Russeting in apple and pear: A plastic periderm replaces a stiff cuticle

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/654
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/678
dc.contributor.author Khanal, Bishnu Prasad
dc.contributor.author Grimm, Eckhard
dc.contributor.author Knoche, Moritz
dc.date.accessioned 2016-11-03T12:40:19Z
dc.date.available 2016-11-03T12:40:19Z
dc.date.issued 2013
dc.identifier.citation Khanal, Bishnu Prasad; Grimm, Eckhard; Knoche, Moritz: Russeting in apple and pear: A plastic periderm replaces a stiff cuticle. In: AoB PLANTS 5 (2013), pls048. DOI: http://dx.doi.org/10.1093/aobpla/pls048
dc.description.abstract Background and aims Russeting in apples (Malus domestica Borkh.) and pears (Pyrus communis L.) is a disorder of the fruit skin that results from microscopic cracks in the cuticle and the subsequent formation of a periderm. To better understand russeting, rheological properties of cuticular membranes (CM) and periderm membranes (PM) were studied from the russet-sensitive apple 'Karmijn de Sonnaville' and from 'Conference' pear. Methodology The CM and PM were isolated enzymatically, investigated by microscopy and subjected to tensile tests, creep/relaxation tests and to stepwise creep tests using a material testing machine. Principal results The isolated CM formed a continuous polymer, whereas the PM represented a cellular structure of stacked cork cells. Tensile tests revealed higher plasticity of the hydrated PM compared with the CM, as indicated by a higher strain at the maximum force (1max) and a lower modulus of elasticity (E). In apple, the maximum force (Fmax) was higher in the CM than in the PM but in pear the higher Fmax value was found for the PM. In specimens obtained from the CM : PM transition zone, the weak point in apple was found to be at the CM : PM borderline but in pear it was within the CM. In both apple and pear, creep/relaxation tests revealed elastic strain, creep strain, viscoelastic strain and viscous strain components in both the PM and CM. For any particular force, strains were always greater in the PM than in the CM and were also greater in pear than in apple. The 1max and Fmax values of the CM and PM were lower than those of nonrusseted and russeted whole-fruit skin segments, which included adhering tissue. Conclusions In russeting, stiff CM are replaced by more plastic PM. Further, the cell layers underlying the CM and PM represent the load-bearing structure in the fruit skin in apple and pear. eng
dc.description.sponsorship Niedersächsisches Ministerium für Wissenschaft und Kultur/76251-17-4/09/ZN2543
dc.language.iso eng
dc.publisher Oxford : Oxford University Press
dc.relation.ispartofseries AoB PLANTS 5 (2013)
dc.rights CC BY 3.0 Unported
dc.rights.uri http://creativecommons.org/licenses/by/3.0/
dc.subject Cuticular membrane eng
dc.subject Fracture eng
dc.subject Fruit skin eng
dc.subject Mechanical properties eng
dc.subject Rheology eng
dc.subject Russet eng
dc.subject Strain eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 580 | Pflanzen (Botanik) ger
dc.title Russeting in apple and pear: A plastic periderm replaces a stiff cuticle eng
dc.type Article
dc.type Text
dc.relation.issn 2041-2851
dc.relation.doi http://dx.doi.org/10.1093/aobpla/pls048
dc.bibliographicCitation.volume 5
dc.bibliographicCitation.firstPage pls048
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken