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A B S T R A C T

time-averaged optical potentials for creating and shaping bose-
einstein condensates

The precision of atom interferometers, targeted for example in the Hannover Very
Long Baseline Atom Interferometer (VLBAI) facility, imposes stringent requirements
in several respects. They concern the control of center-of-mass motion and expan-
sion of the wave packets by the matter-wave source as well as the number of atoms.
By reducing the expansion, systematic errors, appearing e.g. through wavefront
aberrations, can be lowered. These requirements can be matched by employing
ultracold quantum gases or even quantum degenerate gases. A promising method
to create those ensembles is evaporative cooling in a spatially modulated optical
dipole trap. Here, the utilization of time-averaged potentials enables the fast cre-
ation of ultracold atomic ensembles with large number of atoms. Both, the higher
number of atoms and the increased repetition rate, enhance the performance of the
interferometer due to a lower quantum projection noise, which scales with 1/

√
N,

and a larger bandwidth of the sensor due to faster sampling. The shaping of the
matter-waves by techniques such as matter-wave lensing or Delta-Kick collimation
is also feasible due to the dynamic control of the trapping potential.
In this thesis the implementation and application of dynamic time-averaged op-
tical potentials created via center position modulation of dipole trap beams is
demonstrated. By evaporative cooling in these potentials, 1.9(0.4)× 105 condensed
atoms with an expansion temperature of 29.2(1.3) nK were achieved after 3 s of
evaporation. Up to 4.2(0.1)× 105 condensed atoms could be observed with slower
evaporation of 5 s. Subsequent matter-wave lensing is carried out yielding expansion
rates as low as 553(49) µm s−1 resulting in an effective temperature of 3.2(0.6) nK in
two dimensions. This lens can be applied at any stage of evaporative cooling, thus
short-cutting the generation of ultracold effective temperatures. In this thesis the
limitations of optical matter-wave lensing in the current setup are revealed and
ways to improve the performance are discussed.
The fast generation of ultracold atomic ensembles will enhance the performance of
the dual-species atom interferometer, which represents the experiment apparatus
for this thesis and strives for a test of the Universality of Free Fall with an uncer-
tainty on the order of 10−9. The results of this thesis were used to test numerical
simulations which were utilized to show the perspective of generating up to 106

collimated condensed atoms within 1 s of cycle time in the rubidium source system
of Hannover’s VLBAI.
Keywords: time-averaged optical Potentials, Bose-Einstein Condensate, Matter-
Wave lensing
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Z U S A M M E N FA S S U N G

zeitlich gemittelte optische potentiale zur erzeugung und mani-
pulation von bose-einstein kondensaten

Die Präzision von Atominterferometern, welche beispielsweise das Hannoveraner
Very Long Baseline Atom Interferometer (VLBAI) anstrebt, stellt in mehrfacher
Hinsicht hohe Anforderungen. Sie betreffen die Kontrolle der Schwerpunktbewe-
gung und Ausdehnung der Wellenpakete durch die Materiewellenquelle als auch
die Atomzahl. Durch die Reduzierung der Ausdehnung können systematische
Fehler, die z.B. durch Wellenfrontstörungen auftreten, verringert werden. Diese
Anforderungen können durch den Einsatz ultrakalter Quantengase oder sogar
quantendegenerierter Gase erreicht werden. Eine vielversprechende Methode zur
Erzeugung solcher Ensembles ist die Verdampfungskühlung in einer räumlich
modulierten optischen Dipolfalle. Diese zeitlich-gemittelten Potentiale ermöglichen
die schnelle Erzeugung großer ultrakalter atomarer Ensembles. Sowohl die höhere
Atomzahl, geringeres Quantenprojektionsrauschen, skaliert mit 1/

√
N, als auch

die erhöhte Wiederholungsrate, größere Bandbreite des Sensors, verbessern die
Leistung eines Interferometers. Auch die weitere Manipulation der Wellen-Pakete
durch Techniken wie Materie-Wellen Linsen oder Delta-Kick-Kollimation ist in
diesen dynamischen Potentialen möglich.
In dieser Arbeit wird die Implementierung und Anwendung von dynamischen
zeitlich-gemittelten optischen Potentialen, durch Modulation der Mittenposition von
Dipolfallenstrahlen, gezeigt. Durch Verdampfungskühlung wurden 1.9(0.4)× 105

kondensierte Atome mit einer Ausdehnungstemperatur von 29.2(1.3) nK nach 3 s
Kühldauer erreicht. Bis zu 4.2(0.1)× 105 kondensierte Atome konnten bei einer
langsameren evaporativen Kühlung von 5 s beobachtet werden. Durch den Einsatz
einer optischen Materiewellen-Linsen in zwei Raumrichtungen wurde die Expan-
sionsrate bis auf 553(49) µm s−1 reduziert, was einer effektiven Temperatur von
3.2(0.6) nK entspricht. Diese Linse kann in jeder Phase der Verdampfungskühlung
durchgeführt werden, wodurch die Erzeugung ultrakalter effektiver Temperaturen
abgekürzt wird. In dieser Arbeit werden die Grenzen der optischen Materiewellen-
Linse im gegenwärtigen Aufbau aufgezeigt und Möglichkeiten zur Verbesserung
diskutiert.
Die schnelle Erzeugung ultrakalter atomarer Ensembles wird die Leistung des Zwei-
Spezies-Atom-Interferometers verbessern, das den Versuchsapparat für diese Arbeit
darstellt und einen Test der Universalität des freien Falls mit einer Unsicherheit
in der Größenordnung von 10−9 anstrebt. Außerdem werden die Ergebnisse ver-
wendet, um numerische Simulationen zu testen, die die Perspektive zur Erzeugung
von bis zu 106 kollimierten kondensierten Atomen innerhalb von 1 s Zykluszeit im
Rubidium-Quellsystem des Hannoveraner VLBAI aufzeigen.
Slagwörter: zeitlich-gemittelte optische Potentiale, Bose-Einstein Kondensate, Ma-
teriewellen-Linse
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1
I N T R O D U C T I O N

At the beginning of the 19th century Thomas Young measured the wavelength of
light with the famous double-slit experiment [1]. He explained the nature of light
by undulations of the luminiferous æther by luminating bodies. This wave-like
behavior of light explains the interference patterns observed in his experiment
as well as the colors of thin plates. Since then light interferometers were used in
numerous prominent experiments. One of the first ground-breaking results was
performed with an interferometer invented by Albert Abraham Michelson [2].
The experiment was carried out by himself and Edward Williams Morley in 1887
[3]. Michelson and Morley tried to observe the aberration of light by the motion of
the Earth through the luminiferous æther, which was a theoretical medium in that
light propagates. They could not prove its existence. The observations attributed to
the æther could sufficiently be explained by Albert Einstein’s special relativity [4]
without the need of an æther, but it requires the constancy of the vacuum speed of
light. Nowadays light interferometers are represented in a variety of applications,
for example in inertial navigation [5], telecommunication [6] or astronomy [7].

1.1 atom interferometry

In 1923 Louis De Broglie postulated the principle of wave-particle-duality of matter
[8]. As a consequence particles also exhibit wave-like characteristics which form
the basis for matter-wave interferometry. After the demonstration of interference
of electrons in 1955 [9] and neutrons in 1962 [10] the interference of neutral atoms
was shown in 1991 [11] in a Young’s double-slit-like experiment. In the same year
the first demonstration of sensing inertial effects with a light pulse matter-wave
interferometer using laser cooled atoms was performed [12].
Since then atom interferometers have become a tool for a variety of applications [13],
like the precise measurements of fundamental constants, such as the gravitational
constant G [14–17] or the fine structure constant α [18–21]. Due to their sensitivity
to inertial forces atom interferometers are also used to measure rotations, like the
one of the Earth [22–24], the local acceleration due to gravity [25–28], or its gradient
[29, 30].
The principle of an atomic gravimeter relies on coherent manipulation of an atom
cloud, which is achieved by near-resonant laser light stimulating Rabi oscillations
within the internal states of the atoms. During this process the momenta of the
absorbed and stimulated emitted photons changes the atoms motion. By coherently
splitting (π/2-pulse), reflecting (π-pulse), and recombining (π/2-pulse) the atomic
wave function, a Mach-Zehnder like interferometer [31, 32] is opened. A space-time
diagram of this interferometer scheme is depicted in figure 1.1. While operating
the atom interferometer as a gravimeter the effective wave vector~keff = |~k1 −~k2|,
where ki are the wave vectors of the two irradiated Raman light beams, propagates

1



2 introduction

π/2 π π/2
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[ February 18, 2020 at 15:31 – 1.0 ]

Figure 1.1: Mach-Zehnder-type atom interferometer in space time. The atomic wave packet
is split (π/2), reflected (π) and recombined (π/2) by retro-reflected light fields (red vertical
bars) in the direction of ~g. During the interaction with the light field the atoms change their
internal state (red and blue lines and atoms) and get an additional momentum kick.

along the direction of g. The pulses are separated by a time T. The differential
phase recorded by such an interferometer depends on the acceleration in direction
of beam splitting. Thus the leading phase contribution reads:

∆Φ =~keff ·~g · T2. (1.1)

Atom interferometers perform absolute measurements of the local gravitational
acceleration and possess the potential to outperform their classical counterparts in
terms of sensitivity, accuracy, and long term stability [33, 34].
Furthermore the differential readout of the gravity induced acceleration of two
atomic ensembles paves the way for high precision tests of the Universality of Free
Fall (UFF) which is one of the cornerstones of Einstein’s equivalence principle (EEP).

1.2 einstein’s equivalence principle

In 1916 Einstein published his work on a theory of general relativity (GR), attribut-
ing a special role to massive objects in a geometrized space-time [35]. Einstein’s
theory was able to explain effects like the perihelion precession of Mercury [36] or
the deflection of light by massive objects [37]. One of the consequences of GR is the
existence of gravitational waves [38], which were observed recently for the first time
by the Laser Interferometer Gravitational-Wave Observatory (LIGO), consisting of
two Michelson interferometers with 4 km long optical cavities in each arm, one



1.2 einstein’s equivalence principle 3

century after Einstein’s prediction [39].
Complementary to the direct observations of GR-effects, such as gravitational waves,
stands the test of the elemental postulates of Einstein’s theory, one of which is the
EEP [40]. It can be divided into three fundamental ideas [41]:

• The local Lorentz invariance (LLI):
The outcome of any local non-gravitational experiment is independent of the
velocity of the freely-falling reference frame in which it was performed.

• The local position invariance (LPI):
The outcome of any local non-gravitational experiment is independent of
where and when in the universe it is performed.

• The Universality of Free Fall (UFF):
All bodies in a given gravitational field experience the same acceleration,
independent of their inner composition.

The latter is also known as the "Weak equivalence principle (WEP)". A violation
of one of the above would imply that GR is incomplete. Therefore numerous
experiments have been performed testing the postulates of EEP [42, 43]. Here a
closer look onto tests on the Universality of Free Fall is aimed for. The WEP states
that all uncharged bodies, placed under the same conditions in space-time, will
follow the same trajectory independent of their internal structure and composition.
This idea was not new. Previously Galileo Galilei had stated this principle in
the 17th century claiming that test bodies with different masses will experience
the same acceleration under the same gravitational conditions [44]. Later this was
generalized by Isaac Newton. In the end of the 19th century Loránd Eötvös
published a test of the Weak equivalence principle comparing the gravitational
acceleration of different objects with different compositions in a torsion balance [45].
This resulted in a differential acceleration of the test masses smaller than 5× 10−7.
Since then the outcome of UFF tests are quantified by the Eötvös ratio:

ηA,B = 2
gA − gB

gA + gB
. (1.2)

A violation will manifest in a non-zero measurement. The result of Eötvös’s test
influenced Einstein to base the theory of general relativity on the Weak equivalence
principle.
Ever since the first measurements by Eötvös, the torsion balance remained as
a precise tool to test the Weak equivalence principle. Latest measurements have
reached η9Be,Ti =0.3(1.8)× 10−13 [46].
Apart from the Lunar Laser Ranging (ηEarth,Moon =−3(5) × 10−14 [47]) and the
MICROSCOPE satellite mission (ηTi,Pt =−0.1(1.3)× 10−14[48]) the torsion balance
is still one of the most precise classical test of the Weak equivalence principle.
Another approach is the direct comparison of the signals from two gravimeters.
This is a direct analogy to the thought experiment of Galilei. Such a classical test
performed with two free falling corner cubes as independent gravimeters made of
copper and uranium yielded an Eötvös ratio of ηCu,U =1.3(5)× 10−10 [49].
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1.2.1 Testing the Universality of Free Fall with Atoms

In addition to tests of the Universality of Free Fall with classical objects, the field
of quantum inertial sensing with atom interferometers opens new perspectives.
Atom interferometers open the access to a broad range of possible test objects.
These samples stand out due to their highly isotropic purity and well defined
characteristics [50]. Another benefit of atoms is that it is possible to manipulate their
internal and external degrees of freedom with a high accuracy. Additionally atom
interferometers extend the group of possible test masses to all atomic species where
laser cooling is possible. Comparisons between atom interferometers and classical
gravimeters can be interpreted as semi-classical UFF tests (ηSiO2,87Rb =4.4(6.5)× 10−9

[51]). One disadvantage of such tests is the need for two independent systems for
operation and therefore a spatial separation of the two test masses.
On the contrary cold atom gravimeters in general allow for two spatially overlapping
different atomic ensembles. Quantum tests of the Universality of Free Fall have been
performed using: (i) two internal states of the same isotope (η87Rb =0.9(2.7)× 10−10

[52]), (ii) two isotopes of the same species (η85Rb ,87Rb =2.8(3) × 10−8 [53]), and
(iii) two different chemical elements (η39K ,87Rb =−1.9(3.2)× 10−7 [50]). The latter
was performed with the dual-species atom interferometer apparatus ATLAS (ATom
LASer) in Hannover within the PRIMUS (Präzisionsinterferometrie mit Materiewellen
unter Schwerelosigkeit) collaboration.

1.3 improving the sensitivity of atom interferometers

Compared to classical tests, quantum tests do not represent the most precise prob-
ing of the UFF so far, but the method has also not reached its ultimate limitations.
Regarding freely falling atoms, there are a few approaches to improve the sensitivity
of atom interferometers for inertial sensitive measurements, and thus quantum tests
of the Universality of Free Fall. From equation (1.1) follows that imparting a higher
momentum onto the atoms and extending the interrogation time T improves the
sensitivity.
The accuracy of phase readout of the interferometer with classical input states is
limited by the quantum projection noise, which scales with 1/

√
N. Therefore a

higher atom number will also increase the possible sensitivity of quantum sensors.
Apart from that the utilization of entangled input states of matter waves can under-
cut the quantum projection noise [54]. The rapid development in this field promises
sensitivity gain of atom interferometric metrology [55, 56], such as atom clocks [57].
Currently the field of entanglement-enhanced precision measurements with atomic
ensembles has started progressing from proof-of-principle experiments towards an
improvement of sensitivity of real life metrological applications [54].
Regarding the momentum transfer a typical Doppler-sensitive Raman transition
[12, 58], carried out by counter-propagating beam-splitting light fields, transfers
momentum ~p = h̄~ke f f to the atoms. In order to increase the momentum transfer
and thereby the spatial separation of the wave function one can use sequential
Raman-transitions [59], Bragg beam splitters [60], a sequence of the former two
[61], or Bloch-lattices [62, 63]. These large momentum transfer beam splitters reach
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multiples of the two-photon momentum p = 2nh̄k. Momentum separations of up
to 408h̄k have been demonstrated in an atom interferometer [64].
With respect to the free evolution time T an improvement in sensitivity can be
achieved by physically extending the length of the interferometry region in the
apparatus such as in the case of very long baseline atom interferometers with free
fall distances on the order of meters, such as the VLBAI (Very Long Baseline Atom
Interferometer) facility in Hannover [65, 66]. This experiment has the potential to
reach an uncertainty in the Eötvös ratio better than 10−13. Another way to extend
T is to perform the experiments under micro-gravity (µg) conditions. There are
different approaches to provide µg conditions for atom interferometry. In facilities
such as the drop tower at the Center of Applied Space Technology and Micro-
gravity (ZARM) in Bremen, experiments can experience up to 4.7 s of µg in drop
mode or 9.4 s in catapult mode [67, 68]. Weightlessness is also provided by the
called Einstein-elevator [69, 70]. Atom interferometry has also been performed on
parabolic flights [71]. The sounding rocket mission MAIUS, which achieved the first
Bose-Einstein condensate (BEC) in space [72], also performed atom interferometry
during the flight [73]. All the mentioned methods provide µg times on the order of
seconds or minutes. Unlimited duration in µg can be ensured by operating in space.
With this perspective the Cold Atom Laboratory (CAL) has started its operation
aboard the International Space Station (ISS) in 2018 [74]. This will pave the way for
its successor BECCAL which will be a fully operational atom interferometry unit
operating in space, possessing the potential to become the pinnacle of cold atom
sensing [75].
Especially for atom interferometers operated with long interrogation times (T on the
order of seconds) it is crucial to reduce the expansion rate of the atomic ensemble,
to maintain the overlap of the atomic wave packets with the beam splitting light
field as well as to ensure a cloud density for which detection is feasible. After
trapping and sub-Doppler cooling the atoms, the expansion rate is on the order of
cm s−1 (T87Rb ≈ µK). This will lead to large and dilute ensembles during detection
and increases the susceptibility to systematic effects, such as wave-front distortions.
Typically the reduction of the expansion rate is achieved by lowering the tempera-
ture of the ensemble by means of evaporative cooling [76, 77]. This can be performed
in both, magnetic [78] and optical [79] traps. During the evaporative cooling process
the mean temperature is reduced by selectively removing the hottest particles. This
is achieved by lowering the effective trap depth and thus particles with energies
above the threshold can escape the trap. In state selective traps the high energy
particles can be coupled to a non-trapped state by means of radio frequency (RF)
[78], microwave (µw) [80], or light induced transitions [81]. The advantage of these
techniques is that the trapping frequency is maintained. In all cases the ensembles
need to rethermalize by collisions in order to re-establish a thermally equalized
distribution of their new lower energy state. The rate of collisions is dependent on
the confinement of the particles in the trap. For a steep trap the rethermalization is
faster than in a shallow potential. Another way is to lower the trapping potential
itself [82], e.g. by decreasing the optical power of an optical dipole trap. Here the
reduction of trap depth induces a relaxation of the trap confinement and slows
down the rethermalization.
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The evaporative cooling in the experiment described in this thesis is performed in
an optical dipole trap by lowering the optical intensity and thus the trap depth.
In order to overcome the reduction of trap frequency, time-averaged potentials
are used to generate a dynamically controlled trapping potential which enables
constriction of the confinement during evaporative cooling. This allows for rapid
evaporation and fast creation of BECs [69, 83].

1.3.1 Bose-Einstein Condensates

After their prediction by Albert Einstein and Satyendranath Bose in 1924 [84,
85], it took more than 70 years to demonstrate the first BEC formed with neutral
atoms [86–88]. The energy distribution of BECs follows the Bose-Einstein statistics,
as opposed to thermal gases which follow a Maxwell-Boltzmann distribution.
All particles in this condensed gas exist in the energetic ground state and share
the same macroscopic wave function, thus they are indistinguishable. Quantum
degenerate gases possess a variety of interesting features [89]. They present highly
coherent sources, therefore they are often promoted as a matter analogy of lasers.
In atom interferometers BECs are used due to their low expansion rates, on the order
of mm s−1 (T87Rb ≈ nK). This enables beam splitting by Bragg pulses, which reach
efficiencies close to 1 [67, 90]. Moreover, BECs typically feature spatial coherence
across their full size [91–93]. However the time needed to generate quantum de-
generate gases, mainly dominated by the duration of evaporative cooling, on the
order of seconds, is long compared to standard sub-Doppler cooling techniques,
which take a few ten milliseconds. This limits the repetition rate of devices used for
precision measurements. Therefore methods to accelerate the evaporative cooling
process are subject of current research.
One approach to increase the speed of BEC generation in optical dipole trap setups
is the utilization of time-averaged potentials. This method is presented in this work.
Due to modulation of the center position of the optical dipole trap beams the
typical dependency of the trap frequency from the trap depth can be resolved. By
keeping the trapping frequency high during evaporative cooling the duration of
rethermalization is decreased [83].
For interferometers, with seconds of duration, expansion rates below 150 µm s−1

are required [65]. Such small expansion rates are not in reach for typically dense
BECs due to mean field interactions, which pull the BEC apart. To further reduce the
expansion rate of atomic ensembles matter-wave lensing [94, 95] is performed.

1.3.2 Matter-Wave Lensing

The basic principle behind matter-wave lensing is to reduce kinetic energy by work
and thus tighten the velocity width of an atomic ensemble. Typically matter-wave
lensing is performed by releasing the ensemble from the trap and turning on the
trapping potential for a finite period after a certain time of flight (TOF) [96–99]. This
method is known as Delta-Kick collimation (DKC), since it makes use of the Delta-
Kick rotor [100]. The momentum width achievable by DKC depends on the size of
the atomic cloud at the release and at the time of the collimation pulse [101]. Since
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Figure 1.2: Cartoon of the Delta-Kick collimation and the corresponding phase space
diagrams for each step. The sequence starts in the initial trap ωi (a)), the distribution in
phase space is equally distributed. When the trap is turned off ω = 0 (b)) the ensemble
starts to expand. The phase space distribution sheers since the atoms with the highest
kinetic energy expand the fastest. When the collimation trap ωc (c)) is pulsed for a certain
time phase space distribution is rotated. After the rotation the momentum distribution is
reduced to a minimum while the size of the atomic ensemble is large.

the ensemble will not drop out of the trapping region and long pre-kick expansion
times are achievable DKC is preferably employed under µg conditions [67]. Effective
temperatures below 100 pK were observed in Ref.’s [102–104] corresponding to
expansion rates below 100 µm s−1.
The final momentum width achievable by DKC also depends on the harmonicity
of the employed potential. Under the influence of gravity the atoms will leave
the harmonic center of the trap. Therefore collimation of a freely falling ensemble
requires adjustment of the position of the potentials minimum. Another approach
was carried out by kicking the atoms by a vertical optical dipole potential after 1 s
of expansion [101]. This yielded a residual expansion rate below 70 µm s−1 in two
dimensions.
Besides DKC the expansion of the ensemble can be also lowered by instantaneously
reducing the trap confinement [93, 105, 106]. This procedure is similar to the
one described by Steven Chu in 1986 [94]. In this configuration the ratio of the
velocity spread before and after collimation is proportional to the trap frequencies
of the initial trap and the collimation potential [94]. Low trap frequencies allow for
larger sizes of the ensemble and thus the typical DKC and matter-wave lenses by
instantaneously lowering the trap confinement scale similarly. Especially for ground
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[ March 30, 2020 at 15:50 – 1.0 ]

Figure 1.3: Side view of false color images of the atomic ensemble of the initial normal
expansion (top) and after matter-wave lensing in two dimensions (bottom) for different
TOF. The kinetic temperature of the initial ensembles is Tr =197(6) nK (Tv =181(6) nK)
and the Delta-Kicked ensemble Tr =20.9(0.6) nK (Tv =134.4(3.4) nK). The images are
Gauss-filtered with σ = 3.

based experiments the latter method can improve the performance by reducing the
expansion of the atomic clouds to sub-nK temperatures.

1.4 the scope of this thesis

The creation and shaping of quantum states with low expansion rates, used for
matter-wave interferometry, directly enhance the performance of precision measure-
ments. For interferometers operated with large pulse separation times, the control
over the expansion rate of the atomic ensembles is of paramount importance. For
this, techniques such as matter-wave lensing are indispensable.
Dynamic time-averaged potentials improve the creation of BECs in optical dipole
traps by accelerating the process of evaporative cooling. Beyond this they allow for
matter-wave lensing in a well controlled expansion of the trap to further reduce
the kinetic energy of the atomic ensemble. This thesis is organized as follows. The
basic principle and theory of generating time-averaged potentials with an optical
dipole trap is explained in chapter 2. Along with the description of the experiment
setup the characterization of the time-averaged potential is summarized in chapter
3. Most of the measurements in this work were read out by imaging the ensemble.
Therefore this chapter also covers the detection setup and image analysis. Chapter
4 shows the results of generating quantum degenerate gases and compares the
performance of dynamic and quasi static traps. The outcome of these measurements
are supported by theoretical models and numerical simulations. A comparison
to other BEC generating experiments shows the comparability of the performance
presented in this work. The implementation of matter-wave lensing is shown in
chapter 5.
The performance of collimating the atomic ensemble by means of matter-wave
lensing is presented over the whole temperature range reachable by evaporative
cooling, from a few tens microkelvin to a few tens of nanokelvin. This thesis is
concluded with the final results of BEC generation and matter-wave collimation.
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This is followed by an outlook concerning possible improvements on the current
apparatus. A perspective for the utilization of matter-wave lensing and DKC in
future experiments is also given in chapter 6.





2
T I M E - AV E R A G E D O P T I C A L P O T E N T I A L S

This chapter is dedicated to derive the theoretical background of time-averaged
potentials. The derivation is focused on the demands of this thesis, a detailed
description can be found in [83, 107]. Starting with the optical dipole trap the
general idea of time-averaged potential as well as the method to derive the form of
the modulation function will be explained.

2.1 the optical dipole trap

Optical dipole traps can be realized by focusing an intense off-resonant laser beam,
the electric field E of this beam induces an atomic dipole moment p and thus leads
to an intensity dependent AC-Stark shift [108]. The resulting potential is

Udip(x, y, z) = −1
2
〈pE〉 = − 1

2ε0c
<(α)I(x, y, z) , (2.1)

were ε0 is the permittivity of vacuum, c the speed of light in vacuum, and α is
the complex polarizability depending on the atomic state and the frequency of
the driving field1. The spatial intensity distribution of a beam, propagating in the
direction of z, of an elliptical Gaussian beam (w0,x 6= w0,y) is described by:

I(x, y, z) =
2P

πwx(z)wy(z)
exp

(
− 2x2

wx(z)2

)
︸ ︷︷ ︸

horizontal

exp
(
− 2y2

wy(z)2

)
︸ ︷︷ ︸

vertical

, (2.2)

here P is the total optical power. The beam radius wi(z) at position z is given by

wi(z) = w0,i

√
1 +

(
z

zR

)2

, i ∈ x, y, (2.3)

with the Rayleigh length

zR =
w2

0,iπ

λ
, (2.4)

and w0,i the waists at position z = 02 From equation (2.1) the potential depth can
be determined

U0 = Udip(0, 0, 0) = − <(α)P
ε0cπw0,hw0,v

. (2.5)

1 A detailed calculation of the complex polarizability for the participating states of 87Rb in a 2 µm
trap, which was used in this thesis, was done in [109], with the resulting real part of the complex
polarizabilities: <(α(52S1/2)) = 6.2× 10−39 C m2 V−1, <(α(52P3/2)) = 32.8× 10−39 C m2 V−1.

2 The positions of the vertical and horizontal waists (w0,i) can differ. This leads to an shift of the position
of the trap’s center, section 3.5.2.

11
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In the case of <(α) > 0 the atoms experience a force towards the center of the
trap, where the intensity is the highest. For an elliptically shaped beam the dipole
potential can be written as:

Udip(x, y, z) = U0
w0,xw0,y

wx(z)wy(z)
I(x, y, z) . (2.6)

Therefore the shape of the potential is proportional to the intensity at each position
I(x, y, z) and the dimensions of the beam. For the experiments presented in this
work the trap frequency plays a fundamental role. A Gaussian shaped potential
the center of the trap can be approximated by an harmonic function:

Udip(x, y, z) ≈ U0

(
1−

(
x

w0,x

)2

−
(

y
w0,y

)2

−
(

z
zR

)2
)

. (2.7)

In the model of an classical harmonic oscillator UHO(xi, t) = 1
2 mω2

i x2
i with mass m

the trap frequencies are approximated by:

ωi =

√
− 2U0

mw2
0,i

, i ∈ x, y, (2.8)

and

ωz =

√
− 2U0

mz2
R

. (2.9)

From equation (2.8) and (2.9) one can see that the trap frequencies of an unmod-
ulated dipole trap scale with

√
U0. During the process of evaporative cooling the

trap depth is lowered and the hottest atoms are expelled from the trap. The re-
maining atoms need time, which depends on the trapping frequency, to reestablish
thermal equilibrium. To uncouple this process from the trap depth time-averaged
potentials,also known as painted potentials, are applied in this work.

2.2 time averaged potentials

The time-averaged potentials are generated by modulating the center position of the
initial potential I(x, y, z) by x′(t) = x− h0 f (t), were h0 is the spatial modulation
amplitude of the beam and f (t) is a periodic function with frequency ωmod and
amplitude 1. The averaged potential can be written as:

Ĩ(x, y, z) =
ωmod

2π

∫ 2π/ωmod

0
I(x′(t), y, z)dt . (2.10)

The modulation of the beam takes place in one dimension, such that:

Ĩ1D(x) =
ωmod

2π

∫ 2π/ωmod

0
I(x′(t))dt . (2.11)

For simplicity we assume a Dirac-distribution as ’brush’,

Ĩ1D(x) =
ωmod

2π

∫ 2π/ωmod

0
I0δ(x− h0 f (t))dt , (2.12)
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where the argument of the Dirac function δ(x− h0 f (t)) denotes the mean position
of the beam at time t. The beam has to spend a certain time dt at position f ′. To
"paint" an arbitrary function g( f ′) the time dependent modulation function f (t)
has to fulfill:

g( f ′) =

d f
dt

∣∣
f=0

d f
dt

∣∣
f= f ′

=
v0
d f ′
dt

(2.13)

⇒ g( f ′)
d f ′

dt
= v0 (2.14)

Here d f /dt at position 0 is written as v0, a constant velocity of the beam which is
given by the modulation frequency ωmod and the spatial modulation amplitude h0.
Integration of equation (2.14) gives:∫ f (t)

0
g( f ′)d f ′ = v0t . (2.15)

One can now solve for f (t) by integrating the known function g( f ′).

−1.0 −0.5 0.0 0.5 1.0
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t [π/2ωmod]

f(
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[ February 14, 2020 at 15:11 – 0.8 ]

Figure 2.1: Solutions of equation (2.17)

Like in Ref. [83] a harmonic potential is
targeted, thus

g( f ′) = 1− ( f ′/h0)
2 . (2.16)

Solving equation (2.15) for (2.16) gives:

f (t)3

3h3
0
− f (t) + v0t = 0 .(2.17)

The solutions for f (t) of equation (2.17)
are shown in figure 2.1. Since the center
position can only be shifted in a range
between −h0 and +h0 only the solution
in which | f (t)| ≤ 1 (red solid curve) is

of physical relevance. Modulating the voltage of the voltage-controlled oscillator
(VCO) in figure 2.2 b) with a periodic repetition of f (t) will lead to a harmonic
averaged intensity distribution. In the direction of modulation the potential has the
form:

Ũ1D(x) = U0 +
1
2

mω2
xx2 . (2.18)

For Ũ1D(h0)
!
= 0 the trap frequency reads:

ωx =

√
− 2U0

mh2
o

. (2.19)

Comparison with 2.8 shows that the frequency no longer depends on w0,i, but
on the amplitude of the center-position modulation h0. Therefore the loss in trap
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[ June 14, 2019 at 16:55 – 0.1 ]

Figure 2.2: Diffraction of a laser beam in an AOM driven by a VCO, in a) for a constant
voltage and in b) for a modulated voltage. The shape of the time averaged intensity profile
is determined by the modulation of the VCO control voltage. The focal length of the lens
and the differential diffraction angle Θ determine the width h0 of the intensity profile.

frequency during the reduction of the trap depth can be compensated by reducing
the modulation amplitude. In the setup that is described in this thesis an acousto-
optical modulator (AOM) is used to generate the center-position modulation (CPM)
of a laser beam (figure 2.2) in horizontal direction.

2.3 the gaussian ’brush’

The derivation of the time-averaged potential of the former section 2.2 was done
under the approximation that the center-position modulation is acting on an ideal
pencil like laser beam described by a Dirac delta function. In our case the position
modulation acts on a Gaussian beam, with intensity distribution:

I(x) = I0e−2 (x−xc)2

w2 , (2.20)

were xc is the center of the bell curve with width w.
The center of the beam spends a certain time dt at the position h0 f (t). The intensity
distribution reads then:

Ĩ(x) =
1

∑
i

g(xi)
∑

i
g(xi)e

−2 (x−xi)
2

w2 , with xi ∈ {−h0, . . . , h0} . (2.21)
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Figure 2.3: Comparison of the intensity profiles painted by Gaussian and Dirac ’brushes’.
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Figure 2.4: Trapping potentials for different powers and CPM amplitudes. The powers have
been chosen in order to reach comparable trap depth.

Here g(xi) is given by equation (2.16) for a parabolic shaped trap. The positions xi
are distinct positions within the modulation amplitude. Due to the modulation of
the RF-frequency of the AOM the distance between the xi is:

∆x = xi − xi−1 =
dx
dω

ωmod . (2.22)

It depends on the deflection efficiency dx/dωmod of the AOM and the modulation
frequency ωmod. A comparison of the intensity profiles given by equation (2.12)
and (2.21) is shown in figure 2.3. For low modulation amplitudes the two intensity
profiles diverge.
Therefore the horizontal part of equation (2.2) is replaced by equation (2.21). The
intensity of the time-averaged potential reads:

Ĩ(x, y, z) =
2P

πwx(z)wy(z)

 1
∑
i

g(xi)
∑

i
g(xi)e

−2 (x−xi)
2

wx(z)2


︸ ︷︷ ︸

horizontal

e
− 2y2

wy(z)2︸ ︷︷ ︸
vertical

, (2.23)
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with xi ∈ {−h0, . . . , h0}. The dipole beams utilized in this thesis are crossed under
an angle of 70◦. Figures 2.4 show simulated trapping potentials for different optical
powers and center-position modulation amplitudes.
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E X P E R I M E N TA L R E A L I Z AT I O N A N D C H A R A C T E R I Z AT I O N

The experiment apparatus is designed to operate two simultaneous atom interfer-
ometers using rubidium and potassium atoms. For this purpose the atoms need
to be captured and laser cooled under vacuum conditions. The vacuum system as
well as the laser system are shown in section 3.1.
Most of the measurements, presented in this work, rely on a precise readout of the
ensemble’s temperature. Those measurements of the atomic ensembles were done
using absorption detection. In section 3.2 and 3.2.2 the detection system as well as
the image analysis are described. To determine the ensembles temperature time of
flight expansion measurements are performed. Section 3.3 describes the readout of
the kinetic temperature of the ensembles.
The setup of the optical dipole trap as well as the system to generate time-averaged
potentials is described in section 3.4 and characterized in section 3.5.

3.1 vacuum and mot system

The vacuum chamber consists of three major parts: The 2D-magneto-optical trap
(MOT), 3D-MOT, which acts as the main chamber in this thesis, and a high aperture
detection region connected via a tube below the main chamber allowing for about
20 cm of free fall. An ion getter pump [Gamma Vacuum, TiTan-IPG, 40 l/s] and a titanium
sublimation pump [VG-Scienta, ZST23] create and maintain vacuum conditions of
about 4× 10−11mbar in the region of the 3D-MOT. The pressure is monitored with
a cold cathode gauge [Vacuum Generators, ZCR40R]. All view ports are indium sealed
anti-reflection coated windows. A detailed description of the vacuum system can
be found in Ref. [109–111].
The laser system can be divided into three parts: The rubidium and potassium
systems for cooling, trapping, and coherent manipulation of the different atomic
species, and the optical dipole trap system. For this work no design changes have
been done compared to the potassium system described in Ref. [110] as well as the
rubidium part shown in Ref. [112].

3.2 detection

Atoms exposed to resonant light will absorb and spontaneously re-emit photons.
This process is used for detection. There are two different approaches. On one hand
the scattered photons can be imaged and their intensity measured. The so called
fluorescence detection is used in the experiment for a state selective readout of the
interferometer by an photo diode [OSI Optoelectronics, PIN-10D] [110], but contains
no information about the spatial distribution of the atomic cloud.
On the other hand detection of the atomic ensemble can be achieved using absorp-
tion imaging. For this a collimated laser beam is shone onto the atomic ensemble.

17
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Figure 3.1: Vacuum setup with the 2D-MOT, 3D-MOT and the magnetic coil mounts. For
longer interrogation times the free fall tube and the detection chamber are attached below
the 3D-MOT chamber. Colored arrows indicate the axes of laser beams for the 2D-MOT (pur-
ple), 3D-MOT (blue), Raman and fluorescence detection beams (green) for the interferometer,
optical dipole trap (ODT) (red), and the absorption detection (yellow). The detection coils
are set up in Helmholtz configuration to generate the quantization field for the absorption
detection as well as interferometry. Modified from Ref. [110].

The atoms absorb photons and scatter them undirected. This leads to a reduction
in intensity along the beams direction z′ at the position of the atoms described by
Beer-Lambert law:

dI
dz′

= −nσI , (3.1)

where n is the local density of the cloud and σsc the atoms’ scattering cross section.
The latter is given by:

σsc =
σ0

1 + 4
(

δ
Γ

)2
+ I

Isat

, (3.2)

with the line width Γ, the detuning δ to the atomic transition ωat, and the on-
resonance cross section:

σ0 =
h̄ωatΓ
2Isat

. (3.3)

The saturation intensity Isat depends on the polarization of the light and the
orientation of the atoms to the quantization field [113]. Each measurement consists
of three images: Ibg is taken with the laser beams turned off and is used for
background subtraction.
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Figure 3.2: Top view of the absorption detection setup. The position of the dipole trap
beams is sketched as a cross. The detection beam is sketched in red, while the shadow of
the atoms is depicted by the dashed black lines.

The Images Iatoms and Ibeam contain the spatial distribution of the intensity with and
without atoms. The optical density at position (x, y) is given by:

OD(x, y) = ln
(

Ibeam(x, y)− Ibg(x, y)
Iatoms(x, y)− Ibg(x, y)

)
. (3.4)

From this the column density, integrated along z and in dependence of x and y, of
atoms reads:

n(x, y) =
OD(x, y)

σsc
, (3.5)

integration over the illuminated area gives the atom number N.

3.2.1 Setup of the Absorption Detection

The detection system consists of a charge-coupled device (CCD)-camera [Hamamatsu,

C8484-15G] and a simple 2 f -2 f lens setup, figure 3.2. The linear polarized detection
light, resonant to the |F = 2〉 → |F′ = 3〉 transition, is guided by a polarization
maintaining fiber towards the MOT chamber and is collimated by lens L1 ( f =

200 mm). In order to transform polarization fluctuations into observable intensity
fluctuations the light passes through a polarizing beam splitter optimized for
transmission by a λ/2 retardation wave plate The orientation of light polarization
is optimized to match the vertical quantization fields axis, generated by two coils
in Helmholtz configuration. The detection light passes the main chamber under
an angle of −14◦. A second lens (L2, f = 100 mm) images the initial beam and the
shadow of the atoms onto the CCD-chip. The system has a magnification of 0.881,due
to imperfect distances between atoms, lens(L2), and CCD-Camera, measured by
observing the free fall parabola of an atomic ensemble. The CCD-chip with an area
of 8.67 mm× 6.6 mm, 1344× 1024 pixel, has a pixel size of 6.45 µm× 6.45 µm. This
results in a spatial resolution of 7.2 µm.
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Figure 3.3: Example images in false colors of atoms in two thermal regimes (top) and their
analyses (bottom). The bottom graphs exemplary show the sum over column density in x
direction (black) and the fitted models (colored). On the left side density image an atomic
ensemble with a temperature of about 5 µK and 1.2× 106 atoms in the Gaussian part is
shown after 5 ms of TOF. The right side image shows a BEC at about 35 nK and 4× 105 atoms
after 20 ms of TOF. A Thomas-Fermi model is fitted to the density distribution. Notice the
different spatial scale of the left and right side.

3.2.2 Image Analysis

The spatial distribution of a thermal atomic ensemble follows a Gaussian distribu-
tion.

DG(~r) =
N√

2πσ2
e
− ~r2

2σ2
G (3.6)

For temperatures larger than 1 µK a strong background of atoms trapped in the
wings of the crossed-ODT is visible, see image 3.3 (top left). To subtract this back-
ground a combination of a Lorentzian- and Gaussian-distribution was fitted
to the integrated column sum. This way the Gaussian part can be extracted. For
ensembles colder than 1 µK the Lorentzian background vanishes and the distri-
bution follows a pure Gaussian distribution until the temperature is low enough
to form a Bose-enhanced Gaussian distribution. Upon crossing into the quantum
degenerate regime the spatial arrangement of atoms does not follow a Gaussian-
but rather a Thomas-Fermi-distribution, see figure 3.3 (right).

DTF(~r) =
[(

1− ~r2

R2
TF

)
·Θ(RTF − |~r|)

]2

(3.7)

Here Θ(x) is the Heaviside step function and RTF the radius of the atomic distri-
bution. In between a combination of the two describes the thermal atoms in the
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Figure 3.4: Gaussian- (red) and Thomas-Fermi-distribution (blue).

Gaussian-part and the condensed atoms in the Thomas-Fermi-part.
The width of the Gaussian distribution is defined as:

σG =
FWHM
2
√

2 ln 2
, (3.8)

with FWHM being the full width half maximum of the curve. For the Thomas-
Fermi distribution the width equivalent can be found as

σTF =
RTF√

7
(3.9)

from the radius RTF [114].
Due to the angle of the imaging system (3.2.1) to the orientation of the optical
dipole trap the projection of the x- and y-dimension had to be taken into account.
This is done by rotating the measures:

ρ = x cos φ− y sin φ , (3.10)

where φ = −14◦ is the angle of detection. Since ρ is a combination of the x- and
y-expanse the term ’radial’ is used in the following.

3.3 expansion rate and temperature evaluation

Nearly all results in chapter 4 and 5 depend on the precise readout of the atomic
ensembles’ expansion rate and thus the temperature. Multiple methods exist to
extract the ensemble temperature. One is to do Raman-spectroscopy of a certain
transition, e.g. 52S1/2, |F = 1〉 → |F = 2〉, and measure the Doppler-broadening.
Another way is to observe the expansion of the ensemble in a TOF-measurement.
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Figure 3.5: Measurement of the radius of the ensemble over time, with fit according to
equation (3.13).

The latter method has been used in this thesis. The expansion kinetic energy of a
thermal atomic ensemble is given by

Ēkin =
1
2

mv̄2 =
3
2

kBT (3.11)

=
1
2

m
(

σ2
vx
+ σ2

vy
+ σ2

vz

)
=

1
2

kB
(
Tx + Ty + Tz

)
, (3.12)

with m the mass of the atoms, kB the Boltzmann constant, the velocity spread σvi ,
and Ti the temperature of the ensemble in the ith direction. The time evolution of
the size, due to the kinetic temperature Ti, of a freely expanding ensemble can be
written as :

σri(t) =
√

σ2
vi

t2 + σ2
ri ,0

=

√
kBTi

m
t2 + σ2

ri ,0
, (3.13)

where σri ,0 is the initial cloud size at the time of the release (t = 0). For short times
t the cloud size σri(t) is dominated by the initial cloud size. After longer expansion
times the size of the ensemble is governed by the velocity spread (equation (3.13))
and thus by the temperature. From equation (3.12) and (3.13) one can see that the
square of the expansion rate is proportional to the temperature of the ensemble,

σ2
vi
=

kBTi

m
. (3.14)

Figure 3.5 shows a typical TOF measurement. Since the detection system (3.2) can
image the ensemble only in two dimensions the x- and y-expansion is averaged
as a radial (ρ) expansion. To get the temperature, function (3.13) is fitted to the
measured data.
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3.4 optical dipole trap

Optical dipole trapping is performed using a thulium doped fiber laser at a center
wavelength of about 2 µm [IPG, TLR-50-1960-LP, TLR-50-1940-LP] 1 providing output
powers up to 50 W. The optical system used for the ODT is divided into three parts,
the intensity stabilization and control, the beam paths towards and through the
vacuum chamber, see section 3.4.1, and the modulation of the center position of the
dipole trap beam by an AOM, see section 3.4.2.
To suppress intensity fluctuations of the laser source the intensity is stabilized using
a Pockels cell and a FPGA (field programmable gate array) based proportional–in-
tegral (PI)-control loop directly behind the fiber output of the laser. A detailed
description of this feedback loop can be found in Ref. [115]. This setup is also used
to linearize the sinusoidal response of the Pockels cell and to control the optical
power in the dipole trap. Around 30 W of intensity stabilized light is available in
the downstream setup.

3.4.1 Implementation

After intensity stabilization the beam size is decreased by a telescope (f=200 mm,
150 mm) from 1.6 mm to 1.2 mm to reduce diffraction at the aperture (5.1 mm×
7.4 mm) of the AOM. The AOM is mounted on a mirror mount [Thorlabs, KC1/M]

fixed on a rotation mount [Thorlabs, PRM1/M] to align the CPM horizontally. The AOM

deflects up to 60 % of the light into the first diffraction order.
Figure 3.6 shows the optical setup downstream of the intensity stabilization and
the beam path through the science chamber. Behind the AOM a second telescope
(L1 ( f1 = 100 mm) and L2 ( f2 = 300 mm)) is enlarging the beam while the distance
between L1 and the AOM is dAOM,L1 = f1 to allow for a parallel shift of the painted
beams in the chamber. The light is guided by a periscope (M1 and M2) to, and fo-
cused by lenses L3 and L5 at the center of the main chamber. For precise adjustment
these lenses are situated on µm translation stages [Neport, M-423 & SM-25]. In order
to generate a dipole trap consisting of two crossed beams L4 is re-collimating the
beam, and M3 and M4 redirect it to the MOT under an angle of 70◦ with respect to
the incident beam. The recycled beam contains about 80 % of the initial power. The
polarization of the initial and the recycled beams are cleaned by λ/2-retardation
wave plates and orthogonally oriented PBSs [FOCtek Photonics] to suppress heating
effects stemming from interference due to imperfect polarizations.

3.4.2 Center Position Modulation

The modulation of the center-position modulation of the dipole trap beams is
achieved using the AOM. The modulator features a nearly gaussian resonance with a
center frequency of 99 MHz and a bandwidth of 4.65 MHz half width half maximum
(HWHM). The AOM is modulating the position of the beam with a diffraction angle

1 Over the course of the measurement campaign described in this thesis, the IPG laser originally
envisaged for this project failed several times and had to be sent in for repair. During the repair dead
time, the second laser was used.
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Figure 3.6: Optical setup of the ODT and alignment through the vacuum chamber. The AOM

is used for CPM and intensity control with WP1 (λ/2) matching the polarization of the beam
for best diffraction. L1 ( f1 = 100 mm) and L2 ( f2 = 300 mm) magnify the beam radius to
about 3 mm, 4 mm (vertical, horizontal). L3, L4, and L5 ( f3,4,5 = 150 mm) focus, re-collimate
and re-focus the beam into the center of the chamber. WP3, WP4 (λ/2), and WP2 (λ/4) set
the polarization for maximum transmission at the orthogonally oriented polarizing beam
splitters (PBSs) (PBS1 and PBS2). The mirrors M1 and M2 form a periscope to guide the
beam onto the level of the atoms. M3 and M4 direct the beam a second time through the
chamber. The purple arrow indicates the direction of absorption detection.
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Figure 3.7: Setup of the CPM control. The amplitude of the spatial beam modulation is
regulated by controlling the amplitude of the periodic function generated by the AWG.

of about δΘ/δ f =0.36 mrad MHz−1. A characterization of the AOM performance is
given in appendix A.3. The signal driving the AOM is modulated with a maximum
amplitude of 8 MHz. A programmable arbitrary waveform generator (AWG) [Rigol,

DG1022Z] generates the required functions f (t), as derived in 2.2. The amplitude of
the displacement of the center position of the dipole trap beam, h0, is controlled by
regulating the amplitude of f (t) using the modulation input port of the AWG. The
output of the AWG is used to drive a VCO [Mini-Circuits, ZOS-150+] with a slope of
5.8 MHz V−1. A second stage of intensity regulation, besides the FPGA stabilization,
is realized by controlling the RF-power of the AOM driving frequency via a voltage-
controlled attenuator (VCA) by the real time (RT)-control, capable of linear voltage
ramps. The RF-signal is amplified [AA Opto-Electronic, AMPA-B-36, +36 dB] to drive the
AOM. The center-position modulation amplitude h0 depends on the diffraction angle
difference per frequency change δΘ/δ f and the focal length of the lens used to
parallelize the beam paths of different frequencies. For the simple case of just AOM

and one lens, see figure 2.2, the amplitude of CPM after the lens can be calculated
by:

h0 = f1 · tan(Θ/2) . (3.15)

A rather simple setup, were the beams are shifted parallel and focused at the center
of the trapping region, like depicted in figure 2.2, is not applicable in the current
experiment due to limited space. In order to guide the modulated beam towards
the main chamber it is necessary to change the vertical position of the beam and
pass a distance of nearly 1 m. To overcome this distance three lenses are used. The
first lens (L1) collimates the modulated beam propagation axes and focuses the
beam at the common focal plane of L1 and L2. This leads to a re-collimation of the
beam, but a focusing of the propagation axes. The final lens (L3) focuses the beam
at the center of the trapping region. In an ideal setup the focal planes of the three
lenses (L1-L3) would be arranged, to realize a parallel shift of the modulated beam
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Figure 3.8: Behavior of the CPM amplitude and the beam radius in horizontal and vertical
direction has been estimated using the Gaussian optics. In the upper graph the zero
corresponds to the unmodulated beams axis.

propagation axes. The behavior of the CPM and the beam radius in horizontal and
vertical direction has been estimated using ray transfer matrices for geometrical and
Gaussian optics. The calculations also take imperfect distances between the lenses
into account. The used input parameters are based on measurements performed
on the beam shown in A.3 and A.2.1. The results are shown in figure 3.8. In the
upper graph the zero corresponds to the unmodulated beams axis. The depicted
behavior shows only the part downstream of the AOM until the first pass through
the chamber. One can see that at the position of the AOM the vertical waist is
reduced. To match observations this correction had to be made to the shape of the
diffracted beam. It leads to a difference in waist size between the horizontal and
vertical axis.
The simulation of the beam propagation also reveals, that the beam is astigmatic at
the center of the trap caused by different divergences of the beam in vertical and
horizontal direction, see appendix A.2.1. This leads to a separation of the position of
the vertical and horizontal focus by about 2.9 mm. Section 3.5.2 explains the effect
on the trapped atoms and how to overcome this complication.
In an ideal setup the propagation axes of the modulated beam would be shifted
parallel. In the current setup this is not achieved, which leads to an angle of the
propagation axes of the CPM beams at the position of the atoms of about 2 mrad.
The calculated waists at the atoms’ position are around 25/30 µm in horizontal/ver-
tical direction with a maximum CPM amplitude of around 165 µm. Simulations
with different lens systems always aimed for the same amplitude-to-waist ratio of
around 6.7.
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3.4.2.1 Choice of Modulation Frequency

The modulation frequency ωmod, equation (2.12), hast to stay within lower and up-
per bounds. Atoms experience a time-averaged potential only if the CPM frequency
of the light beams exceeds the trap frequency corresponding to the direction of the
beam displacement.

ωtrap � ωmod (3.16)

For the setup shown here the maximum reachable trap frequency is on the order
of ωtrap/2π = 2 kHz. During loading and evaporative cooling in the trap typical
trapping frequencies do not exceed 500 Hz.
The upper boundary is set by the temporal response of the AOM, with a specified
rise time of 151 ns mm−1. This leads to a rise time of about τrise time = 550 ns for the
given beam radius. Therefor the maximum modulation frequency supported by the
AOM is on the order of 1.8 MHz.

ωmod

2π
<

1
τrise time

(3.17)

Repeating the waveform f (t), sec. 2.2, with a frequency ωmod will lead to formation
of modulation sidebands around the center frequency [116]. Thus the frequency
spectrum driving the AOM will consist of distinct peaks separated by ωmod/2π. The
AOM deflects the beam by 0.36 mrad MHz−1. This diffraction is transformed into a
center position shift of ∆xcpm ≈ 20 µm MHz−1 by the three lens system (L1 - L3).
An upper restriction for the modulation frequency is therefore:

∆xcpm ·
ωmod

2π
� w0 , (3.18)

with the waist of the unmodulated beam w0. For a spacing below w0/10 the upper
limit for the modulation frequency is ωmod/2π < 150 kHz.

3.5 characterization of the spatially modulated optical dipole
trap

The amplitude of spatial modulation of the beams of the time-averaged optical
potential is next to the optical power the lever to control the properties of the optical
dipole trap. One of which is the trap frequency, which defines, next to the trap
depth, the confinement of the atoms in the trapping potential. As in Ref. [117], the
trap frequencies associated with the time-averaged dipole potential are measured
by parametric heating of the atomic ensembles as explained in section 3.5.1
The potential minimum defines the position at which the atoms are captured. The
beam astigmatism leads to different foci and waists in the transverse direction of
the light beam and hence influences the time-averaged potential as discussed in
section 3.5.2.

3.5.1 Trap Frequencies

The behavior of the trap frequencies, determined via parametric heating of the
atomic ensembles, agrees well with the results of the numerical simulations of the
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Figure 3.10: Measured trap frequencies over optical power with no CPM (left side), and
amplitudes of the CPM at constant initial power (right side) for single beam trap (top) and
crossed beam trap (bottom) configuration. The black dots indicate the resonances measured
by parametric heating fph (e.g. fig. 3.9). The colored lines show the simulated behavior for
the different trap axes with error estimation in the shaded areas.
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time-averaged potential explained in 3.4.2 and set boundaries on the free parameters
of this simulation. An atom at the center of the trap can be described as an 3D-
harmonic oscillator with frequency ωi. This oscillator can be excited if its potential
is modulated with frequency ωph and amplitude ε:

UHO(xi, t) =
1
2

mω2
i x2

i ·
(
1 + ε sin(ωpht)

)
, i ∈ x, y, z . (3.19)

The modulation frequency has to fulfill

ωph =
2ωi

n
, n ∈N , (3.20)

the excitation decreases for higher n. For n = 1→ ωph = 2ωi the resonance is the
highest. A modulation at this frequency will lead to atom loss, and an increase in
temperature of the trapped ensemble.
The trap can be modulated by varying the light intensity by steering it via the
FPGA. The measurement sequence was performed as follows. The atoms are loaded
(section 4.1) into the trap and held for 500 ms followed by a 200 ms modulation
interval. The modulation has an amplitude of 5 % of the laser intensity. Subsequently
the atoms are held in the trap for another 500 ms for rethermalization. Imaging
of the ensemble is performed after 10 ms of TOF. Figure 3.9 shows an exemplary
measurement of the trap frequency via parametric heating. Starting with the simple
case of a single beam where the recycled beam is blocked, figure 3.10 (a) and (b), the
simulation can be adjusted to fit the measurements by approximate values for the
waists (whoriz.,initial = 29 µm , wvert.,initial = 47 µm ) and CPM amplitude (h0,initial =

200 µm ) of the initial beam.
Repeating this method with the recycled beam unblocked, figure 3.10 (c) and (d),
leads to the waists (whoriz.,recycled = 30 µm , wvert.,recycled = 42 µm ) and CPM amplitude
(h0,recycled = 300 µm ). For the crossed optical dipole trap case the measured values
slightly differ from the simulated curves. This deviation can be explained by small
vertical position drifts of the overlapping beams. This pointing instability has been
observed multiple times due to performance drifts of the BEC generation. Also
readout errors from the trap frequency measurements are possible due to the three
overlapping resonances.

3.5.2 Beam Focus Alignment

The dipole trap exerts a force on the atoms towards the position of highest intensity.
In a perfect optical system the vertical and horizontal focus position will be at the
same point. Section 3.4.2 shows that due to different divergences of the fiber output
a difference in position of the vertical and horizontal waist is likely. For the beam
waists in this system, see section 3.5.1, the horizontal waist of the unmodulated
beam is the most attractive, figure 3.11 (a). Modulating the center position of the
trap will artificially increase the effective waist in the horizontal direction. Therefore
the vertical focus position will become the more attractive location, figure 3.11 (b).
The effect of different focus positions is shown in figure 3.12. To compensate this
effect, one could use two orthogonal oriented cylindrical lenses in order to control
the vertical and horizontal focus position separately. Another approach is to use
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(b) Position of the atoms with CPM

Figure 3.11: Shift of the atoms due to astigmatism for (a) without CPM and (b) with CPM. The
solid lines depict the profile of the focused beam for the horizontal (red) and vertical (blue)
direction. In (a) the atoms position is mostly confined by the horizontal focus. Artificially
increasing the horizontal waist by CPM will lead to a shift of the atoms position. The dashed
lines represent the profile and position of atoms for the not modulated case.
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Figure 3.12: Position shift due to astigmatism. The dots are measured data, in red for the
original uncorrected, and in blue for the corrected setup.The solid lines show the results
from the simulation with error bars as shaded area, in red with a distance between the
vertical and horizontal focus of 2.9 mm, and in blue with both foci at the same position.
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the astigmatism on a lens [118], which appears if the object to image is not situated
on the optical axis of the lens. In this case the image position in the sagittal plane
is closer to the lens than in the meridional plane. Therefore one can correct the
different focus positions caused by different divergences of the laser beam by tilting
the lens. The rotation of the focusing lens (L3 figure 3.6) around its vertical axis by
approximately 5◦ pulls the horizontal focus position towards the lens and overlays
the vertical and horizontal focus. Figure 3.12 shows the relative position of the
atoms over CPM amplitude for the uncorrected and corrected focus alignment.





4
B O S E - E I N S T E I N C O N D E N S AT I O N I N D Y N A M I C P O T E N T I A L S

The generation of Bose-Einstein condensates with a large number of atoms re-
quires an optimization of all involved phases of the experiment, starting from the
magneto-optical trapping, the loading into the optical dipole trap via molasses
cooling, and the final evaporative cooling. The experimental results of the latter two
steps are presented in this chapter and compared with mathematical models.
One benefit of time-averaged potentials is the bigger initial trapping volume com-
pared to unmodulated optical dipole traps, which leads to higher loading effi-
ciencies. In Section 4.1 the number of atoms loaded into the modulated crossed
optical dipole trap dependence on the optical power and center-position modulation
amplitude is shown. Further it gives an insight into mode matching of the trap
parameters and the atomic ensemble which allows for trap loading without phase
space density (PSD) (equation (4.8)) loss.
The results of Bose-Einstein condensation by means of evaporative cooling in a
dynamic time-averaged potential and its benefits compared to a quasi static trap
are discussed in section 4.2.

4.1 loading of the dipole trap

Prior to the loading the atoms into the time-averaged optical potential the atomic
ensemble is prepared in a compression magneto-optical trap (cMOT) [119]. The
influence of the MOT parameters, such as detuning and intensity of the light fields
for loading the 2 µm dipole trap, have been analyzed in Ref. [109, 120].
After loading the 3D-MOT from the 2D-MOT for about 3 seconds the gradient of the
MOT quadrupole field is increased by nearly a factor of two and the cooling laser
jumps to a higher detuning (∆cool = −4.6Γ). The cMOT lasts for about 20 ms and
increases the density of the trapped atomic ensemble. Subsequent the quadrupole
field is turned off and the cooling laser jumps to a rather high detuning (∆cool =

−35Γ) for the optical molasses for sub Doppler cooling (subD) [121]. During the
whole MOT and cooling sequence the optical dipole trap is kept at a constant power

phase
duration
[ms]

∆cool
[Γ]

Icool
[Isat]

Irepump

[Isat]

∂
∂z B

[G/m]
N, NODT

MOT 3× 103 -2.6 31.8 0.2 510 5× 108, —

cMOT 31 -4.6 26.9 0.09 920 4× 108, —

subD 58 -35 31.8 0.007 0 3.8× 108, 2× 107

Table 4.1: Loading parameters for the optical dipole trap. The repump laser is always kept
on resonance. Intensities are given in Isat and correspond to the sum of all six MOT-beams
with a radius of 1.2 mm.

33
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Figure 4.1: Dependency of the atom number on the center-position modulation amplitude
and optical power. The black marks show the maxima of atom number per optical power.
The black solid line shows an exponential regression through these points, the dashed lines
indicate the 1-sigma error bar.

and center-position modulation amplitude. This leads to an accumulation of the
atoms in the trap during the phase of sub Doppler cooling. The parameters used
in this thesis were optimized for highest initial atom numbers in the optical dipole
trap, and summed up in table 4.1.
The center-position modulation amplitude enlarges the free parameter space of the
optical dipole trap. The number of trapped atoms was determined for different
optical powers and modulation amplitudes, see figure 4.1. For each power the
maximum atom number in dependence of the CPM amplitude was determined,
black circles with error bars, which follows a exponential dependency. For maximum
optical power of 12 W and a displacement amplitude of 140 µm 2× 107 atoms are
loaded into the trap.

4.1.1 Numerical Simulation

The experimental results were compared with an analytical model to extrapolate
the possibilities of the time-averaged potential trap in terms of the loading efficiency
and the PSD tendency.
Starting with a spherical, Gaussian shaped cloud of N0 atoms (equation (3.6)) with
a temperature T and rms radius σG and under the assumption that the atoms are
in a thermal equilibrium, the kinetic energy of the ensemble follows a Maxwell-
Boltzmann distribution [122]:

p(E) = 2

√
E
π

(
1

kBT

)3/2

e−
E

kBT . (4.1)
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Only atoms with kinetic energy lower than the trapping potential U(x) at position
x are trapped. Therefore the ratio of atoms loaded into the trap can be estimated
using:

pN =
Ntrap

N0
=

1
N0

∫ ∞

−∞
DG(x) ·

(∫ U(x)

0
p(E) dE

)
dx . (4.2)

This ratio is displayed in figure 4.2 (a). The simulation is performed for an ensemble
of temperature T = 30 µK and radius σrms = 150 µm, which are typical values for
a molasses cooled ensemble in the optical dipole trap loading sequence. While
loading an ensemble into the trap the PSD can be conserved if the trap and the
cloud are mode matched [89]. For a harmonic trap with stiffness κtrap,

Uharm.(r) =
1
2

mω2
trapr2 =

1
2

κtrapr2 , (4.3)

mode matching is fulfilled if:

κtrap = κatoms =
kBT
σ2

G
, (4.4)

with σG the rms radius of the Gaussian atom distribution. A too stiff trap leads to
heating of the ensemble due to non-adiabatic compression, left side of the dotted
lines in figure 4.2. If the trap is too loose the cloud will expand non-adiabatically,
right side of the dotted lines. In both cases the phase space density will be reduced.
The mode match parameter (pmm) can be estimated using [123]:

pmm =
8
(

κtrap
κatoms

)3/2

(
1 + κtrap

κatoms

)3 , (4.5)

pmm is the ratio of the PSD of the initial and trapped atomic ensemble. The outcome
of equation (4.5) is displayed in figure 4.2 (b) for the case of horizontal center-
position modulation.
The mode match parameter pmm gives an estimation how well the phase space
density is conserved while loading the atomic cloud into the trap. During the
evaporative cooling process the PSD is enhanced by rejecting the hottest atoms.
Therefore loading a high number of atoms into a nicely mode matched trap is
desirable. To find the optimal parameters of the trap in terms of atom number and
mode match the product of pN and pmm is calculated as:

γop = pN · pmm . (4.6)

The CPM-power interplay of γop is displayed in figure 4.2 (c).
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(a) Loading efficiency with 2D modulation
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(b) PSD ratio with 2D modulation
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(c) Optimal loading parameter for 2D modulation

Figure 4.2: Simulation of the loading efficiency (a) and ratio of PSD before and after loading
the atoms into the time-averaged potential (TAP) trap (b). The simulation is done for center-
position modulation in two dimensions, represented by the inlay in the right lower corner
of (a). For an initial atom number N0 = 4× 108 the measurement (figure 4.1), surrounded
by a white box, is in good agreement with the simulation of pN . Figure (c) displays the
weighted loading parameter. The dashed lines in the plots are fitted exponential curves
through the maxima. In figure (c) the result differs from the exponential behavior for powers
and CPM-amplitudes above 30 W and 400 µm and shows a linear behavior stressed by the
dashed line.
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4.2 rapid production of bose-einstein condensates
in time-averaged potentials

After loading the atoms into the time-averaged potential, evaporative cooling is
performed. This section includes an overview of the basic calculations needed to
describe the evaporative cooling process as well as a numerical model of the time
evolution of the main quantities. A full theoretical description can be found in other
publications such as Ref. [89, 124, 125].

4.2.1 Evaporative Cooling

The de Broglie wavelength of a particle in a thermal ensemble is given as:

λdB =

√
2πh̄2

mkBT
. (4.7)

For temperatures larger than the critical temperature (T � Tc) the distance between
the atoms is much higher than the de Broglie wavelength. For lower temperatures
the wave functions spread further and start to overlap at the critical temperature.
The density of wave functions, the phase space density, is defined as:

Λ = n0λ3
dB , (4.8)

where

n0 = N

(
mω̄2

trap

2πkBT

)3/2

(4.9)

is the peak density of a trapped atomic cloud which depends on the number of
particles N and the temperature of the ensemble T, both quantities are measured
via absorption imaging. The mean trap frequency ω̄trap = (ωxωyωz)1/3 is based on
the simulation of the time-averaged potential, section 3.5.1. For a trapped ensemble
in a pure state condensation takes place if the PSD fulfills

Λ ≥ ζ(3/2) ≈ 2.612 , (4.10)

where ζ(x) is the Riemann zeta function1. The critical temperature at the phase
transition is therefore given as:

Tc =
h̄ω̄

kB

(
N

ζ(3/2)

)1/3

. (4.11)

In our case the trapped atoms are distributed over the mF-manifold, resulting
in three possible states. Therefore we assume the phase transition to happen
at Λ = 3ζ(3/2) ≈ 7.8. Since the PSD is proportional to N/T3 Bose-Einstein
condensation can be achieved by lowering the trapped ensemble’s temperature
while maintaining the particle number. There are reports on direct laser cooling
below the critical temperature [126–128], but the most common way is to use
evaporative cooling described hereinafter.
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Figure 4.3: Process of evaporative cooling from top to bottom. On the left the distribution
of kinetic energy and on the right the trapping potential in x direction.

The energy distribution of the atoms before condensation follows a Maxwell-
Boltzmann distribution (equation (4.1)), depicted in figure 4.3. Evaporative cooling
is forced by the reduction of the trap depth. This leads to a truncation of the most
energetic part of the distribution and expels the hottest particles. The residual atoms
rethermalize and develop a distribution with a lower mean energy. Thus one can
reduce the energy until nearly all atoms populate the ground state of the potential.
The reduction of trap depth in optical dipole traps is done by lowering the optical
power. The remaining atoms in the trap thermalize due to elastic collisions. The
collision rate of this process is given by [129]:

Γel =
√

2v̄n0σcoll , (4.12)

were σcoll = 4πa2 is the collision cross section2 and
√

2v̄ =
√

16kBT/πm is the
average relative velocity between two particles. Using the atomic density from
equation (4.9) the rethermalization time is

τrt '
2.7
Γel

∝
T

Nω̄3
trap

. (4.13)

The factor 2.7 arises from the mean number of elastic collisions the atoms need until
the gas is rethermalized [131]. One notices the rethermalization time scales with

1 Λ ≥ ζ(3/2) ≈ 2.612 is the solution for a ideal gas in a harmonic isotropic trap, while Λ ≥ ζ(3) ≈ 1.202
is the solution for a free gas.

2 a ' 100a0 is the s-wave scattering length for 87Rb in the |52S1/2, F = 1〉 state [130] with the Bohr
radius of a0 =5.3× 10−11 m
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ω̄−3
trap. Thus a relaxation of the trap extends the evaporation time. In a static trap,

lowering the optical power reduces the trap depth and the trap frequency. Contrary
dynamic time-averaged potential enable for preservation of trap frequency while
lowering the potential depth.

4.2.2 Numerical Simulation

During the evaporation process the trap depth is exponentially reduced

Utd(t) = Utd(t = 0)e−χt . (4.14)

The constant χ depends on the initial trap depth Utd(t = 0), final trap depth
Utd(t = tev), and the duration of evaporation tev. Following 3.4 and 3.5.1 the
trap depth and frequency is simulated, and the evaporation process numerically
modeled using the scaling laws given in Ref. [83, 132–134]:

dN
dt

= −
(
Γev + Γ3b + Γbg

)
N (4.15)

dT
dt

= −
(

Γev

3
(η + α− 3)− Γ3b

3
−

˙̄ω
ω̄

)
T +

ΓscEr

3kB
, (4.16)

where α = (η− 5)/(η− 4), Γev is the evaporation rate, Γbg the background collision
rate, Γ3b the three-body collision rate, Γsc the scattering rate of photons of the optical
dipole trap, Er the recoil energy, and η the evaporation parameter. The terms in
equation (4.15) and (4.16) will be discussed in the following.
The rethermalization of the truncated Maxwell-Boltzmann distribution happens
due to elastic collisions, which appear with the rate Γel . Therefore the evaporation
rate is given by:

Γev = Γelηe−η (4.17)

with the evaporation parameter

η = −Utd/kBT . (4.18)

Contrary to the elastic collisions, inelastic collisions lead to atom loss and increase
the temperature. The three body collisions Γ3b become important for high densities
while two body losses are still negligible [135]. Three body collisions occur with
rates [129]:

Γ3b = Knc
3

n2
0√
27

(4.19)

for T > Tc with Knc
3 = 4.30(18)× 10−29 cm6/s and

Γ3b = Kc
3

8n2
0

21
(4.20)

for T < Tc with Kc
3 = 5.80(19)× 10−30 cm6/s for 87Rb .

The background collisions Γbg are one body collisions and arise from collisions
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with the background vapor. They are independently determined by a lifetime
measurement to be

Γbg =
1
τlt

(4.21)

with τlt = 30 s.
The term ( ˙̄ωtrap/ω̄trap)T describes the temperature change due to compression or
relaxation of the trap.
The final term in equation (4.16) stands for heating due to reabsorption of scattered
photons from the trapping laser. The intensity dependent scattering rate is given by

Γsc = ∑
i

U0Γi

h̄δi
, (4.22)

were Γi are the line width of the atomic transitions and δi the detunings of the
trapping laser to the transitions. Equation (4.22) is simplified under the assumption
that the atoms are located in the center of the trap and experience the peak intensity.
The scattering rate is summed over all possible transitions of the D1-, and D2-lines.
For the 2 µm dipole trap the heating rate due to the scattered photons at the be-
ginning of the evaporation process, trap depth of 100 µK, is on the order of about
10 nK/s. Hence the effective heating during evaporation is negligible. For traps
operated closer to resonance, eg. 1 µm, and higher optical powers, trap depth 1 mK,
the effect can rise to the order of hundreds of nK/s and becomes non-negligible.

4.2.3 Comparing Dynamic and Quasi Static Traps

In this section a direct comparison of the evaporative cooling performance of a
dynamic and a quasi static trap is given. In order to have comparable starting
conditions both settings begin with a modulated trap, h0 = 140 µm. In the quasi
static trap the modulation is kept on a constant level while in the dynamic case
the modulation amplitude is reduced exponentially in time. The trajectories of the
CPM-amplitude to the optical power is depicted in figure 4.4. For every trap depth
(a) on the evaporation trajectory the trap frequency (b) is known. The black line in
figure 4.4 shows the trajectory with the best trap frequency preservation.
After loading the optical dipole trap the atoms are kept for about 500 ms to allow for
thermalization and spontaneous evaporation. The holding time was experimentally
optimized for highest PSD and yields Λ ≈ 5× 10−4. Then evaporative cooling is
forced by lowering the trap depth.
The main quantities of the time evolution are depicted in figure 4.5 for two data
sets. One of which was taken with a dynamic trap, the other in a quasi static
trap configuration. Both result in a BEC of about 2× 105 condensed atoms, but the
dynamic trap in a shorter time. The Evaporation has been performed for different
χ, see equation (4.14), in order to test the time dependency of the evaporation
efficiency for dynamic and quasi static traps, see figure 4.6.
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Figure 4.4: Trap depth (a) and trap frequency (b) and the evaporation trajectories in terms
of optical power and CPM amplitude for the dynamic trap (cyan color), the quasi static
trap (magenta color), and the optimized trajectory (black) with the lowest variation of the
trapping frequency.
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Figure 4.5: Comparison of the numerical simulation (solid lines) and measurements (data
points) of evaporative cooling over time for a dynamic (blue) and a quasi static (red) trap.
The shaded areas correspond to a one-sigma error estimation. The top graph displays the
atom number. The temperature evolution is shown in the center as well as the critical
temperature (dotted lines). At the bottom graph the PSD is displayed. The black solid line
marks the critical PSD at which the phase transition occurs. The time of the phase transition
is marked by the dotted line, while the dashed line shows the time where the quasi pure
BEC (Nc/N0 > 0.95) occurs for the dynamic (blue) and the quasi static (red) trap.
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Figure 4.6: Comparison of the BEC performance of the dynamic and quasi static trap. Circles
mark the two cases compared in the previous sections.

In order to quantify the purity of the BEC the ratio of condensed atoms can be
estimated by [136]:

Nc

N0
=

1−
(

T
Tc

)3
, T < Tc

0 , T > Tc

(4.23)

In order to reach the nearly pure BEC (Nc/N0 > 0.95) only the final ramp step was
optimized in terms of optical power.
Over the course of optimizing the experimental parameters for efficient BEC pro-
duction it was even possible to generate quasi pure BECs with up to 4× 105 atoms
within 5 s of evaporation. This result is marked with (3) in figure 4.9.

4.2.4 Prediction for an Advanced Scenario

Supported by the results of this chapter a new setup is build up as a 87Rb source
system for the VLBAI experiment [65, 66]. It will operate with a 1064 nm optical
dipole trap laser with up to 50 W. The center-position modulation for the time-
averaged potential is generated by an acousto-optical deflector yielding modulation
amplitudes of about 1 mm in two dimensions. Using a crossed optical dipole trap
with 2D-modulated beams enables the control of the trap parameters in all three
dimensions. Preliminary studies of the system show that it is possible to load the
MOT with above 109 atoms within 200 ms.
The simulation result of the 3D modulated trap is displayed in figure 4.7. For a
molasses cooled ensemble with 10 µK and a rms radius of 500 µm it is possible
to load above 2.5× 108 atoms into the trap assuming a moderate optical power of
25 W and a modulation amplitude of 600 µm. While this are the best parameters
to load the time-averaged potential the trap frequencies are low. This effects the
rethermalization rate and slows down the evaporative cooling sequence. Therefore
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(a) Loading efficiency with 3D modulation
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(b) PSD ratio with 3D modulation
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(c) Optimal loading parameter 3D modulation

Figure 4.7: Simulation of the loading efficiency (a) and ratio of PSD before and after loading
the atoms into the TAP trap (b). The simulation is done for center-position modulation
in three dimensions, represented by the inlay in the right lower corner of (a). Figure (c)
displays the weighted loading parameter. The dashed lines in the plots are fitted exponential
curves through the maxima.
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Figure 4.8: Simulation of the evaporation process in the new VLBAI setup. The simula-
tion was performed for a trap with wavelength λ =1064 nm at 25 W, and an initial CPM

amplitude of 200 µm in all spatial dimensions.
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a modulation amplitude of 200 µm was chosen as the starting conditions for the
simulation shown in figure 4.8. It is still possible to load above 108 atoms into the
trap and to generate BECs with above 106 atoms below one second of evaporative
cooling. The outcome of this simulation is marked as advanced scenario in figure
4.9.
BECs with a higher particle number can be generated by increasing the size of the
trap and thus the loading efficiency, equation (4.2). But higher spatial modula-
tion amplitudes lead to lower trap frequencies. Hence the rethermalization time
increases and the evaporation speed slows down. To a certain point this can be
compensated by increasing the optical power. Another possible way is to choose a
modulation amplitude for best loading efficiency. Subsequent to loading an adia-
batic compression of the trap is performed [89]. This way one gains in PSD already
before the actual evaporation process. This way one combines the high loading
efficiency of the broad trap and the evaporation in a stiffer trap.

4.3 comparison with other bec sources

Neutral atoms are typically trapped in magnetic or optical potentials. Both allow for
generation of Bose-Einstein condensates. A comparison of different BEC sources
is given in figure 4.9. The first observations of BECs were achieved by performing
evaporative cooling in magnetic traps [86–88]. The fields for those traps are classi-
cally generated by solenoids outside of the vacuum chamber. To achieve trapping
confinements, capable of holding and evaporative cooling the atoms, large currents
are needed [152]. For higher confinements the evaporation rate is faster. Therefore
the generation of BECs can take a few tens of seconds [149, 150].
To speed up the flux of quantum degenerate gases and to reduce the power con-
sumption the preparation of Bose-Einstein condensates is performed on so called
atom-chips. These atom-chips, which are placed inside the vacuum chamber very
close to the atoms, use micrometer wire structures to generate high magnetic gra-
dients near the chip’s surface. This leads to a lower power intake and enables the
setup of transportable BEC sources [139, 146] that can be even operated in space[72,
75]. To date, chip based experiments are the sources with the highest BEC flux.
Compared to magnetic traps, optical dipole traps can capture all atomic species,
with a dynamic polarizability, magnetically non-susceptible atomic species, e.g.
ytterbium in VLBAI, and their sub-states. The latter allows to further cool the atoms
by means of laser cooling inside the far-off-resonance trap. Doppler-cooling on a
narrow transition of 84Sr to quantum degeneracy was reported [126] in a crossed
optical dipole trap with a tight confinement in the center. Also by Raman sideband
cooling it is possible to reach the transition to BEC [128]. The confinement of atoms
by an optical potential permits tuning the inter-atomic interaction strength via
Feshbach-resonances driven by magnetic field. By tuning the interaction strength
of 39K the Ramsauer minimum can be compensated enabling direct evaporation
[143].
While in magnetic traps the evaporative cooling is usually performed by coupling
the trapped and untrapped atomic states with energy selective RF-photons, which
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maintains the trapping frequency over the entire evaporation process, evaporation
in optical dipole traps is typically forced by lowering the optical power and thus
reducing the trap confinement. This leads to a decrease in trap frequency and lowers
the rethermalization rate. To overcome this limitation dynamic trap configurations
can be used. By shifting the focus positions of the beams of a crossed optical dipole
trap one can start with a rather large trapping volume and compensate for the loss
in trap frequency during the lowering of the potential [141].

4.4 conclusion

The results from section 4.2.3 show, that by reducing the center-position modulation-
amplitude during the evaporation process the time needed for evaporative cooling
can be shortened by a factor of about 3. Overall it was possible to improve the
previous result [151] of generating BECs in the ODT setup by a factor of up to 40 in
condensed atom number and up to four in repetition rate.
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Even with comparable condensed atom number the repetition rate of the presented
setup is still slower than the other comparable BEC sources. To improve the phase
space density in the beginning of evaporation the population of only one magnetic
sub-state, for subsequent interferometry the mF = 0 state, is favorable. This can be
achieved by optical pumping, an adiabatic-rapid-passage [153, 154] or a sequence
of state preparation repetitions [155].
Besides the evaporation, loading the MOT is the most time-consuming time interval
in the experimental sequence. In the new setup, presented in 4.2.4, this limitation
is removed. An increased flux in the 2D-MOT loads up to 2× 109 atoms within
200 ms. This is an improvement of about a factor of 20 to the experiment setup
presented in this work. The simulation shows, that Bose-Einstein condensates with
above 1× 106 atoms can be produced with an repetition rate of about 1 Hz, thus
outperforming today’s best BEC sources.



5
M AT T E R - WAV E L E N S I N G I N T I M E - AV E R A G E D O P T I C A L
P O T E N T I A L S

After evaporative cooling, the ensemble’s temperature is on the order of a few
tens of nanokelvin. This results in expansion rates of more than 1.5 mm s−1. To
further reduce the expansion the dynamic character of the time-averaged potential
is used to enable matter-wave lensing. Contrary to Delta-Kick collimation, where
the atoms are released from the trap to allow for free expansion, which is stopped
by a subsequent pulse of the trapping potential.
Under the influence of gravity such techniques are limited by the free expansion
time, since the atomic cloud drops out of the trapping region. In the scheme
presented in this chapter a different approach to collimate the expansion of the
ensemble by means of matter-wave lensing is performed. The atoms are released

a)
ω = ωi

p

x

b)
ω = ωc

p

x

c)
ω = 0

p

x

[ March 30, 2020 at 14:13 – 1.0 ]

Figure 5.1: Cartoon of the matter-wave lens and the corresponding phase space diagrams
for each step. The sequence starts in the initial trap ωi (a)), the distribution in phase space
is equally distributed. When the confinement is rapidly changed to the collimation trap ωc
(b)) the ensemble size starts to oscillate in the shallower trap. The momentum p is decreased
while the atoms convert kinetic into potential energy rolling up the collimation potential.
At the turning point of the size oscillation (c)) the trap is turned off ω = 0. The momentum
distribution is reduced to a minimum while the size of the atomic ensemble is the largest.
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from the initial trap into a spatially extended trap, at this time the atoms size starts
to oscillate in the collimation trap with frequency 2ωc. After a certain time

thold =

(
n +

1
2

)
π

ωc
, n ∈N , (5.1)

the size reaches a maximum. At this turning point the kinetic expansion energy is
minimized and the potential is turned off and the atoms are released into free fall
(figure 5.2). In this matter-wave lens configuration a collimation of the expansion of
the wave-packet is archived. The reduction of the ensemble’s expansion depends on
the ratio of the squared trap frequencies of the initial trap (ω0) and the collimation
potential (ωc) [94].

σ2
v,c

σ2
v,0

=
ω2

c

ω2
0
=

σ2
r,0

σ2
r,c

(5.2)

For low collimation trap frequencies the ensemble can expand to larger sizes and
the reduction of expansion velocity is stronger, this is analogue to Delta-Kick
collimation.
To describe the size evolution of the trapped and freely expanding ensemble the
scaling approach is used.

5.1 scaling approach

The dynamics of an ideal gas can be described using the scaling approach. Here
the formulas and a brief description are given, for more details see Ref. [156]. From
Ref. [157] we get

b̈i + ω2
c,ibi −ω2

0,i
θi

bi
+ ω2

0,iξ

(
θi

bi
− 1

bi ∏j bj

)
= 0 (5.3)

θ̇i + 2
ḃi

bi
θi +

1
τ

(
θi −

1
3 ∑

j
θj

)
= 0 , (5.4)

where bi(t) is the dimensionless scaling factor describing the time evolution of the
ensemble size and θi acts as an effective temperature in the directions i ∈ x, y, z.
The angular trap frequency ωc,i defines the collimation potential and ω0,i the initial
potential. This system of six coupled differential equations contains the mean field
interaction, given by the factor [158]:

ξ =
Em f

Em f + kBT
, (5.5)

with

Em f =
4πh̄2an0

m
, (5.6)

were a is the s-wave scattering length, n0 the peak density (equation (4.9)) and m
the mass of a single atom. Collision effects are also taken into account by

τ = τ0 ×
(

∏
j

bj

)
×
(

1
3 ∑

k
θk

)
, (5.7)
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Figure 5.2: Time evolution of the size and expansion velocity during the Delta-Kick col-
limation sequence for a thermal ensemble with T = 1 µK, σ0 =10 µm, and N =1× 107 in
one dimension for three different holding times. The top graph shows the trap frequency
behavior during the Delta-Kick collimation, ω0 for the initial trap at the end of the evapora-
tion process, and ωc for the trap used for the collimation. In the middle the size evolution
is depicted for four different scenarios. The black dashed dotted line corresponds to the
free size evolution without Delta-Kick collimation, in green the atoms are released after
an holding time (thold), optimal for lowest expansion rate. The red (blue) curves show the
behavior for a too early (late) release. The bottom graph shows the expansion velocity
evolution.
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with the relaxation time
τ0 =

5
4γ

(5.8)

and [157]

γ =
2√
2π

n0σcoll

√
kBT
m

. (5.9)

For the special case of a BEC the mean field energy is large, compared to the
ensembles thermal energy (ξ ≈ 1) and the time scale on which collisions appear
goes to zero (τ ≈ 0). Equation (5.3) will turn into the form known from Ref. [159].
With this set of equations one can simulate the time evolution of the ensemble’s
size (σri ) and velocity distribution (σvi ) during the entire sequence of matter-wave
lensing by [156]

σri(t) = σri(0)× bi(t) , (5.10)

and
σvi(t) =

√
σ2

vi
(0)× θi(t) + σ2

ri
(0)× ḃ2

i (t) . (5.11)

For a long enough freely evolving ensemble the expansion rate is given by the
velocity distribution which can be transformed into an effective temperature using
equation (3.14).
For the case of a thermal ensemble the time evolution of the size and velocity spread
in 1D is depicted in figure 5.2 for three different holding times(thold). One can see
the importance of a well timed release.

5.2 experimental sequence and results

Subsequent to loading of the dipole trap and evaporative cooling the matter-wave
lens is performed. Before rapidly changing the trap frequency (ω0 → ωc) the atoms
are kept in the initial trap, given by the final evaporation trap, for 50 ms. The
switching from the initial trap to the collimation trap is performed using the AOM

control (figure 3.7). For the matter-wave lens the spatial modulation of the trapping
beams is increased to the maximum achievable amplitude. Since the modulation
only takes place in the horizontal plane the collimation trap parameters are chosen
that the vertical confinement is kept constant in order to suppress uncontrolled
oscillations and atom loss. This is realized by increasing the optical intensity via
the AOMs RF-power.
In order to find the right holding time (thold), measurements of the ensemble’s
radius with iterating thold and different time of flight (1.5 ms, 2.5 ms, 4.5 ms, 10 ms,
15 ms, 20 ms, 25 ms, 30 ms) were performed, see figure 5.3. From these 8 data sets
the expansion velocity for each holding time is extracted using the method from
3.3. The optimal holding time was chosen to be the time with the minimal radial
expansion velocity. This measurement was performed at different points within
the evaporative cooling process, named "Set 1" to "Set 7". Only for "Set 7" the
evaporative cooling was completed and the matter-wave lens was performed on a
BEC. Since the radii of the BECs of "Set 7" scale with atom number by a factor of N1/5,
the evaluated radii were re-scaled to the mean atom number of the data set. The
measurements of the oscillating velocity distribution are shown in the figures 5.4.
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The results of the measurements as well as the trapping parameters are summed
up in table 5.1.
The expected oscillations of the expansion rate, emanating from the numerical
simulations of equation (5.3) and (5.4), are also shown in the graphs of 5.4. The
simulation depends in sum on twelve parameters which are provided with an one-
sigma error, see A.4. Due to computational reasons the simulation is not capable to
propagate these error estimations. Therefore different combinations of randomly
chosen normal distributed input parameters were fed into the model. For each set
the simulation was performed in a loop for 1000 times and the mean value and
standard deviation of the resulting curves was calculated for each point in time.
The damping in the oscillation can be explained by the anisotropicity of the trap
and the coupling between the differently directed motions. The simulation does
not take into account the effects of gravity on the trapped atomic ensemble as well
as anharmonicities in the trapping potential, which lead to the divergence of the
measurements and simulations.
A reduction of the expansion rate is observed over all temperature regimes without
significant atom number loss. Figure 5.5 shows the atom number of the initial and
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Figure 5.3: Measurement of the radial ensemble size oscillation for different TOF, see
legend for color code, over time for different holding times thold = t − TOF. The black
data points show the ensemble expansion without matter-wave lensing, with an initial
temperature of Tρ =930(10)nK. The curves represent exemplary expansion simulations
for imperfect (dotted, thold =24 ms, Tρ =1195(100)nK) and optimal (dashed, thold =30 ms,
Tρ =194(18)nK) holding time fitted to the highlighted data points.
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Figure 5.4: Oscillations of the expansion rate over holding time for different initial kinetic
temperatures. "Set 1" to "Set 6" present data for thermal ensembles, Nc/N0 = 0. "Set 7"
shows the expansion rate oscillation for a BEC with 92.5 % condensed atomic fraction. The
experiment parameters for all sets are summed in table 5.1. Vertical dotted lines display the
optimal holding time due to the measured data. The shaded areas give an error estimation
of the radial expansion rate.
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final expansion velocity after the matter-wave lens. The lowest expansion rate is
achieved with 553(49) µm s−1 with a related effective temperature of 3.2(0.6) nK at
an atom number of 4.24(0.02) × 105. This is a more than one magnitude lower
temperature than achieved by evaporative cooling, with a comparable atom number.

5.3 conclusion

The collimation of the expansion rate by means of matter-wave lensing is applicable
to atomic ensembles captured by time-averaged potential in all initial temperature
regimes. A reduction of the kinetic temperature of the clouds by a factor of up to
30 within tens of milliseconds is achieved. Still the results presented in this chapter
do not present the theoretically achievable values.
Anharmonicities of the trapping potential are likely to appear due to the narrow
AOM frequency bandwidth, see figure 5.6 and appendix A.3, which leads to ampli-
tude modulations over the center-position modulation transit. This leads to spatial
dephasing of the atomic ensemble’s motion. To fully understand the dynamics of
the atoms a second imaging system, observing along a vertical path, would be
required.
Matter-wave lensing relies on the elimination of the trapping potential precisely at
the turning point of the size oscillation, figure 5.2. The angle of intersection of the
here presented crossed optical dipole trap beams is 70◦. Even for perfectly power
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Figure 5.5: Atom numbers of the ensemble before (red circles) and after (blue diamonds)
matter-wave lensing. The black lines connect the affiliated points from the same data set.
The corresponding effective temperature is displayed on the top x-scale. No significant
change in atom number was observed by the matter-wave lens. Since the modulation only
acts in the horizontal plane only the radial expansion rate is displayed in this graph, the
results in vertical direction are shown in table 5.1.
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(a) Normalized potential shape without fre-
quency dependent diffraction efficiency of the
AOM.
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(b) Normalized potential shape with frequency
dependent diffraction efficiency of the AOM.

Figure 5.6: Normalized trapping potentials (a) without the frequency dependent diffraction
efficiency of the AOM, and (b) with imperfections in the diffraction efficiency of the AOM.

balanced and equally focused beams this leads to different trapping frequencies in
x- and y-direction and thus dephasing of the size oscillations. Efficient matter-wave
lensing can only be applied if the optimal holding time (equation (5.1)) matches for
all axes. This restriction can be overcome either by an angle of intersection of 90◦

for beams with equal properties or by using two independently modulated crossed
beams. The latter would also increase the need for optical power by a factor of two.
Besides this, the narrow bandwidth of the AOM leads to an anharmonic poten-
tial. This can be compensated by precisely adjusting the optical power during the
modulation transit. Another approach can be the utilization of acousto optical
deflectors (AODs). Here the broader frequency range will reduce the amplitude
modulation.
The performance of the collimation process in three dimensions is mainly limited
by the spatial dimensions of the time-averaged optical potential. The currently not
implemented modulation of the optical dipole trap beam in the vertical direction
limits the potential width to approximately 45 µm. To hold the atoms against gravity
the trap frequency in this direction should not drop below ωz/2π ≈140 Hz. For a
Gaussian shaped vertical potential the estimated trap depth can be found in figure
5.7. The larger the effective potential width, the lower the possible trap frequency
capable of counteracting gravity. For a time-averaged potential with parabolic shape
the vertical trapping frequency can be lowered further than in the gaussian case.
Since the expansion rate reduction due to the matter-wave lens scales with the ratio
of the trap frequencies, modulating the vertical axes will improve the performance
of the collimation. Ultimately it allows for cancellation of gravity by a linear vertical
potential gradient [160]. Under this conditions even lower trap frequencies are
feasible as well as a Delta-Kick collimation scheme which will be only limited by
the extension of the gravity compensating potential. The modulation of the vertical
beam position can be achieved using an orthogonal acousto-optical modulator sub-
sequently to the existing one. Implementing a second AOM will lead to an additional
intensity loss while the modulation in the extra additional would require a higher
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intensity. Therefore also this setup would be mainly limited by the available optical
power.
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C O N C L U S I O N

Dynamic time-averaged optical potentials can accelerate the process of evaporative
cooling and allow for the creation of Bose-Einstein condensates with more than
105 atoms. Together with a further reduction of the expansion rate by means of
matter-wave lensing this will improve the performance of the dual-species atom
interferometer and lowers the susceptibility of it to systematic errors such as
wavefront aberration.
In the scope of this thesis, the existing optical dipole trap setup [115, 120, 151]
was upgraded to a crossed ODT. Center position modulation of the dipole trap
beams enables the generation of time-averaged potentials to dynamically control
the trapping parameters in the horizontal directions.
Those time-averaged potentials improved the number of atoms loaded into the trap
from the optical molasses by a factor of 2 by increasing the effective waists of the
crossed optical dipole trap beams. With these starting conditions and the dynamic
control of the trap size it is possible to efficiently cool the trapped ensembles
by means of evaporative cooling. This way the production of BECs with up to
4.2(0.1)× 105 atoms within 5 s of evaporation was achieved, which corresponds
to a flux of about 5× 104 atoms/s. In only 3 s still 1.9(0.4) × 105 atoms were
achieved. The ensembles have a kinetic temperature of T =29.2(1.3) nK. Numerical
simulations show the possibility to generate BECs containing above 106 atoms with a
1 Hz repetition rate, in an advanced scenario with faster trap loading (>108 atoms in
about 200 ms) and center-position modulation in horizontal and vertical direction.
Furthermore the dynamic properties enable the use of the time-averaged potential
trap for optical matter-wave lensing. The expansion rate of the ensemble is reduced
in two dimensions as low as 553(49) µm s−1 resulting in an effective temperature of
3.2(0.6) nK, while the expansion in the vertical dimension stayed nearly the same.

6.1 current limitations and ways to improve

The final results, summarized in the former section, result from the optimization
methods described in this thesis. Limitations due to technical reasons as well as
ways to improve the performance will be discussed in this section.

6.1.1 Technical Limitations

The current setup underlies some technical limitations arising from the dimensions,
the size and shape, as well as the optical parameters of the trap and will be discussed
in the following.
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6.1.1.1 Shape of the Trap

isotropicity

The center-position modulation is only applied in the horizontal plane. This leads
to a highly anisotropic disc shaped trapping potential. By modulating the dipole
beams also in the orthogonal direction isotropic traps can be created. This will
increase the effective trap volume and improve the mode match for the transfer into
the trap. Especially the matter-wave lensing will benefit from an isotropic harmonic
potential. In a three dimensional isotropic potential, the cloud sizes oscillate in phase
at the same frequency in all directions. This will simplify the optimization of the
optimal holding time due to the reduction of beating originating from the coupling
of the oscillation axes and clears the routes toward picokelvin temperatures, see
section 6.1.2.2.

size and deformation

The size of the time-averaged potential depends on the spatial modulation ampli-
tude of the dipole beams. The AOM used in the here presented setup provides
a rather small center-position modulation amplitude of about 200 µm. Up to
h0 ≈ 430 µm would be feasible with a different lens system and the AOM closer to
the vacuum chamber1, see figure 2.2. The waist of the beam at the position of the
atoms would be w0 ≈ 80 µm and limited by the aperture of the AOM. This would
allow for larger traps and improve the loading efficiency.

The expansion rates after optical matter-wave lensing depend on the ratios of trap
frequencies of the initial and final traps. By increasing the modulation amplitude,
and thus decreasing the trapping frequencies, the matter-wave lensing performance
will improve due to the larger amplitude of size oscillations. The spatial modu-
lation amplitude of the current setup is highly limited by the narrow frequency
response of the AOM. This also leads to amplitude variations over the course of
the modulation transit and deforms the time-averaged potential, see section 5.3. To
achieve larger frequency bandwidths AODs are more suitable. Here center-position
modulation amplitudes of h0 ≈ 3.3 mm are feasible in a similar setup. Another
advantage of AODs is that they provide nearly constant diffraction efficiency over a
broad frequency range and thus reduce deformation of the potentials. At the time
of writing, no AODs for a wavelength of 1960 nm were available. However, suitable
deflectors are standard elements for lasers at a wavelength of 1064 nm, which are
appropriate for optical dipole traps and will be used in the setup described in
section 4.2.4.

6.1.1.2 Optical Power

The optical power determines the depth of the trapping potential. In the experiment,
optical power is reduced by several components: The Pockels-cell, employed for
stabilization and control of the optical power, and the assoiated optics cause a loss
of about 40 %, due to imperfect coatings of the optical components. Another 40 %

1 This value is based on a of 150 mm and δΘ/δ f =0.36 mrad MHz−1 with a modulation amplitude of
8 MHz.
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Figure 6.1: Left side: 2D simulation of a linear potential created by center-position mod-
ulation of the optical dipole trap beams. Right side: potential shapes cutting through the
center. The corresponding axes are depicted by the coorinate system in the left image.

is lost due to the diffraction efficiency of the AOM. In order to reduce heating, due
to interference, the polarizations of the light beams are cleaned up before passing
through the vacuum chamber. This reduces the power by another 30 % leading to a
final optical power at the atoms of only 12.5 W (25 % of the laser’s output power).

By performing intensity control and stabilization with the AOM instead of the
Pockels-cell, and using high quality polarization optics (estimated loss of 15 %) it
will be possible to use up to 45 % of the laser power to manipulate the atoms. This
will increase the loading efficiency and simplifies the system.
In order to keep the vertical trap parameters constant when releasing the atoms into
the collimation trap, the optical power needs to be increased. In the current setup
this is done via the VCA for the RF-power of the AOM. If the AOM is the actuator for
the intensity control, the optical power could be adjusted over the full range. This
will be crucial when utilizing 2D-AODs for large isotropic traps.

6.1.2 Ways to Improve

Besides the reduction of technical limitations an improvement of the experiment is
possible by adapting the parameters of the time-averaged potential to the needs of
the experimental phase. In the potential used in this work is parabolic shaped, but
loading the atoms into a box-shaped potential can be beneficial due to a constant
AC-Stark shift. Thus the laser cooling is undisturbed over a larger volume. Also
linear potentials, see section 6.1.2.1, or potentials with a linear gradient, section 5.3,
can improve the generation of low-expanding quantum gases.

6.1.2.1 Evaporative Cooling in Linear Potentials

This work shows that the production of BECs in optical traps can be sped up using
dynamically shaped harmonic traps. A further improvement is possible by using a
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different trap geometry.
The energy taken away by one evaporated atom (εout) scales with the parameter ξ

as [125]:

εout ∝ ξ +
3
2

. (6.1)

The parameter ξ is defined by the geometry of the trapping potential and is ξ = 0
for a box potential with infinitely high walls, ξ = 3/2 for an isotropic harmonic
potential, and ξ = 3 for an isotropic three dimensional linear potential. Also
the reduction of effective trap volume, which scales as V ∝ Tξ , by lowering the
temperature is faster for bigger ξ. As a result the density grows faster and the
elastic collision rate increases. This speeds up the rethermalization and accelerates
the evaporative cooling process. In figure 6.1 a linear potential in two dimensions
is depicted, as it can be realized by the current setup. Analogue to equation (2.16)
the shape of the potential is determined by the function:

g( f ′) = 1− (abs( f ′)/h0) . (6.2)

Dynamic time-averaged potentials offer the possibility to further investigate differ-
ent trap configurations under comparable conditions.

6.1.2.2 Matter-Wave Lensing by Low Frequency Traps

The optical matter-wave lens in a dynamic time-averaged potential is a straightfor-
ward technique to efficiently reduce the expansion rate of atomic ensembles, and
is applicable in all temperature ranges reachable by laser and evaporative cooling.
Matter-wave lensing can be used to short-cut the preparation sequence for slow
expanding quantum gases. This improves the performance of atom interferometers,
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by increasing the repetition rate, and is not limited to optical dipole traps but can
be also used in magnetic traps capable of fast potential changes.
The expansion after the lens highly depends on the trapping frequency (ωc) of the
collimation trap, and is depicted in figure 6.2 for the case of an isotropic trap and
different ωc. Holding against gravity requires a minimum vertical trap frequency,
see figure 5.7. And hence, to lower the frequency further, gravity has to be compen-
sated by employing a linear potential gradient. This can be implemented via optical
painting [160]. Another way is the operation in µg-environments. By reducing the
collimation trap frequency to values as low as ωc/2π = 5 Hz expansion tempera-
tures on the order of picokelvin are within reach.
Without compensating gravity, frequencies ωc/2π = 50 Hz to 150 Hz are feasible
and still expansion temperatures on the order of a few hundred pK are reasonable.

6.2 outlook

Wave front aberration is the dominant contribution in the current test of the Univer-
sality of Free Fall, performed with the dual-species atom interferometer presented
in this work [50]. This systematic effect arises through an imperfect and varying
overlap of the spatial distribution of the atomic clouds and the beam splitting light
fields. Also disturbances of the wave fronts by the optical components play a role.
This results in an uncertainty on the Eötvös ratio of δη =3× 10−7. The error can
be reduced by superimposing the expansion of the two atomic ensembles by means
of matter-wave lensing.
For the two species 39K and 87Rb the relation of the trap frequencies is given by:

mK

αK
ω̄2

K =
mRb

αRb
ω̄2

Rb , (6.3)

were the α’s are the real parts of the complex polarizabilities of the 2S1/2 ground
state2. By switching the collimation potential off at a common turning point the
expansion of both species can be collimated. This does not necessarily imply that
the size and expansion of the ensembles are overlapped to a sufficient degree. To
do so one can still find a trade-off where the sizes of the clouds are nearly the same
over long time of flights. In this case the temperatures do not reach their possible
minima3. In the simulation this holding time could be found at thold =10.075 ms
reaching effective temperatures of TRb =61.6 nK and TK =28.3 nK with a cloud size
of σRb =2411 µm and σK =2478 µm after 1 s time of flight. The outcome of this
simulation is depicted in figure 6.3.
By performing a dual species matter-wave lens the uncertainty on the Eötvös

ratio due to wave front aberrations will be lowered, and thus resolving the main
source of uncertainty in the current systematic analysis of performing tests of the
Universality of Free Fall with potassium and rubidium [50]. Additionally, the release
of the different ensembles from a common trap leads to an improved overlap of

2 For 87Rb this is <(α(52S1/2)) = 6.2 × 10−39 C m2 V−1 and for 39K <(α(42S1/2)) = 5.5 × 10−39

C m2 V−1

3 This statement is based on simulating the matter-wave collimation for one dimension with the
following starting parameter: TK = 10 µK, TRb =1 µK, ω̄Rb,0 = 300 · 2 · π Hz and ω̄Rb,c = 52.5 · 2 · π
Hz. The initial cloud sizes are defined by the temperature and the trapping frequencies.
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Figure 6.3: Time evolution of the size and expansion velocity during the matter-wave lensing
sequence for two thermal ensembles with TRb = 1 µK and TK = 10 µK in one dimension.
The trap parameters are chosen to adjust the free expansion of 87Rb (red curve) and 39K
(blue curve). The black dotted lines set the time at which the potential changes. The top
graph shows the trap frequency behavior during the matter-wave lens. The bottom graph
shows the size evolution. The behavior without matter-wave lensing is depicted as dashed
lines. Insets show the behavior for longer time scales up to 1 s.
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the center-of-mass motion. Systematic effects, stemming from gradients, are thus
suppressed by the enhanced overlay of the trajectories of the atomic test masses.
With the high flexibility and possibility to adapt the in this work presented schemes
to various multi species experiments, applications at a range of precision measure-
ments are possible. The presented techniques paves the path for UFF tests with
unprecedented accuracy in ground based experiments, for example in the VLBAI

facility. But also experiments in µg, like the PRIMUS experiment in Bremen [68, 161],
will benefit from superimposed ensembles with low expansion rates.
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a.1 parasitic optical pumping into f=2

The laser used has a line width of about 80 GHz (1 nm spectral width). Based
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Figure A.1: Population of the F=1 and F=2 states over holding time in the trap for different
powers. The solid line is a fit of the coupled-system loss rate equations solution to the
acquired data.

on the results presented in [162] the stimulated pumping between the two hy-
perfine ground states has been observed. In this publication a similar laser [IPG,

YLR-50-1070-LR] with a spectral width (FWHM) of 2 nm at a wavelength of 1070 nm
has been used. Since the laser used in this thesis has a larger detuning as well as
a smaller line width a reduced scattering rate is expected. Figure A.1 shows the
population evolution of the two states F=1 and F=2 and the fitted solutions of the
rate equations A.1.

Ṅ1 = −p(N1 − N2)− β11
N2

1
Ve f f
− β12

N1 N2
Ve f f

,

Ṅ2 = +p(N1 − N2)− β22
N2

2
Ve f f
− β12

N1 N2
Ve f f

,
(A.1)

with Ve f f = (2πkBT/m)3/2/ω̄3 being the effective volume with ω̄ the mean trap
frequency. The coefficients βij describe the two-body loss rates for collisions of
atoms in the F = i, j state. The impact of spontaneous Raman scattering [163]
should be negligible in our setup since it scales with 1/∆4.
The pumping rate (p) is shown in figure A.2. The pumping rate increases with about
2.5× 10−3 W−1. The dashed line in figure A.2 displays the spontaneous photon
scattering in the trap. The hyperfine state changing scattering rate is expected to be
orders of magnitude lower than the spontaneous photon scattering. Therefore it is
likely that the broad bandwidth laser stimulates Raman transitions that change the
hyperfine state.
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Figure A.2: Pump rate into F=2

a.2 2 µm laser

The measurements presented in this work have been taken with two different lasers
(Laser1 and 2). Table A.1 summarizes the lasers, which all deliver 50 W with a line

Laser Product Construction Wavelength

year [nm]

Laser1 IPG TLR-50-1960-LP 2007 1960

Laser2 IPG TLR-50-1940-LP 2016 1940

Laser3 IPG TLR-50-1940-LP 2016 1940

Table A.1: List of lasers used in this work.

width of 1 nm. The main difference between Laser1 and 2 are the construction year
and the wavelength difference of 20 nm. Laser3 was borrowed from our cooperating
experiment in Bremen to replace the broken Laser1. Unfortunately we observed
high power fluctuations and could not operate the dipole trap with it. The two
remaining lasers are prone to failures. Figure A.3 shows the time line of laser
operation as well as the dates of the measurements presented in this work.

a.2.1 Characterization of the Laser

Laser 2 was characterized before the system was set up. The beam diameter mea-
surements are shown in figure A.4. To measure the profile of the beam, a razor
blade is moved through the beam and the passing optical power behind the blade
is measured. The measurement was performed by passing through the beam hor-
izontally and vertically at different positions, table A.2, after the laser’s output
collimator. From the measurements of the beam diameter the transverse beam
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Position distance from collimator [cm]

1 38

2 77

3 122

Table A.2: Positions of beam profile measurement.

profile can be estimated, see figure A.5. The outcome of this measurement was used
for the estimation of the center-position modulation in section 3.4.2.

a.3 characterization of the aom for 2 µm

The generation of time-averaged potential relies on the sweep of the diffraction
angle of the AOM, see 2.2. Figure A.6 shows the separation of the 0th and 1st order
of the AOM output at a distance of 15 cm. The frequency dependent diffraction
is shown in graph A.7 also for a distance of 15 cm. The AOM used in the setup
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failures are drawn in red. The orange line displays the time in which Laser 3 was tested.
The black vertical lines mark the dates of the measurements.
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Figure A.4: Beam radius measurements of Laser 2. In red the power measured with the
razor blade method. In blue the derivative of the error-function fit through data points.
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Figure A.5: Waist of the beam after the laser collimator and the corresponding fitted
functions.

described in this thesis has a quite narrow frequency response. Figure A.8 shows
the diffraction efficiency over the RF-frequency. The RF-frequency is modulated
with about ±4 MHz around the maximum. The narrow frequency response of the
AOM will lead to amplitude modulations during the transit of the center-position
modulation as shown in figure 5.6. There was no power variation of the RF! (RF!)-
source observed over the modulated frequency range.
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Figure A.6: Diffraction angle of AOM. In red the power measured with the razor blade
method. In blue the derivative of the error-function fit through data points.
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Figure A.7: Beam diffraction for different frequencies, measured with the razor blade
method.
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Figure A.8: Diffraction efficiency over frequency.
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a.4 input parameters for dkc simulation

The simulation for the matter-wave lens displayed in 5.4 were performed using
input values shown in table A.3. The detection angle is set to 14(1)◦.
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