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Processing technology to improve the manufacturing of thermoelectric generators (TEGs) is a growing field of
research. In this paper, an adaptable and scalable process comprising spray-coating and laser structuring for fast
and easy TEG manufacturing is presented. The developed process combines additive and subtractive processing
technology towards an adaptable ceramic-based TEG, which is applicable at high temperatures and shows a high

optimization potential. As a prototype, a TEG based on Ca3Co409 (CCO) and Ag on a ceramic substrate was
prepared. Microstructural and thermoelectric characterization is shown, reaching up to 1.65 pW cm 2 at 673 K
and a AT of 100 K. The high controllability of the developed process also enables adaptation for different kinds of

thermoelectric materials.

1. Introduction

Thermoelectric energy conversion has attracted researchers from
various fields in recent years due to its potential in direct energy con-
version from waste heat to electrical energy [1,2]. Therefore, energy
harvesting of wasted thermal energy is the focus of research for several
new technologies such as sensor technology and sensor networks or
microelectronic devices, as well as multiple high temperature applica-
tions [3]. The energy conversion in thermoelectric materials is based on
the coupling of electrical current I and entropy current Is. When a
voltage U and a temperature difference AT are applied across the length [
of a thermoelectric materials with a cross-sectional area A, the coupled
currents can be obtained for steady-state conditions by Eq. (1) [4,5].
Here, the thermoelectric material is represented by a tensor, which
contains the isothermal electrical conductivity o, the Seebeck coefficient
a and the electrically open-circuited entropy conductivity Agc.

Ly _A I o-a (U )
It)” 1 \o-a o-d+ Aoc AT

Note, that the here used entropy conductivity Agc is a more funda-
mental parameter to describe the thermal conductivity and is connected
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to the traditional heat conductivity 1oc via the absolute temperature T
[6]. Based on this, the power factor PF of a thermoelectric material can be
determined as a function of the isothermal electrical conductivity ¢ and
the Seebeck coefficient a (Eq. (2)):

PF =o¢-&° 2)

The figure-of-merit zT (Eq. (3)), which is related to the material’s
power conversion efficiency, is obtained as a function of the power factor
PF and the entropy conductivity Agc.

PF PF
T = Toe " oe T 3)
The basic working principle of a thermoelectric generator (TEG) via
coupled currents is schematically shown in Fig. 1. Driven by the tem-
perature difference AT, entropy flows from the hot side (top) to the cold
side (bottom) through the device. In the alternating n- (@ < 0) and p-type
(@ > 0) materials, a current of charge in the opposite or the same di-
rection is induced, respectively. Consequently, a circular electrical cur-
rent results in the case of an electrical closed circuit. As a result, a transfer
from thermal energy (red arrows in Fig. 1b) to electrical energy (blue
arrows in Fig. 1b) within the thermoelectric materials occurs, which can
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Fig. 1. Working principle schematic of a TEG with two thermocouples of n-type (@ < 0) and p-type (« > 0) materials. a) The currents of charge I and entropy I; are
coupled in the thermoelectric materials. Entropy enters the device at the hot side (top) and leaves it at the cold side (bottom), as indicated by red arrows. The thermally
induced currents of charge in the n-type and p-type materials lead to an external ring circuit, as indicated by blue arrows. Note, that the dissipation of excess entropy
has been skipped for clarity. b) Thermal energy, as indicated by red arrows, enters the device at the hot side, and in the thermoelectric materials, it is partly converted
into electrical energy. The latter is indicated by blue arrows. Note that the width of the blue arrows indicates that at the electrical input of the device the electrical
power is low, whereas at the electrical output, it is high. The difference is the useful electrical power to drive some external load, which is symbolized by an external
load resistance. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

be used in an external load. The electrical power output is determined by
the power factor PF of the thermoelectric materials and the temperature
difference AT [7].

Thermoelectric materials are therefore desired to have a high power
factor PF and a simultaneously low open-circuited entropy conductivity
Apc. Commercially available TEGs are based on n- and p-type doped
BiyTes, which provides good thermoelectric properties at room temper-
ature [8]. However, BisTes struggles on its poor temperature stability and
toxic precursors. Therefore, especially for application at higher temper-
atures [9], intermetallics such as Zintl phases [10-13] and half-Heusler
phases [14-16] as well as oxide-based ceramics [17], such as layered
cobaltites [18,19] or oxyselenides [20-22], have been studied exten-
sively in the last decade. Here, the oxide-based materials are character-
ized by their good temperature stability in air and are less toxic compared
to telluride based alternatives [9,23]. Within this group, the layered
misfit CazgCo409 (CCO) is one of the best known p-type materials [24,25].
To further improve the material properties, many different strategies
have been investigated, including doping, nanostructuring, optimization
of calcination and sintering and preparation of thin films and hybrid
materials [26-28].

In addition to material improvement, research has also focused on the
production technology of TEGs [29]. Conventionally, TEGs are processed
via manual assembling of thermoelectric materials on rigid substrates
such as Al,O3. However, this leads to an inflexible design and a rather
costly manufacturing with a noteworthy share in the overall price [29,
30]. Consequently, different highly controllable and scalable
manufacturing methods are the focus of research [31]. Especially, the
concept of flexible thermoelectric devices via printing and additive
manufacturing have been investigated recently, including various tech-
niques such as ink jetting [32], dispensing [33,34] and screen printing
[35,36]. Here, mostly organic electronics [37,38] or the conventional
BisTes [39,40] have been investigated as thermoelectric materials. A
desired high-temperature application of TEGs, however, leads to special
requirements in the temperature stability and longevity of the used
thermoelectric materials as well as the connectors and substrates. The
above-mentioned substrate-based scalable production technologies were
shown only on glass or polymeric substrates and are mostly based on
organic electronics, resulting in a relatively low temperature stability,
which limits the application to temperatures below 600 K [41]. For high
application temperatures, only free-standing films such as flexible

graphene oxide have been presented [42]. As a result, a universal and
scalable preparation technique for TEGs, especially including a flexible
substrate, combined with possible application at high temperatures in air
is still desired.

In our previous work [43], the processing of ceramic materials such as
CCO within a precisely controllable and adaptable process was pre-
sented. Here, we extend this process to develop a universal
manufacturing route for functional and high-temperature applicable
TEGs. To show the functionality of the process, a prototype based on the
well-known CCO as thermoelectric materials is prepared. For electrical
contact, commercially available Ag paste is used, which is also charac-
terized by a high temperature stability. Spray-coating and laser struc-
turing of the layers on a flexible low-temperature co-fired ceramic (LTCC)
substrate are used to design the TEG prototype. The LTCC technology is
in the focus of research since it found application in various fields of
microelectronic devices and can be easily adapted to the preparation
process and the final application [44-46]. It consists of ceramic particles,
embedded in a polymeric matrix, thus ensuring the flexibility within the
preparation and also allowing a simultaneous sintering process at high
temperatures. The universal manufacturing process and adaptable sub-
strates also enable similar processing for different kinds of thermoelectric
materials and TEGs Additionally, the design of the TEG can be easily
adapted to the desired application field, while the application tempera-
ture of the prepared TEG is not restricted by a polymeric substrate.

2. Experimental section
2.1. Generator design

If not mentioned separately, all reagents were obtained from com-
mercial vendors at reagent purity of higher and used without further
purification. CCO was purchased at CerPoTech (Tiller, Norway) and used
to obtain spray-coating paste by dispersing 30 wt% in isopropyl alcohol
via stirring and ultrasonication. As a contact material, a commercial Ag
paste (conductive silver varnish spray, purchased at Tifoo) was used,
because of the high temperature stability of Ag allowing the post-process
sintering at 1033 K. Both pastes were applied on a commercially avail-
able two-layer flexible LTCC substrate (951 X, purchased at DuPont) with
an effective substrate thickness of 440 pm via spray-coating (Sogolee
Airbrush HP-200) of CCO on one side of the substrate and Ag on the other
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Table 1
Details of the spray-coating process step to build CCO and Ag layers on the LTCC
substrate and the laser structuring process step for partly ablation.

Spray-coating
Sogolee Airbrush HP-200

Laser structuring
Epilog Fusion 32 M2 Dual CO»

nuzzle diameter 0.2 mm spot diameter 80 pm
pressure 3.5 bar max. laser output 40W
distance to substrate 30 mm power output used 30-40%
spray-coating angle 30° number of cycles 1
line distance 25 mm wave type continuous wave
number of cycles 5 scan mode parallel line scan
subsequently dried at 373K scan speed 240 mm s~!
a) preprocessing
spray-coating
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c) presintered TEG

structured CCO
N =

laser ablated "
line flexible

back side

N\
N e
‘h% laser ablated line

873K,5h
1033K,2h

d) sintered TEG

structured Ag

rigid & retains shape

Ag contacts over the edges

Fig. 2. Schematic manufacturing process of the TEG with CCO and Ag via a)
spray-coating (preprocessing) and b) laser structuring (processing) on top of a
flexible LTCC substrate. In the postprocessing step (c,d), the flexible and
structured substrate is sintered to obtain a robust body. For details of the
respective process parameters compare Table 1.

side. Details of the spray-coating step are shown in Table 1. The coated
substrate was dried at 373 K on a heating plate after each step. A CO,
laser (Epilog Fusion 32 M2 Dual) was used for subsequent laser struc-
turing of both sides, details for the laser structuring are also shown in
Table 1.

Subsequently, the still flexible substrate with CCO and Ag structures
on the front and back side, respectively, was sintered at 873 K for 5 h and
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1033 K for 2 h under air with a heating and cooling rate of 3 K min . The
maximum sintering temperature of 1033 K was chosen as a result of the
commercial sintering temperature of the LTCC (1033 K) and the tem-
perature stability of CCO, which starts to decompose above 1073 K.
Finally, the CCO and Ag layers were contacted via Ag paste and again
dried at 973 K for 5 h with a heating and cooling rate of 3 K min~. The
developed preparation process is also shown in Fig. 2.

2.2. Microstructural characterization

Spray-coated structures and the LTCC substrate were characterized by
X-ray diffraction (XRD, Bruker D8 Advance with Cu-K, radiation).
Microstructural characterization was performed with a field-emission
scanning electron microscope (FE-SEM, JEOL JSM-6700F) and a field-
emission transmission electron microscope (FE-TEM, JEOL JEM-2100F-
UHR) both equipped with an energy-dispersive X-ray spectrometer
(EDXS, Oxford Instruments INCA) for elemental analysis. The TEM was
also equipped with a spectrometer for electron energy-loss spectroscopy
(EELS, Gatan Imaging Filter GIF 2001). EELS measurements of the sample
were carried out in scanning transmission electron microscope (STEM)
mode at 0.5 eV/channel or 0.1 eV/channel with the electrostatic drift
tube calibrated to the first maximum of the Ni-Lg edge of an NiO standard
(853 eV [47]). The background was subtracted with a power-law model.
TEM specimen was prepared by cutting (Diamond wire saw, O’Well
model 3242), infiltration with epoxy resin, grinding and polishing from
both sides on polymer embedded diamond lapping films (Allied High
Tech, Multiprep) down to 10 pm thickness. Subsequent Ar ion polishing
(Gatan model 691 PIPS, precision ion polishing system) yielded electron
transparent regions. However, for SEM analysis, fractured samples were
used to prevent the porous layer to be infiltrated by epoxy resin, which
would change the sample structure at the top of the porous layer.

2.3. Thermoelectric characterization

The Seebeck coefficient @ and generator power output were measured
as a function of the temperature with a ProboStat A setup from NorECs
with ELITE thermal system and KEITHLEY 2100 Digit Multimeters. The
isothermal electrical conductivity ¢ was measured with a home-made
modified measurement cell based on the description of Indris [48]
with a horizontal Carbolite tube furnace and KEITHLEY 2100 Digit
Multimeters. The power factor PF of CCO and Ag was calculated ac-
cording to Eq. (2). The power output of the generator was measured near
room temperature (Thot = 373 K and Thot = 423 K) and at higher tem-
peratures (Tt = 573 K and Thot = 673 K). For the U-I,; and power output
curves, linear fits and second-degree polynominal fits were used,
respectively. The maximum electrical power output of the TEG Pej max, TEG
was calculated via Eq. (4) with the open-circuited voltage Upc and the
internal generator resistance Rrgg [7,38].

Usc
4 Ry

C)

Pel.max,TEG =

3. Results and discussion

The schematic manufacturing process for a TEG based on CCO and Ag
via spray-coating and laser structuring is shown in Fig. 2. First, the pre-
pared CCO paste and the Ag paste are spray-coated on the front and back
side of the flexible LTCC substrate, respectively. Compared to other
processing technologies such as screen printing, no additives within the
pastes, which may influence the resulting properties such as electrical
conductivity [49], are used and the layer thickness can be precisely
controlled (compare [43]). Furthermore this can be easily transferred to
other particle systems and non-planar substrates or surfaces. After a
drying step, laser structuring is utilized to give a defined structure of both
sides as well as make cuts for later contact. Here, the CCO is ablated from
the substrates in the respective lines, resulting in a thermoleg structure.



M. Wolf et al.

Open Ceramics 1 (2020) 100002

cco

LTCC

Wi
—

) CcCo

=H Q1 Tiizol i

St 31 2183 i
: o S| ~iiroi : |
= Pt = '
© o © l
-~ . " -~ J
> ; i A . . : :
= | P I i : i ’
0 ; | | ; 7] i i :
c : : i : c E ' |
9 | | P9 | ’
£ [Ltcc | A 1 | E |Ltcc | | l |

10 20 30 40 50 0 20 30 40 50

20/°

20/°

Fig. 3. Photos and SEM cross-section micrographs of the processed TEG: a,b,c) front side with CCO and d,e,f) back side with Ag. The corresponding XRD patterns
confirm the presence of g) CCO and h) Ag on top of the sintered LTCC substrate. In the XRD patterns, reflections of the blank sintered LTCC substrate are given to

indicate reflections from the substrate in coated specimens.

This ablation of the CCO can be done with a rather low laser power,
minimizing the risk of graphit formation out of the polymeric matrix of
the substrate. Accordingly, no short circuit between the resulting layers
could be detected. Utilization of laser structuring enables highly
controllable processing, making it possible to obtain many different
structures and shapes. Additionally, compared to the established screen
printing, the laser structuring does not require printing masks and is
capable to reach much finer structures and therefore show a higher

optimization potential. With this two-step combination of additive and
subtractive processing, easy and fast preparation and structuring of large
areas is enabled and the layer formation and structuring are decoupled
and can be individually controlled and adapted. This is beneficial for
research as well as commercial TEG manufacturing, especially due to the
absence of additives and the precise control of the resulting structures. It
results in a flexibility to adjust the design for a certain form or applica-
tion. Subsequently, the flexible substrate and both layers are sintered at

Figure 4. a-c) Cross-sectional SEM micrographs and d) EDXS elemental distribution (red: Ca, green: Co, blue: Si) of the fractured CCO-coated front side. The CCO layer
shows typical platelet-like CCO crystals. EDXS elemental distribution shows the Al- and Si-based LTCC substrate and the Ca- and Co-rich phases on top. High-resolution
images of the interface between the CCO layer and the LTCC substrate show smaller particles (red entangled areas in c)) attributed to the decomposition of CCO at

the interface.



M. Wolf et al.

O
Q
(S]
N
interface
layer
LTCC
9) Ca-L,; Ca-L, 0-K Co-L,, h)
:j i iﬁ - E E 2
}. x5 x3 | A b £
. g e~ e . ‘2_‘
3
[}] 5:
E‘ X5 .. x3 [\ B
2 !
[
- E
- o
= x3 2

350 400 450 500 550 600 650 700 750 800
energy loss / eV

o

1033 K in one post-processing step resulting in a rigid TEG.

The front and back side are electrically contacted with Ag ink using
the edges prepared via laser cutting. Generally, the presented process
may also be adapted to various kinds of thermoelectric materials.

Micrographs of the front and back side of the resulting sintered TEG
are shown in Fig. 3a and d. For this prototype, CCO structures with a
width of 2 mm and a length of 20 mm have been prepared within the
laser structuring process. This CCO layers on the front side are contacted
via silver ink with the Ag structures on the back side. The contact can be
done manually or by dipping the edges into silver ink. In the laser ablated
lines, the CCO and Ag have been removed, respectively. SEM micro-
graphs in Fig. 3b and c and Fig. 3e and f shows the corresponding layers
on top of the ceramic-based LTCC substrate. The CCO layer has a layer
thickness of approximately 36 pm, which can be controlled within the
process via the amount of spray-coating cycles [43]. Control of the
resulting layer thickness of the ceramic layer is an important parameter
to adjust and improve the resulting thermoelectric properties. For this
prototype, processing via 5 cycles of spray-coating, resulting in a layer
thickness of approximately 36 pm, showed the best results [43]. The
sintered Ag layer on the back side of the substrate exhibits a thickness of
approximately 7-8 pm. XRD patterns in Fig. 3g and h confirm the pres-
ence of the CCO layer on the front side and the Ag layer on the back side
of the sintered ceramic substrate, respectively.

Coatings and interfaces on both sides of the LTCC substrate were
investigated in detail by SEM and EDXS elemental analysis. Fig. 4 shows
the microstructural characterization of the CCO layer and its interface
with the ceramic substrate. The sintered substrate mostly contains
ceramic Al- and Si-based phases. Within the porous CCO layer with a
thickness of approximately 36 pm, typical platelet-like CCO particles are

Open Ceramics 1 (2020) 100002

Fig. 5. Cross-sectional STEM micrographs and
EDXS elemental distribution (red: Ca, green: Co,
blue: Si) of the CCO coated front side a-c) in the
CCO layer approximately 10 pm from the top of
the substrate and d-f) at the interface of the CCO
layer and the LTCC substrate. In the first 2 pm of
the layer, an interface can be seen, where CCO
has decomposed into Ca-rich and Co-rich phases.
EELS measurements in g) of the spots marked in
b) and e) proves this decomposition in the inter-
face layer, while showing CCO above. The
energy-loss near-edge structures (ELNESs) of the
O-K edge in h) and i) show CaO and CazO4 as
products of decomposition at the interface with
the LTCC substrate. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the Web version of this
article.)
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present with diameters varying from 500 nm up to a few pm. However, at
the interface of the LTCC substrate and the CCO layer, some smaller
particles can be found, thus leading to the assumption of interface re-
actions occurring between the CCO and substrate during sintering.

Therefore, the CCO layer and especially the interface of the CCO layer
and the LTCC substrate were investigated by TEM micrographs and EELS
measurements, as shown in Fig. 5. Between the ceramic substrate and the
CCO layer, the TEM micrographs reveal an interface layer with a thick-
ness of approximately 2 pm. Within this interface layer, some particles
smaller than the typical platelet-like CCO particles can be observed. The
EDXS elemental maps (Fig. 5¢ and f) show that within this interface layer
decomposition occurred, resulting in Ca-rich and Co-rich particles next to
each other. Above this interface layer, the typical platelet-like CCO
particles can be identified, and the EDXS elemental distribution also
exhibits only particles containing both Ca and Co.

To further analyze the decomposition within this interface layer and
to prove the identity of CCO above this layer, EELS spectra of the Ca-rich
and Co-rich phases as well as of the CCO particles above were taken
(Fig. 5g). While in the EELS spectra of the CCO particles, the Ca-Lj 3, O-K
as well as the Co-Ly 3 edge can be observed, the particles in the interface
layer exhibit only the Ca-Ly 3 or the Co-Ly 3 edge together with the O-K
edge. Fine-structure measurements of the O-K edges and comparison
with reference materials (Fig. 5h and i) were used to identify Co304 and
CaO as products of decomposition. This corresponds to the typical
decomposition products of CCO [50]. Before sintering, the LTCC sub-
strate contains ceramic particles embedded in a polymeric matrix, while
in the sintering process, the polymer is burnt out, and the ceramic par-
ticles are sintered to a rigid substrate. Here, the burn of the polymer is
assumed to lead to a reduced partial oxygen pressure at the interface,
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Figure 6. a-c) Cross-sectional SEM micrographs and d) EDXS elemental distribution (red: Al, green: Si, blue: Ag) of the fractured Ag-coated back side. The EDXS
elemental distribution shows the Al- and Si-based LTCC substrate and the Ag layer on top.
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the CCO processing. Dashed lines in d) show the Seebeck coefficient @ in pv K.

resulting in the decomposition of the oxygen-rich CCO near the substrate
and therefore the formation of cobalt oxide and calcium oxide. However,
above this interface layer with a thickness of about 2 pm and therefore as
main part of the layer, no decomposition of CCO has occurred, resulting
in a functional thermoelectric layer.

The Ag layer on the back side was also investigated via SEM micro-
graphs and EDXS elemental distribution (Fig. 6). The observed Ag layer
exhibits a layer thickness of approximately 7-8 pm with a high porosity,
analogous to the CCO layer. Here, no additional phases at the interface of
the LTCC substrate and the Ag layer were found. The EDXS elemental
distribution shows the Si- and Al-rich LTCC substrate and the overlying
pure Ag phase with a sharp distinction.

The thermoelectric properties of both the CCO and the Ag layer are
shown in Fig. 7. For the CCO, processing via 5 cycles of spray-coating
were chosen, based on the analysis in the previous work [43]. The sin-
tered Ag exhibits a high electrical conductivity of approximately 7000 S
em ™! at 373 K and 3000 S cm ! at 773 K and a typical Seebeck coefficient
of approximately 3-5 pV K~!. However, the CCO exhibits a rather low

electrical conductivity of approximately 2-3 S cm ™! which corresponds
to approximately 2.5-5% of the undoped bulk material [24,51,52] and
annealed undoped films [53,54]. This is mainly attributed to the high
porosity of the CCO layer, which results due to the fact of a missing high
pressure densification within the process. Due to the utilization of the
flexible LTCC substrate, only a relatively low pressure densification with
4.2 - 10° Pa could be applied.

The measured Seebeck coefficient a of the CCO layer up to 125 pvV K !
at 773 K shows p-type conduction and is comparabale to reported
undoped thin film CCO [53,54] prepared via chemical solution deposi-
tion and is therefore in good agreement with literature data as well as our
previous results [43]. However, it is lower than that of undoped bulk
CCO [24,51,52] and that of thin film CCO prepared via pulsed-laser
deposition [28,55]. The resulting values of the power factor of both
layers are as high as 0.06 pV cm ™! K2 and as high as 0.75 pW cm ™! K2
for the CCO and Ag layers at 773 K, respectively. To allow an easy
comparison of measured data with literature, Fig. 7d summarizes the
measured thermoelectric properties of both layers in an Ioffe plot,
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Fig. 8. a) Photograph of the prototype TEG
(10 CCO and 9 Ag layers) with a length of
3.8 cm and a thickness of 460 pm. Note that
the temperature gradient is applied from the
top to the bottom, resulting in an effective
area of 0.175 cm? b) Voltage and c) elec-
trical power output P, and electrical power
density we; as a function of the electrical
current I; measured at Ty, = 373 K and AT
~ 50 K, Thot = 423 K and AT ~ 100 K, Thor =
573 K and AT =~ 90 K and Ty = 673 K and

AT ~ 100 K. Data in d) show the corre-
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Table 2

Measure values of the open-circuited voltage Uoc and short-circuited electrical
current I sc and via Eq. (4) calculated maximum electrical power output Pejmax
of the TEG at different applied Tho. The electrical power density welmax Was
obtained by normalizing the maximum electrical power output Pejmax With the
geometry shown in Fig. 8a.

2

Thot/K AT/K Uoc/mV e sc/mA Pelmax/nW @el,max/TW cm
373 50 70.5 528 .10°* 9.31 53.18

423 100 99.7 7.82.107* 19.49 111.38

573 90 122.96 414 . 1073 127.26 727.20

673 100 161.16 7.18 .1073 289.28 1653.03

showing the power factor as a function of the electrical conductivity.
Displayed reference data for undoped bulk CCO [24] show the potential
of optimizing the CCO processing, especially by gaining higher densifi-
cation and therefore less porosity of the CCO layer to obtain a higher
power factor. For this, the process may be transferred to other kinds of
thermoelectric materials or performed on alternative substrates, where a
high pressure densification step can be done or is not even needed. Note
also, that for this prototype, undoped CCO has been used, to prove the
functionality of the system. As a result, the thermoelectric properties
could also be enhanced by using doped CCO or hybrid materials e.g.
Ag-added CCO.

In Fig. 8, the voltage-electrical current curves and the resulting
electrical power output of the prepared prototype TEG at different Thot
values are given. At relatively low temperatures, the device reaches
Pelmax = 10 and 20 nW at a AT of approximately 50 K and 100 K,
respectively. With the geometry of 0.175 cm?, shown in Fig. 8a, this
corresponds to an electrical power density @wejmax of 50-115 nW em~2,
Both the electrical conductivity ¢ and the Seebeck coefficient a of both
sides increase with increasing temperature, resulting in an analogous
increase in the electrical power output of the generator. At Thot = 673 K
and AT = 100 K, the processed TEG reaches an electrical power output of
Pel,max = 289 nW and a corresponding electrical power density of @elmax
of 1.65 pW cm ™2,

Table 2 summarizes the measured thermoelectric parameters at
different applied temperature conditions. With an electrical power den-
sity of 1.65 pW em ™2 with 10 CCO and 9 Ag layers, this prototype provide

500 600 700
T IK

hot

similar electrical power density compared to printed devices based on
thermoelectric polymers, which are usually in the range of approximately
500 nm [56,57] up to several pyW with a high amount of thermocouples
[58]. However, BiyTes-based printed devices have been reported to reach
higher electrical power densities, e.g. by Chen et al. [59] up to 75 pW
ecm2ata AT of 20 K or by Kim et al. [60] reaching 3.8 mW cm 2ata AT
of 50 K. Compared to this, our prototype provides a rather low electrical
power density, which is attributed to the low electrical conductivity of
the CCO layer, resulting in a high electrical resistivity of the generator
Rygg. Further adjustment of the presented process, especially the sin-
tering of the layers and of course the adaptation to other thermoelectric
materials, may strongly increase the electrical power output of the pro-
cessed generator, making the presented manufacturing process a prom-
ising way to prepare and adapt TEGs for a desired application.

4. Conclusions

An adaptable process for TEG manufacturing has been presented on
the example of a prototype based on CCO and Ag on a ceramic-based
LTCC substrate. The structure and shape of the thermoelectric layers
and the resulting TEG are given by the utilization of spray-coating and
laser structuring, while no printing masks or additives are required. The
prepared prototype consists of porous layers of CCO and Ag and is
applicable at higher temperature compared to polymer-based manufac-
tured TEGs. An electrical power density of up to 1.65 pW cm™2 at 673 K
and a AT of 100 K could be achieved, mainly limited by the high porosity
of the ceramic CCO layer reaching a low electrical conductivity of only
approximately 5% of the bulk material. However, a high potential to
optimize the thermoelectric properties and electrical power output is
given by adjusting the process to tailor the densification and sintering of
the layers and further adjustment of the thermoelectric materials. The
presented process may also be adapted to different kinds of thermo-
electric materials and TEG design for various applications.
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