Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

Download statistics - Document (COUNTER):

Eichler, C.; Mlynek, J.; Butscher, J.; Kurpiers, P.; Hammerer, K. et al.: Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits. In: Physical Review X 5 (2015), Nr. 4, 041044. DOI: https://doi.org//10.1103/PhysRevX.5.041044

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3254

Selected time period:

year: 
month: 

Sum total of downloads: 151




Thumbnail
Abstract: 
Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2015
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 94 62.25%
2 image of flag of United States United States 21 13.91%
3 image of flag of Finland Finland 8 5.30%
4 image of flag of China China 6 3.97%
5 image of flag of No geo information available No geo information available 3 1.99%
6 image of flag of Indonesia Indonesia 3 1.99%
7 image of flag of Portugal Portugal 2 1.32%
8 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 2 1.32%
9 image of flag of France France 2 1.32%
10 image of flag of Israel Israel 1 0.66%
    other countries 9 5.96%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse