Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/2096
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/2121
dc.contributor.author Kirchner, Thomas W.
dc.contributor.author Niehaus, Markus
dc.contributor.author Debener, Thomas
dc.contributor.author Schenk, Marco K.
dc.contributor.author Herde, Marco
dc.date.accessioned 2017-10-24T08:01:10Z
dc.date.available 2017-10-24T08:01:10Z
dc.date.issued 2017
dc.identifier.citation Kirchner, T.W.; Niehaus, M.; Debener, T.; Schenk, M.K.; Herde, M.: Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata. In: PLoS ONE 12 (2017), Nr. 9, e0185429. DOI: https://doi.org/10.1371/journal.pone.0185429
dc.description.abstract A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)–a gene with an expression pattern consistent with a role in root hair architecture–resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission. eng
dc.language.iso eng
dc.publisher San Francisco, CA : Public Library of Science
dc.relation.ispartofseries PLoS ONE 12 (2017), Nr. 9
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject root hairs eng
dc.subject nucleases eng
dc.subject CRISPR eng
dc.subject genetically modified plants eng
dc.subject Brassica carinata eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 610 | Medizin, Gesundheit ger
dc.title Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata eng
dc.type Article
dc.type Text
dc.relation.issn 1932-6203
dc.relation.doi https://doi.org/10.1371/journal.pone.0185429
dc.bibliographicCitation.issue 9
dc.bibliographicCitation.volume 12
dc.bibliographicCitation.firstPage e0185429
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken