Inverse determination of constitutive equations and cutting force modelling for complex tools using oxley's predictive machining theory

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/835
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/859
dc.contributor.author Denkena, Berend
dc.contributor.author Grove, Thilo
dc.contributor.author Dittrich, Marc-André
dc.contributor.author Niederwestberg, D.
dc.contributor.author Lahres, M.
dc.date.accessioned 2016-12-16T07:50:13Z
dc.date.available 2016-12-16T07:50:13Z
dc.date.issued 2015
dc.identifier.citation Denkena, B.; Grove, T.; Dittrich, M.A.; Niederwestberg, D.; Lahres, M.: Inverse determination of constitutive equations and cutting force modelling for complex tools using oxley's predictive machining theory. In: Procedia CIRP 31 (2015), S. 405-410. DOI: https://doi.org/10.1016/j.procir.2015.03.012
dc.description.abstract In analysis of machining processes, finite element analysis is widely used to predict forces, stress distributions, temperatures and chip formation. However, constitutive models are not always available and simulation of cutting processes with complex tool geometries can lead to extensive computation time. This article presents an approach to determine constitutive parameters of the Johnson-Cook's flow stress model by inverse modelling as well as a methodology to predict process forces and temperatures for complex three-dimensional tools using Oxley's machining theory. In the first part of this study, an analytically based computer code combined with a particle swarm optimization (PSO) algorithm is used to identify constitutive models for 70MnVS4 and an aluminium-alloyed ultra-high-carbon steel (UHC-steel) from orthogonal milling experiments. In the second part, Oxley's predictive machining theory is coupled with a multi-dexel based material removal model. Contact zone information (width of cut, undeformed chip thickness, rake angle and cutting speed) are calculated for incremental segments on the cutting edge and used as input parameters for force and temperature calculations. Subsequently, process forces are predicted for machining using the inverse determined constitutive models and compared to actual force measurements. The suggested methodology has advantages regarding the computation time compared to finite element analyses. eng
dc.description.sponsorship BMBF/02PN2050
dc.language.iso eng
dc.publisher Amsterdam : Elsevier
dc.relation.ispartofseries Procedia CIRP 31 (2015)
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Force eng
dc.subject Material eng
dc.subject Simulation eng
dc.subject Carbon eng
dc.subject Carbon steel eng
dc.subject Computation theory eng
dc.subject Constitutive equations eng
dc.subject Constitutive models eng
dc.subject Cutting eng
dc.subject Cutting tools eng
dc.subject Inverse problems eng
dc.subject Machining centers eng
dc.subject Materials eng
dc.subject Particle swarm optimization (PSO) eng
dc.subject Complex tool geometry eng
dc.subject Constitutive parameters eng
dc.subject Material removal model eng
dc.subject Simulation eng
dc.subject Temperature calculation eng
dc.subject Ultrahigh carbon steel eng
dc.subject Undeformed chip thickness eng
dc.subject Finite element method eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 510 | Mathematik ger
dc.title Inverse determination of constitutive equations and cutting force modelling for complex tools using oxley's predictive machining theory
dc.type Article
dc.type Text
dc.relation.issn 22128271
dc.relation.doi https://doi.org/10.1016/j.procir.2015.03.012
dc.bibliographicCitation.volume 31
dc.bibliographicCitation.firstPage 405
dc.bibliographicCitation.lastPage 410
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken