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Robust and automatic modeling of
tunnel structures based on terrestrial
laser scanning measurement
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Abstract
The terrestrial laser scanning technology is increasingly applied in the deformation monitoring of tunnel structures.
However, outliers and data gaps in the terrestrial laser scanning point cloud data have a deteriorating effect on the
model reconstruction. A traditional remedy is to delete the outliers in advance of the approximation, which could be
time- and labor-consuming for large-scale structures. This research focuses on an outlier-resistant and intelligent method
for B-spline approximation with a rank (R)-based estimator, and applies to tunnel measurements. The control points of
the B-spline model are estimated specifically by means of the R-estimator based on Wilcoxon scores. A comparative
study is carried out on rank-based and ordinary least squares methods, where the Hausdorff distance is adopted to ana-
lyze quantitatively for the different settings of control point number of B-spline approximation. It is concluded that the
proposed method for tunnel profile modeling is robust against outliers and data gaps, computationally convenient, and it
does not need to determine extra tuning constants.
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Introduction

A variety of research has been carried out in the engi-
neering field to recognize and reconstruct three-
dimensional (3D) objects.1 Terrestrial laser scanning
(TLS) has been increasingly applied in the deformation
monitoring of tunnel structures, since it can acquire
full-field point cloud quickly instead of sparing single
points, which is a typical traditional measurement man-
ner.2 Deformation analysis usually requires the estima-
tion of an analytical model, which could be, for
example, a mesh model, cylinder or free-form curve and
surface in the case of tunnels.3 It is sometimes difficult
to avoid the existence of outliers and data gaps in the
point cloud data obtained by TLS measurement.4

When gaps or blank exists in the measurement data, the
filtering process will not fill the gap area since there is
no data obtained with the scanning measurement.5 The

decreased resolution and density can result in a higher
uncertainty of deformation analysis.6 Therefore, a pre-
cise approximation is essential for the reliable deforma-
tion analysis in the field of engineering applications.

Surface approximation has been employed to estab-
lish a surface model and to extract deformation infor-
mation for the analysis of structures.7 The benefits of
surface approximation lie mainly in the global parame-
trization and avoidance of noisy and scattered data

1Faculty of Civil Engineering and Geodetic Science, Leibniz University

Hanover, Hanover, Germany
2Jiangsu University of Science and Technology, Zhenjiang, P.R. China

Corresponding author:

Hao Yang, Faculty of Civil Engineering and Geodetic Science, Leibniz

University Hanover, 30167 Hanover, Germany.

Email: Yanghao_lmu@yahoo.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/1550147719884886
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147719884886&domain=pdf&date_stamp=2019-11-04


points.8 Since free-form B-spline is an indispensable
method for global parametrization, the influence of
outliers and data gaps on B-splines should be a concern.
Outliers can deteriorate the result of B-spline approxi-
mation, with the consequence that the result of defor-
mation analysis is inaccurate and unreliable. In adition,
data gaps in a point cloud are harmful in B-spline fit-
ting, because the missing data brings about oscillation
near the gap area.9

A traditional way to assure the precision is to delete
outliers in advance of the approximation.6 Some meth-
ods used frequently to eliminate point cloud outliers
for tunnel deformation monitoring are listed here.
Obvious outliers could be removed manually in certain
software, and others could be reduced according to the
distribution analysis of, for example, longitudinal, sur-
rounding, and random errors of the measurement
data.10 Smoothing techniques were also used to filter
the outliers, where segmentations were smoothed by
averaging adjacent points.5 Panholzer and Prokop11 fil-
tered disturbing objects in the point cloud data using
the wedge absolute method, where adjacent points are
connected to a laser source and the angle formed was
checked with a previously defined angular threshold
value to determine disturbing objects. Moreover, a sta-
bility test was employed to distinguish outliers and the
real deformation, which was performed on a local
approximation of the overall analytical model.11

Segmented planes were computed through principle
component analysis and Hough transformation to pre-
serve the main shape of some rocky surfaces.12

However, these procedures were mostly local, time-
and labor-consuming, and relied on the expertise of
operators, which could be a problem when processing
data of a large-scale, kilometers-long structure.13

The performance of B-spline approximation with
contaminated data was studied in the literature.
Predefined parameters of B-splines, such as the number
of control points, can affect the performance of B-
splines against noise,14–22 and the optimal parameters
can be obtained as the values associated with the extre-
mum of the likelihood ratio.23 Decreasing the model
complexity using fewer parameters can filter some
noise, but this sacrificed the accuracy of the description
of the local shape. A suitable selection of B-spline para-
meters balances noise resistance and local shape infor-
mation preservation better compared with
polynomials.24 Combining data from other sensors
helped to validate the precision of B-splines constructed
from complex point cloud data.25

Control points determination of B-spline approxi-
mation could be counted as one of the most vital steps
for point cloud processing. Although plenty of methods
of fitting B-splines to measurement data have been
introduced,26–28 only a few dealt with a robust method
of control point placement which is immune to outliers

and gaps in the measurement data, and which, more-
over, satisfies a certain tolerance regarding the real
shape. To date, the control point positions are obtained
mostly through least squares (LS) estimation.29 Some
researchers determined the optimal number of control
points, which was usually a model selection problem,
by means of the Akaike Information Criterion, the
Bayesian Information Criterion, or statistical learning
theory.30 The quality of the control point positions esti-
mated was evaluated by the average estimated standard
deviation, which focused on the quality of estimation
procedure regarding datasets instead of the real shape
of the object.31 Minimizing energy function has recently
been adopted to adjust control points which could be
applied in smoothing and gap filling.32 Xu et al.33

employed an adaptive robust estimator based on
Student’s t-distribution to fit a B-spline curve to mea-
surement data. This estimator involves the degree of
freedom of the t-distribution as a parameter or tuning
constant, which is adapted to the data given according
to the outlier characteristics.

Statistical method based on ranking was first pro-
posed for simple location problems by Wilcoxon34 and
Hettmansperger and McKean.35 R-estimators have
gained increasing attention in geodetic science.36,37

Kargoll38 described an algorithm for computing R-esti-
mates of the parameters of a general linear model with
satellite gravity gradiometer data. Duchnowski39

adapted the theory of R-estimation to the adjustment
of leveling networks with homoscedastic observations
in the context of deformation analysis. To the best of
our knowledge, the rank-based method has not been
studied in the underground space reconstruction and
TLS data processing.

Actually, there are not plenty of research works on
robust 3D model reconstruction for tunnels. The geo-
metries of tunnels are macroscopic range, from several
meters to kilometers. The resolution of tunnel measure-
ment by TLS is ca. several millimeters. This requires a
specific B-spline model which could adapt the charac-
teristics of such a structure scale and measurement res-
olution. Furthermore, measurement data of such
structures contain occlusions and blanks, disturbing
objects, and coexisting sparse and dense points. This
may result in the instability of B-spline approximation,
which is unacceptable for the automation process. In
this article, we propose a robust solution of such prob-
lems based on the rank methods.

The contents of the article are arranged as follows:
section ‘‘Introduction’’ introduces the background and
the state of the art. Section ‘‘Method’’ is a detailed
description of the proposed method, which includes B-
spline algorithm, rank-based Wilcoxon method, and
the Hausdorff distance method as a metric of the B-
spline modeling. In section ‘‘Data analysis,’’ we analyze
the tunnel profile based on the proposed method, and
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compare with LS B-spline approximation and the
manually denoised data. The comparative results are
presented in section ‘‘Results.’’ Finally, we draw the
conclusion of the article in the final section.

Method

B-spline algorithm

The B-spline curve is adopted to reconstruct a 3D
model describing the real geometry of the profile. A B-
spline curve is defined after equation (1)40

C uð Þ=
Xn

i= 0

Ni, p uð ÞPi, 0 ł u ł 1 ð1Þ

where C(u) is a B-spline curve, fPig are the n + 1 con-
trol points and fNi, p(u)g are the pth-degree B-spline
basis functions40 defined on knot vector U

U= 0, . . . , 0, up+ j, . . . , um�p�1, 1, . . . , 1
� �

ð2Þ

The number of knots is m + 1 and related to the
number of control points n + 1 and the degree p by

m= n+ p+ 1 ð3Þ

The control points fPig in the B-spline curve approx-
imation problem are unknown. Since the B-spline curve
is a linear function, the control points can be obtained
in a LS sense. Three main steps are required to compute
the control points when the degree p and the control
point number n + 1 are fixed. The first step is parame-
trization, which precomputes parameter value �u for the
N data points given fQkg, k = 1, . . . ,N . The parametri-
zation method adopted in this article is based on the
chord length,41 where the length of each chord is
defined as jQk � Qk�1 , kj i1. The parameter value �u is
determined with the chord length after

