Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/2136
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2161
dc.contributor.author Aasi, J.
dc.contributor.author Allen, Bruce
dc.contributor.author Ast, Stefan
dc.contributor.author Aufmuth, Peter
dc.contributor.author Danzmann, Karsten
dc.contributor.author Kaufer, S.
dc.contributor.author Lück, Harald
dc.contributor.author Meier, Tobias
dc.contributor.author Schnabel, R.
dc.contributor.author Vahlbruch, H.
dc.contributor.author Willke, Benno
dc.contributor.author et al.
dc.contributor.author LIGO Scientific Collaboration
dc.contributor.author Virgo Collaboration
dc.date.accessioned 2017-10-26T08:57:08Z
dc.date.available 2017-10-26T08:57:08Z
dc.date.issued 2013
dc.identifier.citation Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T. et al.: Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. In: Physical Review D - Particles, Fields, Gravitation and Cosmology 88 (2013), Nr. 6, 62001. DOI: https://doi.org/10.1103/PhysRevD.88.062001
dc.description.abstract Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M⊙–25 M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors. © 2013 The American Physical Society eng
dc.language.iso eng
dc.publisher College Park, MD : American Physical Society
dc.relation.ispartofseries Physical Review D 88 (2013), Nr. 6
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.subject Gravitational waves eng
dc.subject Gravitational-Wave Detector Network eng
dc.subject Gravitationswelle ger
dc.subject.ddc 530 | Physik ger
dc.title Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network eng
dc.type Article
dc.type Text
dc.relation.issn 2470-0010
dc.relation.doi https://doi.org/10.1103/PhysRevD.88.062001
dc.bibliographicCitation.issue 6
dc.bibliographicCitation.volume 88
dc.bibliographicCitation.firstPage 62001
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken