Fabrication of a monolithic lab-on-a-chip platform with integrated hydrogel waveguides for chemical sensing

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/9274
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/9327
dc.contributor.author Torres-Mapa, Maria Leilani
dc.contributor.author Singh, Manmeet
dc.contributor.author Simon, Olga
dc.contributor.author Mapa, Jose Louise
dc.contributor.author Machida, Manan
dc.contributor.author Günther, Axel
dc.contributor.author Roth, Bernhard
dc.contributor.author Heinemann, Dag
dc.contributor.author Terakawa, Mitsuhiro
dc.contributor.author Heisterkamp, Alexander
dc.date.accessioned 2020-01-31T08:49:00Z
dc.date.available 2020-01-31T08:49:00Z
dc.date.issued 2019
dc.identifier.citation Torres-Mapa, M.L.; Singh, M.; Simon, O.; Mapa, J.L.; Machida, M. et al.: Fabrication of a monolithic lab-on-a-chip platform with integrated hydrogel waveguides for chemical sensing. In: Sensors (Switzerland) 19 (2019), Nr. 19, 4333. DOI: https://doi.org/10.3390/s19194333
dc.description.abstract Hydrogel waveguides have found increased use for variety of applications where biocompatibility and flexibility are important. In this work, we demonstrate the use of polyethylene glycol diacrylate (PEGDA) waveguides to realize a monolithic lab-on-a-chip device. We performed a comprehensive study on the swelling and optical properties for different chain lengths and concentrations in order to realize an integrated biocompatible waveguide in a microfluidic device for chemical sensing. Waveguiding properties of PEGDA hydrogel were used to guide excitation light into a microfluidic channel to measure the fluorescence emission profile of rhodamine 6G as well as collect the fluorescence signal from the same device. Overall, this work shows the potential of hydrogel waveguides to facilitate delivery and collection of optical signals for potential use in wearable and implantable lab-on-a-chip devices. eng
dc.language.iso eng
dc.publisher Basel : MDPI AG
dc.relation.ispartofseries Sensors (Switzerland) 19 (2019), Nr. 19
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject 3D printing eng
dc.subject Fluorescence eng
dc.subject Hydrogels eng
dc.subject Microfluidics eng
dc.subject Waveguide eng
dc.subject 3D printers eng
dc.subject Biocompatibility eng
dc.subject Chemical sensors eng
dc.subject Electrochemical sensors eng
dc.subject Fluidic devices eng
dc.subject Fluorescence eng
dc.subject Hydrogels eng
dc.subject Lab-on-a-chip eng
dc.subject Microfluidics eng
dc.subject Monolithic integrated circuits eng
dc.subject Optical properties eng
dc.subject Waveguides eng
dc.subject Wearable technology eng
dc.subject 3-D printing eng
dc.subject Fluorescence emission eng
dc.subject Fluorescence signals eng
dc.subject Lab-on-a-chip devices eng
dc.subject Micro-fluidic devices eng
dc.subject Microfluidic channel eng
dc.subject Polyethylene glycol diacrylate eng
dc.subject Waveguiding properties eng
dc.subject Optical waveguides eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Fabrication of a monolithic lab-on-a-chip platform with integrated hydrogel waveguides for chemical sensing
dc.type Article
dc.type Text
dc.relation.issn 1424-8220
dc.relation.doi https://doi.org/10.3390/s19194333
dc.bibliographicCitation.issue 19
dc.bibliographicCitation.volume 19
dc.bibliographicCitation.firstPage 4333
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken