Assessing the Device-performance Impacts of Structural Defects with TCAD Modeling

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/784
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/808
dc.contributor.author Needleman, David Berney
dc.contributor.author Wagner, Hannes
dc.contributor.author Altermatt, Pietro P.
dc.contributor.author Buonassisi, Tonio
dc.date.accessioned 2016-11-30T08:58:10Z
dc.date.available 2016-11-30T08:58:10Z
dc.date.issued 2015
dc.identifier.citation Needleman, D.B.; Wagner, H.; Altermatt, P.P.; Buonassisi, T.: Assessing the Device-performance Impacts of Structural Defects with TCAD Modeling. In: Energy Procedia 77 (2015), S. 8-14. DOI: https://doi.org/10.1016/j.egypro.2015.07.003
dc.description.abstract Advanced solar cell architectures like passivated emitter and rear (PERC) and heterojunction with intrinsic thin layer (HIT) are increasingly sensitive to bulk recombination. Present device models consider homogeneous bulk lifetime, which does not accurately reflect the effects of heterogeneously distributed defects. To determine the efficiency potential of multicrystalline silicon (mc-Si) in next-generation architectures, we present a higher-dimensional numerical simulation study of the impacts of structural defects on solar cell performance. We simulate these defects as an interfacial density of traps with a single mid-gap energy level using Shockley-Read-Hall (SRH) statistics. To account for enhanced recombination at the structural defects, we apply a linear scaling to the majority-carrier capture cross-section and scale the minority-carrier capture cross-section with the inverse of the line density of traps. At 300 K, our simulations of carrier occupation and recombination rate match literature electron-beam-induced current (EBIC) data and first-principles calculations of carrier capture, emission, and recombination for all the energy levels associated with dislocations decorated with metal impurities. We implement our model in Sentaurus Device, determining the losses across different device architectures for varying impurity decoration of grain boundaries. eng
dc.description.sponsorship DoD/National Defense Science & Engineering Graduate Fellowship (NDSEG)
dc.language.iso eng
dc.publisher Amsterdam : Elsevier
dc.relation.ispartof Energy Procedia 77 (2015)
dc.relation.ispartofseries Energy Procedia
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject dislocation eng
dc.subject grain boundary eng
dc.subject modeling eng
dc.subject photovoltaics eng
dc.subject silicon eng
dc.subject Solar cell eng
dc.subject Architecture eng
dc.subject Calculations eng
dc.subject Dislocations (crystals) eng
dc.subject Electric currents eng
dc.subject Electronic design automation eng
dc.subject Grain boundaries eng
dc.subject Heterojunctions eng
dc.subject Impurities eng
dc.subject Inverse problems eng
dc.subject Models eng
dc.subject Silicon eng
dc.subject Solar cells eng
dc.subject Solar power generation eng
dc.subject Device architectures eng
dc.subject Electron-beam-induced current eng
dc.subject First-principles calculation eng
dc.subject Heterojunction with intrinsic thin layers eng
dc.subject Multicrystalline silicon (mc-Si) eng
dc.subject Numerical simulation studies eng
dc.subject Photovoltaics eng
dc.subject Solar cell performance eng
dc.subject Defects eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Assessing the Device-performance Impacts of Structural Defects with TCAD Modeling eng
dc.type Article
dc.type Text
dc.relation.issn 1876-6102
dc.relation.doi 10.1016/j.egypro.2015.07.003
dc.bibliographicCitation.volume 77
dc.bibliographicCitation.firstPage 8
dc.bibliographicCitation.lastPage 14
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken