Large eddy simulation using the general circulation model ICON

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/613
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/637
dc.contributor.author Dipankar, Anurag
dc.contributor.author Stevens, Björn
dc.contributor.author Heinze, Rieke
dc.contributor.author Moseley, Christopher
dc.contributor.author Zängl, Günther
dc.contributor.author Giorgetta, Marco
dc.contributor.author Brdar, Slavko
dc.date.accessioned 2016-11-02T08:33:58Z
dc.date.available 2016-11-02T08:33:58Z
dc.date.issued 2015
dc.identifier.citation Dipankar, A.; Stevens, B.; Heinze, Rieke; Moseley, C.; Zängl, G. et al.: Large eddy simulation using the general circulation model ICON. In: Journal of Advances in Modeling Earth Systems 7 (2015), Nr. 3, S. 963-986. DOI: http://dx.doi.org/10.1002/2015MS000431
dc.description.abstract ICON (ICOsahedral Nonhydrostatic) is a unified modeling system for global numerical weather prediction (NWP) and climate studies. Validation of its dynamical core against a test suite for numerical weather forecasting has been recently published by Zängl et al. (2014). In the present work, an extension of ICON is presented that enables it to perform as a large eddy simulation (LES) model. The details of the implementation of the LES turbulence scheme in ICON are explained and test cases are performed to validate it against two standard LES models. Despite the limitations that ICON inherits from being a unified modeling system, it performs well in capturing the mean flow characteristics and the turbulent statistics of two simulated flow configurations - one being a dry convective boundary layer and the other a cumulus-topped planetary boundary layer. eng
dc.description.sponsorship BMBF/01LK1202E
dc.language.iso eng
dc.publisher Hoboken : Blackwell Publishing Ltd
dc.relation.ispartofseries Journal of Advances in Modeling Earth Systems 7 (2015), Nr. 3
dc.rights CC BY-NC-ND 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject climate prediction eng
dc.subject cloud topped boundary layer eng
dc.subject convective boundary layer eng
dc.subject large eddy simulation eng
dc.subject numerical weather forecast eng
dc.subject turbulence eng
dc.subject Atmospheric thermodynamics eng
dc.subject Boundary layer flow eng
dc.subject Boundary layers eng
dc.subject Forecasting eng
dc.subject Turbulence eng
dc.subject Weather forecasting eng
dc.subject Climate prediction eng
dc.subject Cloud-topped boundary layer eng
dc.subject Convective boundary layers eng
dc.subject Dry convective boundary layer eng
dc.subject Numerical weather forecasting eng
dc.subject Numerical weather forecasts eng
dc.subject Numerical weather prediction eng
dc.subject Planetary boundary layers eng
dc.subject Large eddy simulation eng
dc.subject climate prediction eng
dc.subject convective boundary layer eng
dc.subject cumulus eng
dc.subject general circulation model eng
dc.subject global climate eng
dc.subject large eddy simulation eng
dc.subject model validation eng
dc.subject weather forecasting eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.title Large eddy simulation using the general circulation model ICON
dc.type Article
dc.type Text
dc.relation.issn 1942-2466
dc.relation.doi http://dx.doi.org/10.1002/2015MS000431
dc.bibliographicCitation.issue 3
dc.bibliographicCitation.volume 7
dc.bibliographicCitation.firstPage 963
dc.bibliographicCitation.lastPage 986
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken