Inverse determination of constitutive equations and cutting force modelling for complex tools using oxley's predictive machining theory

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Denkena, B.; Grove, T.; Dittrich, M.A.; Niederwestberg, D.; Lahres, M.: Inverse determination of constitutive equations and cutting force modelling for complex tools using oxley's predictive machining theory. In: Procedia CIRP 31 (2015), S. 405-410. DOI: https://doi.org/10.1016/j.procir.2015.03.012

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/835

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 268




Kleine Vorschau
Zusammenfassung: 
In analysis of machining processes, finite element analysis is widely used to predict forces, stress distributions, temperatures and chip formation. However, constitutive models are not always available and simulation of cutting processes with complex tool geometries can lead to extensive computation time. This article presents an approach to determine constitutive parameters of the Johnson-Cook's flow stress model by inverse modelling as well as a methodology to predict process forces and temperatures for complex three-dimensional tools using Oxley's machining theory. In the first part of this study, an analytically based computer code combined with a particle swarm optimization (PSO) algorithm is used to identify constitutive models for 70MnVS4 and an aluminium-alloyed ultra-high-carbon steel (UHC-steel) from orthogonal milling experiments. In the second part, Oxley's predictive machining theory is coupled with a multi-dexel based material removal model. Contact zone information (width of cut, undeformed chip thickness, rake angle and cutting speed) are calculated for incremental segments on the cutting edge and used as input parameters for force and temperature calculations. Subsequently, process forces are predicted for machining using the inverse determined constitutive models and compared to actual force measurements. The suggested methodology has advantages regarding the computation time compared to finite element analyses.
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2015
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 167 62,31%
2 image of flag of United States United States 31 11,57%
3 image of flag of China China 16 5,97%
4 image of flag of France France 9 3,36%
5 image of flag of India India 8 2,99%
6 image of flag of Russian Federation Russian Federation 6 2,24%
7 image of flag of Canada Canada 6 2,24%
8 image of flag of No geo information available No geo information available 5 1,87%
9 image of flag of Turkey Turkey 3 1,12%
10 image of flag of Indonesia Indonesia 3 1,12%
    andere 14 5,22%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.