1990). Later, interactions are 

loosely structured and show more diversity in the ways of communication. Under familiar 

conditions, interactants communicate by developing their own conventions rather than 

following the cultural social norms because it can enhance communication efficiency and 

reduce misunderstandings during conversation. However, the molecular method is difficult 

to analyze rapport in the later phase of interactions because the diverse types of stimuli and 

responses between interactants exist, and are even interwoven. The molar method, 

therefore, becomes more significant in later interaction. Nonetheless, the three components 

of rapport are still present regardless of time. Although the importance of the components 

is varying, the molecular methods can provide evidences to assess the rapport development. 

Thus, molecular and molar methods contribute to the measurement of the components. 

 

3.2.2. Head Pose Estimation 

Head pose estimation technology supports nod and shake detection as well as gaze 

estimation. Researchers have applied cameras, sensors and machine learning technology 

to estimate head posture and movement. First of all, face recognition systems were 

developed. Two main methods were realized: feature-based methods and template 
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matching methods (Brunelli and Poggio, 1993). Feature-based procedures are implemented 

with geometric information of the nose, mouth, and the eyebrows. For example, nose 

vertical position, mouth height and eyebrow thickness can be considered to compare the 

unknown face with a prepared database. Template matching is also realized with geometric 

information of the mouth, eyes, and eyebrows; however, normalized cross correlation 

between the unknown target and the database is directly computed with the area of the 

features. Secondly, previous research has suggested that rotation and posture of the face 

can enhance the recognition rate when the head is rotated (Maurer and von der Malsburg, 

1996), and has established 3-dimensional (3-D) representation of the head by using a single 

camera (Chen, Wu, Fukumoto, and Yachida, 1998). The angular kinematic information in 

3-D space contributes to nod and shake detection. In the case of nodding, the head rotates 

up and down. When shaking, the head rotates left and right. Finally, improvement of the 

recognition rate is studied by using machine learning technology, such as a neural network 

and a Hidden Markov Model (HMM) (Rowley et al., 1998). The rotated pose is also related 

to the head direction and gaze, which would be applicable in measuring interactants’ 

mutual gaze and attentiveness. 

 

3.2.3. Gait Event Detection 

The rapid development of microelectromechanical systems (MEMS) leads to the 

development of inertial sensors (e.g., accelerometers and gyroscopes). A combination of 

inertial and magnetic sensors improves accuracy and robustness. IMU-based motion 

capture systems are free from spatial limitations and applicable indoors and outdoors. 

Smartphones and wearable devices have been investigated for simple health monitoring 

systems in everyday life settings. Concerning health monitoring, the IMU-based solutions 

can provide information of trajectory, calorie consumptions, and the number of steps. As 

mentioned in Chapter 2, a head-worn IMU (H-IMU) is more informative than commercial 

pedometers because it can detect detailed gait events (e.g., heel strike and the toe off) and 

more gait parameters (e.g., foot-ground contact time) (Hwang et al., 2018b). The gait 

parameters can be utilized in behavioral studies on everyday-life walking settings. 
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 (a) (b) 

Figure 3.1. Geometrical definitions: (a) the yaw (shake), pitch (nod) and roll of the head; 

(b) the walking vector, the head orientation, the rotation matrix, as well as the global and 

local coordinate system. 

 

 

Figure 3.2. RMS value (window width: 1 second) of head pitch acceleration, and the 

threshold values for obvious (T1) and subtle (T2) nod detection. 
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3.3. Methods 

3.3.1. Head Nod Detection 

From the notations of angular movement, the head pitch rotation is defined as 

nodding movement and the head yaw rotation is defined as shaking movement in Figure 

3.1(a). The gyroscope in an IMU can estimate the rate of turn and angular acceleration of 

the head pitch rotation. When the head is nodding, a pitch torque is applied to the head, 

and the angular acceleration increases. In this dissertation, the nod detection method refers 

to the root mean square (RMS) of the pitch angular acceleration with 1 second window 

width. Adequate threshold values are decided to detect head nods. When the head nod is 

detected, the average value, duration, and maximum value are measured. Depending on 

RMS value, the head nod can be categorized into two classes: an obvious and a subtle nod 

(Chen et al., 1998). The higher threshold, T1, is for obvious nod detection, whereas the 

lower threshold, T2, is for subtle nod detection as shown in Figure 3.2. Another condition 

is the relationship with the yaw rotation; the head nod is recognized when pitch RMS values 

should be higher than the yaw RMS values, even though the pitch value is over T2, which 

is to avoid detecting other head gestures. 

 

3.3.2. Estimation of Mutual Head Orientation and Its Coordination 

Gaze position is predictable from head orientation due to head-gaze coordination 

(Freedman and Sparks, 2000; Fang et al., 2015), which is confirmed especially when the 

head can naturally move like in daily conditions such as during walking (Nakashima, Fang, 

Hatori, Hiratani, Matsumiya, Kuriki, and Shioiri, 2015). From the gaze estimation, mutual 

gaze is also estimated from head orientation in walking settings with their conversation 

partners. The angle of the head orientation (x’) from the walking vector (W) is measured 

as shown in Figure 3.1(b). The head orientation (x’) is obtained by referring to the earth-

fixed reference, such as directions of the north and the east measured from the 

magnetometer. The walking vector (W) is calculated from head displacement for 1 second. 

The calculation of the angles is performed in the 3-D Cartesian coordinate system. The 

global coordination (origin: OGlobal) has the forward (north) as the positive direction of the 
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x-axis, the right (west) side as the y-axis, and the upward as the z-axis (see Figure 3.1(b)). 

The x’-, y’-, and z’-axis in the local coordinate system (origin: OLocal) are defined by the 

rotation matrix (R) and the direction of original axes in the global coordination system as 

below: 

 

 
(
𝑥′

𝑦′

𝑧′
) = 𝑹(

𝑥
𝑦
𝑧
) = 𝑹𝑧𝑹𝑦𝑹𝑥 (

𝑥
𝑦
𝑧
) 

𝑹𝑥(𝜃𝑥) = (
1 0 0
0 cos 𝜃𝑥 −sin 𝜃𝑥
0 sin 𝜃𝑥 cos 𝜃𝑥

) 

𝑹𝑦(𝜃𝑦) = (

cos 𝜃𝑦 0 sin 𝜃𝑦
0 1 0

−sin 𝜃𝑦 0 cos 𝜃𝑦

) 

𝑹𝑧(𝜃𝑧) = (
cos 𝜃𝑧 −sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0
0 0 1

) 

(3.1) 

 

where Rx, Ry and Rz are the basic rotation matrices for the rotations by x-, y-, and z-axis, 

respectively. The angle differences between two coordinate systems are expressed by Euler 

angles (θx, θy, θz). Figure 3.3 simply shows the expressions of the rotated axes (x’, y’, z’) 

and the walking vector, W’, in the new coordinate system, which is rotated by θz. 

When W is expressed in the local coordinate system, the angle between x’-axis and the 

walking vector is obtained as θ - θz, which is the same as being inversely rotated by θz. The 

local walking vector, W’, is computed as below:  

 

 
Rz

-1W = Rz(-θz)W = (
cos 𝜃𝑧 −sin(−𝜃𝑧) 0

sin(−𝜃𝑧) cos 𝜃𝑧 0
0 0 1

)(
cos 𝜃
sin 𝜃
0

) 

= (
cos 𝜃 cos 𝜃𝑧 + sin 𝜃 sin 𝜃𝑧
sin 𝜃 cos 𝜃𝑧 − cos 𝜃 sin 𝜃𝑧

0

) = (
cos(𝜃 − 𝜃𝑧)

sin(𝜃 − 𝜃𝑧)
0

) =⁡W’. 

(3.2) 
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The inverse rotation matrix (Rz
-1) results in W’. With rotation by θx, θy, and θz, the general 

equation is obtained using R and R-1 as below:  

 
R-1Wn = W’n (3.3) 

where Wn and W’n are walking vectors in the global and local coordinate system, 

respectively, and n is the index of participants. When two participants (P1, P2) walk 

together, there are two walking vectors (W’1, W’2). For analysis of turning left, right, and 

forward, horizontal angles (θz) of participants are considered on x-y plane, which will be 

expressed as θ1 and θ2 (see Figure 3.4). When the head turns right, the angle has a positive 

value like θ1, and when the head turns left, the angle has a negative value like θ2. 

Several scenarios are anticipated when θ1 and θ2 are ranged ±90˚ (from turning 90˚ 

right to left). First, when two partners look at one another, the angle difference (θd = θ1 – 

θ2) can be 180˚ (see Figure 3.5), which is the maximum case. When both participants look 

forward, θd is 0˚. During walking and talking together, θd is usually between 180˚ and 0˚ 

because participants try to rotate their head toward their partner. The minimum case is that 

θd is -180˚ when both participants look at exactly opposite directions. The angle difference 

varies between -180˚ and 180˚, which is rescaled from -1 to 1 to generate a simple indicator. 

 

 

Figure 3.4. Examples of walking vector, head direction and angles. In global Cartesian 

coordination, the origin and direction of participants are demonstrated. 
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Figure 3.5. The four different scenarios of walking with conversation partners, and angle 

differences of two walkers. 

  

  

Figure 3.6. Individual head orientation status with three statuses; looking left (-1.0), 

forward (0.0), and right (1.0). P1 and P2 are participants walk on the left and right, 

respectively. 
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For the level of gaze coordination, head orientation is divided into three scenarios: 

Looking right is regarded as the range of the horizontal head angle, θ, from 90º to 9º, 

forward is ±9º, and left is from -9º to -90º as shown in Figure 3.6. Looking right, forward, 

and left have the orientation index (OI), at 1, 0 and -1, respectively. Then, gaze correlation 

is also evaluated as below:  

 f(𝑶𝑰𝟏, 𝑶𝑰𝟐) = {
0.5 (𝑶𝑰1 = 0⁡𝑎𝑛𝑑⁡𝑶𝑰2 = 0)

1.0 −
1

2
|𝑶𝑰1 − 𝑶𝑰2|⁡ (𝑶𝑰1 ≠ 0⁡⁡⁡𝑜𝑟⁡⁡𝑶𝑰2 ≠ 0)

. (3.4) 

This is the evaluation function of the orientation correlation where OI1 and OI2 are the 

orientation indexes of P1 and P2. When two participants look in the same direction, it has 

the highest value 1.0. This case is regarded as emergence of the high level of rapport 

because they look at the same place or object that might attract their common interest. In 

contrast, when they look in different directions, it is 0. When both participants look forward, 

the gaze correlation is 0.5 as a neutral value because looking forward is the head’s normal 

posture in natural gait. The average of correlation values or the duration of the highest 

correlation can automatically indicate the level of rapport. If outside examiners are 

involved in the rapport measurement, they can easily find the meaningful period for their 

judgement. The evaluation results of the gaze correlation are shown in Figure 3.8(b). 

