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Abstract
The economic reform “Đổi Mới” in 1986 has rapidly increased the number of craft villages in Viet-

nam, especially in the Red River Delta (RRD) leading to environmental degradation. This article

presents an assessment of environmental and resource issues of agro-Food Processing Craft

Villages (FPCVs) in RRD using a refined approach to material flow analysis focusing on consistent

quantification of uncertainty with particular attention to secondary and empirical data that are

often faced in material flow analyses in transition economies. Material flows of agro-Food Process-

ing including eight types of production were examined and linked to activities of private House-

holds,RiceCultivation, andPig Farming in amodel calledRedRiverDelta.Materials investigatedwere

Goods (i.e., total materials), organic carbon (org.C), nitrogen (N), and phosphorus (P). The findings

reveal material cycles are almost entirely open, that is, thematerials used in FPCVs do not recycle

within the region. From ∼10.5 million tons/year of imported Goods used for agro-Food Processing,

final products and utilized materials account for minor fractions (∼5%, by weight). Conversely,

themajority (88%) is directly discharged.Materials accumulated as stocks represent 1% of Goods

(100,000 tons/year), 21% of org.C (∼34,000 tons/year), 42% of N (∼1,300 tons/year), and 57% of

P (∼300 tons/year), whose substance concentrations vastly exceed natural resilience capacities.

Although agro-Food Processing accounts for negligible material shares in Red River Delta, FPCVs

pollution is severe at local levels due to the location of home-based production. Several options for

closingmaterial loops at various system scales are recommended for environmental and resource

management of FPCVs. The material flow analysis results provide a database that may be used

as a decision support tool for production establishments in craft villages and relevant authorities

in setting priorities on environmental planning and resource management. This article met the

requirements for a gold – silver JIE data openness badge described at http://jie.click/badges.
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craft villages, data uncertainty analysis, industrial ecology,material flow analysis (MFA), RedRiver

Delta, transition economies

1 INTRODUCTION

1.1 Agro-food processing craft villages in Red River Delta

Craft villages are characterized by more than 20% of craft production households operating in a stable condition for at least 2 years and obey-

ing environmental legislation (52/2018/NĐ-CP, 2018). In this study, agro-Food Processing Craft Villages (FPCVs) refer to craft villages process-

ing foods from raw agricultural products. FPCVs are mainly located in RRD (39/BC-UBTVQH13, 2011; Chi, 2005; Fanchette, Stedman, Carlet-

Soulages, & Digregorio, 2010; GSO, 2012; Sakata, 2010, 2013; Tha. ch, 2006;WB, 2012). They have a long tradition and are the most common type

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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of craft villages inVietnam (Chi, 2005;MONRE,2008; Sáng, 2010). Theeconomic renovation “ĐổiMới” in 1986andResolutionV in1993have signif-

icantly increased thenumberof craft villages tomitigatepoverty and foster rural industrialization (Chi, 2005; Sakata, 2013), leading toa trade-off as

alarming environmental pollution in rural areas, notably from the end of the 1990s (own synthesis based on: Perrings, 1998; Chi, 2005; CTIC, 2008;

Đàm, Anh, Hiền, Long, & Trung, 2004; JICA-MARD, 2004; KEI-WB, 2002; Kim, 2005; Konstadakopulos, 2008; MONRE, 2008). Three major prob-

lems in FPCVs are huge fresh water consumption and wastewater generation, organic and nutrient contamination, and secondary pollution from

animal raising (own survey and synthesis based onChi, 2005;MONRE, 2008; Sáng, 2010;Mahanty, Dang, &Phung, 2010;Meier, 2016). Sadly, these

issues remain largely unsolved because of the less proactive responses, which are more toward instant solutions rather than eliminating the root

causes.

In particular, most studies focused on wastewater treatment technologies (e.g., Phước, 2003; Chi, 2003; Truyền, 2004; Chi, 2005; CTIC, 2008;

Sáng, 2010; Da, Dufour, Marouzé, Le, & Maréchal, 2008; Thủy, 2011; Hahn et al., 2012; Hahn, Lorbeer, & Nguyet, 2015; Holger, Appel, 2015) and

solid residue processing (e.g., Meier, 2016; Nguyen & Chu, 2012; Sáng, 2010). However, research outcomes are rarely applied. Material flow anal-

ysis (MFA) is utilized simply to recommend treatment techniques and cleaner production (e.g., Phước, 2003; Chi, 2003; Chi, 2005; Da et al., 2008;

Sáng, 2010;Da et al., 2013), but often performed superficially. Particularly,MFAsweremostly investigated at small scales (i.e., individual household

production processes) and for Goods (i.e., total materials) rather than substances. These views are insufficient to fully identify material utilization

potentials and reflect critical problems majorly contributed by substances (Brunner & Rechberger, 2016). Until recently, Meier (2016) studied

flows of energy, Goods, nitrogen (N), phosphorus (P), and organic carbon (org.C) of a liquor processing village. Although extensive, the “hotspots”

(i.e., flows, processes) triggering environmental and resource issues were not pinpointed. Altogether, the contemporary research needs to be com-

plemented by amore holistic view of material flow systems.

Besides, the Vietnamese government has acted against environmental pollution in craft villages. Good examples of this are the obligatory relo-

cation of seriously polluting production establishments to village production zones (64/2003/QD-TTg, 2003; 55/2014/QH13, 2014; 26/2015/TT-

BTNMT, 2015; 31/2016/TT-BTNMT, 2016; 68/2017/NĐ-CP, 2017), requirements of environmental planning and monitoring (19/2015/NĐ-

CP, 2015). Nevertheless, the enforcement is weak because it is too ambitious for craft villages to meet strict environmental regulations (e.g.,

51/2014/TT-BTNMT, 2014; 154/2016/NĐ-CP, 2016) originally designed for industries (Chi, 2005; MONRE, 2008; Lợi, 2013; Hai, Schnitzer, Van,

Thao, & Braunegg, 2016). Buffer steps with specific technical guidelines are thus necessary to assist production establishments in gradually con-

forming to environmental requirements.

