Optimized stencil print for low Ag paste consumption and high conversion efficiencies

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Hannebauer, H.; Schimanke, S.; Falcon, T.; Altermatt, P. P.; Dullweber, T.: Optimized stencil print for low Ag paste consumption and high conversion efficiencies. In: Energy Procedia 67 (2015), S. 108-115. DOI: https://doi.org/10.1016/j.egypro.2015.03.294

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/2010

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 144




Kleine Vorschau
Zusammenfassung: 
We evaluate industrial-type PERC solar cells applying a dual printed front grid with stencil printed Ag fingers. We vary the Ag paste consumption for the finger print between 8.4 mg and 120.4 mg per 156 x 156 mm(2) wafer (weighted after printing before drying) by using polyurethane squeegees with different shore hardness as well as a metal squeegee and by varying the printing pressure to obtain different finger heights. The busbar consumes additional 19.5 mg Ag paste. We obtain average finger heights from 5.9 mu m up to 24.3 mu m for 55 mu m to 65 mu m wide fingers. The resulting PERC solar cells show an average efficiency of 20.2% for finger paste consumptions above 60 mg. In contrast, a strong reduction of the conversion efficiency with less than 60 mg finger paste consumption is observed since the increased series resistance reduces the FF. By analytical modelling, we compare the calculated series resistance to the experimental data and observe a good accordance for more than 40 mg finger paste consumption whereas the experimental series resistance slightly exceed the modelled values below 40 mg. In addition, we use numerical simulations to investigate the series resistance dependence on the finger height which shows higher experimental values for finger height below 10 mu m. The deviation of the measured series resistance and the two modelled cases is mostly due to inhomogeneous distribution of finger height profiles and finger interruptions on the solar cells with front finger paste consumption of less than 40 mg. For finger paste consumption below 60 mg, we find that also the specific contact resistance increases. A physical model of the root cause for this dependence still has to be found.
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2015
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 85 59,03%
2 image of flag of United States United States 19 13,19%
3 image of flag of China China 12 8,33%
4 image of flag of Korea, Republic of Korea, Republic of 7 4,86%
5 image of flag of Russian Federation Russian Federation 5 3,47%
6 image of flag of Taiwan Taiwan 3 2,08%
7 image of flag of Vietnam Vietnam 2 1,39%
8 image of flag of No geo information available No geo information available 2 1,39%
9 image of flag of Netherlands Netherlands 2 1,39%
10 image of flag of India India 1 0,69%
    andere 6 4,17%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.