 

3.3.3. Gait Coordination 

As mentioned in Chapter 2, a single head-worn IMU (H-IMU) is applicable to the 

detection of gait events (Hwang et al, 2018b). The detection method includes the real-time 

low-pass filter, peak detection, and thresholding. With these data analysis methods, the 

system can detect the heel strike (HS) and the toe off (TO) in real time (Hwang et al, 2018b). 

To evaluate gait coordination, a binary signal is generated with the double support period, 

which is defined as the period when both feet support body, exactly between HS of one 

foot and TO of the other foot. During the double support period, the binary value is 1, 

otherwise it is 0. Figure 3.7 demonstrates the binary signals from both participants (P1, P2). 

For the results of gait coordination, the Pearson correlation between two binary signals is 
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computed during the walking period of interest. For real-time monitoring, the correlation 

coefficients are calculated as the status value at every frame with 10 seconds window, 

which is displayed in Figure 3.9 in the results section. 

    

Figure 3.7. The binary signals of two participants during walk. The status value is 1 

between HS and TO when two legs are in contact to the ground, called the double support 

period. After TO and before HS, one leg supports the body, so that the status value is 0. 

 

3.4. Results 

Two healthy male (age: 26 ± 0.5 years, height: 184.5 ± 0.5 cm) participated in the 

experiment. They wore a suit with 17 IMUs from 3-D motion capture system (XSENS 

MVN Awinda system). Each IMU includes a 3-axis accelerometer, 3-axis gyroscope, and 

3-axis magnetometer. On the standard 400-m track, participants walked one lap alone each, 

and one lap by talking together. Head kinematic data were collected from the head IMUs. 

A software solution (MVN Studio) rendered their gait in 3-D space and organized data. 

From the database, the all real time detection and analysis were performed by Python 2.7. 

Participants’ conversation is recorded by a digital voice recorder (Olympus WS-852). 

 

3.4.1. Head Nod Detection 

In Table 3.1, the results of nod recognition using H-IMU is demonstrated. The 

recognition rate is calculated in a comparison to a reference that is manually counted 

referring to the voice recording and the motion capture animation. In the manual count, 

the clear nods were counted when one responds to the partner. The nod events frequently 
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included linguistic responses, such as “yes,” “OK,” “good,” and “nice” as well as other 

positive words or repetitions to partner’s expressions. In total, the nod recognition rate 

was 94.34%, regarding the analysis with 3-D motion capture recordings as ground truth. 

In the walking setting, P1 nodded 16 times and 15 nods was recognized, whereas P2 

nodded 37 times and 35 nods were recognized. For P1, 10 subtle nods were detected, 

which is twice as much as his obvious nods. In terms of P2, 27 subtle nods were counted, 

which is more than threefold his obvious nods. 

  

Table 3.1. The Nod Recognition Using H-IMU 

Participant 

(age, height) 

H-IMU Manual 

count 
Recognition rate (%) 

T1 T2 Total 

P1 

(27, 184 cm) 
5 10 15 16 93.8 

P2 

(25, 185 cm) 
8 27 35 37 94.6 

Total 13 37 50 53 94.3 

 

3.4.2. Mutual Head Orientation and Coordination of Head Orientation 

The mutual head orientation resulted from the angle differences between both 

participants’ head direction was monitored in real time. Figure 3.8(a) demonstrated the 

mutual head orientation at the beginning of the walking for around 1,540 sampled data 

(25.7 s at 60 Hz). The mutual orientation is fluctuated over time because they repeatedly 

look at the partner, forward, and other directions. From the analysis of the motion capture 

recording, P2 speaks and rarely looks at P1, whereas P1 listens to P2 and frequently looks 

at P2. At the positive peaks before n = 1,021, the values from 0.5 to 0.8 correlate to the 

moments when P1 looks at P2, as evidenced by the motion capture recording and the data 

shown in Figure 3.6. The amplitude is higher than 0.5, which means P2’s head is slightly 

oriented to P1. At n = 1050 and 1520, they look at their partners together, so that the value 

peaks higher than 0.8. At the last two peaks, coordination evaluated as higher, which means 

both participants look at the same direction, whereas, at the former peaks, they look to 

different directions. In contrast, negative peaks are observed around at n = 663, 878, 1265, 

and 1394. The negative peaks occur when P1 looks at the opposite direction (left) of P2 

(right) as shown in Figure 3.8(b), which depicts the coordination of head orientation.  
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(a) 

 

 

(b) 

 

Figure 3.8. Evaluation results of mutual head orientation and coordination of head 

orientation at the beginning 1,540 samples at a 60 Hz. At (a), high values stand for turn 

their head more toward their partner. At (b), there are three status values; 1: interactants 

look in the same direction; 0.5: look forward; and 0.0: look in the different directions.   
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3.4.3. Correlation of Gait Patterns 

The Pearson correlation coefficient between double support periods of two 

participants (ρX,Y) was evaluated as below, and uses data in a 10-s time window: 

 𝜌𝑋,𝑌 =
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (3.5) 

where E[*] is expectation, X and Y is the status value of the double support period for two 

participants. For X and Y, the means are μX and μX, and the standard deviations are σX and 

σY, respectively. Figure 3.9(a) shows the correlation results of the first lap data when 

participants walk alone. Figure 3.9(b) displays the results of the second lap data, where 

both participants talk to each other during walking. Two diagrams show definitely different 

patterns. In Figure 3.9(a), the coefficient is oscillating but the peaks are normally less than 

0.5. This graph indicates that both participants usually walked with temporally different 

gait cycles, (e.g., step time and cadence), so that the values oscillate up- and down-wards 

when they partially correlated by chance. Regarding Figure 3.9(b), two periods with high 

correlation values and one low valued period are demonstrated, which are observed in 

relatively long time (around 1 min. each). The high correlated periods (over 0.5) are when 

participants walked on the curved lanes of the track, showing their HS and TO are almost 

synchronized. In the lower plateau (around -0.4), participants walked on the straight lane 

between the curved lanes. Although the correlation coefficient is low, two participants had 

the same step time and cadence. In other words, their gait cycles are temporally 

synchronized, but a delay exists between them. The delay probably occurred when the path 

conditions are changed from the curved to straight lane. Depending on which lanes 

participants walked on, their gait speeds should be different on the curved lane. Entering 

the straight lane, participants should modify their gait speed to walk side by side. A delay 

of their gait cycles can occur, which changes the coefficient from 1.0 to -1.0. Regardless 

of the coefficient, they maintain the temporal synchronization of their gait cycles with the 

same delay. It is interesting that the delay is smaller on the curved lane because one on the 

outer lane might have additional visual cues of the partner’s gait, whereas both walkers 

might have less visual cues of partners’ gait on the straight lane, by looking forward.  
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(a) 

 

 

(b) 

 

Figure 3.9. Pearson correlation results between two participants’ binary signals of the dual 

support period in two conditions: (a) during the first lap, when they walked alone and (b) 

during the second lap, when they walked together.  
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3.5. Discussion 

In this chapter, another solution of H-IMU is described to directly investigate human 

behaviors in communicative interactions. Previously, researchers have measured rapport 

during interpersonal coordination, relying on onsite observation or video recordings 

(Tickle-Degnen et al., 1990). This method is, however, time consuming and labor intensive 

for examiners to count the numbers and to measure the duration of discrete meaningful 

behaviors, by watching videotapes for a long time. Technologies have been able to estimate 

one of the components at a time, such as with head pose estimation (Bruneli and Poggio, 

1993; Maurer and von der Malsburg, 1996; Chen et al., 1998). In reviewing the literature, 

no study was found on measuring all the rapport components using one device at the same 

time. This dissertation, therefore, has first proposed a rapport measurement method by 

implementing H-IMU, which can automatically measure all the three rapport components, 

reducing measurement time and efforts of examiners. 

The key advantage is that H-IMU enables gait analysis and head pose estimation 

together during walk and talk. However, H-IMU solution for rapport measurement is 

restricted to only the molecular method, which considers counting or analyzing interactants’ 

discrete behaviors, whereas previous studies use both molar and molecular method, and 

consider analysis of the contextual information as well. In addition, it is reported that 

importance of the molecular method decreases over time because the discrete social 

behaviors can have different meanings depending on the social context and individuality. 

Nevertheless, the proposed H-IMU solution cannot be devaluated because, 

regardless of the time, the molecular method contributes to the rapport measurement, 

providing the structured and objective evidence (Tickle-Degnen and Rosenthal, 1990). 

Counting specific behaviors with videotapes is also one of the most time-consuming works. 

Therefore, as an automatic and simple solution, H-IMUs still contribute to rapport 

measurement, reducing time and cost for human resources.  

In terms of technological contribution, although only a single IMU is implemented, 

the proposed H-IMU solution can avoid drift effect resulting from error accumulation, 

which normally occurs when an IMU tracks the position for a long time. The accumulated 
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errors are caused by distorted sensor data from electromagnetic disturbances and data drops 

from network congestion as well as white noise. Compared to single-agent motion capture, 

drift effect is more problematic in measuring two or more agents because kinematic 

measurement of their mutual activity can be wrongly recorded, especially orientation (or 

rotation matrix) and position. In this work, a walking vector is considered as a reference 

direction. Although the sensor’s position drifts during long time measurement, data of head 

turning angles are hardly affected because a reference direction is measured in short time. 

To be specific, the walking vector was calculated as a displacement of 1 second. The RMS 

of nodding angular velocity was also measured with 1 second window. For such a short 

time, the accumulated error is negligible. 

 

3.6. Conclusion 

This chapter demonstrated that a single H-IMU can support the molecular 

measurements of a rapport between dyads during walk and talk. Based on the H-IMU, head 

pose estimation and gait analysis were carried out, which can support in monitoring 

physical and mental behaviors during interactions, such as walk and talk interventions. The 

method provides simplicity and convenience to users who care for the level of rapport in 

business, training, educational and clinical settings. The proposed method supports 

molecular methods, so that the importance of the proposed evaluation methods decreases 

over time because the meaning of behavioral gestures changes during interactions and the 

types of stimuli and responses increased and are interwoven. The evaluated values itself 

cannot fully represent the level of rapport; however, H-IMUs can provide a quick reference 

for overall judgements when combined with molar methods. Reducing molecular 

measurement efforts, H-IMU users can also improve efficiency in overall rapport 

measurement. In addition, studies on socializing and interactions in daily outdoor settings 

can be widely supported by consumer devices with IMUs (e.g., smartphones, earbuds and 

HMD). With a combination with outdoor counseling or real time feedback of movement, 

the simple and easy-to-access solution can finally contribute to public health, education, 

business, and even service robot industry in the future.  
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Chapter 4.  Joint Task using IMU-based Application 

4.1. Introduction  

Concerning social interaction, various modes of nonverbal communication have 

been recently researched, such as gestures and facial expressions (Vicaria and Dickens, 

2016), which contain spatiotemporal and affective components (Phillips-Silver and Keller, 

2012). During nonverbal communication, perceptual cues are exchanged between 

interactants, which is fast enough to instantly react to; however, verbal or linguistic cues 

would be too slow to immediately react to other interactants (Knoblich and Jordan, 2003). 

Verbal communication is, as a result, used to prepare action plans and strategies before 

joint actions, whereas nonverbal communication induces emergent reactions between the 

interactants during joint actions. The importance of the emergent reaction is observed in 

mother-infant dyads, which is seen as the basic nonverbal communication. Two individuals 

display coaction such as facial expressions, voice, and social gaze when the baby is about 

three months old, and show gestures and joint attention to objects when the baby is about 

six months of age (Feldman, 2007). The mother-infant entrainment stems from motor 

resonance (Meltzoff and Decety, 2003) and emergent coordination, which can drive 

affective entrainment, cooperation, and rapport (Feldman, 2007). 

Recent evidence suggests that the emergent coordination can be caused by 

stimulation on various perceptual modalities, such as visual, auditory, kinesthetic, and 

tactile systems (Marsh et al., 2009). For example, Waterhouse et al. (2014) demonstrated 

choreography performance of two dancers who synchronized their performance or aligned 

the onsets of their own performance. The nonverbal communication and the 

synchronization are relied on visual cues from their body movement as well as on auditory 

cues from breath and step sound. These phenomena can be observed in musical ensembles 

where musicians perform in a joint action setting. During piano duet performance, it is 

demonstrated that two pianists monitor auditory feedback from their own, their partners’ 

and the joint action outcomes, which allows successful performance (Loehr, Kourtis, 

Vesper, Sebanz, and Knoblich, 2013). In addition, when the number of addressed 

perceptual modalities increases, temporal synchronization is normally enhanced during 
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interpersonal coordination (Knoblich and Jordan, 2003; Schmidt and Richardson, 2008). 

Goebl and Palmer (2009) reported that auditory and visual information might be 

complementary to one another: When the auditory information was reduced during 

ensemble performance, leaders and pianists show exaggerated movement for successful 

co-performance. Relationship between the perceptual modalities and temporal synchrony 

has been repeatedly reported in musical performance (Demos, Carter, Wanderley, and 

Palmer, 2017) and dance performance (Vicary et al., 2017). Demos et al. (2017) reported 

that, during the duet performance, asynchronies increased once the auditory feedback was 

removed, which confirms that removing one of the addressed perceptual modalities can 

increase temporal asynchrony in a joint task. 

Demos et al. (2012) directly compared effects on interpersonal synchrony under 

different conditions with auditory and visual information in a rocking chair task. Authors 

showed that spontaneous coordination was enhanced in an audio-only (rocking-chair sound) 

and a visual-only condition, compared to a condition with neither vision nor sound. In 

audio-visual condition (rocking-chair sound and vision), the participants’ synchrony was 

highest. These findings confirm again that a multiple number of perceptual modalities 

addressed by task related information usually enhance spontaneous coordination (see also 

Schmidt and Richardson, 2008). On the other hand, non-task-related music has no effect 

in audio only condition; however, the music in an audio-visual condition results in less 

synchrony than a vision-only condition (Demos et al., 2012). This finding indicates that a 

multiple number of perceptual modalities cannot be independent, but can cause 

interference, thereby leading to a negative effect on sensorimotor tasks. Demos et al. (2012) 

concluded that emergent perceptuo-motor couplings should occur with task-related 

information to enhance instantaneous coordination (see also Kelso, 1995). Under the 

multiple number of perceptual information, a study (Allerdissen, Güldenpenning, Schack, 

and Bläsing, 2017) reported that the response to the perceptual feedback can be different, 

depending on personal experience. The authors measured timing of the occlusion of 

fencing novices and experts when they watched opponent's fencing attacks in a video, 

which demonstrated that the novices showed the negative effect in the audio-visual 
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condition, compared to vision-only condition. The experts, however, show no difference 

between the visual-audio and the visual-only condition because auditory information 

provided together with vision can be non-task-related for novices, but task-related for 

experts. Allerdissen et al. (2017) explained that non-task-related perceptual feedback might 

cause cognitive overload, which negatively influences novices. 

In a study on auditory perception and movements, it has been previously observed 

that auditory-motor co-activation in individuals’ brain is emerged during short training in 

a musical condition (Bangert, Peschel, Schlaug, Rotte, Drescher, and Hinrichs et al., 2006), 

and a team sports condition (Schmitz and Effenberg, 2017). One of the significant current 

discussions is which factors cause the enhancement of auditory and motor processing 

during interpersonal coordination. Vesper et al. (2013) also conducted an experiment with 

a jump task. A pair of participants were asked to jump forward next to one another and to 

land at the same time, while their landing positions are informed with auditory and visual 

feedback before they jump. Although online sensory feedback was not provided, the 

participants adjusted preparing and executing motion of jumps, relying on given 

spatiotemporal information. Authors indicated that spatiotemporal properties of the 

sensory feedback can enable interpersonal coordination as well as intrapersonal 

coordination. The successful spontaneous coordination can emerge with auditory feedback 

when participants distinguish their own sound from the partner’s (Loehr et al., 2013). 

Another study (Murgia, Hohmann, Galmonte, Raab, and Agostini, 2012) demonstrated that 

participants can identify their own golf swing sounds, which were naturally recorded 

during their performance. The authors insisted that temporal factors are important in self-

other-discrimination because participants wrongly perceived a swing sound as their own 

swing, when other’s swing are similar temporal components in terms of the overall duration 

and the relative timing of the swing. However, Kennel et al. (2014) failed to confirm the 

correlation between self-other-discriminations and temporal factors of natural movement 

sounds previously recorded in hurdling performance. The authors concluded that the self- 

and other-movement sound is distinguishable because the individuality of sounds activates 

listener’s own sensorimotor memory. In addition, the ability to reproduce perceived 
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movement increases with more appropriate internal models (sensorimotor, visual, or 

auditory perceptions) (Kennel et al., 2014). When perceptual information is provided in 

real-time, it is beneficial for participants to anticipate their own and co-performers’ actions 

(Keller and Appel, 2010; Keller, 2012). From a neurophysiological analysis, Keller et al. 

(2014) suggested that the additional auditory information improves the phase correction 

via a neural pathway between subsections of the cerebellum which are linked to motor and 

auditory cortices. Additional auditory feedback also can enhance the periodic correction 

by additionally recruiting a corticothalamic network that includes the prefrontal, medial 

frontal, and parietal cortex, as well as basal ganglia (Keller et al., 2014; Repp and Su, 2013). 

As a result, researchers have underlined the positive effects of real-time kinematic 

auditory feedback on motor control and learning (Effenberg et al., 2016; Effenberg, 2005). 

In single-agent settings, Effenberg et al. (2016) demonstrated the faster development of 

motor representations and the enhancement of preciseness with the presence of real-time 

auditory feedback. The additional real-time sound, artificially mapped onto human 

kinematic and dynamic patterns, should enhance the development of sensorimotor 

representations without consciousness (Effenberg, 2005; Effenberg et al., 2016). For the 

study on motor learning, this auditory movement feedback can be implemented by effect-

based auditory feedback (EAF) and performance-based auditory feedback (PAF), which 

stems from “Knowledge of performance” (KP) and the “Knowledge of result” (KR) 

(Schmidt and Wrisberg, 2008). Performance-based feedback is related to the movement 

quality, whereas the effect-based feedback provides the movement result (Magill and 

Anderson, 2007; Schmidt and Wrisberg, 2008). The benefits of performance-based 

feedback on learning were reported by many researchers (Sharma, Chevidikunnan, Khan, 

and Gaowgzeh, 2016; Nunes, Souza, Basso, Monteiro, Corrêa, and Santos, 2014; Weeks 

and Kordus, 1998) as well as the impact of effect-based information (Sharma et al., 2016; 

Schmidt and Wrisberg, 2008; Winstein, 1991). Two types of feedback can be compared in 

a number of studies on motor learning. Above findings indicate that additional auditory 

feedback can have effects on motor learning and interpersonal coordination, which can 

differ because of the relationship with KP and KR as well as the task, one’s experience,  
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Figure 4.1. Top view of the tablet screen and levers fixed to the casing.  
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and gestalt movement. Feedbacks based on KP and KR were implemented to explore the 

impact on the interpersonal setting with a collaborative task in this study. 

A novel paradigm was developed by programming a new iPad-application and 

creating a mechanical apparatus as shown in Figure 4.1 and Figure 4.2, called the tetherball 

paradigm (Hwang et al. 2018a). The mission of the task is to manage the tetherball to travel 

on a given circular track. The ball is tethered to the center on the tablet screen by spring 

that has an elastic force, so that the ball tends to be close to the center when tablet stays 

flat. A pair of participants, therefore, has to tilt the tablet and accelerate the metal ball to 

travel on the target circle (Figure 4.1). Additionally, a participant allowed to move the 

tablet by the index finger along the only x- or y-axis by using one of the levers. Two 

participants, as a result, have to collaborate with temporal synchronization to make a 

circular trajectory of the ball. This paradigm artificially mapped real-time kinematic 

auditory feedbacks onto tablet tilt rate (mapped to PAF), and moving ball position (mapped 

to EAF). Each feedback is divided into x- and y-axis to inform both participants of their 

own and partners’ actions as well as the joint outcomes. With a presence of visual feedback 

of the movements, the artificial auditory feedbacks are increasing the number of perceptual 

modalities. Although kinesthetic and tactile feedback might affect this task, visual and 

auditory feedback play dominant roles in these kind of tasks. It is demonstrated that visual 

information might be most important in perceiving action and its effects (Demos et al., 

2012). Auditory feedback might remarkably alter the participants' perception because the 

human auditory system is powerful especially in perceiving the temporal factors of acoustic 

events, and in identifying pace and rhythm specification (Collier and Logan, 2000; Murgia, 

Prpic, McCullagh, Santoro, Galmonte, 2017). In addition, the human auditory system is 

highly effective not only in being aware of smoothness and regularity of motions, but also 

in synchronizing temporally and adjusting actions to external events (Repp and Penel, 

2002). Therefore, better joint outcomes, temporal synchronization, and collaboration 

experience are expected with the auditory perceptual system involved additionally. 

In this study (Hwang et al., 2018a), three different visual-audio conditions (EAF, 

PAF, and combined EAF and PAF (CAF)) are compared to a visual-only condition (VF; 



 

90 

no audio). In the EAF condition, a melodic sound informs a pair of participants of ball 

dynamics that is the joint outcomes of the task. In the PAF condition, a rhythmical sound 

is provided for feedback of rhythmical movement, which is similar to the sound in a 

research by Demos et al. (2012). EAF is designed to provide the participants with non-

rhythmical sound because rhythmical sound can contain PAF components, affecting the 

task results. Unlike these two separated conditions, two types of sound are mixed in the 

CAF condition. For all conditions, positive hypotheses were defined referring to previous 

literature (Vesper et al., 2013; Effenberg et al., 2016). In each condition, the mean absolute 

error (MAE) was measured to evaluate the improvement of joint outcomes over time, and 

the cross-correlation between the tablet tilt rates in x- and y-axis is assessed for the 

synchronization of their own and partners’ actions. Participants self-reports were asked to 

analyze their subjective experience during interpersonal coordination. According to these 

data, the hypotheses described below were tested (Hwang et al., 2018a): 

 

H1: “Faster error reduction in the task is achieved when participants are provided with 

either additional (a) effect-based, (b) performance-based, or (c) both combined auditory 

feedback.” 

 

H2: “Cross-correlation in the participants' actions is stronger when participants are 

provided with either additional (a) effect-based, (b) performance-based, or (c) both 

combined auditory feedback.” 

 

H3: “Subjective ratings of the sense of interpersonal coordination are more positive when 

participants are additionally provided with (a) effect-based, (b) performance-based, or (c) 

both combined auditory feedback.” 

 

4.2. Materials and Methods 

4.2.1. Participants 

In total 72 healthy participants (female: 30, male: 42, age: 24.8 ± 3.3 years) were 

tested. They have normal eyesight and hearing abilities. Participants were divided into four 



 

91 

different groups for the four different conditions, which means nine pairs are allocated to 

each group. In paring participants, only one criterion is that they should be a “same-sex 

pair.” Participants are also asked to use their dominant hand. The ethical approval of the 

study was issued by the Ethics Committee of Leibniz University Hannover. 

 

4.2.2. System Specifications 

The application of this paradigm was implemented using Objective-C with iPad Air 

(Apple Inc.) operating on iOS 10.2. Display resolution was 2,048 × 1,536 pixels (px), and 

the frame rate is 60 Hz. An accelerometer and gyroscope in the tablet were also sampled 

at 60 Hz. The sound was designed with the Csound 6 (free software under LGPL; 

Boulanger, 2000) and a physical model was implemented by Chipmunk2D Pro (Howling 

Moon Software). During the task, participants wore headphones, (Beyerdynamic DT 100). 

The auditory signal was divided by a 4-channel stereo headphone amplifier (Behringer 

MicroAMP HA400) to supply a pair of participants with the real time audio signal. 

 

4.2.3. Design and Stimuli 

The main screen of the tablet application is shown in Figure 4.1. The ball is tethered 

to the center of the screen by an invisible spring, and the circular track is surrounding the 

center. At the edge of the screen, it is shown that two levers are orthogonally fixed on the 

tablet. The application runs on XGA (1,024 × 768) resolution, where the ball’s radius is 30 

px, whereas the radius of the circular track is 232.5 px (inner: 225 px, outer: 240 px) and 

the thickness of the track line is 15 px. In x-y Cartesian coordinate system, the center of the 

ball position is considered in the analysis. The ball is tethered to the center by an invisible 

spring whose elastic force makes the ball closer to the center when the tablet stays flat. For 

the mission of the task, participants have to tilt the tablet to let the ball travel on the circular 

track surrounding the center. Each participant uses the index finger of the dominant hand 

to manipulate the tablet, which allows move up and down along only x- or y-axis. The long 

lever at the x-axis is designed compared to the y-axis because of the compensation for the 

different lengths of the tablet edge. The tablet is restricted to two degrees of freedom (DOF) 
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Figure 4.2. Side view of the mechanical structure which supports the tablet and restricts to 

2-DOF movement of the tablet. 

 

along the x- and y-axis, which means z-axis rotation is not allowed (see Figure 4.2). For 

the successful joint outcome, it is assessed how close the ball trajectory is located to the 

circular track. The tetherball's circular trajectory can be realized when both participants 

synchronize to tilt the tablet in terms of movement amplitude and frequency, but with a 90° 

phase difference. 

Mechanical structure of the experimental apparatus is depicted in Figure 4.2 in the 

side view. Participants can manipulate the tablet using the levers attached to the casing. A 

vertical bar supports the tablet with a universal joint that restricts the movement to the x- 

and y-axis (roll and pitch), which prevents the yaw rotation around the z-axis. Participants 

were guided to hold the horizontal handle bar (Figure 4.2) that prevents from redundant 

hand movement. Participants’ elbows and wrists are comfortably rested on the wooden 

frame (the layer 2 in Figure 4.2). 

The top view of the mechanical wooden structure is shown in Figure 4.3(a). Each 

participant is asked to take a seat depending on their dominant hand. Right-handed (RH) 

participants take a position on the left of one of the wooden wings, and then they let their 

right arm lie on the layer 2 on their right side. Left-handed (LH) participants can sit on the 

right of a wooden wing to put their left arm on the wood table. The participants were not   
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allowed to swap their positions during the whole task. The horizontal handle bars can be 

adjusted to the individual hand size and handedness, which allows participants to 

manipulate the tablet comfortably. In addition, participants can watch the tablet display 

from almost the same distance, which guarantees that participants have visual information 

in nearly the same condition. The audio output signal from the tablet was split into both 

performers, the same auditory information reaches them via headphones. The headphones 

can monitor their own and partners’ actions as well as joint outcomes by auditory feedback. 

 

Figure 4.4. The feedback loop of perceptual information during the joint task. 

 

 Figure 4.4 shows the feedback loop in terms of the perceptual information during 

the task. Movements of participants and their effects provide kinesthetic, visual, tactile, 

and auditory information. Effect-based visual feedback (VF), EAF, and PAF are artificially 

generated by the tablet application in the measurement, whereas the kinesthetic, tactile, and 

visual feedback of finger movements are provided by the environment independently from 

the measurement. Visual information of the ball movement is defined as VF, which is 

congruent to EAF that is driven by the x-y ball position (audio frequency) and the velocity 

(amplitude). Continuous synthesized violin sound is used for EAF, which is appropriate to 

inform of the ball's continuous movement. The EAF violin sound is distinguishable 

between x- and y-position. In addition, it is familiar to human ears, so that participants can 
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hear it comfortably for a long time. The base audio frequency (fb) is between 250 and 427 

Hz along the x-axis and between 600 and 835 Hz along the y-axis. 

The PAF sound is characterized by rhythmical tilt movements. Referring to the 

embedded gyroscope data, the amplitude of PAF is driven by the rate of turn of the tablet, 

resulting in a certain congruence with the kinesthetic feedback of the finger movements. 

The sound of PAF is created by a white noise generator and band-pass filter (cutoff 

frequency: fb ±25 Hz), which is similar to is “wind sound” when broom sweeps on the floor. 

The base audio frequency is separated referring to each participant. The centrifugal force 

measured by the built-in accelerometer changed fb from 700 to 1,700 Hz (lever 1) and from 

100 to 1,100 Hz (lever 2). By using a noisy wind sound, the PAF sound timbre can imitate 

natural wind sound, so that the sound is comfortable for the participants to hear. The PAF 

is clearly distinguishable from the EAF, which allows the participants to have two types of 

auditory information together in the CAF condition. These two types of augmented 

auditory feedback (PAF, EAF) are designed for three audio-visual conditions, which is 

hearable or perceivable over the given natural feedbacks such as kinesthetic, visual and 

tactile feedback, 

 

4.2.4. Procedure 

At the beginning of the test, participants were given a questionnaire to complete 

their personal backgrounds such as music and sports experience. Eyesight and hearing 

abilities were tested by the Landolt rings chart (Jochen Meyer-Hilberg) and the HTTS 

audio test (SAX GmbH), which confirms that the participants can properly perform with 

the tetherball paradigm. Visio-motor ability is also tested by the tablet application, in which 

a participant let a ball placed on a target that moves along only one axis but changing the 

direction randomly as shown in Figure 4.5. Two participants performed this visuo-motor 

test together, but each participant is responsible for their own ball moving along their 

corresponding axis. 
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Figure 4.5. Top view of a visuo-motor test application to measure the individual visuo-

motor ability which is an important skill for the performance at the tetherball-application.  
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The participants’ visuo-motor skills were assessed in the visuo-motor test 

application for 2 minutes, which also makes participants familiarized in manipulating the 

tablet. When participants perform the visuo-motor test, the mean absolute error between 

the moving target and ball was measured for 30 s at the end of the 2-minute period. 

Participants’ mean absolute error and gender are parallelized in four groups. The visual 

group (VFG) allows only VF without any types of auditory feedback, which works as a 

reference condition. Additional to the VF, the EAF group (EAFG), PAF group (PAFG), 

and CAF group (CAFG) receives EAF, PAF, and CAF, respectively. All four groups also 

got natural perceptual feedback: kinesthetic, visual, and tactile feedback. The results of the 

visuo-motor test are well parallelized in four groups, which have nearly the same level in 

the average and standard deviation [VFG: 75 ±23 px, EAFG: 72 ±29 px, PAFG: 70 ±20 

px, CAFG: 78 ±16 px] and in analysis of variance (ANOVA) [F(3, 36) = 0.24, p = 0.872, 

ηp
2 = 0.02]. 

Pairs of participants performed each trial for 1 minute, and 15 trials in total. Five 

trials are bound to one set, resulting in a total of three sets. Between the sets, a 2-minute 

break was given to each participant. In the main test, participants were asked not to talk 

about the possible strategies, which leads to the nonverbal joint performance as well as the 

concentration on the task. They were also instructed to let the ball revolve in clockwise 

direction (CW). After the test, the second questionnaires were given to the participants for 

subjective ratings of their experience during interpersonal coordination in the tetherball 

paradigm. The questionnaire included four questions with 7-point Likert scale (Likert, R., 

1932), which subjectively evaluates the own, partners', and joint outcomes during the test. 

 

4.2.5. Data Analysis 

The tablet application recorded the ball trajectories (from screen) and the angular 

velocity of the tablet (from gyroscope) at a 60 Hz sampling rate. In each trial, mean absolute 

errors and the cross correlations were submitted to three-way ANOVAs of a between-

subject factor Group (VFG vs. EAFG, VFG vs. PAFG, VFG vs. CAFG) and the within-

subject factors Set (set I–III) and five trials in each set. The Mauchly's sphericity test was 
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conducted (with Huynh–Feldt correction for significance of ANOVA) for the shpericity 

assumption, which met the variances between the individual factor levels as well as the 

correlations between the factor levels are homogeneous. Levene's test was carried out to 

assess homogeneity of variances and Tukey's honestly significant different (HSD) tests 

were implemented for the post-hoc comparisons. Participants’ self-report of the 

interpersonal coordination were compared with Mann–Whitney-U-Tests for across groups 

and a Wilcoxon test for within-groups. The overall significance level was set at 5%. 

 

4.3. Results 

Expertise in sports, music, and computer game were asked, as well as visuo-motor 

test performance were taken into account in the data analysis because they could affect the 

overall results in the tetherball paradigm. In comparisons between these parameters of the 

visual group (VFG) and those of the audio-visual groups (EAFG, PAFG, CAFG), there 

were no significant differences except on sport expertise between the VFG and PAFG [F(1, 

16) = 6.38, p = 0.022, ηp
2 = 0.29]. Therefore, sport specific expertise was considered as a 

possible covariate in the future analyses.  

For the main analysis, the joint outcomes were assessed by the mean absolute error 

between the radius of the circular track and the ball's trajectory. A mean absolute error 

during a 1-minute trial was calculated, but 500 samples (8.3 s) at the beginning were 

omitted, which is the average time about to initiate the circling ball's movement. With the 

mean absolute error, the means and standard deviations were calculated across the subjects 

for each trial and in each group as shown in Figure 4.6. 

In Figure 4.6, comparing VFG with EAFG, the mean absolute error across trials 

decreased significantly from Set I to Set II and to Set III as shown by the significant main 

effect for set [F(2, 30) = 3.95, p = 0.043, ηp
2 = 0.21]. This is also confirmed in the post-hoc 

test between Set I to Set II (p < 0.001) and Set I to Set III (p < 0.001), resulting in the 

significant differences. Within each set, moreover, the mean absolute error is reduced from 

Trial 1 to Trial 5 [F(4, 60) = 4.58, p = 0.005, ηp
2 = 0.23]. A post-hoc comparison confirmed   
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that Trial 1 was significantly different from all the other trials (all p < 0.001), and Trial 2–

4 from Trial 5 (both p < 0.01). The reduction trend of the mean absolute error across trials 

was significantly correlated with the sport specific expertise [F(4, 60) = 3.84, p = 0.013, 

ηp
2 = 0.20]. 

The three-way interaction Set*Trial*Group confirmed significant difference in the 

reduction trend of the mean absolute error [F(8, 120) = 2.63, p = 0.030, ηp
2 = 0.15] (due to 

p < 0.05). In EAFG, the mean absolute error decreased dynamically in the first four trials 

and then reached a stable plateau at the fourth trial. A post-hoc test confirmed significant 

differences from Trial 1–3 to the last trial (at least p < 0.05); however, no significant 

differences from Trial 4 to all remaining trials became significant (all p > 0.05). Compared 

to EAFG, the results in VFG slowly reached a plateau as the same level as that in EAFG 

as shown in Figure 4.6. The post-hoc test showed significant differences from Trial 1–6 

(the first six trials) to Trial 13–15 (the last three trials) (at least p < 0.05). Levene's test 

revealed that variances significantly differed between groups in Trials 4–8 and Trial 12 (at 

least p < 0.05). 

In contrast to the EAFG, the PAFG failed to confirm a significant difference from 

the VFG across group and in their interactions. Analysis across groups, nevertheless, 

showed significant the main effects [Set: F(2, 32) = 56.66, p < 0.001, ηp
2 = 0.78; Trial: F(4, 

64) = 40.81, p < 0.001, ηp
2 = 0.72], as well as interactions [F(4, 64) = 10.19, p < 0.001, ηp

2 

= 0.39]. In a post-hoc test, the latter interaction is significantly different between Trial 1–

2 and Trial 3–5 in Set I (at least p < 0.05) as well as between Trial 6 and Trial 9–10 in Set 

II (at least p < 0.05), but not in Set III (all p > 0.05). Obviously the mean absolute error 

decreased mainly in Set I and the beginning of Set II but plateaued in Set III. The Levene's 

test failed to show significant differences in the other trials. 

An ANOVA of VFG and CAFG revealed the same overall effects as the other 

groups’ results [Set: F(2, 32) = 67.26, p < 0.001, ηp
2 = 0.81; Trial: F(4, 64) = 35.76, p < 

0.001, ηp
2 = 0.69], and demonstrated a significant interaction of Set*Trial [F(4, 64) = 10.56, 

p < 0.001, ηp
2 = 0.40]. The CAFG, moreover, had a significant difference on the reduction 

course of the mean absolute error, which is supported by significant interactions in   
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ANOVA with Trial*Group [F(4, 64) = 3.70, p = 0.021, ηp
2 = 0.19]. According to the post- 

hoc test of the CAFG, the mean absolute error further decreased between the second last 

and the last trial (p = 0.02), compared to VFG (p > 0.05). In addition, the significant 

interaction in three-way ANOVA with Set*Trial*Group [F(8, 128) = 2.45, p = 0.031, ηp
2 

= 0.13] revealed that the mean absolute error was differently reduced between groups over 

time. Compared to VFG, the mean absolute error reached a plateau on an early trial in 

CAFG, which is supported by Tukey's post-hoc test: the mean absolute error was 

decreasing during the first five trials (Trial 1–5) that shows significant differences from the 

last trial in CAFG (all p < 0.001). In VFG, however, the mean absolute error is getting 

reduced during the first six trials (Trial 1–6), that displayed significant differences from 

the last trial (all p < 0.001). This indicated that the mean absolute errors in CAFG were 

decreasing faster than in VFG. Levene's test did not reveal significant differences in any of 

the trials. 

For another analysis, cross correlation is applied for the measurement similarity of 

two series in numerical data analysis and statistics (Proakis and Manolakis, 1996). Data 

processing using cross correlation can also analyze time delay between two data series 

(Rhudy, Bucci, Vipperman, Allanach, and Abraham, 2009), which is applicable to 

temporal parameter analysis of interpersonal coordination (Cornejo, Cuadros, Morales, and 

Paredes, 2017). In this experiment, cross correlation between angular velocities of x- and 

y-axis of the tablet was used to measure the degree of temporal synchronization between 

finger movements of both participants, which is calculated with all other pairs (Figure 4.7). 

First of all, 1,000 samples were taken into account for a unit of cross correlation, 

and three units in three different periods were included in a 1-minute trial. In total 3,610 

samples (60.2 s), 3,000 samples are analyzed. At the beginning, the ball improperly 

revolved around the center, so that 500 samples were eliminated. Another 100 samples are 

placed between the cross correlation units, and 10 samples were placed at the end. Each 

cross correlation unit resulted in a series of coefficients along with lags. Coefficients with 

a lag between n = 8 and 15 were used, which indicates synchronization with around 90º 

phase difference for the circling ball. The range of the lags served as an empirical standard, 
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which was obtained by data from 12 pairs (three pairs per group) who achieved the lowest 

mean absolute error in Trial 11–15. The data from the pairs showed 11.65 (±4.53) samples 

differences, when they were performing with their maximum joint outcomes. From the 

numerical result, the range of the lags between n = 8 and 15 can be focused to assess the 

level of synchronization. The mean coefficient in the range of a unit (1,000 samples) is 

compared with the other two units in each trial. The highest value was regarded as a 

representative cross correlation result of the trial, which can indicate the maximum joint 

outcome in each trial. Dividing into three units can also avoid the average effect of the data 

that can be altered by participants’ mistakes. It is observed that cross correlation results 

improved over time according to across subject’s means and standard deviations (Figure 

4.7). This was also supported by ANOVAs which confirmed the significance of the factor 

“Set” with the VFG and audio-visual groups [VFG and EAFG: F(2, 32) = 26.81, p < 0.001, 

ηp
2 = 0.63; VFG and PAFG: F(2, 32) = 21.17, p < 0.001, ηp

2 = 0.57; VFG and CAFG: F(2, 

32) = 26.82, p < 0.001, ηp
2 = 0.63] as well as the factor “Trial” [VFG and EAFG: F(4, 64) 

= 5.49, p = 0.003, ηp
2 = 0.26; VFG and PAFG: F(4, 64) = 5.48, p < 0.001, ηp

2 = 0.26; VFG 

and CAFG: F(4, 64) = 8.68, p < 0.001, ηp
2 = 0.35]. The improvement of cross correlation 

in these groups was also indicated by the significant interactions Set*Trial [VFG and 

EAFG: F(8, 128) = 5.25, p < 0.001, ηp
2 = 0.25; VFG and PAFG: F(8, 128) = 4.68, p < 

0.001, ηp
2 = 0.23; VFG and CAFG: F(8, 128) = 6.20, p < 0.001, ηp

2 = 0.28]. Interestingly, 

cross correlations in CAFG increased significantly faster than in VFG. The significance is 

confirmed by ANOVA with the three-way interaction Set*Trial*Group [F(8, 128) = 2.53, 

p = 0.014, ηp
2 = 0.14]. A Tukey's post-hoc test revealed significant differences between 

Trial 1–3 and Trial 15 (the last trial) within VFG (each p <0.05). In CAFG, on the other 

hand, only Trial 1–2 significantly differed from the last trial (each p<0.05). 

Results of participants’ self-reports are shown with the box and whisker plots 

(Figure 4.8). Participants were asked to answer a questionnaire with 7-point Likert scales 

(the most negative: 1, the most positive: 7). The results of the first question “How much 

did you feel your movement helps the collaborator's performance?” resulted in no   
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significant differences between VFG and other audio-visual groups, which is confirmed by 

Mann–Whitney U-tests [VFG vs. EAFG: U = 150.0, p = 0.719; VFG vs. PAFG: U = 161.0, 

p = 0.988; VFG vs. CAFG: U = 120.0, p = 0.192]. The second question “How much did 

you feel the collaborator's movement helps your performance?” also showed no significant 

differences [VFG vs. EAFG: U = 159.5, p = 0.938; VFG vs. PAFG: U = 136.0, p = 0.424; 

VFG vs. CAFG: U = 159.0, p = 0.938]. However, in the third question “How did you 

experience the collaboration with your partner?” (unpleasant: 1, very pleasant: 7), all 

audio-visual groups showed significant differences to VFG [VFG vs. EAFG: U = 66.0, p 

= 0.002; VFG vs. PAFG: U = 60.0, p = 0.001; VFG vs. CAFG: U = 90.5, p = 0.022]. In 

the fourth question “How effectively did you feel that you managed to do the task?” (not 

effectively at all: 1, very effectively: 7), two sub-questions were asked to answer their 

feelings “at the beginning” and “at the end” of the task. None of audio-visual groups 

showed significant differences [VFG vs. PAFG: U = 151.0, p = 0.743; VFG vs. EAFG: U 

= 103.0, p = 0.064; VFG vs. CAFG: U = 156.0, p = 0.864]; however, only EAFG showed 

a tendency of difference between VFG and EAFG (p = 0.064). Participants in all groups 

felt that they had an improvement in managing the tablet at the end, compared to the 

beginning, which is confirmed by a significant difference in the Wilcoxon-Test (z = −7.28, 

p < 0.001). The improvement calculated as pre-post difference was not significant between 

groups [VFG vs. EAFG: U = 112, p = 0.118; VFG vs. PAFG: U = 156, p = 0.864; VFG vs. 

CAFG: U = 128, p = 0.293]. 

 

4.4. Discussion 

Data were analyzed in the tetherball paradigm to assess interpersonal coordination 

in terms of the mean absolute error, the cross correlation results, and participants’ self-

reports. In comparisons of VFG to three audio-visual groups, results revealed that the mean 

absolute error decreased significantly faster in EAFG and CAFG than VFG, but no 

statistical differences were observed between PAF and VFG. These results support the first 

hypothesis, H1(a) and H1(c) but not H1(b). Regarding the second hypothesis, only H2(c) 

is confirmed by the cross correlation results because a significant difference was observed 
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only between VFG and CAFG. In terms of the third hypothesis, most of the participants in 

all groups seemed to perceive that they affected each other during the joint task; however, 

no significant differences were observed between groups. Interestingly, participants in 

audio-visual groups felt pleased more than VFG during the main test. Although all 

participants seemed to feel the improvement in manipulating the tablet together, no 

significant differences were reported between VFG and audio-visual groups. Therefore, 

the third hypothesis (H3) is partially confirmed regarding a pleasant feeling during the joint 

task. 

In the cyclic task, it is expected that the participants predicted their partner's actions 

and the joint outcomes. The results demonstrated that real-time audio-visual feedback 

supports the improvement of joint outcomes. According to Stein and Stanford (2008), the 

integration of auditory and visual information in multisensory areas of the central nervous 

system (CNS) usually improves one’s perception. This phenomenon might lead 

participants to have better perception regarding movements of their own and partner's 

actions as well as joint outcomes, which can bring positive effects on the joint task. 

Additionally, previously referred literature (Schmidt and Richardson, 2008; Keller et al., 

2014; Lang et al., 2016; Loehr and Vesper, 2016) underlines that rhythmical movement 

components are significantly related to interpersonal coordination. The rhythmic 

movement components during interpersonal coordination can decrease practice efforts and 

errors (Lang et al., 2016; Loehr and Vesper, 2016). When perceptual information of the 

rhythmical movement is shared by two or more individuals, spatiotemporal entrainment is 

enhanced by the same dynamic principles of the movement (Knoblich, Butterfill, and 

Sebanz, 2011; Phillips-Silver and Keller, 2012). Schmidt and Richardson (2008) also 

supported that additional perceptual information can improve the degree of action coupling, 

enabling interactants to align their movements. In the tetherball paradigm, sound of EAF 

was non-rhythmical but finally provides a periodic melody. This sound can aid the 

participants to predict their partner’s and ball’s dynamics, enhancing the precision of their 

own movement. After reaching the plateau, the mean absolute error in EAFG showed less 

standard deviation than in VFG. This possibly means that participants maintained their 
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joint performance well, after an audio-visual-motor network in the brain was established 

regarding a specific task. 

In contrast, PAF failed to significantly affect the reduction of the mean absolute 

error and the improvement of the cross correlation, compared to VF. This suggests that 

different effects can be observed with different types of feedback on the joint task. One 

possible explanation is the effect of integration of auditory information with other 

perceptual modalities, which is called multisensory integration. Allerdissen et al. (2017) 

demonstrated that fencing experts showed almost the same pattern of results with both 

audio-visual and visual information. Demos et al. (2012) also suggested that the level of 

interpersonal coordination can be improved by audio-visual feedback, but can be decreased 

if auditory feedback is not task-related like music. Another possibility in the tetherball 

paradigm is that the types of sounds might influence the results. To be specific, EAF sound 

(“synthesized violin”) might be more dominant than PAF sound (“wind noise”), because 

EAF sound was a continuous sound with high audio frequency and bright timbre. Both 

sounds, nonetheless, were well-balanced and perceivable. 

Another approach was made with CAFG by increasing the usual feedback in a 

motor learning setting. As reported by Effenberg et al., 2016, it was indicated that the motor 

performance is enhanced without conscious attention drawn to both types of auditory 

feedback which had been applied simultaneously. Also in the joint task of the tetherball 

paradigm, CAF confirmed a significant effect on interpersonal coordination, regarding not 

only the joint performance, but also the temporal synchronization. When it comes to the 

joint performance, the improvement might stem from the presence of EAF because PAF 

did not show any significant effect in the statistical analysis. However, in terms of the 

temporal synchronization, the positive effect might be supported by a synergy between 

EAF and PAF. In other words, although PAF-only and EAF-only condition failed to make 

an effect on interpersonal coordination, better joint performance was observed with a 

combination of PAF and EAF. 

Participants’ self-report suggested that a joint task can be more pleasant with audio-

visual feedbacks than only VF. The pleasant feeling with EAF might motivate the 
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collaboration, and cause significant improvement of the joint performance. Although PAF 

alone failed to have significant effect on physical coordination, it might significantly 

influence the psychological connectedness. This argument can be supported by Demos et 

al. (2012) who reported that participants felt connected, no matter whether they listen to 

task-related or non-task-related sound. In other words, the pleasant feelings might be 

related to the auditory component than to the task performance. For future research, it 

might be worth researching on how much participants’ pleasant feeling during the joint 

task depends on different types of sound: task-related and non-task-related sound; or 

rhythmical and non-rhythmical sound. This approach would be in line with a research on 

the affective entrainment by Phillips-Silver and Keller (2012) who investigated the 

relationship between the pleasantness of participants and the task-relatedness of sound. 

In interactions between humans and machines, auditory feedback can be applied in 

future. Humans move and react based on an ecological audio-motor network in brain which 

results from every-day experiences (Carello, Wagman, and Turvey 2005): When a car 

moves faster, the engine sounds louder. Such correlation between sound and movement are 

also observed when using a vacuum cleaner, a washing machine, and a printer, which might 

be regarded as PAF. On the other hand, humans also experience with ecological or artificial 

EAF: A car equipped with sensors can inform the driver of the distance to obstacles during 

parking by auditory feedback. A radar also sonifies the displacement and velocity of nearby 

objects. In this context, machines can transfer auditory information to humans. The 

tetherball paradigm represents the case of human-human interaction in a first step. The 

following studies might research on which types of sound are the best to improve human-

machine interactions. It is important how the appropriate sound is chosen to map to 

physical performance and events. As shown with the tetherball paradigm, the results 

suggest that the joint performance between humans can benefit from EAF, at least, if the 

common goal is known already. In the case of interaction between human and humanoid 

robot, two agents might not share a common expected goal and perception because they 

did not experience other’s movement behaviors before. For the novel interaction scenarios, 

PAF might be useful in a first step because both agents have to try to understand their 
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partners’ movements initially. Although PAF did not show a significant effect here on 

human-human interaction, humanoid robot-human interaction might benefit more by 

initiating audio-visual-motion networks when initiating joint performance: According to 

Schmitz et al. (2013), appropriate auditory feedback from humanoid robot’s movements 

might address biological motion perception mechanisms in the brain, even though these 

mechanisms are usually not addressed by non-human motions. 

 

4.5. Conclusion 

This research on auditory feedback in the motor domain is directed to the two 

categories: “Knowledge of performance” (KP) and “Knowledge of result” (KR). Within 

multisensory interplay, different types of auditory information can affect interpersonal 

coordination in different ways, which supports studies on the proximal sensorimotor 

contingency in socSMCs research project. For more observation of changing action-effect 

contingencies in different conditions, more variations of the joint task (e.g., sound synthesis, 

task period, task difficulty) can be of interest for the future studies. Furthermore, it is 

important to investigate the relationship between motor learning and the emergence of 

interpersonal coordination because both refer closely to the perception of kinematics, 

especially partners’ or objects’ movements (e.g., a sofa, a tetherball). Although research 

on both motor learning and interpersonal coordination is a challenging approach, for the 

future studies, continued efforts are needed by focusing on how to support the kinematic 

perception for improving individual and joint behavior in many different fields of research. 
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Chapter 5.  Discussion and Conclusion  

 

In this dissertation, IMU-based basic measurement solutions are described to 

improve interpersonal coordination from Chapter 2 to Chapter 4. In Chapter 2, 

spatiotemporal gait parameters were measured using a single H-IMU. The single IMU 

solution can detect the exact time point of HS and TO. Measuring angular gait parameters 

are inherently impossible with a single IMU; however, the proposed solution has enabled 

real-time TO detection with head kinematic data for the first time, thereby increasing 

capability of single head-worn IMU solutions (e.g., earbuds, HMD) to measure 

spatiotemporal gait parameters. Furthermore, despite a small number of participants, the 

H-IMU shows reliability and robustness compared to pedometers, E-AR, and smartphones.   

In Chapter 3, the simple H-IMU system monitors head motion and gait 

simultaneously when two individuals walk and talk. The proposed system enables an easy 

assessment of three interrelating components: positivity, mutual attentiveness, and 

coordination. These components vary during rapport development over time, and are 

interesting to researchers of interpersonal relationship (Tickle-Degnen and Rosenthal, 

1990). Head pose estimation with an IMU is implemented, which facilitates the analysis of 

head nod and head orientation, indicating positivity and mutual attentiveness. In terms of 

coordination, the time correlation of interactants’ gait events is also monitored in terms of 

the double support period, which is the time duration when both feet are on the ground. 

The proposed IMU method is, however, restricted to the molecular method, which 

measures rapport with discrete behaviors independently from social contexts. For example, 

the H-IMU system is able to only measure behavioral mirroring coordination, but not 

collaborative and interactive synchrony (Tickle-Degnen and Rosenthal, 1990). 

Nevertheless, the IMU solution provides structured and objective rapport components, and 

reduces measurement time and cost. 

In Chapter 4, finally, a simple IMU solution is realized for a psychological study. 

An IMU based tablet (iPad Air) was used for a joint task, named “Tetherball paradigm.” 

The study is about how different types of auditory feedback affect interpersonal 
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coordination. In the study, two participants performed the task with different auditory 

conditions. The joint outcomes and collaborative coordination were measured by the IMU-

based tablet application. Each participant’s feelings and experiences about interpersonal 

activity were also assessed by a questionnaire. The results depend on different types of 

auditory feedback with effect- and performance-based information. Interpersonal 

coordination was significantly influenced in terms of three categories: the joint 

performance (significantly influenced by CAF, and EAF), the temporal synchrony (by 

CAF), and pleasant feelings during the task (by CAF, EAF, and PAF). The tablet with an 

IMU monitored not only individual movements, but also the joint outcomes. Both types of 

data were used for the sound synthesis for auditory-motor feedback.  

Each chapter of this dissertation includes new findings tightly related to human 

movement measurement using a single IMU solution, which can contribute to the analysis 

and enhancement of interpersonal coordination. As a part of the socSMCs project 

supported by EU, this work is framed with distal and proximal interpersonal coordination, 

considering group and dyad settings. In line with studies in the EU project, this work aims 

to contribute to the promotion of one’s social well-being as well as public health, especially 

for individuals with social deficits. Human-robot interaction research may also benefit by 

collecting behavioral data during interaction between human and non-human agents, which 

remains as future works. General findings, contributions, and applications are discussed in 

the following sections.  

 

5.1. Advantages and Comparisons 

 

5.1.1. H-IMU: Advantages in Measuring Large Groups 

The proposed H-IMU solution enables contribution to the measurement of the 

kinematics in group interactions. In this case, the H-IMU has a remarkable advantage in 

terms of cost. For example, when ten agents perform, the XSENS system (whole body 

mode) needs 170 sensors; however, H-IMU needs 10 sensors. During the measurement of 

football players, optical motion capture systems need a number of high resolution cameras, 
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which are fixed on the edges of the football field. These whole body motion capture 

systems can provide more kinematic data from a person, whereas H-IMU solutions can 

easily collect kinematic data from a larger number of people because it is very simple to 

set up the sensors on all participants. In terms of simplicity and cost, surveillance cameras 

and drones can be comparable to the H-IMU. Image processing technology enables 

cameras to measure gait and head orientation. Compared to the H-IMU, however, the 

camera systems need higher computational cost because they need additional computations 

to obtain human kinematic data, such as down sampling, image filtering, and facial feature 

detection. The additional computations, nevertheless, do not result in higher measurement 

resolution than the H-IMU. Including error canceling, XSENS MTw sensor used by this 

work provides higher sensitivity up to 0.50 dps (degree per second, ˚/s; Xsens MTw 

Awinda), which can be even higher with a gyroscope from ST Microelectronics (2013) that 

is embedded in smartphones and sensitive up to 0.00875 dps with raw data. An FHD or 4K 

camera can monitor multiple agents’ interaction, but it might not provide gait information 

as much as H-IMU.  

 

5.1.2. Tetherball Study: Advantage of IMU-Based Tablet Task 

Unlike methodological studies in other chapters, Chapter 4 describes a behavioral 

study with a novel intervention, called the “Tetherball paradigm.” This paradigm includes 

not only kinematic measurement, but also sensorimotor feedback using auditory 

information. The self-reports and the statistical analysis of 96 participants are included. 

The tetherball paradigm is designed to assess how different types of auditory information 

affect interpersonal coordination in a joint task. It is one of the simplest systems for 

measuring behaviors during collaborative interactions. Although a tablet PC equipped with 

an IMU is implemented, it can measure joint outcomes and synchronization simultaneously, 

which includes three advantages. First of all, joint outcomes are simply measured by a 

single IMU solution. In musical ensembles, the level of successful joint outcomes relies on 

co-performers’ auditory perceptions of partner’s performance, which is measured by 

electroencephalography (EEG) (Loehr et al., 2013). Secondly, whereas the previous 
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research has regarded the synchrony as joint outcomes (Vicaria and Dickens, 2016), joint 

outcomes and synchrony are measured independently in this study. To be specific, an 

effect-based and performance-based movement are measured for joint outcomes and 

synchrony, respectively. Thirdly, it is the first time that joint outcomes are measured in a 

collaborative interaction scenario while a pair of performers have continuous contact with 

an object. Previously, the joint outcomes were measured in the auditory or visual domain 

without physical contact. For example, joint outcomes have been assessed with the musical 

harmony played by two separated musicians (Loehr et al., 2013), as well as a visual 

synchrony between two separated dancers (Waterhouse et al., 2014).  

Based on the separated measurement of both participants’ movements, two types 

of auditory information can be generated: effect-based (EAF) and performance-based 

auditory feedback (PAF). Combined auditory feedback (CAF: EAF + PAF) influenced 

joint outcomes and interpersonal synchronization; however, EAF-only affects joint 

outcomes, and PAF-only did not significantly affect both outcomes and synchronization. 

To figure out the reason, it is required to test more with different sound in the PAF 

condition. For instance, the noise-based wind sound used for PAF must be replaced by the 

continuous violin sound (previously used in EAF). Another approach is changing the task 

levels. The joint task might not have been difficult enough to show a possible effect of PAF 

on interpersonal coordination. From participants’ self-report, nevertheless, all auditory 

feedbacks significantly affect participants’ pleasant feeling during the joint task, which is 

the affective component of interpersonal coordination (Phillips-Silver and Keller, 2012). 

In the future, the paradigm can be a reference for studies on the affective aspect of the 

entrainment, by comparing task related sound with non-task-related sound. 

 

5.2. Tetherball Study: Comparison with Other Interpersonal Coordination Studies 

Despite the simplicity of the solution, the tetherball paradigm enables the 

measurement of a higher level of joint attention. For studies on interpersonal coordination 

with sensorimotor feedback, not only cameras, but also keyboards, buttons, and pressure 

sensors have been used (Waterhouse et al., 2014; Vesper and Richardson, 2014; Vesper et 
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al., 2013). Recently, motion capture systems and HMDs have been also used in virtual 

environment (Waltemate, 2018). These experiments consider the alignment of the onset 

and end of movements as well as the similarity of movement trajectories (e.g., arm, legs) 

during joint tasks or mirroring tasks. It was also considered how a participant predicts 

another participants’ actions. With the motion capture systems and HMDs, participants’ 

input and response of nonverbal actions are easily measured; however, most of the systems 

are designed for distal settings and the molecular level of measurement by analyzing 

discrete movements. Unlike these solutions, the tetherball paradigm is designed to measure 

interpersonal coordination in proximal settings because participants are asked to 

manipulate one object together. This paradigm also considers the molar level of 

measurement. For example, one participant should modify the reaction to the partner’s 

action considering the ball’s movement, even though the partner moves in the same pattern. 

This means participants should differently respond to the partner’s input depending on the 

contextual information resulting from their joint actions. Their joint activities can be 

analyzed with information about the rate of turn of the tablet and velocity of the ball. The 

analysis of their input and response can be separately measured because a participant is 

allowed to move the tablet along only one axis. For professional measurement, the 

tetherball paradigm can be combined with camera systems or EEG systems, thereby 

monitoring participants’ facial expressions or brain activities. For commercial uses, the 

apparatus that supports the tablet should be simplified.  

 

5.3. Technical Review 

5.3.1. H-IMU: System Optimizations for Spread of the Solution 

On the other hand, it is necessary to optimize for real applications, such as wireless 

earbuds or HMDs. For example, there are various wireless standards (e.g., Bluetooth, Wi-

Fi, and Zig-Bee) and some devices have their own host controller units (e.g., ARM 

processors), which have different electrical properties and would require optimization of 

threshold values and cut off frequency in the proposed algorithm. In addition, since the 

study is performed with only one pair of participants, rapport analyses with more 

participants are needed for real intervention scenarios. For the future works, the system 
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also needs optimal settings of algorithm for different individuals considering age, height, 

and gender, to name a few.  

 

5.3.2. H-IMU: Compatibility for more Analytical Parameters 

To develop a professional application with more Analytical parameters, H-IMU can 

be combined with other sensor systems, which can provide kinematic information in 

independent and interpersonal conditions. The H-IMU system is compatible with other 

motion sensors and cameras. For motion sensors, it has been proven in Chapter 2 where 

the kinematic data were obtained with the foot and pelvis IMUs at the same time. If knee 

and hip angles are measured by additional IMUs on the lower body, more gait parameters 

are obtained with optimal number of sensors. 

A camera sensor has been embedded with an IMU to improve localization systems 

by compensating for IMU’s accumulate errors (Hesch et al., 2014). Based on the improved 

positioning system, a combination of IMU sensors and cameras can be used for not only 

single agent, but also multi-agents. In addition, if cameras are placed in different position 

from the IMU, it can provide a different type of information. From the real time video 

recordings, facial expression, hand gestures, and contextual information, can be observed 

during interaction, which can enable more accurate estimation of interactants’ rapport and 

emotion (Tickle-Degnen and Rosenthal, 1990). 

Furthermore, other assessment methods can improve independent and interactive 

analysis with H-IMU. Machine learning algorithms such as hidden Markov model (HMM) 

can increase accuracy for different individuals referring to collected individual data. 

Results of participants’ self-report and the judges’ impressions can strengthen the 

combination of a molecular and a molar measurement.  

No matter which system is combined with H-IMU, additional analytical parameters 

are supportive to overcome the limitation of single H-IMU solutions. On the other hand, 

analysis of head kinematics with H-IMU provides a great deal of information about gait 

patterns, walking direction, and social cues. The simplicity of H-IMU is also advantage to 

establish a combination with other sensors or systems. The proposed H-IMU solution also 
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can be easily combined with various health monitoring systems for one’s physical and 

social activity.  