A robustMFA can substantially fulfill scientific gaps and facilitate the implementation of environmental regulations in FPCVs. In this regard, the

following analyzes relevantMFA aspects.

1.2 Advancedmaterial flow analysis and nutrient flowmanagement

1.2.1 Importance of data uncertainty analysis inMFA

MFA refers to material flow assessment concerning sources, pathways, and stocks in a system defined by spatial and temporal boundaries (Brun-

ner & Rechberger, 2016). MFA is a recognized decision support tool for environmental and resource management. The increasing application of

MFA demands more advanced techniques to achieve rigorous results (Laner, Rechberger, & Astrup, 2014; Rechberger, Cencic, & Frühwirth, 2014)

leading to a growing focus on data uncertainty analysis. More specifically, data uncertainty is an inherent MFA characteristic (Cencic, 2004; Laner

et al., 2014; Schwab, Zoboli, & Rechberger, 2017) and should be included since the nowadays MFA software automates many calculations (Rech-

berger et al., 2014). Surprisingly, not many studies have reported data uncertainty (Danius & Burström, 2001; Danius, 2002; Laner et al., 2014).

Data uncertainty analysis offers a solution to data limitations, especially in the developing country circumstance (Montangero, 2007; Binder, 2007;

Schaffner, 2007; Do-Thu et al., 2011). Concretely, it helps to detect gross errors (i.e., data conflict due to errors in empirical measurements or other

sources (Narasimhan & Jordache, 1999) in a system of redundant information and solvable equations and subsequently reconcile inconsistent val-

ues (Cencic, 2004, 2016a, 2016b). Moreover, a systematic data characterization for uncertainty analysis delivers a transparent message of study

outcomes (Schwab, Rechberger, & Holnsteiner, 2016; Schwab et al., 2017).

1.2.2 MFA studies on nutrients

In industrialized countries,MFAs of nutrients arewidely applied and predominantly focus on P for conservational purposes (e.g., Ott &Rechberger,

2012; Kalmykova, Harder, Borgestedt, & Svanäng, 2012; Klinglmair et al., 2015; van Dijk, Lesschen, &Oenema, 2016;Mehr, Jedelhauser, & Binder,

2017). Conversely, developing countries are primarily impacted by organic and nutrient pollution. MFA practice has been considered less feasible,

especially at regional scale, because of poor data availability (Binder, 1996; Montangero, 2007). Nevertheless, with methodological advancement,

MFA studies have been gradually realized, such as in Thailand (e.g., Schaffner, 2007), Vietnam (e.g., Montangero, 2007; Aramaki & Thuy, 2010; Do-

Thu et al., 2011; Nguyen et al., 2013; Do & Nishida, 2014; Meier, 2016), Ethiopia (e.g., Meinzinger, 2010), Colombia (e.g., Binder, 1996), Nicaragua

(e.g., Pfister, Bader, Scheidegger, &Baccini, 2005), andMexico (e.g., Gutiérrez, 2016). In SoutheastAsia, twoof the earliest probabilisticMFAs apply-

ing modeling concepts from Baccini & Bader (1996) and data uncertainty analysis were performed byMontangero (2007) for municipal sanitation
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F IGURE 1 Appliedmodeling procedure for material flow systems: a) General framework (adapted fromBrunner and Rechberger (2016)),
b) Concept of data uncertainty analysis (modified after Laner et al. (2016)), c) Upscaling of productions

system in Hà Nội, Vietnam and by Schaffner (2007) for the Thachin River Basin, Thailand. Their findings inspired other regional MFAs in Vietnam,

such as Aramaki & Thuy (2010), Do-Thu et al. (2011), Do, Trinh, & Nishida (2014), Do & Nishida (2014), Pham, Harada, Fujii, Nguyen, & Huynh

(2017). However, only Do-Thu et al. (2011), Do et al. (2014), Do and Nishida (2014) included data uncertainty but lacked consistency and data

quality assessment. ForMFA studies on FPCVs, data uncertainty has not yet considered. Correspondingly, a systematic data uncertainty analysis is

required to achieve robustMFA results.

1.3 Objectives

As regards the above analyses, this study first aims to address environmental and resource challenges in FPCVs in RRD with a holistic view of

material flows for Goods, org.C, N, and P. The MFA results are expected to provide an in-depth and transparent database as a decision support

tool for production establishments and relevant authorities in setting priorities on environmental planning and resource management. Another

goal is to refine techniques of data uncertainty analysis to overcome specific data limitations in MFA, particularly in the situation of transition

economies.

2 METHODS

2.1 General framework

This study adapts the concept of statistical MFA from Brunner and Rechberger (2016), emphasizing the data uncertainty analysis modified after

Laner, Feketitsch, Rechberger, and Fellner (2016) and upscaling of production from household to regional level of RRD (Figure 1).

2.2 System analysis

Processes, flows, stocks, and indicator materials are sufficiently included into system agro-Food Processing conforming with defined problems and

goals (see Section 1.1). In this respect, indicatormaterials areGoods, org.C, N, and P. Additionally, COD (ChemicalOxygenDemand), TS (Total Solids)

are investigated to evaluate other discharge properties. The agro-Food Processing consists of production steps but not rawmaterial cultivation and

product consumption. It is interlinked with relevant processes including private Households, Rice Cultivation, and Pig Farming, forming the overall

system Red River Delta (Figure 2). Households describe metabolism of rural households regarding blackwater, grey water, and organic waste. Rice

Cultivation and Pig Farming represent activities of crop cultivation and livestock farming, respectively. While over-application of chemical fertilizer

and uncontrolled burning of rice straw are critical issues for Rice Cultivation, mismanagement of pig manure from Pig Farming creates secondary

pollution. Temporal boundary is the year 2015. Spatial boundary is the rural RRD. Gaseous emissions are considered out of the system boundary. No

municipal wastewater and solid waste treatment facilities were included since they almost did not exist or were under construction by the time

of investigation. Landfills were excluded because they are usually located far from residential areas and their sophisticated metabolism is beyond

the scope of this work. Key determinants of stocks (i.e., materials accumulated in a process) are the spatial distribution of emissions from living
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F IGURE 2 Relationship of agro-Food Processing (FP) and activities of privateHouseholds (HH), Rice Cultivation (RC), and Pig Farming (PF) in Red
River Delta in 2015. UDL, Urine Diversion Latrin; ST, Septic Tank; DBP, Domestic Biogas Plant; S/W, Soil/Water; RSB, Rice Straw Burning; F, Flow; P,
Process. The rectangle inside a process symbolizes stocks. Units: t, tons; a, annum. Tons refer tometric tons

settlements and observable impacts on human health and nature. Therefore, open dumps, sewer systems, and local environmental compartments

and/or water pathways are considered processes containing stocks. For simplicity’s sake, all materials discharged untreated become stocks. How-

ever, for the sewer system and local water pathways, Goods´ stock is generally calculated as the accumulated TS. ForRice Cultivation, stocks include

also water penetrating into the field soil. Surface water refers to the natural water body located far from residential areas and suffering trivial

environmental impacts; thus its substance contents are assumed zero. For simplification, substance contents in rainwater, bored-well or tapwater,

and irrigationwater are not considered because of the negligible amount compared to artificial sources and dynamicmetabolisms of historical sub-

stance accumulation in irrigation system. Qualitative behaviors of Red River Delta are illustrated in Figure 2, mathematical relationships and flow

and stock values are found in Supporting Information S8 (descriptions in S8.1; Table 19 in S8.3).

2.3 Quantification of stocks and flows and balance of system

Flows and stocks are expressed as mean value and relative standard uncertainty estimated using primary and/or secondary data. Gross errors

are eliminated and systems are balanced within software STAN version 2.6.801 (Cencic & Rechberger, 2008, http://stan2web.net/). Agro-Food

Processing and relevant processes are modeled individually before integrating into Red River Delta. Models are validated after revising consistency

http://stan2web.net/
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and reasonability by comparing calculated values with empirical and/or literature data. Further details are provided in Supporting Information S2

(Tables 4, 5), S4.2 (Table 8), S5 (Table 11 in S5.1; descriptions in S5.2, S5.3), and S8.2 (Tables 15a, 16a, 17a).

2.4 Concept of data uncertainty analysis

Under assumption of normality and independent variables, the data uncertainty analysis follows a concept modified after Laner et al. (2016) (Fig-

ure 1b and details in Supporting Information S1 (Tables 1 to 3). First, criteria for five data quality indicators including reliability, completeness,

spatial correlation, temporal correlation, and other (technological) correlation (Weidema & Wesnæs, 1996) are redeveloped by assigning scores

from 0.5–5. Second, data sensitivity level a is considered and classified into “not sensitive,” “medium sensitive,” and “highly sensitive,” where:

anot sensitive = 0.325; amedium sensitive = 2⋅anot sensitive = 0.65; ahighly sensitive = 4⋅anot sensitive = 1.3. Finally, the determined indicator scores and sensi-

tivity levels are translated into uncertainties, that is, coefficients of variation (CV), via continuous exponential function (Hedbrant & Sörme, 2001)

in Equation (1); where b= 1.105, e= 2.71828 (mathematic constant).

CV = a ⋅ eb⋅(score−1) (1)

The overall uncertainty, CV total, is calculated as follows:

CVtotal =
√
CV2

reliability
+ CV2

completeness
+ CV2

geographical
+ CV2

temporal
+ CV2

technological
(2)

The definition of data quality indicator scores and choice of sensitivity level a and b are based on specific data background context (cf.,Weidema

&Wesnæs, 1996; Hedbrant & Sörme, 2001; Zoboli, Laner, Zessner, & Rechberger, 2016; Laner et al., 2016). This uncertainty analysis framework

is applied for both primary and secondary data. For household productions, only two indicators “reliability” and “completeness” are considered

because measurements were implemented at the same production installations. Therefore, spatial-, temporal-, and technological correlations are

similar and data uncertainty is estimated following Equations (3) and (4). Furthermore, in most cases of assumption, uncertainty is assigned only

one score, often with “3.5.”

CVgoods =
√
CV2

reliability
+ CV2

completeness
(3)

CVsubstance =
√
CV2

reliabily
+ CV2

completeness
+ CV2

goods (calculated) (4)

2.4.1 Refined aspects of data uncertainty analysis

This study confronts numerous data limitations, notably data conflicts and data scarcity from varying material flow systems (e.g., household pro-

ductions, regional systems). Including data uncertainty is the most suitable way to solve these constraints. The previous studies (see Section 1.2.2)

mainly focused on secondary data and/or lacked systematic approaches for imperfect empirical data and strongly localized data. This limits MFA

applicability, especially under unstable conditions of transition economies like Vietnam. This work improves the situation by defining criteria for

assigning data indicator scores and sensitivity levels for both primary and secondary data in a comprehensive and consistentmanner (see details and

examples in Supporting Information S1 (Tables 1 to 3), S2 (Tables 4, 5), and S4.2 (Table 8). Therefore, uncertain data aspects are covered as well as

possible and transparently quantified.

2.5 Study area and data collection

2.5.1 Study area

The RRD is located in the western coastal zone of the Gulf of Tonkin and consists of 11 Northern provinces in Vietnam (Figure 3). RRD represents

a small area (6.4%) of 21,260 km2 but is most densely populated, with 21million inhabitants providing 23% of the total national population. About

64% of its residents lives in rural areas (GSO, 2017). The delta is formed by sediment from the Red River flowing from Southwest China through

several Northern provinces of Vietnam. Favored by advantageous geography and natural resources, RRD is known for the second largest agricul-

tural production zone and one of the most developed economic regions nationwide (Chi, 2005; Tha. ch, 2006; Fanchette et al., 2010; WB, 2012;

Sakata, 2013). It is also recognized for the highest rate of individual business establishments—the major driver for rural industrialization (Sakata,

2013). Nonetheless, RRD is an exemplary case suffering from serious environmental damage triggered by rapid industrialization and urbanization

(WB, 2013; ADB, 2013, 2015).

Household productions in FPCVs belong to rural cottage industries. There are 86 FPCVs from ∼130 food processing villages in RRD (own syn-

thesis). However, in this study, information was only obtainable for 66 well-documented FPCVs, dominantly located in Hà Nội (40%) (Figure 3 and

further details in Supporting Information S4.1 (Table 7)).
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F IGURE 3 The Red River Delta region (shapefiles modified fromwww.gadm.org), investigation sites, and distribution of agro-Food Processing
Craft Villages

2.5.2 Data collection

Asmuch information is collected as possible to achieve the over-determination (more equations than unknown) and utilize functions of gross error

detection and data reconciliation within software STAN (see examples in Supporting Information S3 (Figures 1 to 3, Table 6). For productions of

cassava starch (CS), arrowroot starch (AS), rice vermicelli (RV), and glass noodle (GN); two data collection campaignswere undertaken at the begin-

ning of 2015 and 2016 (around traditional New Year), when productions are at peak. Measurements of household productions and sampling were

conducted in well-known FPCVs in Hà Nội and Bắc Ninh. Sampling and sample preservation were performed according to instructions and meth-

ods described in Gy (1998). Analyses were conducted at laboratories of Hanoi University of Science, VietnamNational University (see Supporting

Information S9 (Table 20) for analytical methods). For the remaining productions of rice noodle (TN), tofu (Tf), cassava liquor (CL), and rice liquor

(RL); data were extracted from a recent study ofMeier (2016) on a liquor processing villageĐa. i Lâm (Bắc Ninh) (Figure 3). Data used for estimating

regional production capacities were synthesized from all available sources and telephone interviews of the producers and local authorities in 2016

and 2017. For relevant processes of privateHouseholds, Pig Farming, and Rice Cultivation, data were compiled mainly from literature, statistics office,

and own synthesis (see further details in Section 4.2 and Supporting Information S4.2 (Tables 8, 10), S8.2 (Figures 10 to 12; Tables 15a, 15b, 16a,

16b, 17a, 17b, 18) for actual data set and data sources).

2.6 Upscaling of agro-food processing from household to regional level

Eight household productions including detailed steps (Figure 4b) aremodeled individually as a prerequisite for the upscaling (Figure 1c).

2.6.1 Estimation of regional production capacities

First, the existing number and types of FPCVs in RRD are assessed. Second, production capacity (tons1 of product/year) of each village i (PCvillage,i) is

estimated and cross-checked against information obtained from household productions (e.g., ratio between raw material to final product) and/or

1 Tons refer tometric tons throughout this article.

http://www.gadm.org
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F IGURE 4 a) Generalized agro-food production steps (own survey), b)Modeling of agro-Food Processing in Red River Delta in 2015.
Abbreviations: AS, Arrowroot Starch; CS, Cassava Starch; GN, Glass Noodle; RV, Rice Vermicelli; RL, Rice Liquor; CL, Cassava Liquor; RN, Rice
Noodle; Tf, Tofu. rm, rawmaterials; fw, fresh water; ad, additives; ge, gaseous emissions; fp, final product; sr, solid residues; ww, wastewater; re,
recycling; se, sewer; od, open dump; F, Flow; P, Process. The rectangle inside a process symbolizes stocks. Units: t, tons; a, annum. Tons refer to
metric tons
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literature. If data are scarce, they are assumed based on proxy data or experience values implied from production investigations (e.g., number of

production establishments, peak and frequency of productions). Finally, values are aggregated to get the total regional production capacity for

Goods (PCreg_Goods, Equation (5)) and substance (PCreg_substance, Equation (6)).

PCreg_Goods =
n∑
i=1

PCvillage, i (5)

PCreg_substance = Chh_product ⋅ PCreg_Goods (6)

where n is total number of FPCVs, Chh_product is substance concentration of final product from household production.

The uncertainty of regional production capacities is calculated by applying theGaussian law for addition (Equation (7)) andmultiplication (Equa-

tion (8)).

𝜎Y =
√

𝜎
2
x1

+ 𝜎
2
x2

+…+ 𝜎
2
xn

(7)

CVY =
√
CV2

x1
+ CV2

x2
+…+ CV2

xn
(8)

where Y is function of variable x, 𝜎 is standard deviation, CV is coefficient of variation (CV = 𝜎

x̄
⋅ 100, x̄ is mean value).

2.6.2 Calculation of transfer coefficients

From the modeled household production, the transfer coefficient at household level of each flow f (TCf
hh
, Equation (9)) is defined as the ratio

between its flowmass (ṁf
hh
, in kg/day) and the final product (PChh, in kg/day) and its uncertainty is calculated following Equation (8).

TCf
hh

=
ṁf
hh

PChh
(9)

2.6.3 Modeling of regional productions

The regional productions are established based on systems defined for household productions applying similar transfer coefficients (TCf
hh
).

Togetherwith the regional production capacity (PCreg), themassof flow f is extrapolated to regional level (ṁf
reg, in tons/year, Equation (10)). Entering

regional flow values into STAN, the regional productions are subsequently modeled.

ṁf
reg = PCreg ⋅ TC

f
hh

(10)

See Supporting Information S4.2 (Table 8) and S6 (Tables 1, 2; Figures 14, 15) for the demonstration of this upscaling concept.

2.6.4 Modeling of total regional agro-food processing

It is unnecessarily complicated to include all detailed production steps (Figure 4a) in one model. Instead, the agro-Food Processing (FP) is simulated

usingmajor flows from eight modeled regional productions (Figure 4b) to provide a better overview of material flow system.

Flowand stock values are given in Supporting Information S7.1 (Tables 14a, 14b), the following presentsmathematical relationships of agro-Food

Processing:

∑
ṁi,FP =

∑
ṁe,FP +

∑
ṁdS,FP (11)

where ṁi,FP, ṁe,FP, ṁdS,FP are import (i), export (e), and delta stock (dS).

The import (Equation (12)) includes rawmaterials (rm, Equation (13)), freshwater (fw, Equation (14)), and additives (ad, Equation (15)) fromeight

productions (1= CS, 2= AS, 3=GN, 4= RV, 5= RN, 6= Tf, 7= CL, 8= RL).

ṁi,FP = ṁrm + ṁfw + ṁad (12)

where

ṁrm =
8∑

k=1
ṁrm,k (13)

ṁfw =
8∑

k=1
ṁfw,k (14)
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ṁad =
8∑

k=1
ṁad,k (15)

where k indicates production type.

The delta stock (Equation (16)) is calculated as stocks in open dump (OD, where solid residue from AS (od_AS) is disposed of, Equation (17)) and

sewer system (se) and local water bodies (SS&LWB, where wastewater (ww) and solid residues (sr) are discharged into, Equation (18)).

ṁdS,FP = ṁFP,OD + ṁFP,SS&LWB (16)

where

ṁFP,OD = ṁod_AS (17)

ṁFP, SS&LWB =
7∑

k=1
ṁww−se,k +

2∑
k = 1

ṁsr−se,k (18)

The export (Equation (19)) includes final product (fp, Equation (20)), coproduct as soyamilk (sm) from Tf, recycled (re) solid residues as fuel mate-

rial (fm) from CS, recycledmaterials for animal feeds (af, Equation (21)), discharge to surfacewater (dsw), and gaseous emissions (ge, Equation (22)).

ṁe,FP = ṁfp + ṁsm−Tf + ṁre,fm−CS + ṁre, af + ṁdsw + ṁge (19)

where

ṁfp =
8∑

k=1
ṁk (20)

ṁre, af =
8∑

k=3
ṁsr−re,k +

6∑
k = 4

ṁww−re, k + ṁsr−re af−CS + ṁww−re RL (21)

ṁge =
8∑

k=3
ṁge,k (22)

3 RESULTS

The following processes are categorized: household productions including productions using primary data (AS, CS, GN, RV) and productions using

secondary data (RN, Tf, RL, CS), relevant processes (Households, Pig Farming, Rice Cultivation), agro-Food Processing, and Red River Delta.

Figure 5 presents results implied from the application of data uncertainties characterization, further details are found in Supporting Information

S10 (Tables 21a to 21e). Figure 5a illustrates themean value change after reconciliation (Di) and compares it with entered uncertainties, indicating

flows in which Di is higher than entered CV are insignificant. Figure 5b compares the entered and reconciled uncertainties, showing uncertainty

reduction after reconciliation.

Figure 6 describes simplifiedmodels of agro-Food Processing (see Supporting Information S7.2 (Figures 6 to 9) for detailedmodels).

In total, 502,025 ± 4.8% tons/year of agro-foods (fresh mass basis) were produced from FPCVs in RRD in 2015, mainly provided (88%) by CS

(29%), RV (26%), GN (19%), and RN (14%). Most material consumption (89%) attributes to AS (42%), CS (35%), and GN (12%). Across productions,

the ratio of raw material to final product varies from 0.5–6.7; highest for AS (6.7), CS (2.4), GN (1.7); followed by CL (1.1), RN (1), and RL (1); and

lowest for Tf (0.5) and RV (0.5).

Table 1 quantifies thematerial metabolism in Red River Delta (see Supporting Information S8.2 [Table 19] and S8.3 [Figures 13 to 16] for detailed

models), indicating an unevenmaterial distribution between agro-Food Processing and relevant processes.
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(a) (b)

F IGURE 5 a) Entered uncertainties andmean value adjustment (Di), b) Entered uncertainties and reconciled uncertainties. CV, Coefficient of
Variation
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(a) (b)

(c) (d) 

F IGURE 6 Simplifiedmodels of agro-Food Processing in Red River Delta in 2015: a) balance of Goods, b) balance of organic carbon, c) balance of
nitrogen, d) balance of phosphorus. Data are extracted from detailedmodels. The rectangle inside a process symbolizes stocks. Tf, Tofu
production; Units: t, ton; a, annum. Tons refer tometric tons

4 DISCUSSION

4.1 Implication of data uncertainty analysis

4.1.1 Overcoming specific data limitations

Two notable data limitations have been solved as follows. For productions using primary data, data are relatively inconsistent due to production

unprofessionalism and imperfect measurements. Accordingly, detailed criteria were constructed for diverse data sources, sampling quality, mea-

surement frequency, analysis parameters, and processing characteristics, etc. This facilitated gross error elimination and reconciled conflicting

data, particularly for highly unstable productions of AS, GN, and RV. For estimating regional production capacities, data are substantially scarce
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F IGURE 7 Selective options of material management for agro-food processing craft villages in Red River Delta. Abbreviations: AS, Arrowroot
Starch; CS, Cassava Starch; GN, Glass Noodle, RV, Rice Vermicelli; RL, Rice Liquor; CL, Cassava Liquor; RN, Rice Noodle; Tf, Tofu; N/D,
Nitrification/Denitrification;WWTP,WasteWater Treatment Plant; F, Flow; O, Option; esp., especially. The dashed line rectangle symbolizes the
boundary of a village production cluster

and uncertain. Correspondingly, criteria are exclusively designed for data compiled from informal sources (i.e., public websites), interviews, various

levels of studies and reports, and assumptions. Based on this, material flow systemswere transparentlymodeled and upscaled using the best possi-

ble data availability. For more details, see examples in Supporting Information S2 (Tables 4, 5), S3 (Figures 1 to 3, Table 6), S4.2 (Tables 8 to 10), and

S6 (Tables 12, 13; Figures 4, 5).

4.1.2 Data consistency

Data consistency is quantified by the percentage (%) difference of entered and reconciled mean values, Di. The lower the Di is, the more consis-

tent the input data are. Unreasonable uncertainty characterization and/or more redundant data can increase possibilities of balance constraints

(Klinglmair et al., 2016). Across processes,Di varies from0–4.8% (Figure5a) and is in linewith values ofDataReconciliationQuality (Cencic, 2016a)

calculated by STAN.With the lowest Di, data aremost consistent for Red River Delta (0.07%), and agro-Food Processing (0.45%), followed by relevant



TRAN ANDWEICHGREBE 719

TABLE 1 Material shares and exchanges among agro-Food Processing (FP), Rice Cultivation (RC), Pig Farming (PF), andHouseholds (HH) in Red
River Delta. dStock, delta Stock, org.C, organic carbon, N, nitrogen, P, phosphorus. % is percentage of import (by weight). The arrow illustrates
material exchanges between processes within system boundary. Data are extracted from detailedmodels of Red River Delta

Import

RC PF HH FP dStock Material exchanges

Materials [tons/year] [%] [%] [%] [%] [%] [%]

Goods 27,428,922,238± 6.1% 98.2 0.13 1.65 0.038 15.6 FP→PF: 1.93⋅10−3

HH→PF: 1.8⋅10−4

HH+PF→RC: 3.35⋅10−2

org.C 8,082,689± 2.7% 72.5 15.6 9.92 1.98 6.3 FP→PF: 2.4⋅10−1

HH→PF: 3.3⋅10−2

HH+PF→RC: 1.28

N 389,346± 6.6% 52.7 31.8 14.7 0.78 37 FP→PF: 1.15⋅10−1

HH→PF: 2.74⋅10−2

HH+PF→RC: 4.38

P 90,755± 6.8% 41.5 46.8 11.1 0.63 60 FP→PF: 1.07⋅10−1

HH→PF: 1.83⋅10−2

HH+PF→RC: 4.35

[After initial online publication, the FP→PF values for rowsN and Pwere corrected.]

processes (1.5%). By contrast, data are least consistent for household productions (3.6%) including productions using secondary data (1.7%) and

productions using primary data (4.8%)—remarkably for GN, AS, and RV where gross errorswere detected. With differing Di from 0.75–3.3%, data

are generally more consistent for Goods than substances.

4.1.3 Uncertainty assessment

Input uncertainty range

Overall, the uncertainty ranges from 0.26% to 66% (Figure 5b). Nearly half of flows have CVs of 10–20%, which are considered moderate uncer-

tainties (cf., Crowe, 1996; Weidema & Wesnæs, 1996; Hedbrant & Sörme, 2001; Laner et al., 2016; Brunner & Rechberger, 2016), followed by

levels 0–10% (27% of flows) and 20–30% (17%). The CVs > 30% are minor (9%). The lowest range of 0–5% pertains to household productions,

agro-Food Processing, and Red River Delta. The highest CV range of 60–70% belongs to relevant processes (remarkably for Rice Cultivation) and Red

River Delta. Productions using primary data have substantially higher uncertainties (max. 56%, notably for GN and RV) than productions using sec-

ondary data (max. 29%). The rates of larger uncertain flows (CVs > 20%) in Goods (14%) and org.C (19%) are considerably lower than N (41%) and

P (42%). Uncertainties estimated for regional production capacities range from 8–22%, with the highest for CL (22%) and the lowest for RN (8%)

(see Supporting Information S4.2 (Tables 8, 9)).

Uncertainty adjustment

The percentage change of uncertainty before and after reconciliation is defined as uncertainty adjustment, CVi. Reconciled uncertainties are gen-

erally lower than entered ones, except for highly uncertain flows (cf., Klinglmair et al., 2016; Laner et al., 2016). Overall, the average CVi is 13%,

varying from 2.7–19% (Figure 5b). Household productions have the greatest CVi (19%). Particularly, productions using primary data have larger

change (23%, dominantly for GN (31%)) than productions using secondary data (14%). Red River Delta has the second highest CVi (15.5%), followed

by relevant processes (7%, notably for Rice Cultivation (12%)). The smallest CVi belongs to agro-Food Processing (2.7%). The uncertainty adjustments

are almost comparable for Goods (14%), P (13.6%), and N (12%), which are relatively higher than org.C (9%).

Confidence of uncertainty estimation

The distance of Di from entered CV indicates whether the uncertainty estimation is overly optimistic (Di > CV) or pessimistic (Di < CV) (cf.,

Klinglmair et al., 2016). Overall, flows with overly optimistic uncertainties are insignificant (2.6%) (Figure 5a). This occurs to household produc-

tions (5% of flows)—noticeably for GN (12%), RV (6%), CL (6%), and AS (5%). Goods (0.6%) and P (1.7%) have lower proportions of overly optimistic

uncertainties than org.C (4%) andN (5%).

In summary, the data uncertainty quality and data consistency quantitatively reflect data characteristics (e.g., sources, availability, application

of reconciled flows like in agro-Food Processing, Red River Delta) and process specificity.
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4.2 Material flow behaviors of agro-food processing

The following analyzes material flow behaviors of agro-Food Processing. Otherwise stated, material share is expressed as percentage (%) of the

import.

4.2.1 Balance of goods

Fresh water represents the greatest part (89.7% by weight or 9,442,275 ± 2.8% tons/year). Raw materials account for about 10.3% (1,086,694 ±
8.6% tons/year) and the amount of additives is insignificant (0.02% or 2,244 ± 10.5% tons/year). Of the output flows, the majority (87.7%) is dis-

charged without treatment into the sewer. Both final product and recycled materials have comparable shares of about 5%. The rest remains in

co-product (0.2%, from Tf), is deposited in open dumps (0.03%, fromAS residues), and released as gases into the atmosphere (2.2%). Solid residues

amount to 9.6%: half of this (4.7%) is utilized mainly for animal feeds; another fraction (4.9%) is disposed of into the sewer. Contrarily, wastewater

accounts for amuch larger proportion (83.2%) and is almost completely released into the sewer (82.8%); only aminor fraction (0.4%) is recycled for

animal feeds. The majority of Goods is discharged directly into the sewer significantly contributed by wastewater, indicating not only a huge waste of water

resource but also a burden for obsolete village sewer systems. Utilized materials account for a small part (∼5%) mainly contributed by solid residues. Stocks
provide a negligible share (1%).

4.2.2 Balance of org.C

The largest percentage (66% by weight of 159,796 ± 2.2% tons/year) stays in final product. Another considerable share (21%) is deposited in the

sewer. The recycledmaterials account for 12.4%. Small fractions are distributed in by-product (0.2%), gases (0.15%), and open dumps (0.1%). About

18.4% stays in solid residues: nearly two-thirds of this is recycled (12%); the rest is discharged into the sewer (6%) and accumulated in open dumps

(0.1%).Wastewater contributes 15.3%. Unlike solid residues, most of the org.C inwastewater (15.1%) is disposed of into the sewer and a negligible

proportion (0.2%) is utilized for animal feeds. Compared to Goods (1%), a significantly higher fraction of org.C (21%) becomes stocks; about 70% of this

originates fromwastewater. The amount recycled (12%) is still smaller than stocks. The majority (66%) remains in final product.

4.2.3 Balance of N

Different from org.C, a smaller share (40.7% byweight) of 3,032± 2.6% tons/year of import N is transformed into final product. Likewise, an equiv-

alent proportion (41.5%) is discharged of into the sewer. With 14.9%, recycled materials account for a lower contribution. The minor parts remain

in by-product (2.2%) and open dumps (0.1%). The amount in wastewater (39.5%) is nearly double that found in solid residues (17%). As for org.C,

most of the N in wastewater becomes stocks in the sewer (38%) and an insignificant part is used for animal feeds (1%). In contrast, three-quarters

of N in solid residues (13.7%) is recycled; the rest is disposed of into the sewer (3%) and open dumps (0.1%). Compared to org.C, the percentage of N

discharged into the sewer is higher by a factor of two but the amount recycled is nearly comparable. Stocks account for a significant fraction (41.7%) majorly

contributed by wastewater. The recycled (14.9%) is mainly provided by solid residues and relatively smaller than stocks.

4.2.4 Balance of P

About 57% (byweight) of 570.4±4.7% tons/year of import P is disposedof into the sewer. Approximately a quarter (24.6%) remains in final product

and a smaller portion (17%) is recycled. The rest is deposited in open dumps (0.14%) and remains in by-product (1.3%). In the output flows, the

greatest contribution (48%) comes fromwastewater, which is majorly discharged into the sewer (45.7%). Solid residues account for 26%: over half

of this is recycled (14.7%), other smaller parts are discarded into the sewer (11%) and open dumps (0.01%).Unlike org.C andN, themajority of P (57%)

is dischargedwithout treatment and accumulated as stocksmainly in the sewer; the recycled (17%) is slightly higher but still much smaller compared to stocks.

4.2.5 Total sewer discharge

Theaboveanalyses showthatmostmaterials aredischargeduntreated into the sewer.Consequently, sewer systemsand localwaterbodiesbecome

active biological reactors fueled by substance stocks whose concentrations vastly exceed natural resilience capacities. In particular, the overall

concentrations exceed regulated values (QCVN 40:2011/BTNMT, 2011) by a factor of 78 for COD, 3.4 for N, and 5.8 for P, leading to stinky smell

in local sewers and over-nutrition of the surrounding soil and water. The concentrations are seriously high for RV, CS, and CL; while the loads are

mainly contributed by CS, AS, and RV accounting for 87% (by weight) of Goods, 98% of org.C, 99% of N, and 97% of P of the total sewer discharge.

These findings suggest that specific priorities should be given to critical flows and productions for environmental and resource management in FPCVs.

4.3 Comparison of agro-food processingwith relevant processes

Table 1 shows agro-Food Processing represents the least and negligible import shares in Red River Delta; whereas Rice Cultivation is responsible for

the highest proportions (except P), followed by Pig Farming andHouseholds (for more details see Supporting Information S8.3 (Figures 13 to 16)).
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Nand P havemuch higher stock rates thanGoods and org.C. Unlike Rice Cultivation, agro-Food Processing is an insignificant contributor to stocks.

Material exchanges among agro-Food Processing and relevant processes are relativelymodest (<5%of import, byweight). In particular, residualmate-

rials from agro-Food Processing utilized for pig feeds provide minor shares corresponding to 14% of Goods, 1.5% of org.C, 0.36% of N, and 0.23% of

P in commercial feeds required for Pig Farming. Compared to commercial (chemical) fertilizer required for Rice Cultivation, human and pig excreta

utilized for fertilizer are significantly higher by a factor of 13.7; however, they make up trivial shares equal to 1.8% of org.C, 8.9% of N, and 10.5%

of P. Although agro-Food Processing has the least material shares in Red River Delta, the pollution in FPCVs is still severe at the local level due to the

home-based location of productions. This contamination is highly loaded because it is generally contributed by the manure mismanagement from

accompanying activity of Pig Farming. Thematerial flowbehaviors of agro-Food Processing and relevant processes inRed River Delta indicate inefficient

management of regional sanitation system.Optimizing material exchanges among them suggests a solution to environmental problems in FPCVs.

4.4 Recommendations ofmaterial flowmanagement

4.4.1 General principle

The above quantified material flow behaviors imply openmaterial cycles causing resource losses and environmental damage in FPCVs. Preventing

these by applying industrial ecology concept to close material loops at various system levels (Lifset & Graedel, 2002; Ehrenfeld & Chertow, 2002;

Graedel & Lifset, 2016; Chertow&Park, 2016) is recommended.Measures should be production specific focusing on critical productions and flows

and production establishment level because of material utilization flexibility for producers (Ehrenfeld & Chertow, 2002). If infeasible, end-of-pipe

technologies can be a complement or alternative; in which anaerobic treatment should be prioritized over aerobic treatment due to high organic

content and energy and resource recovery potentials of the discharge (Rosenwinkel & Nagy, 2000; EIPPCB, 2006;Meier, 2016; JRC, 2017). In this

regard, Figure 7 summarizes three possible options of material flowmanagement (see Supporting Information S11 (Table 22) for more details).

4.4.2 Option 1: Optimization of domestic material management

This option is suitable for the current situationof FPCVswhile adaptingorwaiting for better environmental planning and regulations.Here, residual

material utilizationwithin productionprocesses orwith external activities (e.g., animal raising) is promoted.Unusedproduction residues andanimal

manure can be treated in domestic biogas plants with cautious management of bio-slurry (e.g., Chi, 2003; De Groot & Bogdanski, 2013).

4.4.3 Option 2: Communal wastewater treatment plant

This alternative can be combined with option 1 and applied to all production types when wastewater treatment plants are installed in FPCVs (e.g.,

Meier, 2016; Hai et al., 2016). However, caution should be given to the huge quantity of solid residues generated from CS and AS. This measure can

also be implemented when productions with controlled capacities and low environmental pollution level are allowed to remain in residential areas

and polluting productions are relocated in village production clusters as stated in Decision 577/QĐ-TTg (2013) and Circular 31/2016/TT-BTNMT

(2016).

4.4.4 Option 3: Industrial symbiosis for village production clusters

This is the most desired option when the government is successful in relocating all productions to village production clusters. Here, materials are

exchanged within production processes and collocated activities in production clusters (e.g., animal farming, other productions, waste treatment

facilities) or the proximity (e.g., crop cultivation, horticulture, municipal) (cf., Ehrenfeld & Chertow, 2002). However, this conceptmay require coor-

dination from local authorities (e.g.,Wang, Deutz, & Chen, 2017).

5 CONCLUSION

From a total of 10,531,212 ± 2.4% tons of materials (corresponding to 159,775 ± 2.2% tons of org.C, 3,032 ± 2.6% tons of N, and 570.4 ± 4.7%

tons of P) used for agro-Food Processing in RRD in 2015, only minor shares (about 5%, by weight) are transformed into final products and recycled,

the majority (90%) is directly discharged mainly into the sewer (87.7%) as wastewater (82.8%) or emitted as waste gases (2.2%). The discharge

becomes stocks equal to 1% of Goods, 21% of org.C, 42% of TN, and 57% of P. This unsustainable practice indicates open material loops imply-

ing huge material losses and consequently environmental damage in FPCVs. Although agro-Food Processing represents negligible material shares

compared to relevant activities in Red River Delta, the FPCVs pollution is localized and alarming due to the home-based production sites andmanure

mismanagement from the coexisting Pig Farming. Avoiding these problems by circulating materials is contextually recommended for production

establishments, from the current situation to themost desired scenario of village production clusters. Applying the refined data uncertainty analy-

sis has solved specific data limitations, leading to fruitful balancing ofmaterial flow systems and upscaling of production processes from household

to regional level. The results provide a transparent and reliable database supporting particular agro-food producers, relevant decision makers to
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optimize production processes and handle environmental and resource issues in FPCVs, and a tangible framework for MFA community. Further

studies can quantitatively assess the recommendedmaterial flowmanagement options, focus on dynamicMFAs for long-term environmental plan-

ning, andmaster the applicability of data uncertainty analysis in the developing country context.
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sách, pháp luật vềmôi trường ta. i các khu kinh tế, làng nghề. [MonitoringReportNo. 39/BC-UBTVQH13datedOctober 20th, 2011, of theNational Assem-

bly Standing Committee on supervisory results on implementing environmental policy and law in economic zones and craft village.]. National Assembly

Standing Committee.

51/2014/TT-BTNMT. (2014). Thông tư số 51/2014/TT-BTNMT ngày 05 tháng 09 năm 2014 của Bộ Tài nguyên và Môi trường quy d̄i.nh Quy chuẩn kỹ thuật
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