Scale-dependent diffusion anisotropy in nanoporous silicon

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Kondrashova, D.; Lauerer, A.; Mehlhorn, D.; Jobic, H.; Feldhoff, A. et al.: Scale-dependent diffusion anisotropy in nanoporous silicon. In: Scientific Reports 7 (2017), No. 40207. DOI: https://doi.org/10.1038/srep40207

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1954

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 181




Kleine Vorschau
Zusammenfassung: 
Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Naturwissenschaftliche Fakultät

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 119 65,75%
2 image of flag of United States United States 30 16,57%
3 image of flag of China China 10 5,52%
4 image of flag of No geo information available No geo information available 3 1,66%
5 image of flag of Uruguay Uruguay 3 1,66%
6 image of flag of France France 3 1,66%
7 image of flag of Indonesia Indonesia 2 1,10%
8 image of flag of Brazil Brazil 2 1,10%
9 image of flag of Taiwan Taiwan 1 0,55%
10 image of flag of Israel Israel 1 0,55%
    andere 7 3,87%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.