Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/12395
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12494
dc.contributor.author Minke, Christine
dc.contributor.author Suermann, Michel
dc.contributor.author Bensmann, Boris
dc.contributor.author Hanke-Rauschenbach, Richard
dc.date.accessioned 2022-07-04T05:03:55Z
dc.date.available 2022-07-04T05:03:55Z
dc.date.issued 2021
dc.identifier.citation Minke, C.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R.: Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?. In: International Journal of Hydrogen Energy 46 (2021), Nr. 46, S. 23581-23590. DOI: https://doi.org/10.1016/j.ijhydene.2021.04.174
dc.description.abstract Proton exchange membrane water electrolysis (PEMWE) is a key technology for future sustainable energy systems. Proton exchange membrane (PEM) electrolysis cells use iridium, one of the scarcest elements on earth, as catalyst for the oxygen evolution reaction. In the present study, the expected iridium demand and potential bottlenecks in the realization of PEMWE for hydrogen production in the targeted GW a−1 scale are assessed in a model built on three pillars: (i) an in-depth analysis of iridium reserves and mine production, (ii) technical prospects for the optimization of PEM water electrolyzers, and (iii) PEMWE installation rates for a market ramp-up and maturation model covering 50 years. As a main result, two necessary preconditions have been identified to meet the immense future iridium demand: first, the dramatic reduction of iridium catalyst loading in PEM electrolysis cells and second, the development of a recycling infrastructure for iridium catalysts with technical end-of-life recycling rates of at least 90%. © 2021 The Author(s) eng
dc.language.iso eng
dc.publisher New York, NY [u.a.] : Elsevier
dc.relation.ispartofseries International Journal of Hydrogen Energy 46 (2021), Nr. 46
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Catalyst loading eng
dc.subject Hydrogen economy eng
dc.subject Iridium eng
dc.subject Market model eng
dc.subject PEM electrolyzer eng
dc.subject Proton exchange membrane water electrolysis eng
dc.subject Catalysts eng
dc.subject Commerce eng
dc.subject Electrolysis eng
dc.subject Hydrogen production eng
dc.subject Iridium eng
dc.subject Proton exchange membrane fuel cells (PEMFC) eng
dc.subject Recycling eng
dc.subject Catalyst loadings eng
dc.subject Electrolysis cell eng
dc.subject Hydrogen economy eng
dc.subject Iridium catalyst eng
dc.subject Market modeling eng
dc.subject Membrane electrolysis eng
dc.subject Proton exchange membrane electrolyze eng
dc.subject Proton exchange membrane water electrolyse eng
dc.subject Proton exchange membranes eng
dc.subject Water electrolysis eng
dc.subject Electrolytic cells eng
dc.subject.ddc 660 | Technische Chemie ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?
dc.type Article
dc.type Text
dc.relation.essn 1879-3487
dc.relation.doi https://doi.org/10.1016/j.ijhydene.2021.04.174
dc.bibliographicCitation.issue 46
dc.bibliographicCitation.volume 46
dc.bibliographicCitation.firstPage 23581
dc.bibliographicCitation.lastPage 23590
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics