Dynamic Modeling of Soft-Material Actuators Combining Constant Curvature Kinematics and Floating-Base Approach

Zur Kurzanzeige

dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/15301
dc.identifier.uri https://doi.org/10.15488/15182
dc.contributor.author Mehl, Maximilian eng
dc.contributor.author Bartholdt, Max eng
dc.contributor.author Schappler, Moritz eng
dc.date.accessioned 2023-11-13T15:44:22Z
dc.date.available 2023-11-13T15:44:22Z
dc.date.issued 2022-04-28
dc.identifier.citation Mehl, M.; Bartholdt, M.; Schappler, M.: Dynamic Modeling of Soft-Material Actuators Combining Constant Curvature Kinematics and Floating-Base Approach. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft). Piscataway, NJ : IEEE, 2022, S. 1-8. DOI: https://doi.org/10.1109/RoboSoft54090.2022.9762177 eng
dc.description.abstract Soft robotic manipulators are on the verge to their first real applications. In most cases they are actuated by fluidic pressure or tendons and molded of highly elastic material, which performs large deformation if put under stress. Performing tasks e.g. in inspection of narrow machines or endoscopy requires the actuator to be tactile and controllable. Due to their highly nonlinear behavior, model-based approaches are investigated to combine and utilize sensor information to estimate the system states of the manipulator. In this paper, equations of motion (EoM) for the well-known piecewise constant curvature (PCC) approach are extended by a floating base as it is often used in kinematic chains for legged robots and their contact with the ground. Base reaction forces and moments, which are easily measurable quantities, become visible in the EoM, if the six spatial degrees of freedom at the base of the manipulator are considered. Thereby, additional information on the system's states is obtained and used in the proposed identification scheme. Essentially, the floating base, a center-of-gravity approach and a state-of-the-art parametrization of the PCC kinematics are combined to derive and validate a Lagrangian dynamics model. On a best-case set of validation step responses, the identified inverse dynamics model performs with an accuracy of 5% to 7.6% of max. actuation torque.© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works eng
dc.language.iso eng eng
dc.publisher Piscataway, NJ : IEEE
dc.relation.ispartof 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft) eng
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. eng
dc.subject Actuators eng
dc.subject Uncertainty eng
dc.subject Force measurement eng
dc.subject Torque eng
dc.subject Dynamics eng
dc.subject Kinematics eng
dc.subject Soft robotics eng
dc.subject.classification Konferenzschrift eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau eng
dc.title Dynamic Modeling of Soft-Material Actuators Combining Constant Curvature Kinematics and Floating-Base Approach eng
dc.type BookPart eng
dc.type Text eng
dc.relation.doi 10.1109/RoboSoft54090.2022.9762177
dc.bibliographicCitation.firstPage 1 eng
dc.bibliographicCitation.lastPage 8 eng
dc.description.version acceptedVersion eng
tib.accessRights frei zug�nglich eng


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken