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Kurzzusammenfassung

Die Verwendung von sichtbarem Licht in der organischen Synthese erregte in den letzten Jahren auf-

grund seines Anteils im Sonnenspektrum (∼45%) erhebliche Aufmerksamkeit. Die niedrige Energie des

sichtbaren Lichts ermöglicht selektive und saubere chemische Reaktionen. Normalerweise ist jedoch ein

Photokatalysator erforderlich, um die gewünschte lichtinduzierte Reaktion auszulösen. Die Verwendung

von halbleitenden Metalloxiden wie TiO2 als Photokatalysatoren ist aus verfahrenstechnischen Gründen

von besonderem Interesse. Obwohl TiO2 in vielen photokatalytischen, für die Umwelt relevanten chemis-

chen Reaktionen eingesetzt wurde, wurde nur eine begrenzte Anzahl von Arbeiten über selektive organ-

ische Synthesen an TiO2 veröffentlicht. Die vorliegende Arbeit konzentriert sich auf selektive akzep-

torunterstützte (aerobe) und akzeptorlose (anaerobe) Dehydrierungsreaktionen von Tetrahydrochinoli-

nen, Tetrahydroisochinolinen, Indolinen und andere N-Heterocyclen in Gegenwart von

oberflächenmodifizierten TiO2-Photokatalysa-toren bei Umgebungstemperatur unter Belichtung mit sicht-

barem Licht. Lewis-Säure-Base-Wech-selwirkungen zwischen den eingesetzten N-Heterocyclen und dem

TiO2 führen zu Oberflächen-komplexen, die sichtbares Licht absorbieren. Ein einzelner Elektronentransfer

vom N-Heterocyclus zum Leitungsband des TiO2 erzeugt ein Aminkationradikal. Das eingefangene Elek-

tron wird über Cokatalysator-Nanopartikel, die an der TiO2-Oberfläche gebunden sind, auf oberflächenad-

sorbierten Sauerstoff oder auf ein Proton übertragen. Bei diesem Syntheseverfahren wird die Bildung

von Löchern im Valenzband des Halbleiters vermieden. Dadurch wird die Selektivität der Gesamtreaktion

erhöht. Als Photokatalysator wurden hauptsächlich handelsübliche Hombikat UV100 TiO2-Nanopartikel

verwendet. Übergangsmetalle oder Metallionen wurden als Cokatalys-atoren auf die Oberfläche des TiO2

aufgebracht, um die Reaktionsausbeute und die Selektivität zu erhöhen. Die Reaktionsbedingungen wur-

den unter Verwendung von 1,2,3,4-Tetrahydrochinolin als Edukt optimiert. Der Einfluss des Lösungsmit-

tels, des Kokatalysators und der Katalysatormenge auf die Ausbeute und Selektivität wurden untersucht. In

Gegenwart von molekularem Sauerstoff als Elektron- und Wasserstoff-Akzeptor erhöhten zusätzlich zuge-

fügte TEMPO-Derivate die Selektivität der Reaktion signifikant. Abschliessend wurden fünfundzwanzig

verschiedene N-heterocyclische Verbindungen unter optimierten Reaktionsbedingungen dehydriert. Die

gewünschten aromatischen Produkte wurden in guten bis ausgezeichneten Ausbeuten (49%-99%) erhal-

ten. Plausible Reaktionsmechanismen werden vorgeschlagen.

Stichwörter: TiO2 Photokatalysator, Oberflächenmodifikation, N-Heterocyclen, sichtbares Licht, Dehy-

drierungsreaktionen





Abstract

In recent years, the use of visible light in organic synthesis has received considerable attention due to its

particular abundance in the solar spectrum (∼45%). Its low energy enables selective and clean chemical

reactions. However, a photocatalyst is usually required to initiate the desired light-induced reaction. The

use of semiconducting metal oxides such as TiO2 as photocatalyst is of particular interest due to process

engineering reasons. Although TiO2 has been employed in many photocatalytic reactions for environmen-

tal remediation, only limited work regarding selective organic synthesis over TiO2 has been reported. The

present work focus on selective acceptor-assisted (aerobic) and acceptorless (anaerobic) dehydrogena-

tion reactions of tetrahydroquinolines, tetrahydroisoquinolines, indolines, and others N-heterocycles in

the presence of surface grafted and noble-metal photodeposited TiO2 photocatalysts upon visible light ir-

radiation at room temperature. It was observed that TiO2 and N-heterocycles form surface complexes due

to the Lewis acid-base interaction. The resulting complexes act as the visible-light-absorbing centers. A

single electron transfer from the N-heterocycle to the conduction band of TiO2 generates a radical amine

cation, and a trapped electron inside the TiO2. The trapped electron is transfered to surface adsorbed

oxygen or to a proton via cocatalyst nanoparticles being attached on the TiO2 surface. This synthetic pro-

cedure avoids hole formation in the semiconductor valence band, thus increasing the chemoselectivity of

the overall reaction. Commercially available Hombikat UV100 TiO2 nanoparticles were mainly used as

photocatalysts. Transition metals or metal ions were loaded on the surface of TiO2 to increase the reac-

tion yield and selectivity. The reaction condition were optimized employing 1,2,3,4-tetrahydroquinoline

as the probe reactant on bare and surface modified TiO2 in oxygen and in an inert atmosphere. It revealed

that the combination of a TiO2 photocatalyst with TEMPO derivatives significantly enhanced the chemos-

electivity of the overall reaction in oxygen atmosphere. The impact of different noble metal cocatalysts,

solvents, catalyst amounts, and cocatalyst loading amounts with respect to TiO2 was investigated. Finally,

the optimized reaction conditions were applied in each particular system to 25 N-heterocyclic compounds

bearing electron-deficient or electron-rich functional groups. The desired dehydrogenated products were

obtained in good to excellent yields (49%-99%). Plausible reaction mechanisms are proposed.

Keywords: TiO2 photocatalyst, surface modification, N-heterocycles, visible light, dehydrogenation re-

actions
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Chapter 1
Introduction

This chapter presents the historical and theoretical background of titanium oxide (TiO2), which

was used as a semiconducting photocatalyst in this study. Subsequently, relevant literature about

the modification of TiO2 to increase its physical and photocatalytic properties will be reviewed.

Consequently, reported researches about the possible organic synthesis over TiO2 photocatalyst

upon visible light illumination will be summarized. The chapter will be concluded with the pre-

sentation of the scope of this thesis.

1.1. Historical background

Starting early in the 20th century, TiO2 powders have been commonly used as white pigments

in the areas of a coating such as lacquers and paints, as well as plastic coloring and laminate

papers applications. In 1921, the earliest work was reported by Renz about the photocatalytic

activity of TiO2, which was found to be partially reduced upon solar light illumination in the

presence of glycerol. The color of powder titania was found to turn from white to grey, blue,

or even black due to the formation of Ti3+ species. A similar phenomenon was observed with

CeO2, Nb2O5, and Ta2O5. [1] Thus, TiO2 holds its stability in the darkness, whereas upon UV

absorption, surface adsorbed oxygen molecules on titania are activated, causing the photobleach-
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ing of dyes in an ambient atmosphere. This was discovered by Doodeve and Kitchener in 1938,

who called TiO2 as a “photosensitizer” and not a “photocatalyst”. [2] The first researchers who

used the term “photocatalyst” relating to TiO2 might be Kato and Mashio in their several reports

from 1956. They studied the photocatalytic oxidation of various organic solvents such as alcohols

and hydrocarbons over TiO2 powder and simultaneous H2O2 formation upon the UV irradiation

with a Hg lamp. [3] Similarly, in 1964 Kato and Mashio reported the photocatalytic oxidation of

tetralin (1,2,3,4-tetrahydronaphthalene) by a titania suspension. [4] In 1965, the first solid-gas

phase photocatalytic oxidation of ethylene and propylene in the presence of adsorbed oxygen

on titania was reported by McLintock and Ritchie. [5] However, limited exciting breakthroughs

relating to the photocatalytic performance of TiO2 were made until Fujishima and Honda’s dis-

covery in the 1970s. They reported on the photo-oxidation of pure water yielding O2 and H2

through an electrochemical method via photoirradiation of a TiO2 single-crystal anode immersed

in an aqueous electrolyte. A Pt wire was used as the counter electrode. This finding has opened

up a new aspect to consider the photocatalytic process as an alternative way of dealing with the

energy problem. [6] In 1977, Frank and Bard reported the first photocatalytic degradation of

cyanide, CN−, in water using titanium dioxide and different semiconductors aiming wastewater

treatment and environmental pollutant remediation. [7, 8] Additionally, the photocatalytic de-

composition of organic acids such as acetic acid, accompanied by hydrocarbon formation, was

reported by Bard et al., who observed an unstable intermediate methyl radical during the photo-

catalytic reaction of acetic acid. [9, 10] In 1977, Wang et al. reported on the super hydrophilic

properties of photoexcited TiO2 for excellent anti-fogging and self-cleaning applications. [11] In

1991, Graetzel and O’Regan discovered an efficient activity of nano titanium dioxide for dye-

sensitized solar cells (DSSC). [12] The noteworthy development of environmentally friendly and

energy sustainable organic transformations over TiO2 was made during the last decades. One of

the first reports on photocatalytic organic synthesis by Reiche and Bard in 1979 reported the pro-

duction of highly valuable amino acids from methane-ammonia-water over Pt/TiO2. [13] Another

important finding was reported by Masamichi Fujihira et al. in 1981 who investigated the pho-

tocatalytic oxidation of various aromatic hydrocarbons with simultaneous photoelectrochemical

hydrogen-peroxide production at TiO2 semiconductor electrodes. [14] In 1981 Fox et al. reported

on mechanistic features of some semiconductors (TiO2, ZnO, CdS) in selective olefin-to-carbonyl
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1.2. TITANIA AS A PHOTOCATALYST

oxidation. [15]

During the past decades, photocatalytic reactions over TiO2 have been investigated extensively,

with applications focusing on solar energy conversion and storage, air and water purification,

organic synthesis, reduction of carbon dioxide or mineralization and/or detoxification of organic

compounds. Thousands of research and review papers have been published in these areas based

on particulate and single-site TiO2 photocatalysts (some of them are cited in this thesis). Concerns

about photocatalytic performance, stability, underlying reaction mechanisms, and so on of pho-

tocatalysis have been addressed. However, many topics are rather underexplored. For instance,

in comparison to energy, environmental, and water applications, there are limited reports on the

application of TiO2 as a photocatalyst for green organic synthesis.

1.2. Titania as a photocatalyst

It is well known that TiO2 has three major crystal structures: rutile, anatase, and brookite (see

Figure 1.1). [16] Rutile and anatase have both a tetragonal crystal structure with 6 and 12 atoms

per unit cell, respectively. In rutile and anatase, every Ti atom is coordinated to six O atoms where

each O atom is also coordinated to three Ti atoms. Brookite has a more complicated structure

with an orthorhombic unit cell. In all three crystal structures, existing TiO6 octahedra are slightly

distorted. While rutile and anatase have two Ti-O bonds that are somewhat different from the

other four bonds, brookite has six different Ti-O bonds. Therefore, rutile is considered the most

stable phase among these polymorphs due to less distortion of the bonds. Anatase and brookite

are metastable and are irreversibly converted to rutile at above 600◦C. [17] Rutile has three main

crystal faces (110, 001, and 100), which are quite low in energy and are thus regarded to be

significant for the practical application of polycrystalline powder materials. [18] However, (110)

is the most thermally stable face, and for that reason, it has been studied extensively. It has

bridging oxygens rows, which are linked to two Ti atoms. The corresponding Ti atoms are 6-

fold coordinated. [19] Moreover, 5-fold coordinated Ti atom rows are in parallel to the bridging

oxygens rows with low electron density. They act as Lewis acid sites. [20] Anatase has two low

energy surfaces (101 and 001), which commonly occur in natural crystals. Unlike rutile, the

most ubiquitous face for anatase nanocrystals is the (101) surface, which is corrugated with 5-

fold coordinated Ti atom rows and bridging oxygen atoms at the edges of the distortions. [21] In
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contrary, brookite has three different crystal faces with low energy: (010)< (110)< (100). Since

preparing brookite is more difficult than other crystal phases, it has been studied less extensively

as a photocatalyst. [17] Apart from the crystal faces, the nanoparticle sizes of these structures are

also affecting the stability of the semiconducting material. Thus, rutile with a particle size above

35 nm, anatase nanoparticles below 11 nm, and brookite nanoparticles in the 11-35 nm range

have been found to be the most stable phases at ambient temperature. [22,23]

Figure 1.1.: Crystal structures of TiO2: anatase (a), rutile (b), and brookite (c).

Being a semiconductor, TiO2 has two characteristic bands, the highest occupied energy band,

i.e., the valence band (VB) and the lowest empty energy band, i.e., the conduction band (CB),

which are separated by an energy bandgap (Eg). The bandgap energies based on optical absorp-

tion spectra of the three different polymorphs were determined to be 3.0 eV for rutile [24, 25],

3.2 eV for anatase [26], and 3.4 eV for brookite [27].

Semiconductors are typically classified into three types: intrinsic or undoped semiconductors,

n-type semiconductors where the majority of charge carriers are electrons, and p-type semicon-

ductors wherein contrary the majority charge carriers are holes. In a practical matter, the Fermi

energy E f represents the highest energy electrons in an equilibrium solid notwithstanding the

Fermi tail. [28] In intrinsic semiconductors, the Fermi level lies in the middle of the bandgap. In

n-type semiconductors, the Fermi level lies below the conduction band, and in p-type semicon-

ductors, the Fermi level is above the valence band edge. Typically, the surface state exists on a

clean semiconductor due to the crystal lattice periodicity’s termination at the surface. Unpaired

electrons in the dangling bonds at the surface atoms interact with each other and create narrow

bandgap energy at the surface of a semiconductor. Therefore, depending on the type of semi-
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conductors, the Fermi level of a surface state differs from the Fermi level of the bulk state. The

bulk and surface state interfaces for intrinsic, n-type, and p-type semiconductors are illustrated

in Figure 1.2 in disequilibrium and equilibrium conditions before and during illumination. When

a semiconductor is undoped, which is called an intrinsic semiconductor, the Fermi level of the

semiconductor in the bulk state (EF(bulk)) is located at the midgap and is equal to the Fermi level

of the surface state of the semiconductor (EF(sur f )). Therefore no charge transfer occurs in the in-

trinsic semiconductor, and the valence and conduction bands stay flat. However, a band bending

is induced by the surface state in n-doped and p-doped semiconductors. In an n-type semiconduc-

tor, the Fermi level of the bulk EF(bulk) is higher than its surface state Fermi level EF(sur f ) under

disequilibrium condition. Electrons will then migrate from the bulk to the surface, and while

EF(bulk) drops, EF(sur f ) will rise until equilibrium is acquired, which results in an upward bending

of the energy bands. On the contrary, in p-type semiconductor, EF(bulk) is lower than EF(sur f )

under disequilibrium condition. Therefore to achieve equilibrium, the electron from the surface

will migrate to the bulk, and the energy bands will bend downward. [29]

Figure 1.2.: Schematic electron energy levels near the surface of a clean semiconductor: (left mid-
dle) undoped (intrinsic) semiconductor; (top left) disequilibrium and (top middle)
equilibrium between n-type bulk and its surface; (top right) with illumination n-type
bulk and its surface (bottom left) disequilibrium and (bottom middle) equilibrium
between p-type bulk and its surface (bottom right) with illumination p-type bulk and
its surface. Adapted from Ref. [29].
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TiO2 is reported to be an n-type semiconductor due to the presence of oxygen vacancies. In-

creasing partial pressure of O2 decreases the conductivity at temperatures above 600 ◦C. [30]

This behavior was explained with the assumption that O2 is released from the lattice when the

specimen reaches thermal equilibrium, which corresponds with the formation of Ti3+ sites.

Upon excitation TiO2 nanoparticles with photon energy equal to or greater than its bandgap

energy, electron-hole pairs are generated via band-to-band transition. These free electrons and

holes will move in different directions due to the electric field in the band-bend region at the

surface-bulk interface. Generally, in n-type semiconductors i.e. TiO2, photogenerated electrons

will move to the bulk, and holes will transfer to the surface, which results in partial band flattening

(see Figure 1.2 top right). Opposite charge migration occurs in p-type semiconductors where the

surface will be more negatively charged, and the degree of downward band bending will decrease

(see Figure 1.2 bottom right).

When molecules are adsorbed at the surface of TiO2, the fate and lifetime of the photogen-

erated charge carriers change, as illustrated in Figure 1.3. The electron-hole pair is photogen-

erated within a femtosecond time scale (Figure 1.3, path 1). Subsequently, the charge carriers

are trapped in shallow traps within 50-260 fs and deep traps within 50 ns. The recombination

of charges could occur on the surface of TiO2 within 1-10 ps (Figure 1.3, path 2) and in bulk

in the range of nanoseconds (Figure 1.3, path 3). Photocatalytic reactions are facilitated when

the trapping rate of separated electron-hole pairs by active sites is higher than the recombination

rate. While surface adsorbed reactive species undergo reduction reactions by the photogenerated

electrons at the bottom of the conduction band (Figure 1.3, path 5), oxidation reactions by the

photogenerated holes occur at the top of the valence band (Figure 1.3, path 4), according to

thermodynamic and kinetic constraints. Therefore, the conduction band of the semiconductor

must have more negative potential than the reduction potential of the chemical species, and the

valence band of the semiconductor must have more positive than the oxidation potential of the

chemical species to allow photo-reduction and photo-oxidation processes, respectively. Know-

ing the band positions and the flat band position of the semiconductors is of utmost importance

for better understanding the thermodynamic restrictions for the surface-initiated photocatalytic

reactions.
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Figure 1.3.: Schematic illustration for energetics and primary reaction mechanism of TiO2 photo-
catalysis upon UV light illumination.1: excitation and electron-hole pair generation,
2 and 3: recombination, 4:electron transfer to electron acceptor, 5: hole transfer to
electron donor.

The conduction band position of anatase TiO2 is reported to be −0.51 V at pH 7 which lies

slightly above the reduction potential of molecular oxygen (E0(O2/O•−2 ) =−0.33 V vs NHE) and

the hydroperoxyl radical (E0(O2/HO•2)=−0.45 V vs NHE). [31] Therefore, anatase TiO2 is con-

sidered an efficient photocatalyst since its conduction band energy is suitable for the reduction

of O2, which is an abundant and green oxidant in the environmental atmosphere, by a trapped

electron. Nevertheless, rutile is reported to be less active due to its lower conduction band en-

ergy and Fermi level, which are supposed to be ca.−0.31 V and −0.2 V at pH 7 with respect to

NHE. [32] Karakitsou et al. investigated the photogeneration of H2 molecules in a mixture of

anatase-rutile composites and reported that the yield was decreasing while increasing the ratio

of rutile [33] Due to the positive oxidation potential of TiO2 (E0=+2.69 V vs NHE), most reac-

tive oxygen species such as hydrogen peroxide (HOO•/H2O2= +1.007 V) and hydroxyl radical

(surface-bonded or free) (E0(OH−/OH•)=+1.9 V vs NHE at pH7) are easily generated on the

surface. [31]Moreover, in principle, most organic compounds have less positive oxidation poten-

tials than the positive potential of the TiO2 VB, which allows them to be oxidized upon UV light

illumination. Eqs. 1.1 - 1.10 show the possible occurring reaction pathways on the surface of a
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TiO2 photocatalyst upon illumination with light of suitable energy. As mentioned above, upon

illumination with light of suitable energy electrons (e−CB) and holes (h+V B) are generated in partic-

ulate TiO2 (Eq 1.1). Trapped holes could directly participate in the oxidation process of surface

adsorbed organic molecules (Eq. 1.2). Since the surface of TiO2 is populated with hydroxyl anions

(OH– ), the trapping of photogenerated holes at this sites result in the formation of surface-bound

hydroxyl radicals (•OH) (Eq. 1.3).

TiO2 + hν−→TiO2(h
+
V B) + TiO2(e

−
CB) (1.1)

Oxidation reactions:

TiO2(h
+
V B) + or ganic +O2 −→ CO2 +H2O (1.2)

TiO2(h
+
V B) +OH−(sur f ) −→ TiO2 +

• OH(sur f ) (1.3)

2 •OH(sur f ) −→ H2O2.................. (1.4)

•OH(sur f ) +H2O2 −→ HO•2 (sur f ) +H2O..... (1.5)

TiO2 −HO•2 (sur f ) −→ H+ + TiO2 −O•−2 (sur f ) (1.6)

Reduction reactions:

TiO2(e
−
CB) +O2 −→ O•−2 + TiO2................... (1.7)

O•−2 +H+ −→ TiO2 −HO•2 (sur f )................... (1.8)

O•−2 + TiO2 −HO•2 (sur f ) +H2O −→ OH−(sur f ) +O2 +H2O2 (1.9)

H2O2 + TiO2(e
−
CB) −→ OH− +• OH................. (1.10)

Hydroxyl radicals could either recombine with each other to yield hydrogen peroxide or oxidize

surface adsorbed organic molecules (Eq. 1.4). Another recombination of a hydroxyl radical with

hydrogen peroxide leads to the formation of a TiO2-HO•2 surface complex (Eq. 1.5). Dissociation

of this complex yields a proton and surface-bound superoxide radical (Eq. 1.6). In parallel to the

oxidation processes, reduction reactions occur on the surface of TiO2. Initially, in the presence

of molecular oxygen, fast trapping of electrons by surface-adsorbed oxygen molecules results in

the formation of superoxide radicals (Eq. 1.7). These superoxide radicals could react with free

protons yielding a TiO2-HO2
• surface complex (Eq. 1.8). Moreover, it can further react with a
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TiO2-HO•2 surface complex to form surface hydroxyl radicals (Eq. 1.9). Surface trapped electrons

possibly reduce hydrogen peroxide yielding a hydroxyl anion and a hydroxyl radical (Eq. 1.10).

1.3. Band gap engineering

Pristine TiO2 photocatalysts with anatase or rutile crystal phase, typically absorb UV-A light due

to their large band bap energy. However, when considering the solar spectrum, only a small range

of the electromagnetic spectrum emitted by the sun contains ultraviolet light (less than 5%). On

the other hand, fast recombination of charge carriers upon UV illumination restricts TiO2 to act as

an efficient photocatalyst. Therefore, through the past years, different approaches have been ap-

plied. Many important findings have been reported to improve the lifetime of the photogenerated

charge carriers and to facilitate the photocatalytic response of TiO2 to the broad range of the solar

spectrum, i.e., visible region. As mentioned above, TiO2 shows only poor photocatalytic activity

when used alone due to the fast recombination of the electron-hole pairs. Significant efforts have

been made to modify TiO2, including impurity doping with metals (cation doping) [34–37] and

non-metals (anion doping) [38, 39], surface modification [31, 40, 41], sensitization with dyes,

combination with narrow band-gap semiconductors [42], etc.

1.3.1. Metal and non-metal doping of TiO2

Metal doping was the earliest effort to shift the photoresponse of TiO2 into the visible region. Dif-

ferent transition metal cations, either 3d or 4d elements, were incorporated into the TiO2 crystal

lattice resulting in the formation of new sub-levels between the VB and the CB, which serve the

narrowing of the bandgap energy and shifting the absorption towards the visible region. [43]

However, it has also been observed that transition metals initiate the thermal instability of the

anatase TiO2 phase. [44] Additionally, there are several other potential drawbacks, such as an

increase of the photocorrosion rate or charge recombination at metal sites due to the creation of

significant lattice defects. For instance, Fe(III) and V(IV) metal dopants increase the lifetime of

e−/h+ pairs. At the same time, Cr(III) is reported to act as recombination centers, thus decreasing

the photocatalytic efficiency of the doped TiO2 under both UV and visible light irradiation [45].

Nevertheless, due to the substantial drawbacks mentioned above, there is no remarkable improve-

ment in photocatalytic activity by metal doping, which might be due to a poor interaction of metal

9



CHAPTER 1. INTRODUCTION

ions with the TiO2 crystal lattice. [16]

Due to its similar atomic size to oxygen, small ionization energy, and high stability, nitrogen

atoms are reported being easily coordinated into the TiO2 lattice. In 1986, Sato et al. reported

for the first time that the calcination of a TiO2 sol with ammonium hydroxide (NH4OH) re-

sulted in the synthesis of a visible light-sensitive material. [46] 15 years after this work, Asahi

and co-workers discovered the first N-doped TiO2 photocatalysts which absorbed light at 500

nm and showed activity under visible light illumination for the decomposition of acetaldehyde

and decoloration of methylene blue solution. This photocatalyst was synthesized by sputtering

of TiO2 in N2/Ar gas mixture as well as by calcination of a TiO2 powder in a NH3/Ar atmo-

sphere. [47,48] Umebayashi et al. theoretically calculated the densities of states of substitutional

doping of TiO2 by fluorine, carbon and phosphorous, thus explaining the source of the visible

light response. [49, 50] There have been essential endeavors after these achievements and deep

electronic, optical, structural, and mechanistic investigations were performed to understand the

underlying mechanisms. [37, 51, 52] Thus, it has been reported that incorporating non-metal

atoms into the TiO2 lattice as substitution of some oxygen atoms in a crystal cell results in nar-

rowing the bandgap and generation of localized midgap states above the valence band. Although

fluorine doping is not influencing the shrinking of bandgap energy, it improves the surface acid-

ity of TiO2, which facilitates the reduction of Ti4+ and eventually the photooxidation of organic

compounds.

1.3.2. Noble metal nanoparticles photodeposited on TiO2

Although TiO2 already possesses a suitable band position for proton reduction, photogenerated

electrons cannot reduce proton to the hydrogen molecule due to insufficient active sites on the

TiO2 surface which results in fast recombination of trapped electrons. However, a suitable co-

catalyst, which also provides a better electron-hole separation, could assist in proton reduction.

For this purpose, different noble metal or metal oxide nanoparticles such as Pt, Pd, RuO2, Rh,

Ag, and Au loaded on TiO2 surface has been reported. The most applied method is the photode-

position technique, where aqueous-alcoholic suspensions of TiO2 are mixed with the appropriate

amount of the metal precursor and illuminated with UV-A light in an inert atmosphere. Gener-

ally, organic alcohol (methanol, ethanol, 2-propanol, etc.) is used as the hole scavenger to re-
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duce metal ions with trapped electrons to the metallic nanoparticles. The surface photodeposited

noble metal nanoparticles act as strong electron acceptors and enable hydrogen evolution and

concomitant photooxidation of organic molecules in an inert atmosphere. The advantage of the

photodeposition method is that the crystal structure of the semiconductor remains unchanged

since photodeposition is performed at ambient temperature without the requirement of thermal

treatment [53, 54]. Different from doping methods, the noble metals do not substitute Ti atoms

in the crystal lattice. Therefore, sublevels below the conduction band are considered to act as the

main recombination centers are not formed. Depending on the type of the noble metals, the size

of the loaded particles, and the loading amount, the photocatalytic efficiency can be changed.

Furthermore, the work function value of noble metals, which is defined as the energy required

to promote an electron from the Fermi energy level into a vacuum, affects the photocatalytic

performance. Thus, it has been reported that the photodeposited noble metals should have a

higher work function value than the semiconductor (ΦM>ΦSC) to achieve better charge separa-

tion. [55,56] Having a high work function, Pt is considered to be a better electron acceptor than

Ag and Au which are widely used as co-catalysts in photocatalytic reactions. [57] The possible

ongoing water oxidation pathways over Pt photodeposited TiO2 are given in Eq (1.11 -1.17)

TiO2
hν
−→ TiO2(e

−, h+)....... (1.11)

TiO2(e
−, h+) −→ TiO2(e

−
t r , h+t r) (1.12)

etr
− +H2O

P t
−→ (P t)H +OH−. (1.13)

2(P t)H
P t
−→ H2............. (1.14)

htr
+ +H2O −→ OH• +H+... (1.15)

2OH• −→ H2O2............ (1.16)

H2O2 −→
1
2

O2 +H2O...... (1.17)

Moreover, the plasmonic effect of some noble metal nanoparticles has also been reported to be

beneficial for absorbing light at lower energy, increasing the population of charge carriers. While

Pt photodeposited TiO2 does not show any optical absorption in a visible region, Ag modified

TiO2 demonstrates visible light respond via electron transfer from Ti3+ to the silver nanoparticles

or visa-versa upon illumination (>450 nm). [58,59] This phenomenon is called surface plasmon
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resonance of silver nanoparticles, which later was also observed with gold nanoparticles. [60]

1.3.3. Surface grafting of TiO2 with transition metal ions

Surface grafting of vanadia species on TiO2 and other metal oxides surfaces was first reported

by Wokaun et al. [61]. Lately, breakthroughs on surface grafted TiO2 have been reported by Irie

et al., who impregnated Cu(II) nanoclusters on the semiconductor surface at low temperature.

The synthesized photocatalyst was tested in visible-light-mediated 2-propanol oxidation in the

gas phase. [62,63] The same group applied the impregnation method for the grafting of the TiO2

surface by other transition metal ions such as Cr(III), Fe(III), and Ce(III). The prepared surface

grafted TiO2 samples were employed in the oxidative degradation of 2-propanol upon visible

light illumination. The reaction mechanism of visible-light responsive Cu(II)-grafted TiO2 [62]

and Fe(III)-grafted TiO2 [64] photocatalysts was analyzed using electron spin resonance (ESR)

spectroscopy by detecting trapped holes and electrons.

Figure 1.4.: Schematic illustration of surface grafted TiO2 photocatalysis with transition metal
ions.

It was revealed that Cu(II) grafted ions on the TiO2 surface shows a distorted amorphous CuO-

like structure and Fe(III) grafted ions on the TiO2 surface is distorted amorphous FeO(OH)-like

clusters. The visible light activation was attributed to the interfacial charge transfer (IFCT) pro-

cess without exhibiting additional impurity levels in the bandgap of the TiO2. In electron transfer

processes, grafted transition metal nanoclusters can expeditiously launch the rapid photoinduced

charge separation while lowering the charge carrier recombination rate due to their remarkable
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action as electron acceptors. However, the activity of nanocluster grafted photocatalytic systems

for visible light absorption is restricted because IFCT only occurs at the TiO2 particle/nanoclus-

ter interfaces (Figure 1.4). Thus, in an inert atmosphere, the reduction of protons can not be

realized with this method upon visible light illumination. As a promising technique, the photo-

catalytic performance of TiO2 in the photodegradation of gaseous 2-propanol under visible light

irradiation was improved doping by Nb ions and surface grafting of Cu(II) clusters. [65] Merg-

ing doping and grafting significantly increased the separation and mobility of photogenerated

charge carriers. Similarly, Ti3+ self-doped and Cu(II) grafted TiO2 nanoclusters demonstrated a

higher quantum efficiency (10.8%) than only grafted Cu(II)/TiO2 under visible light irradiation

in the photodegradation of gaseous 2-propanol. [66] Hashimoto et al. reported that Fe(III) ions

grafted at the surface and doped in the bulk of TiO2 shows high efficiency for 2-propanol oxida-

tion under visible-light irradiation due to energy-level matching of dopant and grafting ions. [67]

However, it is well-known that bulk doping by metal ions originates impurity levels located in the

forbidden band of TiO2, which also act as recombination centers for the charge carriers. Cou-

pling TiO2 with WO3, which has smaller bandgap energy and grafting with Fe(III) ions result in

better charge separation without introducing interband energy levels between the CB and the VB

of the semiconductors. This composite has successfully degraded acetaldehyde and NOx under

visible light illumination. It has been reported that the TiO2/WO3 heterojunction has increased

the population of photogenerated charge carriers due to synergistic interaction, while the sur-

face grafted Fe(III) ions participated in the multi-electron reduction process and suppressed the

recombination of electron and hole pairs. [68]

1.3.4. Dye sensitized TiO2

Another effective method to activate TiO2 for visible light response is dye photosensitization.

[69, 70] Many groups have extensively investigated dye-sensitized reactions following pioneer

work of O’Regan and Grätzel in 1991 [12]. They have used dye-sensitized colloidal TiO2 semi-

conductor films as a solar cell material. This discovery opened a new perspective for photo-

degradation of water and air pollutants, energy application, and organic synthesis upon visible

light illumination. It employs wide bandgap semiconductors such as TiO2 with high surface area

and stability. [69] Dyes with appropriate spectral characteristics that emerged with TiO2 may
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harvest incident solar energy flux up to 46%. Thus, upon illumination with visible light, a pho-

togenerated electron from the highest occupied molecular orbital (HOMO) leaps to the lowest

unoccupied molecular orbital (LUMO) of the engaged dye and ultimately migrates into the con-

duction band of the semiconductor. Therefore, the energetic position of the LUMO of the dye has

to be higher (more negative) than that of the conduction band of the semiconductor. The CB of

TiO2 acts as an electron mediator for transferring electrons from the dye sensitizer to the adsorbed

substrates (active sites) on the TiO2 surface. Here the valence band of TiO2 does not participate

in photocatalytic reactions and stays unchanged. In aerobic system, the photoinjected electrons

are transferred from the CB to the surface of the TiO2 where they interact with surface adsorbed

oxygen molecules resulting in the generation of superoxide radical anions (O2
•−) and hydrogen

peroxide radicals (•OOH) (Figure 1.5). [71] The reactive species could further be transformed

into the hydroxyl radical and hydroxyl anion. [72]

Figure 1.5.: Schematic illustration of dye-sensitized TiO2 photocatalysis.

Subsequent radical reactions might initiate the dye’s degradation unless reductive species being

present in the system regenerate the dye to the ground state. The nature of the dye sensitizer, the

semiconductor, and its interface essentially affect the lifetime of the injected electrons. [73,74]

1.4. Heterogeneous photocatalytic organic synthesis

Organic compounds that are consumed in our daily life cover the most substantial chemical manu-

facturing processes. Traditional synthesis methods usually exploit thermal energy, toxic solvents,
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and corrosive additives. Also, the emergence of harmful by-products in thermal organic synthesis

has created serious health and environmental problems. Therefore, designing and developing sus-

tainable chemical processes to produce organic products that could replace conventional thermal

synthesis procedures are highly desired. [75] Green synthesis procedures avoid the introduction

of hazardous materials and go beyond, including atom-economy, recycling, and the use of renew-

able feed-stocks. From this perspective, the use of solar energy in chemical transformations of

organic compounds could be an alternative approach for organic synthesis. [76, 77] The sun is

one of the most potent and abundant sources of clean energy. Therefore, the direct use of light

photons would shift the evident thermodynamic barrier in redox reactions at room temperature

by preventing side effects that are thermally caused. Besides, light-mediated reactions provide

access to structures that are difficult or unavailable to obtain in thermally induced organic syn-

thesis. Organic photochemistry ideas were invigorated by the Italian chemist Giacomo Ciamician

who started in 1886 to use solar light to perform organic reactions. [78] Extensive work on light-

mediated organic transformations and new pathways to organic reactions have been developed,

employing photosensitizers and photocatalysts. [79] The use of photosensitizers drives the pho-

tochemistry indirectly, where the photosensitizers absorb the light energy and transfer part of

this energy to the reagent. Although photosensitizers mediate the desired photochemical pro-

cess, they can also serve as a photoinitiator of undesired radical chain reactions. Similarly, in a

photocatalytic reaction, a reagent is activated indirectly by electron transfer from or to the ex-

ited photocatalyst. Two types of photocatalysts are used in organic synthesis: homogeneous and

heterogeneous.

1.4.1. TiO2 as a heterogeneous photocatalyst in organic synthesis

Heterogeneous photocatalysis is particularly important because it facilitates the isolation of the

catalyst after organic transformation. Because of their suitable electronic structure, semicon-

ductors were extensively investigated in organic synthesis after 1974 with pioneer research per-

formed by Teichner, Fox, Bard, and Reiche. [13,80,81] TiO2 is one of the most investigated metal

oxide photocatalysts for this purpose. Due to its exceptional chemical and biological stability,

non-toxicity, and abundance, TiO2 was used in energy, environmental, and sustainable synthetic

applications. [82] Although UV-active TiO2 has been widely used for organic synthesis, i.e. ox-
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idation reactions of alcohols [83], amines [84], cycloalkanes [85] and alkanes [80], reduction

of nitrobenzenes [86–88] selectivity still remains the main issue of the overall system. [89, 90]

Some examples of organic synthetic reactions over TiO2 photocatalyst upon UV light irradiation

are summarized in Table 1.1. Restrictions, such as only ultraviolet (UV) light excitation and the

formation of highly oxidizing holes during excitation, often prevent TiO2 from being widely used

in selective organic synthesis. [19] Thus, the photogenerated holes in the valence band hole (hvb)

induce radical reactions due to the formation of highly oxidizing reactive oxygen species in the

presence of O2. [91] Compared to UV light, visible light provides high chemoselectivity of organic

reactions due to its lower energy. Additionally, it also facilitates the valuable photoreaction of or-

ganic compounds with weak UV-sensitive bonds. Since the solar energy reaching the surface of

the earth contain only ∼4.5% ultraviolet light but ∼45% visible light, it allows photoreactions

to be carried out effectively using daylight, thus avoiding the need for specialized UV photore-

actors. [92] Nonetheless, most organic molecules only absorb UV light and cannot be activated

by visible light. Therefore, visible-light-responsive photocatalysts are often required to initiate

organic transformations. On visible light photocatalysis, the reactivity of the intermediates could

be predicted due to the tolerance of the functional groups to the reaction conditions compared

to those required for direct UV photo-excitation. Thus, the application of these reactions to the

synthesis of a wide range of complex target molecules can be facilitated. In recent years, there

has been an increasing interest in the design of photoredox systems in synthetic photochemistry,

which are also capable of converting visible light energy into synthetically available chemical

energy. Nearly all the latest research was devoted to developing visible light active photore-

dox catalysts that activate a variety of organic compounds through single-electron oxidation or

reduction. This feature has increased photochemical reactions’ accessibility by using visible-light-

sensitive organometallic complexes or organic dyes in a significant workhorse. The advancement

is driven primarily by the development of many sophisticated tools and a deep understanding of

how ligands can be designed to adapt the properties of metals to specific organic reactions. [92]

Nevertheless, some of these catalysts are difficult to synthesize or contain complex, expensive

ligands and metals. In addition, the commonly observed drawbacks of these catalysts are difficult

separation and limited recyclability.
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Table 1.1.: Examples of photocatalytic organic reactions in the presence of UV-active TiO2

References

Fox, 1983 [81]

Worsley, 1995 [93]

Yurdakal, 2013 [94]

Abdel-Wahab, 2001 [95]

Michio, 2006 [96]

Li, 1992 [97]

Li, 1993 [86]

Li, 1997 [98]

Park, 1995 [99]
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1.4.2. Visible-light-mediated organic synthesis with sensitized TiO2

The inherent drawbacks of UV-light active heterogeneous photocatalysts could be surmounted by

coordinating them with several organic catalysts (dyes). For example, the addition of an enan-

tioselective organocatalyst can facilitate inaccessible enantioselective reactions. [100] Zhao et

al. have proposed selective aerobic alcohol oxidation under visible-light illumination in a system

containing dye-sensitized TiO2 and TEMPO. [101] The proposed ongoing reaction mechanism is

shown in Figure 1.6, where the anthraquinone dye Alizarin Red is used as a sensitizer and TEMPO

as a cocatalyst. Due to the electron-transfer cycle of TEMPO (TEMPO−→TEMPO+−→TEMPOH

−→TEMPO), the dye is regenerated after excitation and electron injection into the conduction

band of TiO2.

Figure 1.6.: The proposed mechanism of visible-light-induced photocatalytic alcohol oxidation
system in the presence of dye/TiO2 /TEMPO. [101]

Several research groups have extensively studied dye-sensitized TiO2 for organic synthesis, hy-

drogen generation, and environmental applications. Grätzel and Houlding accounted for the

visible light sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline for

hydrogen generation. [102]However, it should be noted that, for dye sensitization, the dye should

possess a broad range of absorption in the visible region. The LUMO (lowest unoccupied molec-

ular orbital) energy potential of dye must be more negative than the CB of the semiconductor,

and the HOMO (highest occupied molecular orbital level) positioning energy level must be more

positive than the redox potential of sacrificial electron donor. Contrary to the dye sensitization, a

simplified yet more practical approach was found to be a ligand-to-metal charge transfer (LMCT),

which has been less investigated than the dye sensitization technique. With this sensitization tech-

nique, electron-rich organic compounds (sometimes inorganic compounds as well) adsorbed on
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a semiconductor surface form visible-light-responsive surface complexes (Figure 1.7). Unlike the

dye molecule, these adsorbates do not absorb visible light alone, and the excited state (LUMO)

is not involved in the chemical reaction. Upon visible light excitation of this complex, electrons

are injected from the ground (HOMO) level of the adsorbed molecule directly into the CB of the

semiconductor. A suitable electron acceptor on the semiconductor’s surface is required for better

charge separation and, eventually, photocatalytic conversion of the adsorbate. This method has

been used in many applications, such as the degradation of several pollutants and the produc-

tion of molecular hydrogen in the presence of suitable redox mediators to regenerate the surface

adsorbed molecule to maintain visible light activity. When a redox mediator is not provided, self-

conversion or self-degradation of the adsorbate occurs upon visible light illumination until the

surface complex has vanished.

Figure 1.7.: Schematic illustration of visible-light-mediated LMCT mechanism. Adsorbate-TiO2
surface complex. (1) visible light-induced LMCT, (2) recombination, (3) electron
transfer to the acceptor, (4) adsorbate oxidation in the absence of donor.

Choi et al. have investigated this technique, where TiO2 interacted with colorless molecules

such as methanol, formic acid, acetic acid, triethanolamine, and ethylenediaminetetraacetic acid

(EDTA). [103] They observed that EDTA and TiO2 form a visible-light-responsive complex through

an LMCT mechanism. Ohtani et al. also developed a new methodology to oxidize triethanolamine

under visible-light irradiation by a binaphthol-titanium (IV) oxide surface complex in aqueous

media. [104] The oxidation of trans-ferulic acid (C10H10O4) was reported to occur in TiO2 sus-

pension in water due to the formation a charge-transfer complex on the TiO2 surface that was

able to absorb visible light (λ≥400 nm). [105] Moreover, visible-light mediated oxidation of

primary and secondary amines into the corresponding imines employing visible-light absorb-
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ing surface complexes of different organic molecules such as phenol [106], catechol [107], N-

hydroxyphthalimide [108], and salicylic acid [109] on TiO2 in the presence of TEMPO derivatives

was reported by Lang and his group. Selective oxidation of sulfides by assembling polydopamine

on TiO2 surface was achieved due to an amine-TiO2 surface complexation. [110] Zhao and Chen

applied this approach to develop several photocatalytic aerobic oxidation methods such as ox-

idation of amines to imines and sulfides to sulfoxides using visible light [111, 112] Certainly,

visible-light-sensitization of TiO2 propose suitable access to the reactivity of organic compounds

in electronically excited states by using photons of much lower energy than those required for

direct photoexcitation. [92]

1.4.3. Surface complexation of amines with semiconducting photocatalysts

Typically, separate components in the reaction system, such as semiconductor metal oxide and

nitrogen-containing substrates, are unable to directly absorb visible light. However, surface ad-

sorbed organic substrates containing heteroatoms (X= S, N, or O) being adsorbed onto the surface

of metal oxides such as TiO2, Nb2O5, and ZnO generate weak surface complexation. Visible-light

mediated tertiary amine oxidation was reported by Lang et al. on bare TiO2 under visible light

illumination due to Lewis acid-base interaction. [100, 113] Upon visible light illumination, the

electron-rich nitrogen atom quickly injects its lone pair electron into the semiconductor’s con-

duction band. Subsequently, this electron is transferred to a surface adsorbed oxygen molecule

or another electron acceptor. The positive charge (h+) localized at the nitrogen atom can in-

duce the activation of the adjacent C–H bond and its subsequent functionalization by O2 or nu-

cleophiles. [114] This organic transformation is significantly crucial since amines are essential

components for the synthesis of bioactive compounds. The use of O2 as the terminal oxidant

in visible-light-induced reactions does not deteriorate the reaction’s selectivity compared to UV-

light-induced reactions. Zhao et al. reported the selective oxidation of a series of benzylic amines

into their corresponding imines by molecular oxygen on a surface of anatase TiO2 under visible-

light irradiation in CH3CN (λ>420 nm) (Scheme 1.1). It was observed that upon adsorption of

tertiary amines on the surface of TiO2, a visible-light-harvesting surface complex is formed, re-

sulting in a red-shift of the absorption spectrum by about 10 nm. The same reaction was carried

out in the water, and it was found that water is a more selective solvent than acetonitrile. [115]
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A high surface area of the semiconductor was reported to be beneficial while it presents more

coordination sites for amines.

Scheme 1.1: Proposed mechanism for the formation of imines by the oxidation of amines on a
TiO2 surface under visible-light irradiation. Adapted from Ref. [115]

Selective amine oxidation over various metal oxides (TiO2, ZnO, Nb2O5, MoO3, CeO2, Ta2O3,

ZrO2, WO3, V2O5) upon UV light illumination was also reported by Tanaka et al., who showed that

higher selectivity and yield of oxidation of benzylidene benzylamine was obtained on a Nb2O5

surface. [116] A 390 nm cutoff filter was employed to test the visible light performance of Nb2O5

in aerobic amine oxidation. Even though the obtained yield was relatively low, the selectivity was

significantly higher than using TiO2 (Scheme 1.2). [114]

Scheme 1.2: Proposed mechanism for the formation of imines by the oxidation of amines on a
TiO2 surface under visible-light irradiation.
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1.5. Dehydrogenation of N-heterocyclic amines

Depending on whether a hydrogen acceptor is used in the dehydrogenation, it can be grouped into

two subclasses: acceptor-assisted or oxidative and acceptorless or anaerobic dehydrogenation.

1.5.1. Oxidative dehydrogenation of N-heterocyclic amines

For the acceptor-assisted dehydrogenation, various classical oxidants such as 2,3-dichloro-5,6-

dicyano-l,4-benzoquinone (DDQ) [117], chloranil [118], sulfur, and selenium [119] have been

used in stoichiometric amounts as the hydrogen acceptor. Thermal catalysts have also reported

in acceptor-assisted dehydrogenation reactions of N-heterocycles mostly using air or oxygen as

the stoichiometric oxidant. Copper-based [120,121] and oxyvanadium-based systems [122] have

recently been reported to catalyze the acceptor dehydrogenation. The heterogeneous counterpart

has also been considerably developed, and quite diverse catalysts such as Co@N-doped graphene

shells [123], Co3O4-NGr/C [124], FeOx@NGr−C [125], nanoparticles (Pd, Pt, Rh) stabilized by

G4OH PAMAM dendrimers in SBA-15 [126] , AuNPs/C [127], Au nanoclusters [128], Ru(bpy)3

adsorbed on Al2O3 [129], Rh nanoparticles on carbon nanotube [130] and polymaleimide [131]

have been reported.

Scheme 1.3: Aerobic dehydrogenation of 1,2,3,4-tetrahydroisoquinoline (1), 1,2,3,4-
tetrahydroquinoline (2), and indoline (3) over TiO2 and Nb2O5 photocatalysts
under visible light illumination. [113,116]
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Unlike the approaches mentioned above, visible-light-harvesting photocatalytic aerobic dehy-

drogenation reactions have been successfully performed under milder reaction conditions. Visible

light-mediated oxidative dehydrogenation of N-heterocycles at ambient temperature was reported

using Ru(bpy)3Cl2·6H2O metal-organic complex. [132] Moreover, dual catalyst systems employ-

ing the Fukuzumi acridinium salt with Pd(BF4)2 photocatalysts have recently been reported by

Kanai et al. [133] Later, rose Bengal has been used to replace organometallic complexes for the

dehydrogenation of N-heteroarenes. [134]

Oxidative dehydrogenation of N-heterocyclic amines was also investigated employing TiO2

[113] and Nb2O5 [116] upon visible light illumination. Two different groups reported the partial

dehydrogenation of 1,2,3,4-tetrahydroisoquinoline yielding 3,4-dihydroisoquinoline on TiO2 and

Nb2O5. Similar to benzylic amine oxidation, high selectivity, but less yield was obtained while

using Nb2O5 instead of TiO2 (Scheme 1.3). However, Nb2O5 was reported to be almost inactive

for the oxidative dehydrogenation of 1,2,3,4-tetrahydroquinoline (Scheme 1.3, (2)) and indoline

(Scheme 1.3, (3)). These substrates are chemically important due to their flexibility in merging

new C–C bonds with suitable nucleophiles.

1.5.2. Acceptorless dehydrogenation of N-heterocyclic amines

Although molecular oxygen is a much greener acceptor than the traditionally used stoichiometric

oxidants such as DDQ and sulfur, highly reactive oxygen species such as the superoxide radi-

cal (O2
–•), hydroxyl radical (•OH), and hydrogen peroxide are usually produced in the former

method. These species often result in over-oxidation of the product, causing poor selectivity and

low yield. Therefore, these catalytic systems show less functional group tolerance attached to the

heterocyclic amine. In contrast, an anaerobic or acceptorless dehydrogenation (ADH) method

provides a more compelling and environmentally friendly alternative for N-heterocyclic amine

synthesis. Although the presence of the nitrogen atom reduces the endothermicity, the release

of hydrogen molecules provides a large positive entropic change and thus further reduces the

endothermicity. [135]Moreover since the liberation of hydrogen molecules as the sole byproduct

enables saturated N-heterocycles to function as potential hydrogen-storage materials, this aspect

enhances the appeal of developing the acceptorless dehydrogenation of saturated N-heterocycles.

The first homogeneous catalyst system developed by Fujita et al. for the ADH of saturated N-
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heterocycles was an iridium complex containing a pyridonate ligand. [136] Subsequently, sev-

eral homogeneous catalysts such as ruthenium-hydride complexes [137], osmium [138], irid-

ium [139–143], cobalt [144], iron [135], and nickel [145,146] organo-complexes were reported

for the acceptorless dehydrogenation of N-heterocycles by several research groups. The transi-

tion metal complex could be substituted by a base, KOtBu [147], or a strong Lewis acid such as

B(C6F5)3 [148] that formed a frustrated Lewis pair with saturated N-heterocycles. Regardless

of the important progress made, most of the reported ADH reactions in homogeneous catalytic

processes required high temperature (above 110 ◦C), base/acid, or a toxic solvent such as triflu-

oroethanol. TEMPO-mediated electrolysis enabled the acceptorless dehydrogenation to be per-

formed at ambient temperature in an undivided electrochemical cell where dehydrogenation of

N-heterocycles occurred at the anode with the release of H2 at the cathode. [149]

However, the complexities in recyclability of the homogenous catalysts remain as the main con-

cern. Therefore, heterogeneous catalysts were developed to improve the recyclability of the cata-

lyst. Diverse types of catalysts, which were typically composed of transition metals on solid sup-

ports, were reported. Some notable and recent examples include Pd-doped hydrotalcites [150],

single cobalt atoms on an ordered porous nitrogen-doped carbon matrix [151], cobalt phenan-

throline complex on exfoliated graphene oxide [152] and core-shell iron on exfoliated graphitic

oxide. [153] Like the homogenous alternatives, the reactions employing these heterogeneous cat-

alysts are usually performed at 110 ◦C or above.

Using visible-light enables both homogeneous and heterogeneous catalytic ADH of N-heterocycles

at room temperature in an economical and environmentally friendly way. A homogeneous pho-

tocatalytic ADH process is usually realized with dual catalysis merging photoredox catalysis with

transition metal catalysis. Y. Li et al. reported the first ADH of cyclic amines at ambient tem-

perature by using a homogeneous ruthenium complex (Ru(bpy)3Cl2·6 H2O) and Co(dmgH)2PyCl

photocatalysts in ethanol (EtOH). [154] Furthermore, the same dual catalysis system was adopted

for the acceptorless dehydrogenative coupling reaction of saturated N-heterocycles. [155] Mod-

ification of the Co complex allowed the ADH of N-heterocycles to be performed in water. [156]

Kanai et al. developed a different dual catalyst system composed of an acridinium photoredox cat-

alyst and a palladium catalyst to catalyze the ADH of N-heterocycles. [157]Most recently, a single

catalyst system such as a binuclear platinum(II) diphosphite complex [158] and a supramolecu-
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lar assembly consisting of a carbazolyl dicyanobenzene fluorophore with four cobaloximes was

reported for the ADH of N-heterocycles. [159] Although these reported methods were performed

at ambient temperature with the assistance of blue LED light, the recyclability of these photo-

catalysts is still challenging. Recently, ADH of tetrahydroquinolines has been reported using

visible-light-responsive hexagonal boron carbon nitride as a recyclable heterogeneous photo-

catalyst. [160] A MoS2/ZnIn2S4 nanocomposite has also been tested for the acceptorless semi-

dehydrogenation of 1,2,3,4-tetrahydroisoquinoline. [161]However, the latter system was demon-

strated to be effective only for partial dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to 3,4-

dihydroisoquinoline.

1.6. Objectives

N-heteroarenes are considered as a privileged structure in medicinal chemistry and materials sci-

ence. [162,163] Therefore, the development of innovative methods and improvement of existing

ones for N-heteroarene synthesis have become an essential topic in contemporary organic synthe-

sis. [164,165] Compared to the commonly used cross-coupling strategy that relies on the availabil-

ity of the pre-functionalized heteroarene precursors, dehydrogenation of N-heterocycles has pro-

vided a complementary approach that can introduce substituents to the saturated N-heterocycle

core. This feature overcomes the precursor’s constraint in the former procedure and thus permits

the synthesis of substituted N-heteroarenes that are not accessible by the cross-coupling reaction.

The primary objective of this study is to promote the development of surface properties of TiO2

based on semiconductor materials for synthetic applications of N-heterocyclic imines instead of

using organometallic complexes.

It was known:

(1) Amines interact with TiO2 resulting in a shift of the absorbance to the visible region of the

solar spectrum (Section 1.4.3)

(2) The excitation of this surface complex results in an electron injection into the CB of the

TiO2 (Section 1.4.3)

(3) These CB electrons are capable of reducing the O2 yielding O2
•− which is known to be

involved in the dehydrogenation of N-heterocyclic amines (section 1.5.1)

(4) The aerobic oxidation of amines is accelerated by the presence of TEMPO (section 1.4.2)
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(5) Conduction band electrons can reduce H+ when suitable cocatalysts are present on the TiO2

surface (section 1.3.2)

Based on these known facts, the task of the present work was to develop a selective dehydro-

genation of N-heterocyclic amines such as tetrahydroquinolines, tetrahydroisoquinolines, indo-

lines, and other N-heterocyclic amines.

Although, visible-light mediated oxidative dehydrogenation of aliphatic or benzylic amines was

studied intensively over TiO2 photocatalyst, dehydrogenation of N-heterocyclic amines over TiO2

in aerobic condition was not studied in-depth apart from only one example shown in Scheme 1.3

(Section 1.5.1). Furthermore, for the first time in this work, the acceptorless or oxidant-free

dehydrogenation of N-heterocycles over noble metal photodeposited TiO2 nanoparticles under

visible light illumination was studied.

The first part of this project comprises the development of selective oxidative dehydrogenation

(ODH) method for N-heterocycles over TiO2 photocatalysts under visible light illumination. For

this purpose, commercially available TiO2 Hombikat UV100 from Venator with large surface area

(320 m2/g, 100% anatase) was employed as a photocatalyst.

Transition metals ions were grafted on the TiO2 surface to improve the photocatalytic activ-

ity of TiO2 in ODH of N-heterocycles. Additionally, different derivatives of TEMPO (2,2,6,6-

tetramethylpiperidinyloxyl) (Scheme 1.4) have been employed to improve chemoselectivity. Thus,

in the first part of the project, three important components are combined, i.e., an N-heterocycle-

TiO2 surface complex as the visible light-absorbing species, Ni(II) ion-grafted TiO2, and TEMPO as

a redox mediator to perform selective visible-light-mediated dehydrogenation of N-heterocycles.

Scheme 1.4: Different derivatives of TEMPO (2,2,6,6-tetramethylpiperidinyloxyl) employed in
this study.

The main objectives of the first part of the project are as follows:

(1) Oxidative dehydrogenation of the broad range cyclic amines such as tetrahydroquinolines,
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tetrahydroisoquinolines, and indolines other N-heterocycles in the presence of surface-grafted

TiO2 upon visible light illumination at ambient temperature.

(2) Optimization of the reaction condition by investigating additional parameters such as the

solvent effect, TEMPO’s role, and the effect of the various co-catalysts.

(3) Understanding the effect of the changed reaction parameters on the reaction mechanism.

The second part of this project dealt with the development of a selective acceptorless dehy-

drogenation (ADH) method for N-heterocycles over TiO2 photocatalysts under visible light il-

lumination. The possibility of oxidant-free or ADH of tetrahydroquinolines, tetrahydroisoquino-

lines, indolines, and several other N-heterocycles using noble metal nanoparticles photodeposited

TiO2 was envisaged inspired by the developed visible-light-mediated oxidative dehydrogenation

method in the first part of the project.

Since in an inert atmosphere the transfer of an electron to H+ (releasing from amine cation

radical) could be realized only in the presence of a co-catalyst such as a noble metal the surface

of TiO2 was modified with Pt, Pd, Rh, RuO2 and Au nanoparticles. Thus, two separate strategies

have been combined for achieving ADH of N-heterocycles, by employing noble metal nanopar-

ticles photo-deposited on TiO2 to retard the charge carrier recombination while facilitating H2

generation and an N-heterocyclic amine-TiO2 surface complex for visible-light activation. With

this methodology, the high chemoselectivity of the overall system could be achieved using a single

photocatalyst in an inert atmosphere due to avoiding the formation of reactive oxygen species.

Moreover, since TiO2 not responding to visible light, no strongly oxidizing holes are created in

the valence band, which are the main species that react with intermediate products. The main

objectives of the second part of the project are as follows:

(1) Development of an acceptorless dehydrogenation methodology for the range of tetrahydro-

quinolines, tetrahydroisoquinolines, and indolines imidazolines on the surface-photodeposited

TiO2 upon visible light illumination at ambient temperature.

(2) Optimization of the reaction condition by changing different parameters, such as solvents,

co-catalysts, and loading content, and the amount of catalyst in the reaction system.

(3) Understanding the ongoing reaction mechanisms influenced by different reactants.
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Chapter 2
Materials and experimental methods

2.1. Materials and Chemicals

Commercial Evonik Aeroxide TiO2 P25 powder with 20% rutile and 80% anatase crystal phase and

50 m2/g specific surface area and TiO2 Hombikat UV 100 with 100% anatase crystal phase and

∼ 320 m2/g specific surface areas were kindly provided by Evonik and Venator, respectively. All

other reagents for the organic synthesis were purchased from Combi-Blocks and Sigma-Aldrich

(the list of compounds are given in Appendix, Table A.1). All chemicals had a purity ≥96%.

The other employed metal-oxide powders namely ZnO, WO3, SiO2, Al2O3 were purchased from

Sigma-Aldrich. The employed solvents, i.e., methanol, ethanol, 2-propanol, acetonitrile, hexanes,

ethyl acetate, all with a purity>99.9%, were purchased from Carl-Roth. Metal salts, i.e., nickel(II)

nitrate hexahydrate Ni(NO3)2· 6 H2O, copper(II) chloride dihydrate CuCl2·2 H2O, iron(III) chlo-

ride hexahydrate FeCl3·6H2O, cobalt(II) chloride hexahydrate CoCl2·6H2O, niobium(V) chloride

NbCl5, chloroplatinic acid H2PtCl6·6H2O, palladium (II) acetate Pd(OAc)2, and rhodium-acetate

dimer Rh2(OAc)4 were purchased from Sigma-Aldrich and used without futher purification. The

deionized water (18.2 MΩ cm) was obtained from a Sartorius Arium 611 apparatus. palladium

(II) acetate Pd(OAc)2, and rhodium-acetate dimer Rh2(OAc)4 were purchased from Sigmawere

purchased from Sigmawere ppurchased from Sigmaased from Sigmawere purchased from Sigma
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2.2. Modification of the surface of TiO2

2.2.1. Impregnation method

The grafting of Fe(III), Cu(II), Ni(II), Co(II), or Nb(V) nanoclusters on the surface of TiO2 UV100

was performed by following a simple impregnation method that has been reported before. [166]

In brief, salts with the appropriate ratio (0.1 wt %) relative to titania were added into an aqueous

TiO2 suspension and stirred at 90 ◦C for one h to attain metal ion nanoclusters on the surface of

TiO2. Subsequently, the suspension was rinsed and centrifuged three times with copious amounts

of distilled water. Afterward, the solid was dried at 110 ◦C for 24 h and ground into a fine powder

using agate mortar and pestle.

2.2.2. Photodeposition method

The salts of noble metals with the appropriate amount (0.1-5 wt.%) of metals with respect to

the amount of TiO2 were dissolved in 30 mL of a mixture of 30 vol.% methanol and deionized

water. Additionally, 3 g of the commercially available Hombikat TiO2 UV100 (Venator) with 100%

anatase crystal phase and ∼320 m2/g specific surface area was added to the solution inside the

photoreactor. Subsequently, the photoreactor (50 mL) was tightly closed, purged with Ar for 20

min, and irradiated by UV-A light with the intensity of 1 mW/cm2 with vigorously stirring for

24 h. In the next step, the obtained suspension was rinsed three times with deionized water

in conical bottom plastic vials and centrifuged each time to eliminate irrelevant ions from the

surface. Finally, the obtained residue was dried in a muffle oven at 110◦C and ground to a fine

powder properly.

2.3. Characterization techniques of the prepared materials

2.3.1. X-ray powder diffraction analysis (XRD)

The X-ray powder diffractograms of powder catalysts were obtained by the Burker D8-advance

X-ray diffractometer (Operating current: 40 mA, Operating Voltage: 40 kV) with Cu-Kα radiation

(λmax= 0.15406 nm) at room temperature in a scanning 2θ over the angular range of 10◦ –
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80◦ with a step size of 0.05◦. The diffraction data were analyzed using TOPAS 4.2 (Bruker-AXS)

software by comparison with reference patterns in the database.

2.3.2. ICP-OES measurement

The content of metal ions grafted or photodeposited onto the TiO2 surface before and after pho-

tocatalytic reactions was determined by using a Varian 715-ES from VARIAN optical emission

spectrometer equipped with a radial inductively coupled plasma as the excitation source and a

VistaChip CCD simultaneous detector with echelle grating. The samples were digested in aqua

regia (1 : 3 v/v nitric and hydrochloric acid) at 150 ◦C for three hours before measurement.

Elemental analysis was carried out in 3% HNO3 aqueous solutions as well as by coupling to a

femtosecond laser.

2.3.3. Transmission electron microscopy (TEM)

The photocatalysts’ morphology was measured using transmission electron microscopy (TEM),

employing a Tecnai G2 F20 TMP from FEI at 200 kV field-effect FEG. The samples were sonicated

in ethanol for 15 min before the TEM analysis. The alcoholic solution was dropped on a 300

mesh carbon-coated copper TEM grid, purchased from Quantifoil, and the images were taken in

a bright field mode.

2.3.4. Specific surface area measurements

A single-point FlowSorb II 2300 instrument (Micromeritics AutoMate 23, USA) has been em-

ployed to determine the BET (Brunauer-Emmett-Teller) surface area of the catalysts. A gas mix-

ture consisting of 30% N2 and 70% He was employed for the adsorption - desorption measure-

ment. Before all measurements, powders were degassed for 40 min by heating at 150 ◦C in order

to remove the surface adsorbed water molecules. The measurement was carried out at liquid ni-

trogen temperature (77 K). The mesoporosity of the samples before and after the photocatalytic

experiments has been determined employing a Quantachrome Autosorb-3 instrument at liquid

nitrogen temperature (77 K). The samples were degassed under vacuum at 80 ◦C for 24 h prior

to measurement. The specific surface area was obtained by applying the Brunauer-Emmett-Teller

(BET) method. Barrett-Joyner-Halenda (BJH) equation was used for the calculation of the pore
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size distribution. The total pore volume was estimated using the single point method at p/p0 =

0.99.

2.3.5. UV−visible spectroscopy

The diffuse reflectance spectra of the powder samples were measured using a UV - vis photospec-

trometer (Varian Spectrophotometer Cary-100 Bio from Agilent) in the wavelength range from

200 - 800 nm. The employed powders were pressed in a Teflon holder before measurement.

Anhydrous barium sulfate was used as the white standard for the background. The Kubelka-

Munk function of powders was calculated by applying F(R)=(1-R)2/2R. Employing a UV - vis

photospectrometer (Agilent Technologies, Cary 100), the absorption spectra of the suspensions

were also measured. For this purpose, the same concentration of the suspensions as for the fol-

lowing photocatalytic reactions was employed (Section 2.4.1). By simultaneous measurement of

absorbance and scattering of the suspension, the extinction spectra were obtained.

2.3.6. EPR spectroscopy

Bare TiO2 UV100 and 0.1 wt% Ni(II) grafted UV100 powder were analyzed to detect paramag-

netic sites existing in darkness and generated under illumination. A MiniScope MS 400 X-band

electron paramagnetic resonance (EPR) spectrometer was employed. All measurements were car-

ried out at 77 K liquid nitrogen temperature. During the measurement, the input parameters were

as follows: microwave frequency = 9.54 GHz, microwave power = 5 mW, modulation frequency

= 100 kHz, modulation amplitude 0.15 mT. Measurements under irradiation were performed

with UV-vis light (Xe lamp from Hamamatsu, LC 8) with the wavelength of λmax=300-450 nm

and 200 W power. The g values were calculated with the Equation: g = hν/βB0 (B0 – exter-

nal magnetic field, β – Bohr magneton, g – Lande g-factor). The EPR spectra are obtained from

liquid measurement using a capillary tube at room temperature. During the measurement the

input parameters were as following: the microwave frequency = 9.42 GHz, microwave power =

5 mW, modulation frequency = 100 kHz, modulation amplitude = 0.15 mT. LED blue light with

a wavelength λmax = 453 nm has been used as the light source (A H150W tuna blue Kessil lamp

(P/N: H150-blue, S/N: L4C3DG0006, 24 VDC, 1.5 A, 34 W)). palladium (II) acetate Pd(OAc)2,

and rha
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2.3.7. ATR-FTIR spectroscopy

Attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectra of the suspension

samples were recorded using the ATR-FTIR spectrometer IFS 66 BRUKER equipped with an in-

ternal reflection element (45◦ ZnSe crystal) and a deuterated triglycine sulfate (DTGS) detector.

The spectra were recorded from all photocatalysts and reactants mixtures with 300 scans at four

cm−1 resolutions. The OPUS version 6.5 software was used for data analysis. The background

was subtracted with a baseline correction spectrum to reduce the slight shift as a result of device

unsteadiness. An FT-IR spectroscopy device, Tensor 27 from Bruker, which has a Pike Miracle

single-bounce attenuated total reflectance (ATR) cell equipped with a ZnSe single crystal, was

used for the powder measurement of the samples before and after the photocatalytic experiment.

The device was equipped with a room temperature DTGS detector, a KBr beam-splitter, and a

mid-IR source (4000 to 650 cm−1) with a resolution of 1 cm−1. The OPUS 5.0 program (Optical

User Software) from Bruker was employed for data collection and analysis.

2.3.8. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) experiments were performed to study the oxidation states

of the metal islands. A Leybold Heraeus XPS device, equipped with X-ray Al Kα beam as an

excitation source was used. The binding energy corresponding to the metals was determined

with a calibrated 1s Carbon peak. XPS 4.1 software was used to fit the curves of raw data by the

Gaussian/Lorentzian fitting equation.

2.4. Synthetic procedures

2.4.1. Photocatalytic reaction procedure under aerobic condition

10 mg TiO2 or surface-modified TiO2 (2.5 g·L−1) dispersed in 4 mL of an appropriate solvent

was filled in an oven-dried 20 mL vial employed as the photoreactor. 4-amino-TEMPO or TEMPO

derivatives (0.08 mmol, 20 mol% respective to the reactant), the organic reactant (0.4 mmol),

or other substrates, were added to the suspension. The reaction mixture was sonicated for 5

min until the TiO2 catalyst was dispersed entirely. After tightly sealing the photoreactor, the
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suspension was purged with molecular oxygen for about 20 min to displace any air present in the

reactor. The reaction was carried out for 24 h under visible light illumination (LED blue light,

λmax=453 nm (A H150W tuna blue Kessil lamp (P/N: H150-blue, S/N: L4C3DG0006, 24 VDC,

1.5A, 34W)) with continuous stirring. Afterward, the catalyst was separated from the reaction

mixture by centrifugation. The reaction product was isolated employing column chromatography

using 230-400 mesh silica gel (SiO2) as the stationary phase and (a 3:1 hexane/ethylacetate

mixture) as an eluent and concentrated. In the case of optimization reactions, shown in Appendix,

Table 6.1, benzyl alcohol (20.6 µL, 0.2 mmol, 50 mol %) was added to the solution as an internal

standard. 1, 2, 3, 4-tetrahydroquinoline was chosen as the representative substrate to optimize

the reaction conditions. The corresponding calibration curves of the starting material (reactant)

and the product were obtained by GC-FID (gas chromatography - flame ionized detector). The

yield and the rest of the reactant were calculated using calibration curves obtained by GC-FID.

Details of the GC-FID parameter will be given in Section 2.6.1.

2.4.2. Photocatalytic reaction procedure in anaerobic condition

An oven-dried 10 mL reaction vial was used as the photoreactor. 5 mg photocatalyst was dispersed

in 2 mL appropriate solvent, and then 0.2 mmol reactants (various N-heterocyclic amines) was

added. After sealing the reactor tightly, the reaction mixture was sonicated for 10 min to disperse

the powder particles properly. Then, the suspension was purged for 15 min with argon gas to

exchange all air inside the reactor. The presence of an inert atmosphere (without N2 and O2) was

established by analyzing the headspace of the reactor by gas chromatography (Shimadzu 8A, TCD

detector). Depending on the substrates, the photocatalytic experiments were carried out for 24

h or longer under visible-light illumination with continuous shaking (LED blue light, λmax=453

nm A H150W tuna blue Kessil lamp (P/N: H150-blue, S/N: L4C3DG0006, 24 VDC, 1.5A, 34W)).

Afterward, the evolved hydrogen gas was analyzed by gas chromatography with a thermal con-

ductivity detector (GC-TCD) (Details of the GC-TCD parameter are given in Section 2.6.1). Later

on, the catalyst was separated from the reaction mixture by centrifuging. The product was iso-

lated by column chromatography using 230-400 mesh silica gel (SiO2) as the stationary phase

and (a 3:1 hexane/ethylacetate mixture) as the eluent. The purity of the isolated compound was

confirmed by both 1H NMR and 13C NMR measurements recorded in CDCl3. In the case of op-
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timization of the reaction condition, benzyl alcohol (10.3 µL, 0.1 mmol, 50 mol % with respect

to the substrate) was added to the solution as an internal standard. 1,2,3,4-tetrahydroquinoline

was chosen as the representative substrate to optimize the reaction conditions.

2.5. Synthesis of substrates

2.5.1. Protection of hydroxyl group with tert-butyldimethylsilyl chloride

To an oven-dried 10 mL round bottom flask with a magnetic stirring bar was added 7-hydroxy-

1,2,3,4-tetrahydroquinoline (298 mg, 2 mmol), triethylamine (0.82 mL, 5.9 mmole) and 0.5 mL

of anhydrous dichloromethane (CH2Cl2) as the solvent. [167] After cooling to 0 ◦C in an ice bath,

tert-butyldimethylsilyl chloride TBDMSCl (543 mg, 3.6 mmol) was added. The reaction mixture

was purged with molecular nitrogen and kept at the inert condition during the reaction for 12 h.

Afterwards, the organic mixture was separated with brine (saturated aqueous sodium chloride).

The brine layer was extracted with CH2Cl2 three times. The organic layers were combined, dried

over MgSO4, and filtered. After concentrating by a rotary evaporator, the residue was purified by

column chromatography using 230-400 mesh silica gel (SiO2) as the stationary phase and (a 5:1

hexane/ethylacetate ) as the eluent. 368 mg (70%) of TBSO-THQ (1e) was isolated. The purity

of the synthesized compound was verified by NMR.

2.5.2. Synthesis of 4-methylthio-2-phenyl-1,2,3,4-tetrahydroquinoline

4-methylthio-2-phenyl-1,2,3,4-tetrahydroquinoline (1j) was synthesized according to a published

procedure. [168] 2-chloro-1,2,3,4-quinoline (163.60 mg, 1 mmol), 4-methylthio-phenylboronic

acid (252.03 mg, 1.5 mmol), potassium phosphate K3PO4 (424.56 mg, 2 mmol), Pd2(dba)3

(9.1572 mg, 0.01 mmol), x-Phos (19.052 mg, 0.04 mmol), and 2 mL dichloromethane (CH2Cl2)

as the solvent were added to a oven-dried, 10 mL round bottom flask equipped with a magnetic

stirring bar. Afterward, the mixture was degassed by freeze pumping cycles. The reaction was

carried out for 12 h at 100 ◦C. The organic mixture was filtered with celite, and the synthe-

sized 4-methyl-2-phenylquinoline was purified by column chromatography using 230-400 mesh

silica gel (SiO2) as the stationary phase and ((a 10:1 hexane/ethylacetate )) as the eluent. 154.7

mg, 0.616 mmol 4-methylthio-2-phenylquinoline were obtained. Reduction of 4-methylthio-2-
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phenylquinoline to 4-methylthio-2-phenyl-1,2,3,4-tetrahydroquinoline (1i) was performed out by

using two equivalent of sodium cyanoborohydride NaBH4CN (77.4 mg, 1.2 mmol) in 4.1 mL acetic

acid. After the reaction, acetic acid was neutralized with 15 mL KOH (5 M) solution. The aqueous

solution was extracted with CH2Cl2. The organic layers were combined, dried over MgSO4, and

filtered. After concentrating by a rotary evaporator, the residue was purified by column chro-

matography using 230-400 mesh silica gel (SiO2) as the stationary phase and (Hex-EtOAc 10:1)

as the eluent. The purity of the synthesized compound was verified by NMR.

2.6. Analysis of the reaction mixture

2.6.1. Gas chromatography with flame ionization detector measurements

A Gas chromatography (A Shimadzu GC 2010) equipped with a flame ionization detector (GC-

FID) and an Rtx-5 (d = 0.25 mm) capillary column were used to analyze the reaction mixtures

after the photocatalytic reactions. The operating temperature was as following: injection tem-

perature = 250 ◦C, column temperature = 100 ◦C (hold 2 min), with an increase from 100 ◦C to

300 ◦C at a rate of 10 ◦C/min, in splitless mode. The injection volume was 1.0 µl with nitrogen

as the carrier gas.

Figure 2.1.: Calibration curves for the reactant (R) 1,2,3,4-tetrahydroquinoline (THQ) obtained
from the GC device with the presence of 50 mol% benzyl alcohol as the internal
standard (IS).
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The concentrations of the substrate and the products were determined derived from linear cal-

ibration curves prepared with a commercial organic reactant and product purchased from Sigma-

Aldrich (95-99.8% purity). Acetonitrile was used as the solvent, and 50 mol% benzyl alcohol

(purchased from Sigma-Aldrich with the highest (99.9%) purity) with respect to the substrate was

used as the internal standard (IS). Calibration curves for the reactant (1,2,3,4-tetrahydroquinoline

(THQ)) and product (quinoline) are obtained from the GC device (R2 =0.999) by measuring four

different concentration of THQ and quinoline in the range between 25, 50, 75, and 100 mmol/L.

The reactant ((Figure 2.1) and the product (Figure 2.2) formation of quinoline were quantified

by using the linear fitting equations from the corresponding calibration curves.

According to this calibration curve (Figure 2.1) the molar amount (mmol) of the unreacted

reactant was calculated with the following Equation 2.1:

nR = (
AR

AIS
− intercept)×

nIS

slope
(2.1)

The internal standard (IS) was introduced into the reaction system 50 mol% (molar amount)

with respect to the initial amount of the reactant nR0
.

where nR is the remaining amount of the reactant, and nIS is the constant amount of the internal

standard, which was 0.2 mmol. AR and AIS are the areas of the peaks of the reactant (R) and the

internal standard (IS), respectively.

Figure 2.2.: Calibration curves for the product (P) quinoline (Q) obtained from the GC device
with the presence of 50 mol% benzyl alcohol as the internal standard (IS)).
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According to this calibration curve (Figure 2.2) the amount (mmol) of the product was calcu-

lated with the following Equation 2.2:

nP = (
AP

AIS
− intercept)×

nIS

slope
(2.2)

where nP is the amount of the product (P), and nIS is the amount of the internal standard, which

was 0.2 mmol. AP and AIS are the peaks areas of the product (P) and the internal standard (IS),

respectively.

Moreover, the yield of the product (Y), the conversion of the reactant (C), and the selectivity

of the reaction (S) have been calculated by the Equations 2.3-2.5:

Y (%) =
nP

nR0

× 100=
AP × fR

nR0

× 100 (2.3)

C(%) =
nR0
− nR

nR0

× 100=
nR0
− AR × fR
nR0

× 100 (2.4)

S(%) =
Y
C
× 100 (2.5)

where nP is the amount of the product, nR is the remaining amount of the reactant, and nR0
is

the starting amount of the reactant. AP and AR are the peaks areas of the product and the reactant,

respectively, fP and fR are the conversion factor as determined from the calibration curves of the

product and the reactant.

2.6.2. Gas chromatography with thermal conductivity detector

The evolved molecular hydrogen (H2) gas during the reaction in the headspace of the photoreac-

tor, above the reaction mixture was analyzed using a gas chromatograph (Shimadzu 8A) equipped

with a molecular sieve 5A column, a TCD detector, and Ar as the carrier gas. The column temper-

ature was adjusted to be 80 ◦C, and the detector temperature was 120 ◦C. The current was 80 A.

The quantitative analysis of evolved hydrogen during the reaction has been calculated according

to the equation obtained from the linear calibration curve of hydrogen (Figure 2.3). A calibration

curve (R2 = 0.997) of gaseous hydrogen was obtained by measuring five different volumes of hy-

drogen in the range between 0.1 and 0.5 mL. The plot of concentration of molecules of hydrogen
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vs. time is presented in Figure 2.3, and the linear fitting equation was derived. By applying linear

fitting equation, the total volume of the photogenerated H2 could be calculated as follows: the

volume of the headspace of the reactor was 6.4 mL, and the injector volume was 0.5 mL:

VH2
=

6.5× slope
(AH2

− intercept)× 0.5
(2.6)

Figure 2.3.: The molecular hydrogen peaks obtained from the GC-TCD device detected at various
injection volumes (left). Calibration curve and linear fit for the molecular hydrogen
obtained from the GC-TCD (right).

Using ideal gas law the total volume of the photogenerated H2 could be converted into the

moles as follow:

n=
P × VH2

R× T
(2.7)

where P= 1 atm is pressure, VH2
is the total volume of the generated H2, R= 8.314 J mol−1

K−1 is a molar gas constant.

2.6.3. Nuclear magnetic resonance (NMR)

NMR characterization of all the isolated compounds was done with a Bruker Avance DPX-400

spectrometer. 1H NMR and 13C NMR measurements were recorded in chemical shifts (δ in parts

per million) relative to residual signals of deuterated chloroform CDCl3 (7.26 ppm for 1H; 77.00

ppm for 13C) at room temperature. Abbreviations used in the NMR experiments are: br, broad;

s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet.
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2.6.4. Column chromatography

Thin-layer chromatography (TLC) was carried out to optimize the appropriate eluent before doing

column chromatography on a commercial glass covered with a 0.25 mm layer of Merck Silica

gel 60F254 Aluminum oxide 60F254 (EMD, Inc.). The separation of the reaction mixture was

visualized under fluorescence UV light with a 254 nm wavelength. Column chromatography

was performed to isolate the products from the reaction mixtures. The separation of substances

was carried out in a 150 ml chromatographic column with a reservoir, frit, and PTFE stopcock

from Duran. Column chromatography was done using either gravity to move the solvent or, if

needed, compressed N2 gas to push the solvent through the column. 230-400 mesh silica gel

(SiO2) or Alumina Neutral flash grade was used as stationary phases. A mobile phase eluent

was determined for each substrate separately using solvent mixtures of hexanes and ethyl acetate

or dichloromethane (CH2Cl2) and acetone. Finally, the products were collected, and the eluent

was evaporated with Rotavapor (R-300, Buchi Rotary Evaporators). The amount of the collected

product was obtained by weighting in a semi-micro balance (Mettler Toledo - MS105).

2.6.5. Detection of hydrogen peroxide (H2O2)

Detection of hydrogen peroxide (H2O2) was performed after the dehydrogenation reactions of

1,2,3,4-tetrahydroquinoline in the presence and the absence of 4-amino-TEMPO. The formation of

H2O2 in the reaction mixture was detected with KI by slightly changing a reported method. [134]

H2O2 oxidizes iodide ions to iodine in the presence of an acid and molybdate catalyst. The liber-

ation of iodine could be detected using a starch solution as the indicator. This method is suitable

for low concentrations of H2O2 (0.1-5%) with minimal interference from organic compounds.

H2O2 + 2 KI+H2SO4 −→ I2 + K2SO4 + 2H2O (2.8)

All reagents were analytical reagent grade, and deionized water (Milli-Q, 18.2 mΩ ·cm) was

used. Initially, 10 g of KI was dissolved in 100 mL of water (0.6 M). Subsequently, 0.018 g

ammonium molybdate, (NH4)6 Mo7O24·4H2O, was dissolved in 75 mL water (2 · 10−3 M). While

stirring, 30 mL concentrated H2SO4 (98%) was slowly added. 0.357 g of potassium iodate KIO3

was weighed and transferred to a 100 mL volumetric flask, and 40 mL of deionized water, 0.2 g
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of sodium hydroxide, and 2 g of potassium iodide were added.

The mixture was agitated until complete dissolution and diluted to the volume to make a 1.7

M solution. 10 g of soluble starch was added into a 150 mL beaker. While stirring, about 5 mL

of water was gradually added until a paste was formed. The paste was then added to 100 mL of

boiling water, and the resulting solution was cooled to room temperature. 5 g of KI was added

to the solution and stirred until complete dissolution. The obtained solution was used in order to

detect H2O2 in the reaction mixture after the dehydrogenation reaction, according to Eq 2.8.

After 24 h photocatalytic dehydrogenation of 1,2,3,4-THQ to quinoline, the reaction mixture

was collected by separation of the catalyst with centrifugation. The results are presented in the

following Chapter 3.

2.6.6. Photonic efficiency

Indeed, by calculating photonic efficiency (ζ) the performance of heterogeneous photocatalysis

could be compared. Photonic efficiency (ζ) describes the number of molecules of the transformed

or photogenerated reaction product over the absorbed photon flux at a given wavelength, an

incident light inside the reactor’s front window [169]. The photocatalytic activity of all reactions

was evaluated by calculating photonic efficiency with the following Equation 2.9

ζ=
Nmolecules(mol · s−1)t rans f ormed/produced

Nphoton f lux(einstein · s−1) incident inside reactor cel l
× 100 (2.9)

It should not be neglected that the incident light is not completely absorbed in the heterogeneous

system and is scattered or reflected by the surfaces of dispersed powder particles. Therefore,

it differs from the conventional way of the measurement of homogeneous systems where prod-

uct molecules are related to the total number of incident flux on the reactor walls, for unknown

reactor geometry, and polychromatic radiation than the number of absorbed quanta at a given

wavelength. In order to take into consideration the wavelength and the illuminated area in het-

erogeneous systems, the photon flux could be determined by the Equation 2.10

Nphoton f lux =
I · A ·λ
NA · h · c

(2.10)

where I is the irradiance, equal to 4 mW/cm2, A is the irradiated area, equal to 4 cm2, and

the λ is a maximum wavelength of monochromatic light which is 453 nm, NA, h, and c are the
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Avogadro constant, Planck number, and speed of light, respectively. Photon flux (Nphoton f lux) was

found to be 6.05 × 10−8 mol s−1. The maximum photonic efficiency (ζ) would be 7.65% if all

the reactant molecules transformed into the desired product.
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Chapter 3
Results

In this chapter, the obtained experimental results will be presented. Firstly, the detailed char-

acterization data of the employed materials will be presented. This will be followed by an

overview of the photocatalytic performance of titanium dioxides in dehydrogenation reactions

of N-heterocycles in aerobic and anaerobic conditions. In the next section, the effect of surface

grafted TiO2 and the effect of the different TEMPO derivatives in selective dehydrogenation reac-

tions of N-heterocycles in the oxygen atmosphere will be given in detail. Furthermore, the accep-

torless photocatalytic dehydrogenation of N-heterocycles employing noble metal nanoparticles

deposited TiO2 will be presented. Effect of different solvents, various noble metals, co-catalysts

content respect to TiO2, and loading amount of photocatalyst in photocatalytic reactions will be

presented.

3.1. Materials characterization of the prepared photocatalysts

The main catalysts used for this study were commercial anatase TiO2 UV100. The employed

photocatalyst for the oxidative dehydrogenation of N-heterocyclic amines was 0.1 wt% Ni(II)

nanoclusters surface grafted TiO2 UV100. The employed photocatalyst for the acceptorless dehy-

drogenation (ADH) of N-heterocyclic amines was 1 wt% Rh0 nanoparticles photodeposited TiO2
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UV100. Different noble metals such as RuO2, Au0, Pd0, Pt0 were also photodeposited on the sur-

face of TiO2 UV100 for comparison with rhodium nanoparticles. X-ray diffractograms were taken

to determine their crystal phase. The XRD pattern of TiO2 UV100 is given as the reference. XRD

pattern of all powders is shown in Figure 3.1. All diffractograms were analyzed with the DIFFRAC

Plus Eva software and compared to the ICDD database.

Figure 3.1.: X-ray diffraction patterns of the photocatalysts TiO2 UV100 (black), 0.1 wt%
Ni(II)/TiO2 (red), 1 wt% Rh/TiO2 (blue), 1 wt% RuO2/TiO2 (green), 1 wt% Pd/TiO2
(navy), 1 wt% Pt/TiO2 (violet), 5 wt% Rh/TiO2 (purple), and 5 wt% Pd/TiO2 (ma-
genta)

It was observed that all peaks are assigned to the pure anatase crystal phase. No shift of the

original TiO2 peaks and usually no peak belonging to the surface modifying transition metals are

observed. Low loading of the transition metals on the TiO2 surface (≤5%) is undoubtedly below

the detection limit of the XRD diffractometer. Only the diffractograms of Pd0/TiO2 materials show

peaks belonging to cubic phase palladium nanocrystals. These peaks intensities were found to be

low for the material having only 1 wt% Pd0 and increased while 5 wt% Pd0 nanoparticles was

photodeposited on TiO2. Any peak belonging to Rh0 nanoparticles was not detected even at a
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high amount of photodeposition (5 wt% Rh0 with respect to TiO2). The specific surface area of the

commercial TiO2 UV100 and the surface-modified TiO2 photocatalysts were determined by BET

measurements. Commercial TiO2 UV100 is described in the literature as a mesoporous material

consisting of 3-5 nm spherical particles with ∼ 300 m2/g surface area, which is consistent with

the results that were obtained here (Table 3.1). The surface-modified TiO2 nanoparticles exhibit

similar surface area than the pure anatase TiO2 with small differences (Table 3.1). It should also

be noted that every BET measurement of single-point BET is provided with±5 m2/g experimental

error. The surface area of commercial TiO2 P25 from Evonik-Degussa Aeroxide, Germany, with

20% rutile and 80% anatase phase, is provided as a reference photocatalyst which will be com-

pared with TiO2 UV100 in photocatalytic activity measurements in the following results section.

The obtained specific surface area of the employed photocatalysts are summarized in Table 3.1.

Table 3.1.: Specific surface area (BET) of pure and surface modified TiO2 powders.

Catalysts(Powders) Specific surface area* BET [m2/g]

P25 50

UV100 320

01 wt%Ni(II)/TiO2 318

1 wt%Au/TiO2 312

1 wt%Ru/TiO2 315

1wt% Pd/TiO2 321

1 wt%Pt/TiO2 319

1wt% Rh/TiO2 316

∗ The relative errors are about ± 5 m2/g as evaluated from 3 times repeated measurements

The results in Figure 3.2 illustrate the results of diffuse reflectance spectroscopy measurements.

As expected, pure TiO2 UV100 and TiO2 P25 are only absorbing in the UV range. All surface-

modified TiO2 exhibit lower reflectance of visible light when compared with the bare TiO2. The

Ni(II) ions grafted TiO2 UV100 sample showed slightly lower reflectance compared to UV100

TiO2. However, each noble metal nanoparticles on the TiO2 UV100 surface influence differently

to the overall reflectance spectra despite their small content in TiO2. It becomes obvious from

the results that Pd/TiO2 and Pt/TiO2 powders have less reflectance in comparison with other
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samples due to their dark grey color. Additionally, little absorption in the range from 600 nm to

800 nm is observed for Pd/TiO2 and Pt/TiO2 powders. Although Rh photodeposited TiO2 has

less reflectance in comparison with pure UV100 TiO2, the absorption spectrum shows that it can

only be excited by UV light (< 390 nm). RuO2 nanoparticles photodeposited TiO2 powders show

plasmonic peaks at a wavelength of 450 and 600 nm. Similarly, a plasmonic absorption peak was

observed in the Au /TiO2 sample at a wavelength of 523 nm.

Figure 3.2.: Diffuse reflectance spectra of the employed powder samples (top), F(R) spectra cal-
culated according to the Kubelka-Munk function of pure UV100 TiO2, P25 TiO2 and
surface modified TiO2 UV100 with transition metal nanoparticles (bottom).

The morphology of the surface-modified TiO2 UV100 particles with transition metals were ex-
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amined by TEM in nanoscale. Figure 3.3 shows the micrograms of the employed photocatalysts,

i.e., surface grafted 0.1 wt% Ni(II)/TiO2 UV100 , surface photodeposited TiO2 UV100 with 1 wt%

Rh, 1 wt% Pd, 1 wt% RuO2, 1 wt% Pt, and 1 wt% Au nanoparticles.

Figure 3.3.: TEM micrographs of a powder sample of TiO2 UV100 with 1 wt% Rh, Au, Pd, Pt,
RuO2 nanoparticles and 0.1 wt% Ni(II) nanoclusters.

As can be seen in the pictures, the particles are mostly spherical with mesoporous morphology.
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The particles sizes are quite homogeneous in the range of 3 to 5 nm. In the images, the darker

spots are assigned to transition metal nanoparticles, which are homogeneously distributed on

the photocatalyst’s surface. According to the TEM images (Figure 3.3) no significant change is

observed, thus indicating that the particles’ morphology and size were not affected by the modi-

fication with the various transition metals. X-ray photoelectron spectroscopy (XPS) experiments

were performed for all metal photodeposited TiO2 samples to study the oxidation states of the

metal islands. The resulting XPS spectra for photodeposited metals (namely Rh, Pd, Au, and Pt)

with corresponding hybridization states are given in the Figure 3.4.

Figure 3.4.: The set of XPS spectra obtained from the corresponding metal nanopatricles pho-
todeposited TiO2. The solid lines are corresponding to the fits to extract the exact
position of the XPS maxima.

According to the results presented in Figure 3.4 photodeposited metals are present in the metal-
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lic state. Rh/UV100 powder exhibits two peaks at 311.5 eV and 306.5 eV related to 3d3/2 and

3 d5/2 states, respectively. This is in accordance with the literature value of 311.45 (3 d3/2) and

306.7 (3 d5/2) for metallic Rh, thus proving the state of photodeposited Rh nanoparticles on the

UV100 surface. [170] The XPS spectrum for Pd/UV100 (Figure 13(b)) exhibits doublet peaks at

340.2 eV and 334.9 eV which are related to 3d3/2 and 3d5/2 Pd metallic states as reported in

the literature. [171] The XPS spectrum of Au/UV100 also shows doublet energy peaks at 87.5 eV

and 83.9 eV. These values are related to 4 f5/2 and 4 f7/2 Au states which proves the existence of

metallic Au nanoparticles on the TiO2 surface. [172] Similarly, Pt/UV100 also shows the metallic

state of Pt nanoparticles. The corresponding binding energies for Pt 4 f5/2 and 4 f7/2 states were

observed at 74.3 eV and 70.9 eV, respectively, being in accordance with literature values. [173]

Only photodeposition of TiO2 nanoparticles with Ru precursor appeared in oxide state RuO2,

however the peaks are overlapped with standard C peaks, which are not represented here.

In-situ EPR spectroscopy measurements were performed with powders of 0.1 wt% Ni(II)/UV100

and bare TiO2 (UV100) at 77 K in an argon atmosphere to examine the impact of the grafted Ni(II)

ion on the electron shuttle process (Figure 3.5). In the dark, both samples showed characteristic

peaks with g values of g1 =2.027, g2 =2.009 and g3 =2.005 (Signals D) which has been as-

signed to Ti4+-O2
−• species. [174] Upon UV-vis illumination, peaks at g1 =2.018, g2 =2.014 and

g3 =2.005 (Signals A) were generated which have been proposed to correspond to the trapped

holes, i.e., Ti4+-O•−- Ti4+-OH− radicals at the surface sites of TiO2. [175, 176] A signal at g =

2.004 in both catalysts arises, which most likely indicates the presence of electrons trapped at

TiO2 oxygen vacancies. Additionally, signals g||=1.96 and g⊥=1.990 (Signals B) are formed dur-

ing irradiation. These signals indicate the presence of Ti3+, which are formed by trapping of

photogenerated electrons. [177]
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Figure 3.5.: In-situ EPR spectra at 77 K of TiO2 (a) and 0.1 wt% Ni(II)/TiO2 (b) in the dark and
under 1, 2, 3, and 5 min of UV−vis light irradiation (Xe lamp, λmax = 300−450 nm).
The spectra under light irradiation are obtained by subtracting the spectrum in the
dark.

3.2. Formation of surface complexes

1,2,3,4-tetrahydroquinoline (THQ) 1a was chosen as a model substrate for the investigation of the

photocatalytic dehydrogenation. Principally, the dehydrogenation product of THQ in an oxygen

atmosphere in alcoholic media is theoretically expected to be the quinoline as the main product
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and hydrogen peroxide as the byproduct. However, in an inert Ar atmosphere, besides the corre-

sponding quinoline, the release of two hydrogen molecules is expected to be the second product.

The reaction pathways of THQ in the aerobic and anaerobic atmosphere are shown in Scheme 3.1.

Scheme 3.1: Schematic illustration of dehydrogenation of THQ in oxygen (1) and argon (2) at-
mosphere.

The absorption spectra of the probe reactant (THQ) with and without UV100 was measured

by UV-vis spectroscopy in order to study the effect of N-heterocyclic amines on the absorption

spectrum of TiO2 and to determine the suitable wavelength of the light source for the dehydro-

genation reaction (Figure 3.6). It is well known that bare TiO2 can only be exited upon UV light

irradiation.

Figure 3.6.: Normalized extinction spectra for the bare TiO2 (UV100), TiO2/THQ, SiO2/THQ,
and THQ in acetonitrile (CH3CN). Absorption spectroscopy measurements were per-
formed at the same concentration of the catalyst and substrate as appropriate to the
organic reaction conditions in a CH3CN solvent.
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Similarly, THQ molecules in CH3CN show the main absorption edge at a wavelength of about

350 nm. Interestingly, a significant red-shift of about 60 nm in the mixture of commercial TiO2

UV100 with THQ was observed. This could be attributed to a surface-complex formation in the

amine-TiO2 mixture responsible for the visible light absorption.

Figure 3.7.: Absorption spectra of the surface grafted TiO2 (a) and normalized extinction spectra
for the bare TiO2/THQ, and THQ with 0.1 wt% surface grafted metal ions with respect
to TiO2 in acetonitrile (CH3CN) solvent (b). Absorption spectroscopy measurements
were performed at the same concentration of the catalyst and substrate as appropriate
to the organic reaction conditions in a CH3CN solvent.
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Since the suspension of the mixture of THQ and TiO2 in acetonitrile absorbs in the visible region

at 460 nm, the dehydrogenation of this compound was examined upon visible light illumination.

It is worth mentioning that the use of other solvents, such as methanol, ethanol and 2-propanol,

does not affect the surface complex (spectra are not presented here). In order to confirm the

importance of semiconductor TiO2, further exploration of a non-semiconducting SiO2 with a high

surface area was employed (Figure 3.6). No red-shift is observed in the presence of silica, and

the observed absorption edge corresponds to THQ (Figure 3.6).

Also, surface modified TiO2 samples are used to observe their effect in absorption spectra when

combined with THQ. The results of the UV-vis absorption spectroscopy presented in Figure 3.7

show that although the amount of grafted metal ions on TiO2 was low, the absorption wavelengths

of surface grafted TiO2 and the THQ mixture showed increased absorption in the range of visible

region in comparison with bare TiO2 UV100.

To better understand the occurring surface chemical bond interaction between an amine and

TiO2, ATR-FTIR spectroscopy measurements of CH3CN solvent, CH3CN /THQ, CH3CN/TiO2, and

TiO2/THQ were performed. The results are shown in Figure 3.8. The same concentration of

THQ was employed under optimized reaction conditions. The absorption bands at 1585 cm−1,

1500 cm−1, 1309 cm−1, 1268 cm−1 are all ascribed to heteroatom-containing stretching vibration

modes in THQ. The predominant peak at 1500 cm−1 is associated with an aromatic ring stretch

(Ar C-C(m)) of THQ. Additionally, the other two distinct absorption bands at 1606 cm−1 and 3409

cm−1 are attributed to the N-H stretching vibrations. When TiO2 and THQ were dispersed in

solution, the bands corresponding to the N-H bending vanished.

The bands at 1300 cm−1 and 1268 cm−1 are attributed to aromatic C-H in-plane bends. These

bands in the THQ spectrum vanish when TiO2 in added into the amine solution. The signals

at 1606 cm−1 and 1585 cm−1 could also be attributed to the aromatic C-C stretches. More-

over, the band intensity at 1300 cm−1 associated with a heterocyclic C-N stretching decreases

in the presence of TiO2. This ATR-FTIR (Figure 3.8) data was, therefore, another proof for the

surface-complex formation. This phenomenon is also expected to occur in the presence of other

N-heterocyclic amines.
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Figure 3.8.: FTIR spectra of CH3CN, CH3CN/THQ, CH3CN/TiO2, and TiO2/THQ . The right figure
shows magnification of the selected area in the left figure. All measurements were
performed at the same concentration of the catalyst and substrate as appropriate to
the organic reaction condition.

3.3. Dehydrogenation in the presence of molecular oxygen

Visible-light-mediated dehydrogenation of N-heterocycles in the presence of molecular oxygen

was performed at room temperature with bare TiO2 or surface modified TiO2 photocatalyst. In

this regard, 1,2,3,4-tetrahydroquinoline (THQ) was used as a probe molecule and commercial

TiO2 UV100 or TiO2 P25 were employed as a photocatalyst. Since it has been observed from

UV-vis spectroscopy results that the mixture of TiO2-THQ has an absorption edge up to 460 nm

(Figure 3.6), the feasible dehydrogenation of THQ was carried upon LED visible light (λmax=453

nm) illumination. The experiment was performed in 20 mL glass vials in the presence of 0.4 mmol

THQ, 10 mg of the photocatalyst in 4 mL acetonitrile CH3CN after purging the reaction mixture

with molecular oxygen gas. Furthermore, by purging the same reaction mixture with argon gas,

the viability of this process was analyzed in an inert atmosphere. The quinoline formation as the

desired product was analyzed by GC-FID using the linear equations obtained from the calibration

curves (see Section 2.6.1). The obtained results are summarized in Table 3.2. As it can be seen

from Table 3.2, entries 1 and 2, the dehydrogenation of the THQ over TiO2 UV100 and TiO2 P25

photocatalysts was practical. During 24 h photocatalytic dehydrogenation reaction of THQ in the

presence of TiO2 UV100 photocatalysts, 324 µmol of THQ was converted, and only 140 µmol
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quinoline was produced as the desired product. These results showed that although the visible-

light-mediated dehydrogenation reaction was feasible in TiO2 suspension, the reaction selectivity

was still poor Table 3.2, entry 1).

Table 3.2.: Dehydrogenation of THQ over TiO2
a.

Entry Catalysts Converted
amount
(µmol)b

Quinoline
amount
(µmol)b

1 TiO2 UV100 324 140
2 P25 TiO2 96 40
3c TiO2 UV100 - -
4d No catalyst 12 8
5e No light - -
6 Ni(II)/UV100 372 228

a Reaction conditions: 10 mg photocatalyst TiO2 (UV100 or P25) or Ni(II)/UV100, 24 h visible
light illumination (LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 400 µmol THQ, 4 mL
CH3CN. b converted amount and quinoline amount are calculated according to the GC-FID

calibration using benzyl alcohol as an internal standard. c Argon atmosphere. d no TiO2, e in
dark.

Over TiO2 P25 photocatalysts, the conversion of the THQ and the formation of quinoline were

three times less than the results when TiO2 UV100 was used as a photocatalyst (Table 3.2, entry

2). Nevertheless, the conversion of the THQ was completely hindered (Table 3.2, entry 3) when

the reaction was carried out the absence of O2. It was essential to carry out control experiments

to evaluate the significance of photocatalyst and visible light for the oxidative dehydrogenation

of THQ (Table 3.2, entries 4 and 5). The insignificant amount of THQ conversion and quinoline

formation during the photolysis experiment showed the importance of the TiO2 (Table 3.2, entry

4). Moreover, the dark reaction further validated the importance of visible light in the dehydro-

genation reaction, as there was no catalytic reaction in the absence of light (Table 3.2, entry 5).

After an initial evaluation of the appropriate conditions of the dehydrogenation reaction, exper-

iments were conducted with the presence of different solvents, such as methanol, ethanol, and

2-propanol, and the results were compared with acetonitrile. The obtained results are presented

in Figure 3.9. Generally, the dehydrogenation of THQ in all solvents resulted in a conversion of up
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to 350 µmol. However, when methanol and ethanol were used as a solvent, the amount of quino-

line formation was significantly lower compared to 2-propanol and acetonitrile. 2-propanol and

acetonitrile performance was almost similar in the photocatalytic formation of quinoline, while

2-propanol showed slightly higher product formation. Thus the highest formation of quinoline

was 172 µmol with 2-propanol solvent and 140 µmol with acetonitrile. It should also be noted

that all these experiments were carried out three times in order to derive an experimental error

(± 6%).

Figure 3.9.: The photocatalytic dehydrogenation of THQ in the presence of different solvents. Re-
action conditions: 10 mg photocatalyst TiO2 (UV100), 24 h visible light illumination
(LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 400 µmol THQ (50.2µL), 4 mL
of solvent. Conversion and yield are calculated according to the GC calibration using
benzyl alcohol as an internal standard.

3.3.1. Effect of different TEMPO derivatives

In order to increase the yield and the selectivity, different derivatives of TEMPO were employed in

an amount of 20 mol% with respect to the reactant. The obtained data are shown in Table 3.3. Us-

ing the improved photocatalyst, 0.1 wt% Ni(II) ion-grafted TiO2, TEMPO, and three other TEMPO

derivatives were compared in the dehydrogenation reaction, establishing 4-amino-TEMPO as the
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optimal redox mediator for improving the selectivity of the dehydrogenation reaction (Table 3.3).

Inadequate to the reactions carried out without TEMPO derivatives, the reactions employing 4-

amino-TEMPO and Ni(II)/UV100 shows better yield and selectivity in comparison with the reac-

tion employing UV100 and 4-amino-TEMPO (Table 3.3, entry 6).

Table 3.3.: The photocatalytic dehydrogenation of THQ in the presence of different redox medi-
ators a.

Entry Catalysts Redox mediator Converted

amount

(µmol) b

Quinoline

amount

(µmol)b

1 UV100 TEMPO 344 284

2 UV100 4-amino-TEMPO 392 316

3 Ni(II)/UV100 TEMPO 320 232

4 Ni(II)/UV100 4-hydroxy-TEMPO 276 232

5 Ni(II)/UV100 4-oxo-TEMPO 372 308

6 Ni(II)/UV100 4-amino-TEMPO 400 368 (364c)

a Reaction conditions: 10 mg photocatalyst Ni(II)/TiO2 (UV100), 24 h visible light illumination

(LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 400 µmol THQ (50.2 µL), 4 mL i-PrOH, 20

mol% redox mediators with respect to the reactant. b converted and quinoline amount are

calculated according to the GC calibration using benzyl alcohol as an internal standard. c

isolated yield.

3.3.2. Effect of grafting metal ions on THQ dehydrogenation

To further improve selectivity and yield, the surface of the TiO2 UV100 nanoparticles was grafted

with metal ions or photodeposited with a noble metal. Surface modification of TiO2 with different

transition metal nanoparticles or metal ions has been reported in the literature to enhance the

photocatalytic performance where the co-catalyst act as an electron shuttle between the conduc-
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tion band of TiO2 and surface adsorbed molecular oxygen. Obviously, after 24 h photocatalytic

reactions, all metal ions grafted UV100 samples (Cu2+,Ni2+, Co2+, Fe3+, Nb5+) consistently show

improved yield and selectivity when compared with bare UV100 (Table 3.4). On the other hand,

UV100 samples with 0.1 wt% photodeposited noble metal (Pd, RuO2, and Rh) show the signifi-

cantly lower conversion of the probe compound (60%, 49%, and 30%, respectively) than UV100

even though the selectivity remained high (97%, 100%, and 88%) (Table 3.4). In the next step,

the photocatalytic reactions were performed in the presence of different metal-oxides in an aer-

obic system using 2-propanol as an optimal solvent. However, it has been observed that when

employing ZnO, WO3, and Al2O3 as a photocatalyst only drastically low yields (3%, 5%, and 2%,

respectively) were achieved. Moreover, silica has not shown any photocatalytic performance.

Table 3.4.: Effect of grafted transition metals on the aerobic oxidative dehydrogenation of THQ
a.

Entry Catalysts Converted
amount
(µmol)

Quinoline
amount
(µmol)b

1 UV100 392 316
2 Cu(II)/UV100 400 364
3 Ni(II)/UV100 400 364
4 Nb(V)/UV100 380 360
5 Fe(III)/UV100 400 360
6 Co(II)/UV100 400 372
7 Pd(0)/UV100 248 240
8 RuO2/UV100 196 196
9 Rh(0)/UV100 136 120

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,
λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQ (50.2 µL), 4 mL CH3CN, 20 mol%

4-amino-TEMPO (0.08 mmol) as a redox mediator with respect to the reactant. b calculated
according to the GC calibration using benzyl alcohol as an internal standard. c ratio of yield

over conversion.

palladium (II) acetate Pd(OAc)2, and rhodium-acetate dimer Rh2(OAc)4 were purchased from

Sigmawere purchased from Sigmawere ppurchased from Sigmaased from Sigmawere purchased

from Sigma
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3.3.3. Kinetics of the oxidative THQ dehydrogenation

The kinetic experiments were performed employing the optimized reaction conditions in the pres-

ence and the absence of 0.08 mmol 4-amino-TEMPO using bare and 0.1 wt% Ni(II) grafted UV100

as photocatalysts. During 24 h of illumination with visible light, the starting material was gradu-

ally converted to completion in the presence of all three photocatalysts. The increase of the yield

and the selectivity of the dehydrogenation reaction of THQ in the presence of the three different

photocatalysts during 24 hours (measured in 3 hours time intervals) have been calculated from

GC-FID data (Eqs (2.3-2.5)) and are shown in Figure 3.10. As becomes obvious from Figure 3.10

(top), large amounts of quinoline are produced in the presence of Ni (II)-grafted UV100 and 4-

amino-TEMPO. Significantly lower amounts of product were obtained with ungrafted TiO2 in the

presence and the absence of 4-amino-TEMPO. Accordingly, the yields at a point in time during

illumination calculated from the data given in Figure 3.10 (a) were found to decrease in the order

Ni(II)/UV100 + 4-amino-TEMPO > UV100 + 4-amino-TEMPO > UV100 (Figure 3.10 (bottom)).

The results reveal that 4-amino-TEMPO significantly improves the reaction selectivity. Concomi-

tantly, the selectivity was observed to be ∼10% higher when Ni(II)-grafted UV100 is used instead

of bare UV100.

palladium (II) acetate Pd(OAc)2, and rhodium-acetate dimer Rh2(OAc)4 were purchased from

Sigmawere purchased from Sigmawere ppurchased from Sigmaased from Sigmawere purchased
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from Sigma

Figure 3.10.: Amounts of quinoline formation during 24 h of illumination (top) and time-
dependent change in the yield (black solid lines) and selectivity (short dashed
green lines) (bottom) in the presence of UV100 (gray star), UV100+ 4-amino-
TEMPO (blue square), and N(II)/UV100+ 4-amino-TEMPO (red sphere). Reaction
conditions: 10 mg photocatalysts (UV100 or Ni (II)-grafted UV100), LED lamp,
λmax=453 nm, 4 mW/cm2, 1 atm O2, 400 µmol THQ, 0.08 mmol 4-amino-TEMPO,
4 mL i-PrOH. Yield and selectivity are calculated according to the GC calibration
using benzyl alcohol as an internal standard.

3.3.4. Superoxide radical anion generation studies by EPR

In-situ EPR spectroscopy was performed to test the formation of the light-induced superoxide

radical anion (O2
−•) during visible light illumination. The EPR spectra were recorded at room

temperature. In the first step, the suspensions were prepared under the same reaction conditions

applied to the oxidative dehydrogenation process. Thus, before the test, the appropriate ratio of

photocatalyst, THQ, 4-amino TEMPO was added into the glass vial containing 4 mL of acetonitrile

and sonicated at approximately 5 min in order to obtain a homogeneous suspension. 1 mL of this

suspension was transferred to the Eppendorf tube, and 20 µL of 20 mM of DMPO was immedi-

ately added to the mixture as a spin trapping agent. For the control experiments, Ni(II)/TiO2

photocatalyst in acetonitrile in the absence of THQ and 4-amino- TEMPO, Ni(II)/TiO2 photocat-

alyst in acetonitrile and 4-amino- TEMPO in the absence of THQ, and only acetonitrile in the
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absence of Ni(II)/TiO2 photocatalyst and 4-amino- TEMPO suspensions were prepared. DMPO

was used in all experimental conditions. Subsequently, the mixture was shaken by hand and

purged with oxygen. The measurements were carried out in an EPR capillary tube. For the pur-

pose of comparison, the experiments were carried out upon visible light (Figure 3.11 (a)-(c), and

(e)) and UV-vis light (Figure 3.11 (d)) illumination. Figure 3.11 (a) demonstrates the EPR spec-

tra of Ni(II)/TiO2 photocatalyst in acetonitrile in the presence of DMPO in the dark and upon

visible light illumination. As seen from these results, the formation of the reactive oxygen species

was not realized due to the inherent limitation of the photoexcitation of titania upon visible light

illumination. When 4-amino-TEMPO introduced to the system, a signal at 338.5 mT emerged,

demonstrating the trapped electrons on the oxygen vacancies of TiO2. Upon illumination, the

signal intensity slightly increased. However, usually the formation of O2
−• upon illumination

and trapped by DMPO exhibit three hyperfine signals which were not observed in this system

((Figure 3.11 (b)). Moreover, no EPR signal was observed when pure DMPO was irradiated in

acetonitrile or when the experiment was performed in the dark (Figure 3.11 (e)). Figure 3.11 (c)

and (d) present the EPR results after the addition of THQ to the TiO2 suspension in acetonitrile in

the presence of DMPO and 4-amino-TEMPO. Thus as observed by UV-vis spectroscopy, THQ forms

a surface complex with TiO2, which absorbs visible light. In the presence of molecular oxygen

and DMPO, photogenerated O2
−• produces a DMPO-O2

−• radical that could be detected by EPR

spectroscopy (Figure 3.11 (c)). As expected, the three hyperfine signals emerged upon UV-vis

and visible light illumination. These signals correspond to the DMPO-O2
−• adduct. It could be

seen from Figure 3.11 (d) the DMPO-O2
−• adduct formation rate upon UV-vis irradiation was sig-

nificantly faster than the illumination under visible light. When the sample was irradiated longer

time under UV light, the signal intensity decreased, and new peaks emerged. (Figure 3.11 (d))

This indicates the decomposition of DMPO-O2
−• and the generation of a nitroxide-like radical. In

contrary, under visible light illumination it was observed that more stable DMPO-O2
−• adducts

are generated ((Figure 3.11 (c)).
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Figure 3.11.: EPR spectra of (a) Ni(II)/TiO2 photocatalyst in acetonitrile in the presence of DMPO
in the dark and under visible light illumination (b) Ni(II)/TiO2 photocatalyst in
acetonitrile in the presence of DMPO and 4-amino-TEMPO in the dark and under
visible light illumination (c) Ni(II)/TiO2 photocatalyst in acetonitrile in the presence
of THQ, DMPO and 4-amino-TEMPO in the dark and upon visible light illumination
(d) Ni(II)/TiO2 photocatalyst in acetonitrile in the presence of THQ, DMPO and
4-amino-TEMPO in dark and upon UV-vis light illumination (e) acetonitrile in the
presence of DMPO in the dark and upon visible light illumination. The ratio of the
emperimental components were kept as same as the optimized reaction condition.
LED lamp was used as a visible light source, λmax = 453 nm, 4 mW/cm2. Xe lamp
was employed for the UV−vis light irradiation, λmax = 300−450 nm
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3.3.5. Detection of H2O2 after THQ dehydrogenation

For complete dehydrogenation of THQ, the reaction requires the removal of two equivalent molecules

of H2O2. The reaction mixture containing the appropriate amount of TiO2 UV100 and substrate

(THQ) in 2-propanol solvent was found to be yellowish-white prior to photocatalytic reactions.

However, in the oxygen atmosphere, the color of the reaction mixture turned dark brown after

24 h of photocatalytic reaction under visible light illumination (Figure 3.12 A1).

Figure 3.12.: Detection of H2O2 after oxidative dehydrogenation of THQ. Experimental con-
ditions: The solution obtained after dehydrogenation reaction of 1,2,3,4-
tetrahydroquinoline using UV-100 as a photocatalyst (A1). The solution obtained
after dehydrogenation reaction of 1,2,3,4-tetrahydroquinoline using UV-100 as a
photocatalyst and 4-amino-TEMPO (B1).

Interestingly, when 20 mol% 4-amino-TEMPO was introduced to the reaction mixture and was

illuminated in the oxygen atmosphere for 24 h, the reaction color remained yellowish-white. In

fact, it was found that the selectivity and product formation amount of the former reaction was

drastically low compared to the latter reaction (see Table 3.2 entries 1). Since the interaction

of H2O2 with TiO2 UV100 forms a visible-light-responsive complex that affect its color change,

it was thought that this dark color might indicate the surface complexation between H2O2 and

TiO2 UV100. It was assumed that 4-amino-TEMPO could degrade the generated H2O2 and thus

clean the surface of TiO2 UV100. Therefore the amount of photogenerated H2O2 was analyti-

cally studied. The formation of H2O2 in the reaction mixture was detected with KI by slightly
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changing the previously reported method. [134] Thus, after the dehydrogenation reactions of

1,2,3,4-tetrahydroquinoline in the presence and in the absence of 4-amino-TEMPO, the reaction

mixture was separated from the catalyst by centrifugation in order to detect the hydrogen peroxide

content by titration. The clear reaction solution was diluted with DI water to 15 mL (Figure 3.12,

A1 and B1). To a 20 mL scintillation vial, 2 mL from the diluted reaction mixture (Figure 3.12,

A1 and B1) was added and additionally diluted with 5 mL of Milli-Q water with stirring in order

to get a lighter-colored solution (Figure 3.12, A2 and B2). 3 mL of Ammonium molybdate and

H2SO4 solution was added which turned the color of the solution to the pale yellow (Figure 3.12,

A3 and B3). To these solution 6 mL 10% KI solution was added. The color of the solution changed

to darker yellow (Figure 3.12, A4 and B4) due to the formation of molecular iodine. As becomes

obvious from the pictures, the color was more yellowish at A3. In the last step, 2 mL of freshly

prepared starch solution was added to the solution and the color changes to dark blue-black (Fig-

ure 3.12, A5 and B5). The color of the B5 solution was lighter in comparison with the A5 solution.

This observation supports the assumption that 4-amino-TEMPO is reducing hydrogen peroxide.

When 2 mL of the dark blue solution was diluted with 10 mL of DI water, a more visible difference

is observed (Figure 3.12, A6 and B6). The lighter color confirmed the presence of a lower amount

of H2O2 in the reaction mixture with 4-amino-TEMPO.

3.3.6. Recycling of the photocatalysts

Since the leaching of the impregnated active metal ion sites during the reaction, phase transfor-

mation, and agglomeration of nanoparticles is ubiquitous in heterogeneous photocatalysis, the

reusability of 0.1 wt% Ni(II)/TiO2 was examined by performing four consecutive experimental

runs. Conversion of the probe compound, as well as the yield of the product and the selectivity

of product formation, was found to be stable even after 4 experimental cycles (Figure 3.13). The

surface area of the photocatalyst decreased from 318 m2/g to 217 m2/g after the 2nd cycle of the

reaction but remained relatively constant after the 3rd and 4th cycles (210 and 206 m2/g, respec-

tively). However, the surface area was restored from 206 m2/g after the 4th cycle to 313 m2/g by

dispersing the used photocatalyst in 20 mL deionized water and illumination with a 500 W solar

simulator lamp for 2 hours at ambient temperature (Figure 3.14). The photocatalyst’s color also

turned from pale yellow to pure white during illumination, and the surface-cleaned catalyst dis-
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played high reactivity (91% yield) and selectivity (93%) in the 5th cycle. N2 adsorption-desorption

isotherm studies show that although the catalyst’s mesoporosity decreases after the 4th cycle, the

selectivity does not decrease drastically.

Figure 3.13.: 5 times consequence recycling of the Ni(II)/TiO2 photocatalyst in aerobic dehydro-
genation of THQ. The 5 th run of the experiment was performed after recovering
the surface of 0.1 wt% Ni grafted TiO2 via illumination with 500W solar simulator
light. The reaction conditions were kept as same as presented in the procedure.

Additionally, cleaning the catalyst’s surface by illumination led to recovering the pore size as

evinced by adsorption-desorption isotherms. The pore size of the used photocatalyst was found

to be only 3 m2/g lower than the pore size of the non-used 0.1 wt% Ni(II)/TiO2 photocatalyst.

(Figure 3.14). XRD and ICP-OES measurements did not reveal poisoning and leaching of the

photocatalyst, respectively (Section 2.3.2 for sample preparation for the ICP-OES measurement).

XRD patterns for bare TiO2, 0.1 wt% Ni(II)/UV100 before the 1st cycle, and after the 4th cycle dis-

played the typical crystal structure of the anatase phase without showing the peaks corresponding

to the nickel ion (Figure 3.15). Moreover, the ICP-OES measurement showed that the content of

nickel ions before and after the reaction did not change drastically (before and after the 4th cycle
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of reaction the content of nickel was 0.08 wt% with respect to TiO2.

Figure 3.14.: Oxidative dehydrogenation of 1,2,3,4-tetrahydroquinoline: recycling of 0.1 wt%
Ni(II)/TiO2. Reaction conditions: 10 mg photocatalyst, 24 hours visible light illu-
mination (Nitrogen physisorption isotherms for (A) bare TiO2 (UV-100); (B) sur-
face grafted 0.1 wt% Ni(II)/UV-100 before reaction, (C) surface grafted 0.1 wt%
Ni(II)/UV-100 after 4th cycle reaction cleaned by washing 3 times with acetone,
(D) surface grafted 0.1 wt% Ni(II)/UV-100 after 4th cycle reaction cleaned by illu-
mination with solar simulator (500 W) for 2 hours.

palladium (II) acetate Pd(OAc)2, and rhodium-acetate dimer Rh2(OAc)4 were purchased from

Sigmawere purchased from Sigmawere ppurchased from Sigmaased from Sigmaurchased from

Sigmawere ppurchased from Sigmaased fromurchased from Sigmawere ppurchased from Sig-

maased fromurchased from Sigmawere ppurchased from Sigmaased fromwere purchased Sig-

maased fromurchased fSigmaased fromurchased fSigmaased fromurchased fSigmaased fromur-

chased ffrom Sigma
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Figure 3.15.: XRD pattern of the bare TiO2 (UV-100) (black line), 0.1 wt% Ni grafted TiO2 before
reaction (red line), used 0.1 wt% Ni grafted TiO2 after 3 cycles of the reaction (blue
line), and used 0.1 wt% Ni grafted TiO2 after cleaning with 500W solar simulator
light (green line).

3.3.7. ATR-FTIR measurements before and after THQ dehydrogenation

ATR-FTIR spectroscopy measurements were conducted to detect functional groups of organic

compounds adsorbed on the catalyst’s surface after the dehydrogenation reaction. Character-

istic bands at 2950 cm−1, 2370 cm−1, and 1640 cm−1, assigned to the stretching of C-H, C-O, and

O-H groups in i-PrOH, respectively, and the broadband at 3400 cm−1, which corresponds to the

OH stretching of surface-adsorbed water molecules, were observed in all spectra (Figure 3.16).

The intensity of this broadband at 3400 cm−1 was found to decrease after the 3rd cycle. The

decline of the OH stretching band’s intensity was rationalized by a gradual accumulation of or-

ganic compounds at the catalyst’s surface that resulted in a displacement of the surface-adsorbed

water by organic compounds. On the other hand, the band at 1681 cm−1, which was attributed

to the C=N stretching, was observed only after the 3rd cycle and disappeared after the catalyst

was subjected to surface cleaning by simulating solar light illumination. Characteristic peaks of

aromatic rings in the range of 1561 cm−1 (C=C), 1429 cm−1 (C-C), and 1276 cm−1 (Ar-N), were
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detected only in the used 0.1 wt% Ni(II)/TiO2. This observation was expected as those peaks

were assigned to the imine products that were bound to the Lewis acidic TiO2 surface. [178]

Figure 3.16.: ATR-FTIR spectra of the bare TiO2 (UV-100) (black line), 0.1 wt% Ni(II) grafted
TiO2 before reaction (red line), used 0.1 wt% Ni(II) grafted TiO2 after 3 cycles of
the reaction (blue line), and used 0.1 wt% Ni(II) grafted TiO2 after cleaning with
500W solar simulator light (magenda line).

3.3.8. N-heterocyclic amines in aerobic dehydrogenation

The oxidative dehydrogenation results of the broad substrate scope of the N-heterocycles will be

presented in this section. The yield of the products is measured quantitatively by an isolated

compound with column chromatography. The purity of the compounds was confirmed by 1H

and 13C NMR spectroscopy. The NMR characterization data of the product are provided in the

Appendix. The aerobic dehydrogenation of tetrahydroquinolines (THQs), tetrahydroquinolines

(THisoQs), indolines, quinoxaline, and imidazoline were investigated under the optimized reac-

tion conditions inspired by the high photocatalyst activity of 0.1 wt% Ni(II)/UV100 and 20 mol%

4-amino-TEMPO in i-PrOH and an O2 atmosphere (1 atm) at room temperature (Table 3.5 and

Table 3.6). THQs bearing a methoxy (1b), methyl (1c and 1h), chloride (1g), or both a methyl
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and carboxyl group (1i) gave good to excellent yields of quinolines (74-94%). However, THQs

having a nitro (1f) or a hydroxy group (2d) at C-7 failed to dehydrogenate. When the OH group

was protected as a TBDMS (tert-butyldimethylsilyl) ether and then subjected to the standard

conditions, the desired quinoline (2e) was isolated in 83% yield.

1,2,3,4-THisoQs reacted quite differently from the THQs as they easily afford the partial dehy-

drogenation product under the reaction conditions optimized for the dehydrogenation of THQs.

The unsubstituted tetrahydroisoquinoline gave a mixture of the utterly dehydrogenated product

(2k) and the partially dehydrogenated product (2k*) in 42% yield and 52% yield, respectively.

Raising the reaction temperature to 47 ◦C improved the conversion to the completely dehydro-

genated product, and the fully aromatized product 2m was obtained in 75% yield. However,

when the methyl substituent of 1-methyl-1,2,3,4-THisoQ is replaced by a larger group such as

phenyl, the partially dehydrogenated product (2n*) was found to be the primary product with

54% yield with only 33% of the completely dehydrogenated product (2n) even when the temper-

ature was raised to 47 ◦C. Interestingly, 6,7-dimethoxy-1,2,3,4-THisoQ only yields the completely

dehydrogenated product (2l) in 81% yield at room temperature. The developed method was also

applied to the dehydrogenation of indoline and 2-methylindoline under the optimized reaction

conditions with slight changes (Table 3.6). Thus, the O2 amount in the air was found to be suffi-

cient to mediate the dehydrogenation of unsubstituted indoline to indole (2o) in 84% yield. The

reactant’s significant decomposition was observed when the reaction was performed in an O2 at-

mosphere (1 atm), revealing that indoline is more reactive than the THQs. On the other hand,

2-methyl-substituted indoline was shown to be less reactive and more tolerant towards O2 than

unsubstituted indoline. An O2 pressure of 1 atm was required to produce 2-methylindole (2p) in

good yield (76%). 1,2,3,4-tetrahydroquinoxaline, which also exhibited good reactivity, yielded

quinoxaline (2v) in 83% yield using 1 atm O2 at room temperature. Similar to indolines and

quinolines, dehydrogenation of 2-phenyl-2-imidazoline to 2-phenylimidazole (2u) was achieved

with an excellent yield (93%) under optimized reaction condition.
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Table 3.5.: Oxidative dehydrogenation of tetrahydroquinolines.a

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,

λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol organic substrate, 0.08 mmol 4-amino-TEMPO,

4 mL i-PrOH, room temperature. b The yields are those of the isolated products.
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Table 3.6.: Oxidative dehydrogenation of tetrahydroisoquinolines, indolines, 2-phenyl-2-
imidazoline, and quinoxaline.a

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,

λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol organic substrate, 0.08 mmol

4-amino-TEMPO, 4 mL i-PrOH, room temperature. b The yields are those of the isolated

products. c 1:1 CH2Cl2 : i-C3H7OH. d 47 ◦C.: i-PrOH was used as the solvent. e Air was used.

*Partial dehydrogenation yield.
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3.4. ADH of N-heterocyclic amines on surface modified TiO2

3.4.1. Surface complexation between Rh/TiO2 and N-heterocycles

As mentioned in Chapter 3.2, a prerequisite for the desired acceptorless dehydrogenation (ADH)

reaction of N-heterocyclic amines is the adsorption of the reactant at the photocatalyst surface,

yielding a visible-light-absorbing surface complex. UV-Vis absorption spectra of alcoholic suspen-

sions containing substrate (THQ, THisoQ, indoline) and the metal-loaded photocatalyst 1 wt.%

Rh/UV100 were measured (Figure 3.17). A significant redshift became obvious from Figure 3.17,

indicating the formation of the desired surface complex. As expected, bare TiO2 was found to be

inactive in the dehydrogenation reaction of THQ (Table 4.2, entry 3) due to the hindered electron

transfer from the conduction band of TiO2 to H+.

Figure 3.17.: Normalized extinction spectra of 1 wt.% Rh/TiO2 (UV100) suspension containing
THQ, 1,2,3,4-THisoQ, indoline and 8-Acetyl-5,6,7,8-THQ in 2 mL i-C3H7OH.

3.4.2. Effect of different co-catalysts

TiO2 loaded with Cu2+, Au0, RuO2, Pd0, Pt0, and Rh0 nanoparticles have been employed as photo-

catalysts to enhance the necessary reduction of protons. The results are presented in Figure 3.18.
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It becomes evident from these data that the highest yields are obtained with Pd0, Pt0, and Rh0.

The order of activity of the metals was found to be Rh>Pt >Pd (Figure 3.18). RuO2 and Au pho-

todeposited TiO2 showed dramatically low photocatalytic activity for the ADH reaction of THQ.

Figure 3.18.: Effect of different co-catalysts photodeposited TiO2 on ADH reaction of THQ. a Re-
action conditions: catalyst (5 mg), i-PrOH (2 mL), blue LED light (λmax=453 nm),
Argon atmosphere, 24 h. The yields were determined by GC-FID using benzyl alco-
hol (50 mol%) as internal standard. The amount of produced molecular hydrogen
were determined by GC-TCD.

Pd/C and other transition metals ions, i.e., iron, nickel, niobium grafted TiO2 (not shown in

Table 3.7) did not show any photocatalytic activity for the ADH reaction of THQ. 1 wt% Cu (II)

grafted TiO2 (Figure 3.18) as well as Au, and Ru photodeposited TiO2 revealed photocatalytic

performance which was significantly low in comparison with the active noble metal nanoparticles.

The results show that Pd, Pt, and Rh have comparable reactivity in the ADH reaction of THQ. Since

Rh as a co-catalyst showed slightly higher efficiency, most of the experiments were carried out in

the presence of rhodium photodeposited TiO2.

3.4.3. Solvent effect and control experiments

The experimental runs were performed with 1 wt% Rh/TiO2 as the photocatalyst and THQ as

the probe reactant in various solvents, i.e., methanol, ethanol, and acetonitrile. The results are
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shown in Table 3.7, entries 2-4. The ADH of THQ in acetonitrile resulted in product formation

with a moderate yield of quinoline (31 %) (Table 3.7, entry 2).

Table 3.7.: Control reactions for the ADH of THQ in an inert atmosphere.a

Entry Catalysts Solvent Quinoline

(µmol, %)

H2 (µmol,

(%))

1 1 wt% Rh/TiO2 i-PrOH 198 (99) 396 (99)

2 1 wt% Rh/TiO2 CH3CN 62 (31) 131 (32)

3 1 wt% Rh/TiO2 CH3OH 14 (7 ) 40 (9)

4 1 wt% Rh/TiO2 C2H5OH 30 (15) 90 (22)

5 TiO2 i-PrOH n.d. n.d.

6b 1 wt% Rh/TiO2 i-PrOH n.d. n.d.

7c 1 wt% Rh/TiO2 i-PrOH n.d. n.d.

8 Rh2(OOCCH3)4 i-PrOH n.d. n.d.

9 H2PtCl6 · 6H2O i-PrOH n.d. n.d.

10 Pd/C i-PrOH n.d. n.d.

11 No catalyst i-PrOH n.d. n.d.

a Reaction conditions: catalyst (5 mg), THQ (0.2 mmol) (except entry 6), i-PrOH (2 mL), blue

LED light (λmax=453 nm) (except entry 7), Argon atmosphere, 24 h. b no substrate. c in dark.

n.d.-not detected. The yields were determined by GC-FID using benzyl alcohol (50 mol%) as the

internal standard. The amount of produced hydrogen molecules were determined by GC-TCD.

In methanol and ethanol, only small amounts of the desired product (7 % and 15 %, respec-

tively) were formed. Some control experiments were performed to verify the importance of light

and photocatalyst in the ADH reactions. During shaking of THQ in 2-propanol in the presence of

Rh-loaded TiO2 in the dark, no reaction was observed (Table 3.7 entry 11). Visible-light illumina-

tion of the solution of THQ in i-PrOH containing no photocatalyst showed no dehydrogenation of

the reactant (Table 3.7 entry 7). On the other hand, visible-light illumination of Rh-loaded TiO2
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in 2-propanol, containing no THQ, showed no formation of H2, thus evincing that the alcohol is

not oxidized upon visible light illumination(Table 3.7, entry 6).

Figure 3.19.: Influence of the photocatalyst amount on the kinetics of the ADH of THQ. Reaction
conditions: catalyst (1 wt% Rh/TiO2), THQ (0.2 mmol), i-PrOH (2 mL), blue LED
light (λmax=453 nm), Argon atmosphere. The quinoline amount were determined
by GC-FID using benzyl alcohol (50 mol%) as the internal standard.

3.4.4. Effect of the photocatalyst loading

Decreasing the amount of the 1 wt% Rh/TiO2 photocatalyst in suspension resulted in a signifi-

cant decrease in the yield (Figure 3.19). Also, the time-dependent experiments with varying the

amount of the photocatalyst in a reaction system were performed, revealing that at the initial

step, the reaction kinetics is faster, independent from the catalyst loading amount. An increasing

amount of photocatalyst shows higher reactivity within a shorter reaction time. The appropriate

amount of the catalyst and the reaction time was found to be 5 mg (2.5 g/L) and 24 h for the ADH

of 0.2 mmol THQ, respectively. Therefore, all the following experiments have been performed

in i-PrOH with 5 mg Rh/TiO2. Moreover, a variation of the Rh nanoparticle content was also

investigated (Figure 3.20). It was observed that an Rh0 loading between 0.5 wt% and 1 wt%
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gave an excellent yield within 18 h reaction time. However, 5 wt% Rh0 co-catalyst deposited on

TiO2 showed significantly poor photocatalytic performance.

Figure 3.20.: The influence of the loading amount of Rh on TiO2 on ADH of THQ. Reaction con-
ditions: Rh/TiO2 photocatalyst (5 mg), THQ (0.2 mmol), i-C3H7OH (2 mL), blue
LED light (λmax=453 nm), Argon atmosphere, 18 h. The quinoline amount were
determined by GC-FID using benzyl alcohol (50 mol%) as the internal standard.
The amount of producing hydrogen molecules were determined by GC-TCD.

3.4.5. Recycling of the 1 wt% Rh/TiO2 in ADH reactions

Furthermore, the reusability of 1 wt% Rh/TiO2 was examined by carrying out six successive ex-

perimental cycles to demonstrate the advantage of using a heterogeneous photocatalyst. The

catalyst was collected by simple centrifugation and was reused without further treatment until

the 4th cycle (Figure 3.21). Although the selectivity of the ADH reaction of THQ was found to be

stable (>96 %), the yield of the product gradually decreased in the course of four experimental

runs (Figure 3.21). BET and ICP-OES measurements were carried out to measure the photocata-

lyst’s surface area and the content of the metal nanoparticles on TiO2 before and after four cycles

of the ADH reaction, respectively. No leaching of Rh was detected by ICP-OES measurements,

showing the same amount of Rh nanoparticles (0.99 wt% with respect to TiO2) before and after

four experimental runs. However, the surface area of the catalyst was found to decrease from 316

m2/g to 272 m2/g after the 4th cycle. Therefore, the post-treatment of the catalyst was required
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to recover the specific surface area. For this purpose, the water suspended photocatalyst was il-

luminated at ambient temperature for one hour with a 500 W solar simulator lamp in an oxygen

atmosphere. Thus, the surface area recovered up to 312 m2/g, and the product yield also re-

verted to 96 % in the 5th cycle. Moreover, the subsequent experimental run showed similar yields

to those obtained in the second run, which is clear evidence of the catalyst’s excellent reusability.

Figure 3.21.: Acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline: recycling of 1 wt%
Rh/TiO2. Reaction conditions: 5mg recovered catalyst (1 wt% Rh/UV100), THQ
(0.2 mmol), i-C3H7OH (2 mL), blue LED light (λmax=453 nm), Argon atmosphere.
The quinoline amount were determined by GC-FID using benzyl alcohol (50 mol%)
as the internal standard. The amount of producing hydrogen molecules were deter-
mined by GC-TCD. 5th and 6th experimental runs were performed after recovering
the surface of the photocatalyst.

A similar trend regarding the photocatalytic performance was also observed even when a wash-

ing procedure with acetone was applied after each successive run. Despite washing with acetone,

it was observed that the surface area was still reduced. Additionally, leaching of Rh metal nanopar-

ticles down to 0.72 wt% with respect to TiO2 was proved. However, the reaction yield was still

almost the same as the yield obtained with a photocatalyst subjected to the non-washing proce-

dure and could be increased up to 96% after light treatment. These results surely support the

significant role of the surface porosity for the catalytic performance as well as the importance of
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the surface recovery process.

3.4.6. Acceptorless dehydrogenation of tetrahydroquinolines

The ADH results of the broad substrate scope of the THQs will be presented in this section. The

yield of the products was measured quantitatively after the isolation of the product by column

chromatography. The purity of the compounds was confirmed by 1H and 13C NMR spectroscopy.

The NMR characterization data of the product are provided in the Appendix. The range of sub-

strates for different N-heterocyclic amines (0.2 mmol) was explored at room temperature in an

inert argon atmosphere after optimization of the reaction conditions using 5 mg 1 wt% of Rh

photodeposited TiO2 as the photocatalyst and 2 mL of i-PrOH as the solvent (Table 3.8). Nine

different THQs substituted with electron-withdrawing, electron-donating, and alkyl groups in dif-

ferent positions of the benzo-fused N-heterocycles were investigated (Table 3.8). The substrate

bearing a strong electron-donating group, 6- methoxy-THQ, afforded a good yield of 68% after

24 h illumination ((2b)). Increasing the reaction time up to 36 h increased the yield for the 6-

Me-THQ substrate up to 89% ((2h)). However, the significant improvement was not observed

for the substrate (1c) bearing the methyl group at the C2 position, presumably because of the

steric effect caused by the methyl group (2c). However, substrate ((1d)) bearing the 7-hydroxyl

group poorly reacted, thus affording ((2d)) in only 7% yield along with unreactive starting ma-

terial despite its strong electron-donating nature. This phenomenon was also observed in aerobic

conditions, where the results suggested that the hydroxyl group and the amino group likely com-

peted for the surface complexation with titania (Chapter 3.3.8). Protecting the hydroxyl group as

a TBS ether removed its complexation with TiO2, and indeed, the oxidative dehydrogenation of

7-TBSO-THQ was afforded in high yield (Table 3.5, (1e)). Compounds bearing two substituents

such as 4-methylthio-2-phenyl-THQ (1j) and 8-carboxyl-2-methyl-THQ (1i) demonstrated good

to excellent yields. It seemed that a large phenyl group in the substrate (1j) rather hindered the

binding of the amine group on the TiO2 surface and thus slightly affected the reaction perfor-

mance. Interestingly, unlike the hydroxyl group, the carboxyl group had no detrimental effects

on the dehydrogenation reaction ((2i)).

The chlorine group at C6 position was found to be compatible with the reaction conditions,

and 6-chloro-quinoline (2g) was obtained in a 90% yield. However, the substrate (1f), bearing a
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strong electron-withdrawing 7-NO2 group, failed to participate in the dehydrogenation with the

substrate recovered.

Table 3.8.: Acceptorless dehydrogenation of tetrahydroquinolines over 1 wt% Rh photodeposited
TiO2

a

a Reaction conditions: 1 wt% Rh/TiO2 (5mg), 0.2 mmol substrate, λmax=453 nm, 1 atm Ar, 24

h (2a - 2e), 36 h (2f - 2i), 2 mL i-C3H7OH as the solvent. b Yield is that of the isolated product.c

The amount of evolved hydrogen molecules was determined by GC-TCD.
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3.4.7. Acceptorless dehydrogenation of tetrahydroisoquinolines

The ADH results of the broad substrate scope of the THisoQs will be presented in this section. The

yield of the products was measured quantitatively after the isolation of the product by column

chromatography. Moreover, the purity of the compounds was confirmed by 1H and 13C NMR

spectroscopy. The NMR characterization data of the product are provided in the Appendix.

Table 3.9.: Acceptorless dehydrogenation of tetrahydroisoquinolines over 1 wt% Rh photode-
posited TiO2

a

a Reaction conditions: 1 wt% Rh/TiO2 (5mg), 0.2 mmol substrate, λmax=453 nm, 1 atm Ar, 48

h, 2 mL i-PrOH as the solvent. bYield is that of the isolated product. cThe amount of evolved

hydrogen molecules was determined by GC-TCD according to the calibration curve. d 1/1

CH2Cl2/i-PrOH was used as the solvent.
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Acceptorless dehydrogenation of tetrahydroisoquinolines was also explored at ambient tem-

perature in an inert argon atmosphere with optimized reaction conditions using 5 mg 1 wt% of

Rh photodeposited TiO2 as the photocatalyst and 2 mL of i-PrOH as the solvent upon visible light

illumination for 48h (Table 3.9). Four different tetrahydroisoquinoline substrates with electron-

donating and electron-withdrawing substituents ((1k) – (1n)) were targeted in the ADH reac-

tions. It was observed that the tetrahydroisoquinolines in ADH reaction behaved differently com-

pared to tetrahydroquinolines, where partial dehydrogenation products (3,4-dihydroisoquinolines)

were obtained along with complete dehydrogenation products (isoquinolines) after 48 h visible-

light illumination (Table 3.9). Thus, 1,2,3,4-THisoQ without any substituent group afforded the

complete dehydrogenation product, isoquinoline (2k), in 48% yield with the partial dehydrogena-

tion product, 3,4-dihydro-quinoline (2k*), in 39% yield. THisoQ was bearing a 1-methyl (1m)

or 1-phenyl (1n) group afforded mainly the partial dehydrogenation product with the complete

dehydrogenation product as the minor product. However, THisoQ bearing two methoxy groups

at C6 and C7 position (1l) underwent complete dehydrogenation in excellent yield ((2l), 88 %).

The high reactivity was likely due to the strong electron-donating methoxy groups that facilitate

the oxidation reaction. The optimized reaction conditions were also applied to several indolines

using 5 mg 1 wt% of Rh photodeposited TiO2 as the photocatalyst and 2 mL of i-PrOH as the

solvent at room temperature in an inert argon atmosphere upon visible light illumination for 48h

(Table 3.10). The unsubstituted indoline (1o) and 2-methylindoline (1p) were converted to the

indoles in 73 % and 49 % yield, respectively (Table 3.10).

82



3.4. ADH OF N-HETEROCYCLIC AMINES ON SURFACE MODIFIED TIO2

3.4.8. Acceptorless dehydrogenation of indolines

Table 3.10.: Acceptorless dehydrogenation of indolines over 1 wt% Rh photodeposited TiO2
a

a Reaction conditions: 1 wt % Rh/ Rh/TiO2 (5mg), 0.2 mmol substrate, λmax=453 nm, 1 atm

Ar, 48 h, 2 mL i-PrOH as the solvent. b Yield is that of the isolated product. c The amount of

evolved hydrogen molecules were determined by GC-TCD according to the calibration curve.

The ADH results of the broad substrate scope of the indolines will be presented in this section.

The yield of the products was measured quantitatively by an isolated compound with column

chromatography. Moreover, the purity of the compounds was confirmed by 1H and 13C NMR
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spectroscopy. The NMR characterization data of the product are provided in the Appendix. Inter-

estingly, the strong electron-withdrawing group attached to the indoline moiety did not seem to

hinder the ADH of 6-(trifluoromethyl) indoline, which gave the product in excellent yield ((2q),

86 %). Decarboxylation was observed with the indoline substrates bearing a carboxyl group in

the C2 position ((1r) and (1s)). In both examples, indole was isolated in good yield, i.e., 78 %

of (2r) and 73 % of (2s). However, when the carboxyl group was protected as a methyl ester, the

decarboxylation was prevented entirely, and methyl 1H-indole-2-carboxylate was obtained (2t)

in 75 % yield.

3.4.9. Acceptorless dehydrogenation of other N-heterocycles

The ADH results of other N-heterocycles will be presented in this section. Moreover, the yield

of the products was determined either by isolated mass or by NMR crude analysis using dibro-

momethane (CH2Br2) as an internal standard. The purity of the compounds was confirmed by 1H

and 13C NMR spectroscopy. The NMR characterization data of the product are provided in the

Appendix. Besides, the same optimized reaction conditions employed for the ADH of THQs was

applied for the ADH of N-heterocycles containing two nitrogen atoms (Scheme 3.2). 2-Phenyl-

1H-imidazoline (1u), belonging to a different class of N-heterocycles bearing two nitrogen atoms,

underwent the ADH reaction uneventfully, producing the product (2u) in excellent yield (94 %).

However, 1,2,3,4-tetrahydroquinoxaline (1v) failed to participate in the ADH, although it un-

derwent the oxidative dehydrogenation with molecular oxygen in an oxygen atmosphere (Ta-

ble 3.8). Surprisingly, the substrate 8-acetyl-5,6,7,8-tetrahydroquinoline (1w), which does not

have an NH group, furnished the completely aromatized product (2w) in 62 % yield. After estab-

lishing the substrates’ scope, the requirement of the minimal structure for the ADH is investigated

(Scheme 3.2). Initially, optimal reaction conditions were subjected to completely saturated per-

hydroquinoline. This substrate is also attractive from the viewpoint of H2 storage materials, as it

could theoretically release five molecules of hydrogen. However, only 96 µmol H2 was released

along with a poor conversion yielding 5,6,7,8-tetrahydroquinoline (2x*). This result indicates

that having an aromatic ring fused to the saturated N-heterocycle is essential for the complete

dehydrogenation. When the amine group was protected by a Boc group as shown in (1y), the

surface complexation with titania seems to be inhibited entirely, since the targeted product (2y)
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was obtained in only 5% yield with H2 in 6% yield. This data also supported that formation of the

surface complex between the carboxyl group and titania is not responsible for the visible-light ab-

sorption. These studies suggested that having a Lewis basic nitrogen atom in conjunction with a

fused arene or N-heteroarene was critical for a successful acceptorless dehydrogenation reaction.

Scheme 3.2: Acceptorless dehydrogenation of other N-heterocycles over 1 wt% Rh photode-
posited TiO2. Reaction conditions: 1 wt% Rh/UV100 photocatalyst (5 mg), sub-
strate (0.2 mmol) in i-PrOH (2 mL), blue LED light (λmax=453 nm), Argon atmo-
sphere, 48 h. Yield calculated according to the NMR signals. The amount of evolved
hydrogen molecules was determined by GC-TCD according to the calibration curve.
a Yield is that of the isolated product.
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Chapter 4
Discussion

This chapter covers a comprehensive discussion of the obtained results presented in the previous

chapters. The origin of visible light activation and the mechanisms of reactions to understand the

role of different reaction factors will be investigated in detail by the results of optical spectroscopy.

Moreover, the impact of reactants on reaction yield will be discussed. In the next part, the impact

of the different reaction factors on the acceptorless dehydrogenation of N-heterocycles will be

discussed in more detail. Reasonable mechanistic models explaining ongoing reactions will be

presented and discussed in detail in the final section.

4.1. Overview

This work aimed to develop a synthetic method using heterogeneous photocatalysts based on

100% anatase TiO2 for the dehydrogenation of N-heterocyclic amines upon visible light illumina-

tion at room temperature. The dehydrogenation reactions have been performed in the presence

and absence of molecular oxygen.

• Dehydrogenation of N-heterocyclic amines in the presence of O2

Initial studies demonstrated that aerobic dehydrogenation of 1,2,3,4-tetrahydroquinoline over

bare TiO2 was practical at room temperature upon visible light illumination. The UV-vis and

87



CHAPTER 4. DISCUSSION

Scheme 4.1: Dehydrogenation reaction conditions of N-heterocycles in O2 atmosphere.

FTIR spectroscopy results revealed a visible-light-responsive surface complex formation between

the amine and TiO2. The detailed discussion is presented in Section 4.3. It was observed that

the surface-grafting of TiO2 with various transition metals and metal ions improves the reaction

yield and the selectivity. The effect of transition metals in ODH of the N-heterocycles is discussed

in detail in the Sections 4.3.3 and 4.3.4. By calculating photonic efficiency (ζ), the reaction

performance of different grafted metal ions was compared. The photogenerated species during

aerobic dehydrogenation reactions were detected by EPR spectroscopy and elucidated in the fol-

lowing Section 4.3.1. It was observed that the presence of TEMPO derivatives could improve the

selectivity of these dehydrogenation reactions. Notably, the combination of surface grafted TiO2

photocatalyst with TEMPO derivatives significantly enhanced the reaction yield. 4-amino-TEMPO

was found to be the most efficient redox mediator in comparison with the other several TEMPO

derivatives.

Therefore, the effect of 4-amino-TEMPO in oxidative dehydrogenation reactions is discussed in

detail in the following Section 4.3.2. Dehydrogenation of nine examples of tetrahydroquinolines,

four examples of tetrahydroisoquinolines, two examples of indolines, and quinoxaline 2-phenyl-

imidazoline were investigated in this study under optimized reaction conditions (Scheme 4.1).

All of these substrate scopes will be discussed in depth in the following Section 4.3.6, in order

to correlate the influence of the different functional groups attached to the N-heterocycles on

reaction yields.

• Acceptorless dehydrogenation of N-heterocyclic amines in an inert atmosphere

When the dehydrogenation reaction of the THQ was performed in an inert atmosphere over

TiO2 photocatalyst, it was found that the reaction was completely inhibited. However, the de-

hydrogenation reaction of N-heterocycles in an inert atmosphere became possible by using TiO2

photocatalyst, the surface of which was photodeposited with various noble metal nanoparticles
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Scheme 4.2: Dehydrogenation reaction conditions of N-heterocycles in Ar atmosphere.

such as Au, RuO2, Pd, Pt, and Rh. As shown in the results (Section 3.4.2), the presence of different

noble metal co-catalysts significantly affected the efficiency of the reaction. The results showed

that the following order co-catalysts could significantly enhance the formation of quinoline and

the concomitant evolution of hydrogen from THQ: Rh > Pt > Pd > Ru > Au. Thus, the origin of

these noble metals’ effect has been discussed in more detail, taking into account several intrinsic

parameters (Section 4.4.1). In addition, the ADH reactions of amines were observed to increase

while varying the dispersant in the reaction system in the following order: CH3OH < C2H5OH

< CH3CN < i-C3H7OH (7%, 15%, 31%, and 99%, respectively). Additionally, the time course

of the photocatalytic dehydrogenation of THQ as a function of the catalysts’ loading amount was

investigated. Accordingly, the effect of the loading amounts of Rh co-catalyst content on TiO2

is discussed in Section 3.4.4. Control reactions confirm the importance of visible light and pho-

tocatalyst since the reaction did not proceed in the dark. Moreover, the use of metal precursors

alone showed the unreacted reaction results in this process. Following the optimized reaction

conditions presented in Scheme 4.2, acceptorless dehydrogenation of the range of substrates,

such as nine tetrahydroquinolines, four tetrahydroisoquinolines, six indolines, and five examples

of the different classes of N-heterocycles was studied. The influences of the nature of functional

groups (electron-deficient or electron-rich) attached to the N-heterocycles are discussed in detail

in Chapter 4.4.2.

4.2. Formation of surface complexes

In photocatalytic reactions, the absorption of light by a photocatalyst is a prerequisite for initiating

a chemical reaction. Excitation with photon energy equal to or greater than the bandgap energy

of the semiconductor is required to generate electron-hole pairs inside the semiconductor. Since

it is well known that TiO2 has a 3.2 eV bandgap energy, which can only be activated by high-
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energy UV light, it was not expected its activation by lower-energy visible light. Similarly, most

N-heterocycles display absorption only in the UV region.

However, in this study, it became obvious that the physical mixture of TiO2 and THQ suspended

in acetonitrile exhibits a broad absorption band in the visible region (450-500 nm) (Figure 3.6).

The optical properties of the as-prepared semiconductor and amine mixtures such as TiO2-THQ,

0.1 wt% Ni(II)/TiO2-THQ, and 1 wt% Rh0/TiO2-THQ were compared with each other and with

bare TiO2 UV100. Figure 4.1 represents the subtracted UV-vis spectra of these mixtures from

the UV-vis spectrum of THQ. Thus, bare TiO2-THQ mixture showed a significant redshift in the

absorption spectrum up to ∼ 460 nm as compared with bare TiO2. The dramatic enhancement

in light absorption and shift towards visible region was observed with 0.1 wt% Ni(II)/TiO2-THQ

mixture. It should be noted that 0.1 wt% Ni(II)/TiO2 alone exhibit only UV light absorption

similar to bare TiO2 (see Figure 3.7 a). Moreover, 1 wt% Rh photodeposited TiO2 nanoparticles

mixed with THQ indicated a typical redshift up to ∼ 475 nm, which was slightly more than the

optical shift of the THQ-TiO2 mixture.

Figure 4.1.: UV-vis absorption spectra of bare TiO2 and THQ spectrum subtracted from TiO2/THQ,
Ni(II)-TiO2/THQ, Rh-TiO2/THQ. The concentration of the catalysts and THQ was
used as same as the conditions of the reaction.

These results suggested the formation of a visible-light-responsive surface complex between the
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amine and the TiO2. As a result, this surface complex induced a new absorption band in the visi-

ble range. As a result of this, the non-semiconducting SiO2 with a high surface area was used as a

catalyst in order to verify the importance of the TiO2. No red-shift was observed in the absorption

spectrum of SiO2-THQ mixture. The absorption edge was observed at ∼ 350 nm, and the weak

absorption edge up to ∼ 450 nm was consistent with the THQ UV-vis spectrum (Figure 3.6). As

expected, the experimental result shows that there was no practical oxidative dehydrogenation of

THQ at SiO2 surface upon visible light illumination. Therefore, after 24 h illumination, only un-

reacted starting material could be detected by GC (see Section 3.3.2). This is in agreement with

the UV-vis absorption spectroscopy results. These results strongly suggest the importance of the

semiconductor TiO2 for interaction with amine molecules (Figure 3.6). Additionally, as discussed

above, 0.1 wt% of transition metal nanoclusters significantly affect the optical properties of bare

TiO2 ( Figure 3.7), which also shows the better photocatalytic performance in comparison with

bare TiO2. Since electrostatic interaction was assumed to occur only between an amine and TiO2

surface, it was not expected that the grafting of TiO2 would also affect the absorption properties.

However, Ni(II)/TiO2-THQ mixture exhibited more shift in the absorption spectrum towards the

visible region than the mixture of bare TiO2-THQ. This observation may be explained in different

aspects. Thus, the grafting of the TiO2 surface with different transition metal ions might influ-

ence the surface acidity, leading to better interaction. Furthermore, the redox potential of the

surface grafted transition metal ions have less negative potential (E0(Ni)= -0.26 V) than the to

bare TiO2. Moreover, it could also be taken into account that the surface grafted metal ions from

metal oxides or metal hydroxides island (nanoclusters), which could act as a narrow bandgap ma-

terial. [166] Therefore, electrons require lower energy to migrate from the conduction band of

TiO2 to these nanoclusters. Above all, the results of UV-vis absorption spectroscopy revealed that

the surface complex of TiO2-THQ is responsible for visible light activation. This photosensitization

of TiO2 nanoparticles with cyclic amines possibly occurs through a ligand-to-metal charge trans-

fer (LMCT) process, where neither TiO2 nor amine absorbs visible light separately. As mentioned

in the introduction, this method has been investigated in many applications for activating TiO2

upon visible light illumination (Section 1.4.2). In general, ligands such as salicylic acid, catechol,

phenol, EDTA, etc. are used as adsorbates on TiO2 for oxidation or decomposition of organic com-

pounds by the LMCT. Additional donors are always needed to regenerate these ligands that are

91



CHAPTER 4. DISCUSSION

employed as adsorbates. Nevertheless, in this study, N-heterocyclic amines act as an adsorbate

(ligand) on the surface of TiO2. During photocatalytic reactions, these amines are self-oxidized

after visible light illumination, ensuring that no additional donors have been used. With this, the

use of visible light as a reaction initiator provides better selectivity than UV light. The photosen-

sitization of the most abundant, non-toxic, and stable TiO2 leads to selective dehydrogenation of

amines upon visible light illumination. Indeed, mild reaction conditions, including visible light

and room temperature, are advantages over the use of narrow bandgap semiconductors that are

less accessible or toxic. Besides, the dehydrogenation of N-heterocyclic amine upon visible light

is an environmentally friendly method. This approach is an excellent alternative to replacing

conventional methods where the stoichiometric amount of toxic oxidants, corrosive solvents, and

high reaction temperatures are required.

Table 4.1.: Peak frequencies and assignments of the FTIR bands (cm−1) obtained from acetonitrile
suspension of TiO2 UV100 mixed with THQ and measured in the dark. ∗

THQ peak (cm−1) THQ+TiO2 peak

(cm−1)

Observation Assignment

1606 1606 decreased (s) NH out of plane

1585 1585 decreased (w) Ar C-C stretching

1500 1500 decreased (m) Ar C-C stretching

1309 1309 decreased (m) Ar C-H in plane bend

1268 1268 decreased Ar C-H in plane bend

1239 1239 decreased δ(CH3)

3407 3407 vanished (w) NH stretching

∗ Absorption spectroscopy measurements were performed at the same concentration of the

catalyst and substrate as appropriate to the organic reaction conditions in a CH3CN solvent.

(s)-strong; (w)-weak; (m)-medium

ATR-FTIR spectroscopy measurements were performed to support the surface complexation

hypothesis demonstrated by the UV-vis results. Generally, amines are known to be Lewis base, so

they can donate their lone pair of electrons to the TiO2, which is known to have Lewis acid sites

on the surface. Initially, it is predicted that the electrostatic interaction of the Lewis acid side of
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the semiconductor surface with the Lewis base site of the amine generates a surface complex that

allows visible light absorption. Therefore, the surface acidity of TiO2 is one of the critical factors

that may affect the surface complex formation with amines. Typically, metal semiconductors

have acidic centers on their surface which are either proton-donors or electron-pair-acceptors,

respectively called Brønsted acidic and Lewis acidic centers. [179] Adsorbed water molecules and

OH-groups on the surface of TiO2, can be proton-donor centers. OH-groups are known for their

capacity to create H-bonds and can be used as centers for the physical adsorption of molecules,

which are acceptors of protons. It has been reported that the rutile surface has only Lewis acidic

centers, thus even exposed to water molecules, new Brønsted acidic centers are not generated.

[180] However, anatase surface TiO2 has a surface with a Lewis and Brønsted acid sites which has

been extensively studied by in situ FTIR spectroscopy in the presence of pyridine. [181–183]With

this, the interaction of Lewis acidic site of TiO2 with the Lewis base site of amine was investigated

by ATR-FTIR spectroscopy.

ATR-FTIR spectra of CH3CN, CH3CN /THQ, CH3CN/TiO2, and TiO2/THQ were recorded in

order to identify the type of surface complex formation between TiO2 and THQ. As shown in

Figure 3.8, intensive bands at 3404, 1606, 1585, 1500, 1309, as well as 1268 cm−1 frequencies are

assigned to heteroatom-containing stretching vibration modes in THQ. [184] The signals observed

in Figure 3.8 are summarized in Table 4.1. When a solution contained THQ and TiO2 mixture, the

intensity of these bands diminished. The interaction of the amine and TiO2 explicitly identified

by the decrease in the intensity of the peaks, i.e., 1606 and 3404 cm−1 strongly suggest NH group

and Ti+ interaction. Thus, the electron acceptor centers on TiO2 form a coordination bond with

an adsorbate containing NH groups. Coordination vacant orbitals in the valence electron shell

of nitrogen with unsaturated Tin+ ions may be the centers of such strong adsorption on TiO2.

These vacant orbitals are filled with a free pair of electrons of the nitrogen atom in THQ when the

donor-acceptor bond is formed. [185] These observations are consistent with the results reported

by Parfitt et al., that spectral bands at 1605, 1575, 1487, and 1225 cm−1 corresponding to surface

adsorbed pyridine molecules at the surface of TiO2 at the Lewis acidic centers. [186] However,

Bezrodna et al. reported that the interaction of pyridine at the Lewis acidic site of the rutile

TiO2 did not occur at the 1605 cm−1 band. Instead, a strong band was detected at 1581 cm−1,

which characterize that pyridine is hydrogen-bonded with TiO2 surface OH groups. [179] These
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results suggest that the surface interaction of TiO2 with nitrogen-bearing compounds is strongly

dependent on the crystal phase of the semiconductor. The ATR-FTIR experimental results indicate

that the anatase surface has the Lewis acid side, so the strong band at 1605 cm−1 is allocated to

the N-H group in amine. Thus, the interaction of the lone pair electron at the Lewis base of

the amine with the Lewis acid site of Ti+ results in the loss of the observed peak. Figure 4.2

demonstrates the possible surface interaction of amine and TiO2.

Figure 4.2.: Scheme of proposed electrostatic Lewis acid-base interaction between TiO2 and N-
heterocyclic amine.

Although benzo-fused cyclic amines and TiO2 interaction was not investigated by theoreti-

cal and experimental methods, a similar surface complexation of tertiary or benzylic amines

with TiO2 was investigated by various research groups. Researchers also reported the adsorp-

tion of the organic molecules bearing an amine group on different wide bandgap semiconduc-

tors. [113, 116, 187] For example, Chen et al. investigated the interaction of tertiary amine

trimethylamine (TMA) with different surface sites and crystal phases of TiO2 by using commercial

Aeroxide Evonik P25 TiO2. [112] They have reported a visible-light-harvesting surface complex

formation between TMA and TiO2 resulting in a red-shift absorption spectrum of about 10 nm.

The surface complex formation between TiO2 and tertiary amine was also investigated with DFT

calculations and demonstrated by theoretical modeling. It was found that the adsorption energy

of TMA onto the Ti-5c site of the rutile (110) surface was -0.43 eV, and anatase (101) surface
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was -0.28 eV. This was indicating that the TMA adsorption of onto rutile (110) is preferable to

that onto the anatase (101) surface. The distances from the N atom to the nearest Ti atom was

calculated to be 2.79 Å for the rutile (110) surface and 2.44 Å for the anatase (101) surface, indi-

cating that TMA is physically adsorbed onto these two surfaces. They concluded that the binding

force between TMA and TiO2 is a Lewis base and acid interaction. Spectroscopic studied of the

adsorption of ammonia, dimethylamine, and ethylamine on stoichiometric and slightly defective

TiO2-(110) surfaces were investigated by Madix et al., where adsorption was explained by the

binding of the amine nitrogen atom to the Ti4+ cation at the Lewis acid sites. [188]

Figure 4.3.: Slice representation of the three surfaces of anatase after adsorption of a TMA
molecule. Images refer to the (001) (a), (100) (b) and (101) (c) surfaces. Atom
color code: red = oxygen, gray = titanium, blue = nitrogen, dark gray = carbon,
white = hydrogen. The charge density difference plots (see text) are reported too:
Yellow and cyan areas indicate an increase and a decrease in electronic charge density
after adsorption, respectively. Reproduced from the ref. [189] (Copyright Springer,
2015)

DFT calculations have shown that amine groups form strong interactions with the 101 site

of anatase TiO2 due to the Lewis acidic feature. Pavone et al. studied trimethylamine (TMA)

adsorption on anatase TiO2 (100), (001) and (101) surfaces. [189] By comparing adsorption

energies of (100), (001), and (101) site of anatase TiO2, they reported that there is no preferred

surface for the interaction of TMA molecules. Interestingly, it was found that when TMA adsorbed

on the (100) surface site, the states at the top edge of the valence band were populated by these

adsorbates. The calculated model for the adsorption of TMA molecules at the three different (001)

(100) and (101) anatase surfaces is demonstrated in Figure 4.3. The interaction of N-heterocyclic

amines with TiO2 has not been determined theoretically since yet. Therefore it is not possible to

predict the actually preferred interaction sites of both anatase TiO2 and cyclic amine.
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4.3. Dehydrogenation in the presence of molecular oxygen

Photocatalytic dehydrogenation of N-heterocyclic amines involves the N-H and C-H bond cleavage

and yields aromatized compounds with and without the presence of molecular oxygen during

the reaction. Bare TiO2 as a semiconductor was employed for the conversion of amines upon

visible light illumination. Hence, UV-vis spectroscopy results confirmed that the amine interaction

with TiO2 expends absorption band up to 470 nm, which allows us to perform dehydrogenation

reaction with a LED visible light source energy at the wavelength up to λmax= 453 nm.

Table 4.2.: Dehydrogenation of THQ over TiO2
a.

Entry Catalysts C (%)b Y (%)b S (%)c ζ (%)

1 TiO2 UV100 81 35 43 2.67

2 P25 TiO2 24 10 42 0.76

3d TiO2 UV100 - - - -

4e No catalyst 3 <2 67 0.15

5f No light - - - -

6 Ni(II)/UV100 93 57 61 4.36

a Reactions conditions: 10 mg photocatalyst TiO2 (UV100 or P25) or Ni(II)/UV100, 24 h visible

light illumination (LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQ, 4 mL

CH3CN. b conversion and yield are calculated according to the GC-FID calibration using benzyl

alcohol as an internal standard. c selectivity is calculated with the ratio of yield over conversion.

d Argon atmosphere. e no TiO2, f in dark.

According to the obtained data shown in Table 4.2, the conversion, yield, and selectivity were

calculated using the Eqs. 2.3-2.5 presented in Section 2.6.1. Photonic efficiencies were also cal-

culated using Equation 2.9. The photocatalytic performance of three different photocatalysts, as

well as control experiments, are presented in Table 4.2. It became obvious that TiO2 UV100 with

a surface area of 320 m2/g shows three times better photocatalytic performance than commercial
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TiO2 P25 (Evonik, Aeroxide, powder with 20% rutile and 80% anatase crystal phase and 50 m2/g

specific surface area). Thus, the quinoline formation during 24 h photocatalytic reactions was ob-

served to be 34% with UV100 (Table 4.2 entry 1) and only 10% with P25. Although TiO2 P25

usually shows the highest efficiency for photocatalytic reactions upon UV light irradiation, in this

study, it exhibits dramatically low activity, which correlates well with the surface area (Table 4.2

entry 2). Indeed, it is likely that having a high surface area increases the adsorption of reactant

molecules on TiO2 surface that acts as active catalytic sites.

Figure 4.4.: The photocatalytic dehydrogenation of THQ in the presence of different solvents.
Reaction conditions: 10 mg photocatalyst TiO2 (UV100), 24 h visible light illumina-
tion (LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQ (50.2 µL), 4
mL of solvent. Conversion, yield, and selectivity are calculated according to the GC
calibration using benzyl alcohol as an internal standard.

Hence, P25 has six times lower surface area, which is not sufficient for the formation of the sur-

face complex with all molecules of amine introduced to the reaction system. Surface modification

of TiO2 is known to improve the lifetime of charge carriers. Therefore, the surface grafted TiO2

with Ni ions was employed for the dehydrogenation reaction of 1,2,3,4–THQ (Table 4.2 entry 6).

It was observed that the surface grafted TiO2 UV100 with 0.1 wt% Ni(II) ions demonstrates al-

most two times better photocatalytic performance in comparison with TiO2 UV100 although their

surface areas were similar (Table 4.2 entry 6). [165] Thus, the yield and selectivity increased up
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to 57% and 61%, respectively. These results are significantly higher than the yield and selectivity

obtained while employing bare TiO2 as the photocatalyst. The calculation of the surface coverage

is useful in an attempt to gain a better insight into the interaction of the reactant on the surface

of TiO2. Since the TiO2 UV100 has a surface area of 320 m2/g and 10 mg photocatalyst is used

in the dehydrogenation process, the total surface area of nanoparticles would be 3.2 m2 in this

system. The theoretically calculated bond lengths and bond angles were taken from the litera-

ture to calculate the surface coverage of TiO2 by THQ molecules [190]. The surface area of one

molecule of THQ was found to be 33.8 Å2 mathematically. The overall molecules number of 0.4

mmol THQ in this system would be 2.4×1020. Theoretically, in the 3.2 m2 area of TiO2, 1020

number of THQ molecules can be adsorbed in order to generate one monolayer. Based on the

number of THQ molecules in the system, it is assumed to be two and a half monolayers. Since the

surface area of P25 is more than six times smaller than UV100, it was found that ∼ 15.3 ML of

THQ was present on the surface of P25. The total molecules number of the THQ in the reaction

system could be calculated with the following Equation 4.1:

NT HQ = n× NA (4.1)

The theoretical number of the one monolayer THQ on TiO2 is calculated with the Equation 4.2:

NM L =
ATiO2

×mTiO2

AT HQ
(4.2)

where, NT HQ is a total molecules number of THQ introduced to the system, NA is the Avogadro

constant, NM L is molecules number in one monolayer, AT HQ is the area of one molecule of THQ,

ATiO2
is the specific surface area of the TiO2 UV100 particles which are 320 m2/g, mTiO2

is the

amount of TiO2 particles in the reaction condition. In order to convert all THQ on the surface of

P25, the reaction time might be increased seven times.

When other solvents, i.e., methanol and ethanol, were employed instead of acetonitrile, the

conversion of THQ was increased, whereas the yield and selectivity decreased drastically (Fig-

ure 4.4). However, the yield and selectivity were detected to be higher while using 2-propanol

instead of acetonitrile. Thus, the maximum yield and selectivity were 41% and 43%, respectively,

while using 2-propanol as the solvent.

The calculated photonic efficiencies of different catalytic systems are shown in Table 4.4. A
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comparison of all grafted materials’ photonic efficiency results shows no significant difference,

and high photonic efficiency of about 7.1% was achieved. However, a considerable difference in

photonic efficiency is observed with noble metal photodeposited TiO2 UV100, which was found

to be below 4 %.

According to the obtained data from the spectroscopy results, the oxidation process of N-

heterocyclic amine on TiO2 surface is proposed in Figure 4.5. As discussed in Section 4.3, ini-

tially amine-TiO2 surface complex is formed. Electron-rich adsorbate on the TiO2 posses suitable

HOMO level and injects one electron into the conduction band of TiO2. Subsequently, after vis-

ible light excitation, the electron is transferred from the conduction band of TiO2 to the surface

adsorbed molecular oxygen and thus reduces oxygen molecules to the superoxide radicals. The

amine cation radical is oxidized by superoxide radical yielding an imine intermediate and hydro-

gen peroxide. Further oxidation of the imine intermediates being adsorbed on TiO2 surface yields

the aromatic product. This approach inhibits UV-driven side reactions, such as overoxidation of

the reaction product, which results in increased selectivity. Moreover, holes are not generated in

the VB band of TiO2 upon visible light illumination, which results in the formation of oxidative

species only from the reduction of oxygen molecules.

Figure 4.5.: Proposed mechanism for the aerobic oxidation of THQ on the bare TiO2 surface upon
visible light illumination

palladium (II) acetate Pd(OAc)2, and rhodium-acetate dimer Rh2(OAc)4 were purchased from
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4.3.1. Formation of radicals during oxidative dehydrogenation

EPR spectroscopy measurements were performed in order to screen the generation of superox-

ide radical anion O2
−• upon visible light illumination. Experiments were carried out under the

same conditions of reaction applied to oxidative dehydrogenation reactions of THQ. 5,5-dimethyl-

1-pyrroline-N-oxide (DMPO) was used as a spin trap. The results presented in Section 3.3.4

demonstrate that upon visible light illumination, superoxide radical anions were detected by EPR

spectroscopy using an aprotic solvent (Figure 3.11). Interestingly, as a result of this, hydroxyl

radicals’ formation was not detected either upon UV-vis light or visible light irradiation. Gener-

ally, the DMPO/superoxide adduct is unstable, decaying by a first-order process with a half-life

of about 60s at pH 7. [191] However, with this, the high stability of DMPO-O2
−• even under UV

light irradiation was due to the use of acetonitrile as an aprotic solvent instead of 2-propanol

or water. Hence, it is well known that upon UV or full-range light irradiation, the reactivity of

the photoinduced holes (h+) and electrons (e−) on the titanium dioxide surface are different in

aqueous and non-aqueous solvents. [192] Thus, in aqueous ambient, highly reactive superoxide

radical anions (O2
−•) formed by the trapped electrons, are eager to undergo further reactions

with protons to form hydrogen peroxide and eventually OH−• free radicals. Besides, the high

population of OH−• free radicals is more likely to be due to oxidation of water molecules with

photoinduced holes. Therefore, the superoxide radicals are more stable in the aprotic solvent.

DMPO is a trapping agent that reacts with superoxide or hydroxyl free radicals to form DMPO-

O2
−• and DMPO-OH, respectively. Scheme 4.3 demonstrates the formation of DMPO-O2

−• adduct

as well as possible degradation and oxidation pathways of DMPO. Since the dehydrogenation re-

action was performed upon visible light irradiation, the generation of holes in the valence band of

TiO2 and hydrogen peroxide from solvent oxidation was not expected in non-aqueous media. As

a result, only three-line signals corresponding to the DMPO–O2
−• radical adduct were detected,

rather than four (three strong and one weak) hyperfine split paramagnetic signals, which typ-

ically correspond to trapped hydroxyl free radicals by trapping agent (DMPO). Moreover, with

this, it was observed that upon visible light illumination, the photogenerated O2
−• radicals are

more stable than the experiments performed upon UV-light irradiation (Figure 3.11 c and d).

Thus, during the irradiation of the sample with UV-vis light, the radicals O2
−• are initially

formed, and after 20 minutes of irradiation, the peaks correspond to the O2
−• radicals gradually
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Scheme 4.3: (a) Reaction of superoxide radical anion O2
−• with 5,5-dimethyl-1-pyrroline-N-oxide

(DMPO) yielding a paramagnetic adduct DMPO–O2
−•. (b) 5,5-dimethyl-1-pyrroline-

N-oxide-N-oxyl (DMPOX) radical formation through oxidation of DMPO. (c) Degra-
dation of DMPO to nitroxide-like radical. [193]

decreased. As can be seen in Figure 3.11 (d) upon UV-vis irradiation, a new peak emerged be-

tween two hyperfine peaks corresponding to DEMPO- O2
−•. This could potentially be associated

with the degradation of DMPO-O2
−• (Scheme 4.3 path (c)). Nevertheless, the population of O2

−•

increases with an extended time scale under visible light illumination. It can thus be described

that DEMPO oxidation occurs only in direction (a) (Scheme 4.3) under visible light illumination.

The photogeneration of DMPO-O2
−• (Figure 3.11 a, b, and e) was not observed in the absence

of THQ. These results prove that the visible light activation of TiO2 is initiated by the surface

complex formation between THQ-TiO2.

4.3.2. The role of 4-amino-TEMPO

Section 3.3.1 represents the effect of redox mediators such as TEMPO and 4-amino-TEMPO in

the ODH reactions. Thus, although in the presence of TEMPO, a small impact on the conversion

of the reactant was observed, the desired yield and the overall selectivity increased significantly

(Table 4.3). It was observed that 4-amino-TEMPO shows better improvement in the reaction yield

and selectivity in comparison with unsubstituted TEMPO for oxidative dehydrogenation of THQ

( Table 4.3 of entries 1 and 2). The substantial effect of 4-amino-TEMPO has been investigated

to understand its role in the dehydrogenation reaction process. TEMPO has been previously

reported as an organic catalyst in TiO2-catalyzed photochemistry by Zhao [101] and Chen [100].

Similarly, the use of TEMPO was reported by other groups as an organo-electrocatalyst in the
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electrochemical dehydrogenation of N-heterocycles in N2 atmosphere.

Table 4.3.: Photocatalytic dehydrogenation of THQ in the presence of different redox mediatorsa.

Entry Catalysts Redox mediator C (%) b Y (%)b S (%)c ζ (%)

1 UV100 TEMPO 86 71 81 5.43

2 UV100 4-amino-TEMPO 98 79 81 6.04

3 Ni(II)/UV100 TEMPO 80 58 73 4.44

4 Ni(II)/UV100 4-hydroxy-TEMPO 69 58 88 4.44

5 Ni(II)/UV100 4-oxo-TEMPO 93 77 83 5.89

6 Ni(II)/UV100 4-amino-TEMPO 100 92 (91d) 91 7.03

a Reaction conditions: 10 mg photocatalyst Ni/TiO2 (UV100), 24 h visible light illumination

(LED lamp, λmax=453 nm, 4 mW/cm2), 1 atm O2, 400 µmol THQ (50.2 µL), 4 mL i-PrOH, 20

mol% redox mediators with respect to the reactant. b conversion and yield are calculated

according to the GC calibration using benzyl alcohol as an internal standard. c selectivity is

calculated with the ratio of yield over conversion. d isolated yield.

Wu et al. have reported the oxidation of N-heterocycles and subsequent dehydrogenation of

N-heterocycles in the presence of TEMPO. [149] Lang et al. have also used TEMPO as a redox

mediator in alcohol [194], sulfide [110] and amine [106,107,109] oxidation reactions with dye-

sensitized TiO2 upon visible light illumination. They have reported that the dye radical cation

activates the oxidation of TEMPO to TEMPO+, which undergoes nucleophilic attack by alcohol to

produce aldehydes and TEMPOH. TEMPOH could regenerate back to TEMPO by a reaction with

the superoxide radicals (O2
−•). However, as a result of this, it was observed that 4-amino-TEMPO

plays a different role. The hypothesis about the role of the TEMPO was built upon a noticeable

phenomenon which was observed during screening studies. Thus, without any redox mediator in

the suspension, the initially light yellow suspension became dark brown during the light-induced

reaction (Figure 3.12 A1) in addition to the accompanied low selectivity and yield (Table 4.2,
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entry 1). In contrast, in the presence of 4-amino-TEMPO, the reaction mixture’s color maintained

light yellow throughout the reaction (Figure 3.12 B1). The color change during the photocatalytic

reaction observed in the absence of 4-amino-TEMPO could be due to the formation of TiO2-H2O2

surface complexes. Thus, during the dehydrogenation reaction of THQ, two equivalent amount

of hydrogen peroxide is producing as a side product. It is well known that H2O2 can form a sur-

face complex with TiO2 through a condensation reaction and form Ti-OOH surface radical. This

complex has a yellow color and absorbs visible light at the wavelength up to 550 nm (Figure 4.7).

Therefore, the low selectivity could be attributed to the saturation of the TiO2 surface with

H2O2. That prevents the formation of the N-heterocycle-TiO2 surface complex necessary for an

efficient electron transfer from the excited organic moiety to the conduction band of the TiO2. As

mentioned in Section 3.3.5 after 24 h photocatalytic dehydrogenation process of THQ to quino-

line, the amount of photogenerated hydrogen peroxide H2O2 could be analyzed by starch and

iodate solution. Since TEMPO was found to increase the reaction selectivity, it was expected to

play a beneficial role in the degradation of H2O2. To test the hypothesis mentioned above, the

concentration of H2O2 formed during the dehydrogenation reaction in the absence (Table 4.2,

entry 1) and the presence of 4-amino-TEMPO (Table 4.3, entry 2) were measured. Indeed, the

concentration of H2O2 is observed to be significantly higher in the absence of 4-amino-TEMPO

(Section 3.3.5, Figure 3.12). The lower concentration of H2O2, which is a strong oxidizing agent,

observed in the presence of the 4-amino-TEMPO, resulted in minimizing possible side reactions

improving the selectivity of the desired reaction. [165] Therefore, in the oxidative dehydrogena-

tion reaction in the absence of 4-amino-TEMPO, the selectivity of the reaction was significantly

low, likely due to overoxidation of the reaction product with these reactive oxygen species. In

contrast, the selectivity was significantly improved with the introduction of 20 mol% of 4-amino-

TEMPO with respect to the reactant to the reaction media. On the other hand, it is supposed that

not only the reactive oxygen species could have an impact on the reaction selectivity that could

subsequently reduce the yield of the desired product, but also the surface complex of TiO2-H2O2

can play as a competing surface complex with the amine-TiO2. Thus since the photon is absorbed

by TiO2-H2O2 surface complex, the absorption of photon flux by amine-TiO2 complex is retarded.

(≡ Ti(IV )−OH)sur f +H2O2 −→ (≡ Ti(IV )−OOH)sur f +H2O (4.3)
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TEMPO and its derivatives are known to be stable radicals and bear one-electron reversible oxi-

dation to form oxoammonium salts (TEMPO+). [195] These compounds have been investigated

as redox mediators for electrochemically oxidizing primary and secondary alcohols. [196, 197]

Sen and his group have introduced the oxidation of hydrogen peroxide molecules over 4-hydroxy

TEMPO. [198] Lately, it has been reported the electrocatalytic anodic oxidation of H2O2 by ni-

troxyl radicals and revealed that among the TEMPO series, 4-amino-TEMPO shows the highest

catalytic efficiency due to the strong electron-withdrawing effect of an amino substituent. [199]

This evidence is in agreement with the results obtained in this study. Considering developed in-

sights over nitroxyl radicals, the ongoing reaction pathways in this system have been proposed.

(Scheme 4.4 (i)-(iv)).

Scheme 4.4: Proposed ongoing reactions pathway with 4-amino-TEMPO.

Thus, the generation of hydrogen peroxide molecules as a byproduct during the dehydrogena-

tion process of N-heterocycles initiates the formation of a surface complex with titania (Scheme 4.4,

(i)). 4-amino-TEMPO shows weak absorption at the visible light region of 470 nm (Figure 4.7).

Thus, the oxidation of TEMPO to the TEMPO+ and one-electron reduction of the oxygen molecule
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to the superoxide radical anion were expected to occur. (Scheme 4.4, (ii)) A further understand-

ing of the role of the 4-amino-TEMPO liquid EPR study was performed. Since TEMPO+ is not

paramagnetic and TEMPO is paramagnetic, EPR experiments of the 4-amino-TEMPO were per-

formed with and without exposure to visible light (λmax= 453 nm) in an oxygen atmosphere in

order to observe the change of paramagnetic species upon illumination (Figure 4.6). It was ob-

served that the intensity of EPR signals corresponding to the 4-amino-TEMPO slightly decreased

upon visible light illumination, which was consistent with the formation of 4-amino-TEMPO+.

Figure 4.6.: EPR specta of 4-amino TEMPO in dark and upon visible light illumination. Experi-
ments were performed at room temperature.

That is consistent with the proposed mechanism in Scheme 4.4, (ii) where oxygen molecules

oxidized by TEMPO to the superoxide radical anion. Hence, the generated oxoammonium cation

leads to the decomposition of the surface titanium (IV) hydrogen peroxide complex and subse-

quent generation of a superoxide radical (Scheme 4.4, (iii and iv)). Zhao et al. reported the

mechanistic studies of the photocatalytic decomposition of H2O2 on TiO2 surfaces upon visible

light irradiation [200]. They carried out the degradation of salicylic acid in the presence of TiO2

and H2O2 upon visible irradiation, although neither H2O2 nor TiO2 alone can absorb visible light.

The visible light photoreactivity was explained with the surface complex formation between H2O2

and TiO2 (Eq. 4.3).
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Figure 4.7.: UV-vis absorption spectum of TiO2, 4-amin-TEMPO, and TiO2-H2O2.

Thus, depending on the crystal phase of the TiO2, the TiO2-H2O2 complex is reported to

present in two configurations: Ti-η-peroxide and Ti-µ-peroxide which was confirmed by FTIR

spectroscopy (Scheme 4.5). [201–203] palladium (II) acetate Pd(OAc)2, and rhodium-acetate

dimer Rh2(OAc)4 were purchased from

Scheme 4.5: The possible coordination structure of H2O2-adsorbed on the TiO2 surface. [187]

TiO2-H2O2 surface complex are reported to be of yellowish color that can absorb visible light

up to 550 nm. [201] This is in consistent with our UV-vis spectroscopy results where yellowish

surface complex show extended absorption up to 550 nm (Figure 4.7). Indeed, concentration of

the H2O2 significantly affects the absorption spectra.
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Figure 4.8.: TiO2-H2O2 surface complex and a posible hydroxyl radical generation mechanism
under visible light.

Moreover, H2O2 is reported to be among those compounds that form the surface complex with

TiO2 through LMCT. LMCT process on TiO2-H2O2 complex and a possible hydroxyl radical gener-

ation mechanism upon visible light illumination via degradation of H2O2 is shown in Figure 4.8.

As mentioned above, the single components are only UV-light responsive. However, the TiO2-

H2O2 complexation transfers an electron from the HOMO energy level of H2O2 to the conduction

band of TiO2. This electron can subsequently be injected to another H2O2 molecule adsorbed

on the TiO2 surface to form highly reactive hydroxyl radicals and anions. Several small organic

molecules such as cyclohexane, methyl orange, phenyl-urea degradation were studied on TiO2-

H2O2 surface complex upon visible light illumination. [204–206]

4.3.3. Effect of grafting metal ions in photocatalytic performance

The results presented in Table 3.4 exhibit improved photocatalytic performance of the surface

grafted TiO2 with transition metal ions. These results suggest that the surface modification of

TiO2 improve the lifetime and the mobility of charge carrier. As shown in Figure 3.7, although

the amount of grafted metal ions on TiO2 was significantly low, the absorption spectra of surface

grafted TiO2 and THQ mixture indicate an increased absorption in the visible region in compari-

son with bare TiO2. [165] It has been observed that the grafted Ni ions on TiO2 promoted yields

approximately 20% higher than the yield obtained over the bare TiO2 (Table 3.2 entry 6). Sig-

nificant improvement was observed in selectivity when employing 4-amino-TEMPO as a redox

mediator. Thus, all grafted metal ions exhibit excellent yield (above 90%) and selectivity (above
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91%) in oxidative dehydrogenation of THQ. However, as described in Section 3.3.2, the overall

efficiency of oxidative dehydrogenation of THQ with 0.1 wt% Pd, Ru, or Rh noble metals pho-

todeposited TiO2 are significantly lower in comparison with (60%, 49%, and 30%, respectively)

bare TiO2. Nevertheless, the selectivity remained still high (97%, 100%, and 88%) (Table 3.4).

The negative influence of noble metals could be explained by their strong electron scavenging

capacity that retards the reaction momentum, eventually causing low activity. Ni ions grafting

on the TiO2 have been studied extensively for many applications. In this work, due to the low

concentration of nickel ions, the actual structure could not be determined. Hence, Kudo et al.,

reported that Ni(II) grafting on the surface of TiO2 by an impregnation method usually results

in heterogeneous dispersion of nickel species with varying atomic characteristics, i.e., isolated

nickel cations, as well as nickel-oxide nanoclusters or nanoparticles. [207]

Table 4.4.: Effect of the employed transition metals modified on TiO2 UV100 surface in aerobic
oxidative dehydrogenation of THQ compared with the photonic efficiency. a

Entry Catalysts C (%) Y (%)b S (%)c ζ (%)

1 UV100 98 79 81 6.04

2 Cu(II)/UV100 100 91 91 6.96

3 Ni(II)/UV100 100 91 91 6.96

4 Nb(V)/UV100 95 90 91 6.88

5 Fe(III)/UV100 100 90 90 6.88

6 Co(II)/UV100 100 93 93 7.11

7 Pd(0)/UV100 62 60 97 4.59

8 RuO2/UV100 49 49 100 3.74

9 Rh(0)/UV100 34 30 88 2.29

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,

λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQ (50.2 µL), 4 mL CH3CN, 20 mol%

4-amino-TEMPO (0.08 mmol) as a redox mediator with respect to the reactant. b calculated

according to the GC calibration using benzyl alcohol as an internal standard. c ratio of yield

over conversion.

Tada et al. have studied the origin at an electronic level by the density functional simulation
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of NiO clusters adsorbed on TiO2 anatase (001) and rutile (110) surfaces. [208] They found that

the bandgap narrowed up to 0.8 eV by NiO modification of TiO2 surfaces compared with pristine

TiO2. Ni(II) modified TiO2 has been reported to be a visible light active photocatalyst due to

the excitation from the Ni 3d surface sub-band to the TiO2 conduction band. Thereby, the NiO

species act as a mediator for the electron transfer from the TiO2 conduction band to O2 resulting in

a better charge separation. [209]Moreover, Venugopal et al. studied the role of the Brønsted and

Lewis acid sites on the Ni impregnated TiO2 in the hydrogenation of Levulinic acid. They reported

that increasing the content of Ni ions from 5 wt% to 20 wt% with respect to TiO2 significantly

increases the Lewis acid catalysis sites. [183] This finding may be correlated with our observation

that Ni ions significantly increase the dehydrogenation reaction yield of THQ, and are most likely

to increase the surface acid site and the lifetime of the photogenerated charge career. Therefore,

In-situ EPR spectroscopy studies were conducted to test the photogenerated paramagnetic species

in bare TiO2 and in Ni(II)/TiO2 nanoparticles.

4.3.4. In-situ EPR spectroscopy studies of Ni(II)/TiO2

In order to understand the charge separation and transfer behavior of the Ni(II)/TiO2, the in-

situ EPR spectroscopy was performed in an argon atmosphere. As shown in Figure 4.9, new

paramagnetic species are formed within the bare and 0.1 wt% Ni grafted TiO2 photocatalysts upon

UV-vis light irradiation. The signals arising upon UV-vis irradiation are summarized in Table 4.5.

Moreover, the comparison spectra of bare and 0.1 wt% Ni grafted TiO2 are presented in Figure 4.9.

Table 4.5.: EPR parameters of the detected signals on 0.1 wt% Ni/UV100 upon UV-vis illumina-
tion and their assignment.

Assignment g1 g2 g3

Ti4+-O2
−• 2.027 2.009 2.005

Ti3+ anatase 1.990 1.990 1.96

Ti4+-O•−- Ti4+-OH− 2.018 2.014 2.005

As it can be seen in Figure 4.9, the intensity of the peak belonging to the trapped electrons

at TiO2 oxygen vacancies at g value 2.004 (Ti4+ -O2
−•), significantly decreases in 0.1 wt% Ni

grafted TiO2 samples. That is clear evidence of the trapping electrons at the nickel ions site and
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their consumption efficiently by reducing oxygen molecule instead of trapping at oxygen vacancies

when the surface of the TiO2 is grafted 0.1 wt% Ni. The photogenerated electrons on TiO2 are

more populated than those on the Ni grafted TiO2, suggesting that the Ni ions can trap part of the

electrons, thus efficiently suppressing the recombination of electron-hole pairs. Consequently, the

intensity of the signals B (Figure 3.5) at g values 1.90 and 1.96 of the Ni/UV100 photocatalyst is

drastically decreased in comparison with bare TiO2. This observation is consistent with a previous

report, [210], which proved that the grafted Ni(II) ions located on the surface and surface defects

of TiO2, reduce the amount of Ti3+ species by trapping photogenerated electrons. The broad weak

signal at around g = 2.06 (Signal C) (Figure 3.5) observed in bare TiO2 is more intense than in

0.1 wt% Ni/UV100 which corresponds to the surface-adsorbed O2 molecules, that act as electron

acceptors. [211] As a result of this, EPR results could be assured that Ni ions are located on the

surface of TiO2 rather than in the crystal cell. These metal ions centers play an essential role

in transferring the trapped electrons to the surface adsorbed oxygen molecules, which further

oxidize the THQ into the quinoline.

Figure 4.9.: EPR spectra of bare TiO2 and 0.1 wt% Ni/TiO2 UV100 upon UV-vis light irradiation
at 77 K.
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4.3.5. Proposed reaction mechanism

Based on the obtained results, a tentative mechanism for the dehydrogenation reaction of tetrahy-

droquinolines in the presence of Ni(II) grafted TiO2 is proposed in Scheme 4.6. Initially, due to

the Lewis acid-base interaction, tetrahydroquinoline binds to the surface of UV100 to form a sur-

face complex. This surface complex absorbs visible light, and the process LMCT occurs whereby

electron leaps directly from the HOMO level of an amine into the conduction band of TiO2 and

amine radical cation forms. Subsequently, the excited electron transfers from the conduction

band of the semiconductor into the Ni ions. After being temporarily stored on the surface grafted

Ni ion, the photogenerated electron reduces O2 yielding the superoxide radical anion O2
−•. This

radical anion abstracts two protons and one electron from the tetrahydroquinoline radical cation,

forming the C=N bond. [165] This sequence of reaction steps is repeated with the partially de-

hydrogenated product as the reactant to complete the aromatization to the quinoline, and two

hydrogen peroxide molecules are formed as a side product.

Scheme 4.6: Proposed mechanism of the ongoing reaction in the presence of 4-amino-TEMPO
and surface-grafted 0.1 wt% Ni/TiO2 photocatalyst.

Hydrogen peroxide can further be oxidized furnishing hydroxyl radicals. These radicals are

highly oxidizing agents that can affect the selectivity of the reaction yield. However, the employed

4-amino-TEMPO act as a selective redox mediator to oxidize hydrogen peroxide into superoxide
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radical and a proton. Moreover, as illustrated in Scheme 4.6, 4-amino-TEMPO reduces molecular

oxygen yielding the superoxide radical. The grafted Ni ion (E0(Ni2+/Ni0)= -0.26V vs. NHE) likely

plays the role of an electron shuttle which not only hinders the fast decay of the photogenerated

electrons but also promotes the reduction of O2 by conduction band electrons, thus enhancing

the overall photo-activity of UV-100. However, noble metal co-catalysts demonstrate relatively

low reaction yield, which can be explained by their electron scavenging capacity that retards the

reaction momentum, eventually causing low activity. Thus electrons are stored by noble metal

sites rather than oxygen side. Therefore fewer superoxide radicals are formed.

4.3.6. Oxidative dehydrogention of N-heterocycles

As it can be seen in results Section (Table 3.5 (2a)), unsubstituted THQ reacted excellently un-

der optimized reaction conditions presented in Scheme 4.1. Quinoline was isolated, giving a

yield of 91% in oxygen atmosphere (Table 4.6 entry 1). Although dehydrogenation of THQ over

TiO2 based photocatalyst was not reported before, Nb2O5 has been reported to be efficient for

the dehydrogenation of THisoQ as a heterogeneous semiconductor. Similar to TiO2, Nb2O5 can-

not absorb visible light due to its large bandgap energy. However, aerobic dehydrogenation of

THQ at the wavelength λ > 390 nm was possible, due to the interaction between Nb2O5 and

amines. [116] The photocatalytic performance of the TiO2 photocatalyst in aerobic dehydrogena-

tion reactions was observed to be affected by the NH group’s position and electron-donating and

electron-withdrawing substituent groups in N-heterocycles. In general, tetrahydroquinolines un-

derwent complete dehydrogenation reactions in oxygen atmospheres (Table 4.6). The reactivity

drastically dropped when hydroxyl and nitro-group bearing substrates are applied to the oxidative

dehydrogenation reactions. The inactivity of the former substrate was likely due to the poor oxi-

dation of the aniline moiety caused by the strongly electron-withdrawing nitro group (Table 4.6

entry 6). The inertness of the hydroxylated compound is probably due to a competitive complex

formation on the TiO2 surface via the hydroxyl group (Table 4.6 entry 4). To test this hypothesis,

the OH group was protected as TBDMS (tert-butyldimethylsilyl) ether and then subjected to the

optimized reaction conditions. When OH group was protected as TBDMS (tert-butyldimethylsilyl)

ether, the TBSO group reacted efficiently to obtain the corresponding dehydrogenation product

with excellent yield with the optimized conditions (2e), 83%) (Table 4.6 entry 5).
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Table 4.6.: Dehydrogenation of the tetrahydoquinolines in oxygen a.

Entry Product R1 R2 ζ (%) Y(%) b

1 2a H H 6.96 91

2 2b CH3O (6) H 7.19 94

3 2c H CH3 (2) 6.96 91

4 2d OH (7) H - 0

5 2e TBSO (7) H 6.34 83

6 2f NO2 (7) H - -

7 2g Cl (6) H 7.03 92

8 2h CH3 (6) H 5.66 72

9 2i COOH (8) CH3 (2) 7.11 93

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,

λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQs (50.2 µL), 4 mL i-C3H7OH, 20 mol%

4-amino-TEMPO (0.08 mmol) as a redox mediator with respect to the reactant. b The yields are

those of the isolated product. The numbers in the parenthesis correspond to the position of the

functional groups.

Photonic efficiency was found to be similar in most reactive substrates. The electron-donating,

methoxy group bearing substrate demonstrated the highest photonic efficiency (7.19 %). Fur-

thermore, the substrate bearing two contradicting groups, electron-withdrawing (COOH) and

electron-donating groups (CH3 ) (Table 4.6 entry 9) showed excellent yield (above 90 %). That

could be attributed to the fact that the carboxylic acid group at C-8 position interacts with TiO2,

forming another type of surface complex. The dehydrogenation of tetrahydroquinolines is sum-

marized in Table 4.6. The dehydrogenation of unsubstituted tetrahydroisoquinolines was realized

in this study under oxygen atmospheres in optimized reaction conditions. Unsubstituted THisoQ

reacted excellently under optimized reaction conditions, and the isolated yield was mainly the

partial dehydrogenation product of 3,4-dihydroisoquinoline (1k*) (Table 4.7 entry 2) and com-
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plete dehydrogenation product of isoquinoline was isolated as the minor product (Table 4.7 entry

2 (1k)). These results are consistent with previously reported studies showing that in oxygen

atmosphere the dehydrogenation of THisoQ afforded 68% and 47% of 3,4-dihydroisoquinoline

over bare TiO2 [113] and Nb2O5 [116] surface upon visible light illumination, respectively. Like

the unsubstituted tetrahydroisoquinoline, the substrate bearing phenyl group exhibited a mainly

partial dehydrogenation product, and a less complete dehydrogenation product is optimized re-

action conditions in oxygenated atmospheres. THisoQ bearing methyl group in the C2 position

gave complete aromatized product in (75%) oxygen atmosphere when the reaction temperature

was increased up to 47◦C (Table 4.7 entry 4). Notably, the substrate bearing two strong electron-

donating methoxy groups showed excellent reactivity in complete dehydrogenation reactions (Ta-

ble 4.7 entry 3). The enhanced reactivity of this compound is presumably due to the presence of

the two electron-donating methoxy groups. The dehydrogenation of tetrahydroisoquinolines is

summarized in Table 4.7. Thus, the overall photonic efficiency of the reactants was comparable

to that of the photonics efficiency obtained from tetrahydroquinoline substrates (Table 4.7). The

highest photonic efficiency was 7.19 %, which corresponds to the sum of photonic efficiencies

obtained from complete and partial dehydrogenation of THisoQ. Not surprisingly, the substrate

bearing two electron-donating methoxy groups showed higher photonic efficiency (6.18 %) than

other substituted tetrahydroisoquinoline substrates (Table 4.7 entry 3). Dehydrogenation of un-

substituted indoline tolerated differently in oxygen atmospheres while using optimized reaction

conditions. Thus, it was found that due to its electron-rich nature, photogenerated product (in-

dole) was easily oxidized and degraded during the reaction time in 1 atm O2. However, the

excellent yield was obtained while using only air as an oxidant (Table 3.6 (2o)). Interestingly,

indolines underwent a smooth dehydrogenation reaction in oxygen and air conditions yielding

excellent products after 24 h. The substrates bearing electron donating group such as methyl or

methoxy underwent to the complete aromatization in oxygen atmosphere (Table 3.5 , 1b, 1c, 1h

1i). Despite the moderate electron withdrawing nature, substrate bearing chlorine group afforded

excellent yield (Table 3.5, 1g).
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Table 4.7.: Dehydrogenation of the tetrahydoisoquinolines in oxygen a.

Entry Product R1 R2 ζ (%) Y(%) b

1 2k H H 3.21 42
2 2k* H H 3.98 52
3c 2l 2CH3O (6, 7) H 6.19 81
4d 2m H CH3 (1) 5.73 75
5d 2n H C6H5 (1) 2.52 33
6 d 2n* H C6H5 (1) 4.13 54

a Reaction conditions: 10 mg photocatalyst, 24 h visible light illumination (LED lamp,
λmax=453 nm, 4 mW/cm2), 1 atm O2, 0.4 mmol THQs (50.2 µL), 4 mL i-C3H7OH, 20 mol%

4-amino-TEMPO (0.08 mmol) as a redox mediator with respect to the reactant. b The yields are
those of the isolated product. c CH2Cl2: i-C3H7OH. d 47◦C. The numbers in the parenthesis

correspond to the position of the functional groups.

4.4. ADH of THQ - effect of different reaction parameters

In an attempt to increase the formation of quinoline in ADH reactions, several solvents were

employed. The poor to moderate yields were observed in methanol, ethanol, and acetonitrile sol-

vents (7%, 15%, and 31%, respectively). A significant improvement, almost quantitative yields

were observed when 2-propanol was used as a solvent (99%). These results have several pos-

sible explanations. The results were compared with the dielectric constant and the polarity of

the solvents. Comparing the photocatalytic efficiencies in different solvents exhibits an inverse

correlation between the dielectric constant and the product formation. As became obvious from

the results presented in Table 4.8, 2-propanol has a lower polarity and a lower dielectric constant

compared to other solvents, which shows the highest photocatalytic performance compared to

all other solvents. Thus, the low dielectric constant of 2-propanol could be associated with the

high mobility of the photogenerated charge carrier. Shiraishi et al. reported the selective reduc-

tion of 4-nitrophenol in various alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol,

and 2-butanol) with TiO2 (Degussa P25) under UV irradiation. [212] They have revealed that

polarity plays a critical role in the reaction rate. Thus the increase of the polarity parameter leads
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to better stabilization of the charged intermediate and therefore accelerates the reduction of the

photocatalysis. Brezova et al. also reported the selective reduction of 4-nitrophenol and carefully

analyzed the influence of solvent polarity, viscosity, refractive index, and relative permittivity on

the reaction rate. [213]

Table 4.8.: Correlation between dielectric constant of solvents and photonic efficiencies in ADH
reactions of THQ a.

Entry Solvents ζ (%) Solvent

Polarity

Index (P)

Dielectric

constant (ε)

1 CH3OH 0.54 5.1 32.6

2 C2H5OH 1.15 5.2 22.4

3 C3H7OH 7.57 3.92 18.0

4 CH3CN 2.37 5.8 37.5

a Reaction conditions: 5 mg 1 wt% Rh/TiO2, 24 h visible light illumination (LED lamp,

λmax=453 nm, 4 mW/cm2), Argon atmosphere, 0.2 mmol THQ (25.1 µL), 2 mL solvent,

photonic efficiencies ζ (%) are calculated from the results presented in Table 3.7.

Similar to the results mentioned above, they have also observed that high polarity plays an

essential role in improving the stabilization of the produced charged intermediate and ultimately

achieving a high reaction rate. However, the reverse effect of the solvent polarity was observed in

this study. The increased polarity of the solvent has been shown to reduce the reaction yield

dramatically. Wang et al. also reported the same acceptorless dehydrogenation reactions of

N-heterocycles over g-BCN and observed that the highest reaction yield was achieved using 2-

propanol. [160] These results are in agreement with the method established in the present work.

However, interestingly, they also achieved a high yield while using water as a solvent. However,

in the present work, the reaction’s yield was meager, while using water as solvent (results are not

presented).

116



4.4. ADH OF THQ - EFFECT OF DIFFERENT REACTION PARAMETERS

4.4.1. Effect of noble metals on the reaction yield

The ADH reactions of N-heterocycles could only be facilitated by the presence of co-catalysts on

TiO2. Noble metals are known to be a strong electron scavenger and thus improve the separation

of the photogenerated charge-carriers as well as enhance the reaction rate. The photocatalytic

performance of different noble metal nanoparticles photodeposited on TiO2 was compared in the

ADH reaction of THQ under optimized reaction conditions (Scheme 4.2). As it was shown in Sec-

tion 3.4.2, the yields increased with the order of Au<RuO2<Pd<Pt<Rh. To specify the critical

feature of noble metals that affect the reaction yield different intrinsic factors of noble metals were

examined. Interestingly, UV-vis diffuse reflectance spectra (Figure 3.2) show that only ruthenium

oxide and gold nanoparticles photodeposited TiO2 has a strong plasmonic absorption peak at

around 400-630 nm. It is well known that Au nanoparticles have localized surface plasmon res-

onance (LSPR), which can directly be excited upon visible light illumination. [214] On the other

hand, Jeon et al. demonstrated the LSPR effect of RuO2 decorated on ZnO nanorods, which allow

visible light absorption. [215]

Figure 4.10.: Schematic illustration of proposed mechanism of anaerobic amine dehydrogena-
tion over Au/TiO2 nanoparticles upon visible light illumination. path 1 is the ex-
citation of Au nanoparticles with visible light, path 2 is the electron transfer from
Au nanoparticles to the conduction band of TiO2, path 3 is the recombination of
the photogenerated charge carriers, path 4 is the oxidative dehydrogenation of N-
heterocyclic amines by photogenerated holes.

Although Pt and Pd photodeposited TiO2 exhibit the weak absorption edge at around 600-800

nm, the Rh photodeposited TiO2 only has an absorption in the UV region (Figure 3.2). The visible-
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light absorption of RuO2 and Au co-catalysts possibly hinter the dehydrogenation reaction due

to other competitive visible-light-induced reaction pathways. These results were consistent with

the suggestion that the dehydrogenation was initialized by visible-light excitation of the amine-

TiO2 complex. Several effects can have an impact on the photocatalytic performance of noble

metal nanoparticles. It should be considered all of the employed noble metals have low hydro-

gen overpotential that can easily accept photogenerated electrons from the conduction band of

TiO2. [164] Another most common factor is usually applied to correlate the photocatalytic activity

of noble metal co-catalysts with their work function ((Figure 4.11, left)). Since TiO2 has work

function (4.2 eV) lower than all employed noble metals such as Pt, Pd, Au, Rh, and Ru ( 5.65,

5.55, 5.1, 4.98, and 4.71 eV, respectively) a Schottky barrier can be formed at the metal–TiO2

interface. [216] Thus, having a bigger work function on the noble-metals introduces a more sub-

stantial Schottky barrier, which subsequently results in better charge separation. The ADH results

obtained in this study in the assistance of various noble metals photodeposited on TiO2 are corre-

lated with noble metals’ work function. Interestingly, the results are supported by the fact that the

photoactivity of THQ dehydrogenation decreases with decreasing work function value of noble

metals. However, it was observed that although Au nanoparticles have a 5.1 eV work function

value, they demonstrated poor photocatalytic performance. That could be correlated with their

plasmonic effect. Generally, Rh, Pd, and Pt showed better photocatalytic performance, whereas

the work function of Au is higher than the work function of Rh (Figure 4.11, right). These results

actively support the adverse plasmonic effect of Au nanoparticles on the ADH reaction, restricting

the absorption of visible light by the surface complex. Golovko et al. the reported LSPR effect of

RuO2 supported on TiO2 in visible-light-driven aerobic oxidation of amines to nitriles. [217] They

have demonstrated that visible light absorption is initiated by RuO2 nanoparticles, where surface

adsorbed molecular oxygen act as the electron acceptor from RuO2 nanoparticles via conduction

band of TiO2. Their mechanistic investigations indicated the involvement of singlet oxygen in

the photocatalytic amine oxidation was significantly important. Besides, Figure 4.10 shows the

example of the LSPR effect of Au nanoparticles under visible light illumination by presenting the

reaction conditions used for the acceptorless dehydrogenation of N-heterocycles. Initially, upon

visible light illumination, gold nanoparticles are excited (path 1) and transfer its electron into the

conduction band of TiO2 (path 2). Since the system is free of oxygen in an acceptorless dehy-
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drogenation reaction, the recombination rate of the photogenerated charges are high (path 3).

The absorption of visible light by surface plasmonic nanoparticle such as Au and RuO2 restricts

the formation of the surface complex between TiO2 and amine. The holes generated inside the

Au nanoparticles could potentially oxidize the amines. However, the results show that the yield

is quite poor. Therefore, the surface complexation between the amine and TiO2 is preferable for

visible light activation. [164]

Figure 4.11.: Schematic illustration when metal and semiconductor bring into the contact (left),
dependence of the photocatalytic performance of 1 wt% of the noble metal pho-
todeposited on TiO2 from the work function of the noble metals (right).

Likewise, as it could be observed from UV-vis spectroscopy results that the absorption coeffi-

cients of these Au/TiO2 and RuO2/TiO2 are three times less than the absorption coefficient of

amine-TiO2 surface complex which therefore shows drastically low photocatalytic performance

in comparison with other noble metal photodeposited TiO2 nanoparticles.

Moromi et al. also observed the similar order of catalytic performance of noble metals in ther-

mal dehydrogenation of tetrahydroquinolines supported on carbon. They have compared the

dehydrogenation rate as a function of the d-band center (εd) relative to the Fermi energy (EF )

for the clean metal surface. [218] palladium (II) acetate Pd(OAc)2, and rhodium-acetate dimer

Rh2(OAc)4 were purchased from Sigmawere purchased from Sigmawere ppurchased from Sig-

maased from Sigmawere purchased from Sigma
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4.4.2. General overview of ADH of N-heterocycles

ADH of N-heterocyclic amines, i.e., tetrahydroquinolines, tetrahydroisoquinolines, indolines, and

other cyclic class amines with surface photodeposited TiO2 was investigated in this study. The re-

actions took place under argon atmosphere at room temperature upon illumination with 34W LED

blue visible light (λmax = 453 nm). [164] As it can be seen in the results section, unsubstituted

THQ reacted excellently under in optimized reaction conditions and 96% yield in argon (Table 3.8

(2a)) atmosphere were isolated. The dehydrogenation of unsubstituted THisoQ was realized in

this study under argon atmospheres in optimized reaction conditions where, as the main product,

the isolated yield was mainly the partial dehydrogenation product of 3,4-dihydroisoquinoline (See

Table 3.9 (1k)). Dehydrogenation of unsubstituted indoline is tolerated differently in argon atmo-

spheres compared with the ADH of other N-heterocycles using optimized reaction conditions. The

photocatalytic performance of TiO2, in anaerobic dehydrogenation reactions, was observed to be

affected by the position of the NH group as well as electron-donating and electron-withdrawing

substituent groups in N-heterocycles. Generally, tetrahydroquinolines underwent complete dehy-

drogenation reactions in anaerobic atmospheres (Table 3.8). Similar to the unsubstituted THisoQ,

tetrahydroisoquinolines exhibited a mainly partial dehydrogenation product and a less complete

dehydrogenation product in the optimized reaction conditions in inert atmospheres. However,

indolines underwent dehydrogenation reaction in inert atmospheres within 48 h reaction time

obtaining good yield. The substrates bearing electron-donating group such as methyl or methoxy

underwent to the complete aromatization product (Table 3.8, 1b, 1c, 1h 1i). Despite the moder-

ate electron-withdrawing nature, the substrate bearing chlorine group afforded excellent yield in

an inert condition (Table 3.8, 1g). The reactivity drastically dropped when hydroxyl and nitro-

group bearing substrates are applied to the dehydrogenation process in acceptorless reactions

similar to the oxidative dehydrogenation process. Thus, these substrates were almost inactive

in both atmospheres. THisoQ bearing methyl group in C2 position gave the complete aroma-

tized product in acceptorless catalytic conditions gave the product (2m*) in 34% and product

(2m) in 46% isolated yield after 48 h. Notably, substrate bearing two electron-donating methoxy

groups showed excellent reactivity in complete dehydrogenation reactions yielding 88%. The

enhanced reactivity of this compound is presumably due to the presence of the two electron-

donating methoxy groups. Substrates bearing electron-deficient groups such as -C(O)Me and
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CF3 underwent ADH reaction smoothly and gave the desired products in good to excellent yield.

Indolines having a carboxylic acid group, underwent dehydrogenation and decarboxylation reac-

tions. It was observed that the substrates bearing carboxylic acid group at C2 position of indoline

(See Table 3.10 (1r) and (1s)) undergoes decarboxylation and dehydrogenation reaction in the

optimized reaction condition. The possible ongoing reaction pathways were investigated in order

to propose the reaction mechanism. It has been reported that a chemical bond is formed between

the carboxylic group and the TiO2 surface Brønsted acid site (Ti-OH). [219]

Scheme 4.7: Acceptorless decarboxylation and dehydrogenation mechanism of 2-carboxyl-
indoline upon visible-light illumination. Reaction conditions: 1 wt% Rh/TiO2 pho-
tocatalyst (5 mg), 2-carboxyl-indoline (0.2 mmol) i-C3H7OH (2 mL), blue LED light
(λ = 453 nm), Argon atmosphere, 48 h.

FTIR study revealed that the interaction of the carboxyl group with the TiO2 surface is more fa-

vorable than the interaction of the amine group with the oxide surface. [220] On the other hand,

it is well-established that Photo-Kolbe decarboxylation occurred when acetic acid adsorbed on the

surface of TiO2, which has been irradiated with UV light. [10] Although visible light is employed

in our system, the reaction exhibited that decarboxylation was still favorable in the C2 position of

indoline before the dehydrogenation reaction. Recently, visible-light decarboxylation of the same
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substrate (1r) was studied on metal-halide perovskite in N2 atmosphere. However, both decar-

boxylation and dehydrogenation occurred in an O2 atmosphere. [221] According to the previous

works, a decarboxylation and dehydrogenation reaction mechanism of indoline-2-carboxylic acid

on the Rh/TiO2 surface (Scheme 4.7) was proposed. It is supposed that while the carboxyl group

interacts with the Ti-OH Brønsted acid site, and amine group forms a surface complex with Ti+

Lewis acid site of TiO2. The latter complex, as the visible-light-absorbing species, initiates the

photon absorption and amine cation radical formation by transferring a single electron to the

conduction band of TiO2. Subsequently, the substrate undergoes the decarboxylation through

C-C bond cleavage, and an alpha-amino radical is generated. The radical cation loses a proton to

form a double bond. [164] Since it has been discussed that an amine group adsorbed onto TiO2

surface initiates the visible-light absorption and electron-transfer reactions, it was unexpected to

be observed the ADH of the (1w) substrate which is not bearing an amine group.

Figure 4.12.: Normalized optical absorption spectrum and extinction spectrum of 8-Acetyl-
5,6,7,8-THQ and 1 wt% Rh/TiO2 (UV100) suspension containing 8-Acetyl-5,6,7,8-
THQ in 2 mL i-C3H7OH, respectively and blue line spectrum is extraction of the
optical absorption spectrum of 8-Acetyl-5,6,7,8-THQ from the extinction spectrum
of 8-Acetyl-5,6,7,8-THQ/ 1 wt% Rh/TiO2.

Therefore, the origin of the light-absorbing-species was further investigated by UV-vis spec-
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troscopy. The bright yellow substrate (8-acetyl-5,6,7,8-tetrahydroquinoline) showed the absorp-

tion up to 475 nm (Figure 4.12). Moreover, adding 1 wt% Rh/UV100 catalyst into 8-acetyl-

5,6,7,8-tetrahydroquinoline and i-PrOH solution, demonstrated extended optical absorption up to

525 nm (Figure 4.12). These spectroscopic analyses evince that a prerequisite for the visible-light-

mediated photocatalytic ADH is either substrate, which absorbs visible-light or a surface complex

due to surface interaction between 8-acetyl-5,6,7,8-tetrahydroquinoline and TiO2. Therefore,

the ongoing photocatalytic reaction mechanism was proposed in Scheme 4.8 to assume that 8-

acetyl-5,6,7,8-tetrahydroquinoline acts as the antenna molecule and initiate a visible-light ADH

reaction. Hence, initially, upon visible-light illumination, the substrate excited from HOMO to the

LUMO energy level. In the next step, the excited substrate transfers its electron to the conduction

band of the semiconducting TiO2. The electron is consecutively transferred to the noble metal

attached to the TiO2 surface, where it becomes temporarily stored. The formed cation of the

substrate generated by electron transfer is a strong Brønsted acid, which undergoes the first de-

protonation and subsequently forms the partial dehydrogenation product. Since the partial dehy-

drogenation product was not observed after the photocatalytic experiment, it is assumed that the

second dehydrogenation occurs as the same subsequent pathway to give the 8-acetyl-quinoline

(Scheme 3.2, (1w)). Control studies showed the importance of photocatalyst and visible light

where no transformation of 8-acetyl-5,6,7,8-THQ was achieved either in the absence of 1 wt%

Rh/TiO2 or visible-light. This result underlines the aromatization of cyclohexane-fused pyridine

bearing acetyl group in the presence of 1 wt% Rh/TiO2 in an inert atmosphere upon visible-light

illumination could be realized. [164] However, the conclusion requires an in-depth investigation

of the broad range of substrates, which opens a new pathway in the visible-light-mediated ADH of

cyclohexane-fused pyridines involving TiO2 photocatalyst. A better understanding of the underly-

ing reaction mechanism and optimization of the reaction conditions might improve the moderate

yield up to excellent yield.
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Scheme 4.8: The ongoing reaction mechanism of photocatalytic acceptorless dehydrogenation of
8-Acetyl-5,6,7,8-THQ over 1 wt% Rh/UV100

4.4.3. Proposed mechanism of the ADH reaction

Based on the experimental results, a reaction mechanism of acceptorless dehydrogenation is pro-

posed in Figure 4.13. As it became evident from the results of UV-vis spectroscopy, although

both the amines and 1 wt% Rh/TiO2 separately absorb light only in the UV region, their physical

mixture exhibited a broad absorption band in the visible region up to ∼500 nm, suggesting the

formation of a visible-light-responsive surface complex.

Figure 4.13.: A plausible mechanism of the acceptorless dehydrogenation reaction of the 1,2,3,4-
tetrahydroquinoline in the presence of 1 wt% Rh/TiO2 photocatalyst.

124



4.4. ADH OF THQ - EFFECT OF DIFFERENT REACTION PARAMETERS

The visible light photosensitization of TiO2 nanoparticles with N-heterocycles is assumed to

occur through the LMCT method due to their Lewis acid-base interaction. Upon visible light

excitation of the surface complex, the electron from the amine’s ground state is injected directly

into the conduction band of the TiO2 UV-100. Subsequently, noble metal co-catalysts temporarily

store injected electrons from the conduction band of TiO2. Two proton abstraction from the

amine radical and reduction by two electrons forms the C=N bond and one molecular hydrogen.

The repeating process drives the formation of another molecular hydrogen and the complete

aromatization, yielding quinoline.
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Chapter 5
Conclusions and outlook

Choosing the appropriate reaction conditions for the selective dehydrogenation process is crucial

for the synthesis of aromatic N-heterocycles. For the first time in this work, the visible-light-

induced dehydrogenation of N-heterocyclic amines over surface-modified TiO2 nanoparticles was

successfully performed in the presence of oxygen as well as in inert atmospheres. The developed

method showed that TiO2 nanoparticles are promising photocatalysts for the dehydrogenation

of a broad range of N-heterocyclic arenes bearing electron-rich and electron-deficient functional

groups. All photocatalytic reactions were carried out upon visible light illumination, despite the

known fact that TiO2 nanoparticles only absorb high energy UV light due to their large bandgap

energy. This study showed that the optical absorption spectrum of TiO2 shifts toward the visible

region by about 60 nm when cyclic amines are adsorbed on the titania surface. The ATR-FTIR re-

sults showed the possible Lewis acid-base interaction between Ti+ sites of TiO2 and the NH group

of N-heterocyclic amine. These surface complexes act as photosensitizers driving the visible light

oxidation of the N-heterocycles. Scheme 5.1 represents the general ongoing reaction mechanism

of photocatalytic dehydrogenation of THQ in aerobic and anaerobic atmospheres.

Initially, upon visible light illumination, a single electron transfer occurs from the unexcited

state (HOMO) of the N-heterocycle (2a) to the conduction band of TiO2 (Scheme 5.1, path 1).

Indeed, the oxidation potentials of these amines required to be well-matched with the redox po-
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tential of TiO2 (2.7 V vs. NHE for anatase) to ensure smooth electron transfer process. In the next

step, the excited electron will be transferred from the conduction band of TiO2 to the electron

acceptor, which can be either surface-adsorbed O2 or a suitable co-catalyst (Scheme 5.1, path 2).

Under aerobic conditions, the subsequent reduction of oxygen molecules forms superoxide radi-

cals (O2
−•) which further oxidize the amine radical cation to imine through the hydrogen-atom

transfer (HAT) mechanism with a concomitant generation of H2O2 (Scheme 5.1, path 3∗). On the

other hand, in an argon atmosphere, the important electron acceptor on the surface of TiO2, such

as noble metals, is reduced by the injected electrons. Thereby, the radical amine cation undergoes

further one-electron oxidation with subsequent release of two protons. Eventually, the proton re-

duction by noble metal nanoparticles leads to the generation of a H2 molecule (Scheme 5.1, path

3). Finally, in both reaction conditions the repetition of above photocatalytic cycles give the com-

plete dehydrogenated product (2a) (Scheme 5.1, path 4).

This strategy avoids the photogeneration of holes in the valence band, which often causes

the oxidation of protic solvents and the degradation of the reaction products, leading to low

selectivities. The optimal reaction conditions for the dehydrogenation of N-heterocyclic amines

for both aerobic and anaerobic atmospheres were successfully established.

The results exhibited that, independent from the reaction environment either oxygenated or

inert, the specific surface area of the TiO2 photocatalyst plays an important role that affects the

photocatalytic efficiency. Although TiO2 P25 is usually reported to demonstrate higher photo-

catalytic performance than anatase TiO2 UV100 under UV irradiation, here it was found that

TiO2 UV100 showed significantly better photocatalytic efficiencies. That is associated with the

high specific surface area of TiO2 UV100. The surface coverage of probe molecules (THQ) of

anatase UV100 TiO2 was theoretically calculated to be 2.4 ML (monolayer), while 14.6 ML for

P25 (rutile-anatase) TiO2 in an optimized reaction condition. This evinces that the UV100 sur-

face has larger adsorption sites as compared with P25 that exhibits saturation of all active sites.

Therefore, to achieve the complete conversion of all amine molecules on P25 TiO2 nanoparticles,

longer reaction time is required.

In this study, the photocatalytic efficiency of the Hombikat UV100 TiO2 nanoparticles was fur-

ther improved by surface grafting and photodepositing with transition metal ion and metals. The

as-synthesized nanoparticles were characterized by different analytical techniques such as UV-vis,
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TEM, ICP-OES, FTIR, XRD, EPR, and BET. The dehydrogenation results under aerobic conditions

revealed that transition metal ions grafted on TiO2 serve as electron shuttles for transferring the

excited electrons to molecular O2, thus retarding the fast decay of the photogenerated charge

carriers. Moreover, these metal ions could act as electron-acceptor centers upon visible light il-

lumination through interfacial charge transfer processes. The Ni(II) grafted TiO2 nanoparticles

showed improved yields (from 35% to 57%) and selectivity (from 43% to 61%) for the dehydro-

genation of THQ, but further improvement was targeted in order to obtain yields and selectivities

above 90%. The moderate yield and poor selectivity are presumed to be due to the competitive

surface complexation of the H2O2 (byproduct) with TiO2 and the high oxidation behavior of the

hydroperoxyl radicals (•OOH).

Scheme 5.1: The general ongoing reaction mechanism of photocatalytic dehydrogenation of THQ
in aerobic and anaerobic atmosphere
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Therefore, 20 mol% of TEMPO derivatives were used with respect to the substrate in order to

increase the yield and the chemoselectivity of the dehydrogenation reaction. Significantly higher

efficiency was achieved when 4-amino-TEMPO was used to investigate the role of TEMPO deriva-

tives in the dehydrogenation reaction. It was revealed that 4-amino-TEMPO primarily acts as a

radical trap for the decomposition of the surface adsorbed hydroperoxyl radicals (•OOH) resulting

in the minimization of possible side reactions and thus the improvement of the reaction selectiv-

ity (Scheme 5.1, path 5). Under optimized reaction conditions inspired by the high photocatalyst

activity of 0.1 wt% Ni/UV-100 and 20 mol% 4-amino-TEMPO in i-PrOH and an O2 atmosphere

(1 atm) at room temperature, the range of substrates was explored resulting in good to excellent

yields.

Although TEMPO redox mediators were required to increase the aerobic system’s overall chemos-

electivity, the anaerobic dehydrogenation of N-heterocycles was carried out in a single heteroge-

neous photocatalytic system with high selectivity. For comparing their photocatalytic activity,

different noble metals such as Pt, Rh, Ru, Pd, and Au photodeposited on the surface of TiO2

have been investigated for the visible-light-induced dehydrogenation reaction in an argon atmo-

sphere. As a result of this, it was observed that Au and RuO2 photodeposited TiO2 demonstrated

dramatically poor photocatalytic performance (3% and 16%, respectively), whereas Rh, Pt, and

Pd nanoparticles photdeposited on TiO2 showed similar comparable efficiencies (99%, 96 %, and

93%, respectively) in acceptorless dehydrogenation reactions. The formation of quinoline and

simultaneous release of hydrogen molecules were noted to boost in the following order while

varying the solvent in the reaction system: CH3OH < C2H5OH < CH3CN< i-C3H7OH (7%, 15%,

31%, and 99%, respectively). It was observed that increasing the deposition amount of noble

metals higher than that 1 wt% affecting inferiorly to the photocatalytic performance of TiO2.

It was also found that changing the photocatalysts amount in the system affects the formation

rate of yields. For the complete anaerobic dehydrogenation, the appropriate catalyst amount and

reaction time was 2.5 g/L and 24 h. Following the optimization of the reaction condition, dehy-

drogenation of several substrates such as tetrahydroquinolines (THQ), tetrahydroisoquinolines

(THisoQs) and indolines in argon atmosphere were studied using 1 wt% Rh/TiO2 as a photocata-

lyst and isopropanol as a dispersant, which yielded good to excellent yield based on the nature of

bearing reactive functional groups (electron-deficient or electron-rich). The results show that the
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perhydroquinoline substrate lacking aromatic ring attached to the piperidine scaffold failed full

aromatization, proving the essential role of the benzene ring in the dehydrogenation reaction.

Sixfold subsequent experimental runs confirmed the robustness of the developed acceptorless de-

hydrogenation method. With this, the visible-light-mediated ADH reactions of the industrially

significant organic compounds were successfully synthesized with the concomitant formation of

hydrogen molecules.

In summary, selective oxidative and an acceptorless, base-free dehydrogenation of heterocyclic

nitrogen-containing compounds using commercially available TiO2 has been developed. This

new synthetic methodology could be applied to the various large bandgap semiconductors us-

ing visible light. Besides, further photocatalytic dehydrogenation and dehydrogenative coupling

reactions of small organic molecules under visible light illumination could be investigated over

TiO2 photocatalyst.
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APPENDIX A. LIST OF CHEMICALS

Table A.1.: List of compounds name, chemicals structure, and symbols that employed in this study
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Chapter B
NMR characterization of the products

from aerobic dehydrogenation

(2a) Following the representative procedure, quinoline was synthesized from 0.4 mmol 1,2,3,4-

tetrahydroquinoline upon 24 h LED blue light illumination, at room temperature, in a solvent of

4 mL of 2-propanol in 1 atm O2 (balloon) condition. The transparent (colorless) product was

isolated with flash column using silica gel (3:2 Hex/EtOAc) (43.6 mg, 91%). Characterization

data matched with those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 8.93

(dd, J = 4.3, 1.8 Hz, 1H), 8.17 (t, J = 8.7, 8.4 Hz, 1.2 Hz, 2H), 7.83 (dd, J = 8.2, 1.5 Hz, 1H),

7.73 (t, J= 8.4, 6.9, 1.5 Hz, 1H), 7.55 (t, J= 8.1, 6.8, 1.2 Hz, 1H), 7.41 (dd, J= 8.3, 4.2 Hz, 1H).

13C NMR (101 MHz, Chloroform-d) δ 149.96, 147.86, 135.57, 129.03, 127.83, 127.32, 126.28,

126.07, 120.61.

(2b) Following the representative procedure, 6-methoxy-quinoline was synthesized from 0.4

mmol 6-methoxy-1,2,3,4-tetrahydroquinoline (upon 24 h LED blue light illumination, at room

temperature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The white-beige

product was isolated with flash column using silica gel (2:1 Hex/EtOAc) (60 mg, 94%). Charac-

terization data matched with those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d)
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δ 8.81 – 8.71 (m, 1H), 8.07 – 7.96 (m, 2H), 7.40 – 7.30 (m, 2H), 7.06 (dd, J = 3.0, 1.6 Hz, 1H),

3.96 – 3.89 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 157.71, 147.87, 144.36, 134.81, 131.07,

129.29, 122.28, 121.35, 105.12, 55.51.

(1e) The white powder product TBSO-1,2,3,4-tetrahydroquinoline was isolated with flash col-

umn using silica gel (5:1 Hex/EtOAc) (368 mg, 70%) of TBSO-THQ was isolated. Characteriza-

tion data matched with those reported by AIST. 1H NMR (400 MHz, Chloroform-d) δ 6.76 (dt, J

= 8.1, 1.0 Hz, 1H), 6.11 (dd, J = 8.1, 2.4 Hz, 1H), 5.98 (d, J = 2.4 Hz, 1H), 3.30 – 3.21 (m, 2H),

2.68 (t, J = 6.6 Hz, 2H), 1.95 – 1.87 (m, 2H), 0.96 (s, 9H), 0.17 (s, 6H). 13C NMR (101 MHz,

CDCl3) δ 154.03, 144.95, 129.44, 114.15, 108.57, 105.09, 76.87, 76.55, 76.23, 41.43, 25.85,

25.28, 21.99, 17.73, -4.84.

(2c) Following the representative procedure, quinaldine was synthesized from 0.4 mmol 1,2,3,4-

tetrahydroqunaldine upon 24 h LED blue light illumination, at room temperature, in a solvent

of 4 mL of acetonitrile in 1 atm O2 (balloon) condition. The colorless product was isolated with

flash column using silica gel (3:2 Hex/EtOAc) (55.2 mg, 92%). Characterization data matched

with those reported by AIST. 1H NMR (400 MHz, Chloroform-d) δ 8.02 (ddd, J = 8.6, 2.6, 0.9

Hz, 2H), 7.75 (dd, J = 8.1, 1.5 Hz, 1H), 7.67 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.46 (ddd, J =

8.1, 6.9, 1.2 Hz, 1H), 7.32 – 7.22 (m, 1H), 2.74 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ

158.97, 147.87, 136.13, 129.39, 128.63, 127.47, 126.47, 125.64, 121.97, 25.38.

(2e) Following the representative procedure, 7-TBSO-quinoline was synthesized from 0.4 mmol

7-TBSO- 1,2,3,4-tetrahydroquinoline upon 24 h LED blue light illumination, at room temperature,

in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The pale white product was

isolated with flash column using silica gel (5:1 Hex/EtOAc) (86 mg, 83%). 1H NMR (400 MHz,

Chloroform-d) δ 8.83 (dd, J = 4.3, 1.8 Hz, 1H), 8.06 (ddd, J = 8.2, 1.8, 0.8 Hz, 1H), 7.69 (d, J

= 8.8 Hz, 1H), 7.47 (dt, J = 2.5, 0.6 Hz, 1H), 7.30 – 7.20 (m, 1H), 7.15 (dd, J = 8.8, 2.4 Hz,

1H), 1.03 (s, 9H), 0.29 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 156.36, 150.13, 149.25, 135.18,

128.37, 123.39, 122.55, 122.52, 118.62, 115.69, 25.27, 25.26, 25.22, 17.83, -4.55, -4.83, -5.12.
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(2g) Following the representative procedure, 6-Chloroquinoline was synthesized from 0.4 mmol

6-chloro - 1,2,3,4-tetrahydroquinoline upon 24 h LED blue light illumination, at room tempera-

ture, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The product was

isolated with flash column using silica gel (3:1 Hex/EtOAc) (62.2 mg, 92%). Characterization

data matched with those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 8.89

(dd, J = 4.2, 1.7 Hz, 1H), 8.07 – 7.98 (m, 2H), 7.77 (d, J = 2.3 Hz, 1H), 7.62 (dd, J = 9.0, 2.3

Hz, 1H), 7.39 (dd, J = 8.4, 4.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 150.59, 146.64, 135.08,

132.27, 131.12, 130.39, 128.82, 126.40, 121.90.

(2h) Following the representative procedure, 6-methylquinoline was synthesized from 0.4 mmol

6-methyl - 1,2,3,4-tetrahydroquinoline upon 24 h LED blue light illumination, at room temper-

ature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The product was

isolated with flash column using silica gel (3:1 Hex/EtOAc) (33.3 mg, 74%). Characterization

data matched with those reported by Sigma Aldrich.5 1H NMR (400 MHz, Chloroform-d) δ 8.84

(dd, J = 4.2, 1.7 Hz, 1H), 8.05 (dd, J = 8.3, 1.3 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.60 – 7.50

(m, 2H), 7.34 (dd, J = 8.3, 4.2 Hz, 1H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 149.54,

146.93, 136.37, 135.29, 131.73, 129.10, 128.32, 126.58, 121.06, 21.54.

(2i) Following the representative procedure, 2-methylquinoline-8-carboxylic acid was synthe-

sized from 0.4 mmol 2-methyl-8-carboxylic acid - 1,2,3,4-tetrahydroquinoline upon 24 h LED blue

light illumination, at room temperature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon)

condition. The product was isolated with flash column using silica gel (1:2 Hex/EtOAc) (69.7 mg,

93%). Characterization data matched with those reported by Sigma Aldrich. 1H NMR (400 MHz,

Chloroform-d) δ 8.69 (dd, J = 7.4, 1.5 Hz, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.02 (dd, J = 8.1, 1.5

Hz, 1H), 7.69 – 7.61 (m, 1H), 7.44 (d, J= 8.5 Hz, 1H), 2.80 (s, 3H). 13C NMR (101 MHz, CDCl3)

δ 167.36, 158.52, 144.53, 138.47, 134.62, 132.63, 126.18, 126.10, 123.59, 122.64, 24.59.

(2k) Following the representative procedure, isoquinoline was synthesized from 0.4 mmol

1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumination, at room temperature, in a

solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The colorless product was iso-
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lated with flash column using alumina gel (3:1 Hex/EtOAc) (22.1 mg, 43%). Characterization

data matched with those reported by Sigma Aldrich.6 1H NMR (400 MHz, Chloroform-d) δ 9.26

(t, J = 1.0 Hz, 1H), 8.53 (d, J = 5.7 Hz, 1H), 7.97 (dd, J = 8.2, 1.1 Hz, 1H), 7.82 (dd, J = 8.3,

1.0 Hz, 1H), 7.73 – 7.57 (m, 3H). 13C NMR (101 MHz, Chloroform-d) δ 152.18, 142.67, 135.41,

129.94, 128.32, 127.24, 126.85, 126.09, 120.05.

(2k*) Following the representative procedure, 3,4-dihydroisoquinoline was synthesized from

0.4 mmol 1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumination, at room tem-

perature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition as a second main

product. The pale yellow product was isolated with flash column using alumina gel (3:1 Hex/E-

tOAc) (27.2 mg, 52%). 1H NMR (400 MHz, Chloroform-d) δ 8.35 (s, 1H), 7.37 (td, J = 7.1, 2.1

Hz, 1H), 7.35 – 7.21 (m, 2H), 7.24 – 7.11 (m, 1H), 3.79 (ddd, J = 9.9, 6.2, 2.2 Hz, 2H), 2.83 –

2.70 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 159.99, 135.98, 131.81, 130.69, 127.06, 126.85,

126.72, 47.02, 24.68.

(2m) Following the representative procedure, 1-methyl isoquinoline was synthesized from 0.4

mmol 1-methyl-1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumination, at 47◦C

temperature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The pale yellow

product was isolated with flash column using silica gel (2:1 Hex/EtOAc) (43.1 mg, 75%). Charac-

terization data matched with those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d)

δ 8.39 (d, J = 5.8 Hz, 1H), 8.12 (dq, J = 8.3, 1.0 Hz, 1H), 7.80 (dt, J = 8.3, 0.9 Hz, 1H), 7.67

(ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.59 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.50 (d, J = 5.8 Hz, 1H),

2.97 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 158.13, 141.37, 135.44, 129.45, 127.06, 126.74,

126.55, 125.16, 118.79, 21.96.

(2l) Following the representative procedure, 6,7-dimethoxy-isoquinoline was synthesized from

0.4 mmol 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumination,

at room temperature, in a solvent of 2 mL of CH2Cl2 (dichloromethane) and 2 mL of 2-propanol

in 1 atm O2 (balloon) condition. The pale yellow product was isolated with flash column using

silica gel (10:1 DCM/acetone) (61.5 mg, 81%). Characterization data matched with those re-

142



ported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 9.05 (s, 1H), 8.39 (d, J = 5.7

Hz, 1H), 7.51 (d, J = 4.8 Hz, 1H), 7.21 (s, 1H), 7.07 (s, 1H), 4.04 (s, 6H). 13C NMR (101 MHz,

CDCl3) δ 152.64, 149.95, 149.54, 141.58, 132.15, 124.38, 118.85, 104.93, 104.17, 55.70, 55.66.

(2n) Following the representative procedure, 1-phenyl isoquinoline was synthesized from 0.4

mmol 1-phenyl-1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumination, at 47◦C

temperature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The white

powder product was isolated with flash column using silica gel (3:1 Hex/EtOAc) (27.0 mg,

33%). Characterization data matched with those reported by Sigma Aldrich. NMR (400 MHz,

Chloroform-d) δ 8.62 (d, J = 5.7 Hz, 1H), 8.11 (dq, J = 8.6, 1.0 Hz, 1H), 7.89 (dt, J = 8.3, 1.0

Hz, 1H), 7.73 – 7.67 (m, 3H), 7.65 (dd, J = 5.7, 0.9 Hz, 1H), 7.57 –– 7.47 (m, 4H). 13C NMR

(101 MHz, CDCl3) δ 160.41, 141.89, 139.26, 136.51, 129.64, 129.56, 128.22, 127.99, 127.24,

126.80, 126.63, 126.38.

(2n*) Following the representative procedure, 1-phenyl-3,4-dihydroisoquinoline was synthe-

sized from 0.4 mmol 1-phenyl-1,2,3,4-tetrahydroisoquinoline upon 24 h LED blue light illumina-

tion, at 47◦C temperature, in a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition as

a second main product. The product was isolated with flash column using silica gel (3:1 Hex/E-

tOAc) (43.9 mg, 54%). Characterization data matched with those reported by Sigma Aldrich.

1H NMR (400 MHz, Chloroform-d) δ 7.65 – 7.54 (m, 2H), 7.49 – 7.33 (m, 4H), 7.31 – 7.21 (m,

3H), 3.89 – 3.83 (m, 2H), 2.84 – 2.78 (m, 2H). ) 13C NMR (101 MHz, CDCl3) δ 167.22, 138.98,

138.80, 130.61, 129.24, 128.79, 128.74, 128.09, 127.87, 127.35, 126.51, 47.62, 26.28.

(2v) Following the representative procedure, quinoxaline was synthesized from 0.4 mmol 1,2,3,4-

tetrahydroquinoxaline (upon 24 h LED blue light illumination, at room temperature, 4 mL of 2-

propanol in 1 atm O2 (O2 purging) condition. The white crystal product was isolated with flash

column using alumina gel (5:1 Hex/EtOAc) (43.3 mg, 83%). Characterization data matched with

those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 8.86 (d, J = 6.7 Hz, 2H),

8.12 (dd, J = 6.4, 3.5 Hz, 2H), 7.79 (dd, J = 6.5, 3.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ

144.52, 142.61, 129.61, 129.08.
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(2u) Following the representative procedure, 2-phenylimidazole was synthesized from 0.4

mmol 2-phenyl-2-imidazoline upon 24 h LED blue light illumination, at room temperature, in

a solvent of 4 mL of 2-propanol in 1 atm O2 (balloon) condition. The product was isolated with

flash column using silica gel (5:1 Hex/EtOAc) (53.2 mg, 93%). Characterization data matched

with those reported by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 7.93 – 7.86 (m,

2H), 7.38 – 7.28 (m, 3H), 7.14 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 147.16, 130.37, 128.87,

128.59, 125.52, 123.06.

(2o) Following the representative procedure, indole was synthesized from 0.4 mmol indoline

upon 24 h LED blue light illumination, at room temperature, in a solvent of 4 mL of 2-propanol in

air (needle poked through septum). The colorless product was isolated with flash column using

silica gel (12:1 Hex/EtOAc) (39.4 mg, 84%). Characterization data matched with those reported

by Sigma Aldrich. 1H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 1H), 7.69 (dd, J = 7.9, 1.2 Hz,

1H), 7.42 (dd, J = 8.1, 1.2 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.16 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H),

6.59 (ddd, J = 3.1, 2.1, 1.0 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 135.33, 127.41,

123.66, 121.54, 120.29, 119.37, 110.56, 102.19.

(2p) Following the representative procedure, 2-methyl indole was synthesized from 0.4 mmol

2-methyl indoline upon 24 h LED blue light illumination, at room temperature, in a solvent of

4ml of 2-propanol in 1atm O2 (O2 purging) condition. The colorless product was isolated with

flash column using silica gel (13:1 Hex/EtOAc) (43.2 mg, a mixture of 7% starting material and

76% product). Notably, because the starting material and the product had the same Rf value, the

unconverted starting material could not be separated from the product. Characterization data

matched with those reported by AIST. 1H NMR (400 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.55

(dq, J = 7.5, 0.9 Hz, 1H), 7.28 (dq, J = 8.1, 0.9 Hz, 1H), 7.18 – 7.06 (m, 2H), 6.24 (dp, J = 2.0,

1.0 Hz, 1H), 2.44 (s, J = 1.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 135.61, 134.60, 128.63,

124.31, 120.48, 119.18, 109.77, 99.95, 13.25.
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