Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/735
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/759
dc.contributor.author Heinze, Rieke
dc.contributor.author Mironov, Dmitrii
dc.contributor.author Raasch, Siegfried
dc.date.accessioned 2016-11-25T08:33:30Z
dc.date.available 2016-11-25T08:33:30Z
dc.date.issued 2016
dc.identifier.citation Heinze, Rieke; Mironov, D.; Raasch, Siegfried: Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study. In: Journal of Advances in Modeling Earth Systems 8 (2016), Nr. 1, S. 3-30. DOI: http://dx.doi.org/10.1002/2015MS000508
dc.description.abstract A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated. eng
dc.description.sponsorship Deutscher Wetterdienst
dc.description.sponsorship European Commission/COST Action ES0905
dc.language.iso eng
dc.publisher Hoboken, NJ : Blackwell Publishing Ltd
dc.relation.ispartofseries Journal of Advances in Modeling Earth Systems 8 (2016), Nr. 1
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject cloud-topped boundary layers eng
dc.subject large-eddy simulation eng
dc.subject parameterizations eng
dc.subject pressure-scrambling terms eng
dc.subject second-order turbulence modeling eng
dc.subject Atmospheric thermodynamics eng
dc.subject Boundary layer flow eng
dc.subject Boundary layers eng
dc.subject Budget control eng
dc.subject Buoyancy eng
dc.subject Pressure gradient eng
dc.subject Reynolds equation eng
dc.subject Reynolds number eng
dc.subject Shear flow eng
dc.subject Turbulence eng
dc.subject Uncertainty analysis eng
dc.subject Cloud-topped boundary layer eng
dc.subject Comparison of models eng
dc.subject.ddc 550 | Geowissenschaften ger
dc.title Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study eng
dc.type Article
dc.type Text
dc.relation.issn 1942-2466
dc.relation.doi http://dx.doi.org/10.1002/2015MS000508
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 8
dc.bibliographicCitation.firstPage 3
dc.bibliographicCitation.lastPage 30
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken