All-optical matter-wave lens using time-averaged potentials

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12903
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/13007
dc.contributor.author Albers, Henning
dc.contributor.author Corgier, Robin
dc.contributor.author Herbst, Alexander
dc.contributor.author Rajagopalan, Ashwin
dc.contributor.author Schubert, Christian
dc.contributor.author Vogt, Christian
dc.contributor.author Woltmann, Marian
dc.contributor.author Lämmerzahl, Claus
dc.contributor.author Herrmann, Sven
dc.contributor.author Charron, Eric
dc.contributor.author Ertmer, Wofgang
dc.contributor.author Rasel, Ernst M.
dc.contributor.author Gaaloul, Naceur
dc.contributor.author Schlippert, Dennis
dc.date.accessioned 2022-11-01T07:04:21Z
dc.date.available 2022-11-01T07:04:21Z
dc.date.issued 2022
dc.identifier.citation Albers, H.; Corgier, R.; Herbst, A.; Rajagopalan, A.; Schubert, C. et al.: All-optical matter-wave lens using time-averaged potentials. In: Communications Physics 5 (2022), Nr. 1, 60. DOI: https://doi.org/10.1038/s42005-022-00825-2
dc.description.abstract The precision of matter-wave sensors benefits from interrogating large-particle-number atomic ensembles at high cycle rates. Quantum-degenerate gases with their low effective temperatures allow for constraining systematic errors towards highest accuracy, but their production by evaporative cooling is costly with regard to both atom number and cycle rate. In this work, we report on the creation of cold matter-waves using a crossed optical dipole trap and shaping them by means of an all-optical matter-wave lens. We demonstrate the trade off between lowering the residual kinetic energy and increasing the atom number by reducing the duration of evaporative cooling and estimate the corresponding performance gain in matter-wave sensors. Our method is implemented using time-averaged optical potentials and hence easily applicable in optical dipole trapping setups. © 2022, The Author(s). eng
dc.language.iso eng
dc.publisher London : Springer Nature
dc.relation.ispartofseries Communications Physics 5 (2022), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Atoms eng
dc.subject Cooling eng
dc.subject Economic and social effects eng
dc.subject Evaporative cooling systems eng
dc.subject Kinetic energy eng
dc.subject Kinetics eng
dc.subject Lenses eng
dc.subject Systematic errors eng
dc.subject All optical eng
dc.subject Atom numbers eng
dc.subject Atomic ensemble eng
dc.subject Cycle rate eng
dc.subject High cycle eng
dc.subject Large particles eng
dc.subject Matter waves eng
dc.subject Particle numbers eng
dc.subject Time-averaged eng
dc.subject Wave sensors eng
dc.subject Evaporation eng
dc.subject.ddc 530 | Physik ger
dc.title All-optical matter-wave lens using time-averaged potentials eng
dc.type Article
dc.type Text
dc.relation.essn 2399-3650
dc.relation.doi https://doi.org/10.1038/s42005-022-00825-2
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 5
dc.bibliographicCitation.firstPage 60
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken