Anisotropic characteristics analysis of 3D-printed optics
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The Additive Manufacturing of transparent materials enables cost efficient rapid
prototyping of optically transparent components. The components are built layer-
by-layer which can cause anisotropic optical properties. We present the quantita-
tive analysis of anisotropic imaging and its dependence on the layer thickness of

MJM-printed transparent samples.

1 Introduction

For the design of optical transparent elements, Ad-
ditive Manufacturing offers a great potential to pro-
duce cost efficient individually adapted freeform op-
tics [1][2]. One of the most common and commer-
cially available printing processes for transparent
polymers is Multi-Jet Modeling (MJM) [3]. During the
layer-by-layer curing of the material, its optical prop-
erties are changed. Thus, the optically scattering ef-
fects in the materials volume can be identified [4].
Without quantification of these properties, the de-
sign quality of Additive Manufactured optics in prod-
ucts is limited [5]. In this work, the impact of the layer
thickness on the optical volume scattering of MJM-
manufactured parts will be quantitatively evaluated.
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Fig. 1 Multi-Jet Modeling setup

The samples were manufactured on an Objet30 Pro.
In MJM the print heads are applying a photopoly-
mer drop-by-drop on a platform, which are cured by
UV light (Fig. 1). For printing, the resin VeroClear is
used. In the horizontal plane the printing resolution
is 600 dpi.

3 Experimental Set-up

Equilateral cubes with an edge length of 25 mm
are printed with 16 pm and 32 pm layer thickness

and all planes are polished. For the analysis a laser
beam is propagating through a cube perpendicular
to the plane in X-, Y- and Z-axis orientation. The
orientations are defined in Fig. 1. The beam is pro-
jected on a surface at 143 mm distance to the cube
and is detected by a CMOS sensor. For the mea-
surement a Helium-Neon laser with a wavelength of
A =632 nm at a maximum power of 1 mW, a Gaus-
sian power distribution and a collimation beam diam-
eter of 2 mm is used.

4 Results

The projected beam profile which results of the laser
beam propagating through the sample from different
directions is shown in Fig. 2 for a layer thickness of
16 um. Here, the anisotropic optical properties of the
transparent polymer samples are visible. For quan-
titative analysis, the coordinate central point is de-
fined at the maximum intensity of the scattered light.
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Fig. 2 Scattering patterns on the projection surface.

The intensity matrix | shown in Eq. 1 is derived from
the sensor data where i, ,, denotes the brightness
value of a pixel on the sensor. Here, h denotes the
vertical position and w the horizontal position of the
pixels on the sensor array. The evaluation for the ver-
tical axis is explained exemplary. The normalized en-
ergy fr(h) along the horizontal axis is calculated by
the sum of the vertical matrix entries according to
Eq. 2.
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The measurement results for the vertical (h) and hor-
izontal (w) matrix analysis for laser beam crossing a
cube with 16 um and 32 um layer thickness in X-, Y-
and Z-direction are shown in Fig. 3 and Fig. 4. Here,
the results for f;(w) are normalized to the global
maximum value of all measurements.
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Fig. 3 Normalized intensity profile (projection height)
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Fig. 4 Normalized intensity profile (projection width)

When the laser beam is crossing the sample
in X-direction for f,(h = 0) a value of 1 and
fo(w = 0) = 0.28 is detected for a layer thick-
ness of 32 um. For a layer thickness of 16 um a
value of f.(h = 0) = 0.91 and f.(w = 0) = 0.17
is determined. A scattering cone angle of approxi-
mately 2° for vertical scattering and 5° for horizontal
scattering can be detected. In Y-direction, a max-
imum of f,(h = 0) = 0.92 and f,(w = 0) = 0.10
for a layer thickness of 32 pm and maximum of
fy(h=10) =0.83 and also f,(w = 0) = 0.10 is deter-
mined for a layer thickness of 16 pm. Here, a smaller
scattering cone angle of approximately 1° for verti-
cal scattering and 8° for a non-symmetric horizontal
scattering can be detected. In Z-direction a maxi-
mum of f.(h = 0) = 0.30 for the two analyzed layer
thicknesses is detected. Further, f,(w = 0) = 0.32

for 16 pm and f.(w = 0) = 0.25 for 32 pym layer
thickness is determined. The doubled layer thick-
ness leads to a decreasing of the vertical scattering
cone angle from 2° to 1.5° while the horizontal cone
angle remains stable with 1.5°.

5 Discussion and Outlook

In this paper, an initial analysis of the impact of
the layer thickness on the optical volume scattering
of MJM-manufactured parts is performed. The opti-
cal scattering of transparent MJM-printed parts de-
pends on the sample’s orientation during the man-
ufacturing process. When the laser beam is cross-
ing the sample in X- and Y-direction, a line-shaped
scattering pattern occurs. The normalized energy
which is transmitted through the sample along these
directions is significantly increased when a larger
layer thickness is used for sample manufacturing.
However, in Z-direction an increased layer thickness
shows a minor decrease of the normalized energy.

By transferring these results into a simulation, MJM-
printed optical components can be used to selec-
tively utilize these properties for the use in optical
products. Thus, potentially the use of MJM-printed
parts for novel, tailored designed optical compo-
nents can be improved majorly.
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