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Abstract

The hypothesis that nuclear motion can be described classically has been tested for

several critical systems. We investigate the inversion of ammonia and the heat capac-

ities of water and hydrogen. We use conventional ab initio molecular dynamics,

which describes nuclear motion classically and the electron cloud using density func-

tional theory. Ammonia inversion is described perfectly by the tunneling of the

p orbital through the molecular plane. Nuclear tunneling is not needed to describe

this phenomenon. While the investigation of heat capacities is hampered by the brief

simulation times and limited system sizes, we can nevertheless make some qualitative

statements. Indeed, the heat capacity can be frozen out in molecular dynamics simu-

lations of solids, and hence, a quantized description is not required.
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1 | INTRODUCTION

For almost 100 years, the Schrödinger equation[1] has been incredibly successful in describing any kind of matter. Most quantum mechanical cal-

culations are performed for static problems using the time-independent Schrödinger equation for the electrons. This approach works perfectly for

the quantum mechanical description of the electronic structure and allows us to describe molecular structure, electronic spectra, and many other

phenomena. Currently, a classical description is usually used to describe the nuclear motion that controls chemical reactions.[2,3] While at first

glance, this approach is used due to its simplicity, the classical description of nuclear motion also has several conceptual advantages compared to

the full quantum mechanical treatment of molecular systems.[4,5]

In a complete quantum mechanical treatment, all objects do not have a well-defined position prior to measurement and we now know that

this assumption is incorrect: First, experimentally, we now have a far better understanding of molecular systems compared to that at the time

when quantum theory was first developed. Our more detailed knowledge about nanometer and sub-nanometer phenomena is due to the develop-

ment of modern experimental techniques such as scanning tunneling microscopy. It is clear from such experiments with atomic resolution that for

any molecular system, small nuclei are surrounded by an electron cloud. This electron cloud moves constantly as do the whole atoms. To some

degree, the investigated system is influenced by the measurement, but this does not change the obtained results much in these highly sensitive

experiments. The cloud never collapses.

Second, from a theoretical point of view, much can be learned from movies of chemical reactions that have been generated with ab initio

molecular dynamics (AIMD), or more specifically Car-Parrinello molecular dynamics (CPMD).[2,3] In CPMD simulations, every molecular system,

that is, any kind of matter, is treated as consisting of nuclei represented as points in space and of a surrounding electron cloud. We describe the

molecular systems with differential equations and follow the development of the system over time. In an equilibration phase, the nuclear
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velocities adopt a Maxwell-Boltzmann distribution because this is the most likely distribution. The electronic orbitals may become gradually more

or less localized during a chemical reaction, but this occurs in a continuous motion. We have shown in many studies that chemical reactions can

be described well using AIMD.

Finally, a simpler theory that does not lead to philosophical problems is generally preferable. We do not face philosophical problems in CPMD

calculations, since every part of the investigated system moves deterministically at any time. When we determine both nuclear motion and the

electron cloud using differential equations, we obtain a purely deterministic model. Since the nuclear positions move classically, tunneling is always

electron tunneling. The different reaction pathways that may be observed in different simulation runs are explained by deterministic chaos.[6,7]

Let us go into more detail concerning this theory that allows us to simulate the motion of nuclei and electron clouds over time. In CPMD, the

motion of the electrons is modeled using the quasi-classical Car-Parrinello equations. In a CPMD simulation run, first the electrons are optimized

according to the Born-Oppenheimer potential energy surfaces using the density functional theory (DFT) approximation (or the Kohn-Sham

approximation[8,9]). Then, the nuclei are moved according to Newton dynamics. This motion of the nuclei results in the deviation of the electrons

from the Born-Oppenheimer surface as computed using the DFT approximation. This deviation is converted into a force acting on the molecular

orbitals, which then oscillate back to the Born-Oppenheimer surface according to the CPMD equations. Hence, in a single time step, both the

electrons and the nuclei are moved, albeit by different equations. This procedure can be repeated for several thousand steps. Since the time step

must be chosen to be on the order of 0.1 fs, typical simulation times are on the order of picoseconds. The alternative AIMD method is Born-

Oppenheimer molecular dynamics, in which the electronic orbitals are fully optimized for the potential energy surface for every time step. CPMD

is more stable and less expensive than BOMD. For a related approach see also.[10]

We obtain a plausible and simple picture. The small nuclei and the extended electron cloud obey different differential equations, which is not

surprising because they are different kinds of objects on the scale of our simulations. While the electronic wavefunction is an extended object

and must be described by wave mechanics, the centers of the atoms move like particles. We do not consider relativistic effects, since nuclear

motion at normal temperatures occurs on the scale of the velocity of sound, rather than on the scale of the velocity of light. If necessary, it would

be easy to extend the theory to a relativistic treatment using special relativity for the nuclear motion. Additionally, we discuss processes at the

nanometer scale only, that is, we do not describe phenomena connected to the inner structure of the nuclei, such as fission and fusion. This would

demand a theory of the nuclear structure that would be able to explain the nuclide chart like the Schrödinger equation, together with the Pauli

principle, explains the periodic system.

Many phenomena must be checked to confirm that nuclear motion can be accurately treated with a classical description. Some of these phe-

nomena are treated in the present study. We use AIMD as a powerful but also limited tool for asking the question of whether a classical treatment

is sufficient. The advantage of AIMD methods is that they ideally do not use information from experiments. Their disadvantage is the high amount

of CPU time necessary to obtain converged results. AIMD can be applied to any kind of molecular system, that is, molecules, liquids, solutions,

and solids. However, the high transferability of this method is contrasted with its limited numerical accuracy due to the use of the DFT approach

for the electronic structure description.[8,9]

In the present study we have examined phenomena that have traditionally been considered to be proofs that all phenomena are described by

the Schrödinger equation. The inversion of ammonia[11] is often (but not always[12]) viewed as a typical example of nuclear tunneling (see Refer-

ences [13–16] and literature cited therein). Another example of such phenomena are heat capacities, in particular those of the very light hydrogen

molecule and of liquid water.[17]

2 | RESULTS AND DISCUSSION

2.1 | Ammonia: Inversion

The result for ammonia can be summarized in a few sentences as follows. The barrier is obtained correctly using standard density functionals

(Becke-Lee-Yang-Parr, BLYP: 6.22 kcal/mol, B3LYP: 6.16 kcal/mol, exp.: 5.8 kcal/mol[18]). This barrier height determines the reaction velocity. It is

problematic to consider the barrier width in order to describe nuclear tunneling. It is impossible to define such a barrier width rigorously for a mul-

tidimensional potential energy surface because unlike the barrier height, it does not correspond to a difference between state functions. If a reac-

tion is slowed down by a “long” reaction pathway, it is better to take this phenomenon into account by an entropy contribution. This entropy

contribution is small in the case of ammonia. There is no need for a special arrangement of the atoms for the reaction to occur. Once there is

enough kinetic energy within the relevant degree of freedom, the isomerization typically occurs several times (Figure 1). In the first series of simu-

lations, the molecule was fixed in space, that is, the rotational and translational degrees of freedom were set to zero (NH3.p.fix.mpg). The simula-

tions show the tunneling of the p orbital through the molecular plane. The motion of the nuclei is described classically and merely follows the

motion of the electronic wavefunction. Very similar results are obtained for deuterated ammonia (ND3.p.fix.mpg), but the reaction time is longer

by ~36% on average (see Supporting information Video S1). Below 1000 K, we do not observe an inversion on the picosecond timescale for both

NH3 and ND3.
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The view changes if the molecules are allowed to rotate in space. Then, we observe what we called a tardy dance of molecular orbitals[19]

(NH3.p.mpg and ND3.p.mpg). This motion is reminiscent of the Pauli principle, which states that a spin-1/2 particle must rotate two times before

the original state is reached again. A similar rule appears to apply to single orbitals. The measurable total density is unaffected by this unitary

molecular orbital rotation.

2.2 | Molecular hydrogen and water: Heat capacities

Heat capacities can be determined only qualitatively from an AIMD simulation. We can simulate the system for only a few picoseconds, that is,

we heat the system within a few picoseconds from approximately zero kelvin to several thousand kelvin. Nevertheless, it is likely that the most

important features are observed correctly. For these simulations, there is the question of whether translation can be frozen out in the classical

description of the nuclei which assumes the absence of quantum effects. It is clear that the answer to this question is yes, and the comparison to

the experimental results is not performed for a single atom or a few atoms in space but for a condensed phase sample that is either solid or liquid.

This is evident from the movies of the molecular dynamics simulations. At low temperatures, trivial results wherein the nuclei hardly move are

observed. The solid and the liquid phase are described qualitatively correctly both with classical molecular dynamics and with AIMD. This is also

evident from the fact that properties such as the characteristic radial distribution function are described correctly using molecular dynamics.[3] In

principle, it is possible to freeze out all degrees of freedom. There is nothing that makes a quantum treatment inevitable. Here, we utilize the clas-

sical Maxwell-Boltzmann distribution that emerges automatically during a molecular dynamics run because it is the most probable distribution.

F IGURE 1 Ammonia inversion. The movies (see the Supporting
Information) show the electron tunneling. A, The p orbital moves through the
plane and the classically described nuclei follow (average temperature of the
simulation run: 3700 K). B, Alternatively, if the molecule is allowed to rotate in
space, a much more complex motion of the orbitals is observed (average
temperature: 3400 K)[19]
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F IGURE 2 Example of the
heating of hydrogen. Upper
graph: total energy (green),
classical energy (red) and Kohn-
Sham energy (black); blue: linear
regression. Middle graph: heat
capacity CV,m; yellow: average.
Lower graph: mean square
displacement of the nuclei. The
results are plotted against the
temperature with a heating rate
of 0.001 kelvin/step. The linear
regression of the total energy
yields a value of the heat
capacity of 30.66 J/(mol K); see
the Supporting Information
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To determine the heat capacity from an AIMD simulation, we heat the system linearly, that is, the temperature increases by the same amount

in every time step, while the total energy is no longer constant. We then compute the derivative of the total energy with respect to the tempera-

ture (Figure 2). This cannot be considered to be a highly accurate approach because our heating rate is several orders of magnitude higher than

the highest rate that can be realized experimentally.

TABLE 1 Heat capacities of
hydrogen as obtained with CPMD at
different heating rates according to the
linear regression of the total energy

Calculation Temperature range/K Heating rate/K/step CV,m/J/(mol K)

1 0-3200 0.01 43.42

1a 0-20 0.0001 48.28

1b 0-200 0.001 30.66

1c 0-1600 0.01 29.47

Notes: The first simulation 1 was performed using a smaller simulation cell.

Abbreviation: CPMD, Car-Parrinello molecular dynamics.
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F IGURE 3 Example of the
heating behavior of water. Upper
graph: total energy (green),
classical energy (red) and Kohn-
Sham energy (black); blue: linear
regression. Middle graph: heat
capacity CV,m; yellow: average.
Lower graph: mean square
displacement of the nuclei. The
results are plotted against the
temperature with a heating rate
of 0.01 kelvin/step. The linear
regression of the total energy

yields a heat capacity value of
67.32 J/(mol K). For additional
plots, see the Supporting
Information

TABLE 2 Heat capacities of water
and of hexagonal ice, respectively, as
obtained by CPMD at different heating
rates and temperature ranges using the
linear regression of the total energy

Calculation Temperature range Heating rate/K/step CV,m/J/(mol K)

2 200-900 0.1 75.27

2a 0-700 0.01 67.32

2b 0-80 0.001 78.55

2c 0-10 0.0001 83.15

2d 0-1000 0.1 72.15

2e 200-600 0.001 119.55

3 0-500 0.01 76.11

3a 20-450 0.01 103.15

Notes: In runs 3 and 3a the simulation cell volume was increased by a factor of 2. For a more detailed

evaluation of run 2e see the Supporting Information, Figures S13 and S14.

Abbreviation: CPMD, Car-Parrinello molecular dynamics.
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We obtain a very noisy result due to the small number of particles considered in our simulations. Nevertheless, two clear conclusions can be

drawn from these data: first, the heat capacity starts from small values (0-20 J/[mol K] within the error of the method), and second, it increases

rapidly to meaningful high-temperature values (ideal gas: 3.5 R = 29.1 J/[mol K]); see Table 1.

Experimentally, the heat capacity Cp,m of water is initially close to zero, and then increasesmore or less linearly until it jumps from about 37 J/(mol K)

to higher values of ~75 J/(mol K) at ~270 K.[20,21] At about 370 K the value of the heat capacity jumps back to about 38 J/(mol K). In the simulations, we

observe initial values close to zero. Additionally, the high-temperature value for CV,m is obtained in the right order of magnitude, see Figure 3 and Table 2.

The ice structure slowly decomposes on the time scale of our simulations. An exception is run 2 in which the decomposition of the ice structure occurs

right in the beginning. This does not change the picture provided by the results, with the exception of the presence of the strong uptake of energy in the

beginning of this simulation run. The longest run, 2e (450 000 steps), is evaluated inmore detail in the Supporting Information (Figures S13 and S14). This

evaluation shows that indeed at higher temperatures the heat capacity drops down again. For all shorter runs a linear regression for the complete run

seemed to be themostmeaningful procedure, showing that we get results in the right order ofmagnitude.

3 | CONCLUSIONS

In the present study, we successfully simulate the ammonia inversion from first principles using a code that describes nuclear motion classically.

The barrier for the ammonia inversion is determined with quantitative accuracy as 6 kcal/mol. The simulations show electron tunneling through a

wavefunction node while the hydrogen atoms follow this motion. However, the simulation times are not sufficiently long to serve as the basis of

an Arrhenius plot. Once sufficient kinetic energy in the direction of the isomerization is available, several consecutive isomerization events are

observed. The reaction velocity decreases when hydrogen is replaced by deuterium. The frequency of successful isomerizations at temperatures

above 1000 K is on the order of magnitude of 2 THz and represents the upper limit for the room-temperature value. The frequency of the

corresponding normally frustrated oscillation is found to be on the order of 200 THz. Our simulation times are far from sufficient for observing

resonances close to the 1.27 cm line (0.03 THz) of ammonia used in masers.

While ammonia inversion can be simulated quite well using AIMD, the situation is less clear for the heat capacities. This is due to the limited

system size and limited simulation time. The lack of clarity is likely not due to a more basic problem with the description of nuclear motion

because some important features are described correctly. Furthermore, the error caused by the use of DFT should be of minor relevance because

many properties such as the radial distribution functions are known to be obtained accurately with CPMD.[22–24]

Plotting the heat capacities against the temperature yields a very noisy result. However, the initial values of the curves are close to zero at

zero kelvin. From the evaluation of several trajectories (see the Supporting Information), a marked deviation from zero to positive values is more

often observed for hydrogen than for water, possibly because an amorphous sample rather than a perfect crystal was used for hydrogen. The high

noise level precludes us from making more precise statements. The linear regression of the total energies vs temperature yields values for the

high-temperature heat capacities in the correct order of magnitude. This is remarkable because this result was obtained solely from ab initio calcu-

lations without any use of experimental information. It appears that there is no need for a quantum mechanical description of nuclear motion. In

principle, it can be frozen out completely in condensed phase experiments and simulations.

Furthermore, the successful use of CPMD shows that there is no reason to be reluctant to implement methods that use a second derivative

with respect to time and hence describe space and time similarly. It is perfectly possible to describe the motion of the electron cloud on the basis

of such a wave equation theory.

4 | METHODS

CPMD simulations[2,3,25] have been performed in the NVT ensemble (isochoric conditions) using the BLYP functional[26,27] together with the

Grimme dispersion correction.[28] Troullier-Martins pseudopotentials optimized for the BLYP functional were employed for describing the core

electrons.[29,30]

For the simulations of ammonia and a sample of 32 hydrogen molecules, the simulation cell was chosen as a cubic cell with the cell parame-

ters of 8.5 × 8.5 × 8.5 Å3 (16 × 16 × 16 a.u.3). Additional hydrogen calculations were carried out with a larger simulation cell

(10.6 × 10.6 × 10.6 Å3 (20 × 20 × 20 a.u.3) to test the influence of pressure. The plane-wave cutoff that determines the size of the basis set, was

set to 50.0 Rydberg. The time step was chosen as 5 a.u. (0.12 fs), and the fictitious electron mass was 400 a.u. The simulations were carried out

at different temperatures for up to 400 000 steps, that is, for up to 48 ps.

For the simulations of water, we started with the hexagonal ice structure. An orthorhombic cutout of the ice structure was constructed with

24 molecules in the simulation cell (cell parameters: 13.5212 × 7.8071 × 7.3596 Å3 [25.5513 × 14.7533 × 13.9076 a.u.3]). The same cutoff, time

step, and electron mass were used. In additional calculations the volume of the cell was doubled to test the influence of pressure. Data were accu-

mulated for up to 54 ps.
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