 

5.3.3. Tetherball Study: Sound Systems  

As a real time sound synthesizer solution, Csound 6 runs well with Objective C for 

an iPad application. On the other hand, Csound 6 requires programming details of sound 

properties. Compared to the self-programming, it is easy to use a hardware synthesizer box, 

such as SonicCell (Rolland Corp.) that easily synthesizes various sound effects with several 

buttons and wheels. However, the SonicCell system causes more complicated experiment 

settings because of the additional device and wire connections. When a wireless solution 

is used to reduce the wire connections, sound delay can increase to around 116 ms (from 

video and audio analysis with Kdenlive 19.04.0). In this work, therefore, the iPad Air is 

responsible for both auditory and visual output with Csound 6 and Objective C, as a one-

device solution. The tablet has enough computing power for physical modeling of the ball 

and the spring as well as synthesizing sound. The sound delay is about 83 ms (Kdenlive 

19.04 and Audacity 2.3.1), by reducing Wi-Fi communication delay, which leads to the 

simple measurement solution for interpersonal coordination. 

 

5.4. Future Applications 

Single IMU solutions enable the measurement of human behaviors during 

interpersonal coordination at low costs. Compared to motion capture systems and EEG, 

users have easy access to the devices with IMUs, which can facilitate studies on emotional 

and kinematic interactions, even outside the laboratory. Researchers of joint actions have 

instant results by using smart devices with IMUs, such as smartphones, tablets, smart 

watches, pedometers and earbuds in every-day life settings. The researchers can also 

collect more valuable data in participants’ real life, compared to experimental laboratory 

settings. The single IMU solutions also facilitate both dyadic and group interpersonal 

coordination because they can be implemented with a bigger number of participants at 
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lower costs, compared to motion capture or EEG solutions. The single IMU solutions can 

directly support researchers and practitioners interested in one’s physical and social health. 

 

5.4.1. Walking Intervention 

The walking intervention is currently performed with mainly two objectives: 

rehabilitation and disease prevention. First, elderly people and patients can relieve chronic 

and acute pains caused by musculo-skeletal problems of the knee, back, and hip (Ferrell, 

Josephson, Pollan, Loy, and Ferrell, 1997; Sitthipornvorakul, Klinsophon, Sihawong, and 

Janwantanakul, 2017). A walking intervention can also help to rehabilitate gait 

dysfunctions and support post-operative patient care. Secondly, World Health 

Organization (WHO) reported in 2018 that walking is one of key means to increase 

physical activity on a daily basis (see also Carr, Karvinen, Peavler, Smith, and Cangelosi, 

2013). The increasing physical activity can reduce sedentary behaviors, and prevent 

lifestyle diseases, such as obesity, diabetes, hypertension, and heart disease, thereby 

promoting public health. Both types of walking interventions can be supported by 

technology. Pedometers and smartphones can aid in setting a daily goal and monitoring 

physical activity (Mansi, Milosavljevic, Baxter, Tumilty, and Hendrick, 2014). Therapists 

can manage patients via internet, which enables walking interventions at home, workplaces 

and neighborhood. With these advantages, H-IMU can additionally monitor the balance 

control, provide auditory-motor feedback, and implement virtual/augmented reality. These 

functions of H-IMU enable high quality interventions based on advanced gait analysis in 

everyday life settings. To sum up, H-IMU can contribute to public health and quality of 

life by increasing physical activity.  

 

5.4.2. Walk and Talk Intervention 

Psychological therapies with outdoor activities have been developed, such as nature 

therapy (Berger and McLeod, 2006), outdoor therapy (Revell, Duncan, and Cooper, 2014; 

Jordan, 2015), and adventure therapy (Gass, Gillis, and Russell, 2012). Walk and talk 

interventions are in line with outdoor-based psychological therapies. Walking itself 
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contributes to psychological health: enhancement of psychological processing (Hays, 

1999), alleviation of depressive symptoms (Pickett, Yardley and Kendrick, 2012) as well 

as improvement of self-esteem and mood (Barton, Hine and Pretty, 2009). These effects 

result from increasing physical activities, which are encouraged by primary care settings 

of walk and talk interventions. In primary care settings, nurse practitioners can increase 

clients’ physical activity by counseling the intervention. The practitioners help clients to 

set short- and long-term goals, as well as monitor their progress—comparable to 

pedometer-driven interventions. They can also provide clients’ clear understanding about 

target behaviors of the therapy, based on the health behavioral theory. These therapies 

enable individualized interventions, which are usually more effective. Therefore, walk and 

talk intervention can be recommended in primary care settings due to its contribution to 

mental health through increased physical activity. 

In addition, walk and talk interventions play an important role in psychological 

therapy as well. When walking outside, therapists and clients can create a casual and 

meditative atmosphere, which aids in opening clients’ mind compared to a counselling 

office. Clients can, therefore, directly talk about their business, relationships, and family 

issues where they are suffering from anxiety, stress, and “stuckness”. For young children 

and adolescents, walk and talk therapy allows developmental counselling as well as 

psychotherapy. They can talk to teachers, parents or practitioners about their school works, 

socializing, relationships, as well as body changes. The youths can understand their own 

characteristics and society more, and learn coping strategies and experience interpersonal 

connections, which supports encouragement, self-efficacy, and prosocial behaviors 

(Doucette, 2004).  

With rapport monitoring, walk and talk interventions can be more successful. A 

database of rapport building history of therapists can also improve the matching between 

a therapist-client dyad, depending on background, topics, and personalities. In addition, the 

development of social skills can be monitored by rapport changes over intervention periods 

for children, adolescents, and even autistic individuals. This H-IMU-based rapport 

monitoring solution is easily applicable to wireless smart devices, and currently many 
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therapies are developed with HMDs and the wearable devices, which are gradually familiar 

to people. Thus, walk and talk intervention with H-IMU solution can easily involve parents, 

teachers, and friends, with whom the participants prefer to freely talk in preferable places, 

such as at work places, homes, and neighborhoods.  

 

5.4.3. Social Intervention with Physical Collaboration Results 

The proposed tetherball paradigm can support a social intervention that promotes 

social health using a collaboration setting. Social health involves one’s ability to maintain 

satisfying interpersonal relationships. To foster the ability, social intervention has been 

performed in collaborative settings, such as musical ensembles, group dance, team sports, 

and simple joint tasks. For everyday settings, moving a sofa or table together at home and 

division of labors in workplaces are also considered. During collaboration, individuals can 

foster multi-faceted interactive skills. While individuals interact with each other to pursue 

a common goal, they should adapt to the given situation and others’ behaviors. For a 

successful collaboration, individuals have to communicate with each other by using verbal 

and nonverbal cues. Verbal cues are taken into account in turn-taking settings (e.g., dialog), 

whereas nonverbal cues play an important role in temporal synchronizing settings. This 

difference results from the response to verbal cues is not fast enough for emergent 

interpersonal coordination, whereas it is fast enough to nonverbal cues (Knoblich and 

Jordan, 2003). In tetherball paradigm, the nonverbal cues are focused, mainly including 

visual, auditory, and tactile cues. These cues establish the sensorimotor feedback loop and 

thereby influence the behaviors during collaboration. By steering a common object, two 

interactants can experience multimodal sensory feedback from one’s own and the partner’s 

movement. 

This collaboration setting can be especially difficult for children with ASD because 

of the proximity (McConnell, 2002; Schleien, Heyne, and Berken, 1988), fine movement, 

(Lloyd, MacDonald, and Lord, 2013) and object sharing (Quilitch, and Risley, 1973). 

These joint tasks require collaborative socio-motor skills which need complicated 

cognitive brain function (McConnell, 2002; Schleien et al., 1988; Lloyd et al., 2013). 
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However, the proposed joint task can let children experience collaboration in peer to peer 

settings (DeKlyen and Odom, 1989; McConnell, 2002), including musical components 

(Kern and Aldridge, 2006). Although the tetherball paradigm has not yet been tested with 

people with social deficits, it can strongly support the improvement of autistic children’s 

interactive skills. 

Furthermore, the proposed IMU-based tablet solution can measure the joint 

outcomes and the synchronization in the tetherball task over experimental periods, which 

can provide objective references to the development of collaborative activity. Monitoring 

the development process can also support successful intervention by providing long-term 

feedback. In terms of real-time feedback, only auditory information is taken into account 

in tetherball paradigm; however, other modalities of sensorimotor feedback can be 

considered with other possible tablet solutions. In the joint task, moreover, both 

interactants’ roles are divided into the movement referring to one of both orthogonal axes. 

The individual movement during the interaction can be independently analyzed. The tablet 

also provides the database related to effect- and performance-based movement information. 

Therefore, the proposed tablet solution is applicable to a collaborative intervention for 

developing one’s interactive skill, as well as an analyzing tool of how participants manage 

the collaborative interaction. Therefore, this tablet solution may also help to diagnose 

autism by assessing one’s ability to collaborate with others (McConnell, 2002; Schleien et 

al., 1988; Lloyd et al., 2013; Quilitch and Risley, 1973).  

 

5.5. Concluding Remarks 

This dissertation has an intensive interdisciplinary character: Technological 

requirements in the fields of sensor technology and software engineering had to be fulfilled, 

in order to measure predefined social behaviors in two different experimental settings 

(distal, proximal). These requirements on the reference frame were regarded as a major 

challenge in the development of the experimental methods and settings. For the future 

studies, the proposed IMU-based kinematic measurement solutions are needed to be 

applied to real consumer electronics, such as wireless earbuds, HMDs, smart phones, or 
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tablet PCs. More people can, therefore, use the IMU solution in various physical and social 

settings in daily life, such as training, therapies and interventions. During walk and talk 

interventions, therapists or counselors can provide clients with feedback based on physical, 

mental, and linguistic aspects. These interventions are available for all ages and even 

people with a broad range of social deficits. In addition, a large set of data with more 

participants and different conditions are needed to appropriate applications. In terms of the 

tetherball paradigm, social deficits of the participants (e.g., ASD) can be assessed with the 

tasks requiring a high level of interpersonal skills in correlated environments with 

proximity, fine movement, and object sharing. In a next step, the development of enhanced 

interactive abilities could be supported by different types of additional auditory feedback. 

On the other hand, robots also could be trained with joint tasks and accumulate data related 

to human interactive behaviors. From the research on the coordination of the head and other 

body parts, developers of humanoid robots might properly design mechanical systems for 

the human-like movement. In addition, well-trained robots could be used to provide social 

therapies for people with social deficits in the future. Although the IMU-based solutions 

cannot measure the whole body kinematics, they can provide effective and efficient 

approaches for the research on human-human and human-robot interaction. The single 

IMU solution would be more powerful in a combination with other sensors, such as camera, 

EEG, and another IMU at other places. Overall, single IMU-based solutions lay an 

interesting and efficient groundwork for future research on technology-driven socio-motor 

interventions for public health and quality of life.  
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