�uk =

0, if k = 1

�uk�1 +
Qk�Qk�1j jPN

k = 1

Qk�Qk�1j j

1, if k =N

8>><
>>: , if k = 2, . . . ,N � 1 ð4Þ

The second step for B-spline curve approximation is
the knot vector determination. We employ a knot pla-
cement technique41 in this article because it can reflect
the distribution of f�ukg and result in a positive, definite,
and well-conditioned matrix for the control point solu-
tion. The knot vector U= u0, . . . , umf g is computed
after equation (5),41 where t = int dð Þ means the largest
integer satisfying t ł d

up+ j = 1� að Þ�ut�1 +a�ut j= 1, . . . , n� pð Þ ð5Þ

With d =(m+ 1)=(n� p+ 1), t = int jdð Þ,a= jd � t.

Based on the parameterization and knot vector
determination, the basic functions are computed
through Cox-de Boor recursion formulas41

Ni, 0 �uð Þ=
1, if ui ł �u ł ui+ 1

0, otherwise

�

Ni, p �uð Þ= �u� ui

ui+ p � ui

Ni, p�1 �uð Þ

+
ui+ p+ 1 � �u

ui+ p+ 1 � ui+ 1

Ni+ 1, p�1 �uð Þ ð6Þ

and assembled for design matrix A, which contains
N 3 n+ 1ð Þ elements

AN 3 n+ 1ð Þ=

N0, p �u1ð Þ . . . Nn, p �u1ð Þ
..
. ..

.

N0, p �uNð Þ . . . Nn, p �uNð Þ

2
64

3
75 ð7Þ

The unknown control point matrix is obtained
through the Gauss-Markov model

X= ATA
� ��1

AT l ð8Þ

where the observation matrix consists of x, y, and z
coordinates of N data points

lN 3 3 =
x1 y1 z1

. . . . . . . . .
xN yN zN

2
4

3
5 ð9Þ

and the unknown control point matrix is written as

X n+ 1ð Þ3 3 =

Px0 Py0 Pz0

. . . . . . . . .
Pxn Pyn Pzn

2
4

3
5 ð10Þ

The B-spline method is advantageous for deforma-
tion data processing since it is capable of modeling the
shape of a structure flexibly. Control point determina-
tion is an important step in B-spline approximation,
which is usually realized by means of the LS method.
This article improves the control point adjustment by
employing an R-estimator based on Wilcoxon scores in
order to obtain robust B-splines. The main computa-
tional framework is shown in Figure 1, where iterative
steps are carried out to optimize the control point posi-
tions. First of all, we compute the parametrization,
knot vector, and control points according to standard
methods introduced in Piegl and Tiller.41 Thereafter,
the results of the parametrization and knot vector
determination are input into the computing package of
the aforementioned R-estimator, which also requires
the specification of the design matrix A. Initial values
for the control point positions can be determined as the
LS solution, which corresponds to the standard B-
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spline approximation method as shown in the litera-
ture, such as in the previous work.42

Rank-based Wilcoxon method

B-spline models can be expressed in the form of a linear
model

l+ r=Ab ð11Þ

where l represents the observation vector (consisting of
the measure point coordinates), r the vector of resi-
duals, A the design matrix, and b the parameter vector
(consisting of the unknown control point coordinates).
The well-known LS solution

b̂ols = ATA
� ��1

AT l ð12Þ

is obtained by minimizing the L2 norm

Q bð Þ=
Xn

i= 1

r2
i ð13Þ

of the residuals ri =Aib� li regarding the unknowns b
(where Ai denotes the ith row of the design matrix). In
this article, we employ the R-estimator which obtain
the solution by minimizing the pseudo norm

D bð Þ=
Xn

i= 1

a R rið Þð Þri ð14Þ

The rank function R assigns to each residual ri its
rank or position within the sorted residuals
r 1ð Þł . . . ł r nð Þ as the index occurring in the brackets,
so that R(r1)= 1, . . . ,R(rn)= n, when multiple resi-
duals take identical values, they also share the same,
average rank. We use the Wilcoxon scores generated by

a R rið Þð Þ=
ffiffiffiffiffi
12
p

� R rð Þ
n+ 1

� 1

2

� 	
, R rið Þ= 1, . . . , n ð15Þ

Thus, the ranks become centered and standardized
to emulate the behavior of residuals for any given num-
ber n of residuals given in a practical situation. The
point of minimizing D(b) is to replace the quadratic
residuals in the L2 norm Q(b) by a rather linear form,
since the LS estimator tends to level out large residuals
(i.e. outliers) with a deleterious effect on the adjusted
model function. Instead of squaring outliers, an outlier
is multiplied by one of the values a(i), yielding a less
extreme contribution to the target function to be mini-
mized. Consequently, an outlier is not leveled out but
more or less ignored in the minimization process, so
that it can show up in the estimated residuals

r̂rbm =Ab̂rbm � l ð16Þ

regarding the rank-based method much more clearly
than in the (leveled) estimated residuals

r̂ls =Ab̂ls � l ð17Þ

regarding the LS estimates. Using initial values b0, the
solution brbm can be computed in each iteration step
s= 1, . . . , :itermax by

b̂
sð Þ

rbm =b0 +Db
sð Þ

rbm ð18Þ

with

cDb
sð Þ

rbm = ATP sð ÞA

 ��1

ATP sð Þr̂
sð Þ

rbm ð19Þ

An iteratively reweighted LS algorithm is formed
based on the weight matrix

P sð Þ=

p
sð Þ

1 � � � 0

..

. . .
. ..

.

0 � � � p sð Þ
n

2
64

3
75 ð20Þ

whose individual weights are determined by

p
sð Þ

i =

ffiffiffiffiffi
12
p

� R r̂
sð Þ

i, rbm
�a0ð Þ

n+ 1
� 1

2

� 	
r̂

sð Þ
i, rbm � a0


 � , i= 1, . . . , nð Þ ð21Þ

where a0 is the median of the current residuals
r̂

sð Þ
i, rbm. Here, the ranks obtained R(r1), . . . ,R(rn) are

Figure 1. Framework of rank-based B-spline modeling.
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transformed into order-preserving scores a(R(r1)), . . . ,
a(R(rn)), so that a(R(r1))ł . . . ł a(R(rn)). These scores
are defined by means of some score function u via the
relationship

a ið Þ=u
i

n+ 1

� 	
ð22Þ

The Wilcoxon scores used in this article are gener-
ated by u(u)=

ffiffiffiffiffi
12
p

� (u� 1=2). The individual weights
of the weight matrix P sð Þ are determined by

p
sð Þ

i =
a R r̂

sð Þ
i, rbm


 �
 �
r̂

sð Þ
i, rbm � a0

, i= 1, . . . , n ð23Þ

where the median a0 of the current residuals r̂
sð Þ

i, rbm is
subtracted to ensure positive weights.43

B-spline approximation algorithm is investigated
and developed by adopting the R-estimator. Figure 1
presents the framework of rank-based B-spline model-
ing which involves methods to determine the weight
matrix (fw) and the weighted LS fit (fv).

38 An additional
weight matrix is estimated based on the initial control
points, by executing the weight computing routine fw.
Then, the improvement matrix for control points is
obtained through the improvement computing routine
fv. Subsequently, a decision is made based on the cri-
teria values of improvement and iteration times. If the
values pass the criteria, optimal control points will be
gained, otherwise, the control points will be updated
with the aforementioned improvement matrix.

The key step in the framework is the rank-based
Wilcoxon method, which includes weight and improve-
ment computation, as well as the decision-making
criteria.

Hausdorff distance

The Hausdorff distance is suitable for many areas,
especially for the problem of shape comparison and
matching.44 Hossain et al.45 investigated a linear time
algorithm for computing the Hausdorff distance in the
context of content-based image analysis, which is a sig-
nificant metric in computer vision including image
matching, shape retrieval and moving-object detection.

A robust approximation is supposed to be able to
eliminate the influence of outliers automatically.
Therefore, the performance of robustness is assessed by
agreement of the adjusted observations with sets of
data which are denoised beforehand (i.e. from which
the outliers are removed). The Hausdorff distance is
employed to measure the distance between the denoised
point cloud and the approximation results. It is defined
by equation (24), where a and b are points in two dif-
ferent sets of points A and B, and a, b means a norm

between points a and b, which is Euclidean norm in
this article. A generalized form of Hausdorff distances
is computed after equation (25)

HD A,Bð Þ= max
a2A

min
b2B

a, bk k ð24Þ

H A,Bð Þ= max HD A,Bð Þ, HD B,Að Þð Þ ð25Þ

The different sequences of point sets A and B express
different physical meanings and result in a different dis-
tance value. When assessing the B-spline approxima-
tion, we consider the denoised data as a reference and
match the approximation to the reference.

Data analysis

The original point cloud data is approximated by using
the rank-based and LS method, where a comparison is
carried out between the two. The algorithm of the
rank-based B-spline modeling is presented in Figure 2,
where the input data is the measurement data named
Dm and the denoised data Dd. Both sets of data contain
X, Y and Z coordinates of profile points. A difference
is that the Dd has been processed where the outliers
have been deleted, and the number of points is less than
that of the Dm. The methods involved are the rank-

Figure 2. Algorithm of the rank-based B-spline modeling.
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based method (rbm), the least squares (ls) method,
weight matrix fw and weighted LS fit fv. The results
obtained are estimated control point coordinates.

The improvement of the rank-based method from
the point of infrastructure measurement is shown in
Figure 3, where the point cloud depicts the tunnel pro-
files. The dimensions of the tunnel is 2.5 m in height
and 5.5 m in width. The tolerance value tol adopted for
rank-based B-spline modeling for the tunnel profiles is
10e-6. In order to bring out the difference between the
rank-based and the LS method visually, the B-spline
approximations involving different numbers of control
points (cp) are shown for the same point cloud in
Figures 3(a)–(c), where the cp is varied from 7 to 9. In
each of these figures, the blue points represent the point
cloud data with noise (including outliers) and the red

and green lines represent the B-spline fitted by means
of the rank-based and the LS method, respectively.

It can be observed in Figure 3(a) that the rank-based
method produces a solution that is practically unaf-
fected by the outliers, whereas the LS solution is clearly
attracted by the outliers near the bottom of the region
indicated by the dashed blue line. As the tunnel struc-
ture itself does not sag in reality, the former solution is
much more realistic than the latter, especially in the vir-
tual box of Figure 3(a). It is concluded that under the
same conditions, the rank-based method is more robust
than the LS method when cp = 9.

According to the virtual box of Figure 3(b), the LS
method is more sensitive to noise than the rank-based
method when cp = 8. However, the rank-based solu-
tion for cp = 8 is notably less smooth than the rank-
based solution for cp = 9. It is, thus, revealed that the
rank-based method is rather insensitive to the outliers
but quite sensitive to the choice of the number of con-
trol points.

It can be discovered that the rank-based method is
still more robust than the LS method when cp = 7, as
indicated by the virtual box of Figure 3(c). In compari-
son to the Figures, the difference between the rank-
based and the LS method is diminished. It means that
if the number of control points are fewer, the under-
fitting condition of the B-spline will affect the optimiza-
tion effect of the rank-based method. Thus, it is quali-
tatively confirmed that the rank-based method has
superior robustness than the mostly adopted ordinary
least square (OLS) in current literature works, and
under the same conditions, the optimization perfor-
mance of the rank-based method is related to the num-
ber of control points.

Results

The Hausdorff distance, which describes how far away
two subsets of a metric space are from each other,46,47

is employed to quantitatively analyze the improvement
of the rank-based over the LS solution. The numerical
values of this distance measure are shown in Table 1
for three different point clouds (‘‘Data1,’’‘‘Data2,’’ and
‘‘Data3’’).

