The impact of geometric non-linearities on the fatigue analysis of trailing edge bond lines in wind turbine rotor blades

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Noever Castelos, Pablo; Balzani: The impact of geometric non-linearities on the fatigue analysis of trailing edge bond lines in wind turbine rotor blades. In: Journal of Physics: Conference Series 749 (2016), 012009. DOI: http://dx.doi.org/10.1088/1742-6596/749/1/012009

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/532

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 357




Kleine Vorschau
Zusammenfassung: 
The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.
Lizenzbestimmungen: CC BY 3.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2016-09-14
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 235 65,83%
2 image of flag of United States United States 29 8,12%
3 image of flag of China China 27 7,56%
4 image of flag of Czech Republic Czech Republic 15 4,20%
5 image of flag of Russian Federation Russian Federation 10 2,80%
6 image of flag of Turkey Turkey 5 1,40%
7 image of flag of Indonesia Indonesia 4 1,12%
8 image of flag of United Kingdom United Kingdom 4 1,12%
9 image of flag of Denmark Denmark 3 0,84%
10 image of flag of Spain Spain 2 0,56%
    andere 23 6,44%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.