The improvements of the rank-based method over
the LS method are calculated by means of the formula
(DL 2 DR)/DR. Here, DL represents the Hausdorff dis-
tance between the LS B-spline approximation and
denoised (i.e. outlier-free) point cloud data. DR denotes
the Hausdorff distance between the rank-based B-
spline approximation and denoised point cloud data.
According to Table 1, all of the Hausdorff distance val-
ues regarding the rank-based method are smaller than
those concerning the LS method. This demonstrates
quantitatively that the rank-based method has superior

Figure 3. Comparison between the rank-based and LS
method: (a) cp = 9, (b) cp = 8, and (c) cp = 7.
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noise immunity compared to the LS method.
Furthermore, it can be observed that the improvement
takes the largest value which is marked in bold, when
the largest of the numbers of control points (cp = 10)
is used for B-spline approximation. Moreover, if the B-
spline is neither over- nor under-fitted, the superiority
of the rank-based method is proportional to the num-
ber of control points. Therefore, in the process of fit-
ting mass point cloud data which frequently occur in
large projects, such as surveys of long tunnels, the
rank-based method, by virtue of its superior fitting effi-
ciency, can significantly reduce the time and labor of
data denoising required by standard LS methods.

Considering the accuracy of the B-spline modeling
highly depends on the number of control points, the
optimal parameters selection are significant for the
deformation analysis based on TLS measurement.
Table 1 reveals that these three data have reached the
maximum value of improvement when cp = 10.
Taking the fitting speed of large structures into consid-
eration, the optimal number of control points for the
tunnel cross section is 10. In future, we will carry out
model selection method in order to check the optimal
number of control points of the B-spline modeling. The
benefit of the proposed method is the automation and
robustness in the parametric surface modeling without
point cloud preprocessing which could significantly
reduce time- and labor-consuming for large-scale
structures.

Conclusion

In this article, a rank-based algorithm, which is a
robust and intelligent method immune to outliers and
data gaps, was adopted for B-spline approximation
and applied in the context of tunnel profile analysis.
Outliers and data gaps of point cloud data generally
lead to imprecision of the fitted B-spline model. The
traditional method of deleting the outliers before the
approximation is time- and labor-consuming for large
scale structures. To alleviate these burdens, we use the
rank-based Wilcoxon method to adjust B-spline control
points, which can automatically be immune to the
influence of outliers and data gaps, thus, reconstruct
robustly the tunnel models. In summary:

1. To date, less consideration has been given to the
robustness of control point determination. In
this article, the rank-based Wilcoxon method is
employed in the particular context of approxi-
mating tunnel profile measurements, and the
results are compared with those obtained via the
LS method.

2. Qualitative comparisons between the rank-
based and LS methods are presented with vari-
ous numbers of control points. The result imply
that the rank-based method has a comparative
advantage in the large projects, especially for
high requirements of time-consuming and at the
same time need to consider the robustness.

Table 1. Comparison of the rank- and LS-based B-spline modeling.

cp Hausdorff distance (10e-2)

rbm ls Improvement (%)

Data1 4 3.44 4.79 39.24
5 3.78 5.79 53.17
6 2.63 6.56 149.43
7 3.51 7.91 125.36
8 2.52 8.44 234.92
9 3.65 11.52 215.62

10 3.03 10.88 259.08
Data2 4 10.26 12.48 21.64

5 7.21 7.62 5.69
6 5.04 7.92 57.14
7 4.01 9.6 139.40
8 4.73 10.65 125.16
9 4.84 14.68 203.31

10 3.36 11.37 238.39
Data3 4 15.53 15.57 0.26

5 16.28 17.28 6.14
6 10.9 19.4 77.98
7 17.13 19.96 16.52
8 16.54 18.8 13.66
9 13.74 18.4 33.92

10 8.22 18.34 123.11

cp: control point; rbm: rank-based method; LS: least squares.
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3. Hausdorff distance is involved to analyze the
improvement of the rank-based to LS method
quantitatively and the relation between the
improvement and the number of control points
was investigated.

4. The rank-based method can reduce the time
and labor cost of denoising for mass point cloud
data fitting, thereby this method can improve
the fitting efficiency significantly, especially for
many large projects, such as extra-long tunnels
and bridges.

Consequently, the robustness of the rank-based
Wilcoxon method contributes significantly to the intel-
ligence of the free-form modeling to the computational
efficiency of handling large-scale projects. In a future
study, we will investigate the parameters of the rank-
based method and compare them with other robust
methods. Artificial intelligence technology will be com-
bined for an automatic identification of parameters of
the rank-based method for intelligent modeling.
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